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Zusammenfassung

Diese Arbeit befasst sich mit der Kinematik von Sterne bildenden

Galaxien (SFGs) während der Hochzeit der kosmischen Sternentste-

hung, bei Rotverschiebungen 0.5 < z < 3. Basierend auf den genomme-

nen Beobachtungen wird abgeleitet, welche Massenkomponenten die

Galaxien dynamisch stabilisieren, und wie sich deren Beitrag im Laufe

von 6 Milliarden Jahren verändert.

Um einen Zusammenhang zwischen einerseits der beobachtbaren

Masse in der Form von Sternen und Gas und andererseits der Dunklen

Materie in Galaxien herzustellen, werden die Tully-Fisher-Beziehungen

genutzt. Es zeigt sich, dass die dynamische Stabilität der SFGs bei

z ∼ 2.3 durch Gas und Sterne dominiert wird, während bei z ∼ 0.9 Dun-

kle Materie relevanter wird. Bei gleichbleibender Kreisgeschwindigkeit

haben SFGs bei z ∼ 2.3 und z ∼ 0.9 die gleiche stellare Masse, aber ihre

Gasmasse ist bei höherer Rotverschiebung größer. Auf der Grund-

lage von vorhandenen Modellen der Galaxienentwicklung wird ein Toy-

Modell entwickelt, das die zeitlichen Änderung in der stellaren und gas-

förmigen Masse typischer SFGs in Betracht zieht, um die beobachtete,

nicht-monotone Entwicklung der Tully-Fisher-Beziehungen von z ∼ 2.3

bis z = 0 zu erklären.

Durch die graduelle Umwandlung von Gas zu Sternen verändert

sich das interstellare Medium und dessen Einfluss auf die Galaxienkine-

matik. Die Entwicklung der intrinsischen Geschwindigkeitsdispersion

des ionisierten Gases in typischen SFGs wird diskutiert sowie die Streu-

ung und mögliche Ursachen dieser turbulenten Bewegungen. Durch

Beobachtungsdaten sowie theoretische Überlegungen wird gezeigt, dass

die galaktische Turbulenz bei z & 2 höchstwahrscheinlich durch gravi-

tative Instabilitäten dominiert wird, während diese zu späterer kosmi-

scher Zeit weniger bedeutsam werden, und so der Einfluss von stellaren

Feedbackprozessen an Relevanz gewinnen kann.

Eine genauere Analyse der Kinematik individueller, massiver SFGs

wird vorgenommen, um die Beiträge sichtbarer und Dunkler Materie

zur Galaxiendynamik mit höherer räumlicher Auflösung und bis zu

größeren galaktischen Radien zu untersuchen. Besonders bei z & 2

finden sich sehr turbulente und extrem baryonisch dominierte Sys-

teme mit fallenden Rotationskurven auf der Basis von ionisiertem Gas.

In einer detaillierten Fallstudie, die Messungen des ionisierten sowie

molekularen Gases kombiniert, wird gezeigt, dass die Kinematik dieser

beiden Gasphasen ausgezeichnet übereinstimmt. Dieses Ergebnis ist

eine wichtige Demonstration dessen, dass die Bewegungen des ioni-

siertes Gases das Gravitationspotential abbilden. Durch einen Ver-

gleich der Beobachtungsdaten mit modernen kosmologischen Simula-



tionen werden Unterschiede im Gasgehalt und in der Kinematik mas-

siver z ∼ 2 SFGs identifiziert, die vermutlich auf Unzulänglichkeiten in

den Simulationen aufgrund nicht aufgelöster physikalischer Prozesse

im interstellaren Medium und deren Implementierung hinweisen.



Abstract

In this thesis we discuss the kinematics of star-forming galaxies (SFGs)

during the peak epoch of cosmic star formation rate density, at red-

shifts 0.5 < z < 3. Based on our observations, we deduce information on

their mass budget and dynamical support, and we follow its evolution

over 6 billion years of cosmic history.

We use the Tully-Fisher relations to connect the observable stellar

and total baryonic mass to dark matter on galactic scales, and find

that at z ∼ 2.3 the galactic dynamical support is dominated by gas and

stellar mass, while at z ∼ 0.9 dark matter becomes more important. At

fixed circular velocity, SFGs have the same amount of stellar mass at

z ∼ 2.3 and z ∼ 0.9, but their gas masses are higher at higher redshift.

Based on existing models of galaxy evolution, we develop a toy model

taking into account changes in the stellar and gas content of typical

SFGs, to explain the observed, non-monotonic evolution of the Tully-

Fisher relations from z ∼ 2.6 to z = 0.

Through the gradual conversion of gas into stars, the dynamical

state of the interstellar medium and its impact on the galaxy kinematics

changes. We discuss the evolution of the intrinsic velocity dispersion

of ionized gas in typical SFGs, its scatter, and possible mechanisms

driving these turbulent motions. Based on both observational and

theoretical evidence we conclude that at z & 2 gas turbulence is likely

dominated by gravitational instabilities, while towards lower redshift

these mechanisms become less important and therefore the impact of

stellar feedback may become comparable.

We zoom in on the kinematics of individual, massive SFGs to in-

vestigate in more detail the dynamical contributions of luminous and

dark matter with higher spatial resolution and out to larger galactic

radii. Especially at z & 2 we find very turbulent, strongly baryon-

dominated systems with dropping outer rotation curves traced by ion-

ized gas emission. In a detailed case study combining measurements

from ionized and molecular gas, we show that the observed kinematics

in both tracers are in excellent agreement. This result is an important

demonstration that the ionized gas reliably traces the gravitational

potential. Through comparison of our observations with modern cos-

mological simulations, we identify differences in gas content and kine-

matics of massive z ∼ 2 SFGs that likely point towards shortcomings

in the simulations introduced by unresolved physics in the interstellar

medium, and their implementation via sub-grid recipes.
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H. Übler, R. Genzel, E. Wisnioski, N. M. Förster Schreiber, T. T. Shimizu,

S. H. Price, L. J. Tacconi, S. Belli, D. J. Wilman, M. Fossati, J. T. Mendel,

R. L. Davies, A. Beifiori, R. Bender, G. B. Brammer, A. Burkert, J. Chan,

R. I. Davies, M. Fabricius, A. Galametz, R. Herrera-Camus, P. Lang, D.

Lutz, I. G. Momcheva, T. Naab, E. J. Nelson, R. P. Saglia, K. Tadaki,

P. G. van Dokkum, and S. Wuyts

ApJ 880(1), 48 (2019) Chapter 3

https://doi.org/10.1038/nature21685
https://doi.org/10.3847/1538-4357/aa7558
https://doi.org/10.3847/2041-8213/aaacfa
https://doi.org/10.3847/1538-4357/ab27cc


Contents

1 Introduction 1

1.1 The ΛCDM cosmology . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Galaxies during the peak epoch of cosmic star formation . . . . . 7

1.3 Instruments used for this work . . . . . . . . . . . . . . . . . . . . 12

1.4 Important scientific questions related to this work . . . . . . . . . 15

1.5 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 The Evolution of the Tully-Fisher Relation 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Data and sample selection . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 The KMOS3D survey . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Masses and star-formation rates . . . . . . . . . . . . . . . 24

2.2.3 Dynamical modelling . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Sample selection . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 The TFR with KMOS3D . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 The TFR at 0.6 < z < 2.6 . . . . . . . . . . . . . . . . . . 32

2.3.3 TFR evolution from z ∼ 2.3 to z ∼ 0.9 . . . . . . . . . . . 34

2.3.4 Comparison to other high−z studies . . . . . . . . . . . . 37

2.4 TFR evolution in context . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Dynamical support of SFGs from z ∼ 2.3 to z ∼ 0.9 . . . . 40

2.4.2 Comparison to the local Universe . . . . . . . . . . . . . . 41

2.4.3 The impact of uncertainties and model assumptions on the

observed TFR evolution . . . . . . . . . . . . . . . . . . . 42

2.5 A toy model interpretation . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.7 Appendix A – The effects of sample selection . . . . . . . . . . . . 53

2.8 Appendix B – An alternative method to investigate TFR evolution 55

2.9 Appendix C – The impact of mass uncertainties on slope and resid-

uals of the TFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.10 Appendix D – Derivation of the toy model for TFR evolution . . . 58

2.10.1 The theoretical framework . . . . . . . . . . . . . . . . . . 58

ix



2.10.2 Observational constraints on the redshift evolution of fgas,

md, and fDM(Re) . . . . . . . . . . . . . . . . . . . . . . . 62

2.11 Appendix E – Physical properties of galaxies in the TFR sample . 65

2.12 Appendix F – Comments on related work post publication . . . . 70

3 The Evolution of Gas Velocity Dispersion 75

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 The KMOS3D survey . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Dynamical modelling and sample selection . . . . . . . . . . . . . 79

3.3.1 One-dimensional kinematic profiles . . . . . . . . . . . . . 79

3.3.2 Dynamical modelling with dysmal . . . . . . . . . . . . . 80

3.3.3 The kinematic sample . . . . . . . . . . . . . . . . . . . . 83

3.3.4 Upper limit cases . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.5 Validation of point spread function and line spread function

corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.6 Vertical vs. radial velocity dispersion . . . . . . . . . . . . 88

3.4 Velocity dispersion increases with redshift . . . . . . . . . . . . . 89

3.4.1 The KMOS3D velocity dispersions from z = 2.6 to z = 0.6 . 89

3.4.2 Quantification of observational uncertainties and the scat-

ter in σ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4.3 Comment on the effect of sample selection . . . . . . . . . 94

3.4.4 Multi-phase gas velocity dispersions from z = 4 to z = 0 . 94

3.4.5 Multi-phase gas velocity dispersions evolve similarly with

redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.4.6 Comments on thin vs. thick disk evolution . . . . . . . . . 100

3.5 What drives the gas velocity dispersion? . . . . . . . . . . . . . . 101

3.5.1 Galaxy-scale velocity dispersion correlates with gas mass

and SFR properties . . . . . . . . . . . . . . . . . . . . . . 101

3.5.2 Stellar feedback . . . . . . . . . . . . . . . . . . . . . . . . 102

3.5.3 Marginally Toomre-stable disks . . . . . . . . . . . . . . . 105

3.5.4 Combining feedback and gravity . . . . . . . . . . . . . . . 108

3.5.5 AGN feedback . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.7 Appendix A – Example galaxies and fits . . . . . . . . . . . . . . 116

3.8 Appendix B – Alternative fits to our KMOS3D velocity dispersions 116

3.9 Appendix C – Correlations of physical properties with velocity dis-

persion and redshift-normalized velocity dispersion . . . . . . . . 120

4 Individual Kinematics 123

4.1 Strongly baryon-dominated disk galaxies at the peak of galaxy for-

mation ten billion years ago . . . . . . . . . . . . . . . . . . . . . 124

4.1.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



4.2 Ionized and molecular gas kinematics in a z = 1.4 star-forming

galaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.2.3 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.2.5 Discussion and conclusions . . . . . . . . . . . . . . . . . . 167

4.3 Detailed kinematics of IllustrisTNG50 massive, star-forming galax-

ies at z ∼ 2 from the observer’s perspective . . . . . . . . . . . . . 169

4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.3.2 The observational picture . . . . . . . . . . . . . . . . . . 170

4.3.3 Simulated galaxies and methodology . . . . . . . . . . . . 173

4.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4.3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 189

4.3.7 Appendix A – Dismissed galaxies . . . . . . . . . . . . . . 190

4.3.8 Appendix B – Best-fit parameters . . . . . . . . . . . . . . 190

4.3.9 Appendix C – Approaches to dealing with kinematic asym-

metries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5 Conclusions 197

Bibliography 204





List of Figures

1.1 CMB temperature anisotropy map . . . . . . . . . . . . . . . . . 2

1.2 Observed large scale structure of the Universe as a function of time 3

1.3 Accelerated expansion of the Universe . . . . . . . . . . . . . . . . 5

1.4 Simulated large scale structure of the Universe . . . . . . . . . . . 6

1.5 Peak of the cosmic star formation rate density . . . . . . . . . . . 8

1.6 Main sequence of star-forming galaxies . . . . . . . . . . . . . . . 9

1.7 Gas masses and depletion times . . . . . . . . . . . . . . . . . . . 10

1.8 Structural properties of SFGs out to z = 2.5 . . . . . . . . . . . . 11

1.9 Fraction of rotation-dominated SFGs as a function of redshift and

mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Examples of modelled KMOS3D galaxies . . . . . . . . . . . . . . 25

2.2 ‘First order’ TFR . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Mass-SFR and mass-size relations . . . . . . . . . . . . . . . . . . 30

2.4 Stellar and baryonic mass TFRs . . . . . . . . . . . . . . . . . . . 33

2.5 Fixed-slope fits to the TFR z ∼ 0.9 and z ∼ 2.3 subsamples . . . 38

2.6 Comparison to fits from the literature . . . . . . . . . . . . . . . . 39

2.7 TFR zero-point offsets and toy model as a function of cosmic time 48

2.8 Correction and selection effects . . . . . . . . . . . . . . . . . . . 53

2.9 Fixed-slope fits to the Wuyts et al. (2016b) z ∼ 0.9 and z ∼ 2.3

subsamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.10 Non-parametric TFR offset . . . . . . . . . . . . . . . . . . . . . . 56

2.11 Impact of mass uncertainties on the TFR slope . . . . . . . . . . 58

2.12 TFR residuals as a function of Re . . . . . . . . . . . . . . . . . . 59

2.13 TFR residuals as a function of ΣSFR . . . . . . . . . . . . . . . . . 60

2.14 Toy models for TFR zero-point evolution . . . . . . . . . . . . . . 61

3.1 Distribution of physical properties of the kinematic sample . . . . 85

3.2 Mass-SFR and mass-size relations . . . . . . . . . . . . . . . . . . 86

3.3 σ0 as a function of b/a . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4 σ0 as a function of z . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 Quantification of observational uncertainties and scatter . . . . . 93

3.6 σ0 as a function of z in the literature context . . . . . . . . . . . . 96

3.7 σ0 as a function of z in the literature context – best fits . . . . . . 97

xiii



3.8 σ0 as a function of r for Q2346-BX482 . . . . . . . . . . . . . . . . 103

3.9 σ0 as a function of ΣSFR for the SINS/zC-SINF sample . . . . . . 104

3.10 fgas as a function of Qgas . . . . . . . . . . . . . . . . . . . . . . . 107

3.11 SFR/fgas as a function of v2
circσ0 . . . . . . . . . . . . . . . . . . . 110

3.12 Comparison to the model by Krumholz et al. (2018) – circular

velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.13 Comparison to the model by Krumholz et al. (2018) – gas fraction 112

3.14 Impact of AGN feedback . . . . . . . . . . . . . . . . . . . . . . . 113

3.15 Examples of modelled KMOS3D galaxies . . . . . . . . . . . . . . 117

3.16 σ0,norm as a function of physical properties . . . . . . . . . . . . . 121

3.17 σ0 as a function of physical properties . . . . . . . . . . . . . . . . 122

4.1 Hα gas dynamics from KMOS and SINFONI in six massive star-

forming galaxies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2 Normalized rotation curves . . . . . . . . . . . . . . . . . . . . . . 130

4.3 Dark matter fractions . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.4 Mass-SFR and mass-size relations . . . . . . . . . . . . . . . . . . 137

4.5 Quality of fit and error of parameter determinations . . . . . . . . 145

4.6 Mean changes in fDM and χ2
red for changes in secondary parameters 146

4.7 Cumulative mass as a function of r for GS4-43501 . . . . . . . . . 147

4.8 Minor axis cut at Rmajor = 0.71′′ for D3a-15504 . . . . . . . . . . 148

4.9 Residual maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.10 EGS4-24985 in CO and Hα . . . . . . . . . . . . . . . . . . . . . 158

4.11 EGS4-24985 major axis kinematics . . . . . . . . . . . . . . . . . 160

4.12 EGS4-24985 fiducial model corner plot . . . . . . . . . . . . . . . 165

4.13 EGS4-24985 intrinsic rotation curve and mass budget . . . . . . . 166

4.14 Physical properties of TNG50 galaxies . . . . . . . . . . . . . . . 175

4.15 Example of two-power-law density fit to the dark matter halo . . 178

4.16 Projected two-dimensional kinematic maps . . . . . . . . . . . . . 179

4.17 Extracted kinematics along different lines of sight I . . . . . . . . 180

4.18 Extracted kinematics along different lines of sight II . . . . . . . . 181

4.19 Dynamical modelling results: velocity and dispersion profile . . . 182

4.20 Dynamical modelling results: MCMC corner plot . . . . . . . . . 183

4.21 Intrinsic one-dimensional kinematics . . . . . . . . . . . . . . . . 187

4.22 Projected two-dimensional kinematic maps of dismissed galaxies . 191

4.23 Symmetrization of one-dimensional profiles . . . . . . . . . . . . . 194

4.24 Effect of removing vertical motions I . . . . . . . . . . . . . . . . 195

4.25 Effect of removing vertical motions II . . . . . . . . . . . . . . . . 196



List of Tables

2.1 Physical properties of the TFR sample . . . . . . . . . . . . . . . 29

2.2 TFR best fit relations . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Physical properties of TFR galaxies . . . . . . . . . . . . . . . . . 65

3.1 Comparison of modelling setups . . . . . . . . . . . . . . . . . . . 83

3.2 Correlations between σ0 and Re, Rmax/Re, σinstrumental, b/a . . . . 88

3.3 σ0 − z best fit relations . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Variance of σ0 around the best fit . . . . . . . . . . . . . . . . . . 93

3.5 Literature data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.6 Best fits for ionized vs. atomic+molecular gas . . . . . . . . . . . 99

3.7 Correlations between σ0 and physical properties . . . . . . . . . . 102

3.8 σ0 – log(1 + z) best fit relations . . . . . . . . . . . . . . . . . . . 118

3.9 log(σ0) – log(1 + z) best fit relations . . . . . . . . . . . . . . . . 119

4.1 Physical parameters of observed star-forming galaxies . . . . . . . 134

4.2 EGS4-24985 modelling results . . . . . . . . . . . . . . . . . . . . 163

4.3 Physical properties of IllustrisTNG50 galaxies . . . . . . . . . . . 174

4.4 Dynamical modelling results I . . . . . . . . . . . . . . . . . . . . 185

4.5 Dynamical modelling results II . . . . . . . . . . . . . . . . . . . . 192

xv





Chapter 1

Introduction

This thesis addresses the kinematics and dynamical state of star-forming galaxies

(SFGs) during and shortly after the peak epoch of cosmic star formation rate

density at redshifts 0.5 < z < 3, about 2 − 8.5 Gyr after the Big Bang. It

covers both population-integrated aspects through scaling relations, and detailed

explorations of individual systems. This has become feasible only during the last

decade, with the advent of efficient multi-object spectroscopy, and the targeted,

time-intensive use of sensitive single-field instrumentation. The present work

brings new insights and sets previous results on a more robust basis, through

very high signal-to-noise (S/N) and quality data of individual galaxies, as well

as statistics of large samples obtained with state-of-the-art instrumentation on

ground-based telescopes.

The interpretation of the observational findings reported in this dissertation

relies heavily on the current theoretical understanding of cosmic history on large

scales, where the hierarchical structure formation of dark matter provides the

precondition for galaxy formation. At the same time, the observational results

pose a challenge to theoretical models describing the smaller scale interplay of

baryons and dark matter.

To set the stage, we briefly summarize the theoretical framework of cosmologi-

cal evolution with its primary agents, dark energy and dark matter, in Section 1.1.

In Section 1.2 we give an overview of the known characteristics of star-forming

galaxies at 0.5 < z < 3, and we introduce the instrumentation used to obtain the

data presented in this thesis in Section 1.3. In Section 1.4 we state relevant ques-

tions that are addressed in this work, and in Section 1.5 we outline the remainder

of this thesis.

1.1 The ΛCDM cosmology

In current theory, our Universe is best described by the concordance cosmological

model of ΛCDM, the ‘Standard Model’. Here, Λ is the cosmological constant,

1



1. Introduction

Figure 1.1: CMB temperature anisotropy map obtained with the Planck satellite. The

color scale shows deviations from the characteristic CMB blackbody-like temperature of

T = 2.7255 K between ±300 µK. Regions within grey outlines are dominated by fore-

ground emission, mostly from the galactic plane, and have been masked and inpainted.

This figure is taken from Planck Collaboration et al. (2018a).

associated with the vacuum energy, or dark energy responsible for the accelerated

expansion of the Universe, and CDM stands for Cold Dark Matter. The ΛCDM

model describes the evolution of structure formation after the Big Bang and

inflation, and its success is largely based on its conformity with key observational

findings from the past ∼ 100 years.

The cosmic microwave background The discovery paper of the cosmic mi-

crowave background (CMB) by Penzias & Wilson (1965), resulting in the Nobel

Prize in Physics 1978 “for their discovery of cosmic microwave background radi-

ation”,1 was accompanied by its interpretation as a cosmic blackbody radiation

by Dicke et al. (1965). The existence of the CMB lends strong support to the

ΛCDM model where such radiation is predicted as the afterglow of the very young

(∼ 375000 yr old) and hot Universe at the time of recombination, after the Big

Bang and initial inflation period. Small temperature variations in the CMB reflect

primordial fluctuations that have been amplified through inflation, and which are

the precursors of the large scale structure of the present-day Universe.

Since its discovery, the CMB and its weak anisotropy have been studied in

great detail in three dedicated missions: (i) COBE, the COsmic Background

Explorer, operating from 1989 to 1993 (e.g. Smoot et al., 1992; Mather et al.,

1994; Bennett et al., 1996; Fixsen et al., 1996). Work based on the COBE mission

1The Nobel Prize in Physics 1978. NobelPrize.org. Nobel Media AB 2019. Sat. 30 Mar

2019. https://www.nobelprize.org/prizes/physics/1978/summary/
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1.1 The ΛCDM cosmology

Figure 1.2: SDSS map of the Universe out to z ≈ 0.15. Each dot is a galaxy, where

colors correspond to its g − r color. Image credit: M. Blanton and SDSS.

resulted in the Nobel Prize in Physics 2006 for J. Mather and G. Smoot “for

their discovery of the blackbody form and anisotropy of the cosmic microwave

background radiation”.2 (ii) WMAP, the Wilkinson Microwave Anisotropy Probe,

operating from 2001 to 2010 (e.g. Bennett et al., 2003; Spergel et al., 2003, 2007;

Komatsu et al., 2009, 2011; Hinshaw et al., 2013); and (iii) the Planck satellite,

operating from 2009 to 2013 (e.g. Planck Collaboration et al., 2014, 2016, 2018b).

Figure 1.1 shows the most recent CMB temperature anisotropy map from the

final Planck 2018 data release.

Large scale structure The large scale structure of the Universe observed

through agglomerations and voids of baryonic matter up to scales of ∼ 100 Mpc

has been measured through the 2dF Galaxy Redshift Survey from 1997 to 2002

(e.g. Colless et al., 2001; Percival et al., 2001), and through the Sloan Digital Sky

Survey (SDSS) from 2000 on (e.g. York et al., 2000; Abazajian et al., 2003, 2009;

Aguado et al., 2019), as shown in Figure 1.2. A key discovery of these surveys

was the detection of the baryon acoustic oscillations (Cole et al., 2005; Eisenstein

et al., 2005), tracing back fluctuations in the photon-baryon fluid in the early

Universe as predicted by ΛCDM.

2The Nobel Prize in Physics 2006. NobelPrize.org. Nobel Media AB 2019. Sat. 30 Mar

2019. https://www.nobelprize.org/prizes/physics/2006/summary/
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1. Introduction

In the ΛCDM model, structure formation is a consequence of small primordial

perturbations in matter density in the early Universe which were subsequently

blown up through the process of inflation. Gravity acting on the dissipationless

dark matter component enhances these perturbations: small structures grow, and

merge into larger objects via hierarchical clustering.

The expansion of the Universe The expansion of the Universe, first hinted at

through redshifted emission lines of nearby galaxies (Slipher, 1913; Hubble, 1926),

was discovered by Lemâıtre (1927) through the framework of the Friedmann equa-

tions describing the intrinsic expansion or contraction of space (Friedmann, 1922).

The expansion history of the Universe was further constrained through observa-

tions of supernovae type Ia by S. Perlmutter, B. P. Schmidt, and A. G. Riess,

who were awarded the Nobel Prize in Physics 2011 “for the discovery of the accel-

erating expansion of the Universe through observations of distant supernovae”.3

The constraints obtained by Riess et al. (2004) are shown in Figure 1.3.

The expansion of the Universe is responsible for the ‘cosmological redshift’

whereby emitted light traveling towards us from distant galaxies is shifted to

longer wavelengths:

λobserved = (1 + z) · λrest, (1.1)

where λrest is the wavelength of the emission in the source rest-frame. Through

this effect, for instance, rest-frame optical radiation originating at z ∼ 2 is ob-

servable locally at near-infrared wavelengths.

Together, these discoveries constrain the cosmological parameters, with the latest

measurements from the Planck Collaboration et al. (2018b):

Ωch
2 = 0.11933± 0.00091 (comoving dark matter density)

Ωbh
2 = 0.02242± 0.00014 (comoving baryon density)

ns = 0.9665± 0.0038 (spectral index)

τ = 0.0561± 0.0071 (optical depth)

Assuming the standard ΛCDM cosmology, this gives the following constraints on

present-day parameters:

3The Nobel Prize in Physics 2011. NobelPrize.org. Nobel Media AB 2019. Sun. 31 Mar

2019. https://www.nobelprize.org/prizes/physics/2011/summary/
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1.1 The ΛCDM cosmology

Figure 1.3: Joint confidence intervals for the matter density ΩM and dark energy

density ΩΛ from 157 supernovae type Ia. The expansion of the Universe is accelerating

with > 99 % confidence since z ∼ 0.5. This figure is taken from Riess et al. (2004).

H0 [kms−1Mpc−1] = 67.66± 0.42 (Hubble constant)

ΩΛ = 0.6889± 0.0056 (dark energy density)

ΩM = 0.3111± 0.0056 (matter density)

zre = 7.82± 0.71 (redshift of re-ionization)

age [Gyr] = 13.787± 0.020 (age of the Universe)

In this framework, our Universe is dominated by dark energy (∼69%), followed

by dark matter (∼26%), with a minor contribution from baryonic matter of <5%.

Halo and galaxy evolution in the context of ΛCDM The structure for-

mation of the Universe is today accurately reproduced with the help of dark

matter-only, collisionless N−body simulations, revealing a present-day net-like

distribution of matter, with filamentary structures, sheets, and knots, known as

5
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Figure 1.4: Large scale projection through the Illustris simulation volume at z = 0

with colors showing dark matter density on the left and gas density on the right. Image

credit: Illustris Collaboration.

the cosmic web (e.g. Springel et al., 2005; Klypin, Trujillo-Gomez, & Primack,

2011; Angulo et al., 2012). The knots in this web are characterized by their over-

density, which is by convention taken as regions in excess of ∼ 200 times the mean

density, motivated by non-linear top-hat collapse models (Gunn & Gott, 1972).

These overdensities, called haloes, show a typical scale-free density profile, promi-

nently described e.g. through the Navarro-Frenk-White (NFW) profile (Navarro,

Frenk, & White, 1996), or the Einasto profile (Einasto, 1965). The formation

of galaxies is tightly connected to the formation and evolution of dark matter

haloes. Dominating the mass budget, haloes provide the potential well for gas

to cool into, where a fraction of it subsequently condenses into stars to form the

first galaxies. The large scale distribution of dark matter and gas is illustrated in

Figure 1.4, featuring the Illustris simulation (e.g. Vogelsberger et al., 2014).

Following the formation of galaxies including the dissipative nature of gas,

however, requires a hydrodynamical treatment of the baryonic component. From

the computational perspective this is expensive, such that cosmological simula-

tions including baryons have much smaller volumes (typically ∼ (20−300 Mpc)3)

compared to pure N−body simulations (up to ∼ (10 Gpc)3). This limitation

hampers the consistent study of cosmological evolution covering at the same time

large enough volumes to ensure appropriate structure formation and statistical

properties, while also taking into account baryonic processes and their effect on

the dark matter distribution. The relevant dynamic ranges go from the large

6



1.2 Galaxies during the peak epoch of cosmic star formation

scale cosmic structure on Gpc scales down to galaxy sizes on kpc scales, to the

detailed ISM or black hole feedback physics on pc scales, and further down to the

formation of individual stars. Even for a single galaxy the relevant dynamic and

mass ranges are of the order O(1010−12). These and other challenges of modern

galaxy formation theory are discussed in the review by Naab & Ostriker (2017).

1.2 Galaxies during the peak epoch of cosmic

star formation

This dissertation focusses on SFGs at roughly 0.5 < z < 3, during and shortly

after the peak of cosmic star-formation rate density (Madau & Dickinson, 2014).

During the last 15 years a plethora of observations of such objects have been

collected. In particular through the multiplexing integral-field capabilities of

second-generation instruments on the 8-10 m class telescopes both spatially and

spectrally resolved data of over 1000 galaxies have been obtained (e.g. Genzel

et al., 2006, 2008, 2014b; Förster Schreiber et al., 2006, 2009, 2018; Law et al.,

2007, 2009; Epinat et al., 2009, 2012; Jones et al., 2010; Gnerucci et al., 2011; Wis-

nioski et al., 2011, 2015, 2019; Swinbank et al., 2012a; Contini et al., 2012; Stott

et al., 2016; Turner et al., 2017). In addition, large data sets have been collected

through long-slit surveys (e.g. Kassin et al., 2007, 2012; Kriek et al., 2015; Price

et al., 2016, 2019; Simons et al., 2016, 2017). However, for the study of galaxy

kinematics, spatially resolved information is crucial to robustly determine, for

instance, a galaxy’s kinematic position angle.

Salient findings from multi-wavelength lookback, imaging, and integral-field

unit (IFU) surveys revealing general insights about the physical properties of the

star-forming population in the early Universe are summarized in what follows,

setting the observational framework for this thesis.

The peak epoch of cosmic star formation rate density Compilations of

data tracing the amount of star formation from redshift z = 0 to z = 8 clearly

show that there was a period of maximal cosmic star formation rate about 10 Gyr

ago, at z ≈ 2 (see review by Madau & Dickinson, 2014, and references therein;

Figure 1.5). The era of high star formation activity at 1 < z < 3 with typical

rates up to a few hundred times higher compared to local SFGs has been dubbed

‘cosmic noon’. Since this epoch is characterized through both rapid baryonic mass

assembly and conversion of gas into stars at high rates, it represents a testbed for

studying galaxy-scale baryonic processes and their impact on galaxy evolution.

It has further been established that out to at least z ∼ 5 there exists a so-called

‘main sequence’ in the stellar mass – star formation rate plane such that at any

given time, and over a wide range in masses and star-formation rates, the majority

7
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Figure 1.5: The history of cosmic star-formation rate density ψ from rest-frame far-

UV (green to black) and IR (orange to red) measurements, and the solid curve shows

the best-fitting function ψ(z). The time span at 1 < z < 3 marks the era of highest star

formation activity. This figure is taken from Madau & Dickinson (2014).

of the star-forming population lies along a tight (±0.3 dex), approximately linear

relation (e.g. Brinchmann et al., 2004; Daddi et al., 2007; Rodighiero et al., 2011;

Whitaker et al., 2014; Speagle et al., 2014; Tomczak et al., 2016; Santini et al.,

2017; Pearson et al., 2018). At z ∼ 2, for instance, the main sequence encompasses

about 95% of SFGs, accountable for about 90% of the star-formation rate density

(Rodighiero et al., 2011). Main sequence fits between z = 0.5 and z = 4 are

shown exemplarily in Figure 1.6.

Gas masses and depletion time scales The elevated star formation rates

during cosmic noon are naturally connected to the available amount of cold

gas from which the stars form. In the local Universe, this is captured by the

Kennicutt-Schmidt relation between the star-formation rate surface density ΣSFR

and the gas mass surface density Σgas (Schmidt, 1959; Kennicutt, Jr., 1998).

Through targeted, time-intensive studies (Tacconi et al., 2010, 2013; Daddi et al.,

2010; Genzel et al., 2010; Magdis et al., 2012; Sargent et al., 2014; Béthermin

et al., 2015) it has been shown that this relation is valid also at higher redshifts.

This realization allowed for the derivation of scaling relations up to z ∼ 4 that

can be used to estimate galactic gas masses based on stellar mass, specific star

formation rate, and redshift, as well as gas depletion time scales (Genzel et al.,

2015; Scoville et al., 2017; Tacconi et al., 2018). Such relationships are extremely

8



1.2 Galaxies during the peak epoch of cosmic star formation

Figure 1.6: Stacked star-formation rates Ψ as a function of stellar mass for SFGs

in different redshift bins (colored points with error bars). Lines show fits according to

the parametrization given at the top, with s0 = 0.448 + 1.220z − 0.174z2, log(M0) =

9.458 + 0.865z− 0.132z2, and γ = 1.091. With increasing redshift, the normalization of

the main sequence increases, and the slope at the high-mass end becomes steeper. This

figure is taken from Tomczak et al. (2016).

valuable because due to the limited observational capabilities at (sub-)mm wave-

lengths the available direct molecular gas studies at high−z are few compared to

efforts targeting ionized gas, including only a number of individual sources and

few representative samples (see e.g. Carilli & Walter, 2013, for a review).

These studies established (i) that gas fraction fgas = Mgas/(Mgas + M∗) in-

creases rapidly with redshift for SFGs, such that z ∼ 2 galaxies have typically

fgas & 0.5, while local SFGs have typically fgas ≤ 0.1; and (ii) that the gas de-

pletion time tdepl = Mmolgas/SFR only modestly increases from a few 100 Myr

at z ∼ 4 to ∼ 1 Gyr at z = 0, but is a strong function of offset from the main

sequence (see Figure 1.7).

The galactic mass budget Taking into account the large gas mass fractions

at high redshift, it has further been shown that massive (M∗ & 109M�) SFGs are

increasingly baryon-dominated on galactic scales, such that z ∼ 1 galaxies have

typically Mbar/Mdyn ≈ 0.4− 0.5, while galaxies at z & 2 can reach Mbar/Mdyn &
0.9 (Förster Schreiber et al., 2009; van Dokkum et al., 2015; Alcorn et al., 2016;

9
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Figure 1.7: Molecular gas-to-stellar mass ratio Mgas,mol/M∗ = µ as a function of

redshift (left), and depletion time tdepl relative to the main sequence as a function

of offset from the main sequence, after zero-point corrections to account for differ-

ent measurement techniques (right). The offset from the main sequence, log δMS =

log(SFR/SFRMS(z,M∗)), is derived based on the main sequence parametrization by Spea-

gle et al. (2014). Symbols denote binned averages from the literature, and the color scale

shows the overall distribution. Gas masses are higher at higher redshift, and depletion

times are shorter for galaxies above the main sequence. These figures are taken from

Tacconi et al. (2018).

Stott et al., 2016; Wuyts et al., 2016b; Price et al., 2016; Genzel et al., 2017; Lang

et al., 2017). In contrast, normal SFGs in the local Universe have Mbar/Mdyn ≈
0.1−0.5 (e.g. Martinsson et al., 2013a,b; Courteau et al., 2014). The high baryonic

surface densities at high redshift are likely a result of gas dissipation processes

and rapid conversion of gas into stars.

Structural properties One of the first realizations about high−z SFGs was

their different appearance compared to local disk galaxies: they often show a

clumpy structure, unlike the regular patterns seen in local SFGs (Elmegreen,

Elmegreen, & Sheets, 2004; Elmegreen, Elmegreen, & Hirst, 2004; Elmegreen

et al., 2005; Elmegreen & Elmegreen, 2006). These features first observed in rest-

frame UV imaging are also seen in rest-frame optical observations of ionized gas,

revealing giant star-forming clumps (e.g. Förster Schreiber et al., 2009, 2011b;

Genzel et al., 2011; Wisnioski et al., 2012).

However, these clump neither trace prominent accumulations of mass, nor

deviate from, or disturb, the kinematic patterns of their host galaxies (Genzel

et al., 2011; Wuyts et al., 2012). Instead, the mass distribution is observed to

be fairly smooth, in accordance with the regular rotation patterns observed for

the majority of massive, high−z SFGs (see below). The work by Wuyts et al.

(2011a) showed that most main sequence galaxies out to z ∼ 2.5 are characterized

by exponential disk-like profiles (median one-component Sérsic indices nS < 1.5;

see Figure 1.8).
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Figure 1.8: Surface brightness profile shape in the M∗−SFR plane. Out to z = 2.5

galaxies on the main sequence are characterized by exponential profiles with a median

Sérsic index nSersic < 1.5. This figure is taken from Wuyts et al. (2011a).

At the same time an increase in the bulge-to-total stellar mass fraction (B/T )

with increasing mass has been found for both SFGs and quiescent galaxies through

two-component bulge+disk profile fitting by Lang et al. (2014). The average

B/T is lower for SFGs, but still reaches typical values of B/T ≈ 0.5 for SFGs

with M∗ ≈ 1011.5M�. These most massive SFGs above the Schechter mass

(M∗ & 1011M�) were likely soon quenched and subsequently evolved into massive,

quiescent early type galaxies by z = 0 (see Peng et al., 2010).

Kinematic properties The systematic study of the ionized gas kinematics of

high−z SFGs has resulted in two main findings regarding their kinematic prop-

erties: (i) up to z ∼ 2.5, the majority of massive SFGs show ordered rotation,

and (ii) their velocity dispersions are higher by factors of 2-5 compared to local

SFGs (Förster Schreiber et al., 2006, 2009, 2018; Genzel et al., 2006, 2008, 2014b;

Kassin et al., 2007, 2012; Shapiro et al., 2008; Stark et al., 2008; Cresci et al.,

2009; Epinat et al., 2009, 2012; Law et al., 2009; Wright et al., 2009; Jones et al.,

2010; Wisnioski et al., 2011, 2015, 2019; Mancini et al., 2011; Miller et al., 2012;

Swinbank et al., 2012a; Stott et al., 2016; Price et al., 2016; Simons et al., 2016,

2017; Johnson et al., 2018; Übler et al., 2019).

The rotation patterns are in good agreement with the smooth mass distribu-

tions mentioned above. The fraction of rotation-dominated systems, commonly

defined by the ratio of rotation velocity to turbulent velocity, vrot/σ > 1, depends

on mass and changes with redshift: at fixed redshift, more massive systems have

larger rotational support, and the fraction of rotation-dominated SFGs at any

given mass increases with decreasing redshift (Kassin et al., 2012; Simons et al.,

11
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Figure 1.9: Fraction of rotation-dominated (v/σ > 1) SFGs in different mass bins

(colors) as a function of lookback time. With decreasing redshift, more SFGs are

rotation-dominated, and earlier for more massive systems. This figure is taken from

Wisnioski et al. (2019).

2016, 2017; Turner et al., 2017; Wisnioski et al., 2019, see Figure 1.9). Above

z ∼ 2.5, the fraction of rotation-dominated systems drops below 50% (Gnerucci

et al., 2011; Turner et al., 2017).

This decrease of rotational support goes together with a systematic increase

of the intrinsic velocity dispersion with redshift. The velocity dispersion captures

non-circular motions and unresolved velocity gradients in the disk. In hydrostatic

equilibrium, turbulent motions create a pressure term that counter-acts part of

the gravitational potential. To recover the circular velocity tracing the gravita-

tional potential in which the galaxy is embedded, one has to consequently account

for this pressure term (Burkert et al., 2010, 2016; Wuyts et al., 2016b). Other

second-order motions, however, such as radial or vertical flows, can further com-

plicate the picture (e.g. Genzel et al., 2008, 2017; Förster Schreiber et al., 2018).

1.3 Instruments used for this work

The work presented in this thesis is based on data collected at various ground-

based observing facilities in the Southern and Northern hemispheres. In the

following, the instruments most relevant for this work are introduced briefly.
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KMOS at the VLT TheK-band Multi-Object Spectrograph (KMOS; Sharples

et al., 2004, 2013; Davies et al., 2013) is a second-generation instrument in the

Nasmyth focus of Unit Telescope 1 (UT1) of the Very Large Telescope (VLT)

on the Chilean Cérro Paranal observing site of the European Southern Observa-

tory (ESO). It consists of 24 arms deployable over a 7.2′ diameter patrol field,

each equipped with an integral field unit (IFU) with an 2.8′′ × 2.8′′ field of view.

The individual IFUs have a spatial sampling of 0.2′′ × 0.2′′. Observations can be

performed in the IZ, Y J , H, K, and combined H + K spectral bands, roughly

covering a wavelength range 0.8− 2.5µm. The corresponding spectral resolutions

are R = λ/∆λ ≈ 3400; 3600; 4000; 4200; 2000, where ∆λ is the full-width-half-

maximum (FWHM) resolution element.4

Most data used in this thesis have been taken with KMOS, as part of the

KMOS3D 75-night Guaranteed Time Observations (GTO) survey (Wisnioski et al.,

2015, 2019; P.I.s Natascha M. Förster Schreiber and David Wilman) in the spec-

tral bands Y J , H, and K. Results based on KMOS data are presented in Chap-

ters 2, 3, and 4.1 of this thesis.

SINFONI at the VLT The Spectrograph for INtegral Field Observations in

the Near Infrared (SINFONI; Eisenhauer et al., 2003; Bonnet et al., 2004) is a

first-generation instrument mounted at the Cassegrain focus of UT4 at the VLT.

SINFONI is an integral field spectrograph coupled to an adaptive optics module

enabling higher resolution observations by correcting for atmospheric turbulence

using a reference Natural or Laser Guide Star. The field of view can be chosen

between 8′′× 8′′, 3′′× 3′′, and 0.8′′× 0.8′′, with corresponding spatial samplings of

0.125′′×0.25′′, 0.05′′×0.1′′, and 0.0125′′×0.025′′. Observations can be performed

in the J , H, K, and combined H + K spectral bands, roughly covering the

wavelength range 1.1− 2.35µm. The corresponding spectral resolutions are R ≈
2000; 3000; 4000; 1500.5

The SINFONI data used in this thesis was taken as part of the SINS/zC-SINF

survey carried out over several GTO and open-time programs over about 100

nights (Förster Schreiber et al., 2009, 2018; Mancini et al., 2011). This work used

a SINFONI field of view of 8′′× 8′′, with a pixel scale of 0.125′′× 0.25′′ for seeing-

limited observations, and 0.05′′ × 0.1′′ for adaptive optics-assisted observations.

Results based on SINFONI data are presented in Chapters 3 and 4.1 of this thesis.

LUCI at the LBT At the Large Binocular Telescope (LBT) the LBT near-

infrared spectroscopic Utility with Camera 1, and Camera 2 (LUCI1 and LUCI2;

Buschkamp et al., 2012) are mounted at the Bent Gregorian focus of the two

4Further information on the instrument can be found on the ESO KMOS webpage.
5Further information on the instrument can be found on the ESO SINFONI webpage.
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mirrors of the LBT on Mount Graham in Arizona, USA. In spectroscopic mode

(relevant for this work), observations can be performed either in longslit or in

multi-object-slitmask (MOS) mode. Observations can be performed in a multi-

purpose grating covering the z, J , H, and K bands, and in the H, K, Ks, and

combined H + K spectral bands, with varying spectral resolutions as described

in detail by Buschkamp et al. (2012).

For the work presented in this thesis (Chapter 4.2), LUCI1 and LUCI2 were

used in binocular mode, with a pixel scale of 0.25′′ in H−band and a MOS slit

width of 1′′, corresponding to a spectral resolution of R ∼ 3000.

NOEMA The NOrthern Extended Millimeter Array (NOEMA) on the Plateau

de Bure operated by the Institut de RadioAstronomie Millimétrique (IRAM) is a

millimeter radio interferometer currently consisting of ten 15 m antennas.6 The

NOEMA antennas can be positioned along two almost perpendicular tracks with

a maximum separation of 760 m in East-West direction and 386 m in North-

South direction. Observations can be performed in configurations from ‘compact’

to ‘extended’, leading to varying spatial resolutions. The currently best resolution

achievable is 0.2′′. Observations can be taken in three frequency bands, at 3 mm,

2 mm, and 1.3 mm, roughly covering 70-280 GHz.

For the work presented in this thesis (Chapter 4.2), NOEMA was used in D

(compact) and A (extended) configuration with a resolution of 0.6′′ − 1.0′′, with

seven or eight antennas, observing in the 2 mm band.

Ancillary data The galaxies discussed in this work benefit from multi-wave-

length observations supporting the interpretation of the near-IR spectroscopic and

millimeter interferometric data, either from publicly available surveys or obtained

by our team in dedicated follow-up programs. The larger part of our targets are

located in the extragalactic ‘deep fields’, particularly in the well-studied COSMOS

(Cosmic Evolution Survey), GOODS-S (Great Observatories Origins Deep Survey

field centered on the Chandra Deep Field South), UDS (Ultra Deep Survey), and

EGS (Extended Groth Strip) fields.

Importantly, these deep fields are covered by the 3D-HST survey, a Hubble

Space Telescope Treasury Program (Brammer et al., 2012; Skelton et al., 2014;

Momcheva et al., 2016) providing R ≈ 130 near-infrared grism spectra, optical-

to-8µm photometric catalogues, and spectroscopic, grism, and/or photometric

redshifts for sources in the EGS, COSMOS, GOODS-S, GOODS-N (centered on

the Chandra Deep Field North), and UDS fields, and by the Cosmic Assembly

Near-infrared Deep Extragalactic Legacy Survey (CANDELS; Grogin et al., 2011;

6Information up-to-date on the NOEMA interferometer can be found on the IRAM webpage.
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1.4 Important scientific questions related to this work

Koekemoer et al., 2011; van der Wel et al., 2012), providing high-resolution near-

infrared and optical imaging in the same five fields using the Wide Field Camera

3 (WFC3) and the Advanced Camera for Surveys (ACS) on the HST.

Further multi-wavelength X−ray to radio coverage is provided through imag-

ing and spectroscopy, for instance from the European Photon Imaging Camera

(EPIC) on board XMM-Newton, from the Advanced CCD Imaging Spectrometer

imaging array (ACIS-I) on the Chandra X-ray Observatory, from the Multiband

Imaging Photometer on the Spitzer Space Telescope (MIPS), from the Photocon-

ductor Array Camera and Spectrometer (PACS) on the Herschel Space Observa-

tory, from the Very Large Array (VLA), and from the Very Long Baseline Array

(VLBA) (e.g. Ueda et al., 2008; Lutz et al., 2011; Middelberg et al., 2011; Xue

et al., 2011; Civano et al., 2012; Magnelli et al., 2013; Miller et al., 2013; Whitaker

et al., 2014).

1.4 Important scientific questions related to this

work

This thesis sheds light on the dynamical evolution of z ∼ 1 − 2 SFGs with the

highest-quality data currently available from the ground. On the basis of this

excellent data set, important questions addressed in this work are:

• Do kinematic galaxy scaling relations known from the local Universe exist

at z ∼ 1− 2? If so, how do they compare, and what drives their evolution?

• What dominates the dynamical support of SFGs over cosmic time, and why?

• What is the interplay of baryonic and dark matter on galaxy scales, and can

our theoretical understanding of the structure evolution of dark matter be

reconciled with observations?

From the observational side, we are at the verge of being able to constrain

in detail the dynamical support attributed to gas, stars, and dark matter in

representative galaxy samples during the peak epoch of cosmic star formation rate

density, and the pioneering work on individual objects is presented in this thesis.

Increasingly large and representative samples of spatially-resolved observations of

high−z SFGs have been collected over the past years, benefitting in particular

from multiplexing as afforded by KMOS, now enabling more complete censuses

of the kinematic properties of distant galaxies.

From the theoretical perspective, we are in a better situation than ever before

to interpret and connect observations to insights from simulations. The steady

refinement and development of sub-grid models, and the progress in numerical

implementations, lead to ever more detailed cosmological simulations of galaxy
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1. Introduction

formation, as well as to smaller-scale, high-resolution simulations of physical pro-

cesses and phenomena. Still there is tension between simulation results and par-

ticularly high−z observations. In this thesis, we identify some of these issues.

1.5 Outline of this thesis

This thesis is structured as follows: in the first two chapters, we start with kine-

matic scaling relations that describe the evolution of the star-forming galaxy

population as a whole. These studies are based primarily on data from the

KMOS3D survey which provides a homogeneous coverage of SFGs with stellar

masses 109M� < M∗ < 1011.5M� between redshifts 0.6 < z < 2.6. In the third

chapter we investigate in great detail the kinematics of a few individual galax-

ies through deep observations and dynamical modelling, and compare them to

simulations.

In Chapter 2, we investigate the redshift evolution of the stellar and baryonic

mass Tully-Fisher relations (Tully & Fisher, 1977; McGaugh et al., 2000) which

describe the observed scaling between baryonic mass (stars, gas) and rotation

velocity. They offer a unique tool to relate an observable, namely the stellar

light or the gas emission, to something we cannot directly detect, namely the

total dynamical mass, assumed to be partly composed by dark matter. Using

this tool, we discuss a toy model of disk galaxy evolution to explain the observed

changes in the galaxy mass budget over cosmic time.

In Chapter 3, we study the redshift evolution of the intrinsic ionized gas veloc-

ity dispersion. In context with literature observations, we quantify the evolution

of different gas phases. Using observational evidence and theoretical results we

argue that the majority of the turbulence seen in high−z SFGs is driven by grav-

itational instabilities, caused by accretion, radial transport, clump formation and

migration.

In Chapter 4 we zoom in on the detailed, high-resolution kinematic properties

of individual galaxies. In Section 4.1, we perform detailed modelling of the ionized

gas kinematics of six galaxies observed with SINFONI, partly in adaptive-optics

mode, and KMOS. This study reveals unexpectedly low central dark matter frac-

tions that create a tension with current cosmological models of galaxy evolution.

In Section 4.2, we compare the kinematics traced through ionized and molecular

gas in one galaxy. We find comparable dynamics, suggesting that both gas phases

are subject to the same gravitational potential tracing the disk dynamics.

In Section 4.3, we compare simulated galaxies from the IllustrisTNG50 volume

to the observed objects presented in Section 4.1. We identify a number of differ-

ences between the observed and simulated galaxies, suggesting that the observed

objects do not have a counterpart in the simulation. Through comparison to the
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intrinsic properties of the simulated galaxies, we also validate the reliability of

our observational pipeline to extract and model galaxy kinematics.
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Chapter 2

The Evolution of the Tully-Fisher

Relation between z ∼ 2.3 and

z ∼ 0.9 with KMOS3D

This Chapter, with exception of Section 2.12, is a reprint of the

ApJ publication The evolution of the Tully-Fisher relation be-

tween z ∼ 2.3 and z ∼ 0.9 with KMOS 3D by Übler et al. (2017);

doi:10.3847/1538-4357/aa7558; c©AAS. Reproduced with per-

mission.

This work is based on observations collected at the Very

Large Telescope (VLT) of the European Southern Observatory

(ESO), Paranal, Chile, under ESO program IDs 092.A-0091,

093.A-0079, 094.A-0217, 095.A-0047, and 096.A-0025.

Abstract – We investigate the stellar mass and baryonic mass Tully-Fisher rela-

tions (TFRs) of massive star-forming disk galaxies at redshift z ∼ 2.3 and z ∼ 0.9

as part of the KMOS3D integral field spectroscopy survey. Our spatially resolved

data allow reliable modelling of individual galaxies, including the effect of pres-

sure support on the inferred gravitational potential. At fixed circular velocity, we

find higher baryonic masses and similar stellar masses at z ∼ 2.3 as compared to

z ∼ 0.9. Together with the decreasing gas-to-stellar mass ratios with decreasing

redshift, this implies that the contribution of dark matter to the dynamical mass

on the galaxy scale increases towards lower redshift. A comparison to local re-

lations reveals a negative evolution of the stellar and baryonic TFR zero-points

from z = 0 to z ∼ 0.9, no evolution of the stellar TFR zero-point from z ∼ 0.9 to

z ∼ 2.3, but a positive evolution of the baryonic TFR zero-point from z ∼ 0.9 to

z ∼ 2.3. We discuss a toy model of disk galaxy evolution to explain the observed,

non-monotonic TFR evolution, taking into account the empirically motivated red-

shift dependencies of galactic gas fractions, and of the relative amount of baryons

to dark matter on the galaxy and halo scales.
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2. The Evolution of the Tully-Fisher Relation

2.1 Introduction

State-of-the-art cosmological simulations in a ΛCDM framework indicate that

three main mechanisms regulate the growth of galaxies, namely the accretion of

baryons, the conversion of gas into stars, and feedback. While gas settles down

at the centers of growing dark matter (DM) haloes, cools and forms stars, it

keeps in its angular momentum an imprint of the dark halo. Conservation of

the net specific angular momentum, as suggested by analytical models of disk

galaxy formation (e.g. Fall & Efstathiou, 1980; Dalcanton, Spergel, & Summers,

1997; Mo, Mao, & White, 1998; Dutton et al., 2007; Somerville et al., 2008),

should result in a significant fraction of disk-like systems. In fact, they make up a

substantial fraction of the observed galaxy population at high redshift (1 . z . 3;

Labbé et al., 2003; Förster Schreiber et al., 2006, 2009; Genzel et al., 2006, 2014b;

Law et al., 2009; Epinat et al., 2009, 2012; Jones et al., 2010; Miller et al., 2012;

Wisnioski et al., 2015; Stott et al., 2016) and in the local Universe (e.g. Blanton &

Moustakas, 2009, and references therein). The detailed physical processes during

baryon accretion from the halo scales to the galactic scales are, however, complex,

and angular momentum conservation might not be straightforward to achieve (e.g.

Danovich et al., 2015). To produce disk-like systems in numerical simulations,

feedback from massive stars and/or active galactic nuclei is needed to prevent

excessive star formation and to balance the angular momentum distribution of the

star-forming gas phase (e.g. Governato et al., 2007; Scannapieco et al., 2009, 2012;

Agertz, Teyssier, & Moore, 2011; Brook et al., 2012a; Aumer et al., 2013; Hopkins

et al., 2014; Marinacci, Pakmor, & Springel, 2014; Übler et al., 2014; Genel et al.,

2015). Despite the physical complexity and the diverse formation histories of

individual galaxies, local disk galaxies exhibit on average a tight relationship

between their rotation velocity V and their luminosity L or mass M , namely the

Tully-Fisher relation (TFR; Tully & Fisher, 1977). In its mass-based form, the

TFR is commonly expressed as M ∝ V a, or log(M) = a · log(V ) + b, where a is

the slope, and b is the zero-point offset.

In the local Universe, rotation curves of disk galaxies are apparently generally

dominated by DM already at a few times the disc scale length, and continue to

be flat or rising out to several tens of kpc (see e.g. reviews by Faber & Gallagher,

1979; Sofue & Rubin, 2001; and Catinella, Giovanelli, & Haynes, 2006). Therefore,

the local TFR enables a unique approach to relate the baryonic galaxy mass,

which is an observable once a mass-to-light conversion is assumed, to the potential

of the dark halo. Although the luminosity-based TFR is more directly accessible,

relations based on mass constitute a physically more fundamental approach since

the amount of light measured from the underlying stellar population is a function

of passband, systematically affecting the slope of the TFR (e.g. Verheijen, 1997,

2001; Bell & de Jong, 2001; Pizagno et al., 2007; Courteau et al., 2007; McGaugh

& Schombert, 2015). The most fundamental relation is given by the baryonic
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mass TFR (bTFR). It places galaxies over several decades in mass onto a single

relation, whereas there appears to be a break in the slope of the stellar mass TFR

(sTFR) for low-mass galaxies (McGaugh et al., 2000; McGaugh, 2005).

Observed slopes vary mostly between 3 . a . 4.5 for the local sTFR (e.g.

Bell & de Jong, 2001; Pizagno et al., 2005; Avila-Reese et al., 2008; Williams,

Bureau, & Cappellari, 2010; Gurovich et al., 2010; Torres-Flores et al., 2011; Reyes

et al., 2011) and between 3 . a . 4 for the local bTFR (e.g. McGaugh et al.,

2000; McGaugh, 2005; Trachternach et al., 2009; Stark, McGaugh, & Swaters,

2009; Zaritsky et al., 2014; McGaugh & Schombert, 2015; Lelli, McGaugh, &

Schombert, 2016b; Bradford, Geha, & van den Bosch, 2016; Papastergis, Adams,

& van der Hulst, 2016). It should be noted that the small scatter of local TFRs can

be partly associated to the very efficient selection of undisturbed spiral galaxies

(e.g. Kannappan, Fabricant, & Franx, 2002; see also Courteau et al., 2007; Lelli,

McGaugh, & Schombert, 2016b, for discussions of local TFR scatter). Variations

in the observational results of low-z studies can be attributed to different sample

sizes, selection bias, varying data quality, statistical methods, conversions from

L to M , or to the adopted measure of V (Courteau et al., 2014; for a detailed

discussion regarding the bTFR see Bradford, Geha, & van den Bosch, 2016).

Any such discrepancy becomes more substantial when going to higher redshift

where measurements are more challenging and the observed scatter of the TFR

increases with respect to local relations (e.g. Conselice et al., 2005; Miller et al.,

2012). The latter is partly attributed to ongoing kinematic and morphological

transitions (Flores et al., 2006; Kassin et al., 2007, 2012; Puech et al., 2008, 2010;

Covington et al., 2010; Miller, Sullivan, & Ellis, 2013; Simons et al., 2016), possi-

bly indicating non-equilibrium states. Another complication for comparing high-z

studies to local TFRs arises from the inherently different nature of the so-called

disk galaxies at high redshift: although of disk-like structure and rotationally

supported, they are significantly more “turbulent”, geometrically thicker, and

clumpier than local disk galaxies (Förster Schreiber et al., 2006, 2009, 2011a,b;

Genzel et al., 2006, 2011; Elmegreen & Elmegreen, 2006; Elmegreen et al., 2007;

Kassin et al., 2007, 2012; Epinat et al., 2009, 2012; Law et al., 2009, 2012; Jones

et al., 2010; Nelson et al., 2012; Newman et al., 2013; Wisnioski et al., 2015;

Tacchella et al., 2015b,a).

Despite the advent of novel instrumentation and multiplexing capabilities,

there is considerable tension in the literature regarding the empirical evolution of

the TFR zero-points with cosmic time. Several authors find no or only weak zero-

point evolution of the sTFR up to redshifts of z ∼ 1.7 (Conselice et al., 2005;

Kassin et al., 2007; Miller et al., 2011, 2012; Contini et al., 2016; Di Teodoro,

Fraternali, & Miller, 2016; Molina et al., 2017; Pelliccia et al., 2017), while others

find a negative zero-point evolution up to redshifts of z ∼ 3 (Puech et al., 2008,

2010; Cresci et al., 2009; Gnerucci et al., 2011; Swinbank et al., 2012b; Price et al.,

2016; Tiley et al., 2016; Straatman et al., 2017). Similarly for the less-studied
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2. The Evolution of the Tully-Fisher Relation

high−z bTFR, Puech et al. (2010) find no indication of zero-point evolution

since z ∼ 0.6, while Price et al. (2016) find a positive evolution between lower-z

galaxies and their z ∼ 2 sample. There are indications that varying strictness in

morphological or kinematic selections can explain these conflicting results (Miller,

Sullivan, & Ellis, 2013; Tiley et al., 2016). The work by Vergani et al. (2012)

demonstrates that also the assumed slope of the relation, which is usually adopted

from a local TFR in high-z studies, can become relevant for the debate of zero-

point evolution (see also Straatman et al., 2017).

A common derivation of the measured quantities as well as similar statistical

methods and sample selection are crucial to any study which aims at comparing

different results and studying the TFR evolution with cosmic time (e.g. Courteau

et al., 2014; Bradford, Geha, & van den Bosch, 2016). Ideally, spatially well

resolved rotation curves should be used which display a peak or flattening. Such

a sample would provide an important reference frame for studying the effects of

baryonic mass assembly on the morphology and rotational support of disk-like

systems, for investigating the evolution of rotationally supported galaxies as a

response to the structural growth of the parent DM halo, and for comparisons

with cosmological models of galaxy evolution.

In this paper, we exploit spatially resolved integral field spectroscopic (IFS)

observations of 240 rotation-dominated disk galaxies from the KMOS3D survey

(Wisnioski et al., 2015, hereafter W15) to study the evolution of the sTFR and

bTFR between redshifts z = 2.6 and z = 0.6. The wide redshift coverage of the

survey, together with its high quality data, allow for a unique investigation of

the evolution of the TFR during the peak epoch of cosmic star formation rate

density, where coherent data processing and analysis are ensured. In Section 2.2

we describe our data and sample selection. We present the KMOS3D TFR in

Section 2.3, together with a discussion of other selected high−z TFRs. In Sec-

tion 2.4 we discuss the observed TFR evolution, we set it in the context to local

observations, and we discuss possible sources of uncertainties. In Section 2.5

we constrain a theoretical toy model to place our observations in a cosmological

context. Section 2.6 summarizes our work.

Throughout, we adopt a Chabrier (2003) initial mass function (IMF) and a

flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1, ΩΛ = 0.7, and Ωm = 0.3.

2.2 Data and sample selection

The contradictory findings about the evolution of the mass-based TFR in the

literature motivate a careful sample selection at high redshift. In this work we

concentrate on the evolution of the TFR for undisturbed disk galaxies. Galaxies

are eligible for such a study if the observed kinematics trace the central potential
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of the parent halo. To ensure a suitable sample we perform several selection steps

which are described in the following sections.

2.2.1 The KMOS3D survey

This work is based on the first three years of observations of KMOS3D, a multi-

year near-infrared (near-IR) IFS survey of more than 600 mass-selected star-

forming galaxies (SFGs) at 0.6 . z . 2.6 with the K−band Multi Object Spec-

trograph (KMOS; Sharples et al., 2013) on the Very Large Telescope. The 24 in-

tegral field units of KMOS allow for efficient spatially resolved observations in the

near-IR passbands Y J , H, and K, facilitating high-z rest-frame emission line sur-

veys of unprecedented sample size. The KMOS3D survey and data reduction are

described in detail by Wisnioski et al. (2015), and we here summarize the key fea-

tures. The KMOS3D galaxies are selected from the 3D-HST survey, a Hubble Space

Telescope Treasury Program (Brammer et al., 2012; Skelton et al., 2014; Mom-

cheva et al., 2016). 3D-HST provides R ∼ 100 near-IR grism spectra, optical to

8 µm photometric catalogues, and spectroscopic, grism, and/or photometric red-

shifts for all sources. The redshift information is complemented by high-resolution

Wide Field Camera 3 (WFC3) near-IR imaging from the CANDELS survey (Gro-

gin et al., 2011; Koekemoer et al., 2011; van der Wel et al., 2012), as well as by

further multi-wavelength coverage of our target fields GOODS-S, COSMOS, and

UDS, through Spitzer/MIPS and Herschel/PACS photometry (e.g. Lutz et al.,

2011; Magnelli et al., 2013; Whitaker et al., 2014, and references therein). Since

we do not apply selection cuts other than a magnitude cut of Ks . 23 and a

stellar mass cut of log(M∗ [M�]) & 9.2, together with OH-avoidance around the

survey’s main target emission lines Hα+[Nii], the KMOS3D sample will provide a

reference for galaxy kinematics and Hα properties of high−z SFGs over a wide

range in stellar mass and star formation rate (SFR). The emphasis of the first

observing periods has been on the more massive galaxies, as well as on Y J− and

K−band targets, i.e. galaxies at z ∼ 0.9 and z ∼ 2.3, respectively. Deep average

integration times of 5.5, 7.0, 10.5 h in Y J,H,K, respectively, ensure a detection

rate of more than 75 per cent, including also quiescent galaxies.

The results presented in the remainder of this paper build on the KMOS3D

sample as of January 2016, with 536 observed galaxies. Of these, 316 are detected

in, and have spatially resolved, Hα emission free from skyline contamination, from

which two-dimensional velocity and dispersion maps are produced. Examples of

those are shown in the work by Wisnioski et al. (2015) and Wuyts et al. (2016b,

hereafter W16).
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2. The Evolution of the Tully-Fisher Relation

2.2.2 Masses and star-formation rates

The derivation of stellar masses M∗ uses stellar population synthesis models by

Bruzual & Charlot (2003) to model the spectral energy distribution of each galaxy.

Extinction, star formation histories (SFHs), and a fixed solar metallicity are in-

corporated into the models as described by Wuyts et al. (2011b).

SFRs are obtained from the ladder of SFR indicators introduced by Wuyts

et al. (2011b): if Herschel/PACS 60 − 160µm and/or Spitzer/MIPS 24µm ob-

servations were available, the SFRs were computed from the observed UV and

IR luminosities. Otherwise, SFRs were derived from stellar population synthesis

modelling of the observed broadband optical to IR spectral energy distributions.

Gas masses are obtained from the scaling relations by Tacconi et al. (2018),

which use the combined data of molecular gas (Mgas,mol) and dust-inferred gas

masses of SFGs between 0 < z < 4 to derive a relation for the depletion time

tdepl ≡ Mgas,mol/SFR. It is expressed as a function of redshift, main sequence

offset, stellar mass, and size. Although the contribution of atomic gas to the

baryonic mass within 1 − 3Re is assumed to be negligible at z ∼ 1 − 3, the

inferred gas masses correspond to lower limits (Genzel et al., 2015).

Following Burkert et al. (2016), we adopt uncertainties of 0.15 dex for stellar

masses, and 0.20 dex for gas masses. This translates into an average uncertainty

of ∼ 0.15 dex for baryonic masses (see Section 2.4.3.1 for a discussion).

2.2.3 Dynamical modelling

Wuyts et al. (2016b) use the two-dimensional velocity and velocity dispersion

fields as observed in Hα to construct dynamical models for selected galaxies.

The modelling procedure is described in detail by Wuyts et al. (2016b), where

examples of velocity fields, velocity and dispersion profiles, and 1D fits can also

be found (see also Figure 2.1). In brief, radial velocity and dispersion profiles

are constructed from 0′′8 diameter circular apertures every other 0′′2 along the

kinematic major axis using linefit (Davies et al., 2009), where spectral resolution

is taken into account. On average, the outermost apertures reach 2.5 times the

effective H-band radius, corresponding to ∼15 and ∼12 extracted data points for

galaxies at z ∼ 0.9 and z ∼ 2.3, respectively. A dynamical mass modelling is

performed by fitting the extracted kinematic profiles simultaneously in observed

space using an updated version of dysmal (Cresci et al., 2009; Davies et al.,

2011).

The free model parameters are the dynamical mass Mdyn and the intrinsic

velocity dispersion σ0. The inclination i and effective radius Re are independently

constrained from galfit (Peng et al., 2010) models to the CANDELS H-band

imaging by HST presented by van der Wel et al. (2012). The inclination is

computed as cos(i) = [(q2 − q2
0)/(1 − q2

0)]1/2. Here, q = b/a is the axial ratio,

and q0 = 0.25 is the assumed ratio of scale height to scale length, representing
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2.2 Data and sample selection

Figure 2.1: Examples of galaxies from the sample modelled by Wuyts et al. (2016b)

which do, or do not, pass our TFR selection criteria (Section 2.2.4). From left to

right: surface brightness distribution in the WFC3 H−band, with blue ellipses indicating

the galfit effective radius, and grey dashed lines marking the field of view of the

KMOS observations; Hα velocity field, with circles marking the extracted pseudo slit;

the observed (black data points with errors) and modelled (red lines) 1D velocity and

velocity dispersion profiles along the kinematic major axis, with vertical dotted grey

lines marking one and two effective radii. More examples can be found in Figure 3

by Wuyts et al. (2016b). The upper two rows show galaxies which pass our selection

criteria for the TFR sample. The third row shows a galaxy which is rejected from the

TFR sample because it is likely influenced by a neighboring object, based on projected

distance, redshifts, and stellar mass ratio. The bottom row shows a galaxy which is

rejected from the TFR sample because it is unclear if the maximum velocity is covered

by the observations.
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the intrinsic thickness of the disk. The width of the point spread function (PSF)

is determined from the average PSF during observations for each galaxy. The

mass model used in the fitting procedure is a thick exponential disk, following

Noordermeer (2008), with a Sérsic index of nS = 1. We note that the peak

rotation velocity of a thick exponential disk is about 3 to 8 per cent lower than

that of a Freeman disk (Freeman, 1970). For a general comparison of observed

and modelled rotation velocities and dispersions, we refer the reader to Wuyts

et al. (2016b). Another key product of the modelling is the baryonic (or DM)

mass fraction on galactic scales, as presented in Wuyts et al. (2016b).

The merit of the Wuyts et al. (2016b) modelling procedure includes the cou-

pled treatment of velocity and velocity dispersion in terms of beam-smearing

effects and pressure support. The latter is of particular importance for our study

since high-z galaxies have a non-negligible contribution to their dynamical sup-

port from turbulent motions (Förster Schreiber et al., 2006, 2009; Genzel et al.,

2006, 2008, 2014a; Kassin et al., 2007, 2012; Cresci et al., 2009; Law et al., 2009;

Gnerucci et al., 2011; Epinat et al., 2012; Swinbank et al., 2012b; Wisnioski et al.,

2012, 2015; Jones et al., 2013; Newman et al., 2013). The resulting pressure com-

pensates part of the gravitational force, leading to a circular velocity which is

larger than the rotation velocity vrot alone:

vcirc(r)
2 = vrot(r)

2 + 2σ2
0

r

Rd

, (2.1)

where Rd is the disk scale length (Burkert et al., 2010; see also Burkert et al.,

2016; Wuyts et al., 2016b; Genzel et al., 2017; Lang et al., 2017).

If not stated otherwise, we adopt the maximum of the modelled circular veloc-

ity, vcirc,max ≡ vcirc, as the rotation velocity measure for our Tully-Fisher analysis.

For associated uncertainties, see Section 2.4.3.2. We use an expression for the

peak velocity because there is strong evidence that high-z rotation curves of mas-

sive star forming disk galaxies exhibit on average an outer fall-off, i.e. do not

posses a ‘flat’ part (van Dokkum et al., 2015; Genzel et al., 2017; Lang et al.,

2017).1 This is partly due to the contribution from turbulent motions to the

dynamical support of the disk, and partly due to baryons dominating the mass

budget on the galaxy scale at high redshift (see also van Dokkum et al., 2015;

Stott et al., 2016; Wuyts et al., 2016b; Price et al., 2016; Alcorn et al., 2016;

Pelliccia et al., 2017). A disk model with a flattening or rising rotation curve

as the ‘arctan model’, which is known to be an adequate model for local disk

1 Note post publication: We emphasize that this statement holds for the average rotation

curve of massive SFGs particularly at z > 1.5, while a variety of outer rotation curve shapes is

observed for SFGs with different physical properties. Particularly lower−z systems with lower

baryonic mass surface densities, or galaxies with smaller bulges, can show flat or even rising

outer rotation curves, as typical for local SFGs.
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galaxies (e.g. Courteau, 1997), might therefore be a less appropriate choice for

high-z galaxies.

2.2.4 Sample selection

We start our investigation with a parent sample of 240 KMOS3D galaxies selected

and modelled by Wuyts et al. (2016b). The sample definition is described in

detail by Wuyts et al. (2016b), and we briefly summarize the main selection

criteria here: (i) galaxies exhibit a continuous velocity gradient along a single

axis, the ‘kinematic major axis’; (ii) their photometric major axis as determined

from the CANDELS WFC3 H-band imaging and kinematic major axis are in

agreement within 40 degrees; (iii) they have a signal-to-noise ratio within each

0′′8 diameter aperture along the kinematic major axis of S/N & 5, with up to

S/N ∼ 10 − 100 within the central apertures. The galaxies sample a parameter

space along the main sequence of star forming galaxies (MS) with stellar masses

of M∗ & 6.3 × 109 M�, specific star formation rates of sSFR & 0.7/tHubble, and

effective radii of Re & 2 kpc. The Wuyts et al. (2016b) sample further excludes

galaxies with signs of major merger activity based on their morphology and/or

kinematics.

For our Tully-Fisher analysis we undertake a further detailed examination of

the Wuyts et al. (2016b) parent sample. The primary selection step is based on

the position-velocity diagrams and on the observed and modelled one-dimensional

kinematic profiles of the galaxies. Through inspection of the diagrams and pro-

files we ensure that the peak rotation velocity is well constrained, based on the

observed flattening or turnover in the rotation curve and the coincidence of the

dispersion peak within . 2 pixels (. 0′′4) with the position of the steepest veloc-

ity gradient. The requirement of detecting the maximum velocity is the selection

step with the largest effect on sample size, leaving us with 149 targets. The galaxy

shown in the fourth row of Figure 2.1 is excluded from the TFR sample based on

this latter requirement.

To single out rotation-dominated systems for our purpose, we next perform

a cut of vrot,max/σ0 >
√

4.4, based on the properties of the modelled galaxy

(see also e.g. Tiley et al., 2016). Our cut removes ten more galaxies where the

contribution of turbulent motions at the radius of maximum rotation velocity,

which is approximately at r = 2.2Rd, to the dynamical support is higher than

the contribution from ordered rotation (cf. Equation (2.1)).

We exclude four more galaxies with close neighbours because their kinematics

might be influenced by the neighbouring objects. These objects have projected

distances of < 20 kpc, spectroscopic redshift separations of < 300 km/s, and mass

ratios of > 1 : 5, based on the 3D-HST catalogue. One of the dismissed galaxies

is shown in the third row of Figure 2.1.

After applying the above cuts, our refined TFR sample contains 135 galax-
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 resolved KMOS
3D

 galaxies ("first order", N=316)

 S.Wuyts+2016 modelled galaxies (N=240)

 sample based on ∆MS, ∆M−R, inc (N=173)

 TFR sample (N=135)

Figure 2.2: A ‘first order’ sTFR of all detected and resolved KMOS3D galaxies without

skyline contamination at the position of Hα, where vcirc is computed from the observed

maximal velocity difference and from the intrinsic velocity dispersion as measured from

the outer disk region, after corrections for beam-smearing and inclination (see Wisnioski

et al., 2015). The sample of galaxies which have been dynamically modelled by Wuyts

et al. (2016b) is shown in black. In orange, we indicate a subsample of this latter sample

based only on cuts in MS offset (±0.6 dex), mass-radius relation offset (±0.3 dex), and

inclination (0.5 ≤ sin(i) ≤ 0.98). In blue we show our final TFR sample as obtained

from the selection steps outlined in Section 2.2.4.

ies, with 65, 24, 46 targets in the Y J,H,K passbands with mean redshifts of

z ∼ 0.9, 1.5, 2.3, respectively. The median and central 68th percentile ranges of

offsets between the morphological and kinematic position angle (PA) are 6.4◦

[0.1◦; 18.4◦]. This should minimize the possible impact of non-axisymmetric mor-

phological features on the fixed model parameters (Re, sin(i), PA) that are based

on single-component Sérsic model fits to the observed H-band images (see Ro-

drigues et al., 2017, and also the discussion by Wuyts et al. (2016b)). The median

physical properties of redshift subsamples are listed in Table 2.1. Individual prop-

erties of galaxies in the TFR sample in terms of z, M∗, Mbar, vcirc,max, and σ0, are

listed in Table 2.3.

To visualize the impact of our sample selection we show in Figure 2.2 a ‘first

order’ sTFR of all detected and resolved KMOS3D galaxies. Here, vcirc is computed
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2.2 Data and sample selection

from the observed maximal velocity difference and from the intrinsic velocity

dispersion as measured from the outer disk region, after corrections for beam-

smearing and inclination, as detailed in Appendix A.2 of Burkert et al. (2016).

For simplicity, we assume in computing vcirc for this figure that the observed

maximal velocity difference is measured at r = 2.2Rd, but we emphasize that,

in contrast to the modelled circular velocity, this is not necessarily the case.

We indicate our parent sample of modelled galaxies by Wuyts et al. (2016b) in

black, and our final TFR sample in blue. For reference, we also show in orange

a subsample of the selection by Wuyts et al. (2016b) which is only based on cuts

in MS offset (±0.6 dex), mass-radius relation offset (±0.3 dex), and inclination

(0.5 ≤ sin(i) ≤ 0.98). We emphasize that the assessment of recovering the

true maximum rotation velocity is not taken into account for such an objectively

selected sample. We discuss in Appendix 2.7 in more detail the effects of sample

selection, and contrast them to the impact of correcting for e.g. beam-smearing.

Table 2.1: Median physical properties of our TFR subsamples at z ∼ 0.9 (Y J), z ∼ 1.5

(H), and z ∼ 2.3 (K), together with the associated central 68th percentile ranges in

brackets.

z ∼ 0.9 z ∼ 1.5 z ∼ 2.3

(65 galaxies) (24 galaxies) (46 galaxies)

log(M∗ [M�]) 10.49 [10.03; 10.83] 10.72 [10.08; 11.07] 10.51 [10.18; 11.00]

log(Mbar [M�]) 10.62 [10.29; 10.98] 10.97 [10.42; 11.31] 10.89 [10.59; 11.33]

SFR [M�/yr] 21.1 [7.1; 39.6] 53.4 [15.5; 134.5] 72.9 [38.9; 179.1]

log(∆ MS)a 0.20 [-0.21; 0.42] 0.10 [-0.21; 0.45] -0.01 [-0.29; 0.13]

R5000
e [kpc] 4.8 [3.0; 7.6] 4.9 [3.0; 7.0] 4.0 [2.5; 5.2]

log(∆ M-R)b -0.02 [-0.17; 0.16] 0.08 [-0.10; 0.17] 0.06 [-0.14; 0.17]

nS 1.3 [0.8; 3.1] 0.9 [0.4; 2.2] 1.0 [0.4; 1.6]

B/T c 0.11 [0.00; 0.39] 0.00 [0.00; 0.23] 0.10 [0.00; 0.25]

vrot,max [km/s] 233 [141; 302] 245 [164; 337] 239 [160; 284]

σ0 [km/s] 30 [9; 52] 47 [29; 59] 49 [32; 68]

vrot,max/σ0 6.7 [3.2; 25.3] 5.5 [3.4; 65.6] 4.3 [3.4; 9.1]

vcirc,max [km/s] 239 [167; 314] 263 [181; 348] 260 [175; 315]

a MS offset with respect to the broken power law relations derived by Whitaker

et al. (2014), using the redshift-interpolated parametrization by Wisnioski et al.

(2015), ∆ MS=SFR− SFRMS(z,M∗)[W14].
b Offset from the mass-size relation of SFGs with respect to the relation de-

rived by van der Wel et al. (2014a), ∆ M-R=R5000
e − R5000

e,M−R(z,M∗)[vdW14], after

correcting the H−band Re to the rest-frame 5000 .
c Bulge-to-total mass ratio if available, namely for 78, 92, and 89 per cent of our

galaxies in Y J−, H−, and K−band, respectively. Values of B/T = 0 usually

occur when the galaxy’s Sérsic index nS is smaller than 1 (cf. Lang et al., 2014).
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×4

MS

×1/4

3D−HST parent sample 0.6<z<2.7

 KMOS
3D

 detections

 TFR sample at z∼0.9

 TFR sample at z∼1.5

 TFR sample at z∼2.3

×2

M−R

×1/2

3D−HST parent sample 0.6<z<2.7, SFGs only

 KMOS
3D

 detections, SFGs only

 TFR sample at z∼0.9

 TFR sample at z∼1.5

 TFR sample at z∼2.3

Figure 2.3: Location of our TFR galaxies in the M∗-SFR (left) and in the M∗-Re
plane (right) as compared to all detected KMOS3D galaxies (purple diamonds) and the

underlying galaxy population at 0.6 < z < 2.7 taken from the 3D-HST source catalogue

(grey scale) with log(M∗ [M�]) > 9.2, KAB < 23 mag, and for the M∗-Re relation

sSFR > 0.7/tHubble (‘SFGs only’). In the left panel, the SFR is normalized to the MS

as derived by Whitaker et al. (2014) at the redshift and stellar mass of each galaxy, using

the redshift-interpolated parametrization by Wisnioski et al. (2015). In the right panel,

the effective radii as measured from H−band are corrected to the rest-frame 5000 and

normalized to the M-R relation of SFGs as derived by van der Wel et al. (2014a) at the

redshift and stellar mass of each galaxy. At z ∼ 0.9 the TFR galaxies lie on average a

factor of ∼ 1.6 above the MS, but on average on the M-R relation. At z ∼ 2.3, the TFR

galaxies lie on average on the MS and the M-R relation, but their scatter with respect

to higher SFRs and to smaller radii is not as pronounced as for the star-forming 3D-

HST sample. For the 3D-HST ‘SFGs only’ population the median and 68th percentile

ranges are log(∆ MS)=0.00+0.33
−0.37, and log(∆ M-R)=−0.04+0.17

−0.28. See Table 2.1 for the

corresponding ranges of the TFR sample.

The distribution of the TFR sample with respect to the full KMOS3D sample

(as of January 2016) and to the corresponding 3D-HST sample in terms of

star formation rate and effective radius as a function of stellar mass is shown

in Figure 2.3 (for a detailed comparison of the Wuyts et al. (2016b) sample,

we refer the reader to Wuyts et al. (2016b)). We select 3D-HST galaxies with

0.6 < z < 2.7, log(M∗ [M�]) > 9.2, Ks < 23, and for the ‘SFGs only’ subset we

apply sSFR > 0.7/tHubble, for a total of 9193 and 7185 galaxies, respectively. Fo-

cussing on the ‘SFGs only’ subset, the median and corresponding 68th percentiles

with respect to the MS relations for the z ∼ 0.9 and the z ∼ 2.3 populations

are log(∆ MS)=0.00+0.34
−0.39 and log(∆ MS)=−0.05+0.26

−0.35, and with respect to the

mass-size (M-R) relation log(∆ M-R)=−0.04+0.16
−0.28 and log(∆ M-R)=−0.02+0.17

−0.31,

respectively. At z ∼ 0.9, the TFR galaxies lie on average a factor of ∼ 1.6 above
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2.3 The TFR with KMOS3D

the MS, with log(∆ MS)=0.20+0.42
−0.21, and have sizes corresponding to log(∆ M-

R)=−0.02+0.16
−0.17. At z ∼ 2.3, the TFR galaxies lie on average on the MS and

M-R relations (log(∆ MS)=−0.01+0.13
−0.29, log(∆ M-R)=0.06+0.17

−0.14), but their scatter

with respect to higher SFRs and to smaller radii is not as pronounced as for the

star-forming 3D-HST sample.

In summary, our analysis accounts for the following effects: (i) beam-smearing,

through a full forward modelling of the observed velocity and velocity dispersion

profiles with the known instrumental PSF; (ii) the intrinsic thickness of high−z
disks, following Noordermeer (2008); (iii) pressure support through turbulent gas

motions, following Burkert et al. (2010), under the assumption of a disk of con-

stant velocity dispersion and scale height. The former steps are all included in the

dynamical modelling by Wuyts et al. (2016b). On top of that, we retain in our

TFR sample only non-interacting SFGs which are rotationally supported based

on the vrot,max/σ0 >
√

4.4 criterion, and for which the data have sufficient S/N

and spatial coverage to robustly map, and model, the observed rotation curve to

or beyond the peak rotation velocity.

2.3 The TFR with KMOS3D

2.3.1 Fitting

In general, there are two free parameters for TFR fits in log-log space: the slope

a and the zero-point offset b. It is standard procedure to adopt a local slope for

high−z TFR fits2. This is due to the typically limited dynamical range probed by

the samples at high redshift which makes it challenging to robustly constrain a.

The TFR evolution is then measured as the relative difference in zero-point offsets

(e.g. Puech et al., 2008; Cresci et al., 2009; Gnerucci et al., 2011; Miller et al.,

2011, 2012; Tiley et al., 2016). In Appendix 2.8 we briefly investigate a method

to measure TFR evolution which is independent of the slope. For clarity and

consistency with TFR investigations in the literature, however, we present our

main results based on the functional form of the TFR as given in Equation (2.2)

below. For our fiducial fits, we adopt the local slopes by Reyes et al. (2011) and

Lelli, McGaugh, & Schombert (2016b) for the sTFR and the bTFR, respectively.3

To fit the TFR we adopt an inverse linear regression model of the form

log(M [M�]) = a · log(vcirc/vref) + b. (2.2)

2While the slope might in principle vary with cosmic time, a redshift evolution is not expected

from the toy model discussed in Section 2.5.
3The sTFR zero-point by Reyes et al. (2011) is corrected by −0.034 dex to convert their

Kroupa (2001) IMF to the Chabrier IMF which is used in this work, following the conversions

given in Madau & Dickinson (2014).
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2. The Evolution of the Tully-Fisher Relation

Here, M is the stellar or baryonic mass, and a reference value of vref = vcirc

is chosen to minimize the uncertainty in the determination of the zero-point b

(Tremaine et al., 2002). If we refer in the remainder of the paper to b as the

zero-point offset, this is for our sample in reference to vcirc = vref , and not to

log(vcirc [km/s])=0. When comparing to other data sets in Sections 2.3.4 and

2.4.2 we convert their zero-points accordingly.

For the fitting we use a Bayesian approach to linear regression, as well as a

least-squares approximation. The Bayesian approach to linear regression takes

uncertainties in ordinate and abscissa into account.4 The least-squares approx-

imation also takes uncertainties in ordinate and abscissa into account, and al-

lows for an adjustment of the intrinsic scatter to ensure for a goodness of fit

of χ2
reduced ≈ 1.5 To evaluate the uncertainties of the zero-point offset b of the

fixed-slope fits, a bootstrap analysis is performed for the fits using the least-

squares approximation. The resulting errors agree with the error estimates from

the Bayesian approach within 0.005 dex of mass. We find that the intrinsic scat-

ter obtained from the Bayesian technique is similar or larger by up to 0.03 dex

of mass as compared to the least-squares method. Both methods give the same

results for the zero-point b (see also the recent comparison by Bradford, Geha, &

van den Bosch, 2016).

We perform fits to our full TFR sample, as well as to the subsets at z ∼ 0.9

and z ∼ 2.3. The latter allows us to probe the maximum separation in redshift

possible within the KMOS3D survey. Due to the low number of TFR galaxies in

our H−band bin we do not attempt to fit a zero-point at z ∼ 1.5.

2.3.2 The TFR at 0.6 < z < 2.6

In this section, we investigate the Tully-Fisher properties of our full TFR sample

at 0.6 < z < 2.6. The sTFR as well as the bTFR are clearly in place and

well defined at 0.6 < z < 2.6, confirming previous studies (e.g. Cresci et al.,

2009; Miller et al., 2011, 2012; Tiley et al., 2016, and other high−z work cited in

Section 2.1). In Figure 2.4 we show the best fits for the sTFR and the bTFR using

the local slopes by Reyes et al. (2011) (a = 1/0.278 = 3.60) and Lelli, McGaugh,

& Schombert (2016b) (a = 3.75), respectively. The best-fit parameters are given

in Table 2.2. section

The intrinsic scatter as determined from the fits is with ζint,sTFR ≈ 0.22 and

ζint,bTFR ≈ 0.23 larger by up to a factor of two in dex of mass than in the local

4 We use the IDL routine linmix err which is described and provided by Kelly (2007). A

modified version of this code which allows for fixing of the slope was kindly provided to us by

Brandon Kelly and Marianne Vestergaard.
5 We use the IDL routine mpfitexy which is described and provided by Williams, Bureau,

& Cappellari (2010). It depends on the mpfit package (Markwardt, 2009).
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 Reyes+2011 slope

0.6<z<2.6  (N=135)

 Lelli+2016 slope

0.6<z<2.6  (N=135)

Figure 2.4: The sTFR (left) and the bTFR (right) for our sample of 135 SFGs,

with error bars in grey. The green lines show the fixed-slope fits to the inverse linear

regression model as given in Equation (2.2), using the corresponding local slopes by

Reyes et al. (2011) and Lelli, McGaugh, & Schombert (2016b). The fit parameters are

given in Table 2.2. A correlation between vcirc and the different mass tracers is evident.

Universe (typical values for the observed intrinsic scatter of the local relations

used in this study are ζint = 0.1−0.13 in dex of mass; see Reyes et al., 2011; Lelli,

McGaugh, & Schombert, 2016b). A larger scatter in the high−z TFR is expected

simply due to the larger measurement uncertainties. It might further be due to

disk galaxies being less “settled” (Kassin et al., 2007, 2012; Simons et al., 2016;

see also Flores et al., 2006; Puech et al., 2008, 2010; Covington et al., 2010; Miller,

Sullivan, & Ellis, 2013). This can become manifest through actual displacement

of galaxies from the TFR due to a non-equilibrium state (see e.g. simulations by

Covington et al., 2010).

Miller, Sullivan, & Ellis (2013) studied the connection between TFR scatter

and bulge-to-total ratio, and found that above z ≈ 1 the TFR scatter is increased

due to an offset of bulge-less galaxies from the B/T > 0.1 galaxy population. B/T

measurements for our galaxies come from bulge-disk decompositions based on

two-component fits to the two-dimensional CANDELS H-band light distribution

(Lang et al., 2014). If we select only galaxies with B/T > 0.1 (57 galaxies),

we do not find a decrease in scatter for our sample (ζint,sTFR,B/T>0.1 = 0.22 and

ζint,bTFR,B/T>0.1 = 0.24). The same is true if we select for galaxies with B/T < 0.1

(78 galaxies), leading to ζint,sTFR,B/T<0.1 = 0.23 and ζint,bTFR,B/T<0.1 = 0.22.

However, the scatter is affected by the sample selection: if we create ‘first
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2. The Evolution of the Tully-Fisher Relation

order’ TFRs (Section 2.2.4, Figure 2.2), i.e. using all detected and resolved

KMOS3D galaxies without skyline contamination (316 SFGs), but also without

selecting against dispersion-dominated systems, low S/N galaxies, or mergers,

we find an intrinsic scatter of ζint,sTFR = 0.60 and ζint,bTFR = 0.64 for these ‘first

order’ TFRs (for the parent Wuyts et al. (2016b) sample we find ζint,sTFR = 0.27

and ζint,bTFR = 0.29). We caution that this test sample includes galaxies where

the maximum rotation velocity is not reached, thus introducing artificial scatter

in these ‘first order’ TFRs. In contrast to the properties of our TFR sample,

this scatter is asymmetric around the best fit, with larger scatter towards lower

velocities, but also towards lower masses where more of the dispersion-dominated

galaxies reside (cf. Figures 2.2 and 2.8). This underlines the importance of a

careful sample selection.

Also the zero-points are affected by the sample selection (see also Figure 2.8).

For our TFR sample, we find bsTFR = 10.50 ± 0.03 and bbTFR = 10.75 ± 0.03.

If we consider the ‘first order’ samples we find an increase of the zero-points of

∆bsTFR = 0.37 dex and ∆bbTFR = 0.39 dex (for the parent Wuyts et al. (2016b)

sample we find ∆bsTFR = 0.03 dex and ∆bbTFR = 0.04 dex).

It is common, and motivated by the scatter of the TFR, to investigate the

existence of hidden parameters in the relation. For example, a measure of the

galactic radius (effective, or exponential scale length) has been investigated by

some authors to test for correlations with TFR residuals (e.g. McGaugh, 2005;

Pizagno et al., 2005; Gnedin et al., 2007; Zaritsky et al., 2014; Lelli, McGaugh,

& Schombert, 2016b). The radius, together with mass, determines the rotation

curve (e.g. Equation (2.10)). Adopting the local slopes, we do not find significant

correlations (based on Spearman tests) of the TFR residuals with Re, B/T , nS,

stellar or baryonic mass surface density, offset from the main sequence or the

mass-radius relation, SFR surface density ΣSFR, or inclination. In Appendix 2.9

we investigate how the uncertainties in stellar and baryonic mass affect second-

order parameter dependencies for TFR fits with free slopes, by example of Re

and ΣSFR.

In summary, we find well defined mass-based TFRs at 0.6 < z < 2.6 for our

sample. If galaxies with underestimated peak velocity, dispersion-dominated and

disturbed galaxies are included, the TFR zero-points are increasing, and also the

scatter increases, especially towards lower velocities and masses. Adopting the

local slopes, we find no correlation of TFR residuals with independent galaxy

properties.

2.3.3 TFR evolution from z ∼ 2.3 to z ∼ 0.9

We now turn to the TFR subsamples at z ∼ 0.9 and z ∼ 2.3. We adopt the

local slopes by Reyes et al. (2011) and Lelli, McGaugh, & Schombert (2016b)

to investigate the zero-point evolution. Our redshift subsamples are shown in
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2.3 The TFR with KMOS3D

Figure 2.5 for the sTFR (left) and bTFR (right), together with the corresponding

local relations and the respective fixed-slope fits. The parameters of each fit are

given in Table 2.2.

For the sTFR we find no indication for a significant change in zero-point

between z ∼ 0.9 and z ∼ 2.3 within the best fit uncertainties. Using the local

slope of a = 3.60 and the reference value vref = 242 km/s, we find a zero-point

of b = 10.49± 0.04 for the subsample at z ∼ 0.9, and of b = 10.51± 0.05 for the

subsample at z ∼ 2.3, translating into a zero-point evolution of ∆b = 0.02 dex

between z ∼ 0.9 and z ∼ 2.3.

For the bTFR, however, using the local slope of a = 3.75, and again the

reference value vref = 242 km/s, we find a positive zero-point evolution between

z ∼ 0.9 and z ∼ 2.3, with b = 10.68 ± 0.04 and b = 10.85 ± 0.05, respectively,

translating into a zero-point evolution of ∆b = 0.17 dex between z ∼ 0.9 and

z ∼ 2.3.

If we consider the ‘first order’ TFR subsamples at z ∼ 0.9 and z ∼ 2.3,

we find significantly different zero-point evolutions of ∆bsTFR = 0.23 dex and

∆bbTFR = 0.28 dex between z ∼ 0.9 and z ∼ 2.3. Again, this highlights the

importance of a careful sample selection for TFR studies. Figure 2.9 shows that

if instead we extend our data set to the sample from Wuyts et al. (2016b), we find

qualitatively the same trends as for the adopted TFR sample, namely an evolution

of ∆bsTFR = 0.05 dex and ∆bbTFR = 0.20 dex for the zero-point between z ∼ 0.9

and z ∼ 2.3 (see Appendix 2.7). Also, if we consider only TFR galaxies with

B/T > 0.1(< 0.1), our qualitative results remain the same.

In summary, we find no evolution for the sTFR, but a positive evolution

of the bTFR between z ∼ 0.9 and z ∼ 2.3. If galaxies with underestimated

peak velocity, dispersion-dominated and disturbed galaxies are included, we find

positive evolution of both the sTFR and the bTFR.
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2.3 The TFR with KMOS3D

2.3.4 Comparison to other high−z studies

At z ∼ 0.9 we compare our sTFR (65 KMOS3D galaxies) to the work by Tiley

et al. (2016) and Miller et al. (2011). Tiley et al. (2016) have investigated the

sTFR at z ∼ 0.9 using 56 galaxies from the KROSS survey with KMOS (Stott

et al., 2016). Miller et al. (2011, 2012) have presented an extensive slit-based

sTFR study at 0.2 < z < 1.7 with 37 galaxies at z ∼ 1. From Tiley et al. (2016),

we use their best fixed-slope fit to their disky subsample (a = 3.68). From Miller

et al. (2011), we use the z ∼ 1 fit corresponding to total stellar mass and vrot,3.2

(a = 3.78). For a sTFR comparison at z ∼ 2.3 (46 KMOS3D galaxies), we consider

the work by Cresci et al. (2009). The authors have studied the sTFR at z ∼ 2.2

for 14 galaxies from the SINS survey (a = 4.5). Despite the small sample size, the

high-quality data based on the 2D modelling of velocity and velocity dispersion

maps qualify the sample for comparison with our findings in the highest redshift

bin.

In the following, we use vrot,max to ensure a consistent comparison with the

measurements presented in these studies. For a comparison with the literature

data, we make the simplifying assumption that vrot,max is comparable to vrot,80

and vrot,3.2 (see Section 2.4.3.3 for a discussion). We adopt the slopes reported in

the selected studies to guarantee consistency in the determination of zero-point

offsets. The results are shown in Figure 2.6 as dashed lines, while the original

relations from the literature are shown as solid lines. The difference in zero-points,

∆b, is then computed as the zero-point from the KMOS3D fixed-slope fit minus

the zero-point from the literature. Given the typical zero-point uncertainty of

our fits of δb ≈ 0.05 dex, our results are in agreement with Tiley et al. (2016)

(∆b = 0.06) and Cresci et al. (2009) (∆b = 0.07), but in disagreement with

Miller et al. (2011) at z ∼ 1 (∆b = −0.31). We further note that our findings

are in disagreement with the recent study by Di Teodoro, Fraternali, & Miller

(2016) who employed a tilted ring model on a small subset of galaxies from the

KMOS3D and KROSS surveys at z ∼ 1 (∆b = −0.34; see also Tiley et al., 2016).

A number of complications might give rise to conflicting results of different

TFR studies, such as the use of various kinematic models, velocity tracers, mass

estimates, or statistical methods. Tiley et al. (2016), who present an extensive

comparison of several sTFR studies from the literature, argue that conflicting

results regarding the zero-point evolution with redshift depend on the ability of

the studies to select for rotationally supported systems. The two-dimensional

information on the velocity and velocity dispersion fields is a major advantage of

IFS observations as it allows for the robust determination of the kinematic center

and major axis.

We test the case of selecting against dispersion-dominated or disturbed sys-

tems for our TFR samples. For the full sample of 240 SFGs by Wuyts et al.

(2016b), which includes some dispersion-dominated systems and cases where the

peak rotation velocity might be underestimated by the model, we indeed find that
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 Reyes+2011 (z~0)
 (a=3.60, b=2.36)

 z~0.9 
 ∆b=−0.44 dex

 z~2.3 
 ∆b=−0.42 dex

z∼0.9  (N= 65)

z∼2.3  (N= 46)

 Lelli+2016 (z~0)
 (a=3.75, b=2.18)

 z~0.9 
 ∆b=−0.44 dex

 z~2.3 
 ∆b=−0.27 dex

z∼0.9  (N= 65)

z∼2.3  (N= 46)

Figure 2.5: Fixed-slope fits for the sTFR (left) and the bTFR (right) using local (black)

slopes to our KMOS3D subsamples at z ∼ 0.9 (blue) and z ∼ 2.3 (red). For the local

relations, we give a and b corresponding to our adopted functional form of the TFR

give in Equation (2.2), with log(vref [km/s])=0. For the sTFR, we find no (or only

marginal) evolution of the sTFR zero-point in the studied redshift range. Comparing to

the local relation by Reyes et al. (2011) we find ∆b = −0.44 and −0.42 dex at z ∼ 0.9

and z ∼ 2.3, respectively. For the bTFR, we find a positive evolution of the zero-point

between z ∼ 0.9 and z ∼ 2.3. Comparing to the local relation by Lelli, McGaugh,

& Schombert (2016b) we find ∆b = −0.44 and −0.27 dex at z ∼ 0.9 and z ∼ 2.3,

respectively.

the difference in zero-point, ∆b, with Miller et al. (2011) shrinks by ∼ 30 per cent.

If we now even turn to the purely observational ‘first order sTFR’, this time using

only the z < 1.3 galaxies (122 SFGs) and the vrot,max tracer, we find agreement to

Miller et al. (2011) (∆b = 0.02). Again, we caution that this ‘first order’ sample

contains not only dispersion-dominated and merging galaxies, but also galaxies

for which the maximum velocity is underestimated. This exercise supports the

interpretation that the disagreement with Miller et al. (2011) is partly due to our

selection of rotation-dominated systems. Beam-smearing corrections could lead

to effects of comparable order, as is discussed in more detail in Appendix 2.7 and

explicitly shown in Figure 2.8.

The high−z evolution of the bTFR has received less attention in the literature.

At intermediate redshift (z ∼ 1.2), Vergani et al. (2012) found no evolution of the

bTFR when comparing to the local relation by McGaugh (2005). We compare

our results to the slit-based relation at z ∼ 2 by Price et al. (2016) using galaxies

from the MOSDEF survey (Kriek et al., 2015). Price et al. (2016) use the S0.5 =
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 Tiley+2016 (T16)

 KMOS
3D

, T16 slope

 Miller+2011 (M11)

 KMOS
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 Cresci+2009 (C09)

 KMOS
3D
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 Price+2016 (P16)

 KMOS
3D

, P16 slope

z∼0.9  (N= 65) z∼2.3  (N= 46) z∼2.3  (N= 46)

Figure 2.6: Left and middle panel: the vrot-sTFRs at z ∼ 0.9 (left panel) and

z ∼ 2.3 (middle panel). We show fits from Tiley et al. (2016) (z ∼ 0.9; magenta),

Miller et al. (2011) (z ∼ 1; green) and Cresci et al. (2009) (z ∼ 2.2; orange) as solid

lines, together with corresponding fixed-slope fits to our samples as dashed lines. From

Tiley et al. (2016), we use their best fixed-slope fit to their disky subsample. From

Miller et al. (2011), we use the z ∼ 1 fit corresponding to total stellar mass and vrot,3.2.

Our findings regarding the zero-point offset are in agreement with Tiley et al. (2016)

and Cresci et al. (2009), but in disagreement with Miller et al. (2011). Right panel:

the S0.5-bTFR at z ∼ 2.3. We show the fit from Price et al. (2016) (z ∼ 2; red) as a

solid line, together with the corresponding fixed-slope fit to our sample as a dashed line.

Our findings regarding the zero-point offset are in agreement.

(0.5 ·v2
rot +σ2

g)
1/2 velocity tracer, which also incorporates dynamical support from

disordered motions based on the assumption of isotropic (or constant) gas velocity

dispersion σg (Weiner et al., 2006; Kassin et al., 2007). Price et al. (2016) show

a plot of the S0.5−bTFR of 178 SFGs, of which 35 (15) have detected (resolved)

rotation measurements. For resolved galaxies, S0.5 is obtained through combining

a constant intrinsic velocity dispersion, and vrot,2.2. For unresolved galaxies, Price

et al. (2016) estimate S0.5 through an rms velocity (see their Appendix B for

details). We use their fixed-slope fit (a = 1/0.39) to compare their results to our

46 KMOS3D galaxies at z ∼ 2.3 in the right panel of Figure 2.6. Our fixed-slope

fit is in agreement with the result by Price et al. (2016) (∆b = −0.03). This

is surprising at first, given the above discussion of IFS vs. slit-based rotation

curve measurements, and the fact that the Price et al. (2016) sample contains a

large fraction of objects without detected rotation. However, Price et al. (2016)

state that their findings regarding the S0.5-bTFR do not change if they consider

only the galaxies with detected rotation measurements. This is likely due to

the detailed modelling and well-calibrated translation of line width to rotation

velocity by the authors. In general, any combination of velocity dispersion and

velocity into a joined measure is expected to bring turbulent and even dispersion-
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dominated galaxies closer together in TFR space, which might further serve as

an explanation for this good agreement (see also Covington et al., 2010).6

In summary, our inferred vrot-sTFR zero-points (i.e., not corrected for pressure

support) agree with the work by Cresci et al. (2009) and Tiley et al. (2016), but

disagree with the work by Miller et al. (2011). Our S0.5-bTFR zero-point agrees

with the result by Price et al. (2016). We emphasize that the negligence of

turbulent motions in the balance of forces leads to a relation which has lost its

virtue to directly connect the baryonic kinematics to the central potential of the

halo.

2.4 TFR evolution in context

2.4.1 Dynamical support of SFGs from z ∼ 2.3 to z ∼ 0.9

At fixed vcirc, our sample shows higher Mbar and similar M∗ at z ∼ 2.3 as com-

pared to z ∼ 0.9 (Figure 2.5). Galactic gas fractions are strongly increasing with

redshift, as it has become clear in the last few years (Tacconi et al., 2010; Daddi

et al., 2010; Combes et al., 2011; Genzel et al., 2015; Tacconi et al., 2018). In

our TFR sample, the baryonic mass of the z ∼ 2.3 galaxies is on average a factor

of two larger as compared to z ∼ 0.9, while stellar masses are comparable. The

relative offset at fixed vcirc of our redshift subsamples in the bTFR plane, which

is not visible in the sTFR plane, confirms the relevance of gas at high redshift.

Building on the recent work by Wuyts et al. (2016b) on the mass budgets of

high−z SFGs, we can identify through our Tully-Fisher analysis another redshift-

dependent ingredient to the dynamical support of high−z SFGs. The sTFR zero-

point does not evolve significantly between z ∼ 2.3 and z ∼ 0.9. Since we know

that there is less gas in the lower−z SFGs, the ‘missing’ baryonic contribution to

the dynamical support of these galaxies as compared to z ∼ 2.3 has to be com-

pensated by DM. We therefore confirm with our study the increasing importance

of DM to the dynamical support of SFGs (within ∼ 1.3Re) through cosmic time.

This might be partly due to the redshift dependence of the halo concentration

parameters, which decrease with increasing redshift. In the context of the toy

model mentioned in Section 2.1, it is indeed the case that a decrease of the DM

fraction as probed by the central galaxy with increasing redshift can flatten out

or even reverse the naively expected, negative evolution of the TFR offset with

increasing redshift. This will be discussed in more detail in Section 2.5.

6 Partly, this is also the case for the measurements by Miller et al. (2011, 2012), if a correction

for turbulent pressure support is performed. Since their velocity dispersions are not available

to us, however, only an approximative comparison is feasible. From this, we found agreement

of their highest redshift bin (z ∼ 1.5) with our 0.6 < z < 2.6 data in the vcirc-sTFR plane, but

still a significant offset at z ∼ 1.
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The increase of baryon fractions with redshift is supported by other recent

work: Wuyts et al. (2016b) find that the baryon fractions of SFGs within Re

increase from z ∼ 1 to z & 2, with galaxies at higher redshift being clearly

baryon-dominated (see also Förster Schreiber et al., 2009; Alcorn et al., 2016;

Price et al., 2016; Burkert et al., 2016; Stott et al., 2016; Contini et al., 2016).

Wuyts et al. (2016b) also find that the baryonic mass fractions are correlated with

the baryonic surface density within Re, suggesting that the lower surface density

systems at lower redshift are more diffuse and therefore probe further into the halo

(consequently increasing their DM fraction). Most recently, Genzel et al. (2017)

find in a detailed study based on the outer rotation curves of six massive SFGs at

z = 0.9− 2.4 that the three z > 2 galaxies are most strongly baryon-dominated.

On a statistical basis, this is confirmed through stacked rotation curves of more

than 100 high−z SFGs by Lang et al. (2017).

Given the average masses of our galaxies in the Y J and K subsamples, we

emphasize that we are generally not tracing a progenitor-descendant population

in our sample, since the average stellar and baryonic masses of the z ∼ 2.3 galaxies

are already higher than for those at z ∼ 0.9 (Table 2.1). It is very likely that

a large fraction of the massive star-forming disk galaxies we observe at z & 1

have evolved into early-type galaxies (ETGs) by z = 0, as discussed in the recent

work by Genzel et al. (2017). Locally, there is evidence that ETGs have high

SFRs at early times, with the most massive ETGs forming most of their stars

at z & 2 (e.g. Thomas, 2010; McDermid et al., 2015). This view is supported

by co-moving number density studies (e.g. Brammer et al., 2011), which also

highlight that the mass growth of today’s ETGs after their early and intense SF

activity is mainly by the integration of (stellar) satellites into the outer galactic

regions (van Dokkum et al., 2010). The observed low DM fractions of the massive,

highest−z SFGs seem to be consistent with the early assembly of local ETGs,

with rapid incorporation of their baryon content. In future work, we will compare

our observations to semi-analytical models and cosmological zoom-in simulations

to investigate in greater detail the possible evolutionary scenarios of our observed

galaxies in the context of TFR evolution.

2.4.2 Comparison to the local Universe

In Figure 2.5 we show the TFR zero-point evolution in context with the recent

local studies by Reyes et al. (2011) for the sTFR, and by Lelli, McGaugh, &

Schombert (2016b) for the bTFR. Reyes et al. (2011) study the sTFR for a large

sample of 189 disk galaxies, using resolved Hα rotation curves. Lelli, McGaugh,

& Schombert (2016b) use resolved Hi rotation curves and derive a bTFR for 118

disk galaxies. To compare these local measurements to our high−z KMOS3D data,

we assume that at z ≈ 0 the contribution from turbulent motions to the dynam-

ical support of the galaxy is negligible, and therefore vcirc ≡ vrot. We make the
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simplifying assumption that vcirc is comparable to v80 and vflat used by Reyes

et al. (2011) and Lelli, McGaugh, & Schombert (2016b), respectively (see Sec-

tion 2.4.3.3 for a discussion). From Lelli, McGaugh, & Schombert (2016b), we

use the fit to their subsample of 58 galaxies with the most accurate distances (see

their classification).

For the sTFR as well as the bTFR we find significant offsets of the high−z rela-

tions as compared to the local ones, namely ∆bsTFR,z∼0.9 = −0.44, ∆bsTFR,z∼2.3 =

−0.42, ∆bbTFR,z∼0.9 = −0.44 and ∆bbTFR,z∼2.3 = −0.27. We have discussed in

SectionSection 2.3.2 and 2.3.3 the zero-points of the ‘first order’ TFRs as com-

pared to our fiducial TFRs: while there is significant offset for both the ‘first

order’ sTFR and bTFR when comparing the z ∼ 0.9 and the z ∼ 2.3 subsam-

ples, the overall offset to the local relations is reduced. The difference between

the local relations and the full ‘first order’ samples is only ∆bsTFR = −0.06 and

∆bbTFR = 0.02, which would be consistent with no or only marginal evolution of

the TFRs between z = 0 and 0.6 < z < 2.3.

For the interpretation of the offsets to the local relations, it is important to

keep in mind that we measure the TFR evolution at the typical fixed circular

velocity of galaxies in our high−z sample. This traces the evolution of the TFR

itself through cosmic time, not the evolution of individual galaxies. Our sub-

samples at z ∼ 0.9 and z ∼ 2.3 are representative of the population of massive

MS galaxies observed at those epochs, with the limitations as discussed in Sec-

tion 2.2.4. Locally, however, the typical disk galaxy has lower circular velocity

than our adopted reference velocity, and consequently lower mass (cf. e.g. Figure 1

by Courteau & Dutton, 2015). Figure 2.5 does therefore not indicate how our

galaxies will evolve on the TFR from z ∼ 2 to z ∼ 0, but rather shows how the

relation itself evolves, as defined through the population of disk galaxies at the

explored redshifts and mass ranges. This is also apparent if actual data points of

low- and high-redshift disk galaxies are shown together. We show a corresponding

plot for the bTFR in Appendix 2.8.

In summary, our results suggest an evolution of the TFR with redshift, with

zero-point offsets as compared to the local relations of ∆bsTFR,z∼0.9 = −0.44,

∆bsTFR,z∼2.3 = −0.42, ∆bbTFR,z∼0.9 = −0.44 and ∆bbTFR,z∼2.3 = −0.27. If galaxies

with underestimated peak velocity, dispersion-dominated and disturbed galaxies

are included, the overall evolution between the z = 0 and 0.6 < z < 2.6 samples

is insignificant.

2.4.3 The impact of uncertainties and model assumptions

on the observed TFR evolution

Before we interpret our observed TFR evolution in a cosmological context in

Section 2.5, we discuss in the following uncertainties and modelling effects related

to our data and methods. We find that uncertainties of mass estimates and
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velocities cannot explain the observed TFR evolution. Neglecting the impact of

turbulent motions, however, could explain some of the tension with other work.

2.4.3.1 Uncertainties of stellar and baryonic masses

A number of approximations go into the determination of stellar and baryonic

masses at high redshift. Simplifying assumptions like a uniform metallicity, a

single IMF, or an exponentially declining SFH introduce significant uncertainties

to the stellar age, stellar mass, and SFR estimates of high−z galaxies. While the

stellar mass estimates appear to be more robust against variations in the model

assumptions, the SFRs, which are used for the molecular gas mass calculation,

are affected more strongly (see e.g. Förster Schreiber et al., 2004; Shapley et al.,

2005; Wuyts et al., 2007, 2009, 2016b; Maraston et al., 2010; Mancini et al.,

2011, for detailed discussions about uncertainties and their dependencies). Most

systematic uncertainties affecting stellar masses tend to lead to underestimates; if

this were the case for our high−z samples, the zero-point evolution with respect

to local samples would be overestimated. However, the dynamical analysis by

Wuyts et al. (2016b) suggests that this should only be a minor effect, given the

already high baryonic mass fractions at high redshift.

An uncertainty in the assessment of gas masses at high redshift is the unknown

contribution of atomic gas. In the local Universe, the gas mass of massive galaxies

is dominated by atomic gas: for stellar masses of log(M∗ [M�]) ≈ 10.5, the ratio

of atomic to molecular hydrogen is roughly MHi/MH2 ∼ 3 (e.g. Saintonge et al.,

2011). While there are currently no direct galactic Hi measurements available

at high redshift,7 a saturation threshold of the Hi column density of only .
10M�/pc2 has been determined empirically for the local Universe (Bigiel & Blitz,

2012). The much higher gas surface densities of our high−z SFGs therefore

suggest a negligible contribution from atomic gas within r . Re (see also Wuyts

et al., 2016b). Consequently, the contribution of atomic gas to the maximum

rotation velocity and to the mass budget within this radius should be negligible.

However, there is evidence that locally Hi disks are much more extended than

optical disks (e.g. Broeils & Rhee, 1997). If this is also true at high redshift, the

total galactic Hi mass fractions could still be significant at z ∼ 1, as is predicted

by theoretical models (e.g. Lagos et al., 2011; Fu et al., 2012; Popping et al.,

2015). Due to the lack of empirical confirmation, however, these models yet

remain uncertain, especially given that they under-predict the observed high−z

7 But see e.g. Wolfe, Gawiser, & Prochaska (2005); Werk et al. (2014) for measurements

of Hi column densities of the circum- and intergalactic medium using quasar absorption lines.

From these techniques, a more or less constant cosmological mass density of neutral gas since

at least z ∼ 3 is inferred (e.g. Péroux et al., 2005; Noterdaeme et al., 2009). Recently, the need

for a significant amount of non-molecular gas in the haloes of high−z galaxies has also been

invoked by the environmental study of the 3D-HST fields by Fossati et al. (2017).
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molecular gas masses by factors of 2− 5. Within these limitations, we perform a

correction for missing atomic gas mass at high−z in our toy model discussion in

Section 2.5.

Following Burkert et al. (2016), we have adopted uncertainties of 0.15 dex

for stellar masses, and 0.20 dex for gas masses. This translates into an average

uncertainty of ∼ 0.15 dex for baryonic masses. These choices likely underestimate

the systematic uncertainties in the error budget which can have a substantial

impact on some of our results, because the slope as well as the scatter of the TFR

are sensitive to the uncertainties. For the presentation of our main results, we

adopt local TFR slopes, thus mitigating these effects. In Appendix 2.9, we explore

the effect of varying mass uncertainties on free-slope fits of the TFR, together with

implications on TFR residuals and evolution. We find that measurements of the

zero-point are little affected by the uncertainties on mass, to an extent much

smaller than the observed bTFR evolution between z ∼ 2.3 and z ∼ 0.9.

2.4.3.2 Uncertainties of circular velocities

We compute the uncertainties of the maximum circular velocity as the propa-

gated errors on the observed velocity and σ0, including an uncertainty on q of

∼ 20 per cent. The latter is a conservative choice in the light of the current

KMOS3D magnitude cut of Ks < 23 (cf. van der Wel et al., 2012). For de-

tails about the observed quantities, see Wisnioski et al. (2015), and Wuyts et al.

(2016b) for a comparison between observed and modelled velocities and velocity

dispersions. The resulting median of the propagated circular velocity uncertainty

is 20 km/s.

Maximum circular velocities can be systematically underestimated: although

the effective radius enters the modelling procedure as an independent constraint,

the correction for pressure support can lead to an underestimated turn-over radius

if the true turn-over radius is not covered by observations. For our TFR sample

we selected only galaxies where modelled and observed velocity and dispersion

profiles are in good agreement, and where the maximum or flattening of the

rotation curve is covered by observations. It is therefore unlikely that our results

based on the TFR sample are affected by systematic uncertainties of the maximum

circular velocity.

2.4.3.3 Effects related to different velocity measures and models

The different rotation velocity models and measures used in the literature might

affect comparisons between different studies. Some TFR studies adopt the rota-

tion velocity at 2.2 times Rd, v2.2, as their fiducial velocity to measure the TFR.

We verified that for the dynamical modelling as described above, vcirc,2.2 equals

vcirc,max, and vrot,2.2 equals vrot,max with an average accuracy of . 1 km/s. Other

commonly used velocity measures are vflat, v3.2, and v80, the rotation velocity at
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the radius which contains 80 per cent of the stellar light. For a pure exponential

disk, this corresponds to roughly v3.0 (Reyes et al., 2011). It has been shown by

Hammer et al. (2007) that vflat and v80 are comparable in local galaxies. For the

exponential disk model including pressure support which we use in our analysis,

vrot(circ),max is on average . 15(10) km/s larger than vrot(circ),3.2. Since v3.2 and

v80 are, however, usually measured from an ‘arctan model’ with an asymptotic

maximum velocity (Courteau, 1997), reported values in the literature generally

do not correspond to the respective values at these radii from the thick exponen-

tial disk model with pressure support. Miller et al. (2011) show that for their

sample of SFGs at 0.2 < z < 1.3, the typical difference between v2.2 and v3.2, as

computed from the arctan model, is on the order of a few per cent (see also Reyes

et al., 2011). This can also be assessed from Figure 6 by Epinat et al. (2010),

who show examples of velocity fields and rotation curves for different disk models

(exponential disk, isothermal sphere, ‘flat’, arctan). By construction, the peak

velocity of the exponential disk is higher than the arctan model rotation velocity

at the corresponding radius.

We conclude that our TFR ‘velocity’ values derived from the peak rotation

velocity of a thick exponential disk model are comparable to vflat, and close to v3.2

and v80 from an arctan model, with the limitations outlined above. The possible

systematic differences of < 20 km/s between the various velocity models and

measures cannot explain the observed evolution between z = 0 and 0.6 < z < 2.6.

Another effect on the shape of the velocity and velocity dispersion profiles is

expected if contributions by central bulges are taken into account. We have tested

for a sample of more than 70 galaxies that the effect of including a bulge on our

adopted velocity tracer, vcirc,max is on average no larger than 5 per cent. From

our tests, we do not expect the qualitative results regarding the TFR evolution

between z ∼ 2.3 and z ∼ 0.9 presented in this paper to change if we include

bulges into the modelling of the mass distribution.

2.4.3.4 The impact of turbulent motions

The dynamical support of star-forming disk galaxies can be quantified through

the relative contributions from ordered rotation and turbulent motions (see also

e.g. Tiley et al., 2016). We consider only rotation-dominated systems in our TFR

analysis, namely galaxies with vrot,max/σ0 >
√

4.4. Because of this selection, the

effect of σ0 on the velocity measure is already limited, with median values of

vrot,max = 233 km/s at z ∼ 0.9, and 239 km/s at z ∼ 2.3, vs. median values of

vcirc,max = 239 and vcirc,max = 260 km/s at z ∼ 0.9 and z ∼ 2.3, respectively

(Table 2.1).

However, this difference translates into changes regarding e.g. the TFR scat-

ter: for the vrot,max-TFR, we find a scatter of ζint,sTFR = 0.28 and ζint,bTFR = 0.31

at z ∼ 0.9, and at z ∼ 2.3 we find ζint,sTFR = 0.33 and ζint,bTFR = 0.33,
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with those values being consistently higher than the values reported for the

vcirc,max-TFR sample in Table 2.2. More significantly, neglecting the contribu-

tions from turbulent motions affects the zero-point evolution: without correcting

vrot,max for the effect of pressure support, we would find ∆bsTFR,z∼0.9 = −0.34,

∆bsTFR,z∼2.3 = −0.26, ∆bbTFR,z∼0.9 = −0.33 and ∆bbTFR,z∼2.3 = −0.09. The in-

ferred zero-points at higher redshift are affected more strongly by the necessary

correction for pressure support (cf. Figure 2.5).

These results emphasize the increasing role of pressure support with increas-

ing redshift, confirming previous findings by e.g. Förster Schreiber et al. (2009);

Epinat et al. (2009); Kassin et al. (2012); Wisnioski et al. (2015). It is there-

fore clear that turbulent motions must not be neglected in kinematic analyses of

high−z galaxies. If the contribution from pressure support to the galaxy dynam-

ics is dismissed, this will lead to misleading conclusions about TFR evolution in

the context of high−z and local measurements.

2.5 A toy model interpretation

The relative comparison of our z ∼ 2.3 and z ∼ 0.9 data and local relations

indicates a non-monotonic evolution of the bTFR zero-point with cosmic time

(Figure 2.5). In this section, we present a toy model interpretation of our results,

aiming to explain the redshift evolution of both the sTFR and the bTFR, in

particular the relative zero-point offsets at z ∼ 2.3, z ∼ 0.9, and z ∼ 0.

The basic premise is that galaxies form at the centers of DM haloes. A simple

model for a DM halo in approximate equilibrium is a truncated isothermal sphere,

limited by the radius Rh where the mean density equals 200 times the critical

density of the Universe. The corresponding redshift-dependent relations between

halo radius, mass Mh, and circular velocity Vh are

Mh =
V 3
h

10G ·H(z)
; Rh =

Vh
10H(z)

(2.3)

(Mo, Mao, & White, 1998), where H(z) is the Hubble parameter, and G is the

gravitational constant. The first equation shows that the relation between Mh

and Vh is a smooth function of redshift.

In theory, the relation between these halo properties and corresponding galac-

tic properties can be complex due to the response of the halo to the formation

of the central galaxy (see e.g. the discussions on halo contraction vs. expansion

by Duffy et al., 2010; Dutton et al., 2016; Velliscig et al., 2014). However, recent

studies and modelling of high−z SFGs now provide a number of empirical con-

straints that implicitly contain information on the DM halo profile on galactic

scales.
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Relations corresponding to Equations (2.3) for the central baryonic galaxy can

then be derived by assuming a direct mapping between the halo and galaxy mass

and radius. Information on the inner halo profile is contained in parameters such

as the disk mass fraction md = Mbar/Mh, or the central DM fraction fDM(r) =

v2
DM(r)/v2

circ(r). For our galaxies, we know their stellar mass M∗ and effective

radius Re, their baryonic mass Mbar and gas mass fraction fgas = Mgas/Mbar from

empirical scaling relations, and their circular velocity vcirc(r) and related central

DM fraction fDM(r) from dynamical modelling, as detailed in Sections 2.2.2 and

2.2.3 and in the references given there. We further have an estimate of their

average baryonic disk mass fraction md (Burkert et al., 2016). We can combine

this information to construct a toy model of the TFR zero-point evolution, where

we take the redshift dependencies of these various parameters into account (see

Appendix 2.10.1 for a detailed derivation):

Mbar =
v3

circ(Re)

H(z)
· [1− fDM(Re, z)]

3/2

m
1/2
d (z)

· C (2.4)

M∗ =
v3

circ(Re)

H(z)
· [1− fDM(Re, z)]

3/2 [1− fgas(z)]

m
1/2
d (z)

· C ′, (2.5)

where C and C ′ are constants. Here, we have assumed that, in contrast to the

disk mass fraction, the proportionality factor between DM halo radius and galactic

radius is independent of redshift (see e.g. Burkert et al., 2016).

Equations (2.4) and (2.5) reveal that the TFR evolution can be strongly af-

fected by changes of fDM(Re), md, or fgas with redshift, and does not necessarily

follow the smooth evolution of the halo parameters given in Equation (2.3). There

have been indications for deviations from a simple smooth TFR evolution scenario

in the theoretical work by Somerville et al. (2008). Also the recent observational

compilation by Swinbank et al. (2012b) showed a deviating evolution (although

qualified as consistent with the smooth evolution scenario).

Evaluating Equations (2.4) and (2.5) at fixed vcirc(Re), we learn the follow-

ing: (i) if fDM(Re) decreases with increasing redshift, the baryonic and stellar

mass will increase and consequently the TFR zero-point will increase; (ii) if md

increases with increasing redshift, the baryonic and stellar mass will decrease

and consequently the TFR zero-point will decrease; (iii) if fgas increases with

increasing redshift, the stellar mass will decrease and consequently the sTFR

zero-point will decrease. These effects are illustrated individually in Figure 2.14

in Appendix 2.10.

We constrain our toy model at redshifts z = 0, z ∼ 0.9, and z ∼ 2.3 as

follows: the redshift evolution of fgas is obtained through the empirical atomic and

molecular gas mass scaling relations by Saintonge et al. (2011) and Tacconi et al.

(2018). At fixed circular velocity, fgas evolves significantly with redshift, where
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 toy model including
 fgas(z), fDM(Re,z), md(z)
 as shown in inset (a)

R11 / L16

 sTFR KMOS
3D

 bTFR KMOS
3D

(a)

bTFR

sTFR

 fgas

 fDM(Re)

 md ×10

Figure 2.7: TFR zero-point offsets of the stellar and baryonic mass TFRs as a function

of cosmic time. The KMOS3D data is shown as yellow stars (sTFR) and blue squares

(bTFR), in relation to the corresponding local normalizations by Reyes et al. (2011;

R11) and Lelli, McGaugh, & Schombert (2016b; L16). The horizontal error bars of

the KMOS3D data points indicate the spanned range in redshift, while the vertical error

bars show fit uncertainties. The bTFR data points are corrected for neglected atomic

gas at z ∼ 0.9 and z ∼ 2.3, as detailed in the main text. The green dashed and

solid lines show predictions for the bTFR and sTFR evolution from our toy model

(Equations (2.4) and (2.5)). This model takes into account the empirically motivated

redshift dependencies of fgas, fDM(Re), and md, in particular as they are shown in

inset (a). Regions in redshift space where the model is not well constrained due to

a lack of observational constraints in particular on md are indicated as dashed lines.

Observational constraints come from Saintonge et al. (2011) and Tacconi et al. (2018)

for fgas(z), from Martinsson et al. (2013a,b) and Wuyts et al. (2016b) for fDM(Re, z),

and from Moster, Naab, & White (2013) and Burkert et al. (2016) for md(z), as detailed

in Appendix 2.10.2. Our proposed parametrizations are valid only up to z ≈ 2.6, as

indicated by the grey shading in the main figure and inset (a). As cyan shaded areas we

indicate by way of example how the model TFR evolution would change if DM fractions

would be higher/lower by 0.1 at z = 0, z = 0.9, and z = 2.3 (horizontal ranges are

±0.1z). The observed TFR evolution is reasonably matched by a model where the disk

scale length is proportional to the halo radius, and where fgas and md increase with

redshift, while fDM(Re) decreases with redshift.
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2.5 A toy model interpretation

z ∼ 2 galaxies have gas fractions which are about a factor of eight higher than in

the local Universe. The redshift evolution of fDM(Re) is constrained through the

observational results by Martinsson et al. (2013a,b) in the local Universe, and by

Wuyts et al. (2016b) at z ∼ 0.9 and z ∼ 2.3. We tune the redshift evolution of

fDM(Re) within the ranges allowed by these observations to optimize the match

between the toy model and the observed TFR evolution presented in this paper.

fDM(Re) evolves significantly with redshift, with z ∼ 2 DM fractions which are

about a factor of five lower than at z = 0. md is constrained by the abundance

matching results by Moster, Naab, & White (2013) in the local Universe, whereas

at 0.8 < z < 2.6 we adopt the value deduced by Burkert et al. (2016). Details on

the parametrization of the above parameters are given in Appendix 2.10.2.

In Figure 2.7 we show how these empirically motivated, redshift-dependent

DM fractions, disk mass fractions, and gas fractions interplay in our toy model

framework to approximately explain our observed TFR evolution, specifically the

TFR zero-point offsets at fixed circular velocity as a function of cosmic time. In

particular, this is valid at z = 0, z = 0.9, and z = 2.3, while we have partially

interpolated in between. Our observed KMOS3D TFR zero-points of the bTFR

(blue squares) and the sTFR (yellow stars) at z ∼ 0.9 and z ∼ 2.3 are shown in

relation to the local TFRs by Lelli, McGaugh, & Schombert (2016b) and Reyes

et al. (2011). The horizontal error bars of the KMOS3D data points indicate the

spanned range in redshift, while the vertical error bars show fit uncertainties. For

this plot, we also perform a correction for atomic gas at high redshift:8 we follow

the theoretical prediction that, at fixed M∗, the ratio of atomic gas mass to stellar

mass does not change significantly with redshift (e.g. Fu et al., 2012). We use

the fitting functions by Saintonge et al. (2011) to determine the atomic gas mass

for galaxies with log(M∗ [M�]) = 10.50, which corresponds to the average stellar

mass of our TFR galaxies at vref = 242 km/s in both redshift bins. We find an

increase of the zero-point of +0.04 dex at z ∼ 0.9 and +0.02 dex at z ∼ 2.3. This

is included in the figure.

We show as green lines our empirically constrained toy model governed by

Equations (2.4) and (2.5). This model assumes a redshift evolution of fgas,

fDM(Re), and md as shown by the blue, purple, and black lines, respectively,

in inset (a) in Figure 2.7 (details are given in Appendix 2.10.2). In this model,

the increase in fgas is responsible for the deviating (and stronger) evolution of the

sTFR as compared to the bTFR. The decrease of fDM(Re) is responsible for the

upturn/flattening of the bTFR/sTFR evolution. The increase of md leads to a

TFR evolution which is steeper than what would be expected from a model gov-

erned only by H(z) (see also Fig. 2.14). Our toy model evolution is particularly

sensitive to changes of fDM(Re) with redshift. We illustrate this by showing as

8Lelli, McGaugh, & Schombert (2016b) neglect molecular gas for their bTFR, but state that

it has generally a minor dynamical contribution.
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2. The Evolution of the Tully-Fisher Relation

cyan shaded areas in Figure 2.7 how the toy model evolution would vary if we

would change only fDM(Re) by ±0.1 at z = 0, z = 0.9, and z = 2.3.

We note that the toy model zero-point offset at Re as derived from Equa-

tions (2.4) and (2.5), and based on a thin exponential baryon distribution, is

comparable to our empirical TFR offset for a thick exponential disk and using

vcirc,max, since the correction factors for the circular velocity measure from thin to

thick exponential disk, and from vcirc(Re) to vcirc,max ≈ vcirc(r2.2), are both of the

order of ∼ 5 per cent and approximately compensate one another. The toy model

slope (a = 3) is shallower than our adopted local slopes. In Appendix 2.9 we show

that the usage of a reference velocity leads to negligible zero-point differences of

TFR fits with different slopes.

Although our toy model is not a perfect match to the observed TFR evolution,

it reproduces the observed trends reasonably well: for the sTFR, the zero-point

decreases from z = 0 to z ∼ 1, but there is no or only marginal evolution between

z ∼ 1 and z ∼ 2. In contrast, there is a significantly non-monotonic evolution

of the bTFR zero-point, such that the zero-point first decreases from z = 0 to

z ∼ 1, and then increases again up to z ∼ 2. We note that although we show the

TFR evolution up to z = 3, the constraints on fDM(Re) and md are valid only up

to z ≈ 2.6, as indicated in the figure by the grey shading. Also in the redshift

range 0 . z . 0.8 the model is poorly constrained because we assume a simplistic

evolution of md (cf. Appendix 2.10.2).

A more complete interpretation of our findings also at intermediate redshift

has to await further progress in observational work. With the extension of the

KMOS3D survey towards lower mass galaxies and towards a more complete red-

shift coverage in the upcoming observing periods, we might already be able to add

in precision and redshift range to our model interpretation. Our current data and

models, however, already show the potential of state-of-the-art high−z studies of

galaxies to constrain parameters which are important also for theoretical work.

We would like to caution that our proposed model certainly draws a simplified

picture. For instance, the assumption of a common scale length of the atomic gas

as well as the molecular gas plus stars, as we did for this exercise, can only be

taken as approximate, given the high central surface mass densities of our typical

high−z galaxies (see Section 2.4.3.1, and Wuyts et al. (2016b)). Also, the effective

radii predicted by our “best fit” toy model are 10-30 per cent larger than what is

observed. Other factors not addressed in our approach might also come into play:

we did not explore in detail the possible effects of varying halo spin parameter

λ or of the ratio between baryonic and DM specific angular momenta jbar/jDM,

which commonly relate Rh to Rd. We also note that possible conclusions on

the NFW halo concentration parameter c are in tension with current models (cf.

Appendix 2.10.2). We therefore caution that our proposed toy model perspective

can only reflect general trends, in particular the relative TFR zero-point offsets

at z = 0, z = 0.9, and z = 2.3, and likely misses other relevant ingredients.
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2.6 Summary

Having in mind the limitations outlined above, we conclude that the observed

evolution of the mass-based TFRs can be explained in the framework of virialized

haloes in an expanding ΛCDM universe, with galactic DM fractions, disk mass

fractions, and gas fractions that are evolving with cosmic time. Adopting the

proposed evolution of the model parameters in Equations (2.4) and (2.5) as de-

scribed above and shown in inset (a) in Figure 2.7, namely at fixed vcirc increasing

fgas and md, and decreasing fDM(Re) with redshift, leads to a redshift evolution

of the TFR which is non-monotonic, in particular for the bTFR.

2.6 Summary

We have investigated the mass-based Tully-Fisher relations (TFRs) of massive

star-forming disk galaxies between redshift z ∼ 2.3 and z ∼ 0.9 as part of the

KMOS3D survey. All our data are reduced and analyzed in a self-consistent way.

The spatially resolved nature of our observations enables reliable modelling of

individual galaxies, and allows for a careful selection of objects based on kine-

matic properties and data quality. We have taken into account inclination, beam-

smearing, and instrumental broadening, and we have incorporated the significant

effects of pressure support to the gravitational potential at these redshifts in our

derivation of the circular velocities.

We find that the TFR is clearly in place already at 0.6 < z < 2.6 (Sec-

tion 2.3.2). Its scatter increases with redshift, but we did not find any second-

order parameter dependencies when adopting a local slope. At fixed vcirc,max, we

find higher Mbar but similar M∗ at z ∼ 2.3 as compared to z ∼ 0.9 (Section 2.3.3).

This highlights the important effects of the evolution of fgas, where, at the same

stellar mass, high−z star-forming galaxies (SFGs) have significantly higher gas

fractions than lower−z SFGs. This strengthens earlier conclusions by Cresci et al.

(2009) in the context of the interpretation of TFR evolution. Since we do not

find a significant evolution of the sTFR between z ∼ 2.3 and z ∼ 0.9, our ob-

served TFR evolution together with the decrease of fgas with decreasing redshift,

implies that the contribution of dark matter (DM) to the dynamical mass on the

galaxy scale has to increase with decreasing redshift to maintain the dynamical

support of the galaxy as measured through vcirc,max. Our results complement the

findings in other recent work that higher−z SFGs are more baryon-dominated

(Section 2.4.1).

Comparing to other selected high−z TFR studies, we find agreement with

the work by Cresci et al. (2009); Price et al. (2016); Tiley et al. (2016), but dis-

agreement with the work by Miller et al. (2011) (Section 2.3.4). The significant

differences in zero-point offsets of our high−z TFRs as compared to the local re-

lations by Reyes et al. (2011) and Lelli, McGaugh, & Schombert (2016b) indicate

an evolution of the TFR with cosmic time (Section 2.4.2). From the local Uni-
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2. The Evolution of the Tully-Fisher Relation

verse to z ∼ 0.9 and further to z ∼ 2.3, we find a non-monotonic TFR zero-point

evolution which is particularly pronounced for the bTFR.

To explain our observed TFR evolution, we present a toy model interpretation

guided by an analytic model of disk galaxy evolution (Section 2.5). This model

takes into account empirically motivated gas fractions, disk mass fractions, and

central DM fractions with redshift. We find that the increasing gas fractions

with redshift are responsible for the increasingly deviating evolution between the

sTFR and the bTFR with redshift. The decreasing central DM fractions with

redshift result in the flattening/upturn of the sTFR/bTFR zero-point evolution

at 0.9 < z < 2.3. This simple model matches our observed TFR evolution

reasonably well.

It will be interesting to make more detailed comparisons between the growing

amount of observations that can constrain the TFR at high redshift, and the

newest generation of simulations and semi-analytical models. Further investiga-

tions of galaxies at lower (z . 0.7) and higher (z & 2.5) redshifts using consistent

reduction and analysis techniques will help to unveil the detailed evolution of the

mass-based TFR, and to reconcile current tensions in observational work. An-

other important quest is to provide data which cover wider ranges in velocity and

mass at these high redshifts to minimize uncertainties in the fitting of the data,

and to investigate if the TFR slope changes with redshift.
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0.49 dex

0.44 dex
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0.19 dex

 vrot, no bs corr. (N=316)
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Figure 2.8: Illustration of different correction (black symbols) and selection (colored

symbols) effects on the mean maximum rotation, or circular, velocity for three stellar

mass bins, log(M∗ [M�])<10.3, 10.3<log(M∗ [M�])<10.8, and 10.8<log(M∗ [M�]).

Black crosses show the observed maximum velocity corrected for inclination but not

beam-smearing. Black circles include the beam-smearing correction. Black squares in-

clude the correction for pressure support, leading to the maximum circular velocity as

defined in Equation (2.1). These data points consider all resolved KMOS3D galaxies.

The corresponding mean circular velocities for the Wuyts et al. (2016b) sample are

shown as green diamonds, and the final TFR sample is shown as blue stars. The final

selection steps for our TFR sample detailed in Section 2.2.4 have a much smaller ef-

fect than the beam-smearing and pressure support correction, and than the selection of

galaxies suited for a kinematic disk modelling.

2.7 Appendix A – The effects of sample selec-

tion

For the discussion of the TFR at high redshift it is important to be aware not only

of the location of the subsample of ‘TFR galaxies’ within a larger parent sample,

but also of the effect of the necessary corrections to the observed velocity which

ultimately lead to the high-z TFR. Figure 2.8 illustrates for three stellar mass

bins (log(M∗ [M�])<10.3; 10.3<log(M∗ [M�])<10.8; 10.8<log(M∗ [M�])) how the

mean maximum rotation velocity changes through corrections for beam-smearing
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 Reyes+2011 (z~0)
 (a=3.60, b=2.36)

 z~0.9 
 ∆b=−0.42 dex

 z~2.3 
 ∆b=−0.37 dex

z∼0.9  (N=106)

z∼2.3  (N= 92)

 Lelli+2016 (z~0)
 (a=3.75, b=2.18)

 z~0.9 
 ∆b=−0.40 dex

 z~2.3 
 ∆b=−0.20 dex

z∼0.9  (N=106)

z∼2.3  (N= 92)

Figure 2.9: Fixed-slope fits for the sTFR (left) and the bTFR (right) using local

(black) slopes to the Wuyts et al. (2016b) subsamples at z ∼ 0.9 (blue) and z ∼ 2.3

(red). We find no (or only marginal) evolution of the sTFR zero-point in the studied

redshift range, but significant evolution of the bTFR given the typical fit uncertainties

of δb = 0.05 dex. While there are changes of up to +0.07 dex when comparing to the

TFR sample evolution (Figure 2.5), mostly due to underestimated velocities when the

maximum of the rotation curve is not covered by data, we see the same general trends

as for the refined TFR sample.

and pressure support, when selecting for rotating disks, and when eventually

selecting for ‘TFR galaxies’ following the steps outlined in Section 2.2.4.

The effect of beam-smearing on the rotation velocity is with differences of

& 0.1 dex significant for our galaxies, translating into an offset in stellar mass of

& 0.4 dex. Considering next the impact of turbulent motions, one can clearly see

how this is larger for lower-mass (and lower-velocity) galaxies.9 This reflects the

larger proportion of dispersion-dominated systems at masses of log(M∗ [M�]) .
10. Correcting the observed rotation velocity for these two effects does not involve

a reduction of the galaxy sample, and the corresponding data points in Figure 2.8

include all 316 resolved KMOS3D galaxies. The procedure of selecting galaxies

suitable for a kinematic disk modelling (Wuyts et al. (2016b); Section 2.2.4) has

a noticeable effect in the full mass range explored here. It becomes clear that the

further, careful selection of galaxies best eligible for a Tully-Fisher study has an

9Taking turbulent motions into account also has a larger effect at higher redshift due to the

increase of intrinsic velocity dispersion with redshift. This is not explicitly shown in Figure 2.8.
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2.8 Appendix B – An alternative method to investigate TFR evolution

appreciable effect on the mean velocity of about 0.02− 0.03 dex, but is minor as

compared to the other effects discussed.

While we consider the selection of the ‘TFR sample’ important due to the

vrot,max/σ0 cut and the reliable recovery of the true maximum rotation velocity,

we note that it only leads to a small change in TFR parameters as compared to

the Wuyts et al. (2016b) sample (Figure 2.9).

2.8 Appendix B – An alternative method to in-

vestigate TFR evolution

It is standard procedure in investigations of the TFR to adopt a local slope

for galaxy subsamples in different redshift bins, and to quantify its evolution in

terms of zero-point variations, since high−z samples often span too limited a

range in mass and velocity to reliably constrain a slope. This method has two

shortcomings: first, potential changes in slope with cosmic time are not taken

into account. Second, every investigation of TFR evolution is tied to the adopted

slope which sometimes complicates comparative studies.

We consider an alternative, non-parametric approach. In Figure 2.10 we show

our TFR galaxies at z ∼ 2.3 (red) and z ∼ 0.9 (blue) together with the local

sample by Lelli, McGaugh, & Schombert (2016b) (black) in the bTFR plane. In

the mass bins labeled ‘A’, ‘B’, and ‘C’, we compute the weighted mean velocity of

each redshift and mass subsample. We then compare the weighted mean velocities

at different redshifts, as indicated in the figure, and determine an average velocity

difference from combining the results from individual mass bins.

Although this approach is strongly limited by the number of galaxies per mass

bin, and by the common mass range which is spanned by low- as well as high−z
galaxies, its advantage becomes clear: not only is the resulting offset in velocity

independent of any functional form usually given by a TFR, but the method

would also be sensitive to changes of the TFR slope with redshift if the covered

mass range would be large enough.

For our TFR samples, we find an average difference in velocity as mea-

sured from the average local velocity minus the average high-redshift velocity,

∆log(vcirc [km/s]), of −0.119 between z = 0 and z ∼ 0.9, and of −0.083 between

z = 0 and z ∼ 2.3. This confirms our result presented in Section 2.4.2, that the

bTFR evolution is not a monotonic function of redshift.
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A

B

C
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B:
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∆log(v)
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−0.068

−0.170

−0.068
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3D

 TFR sample at z~0.9
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3D
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Figure 2.10: Our TFR galaxies at z ∼ 2.3 (red) and z ∼ 0.9 (blue) together with

the local sample by Lelli, McGaugh, & Schombert (2016b) (black) in the bTFR plane.

We calculate weighted mean velocities of the redshift subsamples in the three mass bins

labelled ‘A’, ‘B’, and ‘C’, in order to investigate the TFR evolution in a way inde-

pendent of the usual functional form of the TFR. The velocity differences averaged

over the mass bins of ∆log(vcirc [km/s]) = −0.119 between z ∼ 0.9 and z = 0, and

of ∆log(vcirc [km/s]) = −0.083 between z ∼ 2.3 and z = 0 are in agreement with

our results presented in Section 2.4.2, that the redshift evolution of the bTFR is non-

monotonic.
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the TFR

2.9 Appendix C – The impact of mass uncer-

tainties on slope and residuals of the TFR

The slope and scatter of the TFR are affected by the adopted uncertainties in

mass. In Figure 2.11 we show fit examples to the bTFR of the full sample with

varying assumptions for the mass uncertainties, namely 0.05 ≤ δlog(Mbar [M�]) ≤
0.4. The corresponding changes in slope (from a = 2.11 to a = 3.74) are well

beyond the already large fit uncertainties on the individual slopes, confirming

that a proper assessment of the mass uncertainties is essential. For simple linear

regression, the effect of finding progressively flatter slopes for samples with larger

uncertainties is known as ‘loss of power’, or ‘attenuation to the null’ (e.g. Carroll

et al., 2006). The relevant quantity for our study, however, is the change in zero-

point offset, which is for the explored range only 0.02 dex. This is due to the use

of vref in Equation (2.2) which ensures only little dependence of the zero-point b

on the slope a.

Variations of the TFR slope naturally affect the TFR residuals to the best-fit

relation (see also Zaritsky et al., 2014). We define the TFR residuals as follows:

∆log(vcirc) = log(vcirc)−
[
−b
a

+
log(M/M�)

a
+ log(vref)

]
. (2.6)

To demonstrate the effect of changing the slope, we show in Figure 2.12 the

bTFR residuals as a function of Re. In the upper panel, we show the residuals

to a fit with baryonic mass uncertainties of 0.05 dex, leading to a slope which

approximately corresponds to the local slope by Lelli, McGaugh, & Schombert

(2016b). In the lower panel, we show the same for a fit adopting 0.4 dex uncertain-

ties for Mbar. While there is no correlation found for the former case (Spearman

correlation coefficient ρ = 0.02 with a significance of σ = 0.8059), we find a weak

correlation when adopting δMbar = 0.4 dex (ρ = −0.19, σ = 0.0295).

We find a similar behaviour for baryonic (and stellar) mass surface density,

with no significant correlation between TFR offset and mass surface density for

the δMbar = 0.05 dex fit, but a strong correlation for the δMbar = 0.4 dex fit

(not shown). No correlation for the δMbar = 0.05 dex fit residuals is found for

SFR surface density (ρ = −0.08, σ = 0.3557), but a significant correlation with

ρ = −0.37 and σ = 1.1× 10−5 for the δMbar = 0.4 dex fit (Figure 2.13).

From this exercise it becomes clear that the high−z slope, and with it the

TFR residuals, are strongly dependent on the accuracy of the mass and SFR

measurements.
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a = 2.11 ± 0.28
a = 2.17 ± 0.21
a = 2.50 ± 0.18
a = 3.08 ± 0.22
a = 3.49 ± 0.27
a = 3.74 ± 0.31

0.6<z<2.6  (N=135)

Figure 2.11: Effect of varying uncertainties for the baryonic mass estimates on the

slope of the bTFR for our full TFR sample, as indicated in the legend (solid lines,

least-squares fits). The resulting best-fit slopes a vary by a factor of ∼ 2 for the explored

range of mass uncertainties. As dashed lines, we show the corresponding fits using the

Bayesian approach by Kelly (2007) which show a similar behaviour.

2.10 Appendix D – Derivation of the toy model

for TFR evolution

2.10.1 The theoretical framework

In the following, we give details on the theoretical toy model derivation of the

TFR and its evolution. The relationship between the DM halo mass, radius, and

circular velocity are given by Equations (2.3), describing a truncated isothermal

sphere. A plausible model for a SFG which has formed inside the dark halo is a

self-gravitating thin baryonic disk with an exponential surface density profile

Σ(r) = Σ0 e
−r/Rd , (2.7)
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 z~0.9
 z~1.5
 z~2.3

ρ =  0.02;  σ = 0.8059

δlog(M)=0.05dex

 z~0.9
 z~1.5
 z~2.3

ρ = −0.19;  σ = 0.0295

δlog(M)=0.40dex

Figure 2.12: Top panel: residuals of the bTFR as a function of effective radius, using

δMbar = 0.05 dex. The dashed lines show the sample standard deviation. While we find

no significant correlation for our full sample (ρ = 0.02, σ = 0.8059), a slightly stronger

correlation for the highest redshift bin (red) is visible. Bottom panel: same as above,

but using δMbar = 0.4 dex. We find a weak correlation for our full sample (ρ = −0.19,

σ = 0.0295), and again a slightly stronger correlation for the highest redshift bin.
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 z~0.9
 z~1.5
 z~2.3

ρ = −0.08;  σ = 0.3557

δlog(M)=0.05dex

 z~0.9
 z~1.5
 z~2.3

ρ = −0.37;  σ = 1.1E−05

δlog(M)=0.40dex

Figure 2.13: Top panel: residuals of the bTFR as a function of SFR surface density

ΣSFR, using δMbar = 0.05 dex. The dashed lines show the sample standard deviation.

We find no correlation for our fiducial fit (ρ = −0.08, σ = 0.3557). Bottom panel:

same as above, but using δMbar = 0.4 dex. We find a significant correlation (ρ = −0.37,

σ = 1.1× 10−5).
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 sTFR KMOS
3D

 bTFR KMOS
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,z)

sTFR H(z),fgas
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    md
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 H(z)

 bTFR H(z),md(z)

 bTFR H(z),fDM(Re,z)

 sTFR H(z),fgas(z)

 sTFR H(z),fgas(z),md(z)

 sTFR H(z),fgas(z),fDM(Re,z)

Figure 2.14: TFR zero-point offsets of the stellar and baryonic mass TFRs as a func-

tion of cosmic time. The symbols show the KMOS3D data in relation to the correspond-

ing local normalizations by Reyes et al. (2011; R11) and Lelli, McGaugh, & Schombert

(2016b; L16), as shown in Figure 2.7. The black line shows the TFR evolution for a

model governed solely by H(z). The colored lines show toy models for the bTFR (blue)

and the sTFR (orange) evolution for different combinations of additional redshift de-

pendencies of fgas, fDM(Re), or md, as detailed in Appendix 2.10, and as indicated in

the legend. The grey lines show our final toy model following Equations (2.4) and (2.5)

and including fgas(z), fDM(Re, z), and md(z) as shown in inset (a) in Figure 2.7.

where Σ0 is the central surface density, related to the baryonic disk mass as

Mbar ∝ Σ0R
2
d. In reality, disk galaxies feature a finite thickness. This does

not affect the scalings presented here (see e.g. Courteau & Rix, 1999; Binney &

Tremaine, 2008, and references therein). To associate the baryonic disk to the

dark halo, one can assume a simple model where the corresponding masses and

radii are related through a proportionality factor:

Mbar = md ·Mh ; Rbar = rf ·Rh. (2.8)

Rbar can be expressed through the disk scale length Rd, or the effective radius Re,

which for rotation-dominated disks are related through Re ≈ Rd · 1.68. As noted

in Section 2.5, we take rf to be independent of redshift. In standard models

of disk galaxy evolution, rf combines information on the halo spin parameter,

on the halo concentration parameter, and on the ratios of the angular momenta
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and masses of baryons and DM (cf. Equation (28) of Mo, Mao, & White (1998),

accounting for adiabatic contraction). It has however been shown that the ratio

between Rh and Rd is approximately constant for massive SFGs in the redshift

range 0.8 < z < 2.6 (Burkert et al., 2016). This does also hold for our TFR

sample and the average values at z ∼ 0.9 and z ∼ 2.3, even though there is

substantial scatter for individual objects.

To quantify the contributions of baryons and DM to the circular velocity at

a given radius we write

vcirc(r) =
√
v2

bar(r) + v2
DM(r). (2.9)

The baryonic contribution can be computed, for instance, using the expression

for an infinitely thin exponential disk (Freeman, 1970),

v2
bar(r) = 4πGΣ0Rdy

2[I0(y)K0(y)− I1(y)K1(y)], (2.10)

where y = r/(2Rd), and Ii(y) and Ki(y) are the modified Bessel functions of the

first and second kind. At r = Re, this equation becomes

v2
bar(Re) =

Mbar

Rd

· C ′′, (2.11)

where C ′′ is a constant. The DM component can be derived simply through a

DM fraction at the radius of interest, fDM(r) = v2
DM(r)/v2

circ(r), or via adopting a

full mass profile (e.g. NFW or Einasto, Navarro, Frenk, & White, 1996; Einasto,

1965).

Equations (2.3) can be combined to

Mh = R3
hH(z)2 102 G−1. (2.12)

By inserting Equations (2.8) into Equation (2.12), and by substituting Rd through

a re-arranged Equation (2.11), one arrives at Equation (2.4) given in Section 2.5.

After introducing the gas fraction fgas = Mgas/Mbar, one arrives at Equation (2.5).

These equations predict a TFR evolution with a constant slope, but evolving zero-

point with cosmic time, depending not only on H(z), but also on changes in md,

fDM(Re), and fgas with cosmic time.

We note that deviations from the proposed slope (a = 3) can be related to

additional dependencies on vbar, e.g. of the surface density Σ (Courteau et al.,

2007).

2.10.2 Observational constraints on the redshift evolution

of fgas, md, and fDM(Re)

In the following sections, we discuss the motivation for the adopted redshift evo-

lution of fgas, md, and fDM(Re) in the toy model context. Figure 2.14 summarizes

the individual and combined effects of adopting the respective redshift evolutions

of fgas, md, and fDM(Re) for the bTFR and sTFR evolution.
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2.10.2.1 The redshift evolution of fgas

For our toy model approach, we consider the gas fraction fgas to be the sum

of molecular and atomic gas mass divided by the total baryonic mass, fgas =

(Mgas,mol +Mgas,at)/(Mgas,mol +Mgas,at +M∗). The evolution of the molecular gas

mass-to-stellar mass ratio is given through the scaling relation by Tacconi et al.

(2018):

log

(
Mgas,mol

M∗

)
≈ 0.12− 3.62 · [log(1 + z)− 0.66]2

− 0.33 · [log(M∗ [M�])− 10.7] .

(2.13)

Here, we do not take into account the additional dependencies given in the full

parametrization by Tacconi et al. (2018) on MS offset, and offset from the M-R

relation, but assume that the model galaxies lie on these relations.

Locally, the galactic gas mass is dominated by atomic gas. To account for

atomic gas mass at z = 0, we use the fitting functions presented by Saintonge

et al. (2011). We use a local reference stellar mass of log(M∗ [M�]) = 10.94, i.e.

the stellar mass corresponding to our reference velocity vref = 242 km/s in the

context of the sTFR fit by Reyes et al. (2011).

To account for atomic gas masses at z > 0, we follow the theoretical prediction

that, at fixed M∗, the ratio of atomic gas mass to stellar mass does not change

significantly with redshift (e.g. Fu et al., 2012). We use again the fitting functions

by Saintonge et al. (2011) to now determine the atomic gas mass for galaxies with

log(M∗ [M�]) = 10.50, which corresponds to the average stellar mass of our TFR

galaxies at vref = 242 km/s in both redshift bins.

Between z = 0 and z = 0.9, we assume a smooth TFR evolution, meaning that

at fixed circular velocity, galaxies have decreasing M∗ with increasing redshift, in

order to compute the gas fractions. Although we cannot quantify this assumption

with our observations, we note that in comparing to our data, only the relative

offset in fgas (or any other parameter discussed below) between z = 0, z = 0.9,

and z = 2.3 is relevant. Our assumption therefore serves mainly to avoid sudden

(unphysical) offsets in the redshift evolution of fgas.

Corresponding values of the gas mass fraction at z = {0.0; 0.9; 2.3} are fgas ≈
{0.07; 0.36; 0.58}.

2.10.2.2 The redshift evolution of md

The baryonic disk mass fraction, md = Mbar/Mh, is not a direct observable, since

it depends on the usually unknown DM halo mass. For the local Universe, we use

the fitting function by Moster, Naab, & White (2013) from abundance matching

to determine a stellar disk mass fraction, md,∗ = M∗/Mh. For a stellar mass of

log(M∗ [M�]) = 10.94, this gives md,∗ ≈ 0.012. Again, we use the fitting functions

by Saintonge et al. (2011) to determine the corresponding gas mass, taking into
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account contributions from helium via MHe ≈ 0.33 MHi. This results in a baryonic

disk mass fraction at z = 0 of md ≈ 0.013.

The recent study by Burkert et al. (2016) finds a typical value of md = 0.05

for SFGs at 0.8 < z < 2.6 based on a Monte-Carlo NFW modelling of data from

the KMOS3D and SINS/zC-SINF (Förster Schreiber et al., 2009; Mancini et al.,

2011) surveys. These galaxies have masses similar to the galaxies in our TFR

sample. We adopt their value of md = 0.05 for 0.8 < z < 2.6.

Between z = 0 and z = 0.8 we assume a linear increase of md. Clearly, this

is a simplifying conjecture. As for the atomic gas masses, we emphasize that

this assumption has primarily cosmetic effects, while the crucial quantity is the

relative difference in md between z = 0, z ∼ 0.9, and z ∼ 2.3.

2.10.2.3 The redshift evolution of fDM(Re)

For the DM fraction of local disk galaxies, we follow Figure 1 by Courteau &

Dutton (2015) which, among others, shows galaxies from the DiskMass survey

(Martinsson et al., 2013a,b). At vcirc = 242 km/s, DM fractions of local disk

galaxies lie roughly between fDM(r2.2) = 0.55 and fDM(r2.2) = 0.75, with large

scatter and uncertainties.

At higher redshift, Wuyts et al. (2016b) derived DM fractions from the differ-

ence between dynamical and baryonic masses of the KMOS3D subsample of 240

SFGs, which represents our parent sample. Corresponding values, also corrected

for mass completeness, are given in their Table 1.

For convenience, we parametrize the evolution of the DM fraction with redshift

as follows: fDM(Re) = 0.7 · exp[−(0.5 · z)2.5]. This gives an evolution which

is somewhat stronger than what is suggested by just taking the average values

provided by Courteau & Dutton (2015) and Wuyts et al. (2016b), but easily

within the uncertainties presented in both papers. We adopt this marginally

stronger evolution to better match our observed TFR offsets with the toy model.

Corresponding values of the DM fraction at z = {0.0; 0.9; 2.3} are fDM(Re) ≈
{0.70; 0.61; 0.17}.

We note that our toy model evolution is particularly sensitive to the parametriza-

tion of fDM(Re, z) which is in our implementation with the simplistic description

for md(z) responsible for the flattening/upturn of the sTFR/bTFR (see Fig-

ure 2.14). The high value for the local DM fraction (which would at r = Re

rather be lower than at r = r2.2) as well as the comparably strong evolution at

z > 1 can certainly be challenged.

2.10.2.4 Comments on the evolution of the halo concentration param-

eter

The predicted evolution of the halo concentration parameter c between z = 2

and z = 0 for haloes of masses that are relevant to this study (i.e. central stellar
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masses of log(M∗ [M�]) ≈ 10.5 at z ∼ 2, and log(M∗ [M�]) ≈ 10.9 at z ∼ 0) goes

from c ≈ 4 at z = 2 to c ≈ 6 at z = 1 and to c ≈ 7 at z = 0 (Dutton & Macciò,

2014). This alone would increase the DM fraction at Re by roughly 0.1.

Starting from the central DM fractions as determined by Wuyts et al. (2016b),

abundance-matched haloes (Moster, Naab, & White, 2013) would require concen-

trations of c ≈ 3 and c ≈ 12 at z ∼ 2.3 and z ∼ 0.9, respectively (cf. Eq. 19

by Mo, Mao, & White, 1998). Extending this to z = 0 is not straight-forward

since local late-type galaxies have typically lower circular velocity as required for

the extrapolation of the local TFR to our vref = 242 km/s (see discussion in

Section 2.4.2). However, using the stellar mass-radius relation presented by van

der Wel et al. (2014a), inferred concentrations of these hypothetical haloes would

have to be c ≈ 13.

This points towards a potential issue in the observational constraints to our

toy model because the md values inferred by Burkert et al. (2016) are based

on Monte-Carlo modelling involving standard NFW haloes. One could consider

fitting md to better match the observed TFR zero-point evolution.

In general, the possible effects of adiabatic contraction or expansion of the

halo as a response to baryonic disk formation make theoretical predictions of the

central DM fractions uncertain (see e.g. the discussions by Duffy et al., 2010;

Velliscig et al., 2014; Dutton et al., 2016; and also Dutton & Macciò, 2014 for an

overview of predictions of concentration-mass relations from analytical models).

2.11 Appendix E – Physical properties of galax-

ies in the TFR sample

In Table 2.3 we list redshift z, stellar mass M∗, baryonic mass Mbar, maximum

modelled circular velocity vcirc,max, and modelled intrinsic velocity dispersion σ0

of our TFR galaxies. The full table is available in machine readable form in the

online version of this paper.

Table 2.3: Physical properties of galaxies in our TFR sample in terms of redshift z,

stellar mass M∗, baryonic mass Mbar, maximum modelled circular velocity vcirc,max,

and modelled intrinsic velocity dispersion σ0.

# z log(M∗ [M�]) log(Mbar [M�]) vcirc,max [km/s] σ0 [km/s]

1 0.602 10.85 10.93 274.9 30.9

2 0.626 11.00 11.07 314.3 25.8

3 0.669 10.76 10.82 267.5 49.8

4 0.678 10.49 10.58 273.4 38.5

5 0.758 10.66 10.77 313.8 24.3

6 0.777 10.35 10.58 239.1 81.4

7 0.785 10.52 10.63 237.8 23.0
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Table 2.3: (continued)

# z log(M∗ [M�]) log(Mbar [M�]) vcirc,max [km/s] σ0 [km/s]

8 0.787 10.77 10.89 324.7 8.5

9 0.788 9.78 10.18 158.2 51.0

10 0.798 10.68 10.94 206.4 29.9

11 0.799 10.63 10.78 300.7 1.0

12 0.800 9.69 9.81 111.6 32.9

13 0.803 10.59 10.70 219.4 29.4

14 0.803 10.48 10.56 337.4 29.3

15 0.809 10.20 10.33 177.1 38.0

16 0.820 11.12 11.19 261.2 27.4

17 0.823 10.03 10.26 194.2 16.8

18 0.824 10.59 10.63 235.4 9.3

19 0.828 10.87 10.99 351.2 96.4

20 0.831 10.37 10.57 285.3 28.9

21 0.832 10.07 10.36 166.9 52.1

22 0.852 10.83 10.95 305.2 37.1

23 0.854 10.73 10.93 321.4 1.8

24 0.868 10.31 10.55 189.4 49.8

25 0.889 10.63 10.82 259.0 44.3

26 0.892 10.03 10.32 239.1 35.7

27 0.892 9.82 10.15 210.7 24.4

28 0.893 9.59 9.97 138.1 1.0

29 0.895 10.12 10.29 207.9 27.5

30 0.896 10.26 10.48 184.3 28.5

31 0.896 10.28 10.51 203.9 18.2

32 0.900 10.30 10.54 323.9 51.3

33 0.900 10.31 10.56 143.4 47.5

34 0.901 10.10 10.26 197.2 28.8

35 0.905 10.14 10.38 184.9 1.0

36 0.906 10.92 11.02 222.5 36.2

37 0.907 10.85 10.97 335.7 41.4

38 0.907 10.77 10.94 278.3 40.0

39 0.912 9.96 10.30 149.6 23.3

40 0.912 10.83 10.92 285.9 38.3

41 0.913 11.13 11.26 384.0 95.2

42 0.914 10.71 10.85 255.0 36.3

43 0.914 10.32 10.48 159.1 47.4

44 0.919 10.94 11.05 356.4 94.9

45 0.921 10.61 10.68 262.8 22.8

46 0.922 10.19 10.34 196.3 58.8
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Table 2.3: (continued)

# z log(M∗ [M�]) log(Mbar [M�]) vcirc,max [km/s] σ0 [km/s]

47 0.927 10.66 10.80 212.1 1.0

48 0.939 10.30 10.62 301.9 1.9

49 0.949 10.17 10.43 129.8 31.6

50 0.950 10.74 10.95 191.0 60.6

51 0.952 10.10 10.31 126.9 30.2

52 0.953 9.91 10.18 259.0 65.8

53 0.953 9.85 10.01 217.2 35.5

54 0.953 9.91 10.08 140.3 16.3

55 0.954 10.95 11.04 315.0 46.8

56 1.002 10.83 11.00 380.0 19.9

57 1.004 10.29 10.53 192.5 1.0

58 1.010 9.53 9.94 125.0 19.7

59 1.017 10.44 10.61 256.5 42.2

60 1.018 10.31 10.59 299.6 58.7

61 1.019 10.51 10.64 231.5 21.7

62 1.024 10.64 10.79 305.6 12.1

63 1.026 10.89 11.03 264.7 1.0

64 1.031 10.74 10.99 294.5 57.9

65 1.032 10.80 10.98 299.4 1.7

66 1.306 10.70 10.85 248.8 21.4

67 1.382 11.00 11.31 320.5 82.4

68 1.382 10.08 10.39 181.1 18.4

69 1.382 10.82 11.07 281.1 29.3

70 1.418 10.50 10.72 222.3 44.6

71 1.427 10.26 10.60 140.6 40.1

72 1.493 10.22 10.56 207.4 29.7

73 1.498 10.31 10.53 163.2 52.0

74 1.510 11.00 11.20 347.6 39.4

75 1.518 11.07 11.37 476.1 158.9

76 1.525 10.81 11.11 301.7 25.4

77 1.526 11.33 11.48 470.6 32.4

78 1.534 10.19 10.42 195.9 52.3

79 1.548 10.81 11.04 271.3 49.5

80 1.551 9.93 10.30 226.8 59.4

81 1.551 9.93 10.20 120.3 40.5

82 1.588 10.72 11.00 241.9 34.4

83 1.599 10.85 11.03 215.8 46.8

84 1.612 10.68 10.90 304.4 39.5

85 1.613 11.18 11.31 309.0 50.5
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Table 2.3: (continued)

# z log(M∗ [M�]) log(Mbar [M�]) vcirc,max [km/s] σ0 [km/s]

86 1.614 10.61 10.88 285.8 48.2

87 1.615 11.30 11.47 433.7 59.7

88 1.656 9.90 10.50 263.5 52.3

89 1.665 10.74 10.97 262.4 52.4

90 2.028 10.34 10.69 263.2 32.1

91 2.036 10.65 10.98 288.0 21.2

92 2.037 11.24 11.39 413.8 104.1

93 2.042 10.75 11.08 281.9 61.0

94 2.063 10.76 11.09 315.0 45.2

95 2.113 10.13 10.57 276.6 55.9

96 2.152 10.46 10.80 216.8 1.2

97 2.163 10.35 10.65 166.6 50.8

98 2.167 10.64 10.96 206.7 47.1

99 2.171 10.02 10.35 242.3 54.5

100 2.171 10.40 10.79 295.0 58.0

101 2.180 11.21 11.43 377.0 11.1

102 2.182 11.32 11.49 303.3 71.6

103 2.186 10.36 10.75 263.8 23.9

104 2.187 11.00 11.34 233.8 32.9

105 2.191 11.46 11.63 284.1 77.6

106 2.193 10.92 11.16 204.6 56.5

107 2.197 10.17 10.59 169.0 9.8

108 2.219 10.09 10.43 167.5 45.4

109 2.225 10.25 10.54 200.8 37.6

110 2.226 10.10 10.57 183.6 59.2

111 2.227 10.50 10.87 254.1 33.6

112 2.227 10.36 10.72 151.2 47.6

113 2.228 10.51 10.79 208.6 40.9

114 2.229 10.61 11.19 254.4 39.0

115 2.246 10.37 10.78 216.5 57.6

116 2.298 10.24 10.56 243.3 58.5

117 2.301 10.83 11.02 408.9 1.9

118 2.307 10.48 10.87 175.2 55.3

119 2.308 10.57 10.91 214.5 45.8

120 2.313 10.48 10.92 280.2 70.7

121 2.320 11.06 11.35 373.3 124.6

122 2.359 10.57 10.89 174.3 33.1

123 2.391 10.34 10.72 274.2 39.6

124 2.408 10.69 11.07 291.0 62.7
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Table 2.3: (continued)

# z log(M∗ [M�]) log(Mbar [M�]) vcirc,max [km/s] σ0 [km/s]

125 2.416 10.18 10.60 199.2 48.9

126 2.432 10.14 10.64 259.8 60.0

127 2.433 10.59 11.05 302.3 75.8

128 2.437 10.56 10.96 266.2 56.1

129 2.439 10.89 11.21 284.2 52.7

130 2.441 10.57 10.96 324.2 36.1

131 2.452 10.34 10.71 241.7 40.5

132 2.454 9.88 10.36 152.2 47.9

133 2.464 10.44 10.84 167.8 27.5

134 2.519 11.05 11.35 430.4 104.9

135 2.529 11.15 11.33 409.7 68.4
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2.12 Appendix F – Comments on related work

post publication

After the publication of our work reprinted in this Chapter (Übler et al., 2017),

Tiley et al. (2019) published a Tully-Fisher study comparing z = 0 and z ∼ 0.9

data, finding no evolution for the stellar mass TFR (sTFR). The authors use data

from the SAMI Galaxy Survey (Bryant et al., 2015), degrade it to the quality of

their z ∼ 0.9 KMOS observations from the KROSS survey (Stott et al., 2016),

and compare it to their KROSS data. In this Section, be briefly discuss the

results by Tiley et al. (2019) and comment on their relevance regarding our work.

We concentrate on results regarding their ‘disky’ subsample, which is in selection

closest to our data presented above (good fit quality, and v2.2/σ+∆(v2.2/σ) > 3).

The main results by Tiley et al. (2019) relevant to our work are the following:

• Through matching the original SAMI data quality to z ∼ 0.9 KMOS obser-

vations, including adjustments of the spectral and spatial resolution, sam-

pling, S/N , and restriction of the photometric bands used to derive stel-

lar masses, the physical parameters relevant to the rotation velocity based

sTFR, namely stellar mass and beam-smearing corrected, modelled rotation

velocity (the authors use v2.2), are to first order unchanged.

• Primarily through selection effects, the slopes of the original and matched

SAMI sTFR deviate, however for the ‘disky’ subsample the relation is ba-

sically unchanged.

• Fixing the TFR slope of the z ∼ 0.9 data to that of the matched z = 0 data,

the authors find no significant zero-point offset for the ‘disky’ subsample:

the z ∼ 0.9 zero-point is lower by ∆b = −0.09 ± 0.06 dex of M� (their

Table 5; a free slope gives a steeper z ∼ 0.9 relation, cf. their Table 4).

• The authors interpret their results such that SFGs evolve along the sTFR

relation, with matching amounts of stellar mass accreted or created, and

dark matter mass accreted, between z ∼ 1 and the present day.

Tiley et al. (2019) specifically discuss differences between their results and

their own earlier work (Tiley et al., 2016), and our results. As discussed in detail

in Section 2.3.4, the sTFR results by Tiley et al. (2016) and Übler et al. (2017) are

in agreement, with our zero-point being only 0.06±0.05 dex lower when adopting

their slope. Regarding their own earlier work, Tiley et al. (2019) explain the

difference to their new results through three factors: (i) different z = 0 relations

are used to compare to the high−z data; (ii) a different velocity measure is used

(v2.2 vs. v80); (iii) different selection criteria are used. Accounting for the latter

two effects, Tiley et al. (2019) find a reduced difference in zero-point offsets within

twice the standard error, which they deem statistically insignificant. On the basis
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of the good agreement between the results by Tiley et al. (2016) and our work,

the authors invoke equivalent explanations for the discrepant findings.

As suggested by Tiley et al. (2019), and as discussed in Section 2.7, selection

effects can have a substantial impact on TFR parameters (up to ∼ ∆b = 0.45 dex

in the study by Übler et al. (2017)). Different selection cuts might therefore

explain to some extent the difference in the results by Übler et al. (2017) and

Tiley et al. (2019). With respect to the velocity measure, we did not find an

appreciable difference in measurements for the maximum velocity used by Übler

et al. (2017) and v2.2 (see Section 2.4.3.3). Regarding the different slopes used,

Vergani et al. (2012) and Straatman et al. (2017) have shown that the choice of

the TFR slope can have a substantial effect on the derived zero-point offset (up

to ∼ ∆b = 0.3 dex in the study by Vergani et al. (2012)). Generally, these more

practical considerations may explain the different results of the work by Tiley

et al. (2019) and our work.

It is however important to also consider the theoretical framework. Tiley et al.

(2019) interpret their findings such that the accretion or creation of stellar mass

is matched by the accretion of dark matter mass onto the galaxies from z ∼ 0.9

to z = 0 in a way that galaxies evolve along the TFR and the stellar disk mass

fraction md,∗ = M∗/Mhalo is constant with redshift.10 Their small zero-point offset

at z ∼ 0.9 is in agreement with the prediction from the semi-analytical model

by Dutton et al. (2011), who find a zero-point evolution that is weaker than the

evolution for the corresponding dark matter halo properties. As Dutton et al.

(2011) point out, this model relies on the assumption that the disk mass fraction

md does not evolve with redshift.

Burkert et al. (2016), however, find a baryonic disk mass fraction at 0.8 < z <

2.6 that is higher compared to typical z = 0 estimates. In our model for TFR

zero-point evolution, we have incorporated the evolution of the disk mass fraction

with redshift in a simplistic manner. Indeed, as can be appreciated from Figure 14

by Übler et al. (2017), assuming a constant md(z) would result in a much shal-

lower evolution of the sTFR (dash-dotted orange line in Figure 14).11 Tiley et al.

10 The distinction between galaxy-scale stellar mass-to-dark mass ratio and halo-scale stellar

mass-to-dark mass ratio is not clearly drawn by Tiley et al. (2019). It appears their argument is

primarily concerned with the corresponding ratio on galaxy scales, but they state their interpre-

tation is in agreement with other studies that find no evolution of the stellar-to-halo mass ratio.

A clear distinction between the galaxy and halo scales would be very useful here, since their

theoretically predicted evolutions differ as quantified through the halo concentration parame-

ter. In our work we demonstrate that the separation of these scales has a large impact on the

predicted TFR evolution. This can be easily understood because important baryonic processes

particularly at higher redshift such as rapid gas dissipation efficiently concentrating baryonic

matter primarily act on galaxy scales, while the dark matter haloes extending to regions ∼ 10

times larger and will not be affected by this in a similar way as the galaxy-scale dark matter

distribution.
11 Note that, unlike Tiley et al. (2019), we show a prediction for the circular velocity TFRs,
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(2019) acknowledge the existence of higher gas masses in SFGs at higher redshift,

and conclude that the conversion of gas into stars should be balanced by corre-

sponding amounts of dark matter accretion to the central region. Of course, the

presence of large amounts of gaseous mass must also affect the measured rota-

tion velocities, clearly implying that not only the stellar mass-to-total halo mass

ratios are relevant, but importantly also the gas and stellar mass ratios on the

galaxy scale, where rotation velocities are measured. Furthermore, theoretically

constrained changes of the halo concentration parameter with redshift must also

have an impact.

In our analytical toy model we have to our best ability incorporated the ob-

servationally constrained, important redshift dependencies of the central gas and

dark matter fraction, and the baryonic-to-total halo mass fraction, and the cos-

mological evolution of dark matter haloes. This model predicts a strong evolution

of the TFR zero-points between z ∼ 0.8 and z = 0. If the disk mass fractions

at high redshift would be lower than measured by Burkert et al. (2016), this

would alleviate the tension between the results by Tiley et al. (2019) and our

work. However, given the convincing evidence from several studies of efficient

baryon assembly, rapid gas dissipation processes, and high baryonic surface den-

sities of main sequence 1 < z < 2.6 SFGs (e.g. Förster Schreiber et al., 2009;

van Dokkum et al., 2015; Alcorn et al., 2016; Burkert et al., 2016; Contini et al.,

2016; Price et al., 2016; Stott et al., 2016; Wuyts et al., 2016b; Genzel et al., 2017;

Lang et al., 2017) the assumption of a constant baryonic disk mass fraction seems

questionable.

This is also supported by the recent abundance matching model by Moster,

Naab, & White (2018): at z = 2, the predicted stellar disk mass fraction md,∗ for

main sequence SFGs of stellar mass log(M∗/M�)=9–11 is approximately constant

with redshift (but close to the Schechter mass, above log(M∗/M�)=10.5, higher

redshift galaxies have increasingly higher stellar disk mass fractions by ∆md,∗ ≈
0.01 − 0.02). However, with gas-to-baryonic mass fractions of ∼ 50 % at z ∼ 2,

∼ 35 % at z ∼ 1, and ∼ 5 − 15 % at z = 0, the high−z baryonic disk mass

fractions must be higher compared to local values. A higher disk mass fraction

at earlier times will inevitably lead to a more pronounced negative zero-point

evolution of the sTFR.

It is clear that many factors have to be accounted for in measuring the TFR

redshift evolution. Tiley et al. (2019) have undertaken an important step in

matching data quality over a wide range in cosmic time. It is generally difficult to

i.e. stellar and baryonic mass vs. circular velocity vcirc, which incorporates the effects of pressure

support. The predicted evolution for vrot would be less pronounced. At the high mass end,

accounting for pressure support increases the TFR offset by ∆b ≈ −0.1 dex, while towards lower

masses, where galaxies are increasingly more dispersion-supported, this difference increases. As

a consequence, the TFR slope is steeper when circular velocities are considered.
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compare TFR evolution results between independent studies with different ways

of measuring kinematic parameters, different adopted TFR slopes, and different

sample selections. Apart from these practical difficulties, however, a theoretical

assessment of TFR evolution based on the cosmological evolution of dark matter

haloes predicts a redshift dependence of the TFR. Furthermore, for a complete

picture, the redshift dependencies of the central gas, stellar, and dark matter mass

fractions have to be considered, leading to a complex evolution of the TFR, as

we demonstrate in Übler et al. (2017). The fine-tuning of this prediction depends

crucially on analytically and observationally constrained mass fractions. Through

future observations and improved model predictions it will be possible to more

precisely constrain TFR evolution.
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Chapter 3

The Evolution and Origin of

Ionized Gas Velocity Dispersion

from z ∼ 2.6 to z ∼ 0.6 with

KMOS3D

This Chapter is a reprint of the ApJ publication The Evolution

and Origin of Ionized Gas Velocity Dispersion from z ∼ 2.6 to

z ∼ 0.6 with KMOS 3D by Übler et al. (2019); doi:10.3847/1538-

4357/ab27cc; c©AAS. Reproduced with permission.

This work is based on observations collected at the Very

Large Telescope (VLT) of the European Southern Observatory

(ESO), Paranal, Chile, under ESO program IDs 092.A-0091,

093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028,

098.A-0045, 099.A-0013, 0100.A-0039, and 0101.A-0022.

Abstract – We present the 0.6 < z < 2.6 evolution of the ionized gas ve-

locity dispersion in 175 star-forming disk galaxies based on data from the full

KMOS3D integral field spectroscopic survey. In a forward-modelling Bayesian

framework including instrumental effects and beam-smearing, we fit simultane-

ously the observed galaxy velocity and velocity dispersion along the kinematic

major axis to derive the intrinsic velocity dispersion σ0. We find a reduction of

the average intrinsic velocity dispersion of disk galaxies as a function of cosmic

time, from σ0 ∼ 45 km s−1 at z ∼ 2.3 to σ0 ∼ 30 km s−1 at z ∼ 0.9. There is sub-

stantial intrinsic scatter (σσ0,int ≈ 10 km s−1) around the best-fit σ0 − z-relation

beyond what can be accounted for from the typical measurement uncertainties

(δσ0 ≈ 12 km s−1), independent of other identifiable galaxy parameters. This

potentially suggests a dynamic mechanism such as minor mergers or variation in

accretion being responsible for the scatter. Putting our data into the broader lit-
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erature context, we find that ionized and atomic+molecular velocity dispersions

evolve similarly with redshift, with the ionized gas dispersion being ∼ 10−15 km

s−1 higher on average. We investigate the physical driver of the on average ele-

vated velocity dispersions at higher redshift, and find that our galaxies are at most

marginally Toomre-stable, suggesting that their turbulent velocities are powered

by gravitational instabilities, while stellar feedback as a driver alone is insufficient.

This picture is supported through comparison with a state-of-the-art analytical

model of galaxy evolution.

3.1 Introduction

Extragalactic surveys over the last decades have produced thousands of spectrally

and spatially resolved observations of galaxies from the present day out to z ∼ 4.

For massive galaxies on the star-forming main sequence, these efforts resulted in

two main findings regarding their kinematic evolution: (i) already by z ∼ 2, the

majority of star-forming galaxies (SFGs) show ordered rotation, and (ii) their

velocity dispersions are higher by factors of 2-5 compared to local SFGs (Labbé

et al., 2003; Förster Schreiber et al., 2006, 2009, 2018; Genzel et al., 2006, 2008,

2014b; Cresci et al., 2009; Epinat et al., 2009, 2012; Law et al., 2009; Jones et al.,

2010; Gnerucci et al., 2011; Wisnioski et al., 2011, 2015, in prep.; Miller et al.,

2012; Swinbank et al., 2012b; Stott et al., 2016; Simons et al., 2017). The redshift

evolution of the ionized gas velocity dispersion has captured a lot of attention

through its potential to constrain feedback and star formation models (Förster

Schreiber et al., 2006; Genzel et al., 2006, 2008, 2011; Weiner et al., 2006; Kassin

et al., 2007, 2012; Epinat et al., 2009, 2012; Law et al., 2009; Lehnert et al., 2009,

2013; Gnerucci et al., 2011; Wisnioski et al., 2012, 2015; Swinbank et al., 2012a;

Newman et al., 2013; Simons et al., 2016, 2017; Turner et al., 2017; Mason et al.,

2017; Zhou et al., 2017; Johnson et al., 2018; Girard et al., 2018).

Starting from small scales in the Milky Way, the velocity dispersion in molecu-

lar clouds is proportional to cloud size and mass, in a way that suggests molecular

clouds are turbulent, with kinetic and gravitational energy being in near equiparti-

tion (Larson, 1981; McKee & Ostriker, 2007; Heyer & Dame, 2015, and references

therein). However, the lack of dependence of the turbulence level on factors such

as environment or local star formation activity points towards larger scale drivers

(Heyer & Brunt, 2004; Brunt, Heyer, & Mac Low, 2009; but see Heyer & Dame,

2015 for extreme environments).

In nearby galaxies, velocity dispersions of atomic gas are σHI ≈ 10 − 12 km

s−1 on scales of ∼ 100 pc (Dib, Bell, & Burkert, 2006; Tamburro et al., 2009; Ian-

jamasimanana et al., 2012; Fukui et al., 2009; Caldú-Primo et al., 2013; Mogotsi

et al., 2016; Koch et al., 2019). Molecular gas velocity dispersions are typically

lower, with reported ratios in the range σCO/σHI ≈ 0.3 − 1 (Tamburro et al.,

2009; Ianjamasimanana et al., 2012; Fukui et al., 2009; Wong et al., 2009; Caldú-
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Primo et al., 2013; Druard et al., 2014; Mogotsi et al., 2016; Levy et al., 2018;

Koch et al., 2019). Ionized gas velocity dispersions are substantially higher, with

σHα ≈ 24 km s−1 (Epinat et al., 2010).

At high redshift, most measurements of gas velocity dispersion are based on

ionized gas, which is accessible from the ground in the near-infrared through

strong rest-frame optical lines. Typical values are σ = 25 − 100 km s−1 for

disk galaxies. It is more challenging to measure accurate velocity dispersions

at high redshift because of the combined effects of beam-smearing and limited

instrumental spectral resolution (see Davies et al., 2011). The former can be

corrected for instance by using the velocity field and the spatial resolution of the

observations to create a beam-smearing map (e.g. Green et al., 2010; Gnerucci

et al., 2011; Epinat et al., 2012), through model-based look-up tables (e.g. Burkert

et al., 2016; Johnson et al., 2018), or through forward-modelling (e.g. Cresci

et al., 2009; Genzel et al., 2011; Di Teodoro, Fraternali, & Miller, 2016; Wuyts

et al., 2016b; Varidel et al., 2019). Typical spectral resolutions of near-infrared

spectroscopic observations at z ∼ 1 − 3 correspond to velocity dispersions of

σinstrumental ≈ 30 − 40 km s−1. However, depending on the signal-to-noise ratio

(S/N), it is possible to recover velocity dispersions through forward-modelling

down to 1/3 of the instrumental resolution.

It is well established that the galactic gas velocity dispersion is correlated with

redshift (e.g. review by Glazebrook, 2013), but the physical processes responsible

for driving and maintaining the dispersions are still debated. It has been shown

theoretically that constant energy input is necessary to maintain turbulence in the

interstellar medium (ISM) because it will otherwise decay within a few Myr (e.g.

Mac Low et al., 1998; Stone, Ostriker, & Gammie, 1998). A number of potential

drivers has been identified, with two main classes: (i) the conversion of kinetic

energy through stellar feedback in the form of winds, expanding Hii regions, and

supernovae, and (ii) the release of gravitational energy through clump formation,

radial flows within the disk, and accretion from the cosmic web. Other possible

sources include effects of galactic rotation, fluid instabilities, and galaxy interac-

tions (see Elmegreen & Scalo, 2004, for a review). Generally, the different scales

on which the proposed mechanisms operate present a challenge to simulations

(see Naab & Ostriker, 2017, for a review).

In this paper, we investigate the intrinsic velocity dispersion of the ionized

gas phase in rotation-dimonated, star-forming galaxies from our KMOS3D survey

at 0.6 < z < 2.6. In Section 3.2 we briefly present the KMOS3D data set. Our

modelling and sample selection is discussed in Section 3.3. In Section 3.4 we

investigate the evolution of the intrinsic velocity dispersion with redshift and

put it into the broader context of multi-phase literature values from z = 4 to

z = 0. In Section 3.5 we discuss possible drivers of turbulence, particularly

gravitational instabilities and stellar feedback, and compare our data to a state-
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of-the-art analytical model by Krumholz et al. (2018). We conclude our study in

Section 3.6.

Throughout, we adopt a Chabrier (2003) initial mass function and a flat

ΛCDM cosmology with H0 = 70 km s−1 Mpc−1, ΩΛ = 0.7, and Ωm = 0.3.

3.2 The KMOS3D survey

Our study is based on data from the KMOS3D survey, targeting the Hα line

emission of primarily main sequence galaxies in three redshift bins centered at

z ∼ 0.9, z ∼ 1.5, and z ∼ 2.3. The survey is presented by Wisnioski et al. (2015)

and Wisnioski et al., in prep., to which we refer the reader for details. Below, we

summarize its main characteristics.

The KMOS3D galaxies were selected from the 3D-HST survey (Brammer et al.,

2012; Skelton et al., 2014; Momcheva et al., 2016), providing optical-to-8µm pho-

tometry and, importantly, secure spectroscopic or grism redshifts, so that bright

OH skylines at the location of the Hα line emission could be avoided. In ad-

dition, high-resolution imaging for all galaxies is available through CANDELS

(Grogin et al., 2011; Koekemoer et al., 2011; van der Wel et al., 2012), and

further multi-wavelength coverage through photometry from Spitzer/MIPS and

Herschel/PACS (Lutz et al., 2011; Magnelli et al., 2013; Whitaker et al., 2014,

and references therein).

For the KMOS3D survey, we selected galaxies with stellar masses log(M∗/M�) >

9 and KAB . 23. The selection aimed to provide a homogeneous coverage of the

star formation main sequence across stellar mass in the three redshift slices, thus

ensuring near equal statistical coverage up to the highest masses. In addition,

KMOS3D also extends below the main sequence regime where galaxies are ‘quies-

cent’, and it contains starburst outliers above the main sequence.

Stellar masses were derived following Wuyts et al. (2011b), by fitting the

broad- and medium-band optical-to-mid-infrared spectral energy distribution with

Bruzual & Charlot (2003) stellar population synthesis models, adopting a Calzetti

et al. (2000) extinction law, solar metallicity, and a range of star formation his-

tories. Gas mass measurements are not available for most of our galaxies. We

exploit the scaling relation by Tacconi et al. (2018) which depends on redshift,

offset from the main sequence, and stellar mass, with the main sequence prescrip-

tion by Whitaker et al. (2014), to estimate the molecular gas masses (Mgas) of

our galaxies. We don’t account for atomic gas in this study. The derivation of

star-formation rates (SFRs) followed the ladder of SFR indicators as described

by Wuyts et al. (2011b).

Structural properties such as the axis ratio q = b/a, the disk effective radius

Re, and the bulge-to-total stellar mass fraction B/T are based on two-dimensional

Sérsic models to the stellar light distribution high-resolutionH−band images from
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HST observations (van der Wel et al., 2012; Lang et al., 2014). For the effective

radius we apply a color correction following van der Wel et al. (2014a).

The survey was conducted during the years 2013 to 2018 with the multiplex-

ing near-infrared integral field spectrograph KMOS (Sharples et al., 2004, 2013)

at the Very Large Telescope. The full KMOS3D sample consists of 740 targeted

galaxies (Wisnioski et al., in prep.).

3.3 Dynamical modelling and sample selection

We constrain the intrinsic velocity dispersions by forward-modelling the observed

one-dimensional velocity and velocity dispersion profiles extracted from the data

cubes. For this work, we use the two-dimensional kinematic information to deter-

mine the kinematic major axis, and to distinguish rotation-dominated, dispersion-

dominated, and disturbed systems. The full kinematic information on the motions

of stars or gas in the plane of a rotating disk can be extracted along its kinematic

major axis. Modelling the one-dimensional kinematics instead of the two- or

three-dimensional data increases the S/N of our measurements, and thus allows

us to study a larger sample of galaxies with reliable modelling. We have verified

that this has only a minor impact on the derived dynamical parameters, with an

average, non-systematic difference of one-dimensional vs. two-dimensional intrin-

sic velocity dispersion of ∼ 5− 10%.

3.3.1 One-dimensional kinematic profiles

We derive two-dimensional projected Hα velocity and velocity dispersion fields for

all KMOS3D galaxies using linefit (Davies et al., 2009, 2011; Förster Schreiber

et al., 2009), a code that takes into account the instrument line spread func-

tion and fits a Gaussian model for each spaxel of the reduced data cube after

continuum subtraction. From these maps we exclude spaxels with S/N ≤ 2,

uncertainties on the velocity or velocity dispersion of ≥ 100 km s−1, as well as

off-source fits to noise features. We determine the maximum and minimum of

the velocity map through a weighted average of either the 5 % of spaxels of both

the highest and lowest velocity values for galaxies with ≥ 50 suitable spaxels, or

otherwise of the five spaxels with highest and lowest velocities. The kinematic

major axis is defined as the line going through the maximum and minimum of the

velocity map. The kinematic center is defined as the midpoint on the kinematics

major axis connecting the maximum and minimum of the velocity map. This

method follows the procedures outlined by Wisnioski et al. (2015), and in the

KMOS3D data release and final survey paper by Wisnioski et al., in prep.
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Along the kinematic major axis, we then extract spectra in circular apertures

of diameter 2×FWHM of the model-independent point spread function (PSF)

associated with each individual galaxy. Here, the flux from all spaxels within an

aperture is integrated to create a single spectrum. For the dynamical modelling of

our galaxies (see Section 3.3.2), we repeat this same procedure for each iteration

of the model fitting to properly account for any effects related to this integration

process. We consider a galaxy to be spatially resolved if we can measure its kine-

matics over a total of at least 3×PSFFWHM along the kinematic major axis. We

fit the Hα velocity and velocity dispersion from the resulting spectra, providing

us with the one-dimensional rotation curve vrot(r) · sin(i) and dispersion profile

σ(r), uncorrected for beam-smearing. Uncertainties for each data point are de-

rived using Monte Carlo analysis and have typical values of 6 km s−1 and 10 km

s−1 for the velocity and dispersion values, respectively.

With this methodology we have successfully extracted kinematic profiles for

all 535 KMOS3D Hα−detected galaxies with secure redshifts.

3.3.2 Dynamical modelling with dysmal

As a next step, we consider all galaxies with kinematic profile extractions that

are resolved, a total of 456 SFGs. We further exclude targets for which we de-

tect multiple systems within the IFU, and we eliminate merging or potentially

interacting systems with larger separations based on projected distances, redshift

separations, and mass ratios, as informed through the 3D-HST catalog (Mendel

et al., in prep.). Galaxies that are strongly contaminated by sky features, have

prominent broad line regions, or have very strong outflows affecting the recovery

of the galaxies’ velocity and dispersion, are also excluded. This results in 356

galaxies.

We exploit the dynamical fitting code dysmal (Cresci et al., 2009; Davies

et al., 2011; Wuyts et al., 2016b; Übler et al., 2018) to model our galaxies. dysmal

is a forward-modeling code that allows for a flexible number of components (disk,

bulge, halo, etc.) and free parameters. It accounts consistently for finite scale

heights and flattened spheroidal potentials (Noordermeer, 2008), and it includes

the effects of pressure support on the rotation velocity. It also accounts for the

instrument line spread function, and for beam-smearing effects by convolving with

the two-dimensional PSF of each galaxy.

For our modelling, we assume a velocity dispersion that is isotropic and con-

stant throughout the disk, motivated by deep adaptive optics imaging spec-

troscopy on kpc scales of 35 z = 1 − 2.6 SFGs in the SINS/zC-SINF sample

(Genzel et al., 2006, 2008, 2011, 2017; Cresci et al., 2009; Förster Schreiber et al.,

2018, see also Section 3.5.2). We note that for nearby galaxies radially declining

velocity dispersions have been observed for atomic and molecular gas (van der
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Kruit & Freeman, 1984; Dickey, Hanson, & Helou, 1990; Boulanger & Viallefond,

1992; Kamphuis & Sancisi, 1993; Meurer et al., 1996; Petric & Rupen, 2007; Tam-

burro et al., 2009; Wilson et al., 2011; Caldú-Primo et al., 2013; Mogotsi et al.,

2016; Sun et al., 2018; Koch et al., 2019), where the velocity dispersion usually

reaches a constant level only in the disk outskirts. The observed radial changes

in velocity dispersion are however rarely larger than 10 − 20 km s−1, and such

variations on small scales are likely washed out through the coarser spatial reso-

lution of typical high−z observations (but see Section 3.5.2 for a high-resolution

example).

We create a three-dimensional mass model of each galaxy consisting of an

exponential disk with the effective radius Re adopted from the H−band mea-

surements, with ratio of scale height to scale length q0 = 0.25, and with a central

bulge (Re,bulge = 1 kpc, Sérsic index nS,bulge = 4, e.g. Lang et al., 2014; Tacchella

et al., 2015b). The value of q0 = 0.25 is motivated by the fall-off in the q = b/a

distribution of SFGs at the mass and redshift of our sample (van der Wel et al.,

2014b). For galaxies without an H−band based measurement of the bulge mass

(see Section 3.2; ca. 30%) we use average values of B/T = [0.25; 0.35; 0.45; 0.5]

for total stellar masses of log(M?/M�) = [< 10.8; 10.8 − 11; 11 − 11.4;> 11.4],

following Lang et al. (2014). We fix the physical size of the bulge because indi-

vidual measurements of Re,bulge are very uncertain, in contrast to measurements

of B/T (see Tacchella et al., 2015b). In a population-averaged sense, however,

Re,bulge = 1 kpc is a robust choice (see Lang et al., 2014). We calculate the galaxy

inclination i as cos(i) = [(q2− q2
0)/(1− q2

0)]1/2. The mass model is then rotated to

match the galaxy’s observed orientation in space, convolved with the line spread

function and the PSF of the observation to take into account beam-smearing,

and subsequently pixelated to resemble the spatial sampling of the observation.

We approximate the PSF as a two-dimensional Moffat function that has been

fitted to the standard star observations associated with each KMOS detector and

pointing. For our modelling, we assume that light traces mass.

Using dysmal, we simultaneously fit the one-dimensional velocity and veloc-

ity dispersion profiles of our galaxies in observed space. The best-fitting intrinsic

rotation velocity, vrot, is constrained both through the mass model and the in-

trinsic velocity dispersion via pressure support. We apply Markov chain Monte

Carlo (MCMC) sampling to determine the model likelihood based on compari-

son to the observed one-dimensional kinematic profiles, and assuming Gaussian

measurement noise. To ensure convergence of the MCMC chains, we model each

galaxy with 400 walkers, a burn-in phase of 50-100 steps, followed by a run-

ning phase of another 50-100 steps (>10 times the maximum autocorrelation

time of the individual parameters). For each free parameter, we adopt the me-

dian of all model realizations as our best fit value, with asymmetric uncertainties

corresponding to the 1σ confidence ranges of the one-dimensional marginalized

posterior distributions.
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In order to recover the intrinsic velocity dispersion as best as possible, we

consider a total of three setups with varying free parameters and treatment of

the kinematic profiles:

1. In our first setup, we feed the kinematic profiles obtained as described in

Section 3.3.1, with free parameters being the total dynamical mass in the

range log(Mtot/M�) = [9; 13], and the intrinsic velocity dispersion in the

range σ0 = [5; 300] km s−1. Mtot is the total mass distributed in the three-

dimensional disk plus bulge structure necessary to reproduce the observed

kinematics. Other parameters are fixed, specifically i, Re, and B/T .

2. Due to extinction, skyline contamination, and noise limitations, some galax-

ies display asymmetric kinematic profiles. Therefore, we employ a sym-

metrization technique in a second setup, where the one-dimensional profiles

are folded (for the dispersion profile) or rotated (for the rotation curve)

around the kinematic centre, interpolated onto a common grid, and aver-

aged by calculating the mean at each radial grid point to obtain symmetric

profiles, with uncertainties added in quadrature. Again, free parameters are

Mtot and σ0, allowed to vary within the same ranges as for setup 1.

3. As noted in Section 3.2, Re and B/T of our galaxies are derived from

H−band imaging. It is known that the mass distribution derived from the

H−band light might differ from the corresponding Hα flux profiles (e.g.

Wuyts et al., 2012; Tacchella et al., 2015a; Nelson et al., 2016b; Wilman et

al., in prep.). In particular the dispersion profiles can be sensitive to the

central mass concentration. In the third setup we therefore proceed as in

setup 2, but additionally leave the disk effective radius Re and the bulge-

to-total fraction B/T as free parameters. For Re we use an effectively flat

prior centered on the fiducial value and truncated at ±2.5 kpc, with hard

bounds of Re = [0.1; 20] kpc. For B/T we use an effectively flat prior with

hard bounds of B/T = [0; 1].

Comparing results from the three setups, we generally find good agreement

for both the derived intrinsic dispersions and the dynamical masses, as listed in

Table 3.1. For setup 3, the model-derived (mass/Hα) effective radii are system-

atically higher compared to the H−band measurements by ∼ 0.6 kpc. For the

range of Re ≈ 2− 10 kpc and log(M∗/M�) ≈ 9.2− 11.5 in our kinematic sample,

this is agreement with the results by Nelson et al. (2016b) and Wilman et al., in

prep., who find Re,Hα/Re,H ≈ 1.1 − 1.2 from high-resolution HST observations

and from our full KMOS3D sample, respectively. The average agreement between

the H−band-derived B/T and the model-derived B/T is better, however the

model-derived value is likely more realistic for cases with only a grid-based B/T .
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Table 3.1: Comparison of modelling results from the three setups (S1, S2, S3) described

in Section 3.3.2.

comparison quantity mean std. dev.

S1 – S2 ∆σ0 [km s−1] 0.9 6.0

∆log(Mtot) [dex of M�] -0.01 0.03

S1 – S3 ∆σ0 [km s−1] 0.5 7.4

∆log(Mtot) [dex of M�] -0.06 0.11

S2 – S3 ∆σ0 [km s−1] -1.4 5.3

∆log(Mtot) [dex of M�] -0.04 0.10

S3: H−band – Hαa ∆Re [kpc] -0.6 1.0

∆B/T 0.03 0.14

a Comparison of the fiducial Re and B/T as derived from the

stellar light H−band images (see Section 3.2) to the modelling

results from setup 3, where we fit for Re and B/T as detailed

in Section 3.3.2.

We tested a fourth setup for a subset of our sample, including not only the

bulge and disk components but in addition an NFW halo (Navarro, Frenk, &

White, 1996), with a prior on the expected dark matter halo mass (Moster, Naab,

& White, 2018) and the concentration parameter fixed to the theoretically ex-

pected value (Dutton & Macciò, 2014). The resulting best-fit velocity dispersions

are robust in that they agree within the uncertainties with the results from the

other three setups with a standard deviation of 5.9 km s−1, and there are no

systematic effects. However, the limited field-of-view of KMOS (compared to e.g.

SINFONI) together with our typical integration times of 5− 9 h per target con-

strain our ability to map the faint outskirts of galaxies where the kinematics are

most sensitive to additional dynamical components with a different mass distri-

bution. Therefore, we do not include fits from this fourth setup in our final sample.

3.3.3 The kinematic sample

We inspect the fits from all three model setups to create our best-fit sample. By

default, we choose the fit to setup 1, but if it is bad or poorly constrained, we

consider setups 2 and 3 in this order. Galaxies with poor fits in all setups are

excluded. With this strategy we stay as closely as possible to the original data,

but at the same time do not need to disregard galaxies with one-sided extinction

or skyline contamination that otherwise show good data quality, and we can

choose fits from setup 3 with a more appropriate mass distribution, if necessary.

Finally, we impose a vrot/σ0 ≥ 1 cut to focus on rotation-dominated systems.

Here, vrot is the model intrinsic rotation velocity at 1.38 Re, which is the location
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3. The Evolution of Gas Velocity Dispersion

of the peak of the rotation curve for a Noordermeer disk with nS = 1. Our final

sample consists of 175 galaxies, with 80, 47, and 48 galaxies in the redshift slices

z = 0.6 − 1.1, z = 1.2 − 1.7, and z = 1.9 − 2.6. Of those galaxies, 56 % are

from setup 1, 31 % from setup 2, and 13 % from setup 3. We show examples

of galaxies and their fits from different setup in Appendix 3.7. The averaged

uncertainties on our derived σ0 values cover the range δσ0 = 2− 29 km s−1, with

68th percentiles of δσ0 = 5 − 15 km s−1, and mean values in the three redshift

slices z ∼ 0.9; 1.5; 2.3 of δσ0 = 8; 10; 13 km s−1. Asymmetric uncertainties can be

as high as δσ0 = 37 km s−1.

In Figure 3.1, we compare physical properties of our final sample (blue shad-

ing) to the underlying representative population of star-forming galaxies from

the 3D-HST survey (grey shading) and to the full KMOS3D sample (pink lines).

Compared to our full KMOS3D sample, we have not selected preferentially in

redshift. In terms of stellar mass, both our full KMOS3D sample and our kine-

matic sample include fewer lower mass systems compared to the 3D-HST galaxies,

such that our sample is not mass-complete. This is mainly a consequence of the

KAB . 23 cut. With respect to the main sequence of star-forming galaxies, how-

ever, our kinematic sample follows the distribution of both the full KMOS3D and

the 3D-HST sample. The fraction of systems with effective radii below the popu-

lation average is smaller for our kinematic sample compared to the 3D-HST and

KMOS3D samples. This is due to our conservative definition of resolved kinemat-

ics, where we request measurements over at least 3×PSFFWHM, with the primary

effect of reducing the number of galaxies with Re < 2 kpc. Generally, for very

small systems it is more challenging to recover the intrinsic velocity dispersion,

because the kinematics are often unresolved (but see Wisnioski et al., 2018, for a

detailed study of the kinematics of compact galaxies in the KMOS3D survey). Axis

ratios of our galaxies are homogeneously distributed, following the KMOS3D and

3D-HST parent samples (see also Section 3.3.6).

In Figure 3.2, we show SFR (top) and size (bottom) both as a function of

stellar mass for the 3D-HST parent sample (grey density histogram), the full

KMOS3D sample (purple diamonds), and our final kinematic sample at redshifts

z ∼ 0.9 (blue circles), z ∼ 1.5 (green pentagons), and z ∼ 2.3 (red hexagons).

The figure illustrates the homogeneous coverage of the KMOS3D survey of typ-

ical main sequence galaxies over more than two orders of magnitude in stellar

mass. Similarly, the galaxies from our final sample are distributed along the

main sequence and have typical sizes for their redshifts, with a tendency towards

higher-than-average sizes particularly at z ∼ 2.3. This bias at the highest red-

shifts is introduced through our conservative definition of resolved galaxies, and

ensures robust σ0 measurements even at these high redshifts.
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3.3 Dynamical modelling and sample selection

Figure 3.1: Distribution of physical properties of our kinematic sample (blue shading)

compared to the full KMOS3D survey (pink lines) and the underlying star-forming galaxy

population at 0.6 < z < 2.7 taken from the 3D-HST source catalog (grey shading) with

log(M∗/M�) ≥ 9, KAB < 23 mag, and SFR/M∗ > 0.7/tHubble. We show redshift z

(top left), stellar mass (middle left), axis ratio b/a (middle right), offset from the main

sequence (bottom left), and offset from the mass-size relation (bottom right). The SFR is

normalized to the main sequence as derived by Whitaker et al. (2014) at the redshift and

stellar mass of each galaxy, using the redshift-interpolated parametrization by Wisnioski

et al. (2015). The effective radii as measured from the H−band are corrected to the

rest-frame 5000 Å and normalized to the mass-size relation of SFGs as derived by van

der Wel et al. (2014a) at the redshift and stellar mass of each galaxy. For our kinematic

sample, there is no selection bias in redshift z, axis ratio b/a, or offset from the main

sequence. Due to the KAB < 23 mag cut for our KMOS3D survey, KMOS3D galaxies

have higher stellar masses compared to the 3D-HST sample. Galaxies in our kinematic

sample have on average larger sizes compared to all KMOS3D galaxies as well as the

3D-HST sample. This is due to our conservative definition of resolved kinematics (see

Section 3.3.1).
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Figure 3.2: Location of our kinematic sample in the M∗−SFR (left) and M∗ − Re
(right) planes as compared to all detected KMOS3D galaxies (pink diamonds) and the

underlying star-forming galaxy population at 0.6 < z < 2.7 taken from the 3D-HST

source catalog (greyscale) with log(M∗/M�) ≥ 9, KAB < 23 mag, and SFR/M∗ >

0.7/tHubble. In the left panel, the SFR is normalized to the main sequence as derived

by Whitaker et al. (2014) at the redshift and stellar mass of each galaxy, using the

redshift-interpolated parametrization by Wisnioski et al. (2015). In the right panel, the

effective radii as measured from the H−band are corrected to the rest-frame 5000 Å

and normalized to the mass-size relation of SFGs as derived by van der Wel et al.

(2014a) at the redshift and stellar mass of each galaxy. The galaxies in our kinematic

sample are distributed along the main sequence, and have typical sizes for their redshifts.

However, the size distribution of our targets is biased towards higher-than-average sizes,

also compared to our KMOS3D parent sample. This is introduced through our selecting

only galaxies with resolved kinematics (see Section 3.3.1).

3.3.4 Upper limit cases

Our final sample contains 28 galaxies for which the best-fit σ0 value within the

1σ uncertainties is lower than 10 km s−1. In using the Hα line we are supposedly

tracing emission originating from ionized Hii regions. Due to thermal broadening

(σth ≈ 10 km s−1) as well as the expansion of Hii regions (vex & 10 km s−1),

we expect some minimum velocity dispersion for the average galaxy of σ0 ≈
10− 15 km s−1 (Shields, 1990).

This minimum value is lower than the typical spectral resolution of KMOS: the

effective FWHM spectral resolution at the Hα line measured from the reduced

data of galaxies in our KMOS3D survey is ∆R = λ/∆λ ∼ 3515; 3975; 3860 in

the Y J , H, and K bands, respectively (Wisnioski et al., in prep.). For our

kinematic sample, the corresponding mean spectral resolutions are σinstrumental ∼
37; 32; 34 km s−1. However, as discussed in more detail in Wisnioski et al., in
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prep., within the bands there are variations of the spectral resolution of up to

∆R = 1000 for individual IFUs. It is therefore crucial to measure the associated

spectral resolution at Hα for each individual galaxy from sky or arc lines in order

to reliably recover the velocity dispersion, as it is done for KMOS3D.

Our line fitting procedure can recover intrinsic velocity dispersions that are

a fraction of the instrumental resolution. However, these measurements get in-

creasingly uncertain for decreasing intrinsic velocity dispersions. For galaxies for

which the best-fit σ0 value within the 1σ uncertainties is lower than 10 km s−1, we

adopt as a conservative upper limit the upper 2σ boundary of the marginalized

posterior distribution derived from the MCMC chain. The resulting upper limits

lie between 18 and 53 km s−1.

3.3.5 Validation of point spread function and line spread

function corrections

Before we investigate in detail the redshift evolution of σ0 and its potential drivers,

we want to exclude any residual effects of beam-smearing. Therefore we consider

σ0 as a function of the effective radius, Re, and of the ratio of the outermost

measured data point to the effective radius, Rmax/Re.

We do not find significant correlations with Re or Rmax/Re, as listed in Ta-

ble 3.2 (for Re see also Figure 3.17). We would expect correlations with these

parameters if unresolved rotation enters our measure of velocity dispersion. As

mentioned in Sections 3.3.1 and 3.3.3, we only consider galaxies for our final sam-

ple for which we can extract kinematics over a distance of at least 3×PSFFWHM,

with a mean value of 4× PSFFWHM. However, the extracted kinematics can still

be affected by beam-smearing even in the outer parts of the galaxies. The fact

that we do not find correlations with size implies that our forward-modelling

procedure properly accounts for beam-smearing even for the smaller systems we

include.

Similarly, we test for correlations of σ0 with instrumental resolution and again

we do not find a significant correlation, indicating that both our kinematic fit-

ting code and forward-modelling procedure properly account for the instrumental

line-spread function (see Table 3.2).

87



3. The Evolution of Gas Velocity Dispersion

ρS = −0.04; σ
ρ
  = 0.5

ρS =  0.10; σ
ρ
  = 0.7

ρS = −0.08; σ
ρ
  = 0.6

ρS = −0.01; σ
ρ
  = 0.1

Figure 3.3: Intrinsic velocity dispersion σ0 as a function of axis ratio b/a as measured

from the H−band. Spearman rank correlation coefficients ρS and their significance σρ
are given in the panel for the full sample (black) and the redshift slices at z ∼ 0.9 (blue),

z ∼ 1.5 (green), and z ∼ 2.3 (red). A typical error bar is shown in the top right corner.

We do not find significant correlations between σ0 and b/a for the full sample nor the

individual redshift bins.

Table 3.2: Spearman rank correlation coefficients, ρS, and their significance σρ, be-

tween σ0 and respectively Re, Rmax/Re, σinstrumental, and b/a.

quantity ρS σρ
Re 0.01 1.2

Rmax/Re -0.05 0.7

σinstrumental -0.07 0.9

b/a -0.04 0.5

3.3.6 Vertical vs. radial velocity dispersion

For local galaxies there exists a correlation between galaxy inclination and line-of-

sight velocity dispersion. This is due to the transition from measuring predomi-

nantly vertical velocity dispersion in face-on systems to measuring predominantly

radial velocity dispersion in edge-on systems, with a typical ratio of σz/σr ∼ 0.6

(van der Kruit & Freeman, 2011; Glazebrook, 2013). For instance, Leroy et al.

(2008) find for the THINGS sample that the Hi line-of-sight velocity dispersion

increases for galaxies with i > 60◦ (b/a < 0.5), as does the variation of velocity

dispersion in individual galaxies. Intriguingly, evidence for higher velocity disper-
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sions in more edge-on systems has been found in the higher resolution z ∼ 1− 2

data from the SINS survey (Genzel et al., 2011). For our KMOS3D kinematic sam-

ple, and in agreement with the earlier results by Wisnioski et al. (2015), we do

not find a correlation between σ0 and b/a, as shown in Figure 3.3 and Table 3.2,

possibly due to the coarser spatial resolution of our data.

3.4 Velocity dispersion increases with redshift

Previous studies have shown that the velocity dispersion of star-forming galaxies

increases with redshift (Förster Schreiber et al., 2006; Genzel et al., 2006, 2011;

Weiner et al., 2006; Kassin et al., 2007, 2012; Wisnioski et al., 2012, 2015; New-

man et al., 2013; Simons et al., 2016, 2017; Mason et al., 2017; Turner et al., 2017;

Johnson et al., 2018), albeit with large uncertainties and scatter. In the follow-

ing, we confirm and increase the robustness of this conclusion with the highest

quality IFU data now available with KMOS3D on sub-galactic scales, over a wider

redshift and mass range than previously, and using a sample purely selected on

the basis of disk galaxies near the main sequence at each redshift. We further put

our results into the broader literature context, including multi-phase gas velocity

dispersion and expanding the redshift range to 0 < z < 4.

3.4.1 The KMOS3D velocity dispersions from z = 2.6 to

z = 0.6

In Figure 3.4 we show the intrinsic velocity dispersion of our KMOS3D galaxies in

the kinematic sample as a function of redshift, where upper limits are indicated

as arrows (Section 3.3.4). Our data reflect the known trend of increasing average

velocity dispersions with increasing redshift.

To quantify the evolution, we fit a linear relation in σ0−z space to our best-fit

data.1 We use the Bayesian approach to linear regression by Kelly (2007) which

allows for the inclusion of censored data (i.e., upper limits). The routine requires

symmetric uncertainties, which we calculate as the mean of the asymmetric un-

certainties on σ0 from our MCMC modelling.2 Figure 3.4 shows the derived fit as

1Our results do not depend on this particular functional form, and we list fits in σ0−log(1+z)

and log(σ0)− log(1 + z) space in Appendix 3.8.
2 We assume an uncertainty on z of five times the spectral resolution in each redshift bin,

translating into (negligible) uncertainties of δz ∼ 0.001− 0.002.
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Figure 3.4: Intrinsic velocity dispersion σ0 as a function of redshift and cosmic time

for our kinematic sample, color-coded by redshift. Upper limits are shown as black

arrows. On average, σ0 increases with redshift, but the scatter at fixed redshift is large.

The solid line shows our fiducial linear regression including the upper limits. The dashed

line shows a corresponding fit for which the upper limit cases have been entirely excluded,

resulting in a slightly shallower evolution. Taking the formal fit results for all galaxies

at face value, we find a slightly steeper evolution (dash-dotted line).

a solid line, with average values of σ0 ∼ 31.1; 38.3; 46.7 km s−1 at z ∼ 0.9; 1.5; 2.3.

The corresponding fit is described by the equation

σ0 [kms−1] = (21.1± 3.0) + (11.3± 2.0) · z. (3.1)

We also perform a ‘robust’ fit where the upper limit cases are not included,

but entirely left out. We find a slightly shallower evolution indicated by the

dashed line. If, instead, for these galaxies we do not assign upper limits but take

the formal median of the posterior distribution at face value, we find a slightly

steeper evolution indicated by the dash-dotted line. In Table 3.3 we list our fit

parameters and uncertainties.

The σ0−evolution we derive between z ∼ 0.9 and z ∼ 2.3 is slightly shallower

than what has been reported for the first year of data from the KMOS3D survey

by Wisnioski et al. (2015). In particular, the authors cite σ0 ∼ 24.9 km s−1 at

z ∼ 0.9 and σ0 ∼ 47.5 km s−1 at z ∼ 2.3, i.e. a difference of 6− 7 km s−1 for the

lowest redshift bin. We partly attribute this difference to our treatment of upper

limits. Indeed, if we take the formal best-fit values of the upper limit cases at face
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value, we find through linear regression a value of σ0 ∼ 28.4 km s−1 at z ∼ 0.9 (see

Table 3.3), reducing the difference to ∼ 4 km s−1. This difference is smaller than

the uncertainty on the average σ0 value we derive through our fitting based on

the standard deviation of the posterior distribution of the zero-point and slope,

which is δσ0 = 4.8 km s−1 for the z ∼ 0.9 bin.

3.4.2 Quantification of observational uncertainties and the

scatter in σ0

Figure 3.4 shows substantial scatter in σ0 at fixed redshift with values from σ0 ≈
20 km s−1 to σ0 ≈ 100 km s−1. The question is whether this scatter is physical,

or purely driven by observational uncertainties.

As listed in Table 3.3, our robust best-fit relation has an intrinsic scatter

around the regression with a standard deviation of 10.4 km s−1, suggesting that

part of the scatter is indeed due to real variations of the intrinsic dispersion

values, and not just due to measurement uncertainties. To quantify the intrinsic

variance in each redshift slice, we first calculate the observed variance around

the robust best-fit relation, i.e. the variance of the redshift-normalized dispersion

values excluding upper limits. The redshift-normalized values are defined as

σ0,norm = σ0 − (a+ b · z), (3.2)

with coefficients a and b as listed in Table 3.3. Then, we perform a Monte Carlo

analysis of the scatter due to uncertainties: for each measurement i, we draw

1000 times from a normal distribution N (0, δσ0,i), where δσ0,i is the symmetric

uncertainty of σ0,i derived from our dysmal MCMC modelling, and calculate the

corresponding sample variance per redshift slice.

We calculate this intrinsic variance as

VARint(z) = VARobs(z)− VARδσ0(z), (3.3)

and list the corresponding values in Table 3.4. From this analysis we conclude that

at least ∼40–50% of the observed variance, i.e. ∼60–70% of the observed scatter,

is due to real variations of the intrinsic dispersion values, mostly independent of

redshift. We also show a histogram of the redshift-normalized dispersion values

in Figure 3.5, σ0,norm, in black, together with a histogram of the Monte Carlo

draws from the uncertainty distribution in red. Again, this clearly shows that,

even though the uncertainties are substantial, there is residual scatter in our

σ0 distribution beyond what can be accounted for by uncertainties. Further, if we

focus on the absolute values listed in Table 3.4, the intrinsic variance increases

above z ∼ 1.5 such that at z ∼ 2.3 it has doubled compare to z ∼ 0.9 and z ∼ 1.5.

This suggests that the population of galaxies in our highest redshift bin is more

diverse in ISM conditions compared to the lower-redshift samples.
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3.4 Velocity dispersion increases with redshift

Figure 3.5: Histogram of redshift-normalized intrinsic dispersion values, σ0,norm, in

black, and histogram of the contribution to the scatter from uncertainties based on a

Monte Carlo analysis in red (see Section 3.4.2 for details). To guide the eye we show

simple Gaussian fits to the two distributions as thin curves. There is excess scatter be-

yond what can be accounted for by uncertainties in the distribution of σ0,norm, indicating

that we observe real physical variations of σ0 at fixed redshift (see also Table 3.4).

Table 3.4: Variances of σ0 around the robust best-fit relation: observed variance

VARobs, variance due to measurement uncertainties VARδσ0, and intrinsic variance,

VARint.

measure z ∼ 0.9 z ∼ 1.5 z ∼ 2.3 0.6 < z < 2.6

VARobs [km2 s−2] 171 208 357 237

VARδσ0 [km2 s−2] 87 130 194 133

VARint [km2 s−2] 85 78 163 104

VARint/VARobs 0.50 0.38 0.46 0.44

However, no significant residual trends with σ0,norm and physical properties

related to SFR, mass, size, or rotation velocity remain, as we show in detail in

Figure 3.16 in Appendix 3.9. That means that we cannot identify a physical

source for the scatter in σ0 at fixed redshift. This might be due to the limited

dynamical range of our data, or it could imply that the intrinsic scatter is driven

through the interplay of more than one parameter. Alternatively, the scatter

could be due to real variations of the velocity dispersion on short timescales,

for instance caused by a dynamic driver such as minor mergers or variations in

gas accretion from the cosmic web. This has recently been proposed by Hung
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et al. (2019) based on results from the FIRE simulations, where variations of

intrinsic dispersion are connected to variations of the gas inflow rate on time

scales . 100 Myr.

3.4.3 Comment on the effect of sample selection

The results presented above and in the remainder of the paper are based on

our kinematic sample as defined in Section 3.3.3, i.e. 175 resolved and rotation-

dominated disk galaxies that are well-fit by our dynamical model, without strong

contamination from OH lines or outflows, and without close neighbours. If we in-

stead consider all modelled galaxies from setup 1, about twice as many compared

to the kinematic sample (see Section 3.3.2), we find a similar median evolution of

σ0 ≈ 31; 40; 49 km s−1 at z ∼ 0.9; 1.5; 2.3, however the mean values in the three

redshift slices are systematically higher with σ0 ≈ 34; 45; 58 km s−1. While at all

redshifts the scatter is substantially increased due to galaxies with higher observa-

tional uncertainties or poor fits (VARobs ≈ 730; 850; 1560 km2 s−2), the systematic

increase of the mean values is mostly due to the inclusion of dispersion-dominated

systems (see e.g. Newman et al., 2013, for a discussion of such galaxies).

3.4.4 Multi-phase gas velocity dispersions from z = 4 to

z = 0

To put the evolution of velocity dispersion from z = 2.6 to z = 0.6 based on our

KMOS3D sample into a broader context, we collect measurements reported in the

literature from z ∼ 4 to z = 0, covering 12 Gyr of cosmic history (Table 3.5).

In Figure 3.6 we show again our KMOS3D kinematic sample as clouds of grey

circles, including upper limits as arrows, in the σ0 − z space. The median values

at z ∼ 0.9; 1.5; 2.3, shown as large circles in blue, green, and red, are based on

the best fit plotted in Figure 3.4 and its uncertainties (see Table 3.3). We include

other individual intrinsic dispersion measurements or averages from ionized gas as

colored symbols, and atomic and molecular data as black symbols, which are listed

in Table 3.5. Error bars show the mean uncertainty of individual systems in those

samples. In our comparison, we do not apply any corrections or normalizations in

mass (cf. Wisnioski et al., 2015) which are expected to be small for main sequence

galaxies (Simons et al., 2017).

In Table 3.5 we also list the different techniques used to correct for beam-

smearing effects. As explained in Section 3.3.2 and in the references listed there,

we account for beam-smearing effects through a full forward-modelling of both the

velocity and velocity dispersion fields with a unique PSF model for each galaxy.

Techniques based on only the velocity information, or on grid-based models or

look-up tables, might perform less well in their beam-smearing corrections gen-

erally resulting in overestimated intrinsic velocity dispersions. For slit surveys,
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3.4 Velocity dispersion increases with redshift

systematic offsets towards higher values might be expected due to the sometimes

uncertain galaxy position angle and the resulting difficulties in disentangling ro-

tational and turbulent motions (see Price et al., 2016, 2019, for a discussion and

solution approach). Similarly, the methods chosen to calculate or model the in-

trinsic velocity dispersion might further introduce systematic differences. We note

that recent work by Varidel et al. (2019) on a sample of 20 local SFGs suggests

that complex structure in the gas distribution may further impact the derived

dispersion values.

Figure 3.6 shows generally good agreement of the various σ0 measurements re-

ported in the literature. Comparing slit vs. IFU techniques, the slit measurements

shown here, i.e. data from DEEP2, SIGMA, and MOSDEF, have a tendency to-

wards higher values as compared to the averages derived from our KMOS3D and

SINS/zC-SINF surveys, likely for the reasons discussed above, but agree within

their uncertainty with the IFU data where available. Interestingly, the deep

measurements obtained for individual targets by Genzel et al. (2017), and par-

ticularly for the lensed systems by Livermore et al. (2015); Jones et al. (2010)

at 1.5 < z < 3 also tend towards higher σ0 values, but have moderate values at

z > 3 in agreement with the averages obtained from seeing-limited IFU and slit

spectroscopy by Gnerucci et al. (2011); Turner et al. (2017); Price et al. (2019).

Generally, the statistical power of these time-intensive and challenging individual

measurements is still very limited. Systematic differences in σ0 may arise through

selection effects: for instance, the nearby galaxies from the DYNAMO sample are

selected to be z ∼ 2 analogues and have many physical properties, including

dispersions, similar to high−z SFGs (see Green et al., 2014; White et al., 2017;

Fisher et al., 2019).

In contrast, the molecular and atomic data indicated by black points suggest

somewhat lower values on average, particularly at z ≈ 0. Levy et al. (2018) study

17 nearby, rotation-dominated SFGs in CO and ionized gas. They find consis-

tently higher rotation velocities (<vCO − vHα>≈ 14 km s−1) and lower velocity

dispersions (<σCO−σHγ>≈ −17 km s−1) for the molecular gas as compared to the

ionized gas (see also Cortese, Catinella, & Janowiecki, 2017, for a comparison at

z ∼ 0.2). At high redshift, there exist only few multi-phase measurements of the

intrinsic gas velocity dispersion. Detailed observations reveal comparable values

for ionized and molecular gas (Genzel et al., 2013; Übler et al., 2018), however

the uncertainties are larger such that differences like those found locally could be

washed out.
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3. The Evolution of Gas Velocity Dispersion

Figure 3.6: Intrinsic velocity dispersion σ0 as a function of redshift and cosmic time

for measurements from the literature at 0 < z < 4 (see Table 3.5). Our kinematic

sample is shown in grey, with colored averages. Other individual and average ionized

gas measurements are shown in color, as indicated in the legend. Molecular and atomic

gas measurements are shown in black. For averages, the error bar shows the typical

uncertainty of individual measurements in the sample.
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 ionized gas averages

 fiducial KMOS
3D

 atomic+molecular gas

Figure 3.7: Intrinsic velocity dispersion σ0 as a function of redshift and cosmic time

for measurements from the literature at 0 < z < 4 (see Table 3.5). Averages from

selected ionized gas measurements are shown in red. Local atomic and molecular aver-

ages and individual high−z molecular gas measurements are shown in black. Based on

these data, we show best-fit relations (see Table 3.6) for molecular gas (grey dashed)

and ionized gas (red solid), as well as the best fit derived solely on our KMOS3D data

(red dash-dotted, see Section 3.4.1 and Table 3.3). Confirming the trend seen in our

kinematic sample for the redshift range 0.6 < z < 2.6, σ0 increases with redshift over

a time span of almost 12 Gyr. In the local Universe, velocity dispersions measured

from molecular or atomic gas are lower than corresponding measurements from ionized

gas, by ca. 10–15 km s−1. The slopes derived from the molecular data and from our

KMOS3D sample are almost identical, suggesting an analogous redshift evolution of the

different gas phase velocity dispersions.

97



3. The Evolution of Gas Velocity Dispersion
T
a
b
le

3
.5
:

L
it

er
a
tu

re
d
a
ta

o
f

th
e

0
<
z
<

4
ve

lo
ci

ty
d
is

pe
rs

io
n

m
ea

su
re

m
en

ts
sh

o
w

n
in

F
ig

u
re

3
.6

.

S
a
m

p
le

/
R

e
fe

re
n
c
e
s

z
P

ri
m

a
ry

T
a
rg

e
t

L
in

e
N

in
c
lu

d
e
d

In
st

ru
m

e
n
t/

M
e
th

o
d

B
S

c
o
rr

e
c
ti

o
n

C
o
m

m
e
n
t

o
n

S
e
le

c
ti

o
n

K
D

S
3
.8

−
3
.1

[O
ii

i]
1
4

K
M

O
S
/
IF

U
(1

)
th

e
ir

‘R
D

’
M

O
S
D

E
F

3
.8

−
1
.4

H
α

,
H
β

,
[O

ii
i]

1
0
8

M
O

S
F

IR
E

/
sl

it
(2

)
th

e
ir

‘r
e
so

lv
e
d
/
a
li
g
n
e
d
’

A
M

A
Z

E
-L

S
D

3
.7

−
3
.1

[O
ii

i]
1
1

S
IN

F
O

N
I/

IF
U

(1
)

th
e
ir

‘r
o
ta

ti
n
g
’

L
iv

e
rm

o
re

e
t

a
l.

(2
0
1
5
)

3
.7

−
1
.3

H
α

,
H
β

8
S
IN

F
O

N
I+

N
IF

S
+

O
S
IR

IS
/
IF

U
+

le
n
si

n
g

(3
)

th
e
ir

‘D
is

k
’

w
it

h
v
r
o
t
/
σ
0
>

1

K
M

O
S
3
D

2
.6

−
0
.6

H
α

1
7
5

K
M

O
S
/
IF

U
(2

)
se

e
S
e
c
ti

o
n

3
.3

.3
S
IN

S
/
z
C

-S
IN

F
2
.5

−
1
.4

H
α

2
5

S
IN

F
O

N
I/

IF
U

+
A

O
(2

)
se

e
S
e
c
ti

o
n

3
.3

.3
S
IG

M
A

2
.5

−
1
.3

H
α

,
[O

ii
i]

4
9

M
O

S
F

IR
E

/
sl

it
(4

)
G

e
n
z
e
l

e
t

a
l.

(2
0
1
7
)

2
.4

−
0
.9

H
α

6
K

M
O

S
+

S
IN

F
O

N
I/

IF
U

+
A

O
(2

)
se

e
S
e
c
ti

o
n

3
.3

.3
M

A
S
S
IV

1
.6

−
0
.9

H
α

,
[O

ii
i]

5
3

S
IN

F
O

N
I/

IF
U

(1
)

D
E

E
P

2
1
.2

−
0
.1

H
α

,
H
β

,
[O

ii
],

[O
ii

i]
5
4
4

D
E

IM
O

S
/
sl

it
(4

)
K

R
O

S
S

1
.0

−
0
.8

H
α

1
7
1

K
M

O
S
/
IF

U
(4

)
th

e
ir

‘s
ig

m
a
0

fl
a
g
=

O
’

w
it

h
v
2
.2
/
σ
0
>

1
D

Y
N

A
M

O
∼

0
.1

H
α

2
5

S
P

IR
A

L
+

W
iF

e
S
/
IF

U
(1

)
th

e
ir

‘R
D

’
G

H
A

S
P

lo
c
a
l

H
α

1
5
3

sc
a
n
n
in

g
F
a
b
ry

-P
e
ro

t
(1

)
Ü
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3.4 Velocity dispersion increases with redshift

3.4.5 Multi-phase gas velocity dispersions evolve similarly

with redshift

We quantify the difference between the atomic+molecular and the ionized gas ve-

locity dispersions over cosmic time in Figure 3.7. Fitting a robust linear relation3

to the average local and individual high−z measurements of atomic+molecular

gas, we find a zero point of a = 10.9±0.6 km s−1 and a slope of b = 11.0±2.0 km

s−1 (grey dashed line). For the ionized velocity dispersion, we choose in addi-

tion to our own averages from the KMOS3D and SINS/zC-SINF surveys the other

large KMOS surveys, KROSS and KDS, and the local average from the GHASP

survey. This choice maximizes the redshift range and avoids systematic effects

at z > 0 through different instrumentation. We find a higher zero-point offset

of a = 23.3 ± 4.9 and a somewhat shallower slope of b = 9.8 ± 3.5, while the

extrapolation of our best fit to the KMOS3D data only gives a = 21.1 ± 3.0 and

b = 11.3± 2.0 (Table 3.3). Fixing the slope to that of the atomic+molecular fit,

the zero point shifts in between these measurements, with a = 22.8. In Table 3.6

we list our fit parameters and uncertainties.

Table 3.6: Results and standard deviations from the robust least-squares linear regres-

sion fits of the form σ0/km s = a+ b · z to the data sets shown in Figure 3.7.

sample a [km s−1] b [km s−1]

ionized gas (best averages) 23.3±4.9 9.8±3.5

... fixing slope to atomic+molecular 22.8 11.0 (fixed)

KMOS3D incl. upper limits (Table 3.3) 21.1±3.0 11.3±2.0

atomic+molecular gas 10.9±0.6 11.0±2.0

This suggests that the redshift evolution of the intrinsic velocity dispersion in

all gas phases is quite comparable, but their normalization differs. Typical ther-

mal broadening of the atomic/molecular and the ionized gas due to their char-

acteristic temperatures are ∼ 5 km s−1 and ∼ 10 km s−1, respectively, meaning

the measured velocity dispersions are super-thermal even in the local Universe.

Part of the difference between atomic+molecular and ionized gas velocity dis-

persions can be explained through the expansion of Hii regions from which the

ionized emission originates, with typical values of 10− 25 km s−1 (Shields, 1990),

accounting for another ∼ 5− 15 km s−1 when added in quadrature. In combina-

tion, these effects can explain the difference in the local normalizations of the gas

phase velocity dispersions, as well as their average offset of ∼ 10− 15 km s−1 at

fixed redshift.

Clearly, more studies of high−z molecular kinematics are warranted to cor-

roborate our result, which potentially has important implications for work on

3 We use the least trimmed squares method by Cappellari et al. (2013).
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3. The Evolution of Gas Velocity Dispersion

ionized gas kinematics.

3.4.6 Comments on thin vs. thick disk evolution

Figure 3.7 shows a smooth evolution of velocity dispersion with redshift over the

past ∼ 12 Gyr, likely connected to decreasing accretion rates and gas fractions

with cosmic time (see Sections 3.5.3 and 3.5.4). This evolution suggests that

also the typical thickness of the young, star-forming gas disk is lower for lower

redshift SFGs, as has also been found in state-of-the-art cosmological simulations

(Pillepich et al., 2019).

This is potentially interesting in the context of Galactic archeology: early

research of the vertical structure of our Milky Way found evidence for two main,

distinct exponential disks with scale heights of ∼ 300 pc and ∼ 1450 pc (Gilmore

& Reid, 1983). This was confirmed through later work on the Milky Way as

well as nearby edge-on galaxies (e.g. Dalcanton & Bernstein, 2002; Yoachim &

Dalcanton, 2006; Jurić et al., 2008). The thick disk components have been found

to be generally older (> 6 Gyr) than the thin disks, raising the question of

distinct formation periods. Naturally, observations of the typically thick high−z
disks also prompted the question of the connection between these early thick disks

and modern disk structure (e.g. Elmegreen & Elmegreen, 2006).

To explicitly address the question of distinct formation periods of thin vs.

thick disks, we make the simple assumption of a step function describing σ0 of

the ionized gas below and above z = 1. Unsurprisingly, the resulting fit with

σ0 = 28 km s−1 at z < 1 and σ0 = 42 km s−1 at z > 1 is not a good description

of the compiled data, with a goodness of fit that is a factor ∼ 20 worse compared

to the linear fit shown in Figure 3.7.

Our results suggest that in the absence of recent major mergers it should

depend primarily on the star-formation history (connected to gas accretion) if

present-day galaxies have distinct disks of different age and scale height, or if

there is rather one component with a vertical age gradient (see also Leaman

et al., 2017). This interpretation is in agreement with the recent work by Bovy

et al. (2012, 2016); Rix & Bovy (2013) who argue based on elemental abundances

that the Milky Way has a continuous range of different scale heights, with no sign

of a thin-thick disk bimodality. Simulations by e.g. Burkert, Truran, & Hensler

(1992); Aumer, Binney, & Schönrich (2016); Aumer & Binney (2017); Grand

et al. (2016) support this picture.

However, in this context it is important to remember that based on stellar

and gas masses of our galaxies and results from co-moving number density stud-

ies (e.g. Brammer et al., 2011), only the lower mass, lower redshift systems in

our sample may evolve into present-day disk galaxies, while the galaxies that

have high baryonic masses already at high redshift will most likely evolve into
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3.5 What drives the gas velocity dispersion?

present-day’s early-type galaxies. With our data, we do therefore not necessarily

track the change in star-forming scale height over time for progenitor-descendant

populations, but rather the change in average star-forming scale height of main

sequence galaxies at different epochs.

3.5 What drives the gas velocity dispersion?

3.5.1 Galaxy-scale velocity dispersion correlates with gas

mass and SFR properties

The redshift dependence of σ0 suggests that one or more physical galaxy proper-

ties that are themselves redshift-dependent drive velocity dispersion. Consistent

with previous findings in the literature (e.g. Johnson et al., 2018), we find several

properties positively correlating with σ0, particularly, SFR, SFR surface den-

sity ΣSFR, gas and stellar mass, and their surface densities. We list direct and

residual (after correcting for redshift dependence) Spearman rank correlations in

Table 3.7 and show plots for several quantities in Figure 3.17 in Appendix 3.9. In

Table 3.7, we also list SFRHα and ΣSFR,Hα derived from the Hα fluxes (see Wis-

nioski et al., in prep.), tracing the more recent star formation history, but find

no appreciable difference in correlations compared to our fiducial SFR properties

(see Section 3.2).

We emphasize that due to the limited dynamical range covered by the individ-

ual redshift slices, we do not find significant correlations of σ0 within one redshift

slice with any of the above properties, such that we cannot readily connect the

scatter in σ0 at fixed redshift to a physical driving source. Similarly, if we remove

the redshift dependence of σ0 by normalizing with our best-fit relation, we do not

find any significant correlations of the normalized σ0 with physical properties (see

Section 3.4.2 and Figure 3.16).

Over the full redshift range covered by our KMOS3D survey, SFR and gas

mass correlate most strongly and significantly with intrinsic velocity dispersion.

In order to identify which of these two physical quantities is most directly tied

to the elevated velocity dispersions at high redshift, we discuss in the following

sections the physical mechanisms through which quantities such as SFR and gas

mass may affect velocity dispersion, namely stellar feedback and gravitational

instabilities, and we comment on the tentative connection to AGN feedback for

individual galaxies.
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Table 3.7: Spearman rank correlation coefficients ρS, and their significance σρ, between

σ0 and different galaxy properties for our robust sample before and after accounting for

the redshift dependence of σ0 .

σ0(z) σ0,norm

quantity ρS σρ ρS σρ
z 0.33 4.0 – –

SFR 0.38 4.6 0.18 2.1

ΣSFR 0.32 3.9 0.06 1.0

Mgas 0.38 4.6 0.19 2.3

Σgas 0.31 3.8 0.07 0.9

M∗ 0.26 3.1 0.20 2.4

Σ∗ 0.26 3.1 0.14 1.6

Mbar 0.32 3.9 0.20 2.4

Σbar 0.30 3.6 0.12 1.5

∆MS – – 0.15 1.8

∆MR – – -0.05 0.6

3.5.2 Stellar feedback

Turbulence-driving can be provided through thermal and momentum feedback

from massive stars. Correlations between intrinsic velocity dispersion and SFR

properties have previously been reported in the literature (e.g. Dib, Bell, & Burk-

ert, 2006; Lehnert et al., 2009, 2013; Green et al., 2010, 2014; Moiseev, Tikhonov,

& Klypin, 2015; Johnson et al., 2018), and often invoked the argument for stellar

feedback-driven turbulence.

From a theoretical point of view, feedback-driven turbulence is mainly gener-

ated through momentum injection from supernovae into the ISM (contributions

to the momentum injection from e.g. expanding Hii regions or stellar winds are

minor, see Mac Low & Klessen, 2004; Ostriker & Shetty, 2011). Feedback-driven

turbulence should therefore primarily depend on the decay rate of turbulence, the

momentum injected per supernova, and the supernova rate, where the latter is

the quantity connecting turbulence to SFR and ΣSFR. Ostriker & Shetty (2011)

and Shetty & Ostriker (2012) derive a weak dependence of σ0 on star formation

rate surface density. Even considering the case where stellar feedback maximally

vertically stabilizes the disk, the resulting velocity dispersions are low (Equation

(22) by Ostriker & Shetty, 2011):

σz = 5.5 kms−1 · fp
(1 + χ)1/2

(
εff(ρ0)

0.005

)(
p∗/m∗

3000 kms−1

)
. (3.4)

Here, fp is a factor characterizing the evolution of turbulence, with fp = 1 for

strong dissipation, and fp = 2 for weak dissipation. χ is a measure of the impor-

tance of the gas disk’s self-gravitational weight, and is below 0.5 for marginally
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Figure 3.8: Intrinsic local velocity dispersion σ0 as a function of radius for galaxy

Q2346-BX482, measured from individual spaxels (circles) and color-coded by local ΣSFR

(adopted from Figure A1 by Genzel et al., 2011). Larger diamonds show the running

median. The grey dashed line shows the best-fit intrinsic velocity dispersion from kine-

matic modelling where σ0 is assumed to be constant. The inset in the top right corner

shows the projected map of Hα flux, featuring the bright star-forming clump to the

South-East, adopted from Figure 16 by Förster Schreiber et al. (2018). There is no

correlation between local ΣSFR and local velocity dispersion.

stable disks, such that the first factor is in the range ∼ 0.8−2. The mean star for-

mation efficiency εff(ρ0) is assumed to be approximately constant with a fiducial

value of εff(ρ0) = 0.005. p∗/m∗ = 3000 km s−1 is the fiducial value of momen-

tum injection per supernova (but see e.g. Fisher et al., 2019, for arguments for a

z-dependent p∗/m∗). As a result, the gas velocity dispersion is expected to vary

only mildly due to supernova explosions.

Similar results are obtained by other theoretical models investigating stellar

feedback as the sole driver of the turbulence in the ISM, for instance the mod-

els discussed by Dib, Bell, & Burkert (2006); Joung, Mac Low, & Bryan (2009);

Kim, Ostriker, & Kim (2013). In fact, the resulting velocity dispersions in the

ISM do not even seem to depend much on the supernova rate. Rather, very high

supernova rates might create super-bubble structures that, instead of stirring the

ambient medium, will eventually blow out of the galactic disk, thus transferring

energy and metals into the circum-galactic medium (Mac Low, McCray, & Nor-

man, 1989; Joung, Mac Low, & Bryan, 2009; Baumgartner & Breitschwerdt, 2013;
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Q1623−BX502

Q2343−BX610

Q2346−BX482

D3a−6004

D3a−15504

GMASS−2363

zc403741

zc405501

zc407302

zc410041

Figure 3.9: Intrinsic local velocity dispersion σ0 as a function of star formation

rate surface density ΣSFR, measured from individual spaxels in ten galaxies from the

SINS/zC-SINF survey adaptive optics follow-up. We select spaxels with δσ0 < 20 km

s−1, S/N(Hα)>5, and exclude the regions of three galaxies that are affected by AGN

feedback. Colored circles correspond to data from the different galaxies as listed in the

legend, and larger diamonds show the median values. The black dashed line shows

the linear regression to the individual spaxel data, with fit uncertainties shown as grey

shading, as given in the bottom of the figure

Kim & Ostriker, 2018). This is an important result because at higher redshift

also the supernova rate is higher. However, other work indicates that not only

the rate but also the location of supernovae is crucial for the efficiency of stellar

feedback turbulence driving: considering peak driving, where supernovae go off

in the densest ISM regions (e.g. their birth clouds), Gatto et al. (2015) find lo-

cal Hα velocity dispersions of up to 60 km s−1 for gas mass surface densities of

Σgas ∼ 100 M� pc−2. This is similar to high−z conditions and therefore suggests

that stellar feedback can more easily maintain elevated velocity dispersions at

higher redshift. Also, some idealized simulations of isolated galaxies are able to

produce velocity dispersion of ∼ 50 km s−1 from strong stellar feedback (Hopkins,

Quataert, & Murray, 2011).

If stellar feedback is an important factor in powering turbulence, then not only

would the (observed) global scaling of velocity dispersion with SFR or ΣSFR be

expected, but particularly locally elevated velocity dispersion in regions of high

star formation rate density (cf. Gatto et al., 2015). We exploit the high-resolution
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data from the SINS-zC/SINF AO survey (Förster Schreiber et al., 2018) to study

local correlations between ΣSFR and σ0. In Figure 3.8 we show the local intrinsic

velocity dispersion per spaxel of galaxy Q2346-BX482 as a function of radius,

color-coded by ΣSFR (adopted from Figure A1 by Genzel et al., 2011). The local

intrinsic velocity dispersion is derived from the observed dispersion map, after

correcting all instrumental and beam-smearing effects through modelling. In the

vicinity of the giant star-forming clump ∼ 6.5 kpc South-East from the center

(inset), no elevated velocity dispersion can be registered.

In Figure 3.9 we show the local intrinsic velocity dispersion per spaxel as a

function of local ΣSFR for ten SINS/zC-SINF galaxies. The velocity dispersions

of these galaxies with a mean redshift of z ∼ 2.2 have somewhat higher values

compared to our KMOS3D sample, consistent with their higher average SFR and

ΣSFR. Only two of these galaxies show an intrinsic scaling of σ0 with ΣSFR.

The best-fit power-law relation derived from this sub-galactic, high-quality data

shows a very weak dependence of local σ0 on ΣSFR,4 confirming the earlier findings

by (Genzel et al., 2011, see also Patŕıcio et al., 2018; Tadaki et al., 2018; but

Swinbank et al., 2012a). Similar results are found for both ionized gas (Varidel

et al., 2016; Zhou et al., 2017) and molecular gas (Caldú-Primo & Schruba, 2016)

in local galaxies. For atomic gas, several studies of local galaxies find correlations

with SFR or ΣSFR that are too weak to explain the turbulent velocities in the

galaxy outskirts (e.g. Tamburro et al., 2009; Ianjamasimanana et al., 2015; Utomo,

Blitz, & Falgarone, 2019).

In summary, while global σ0 correlates with SFR properties, we do not find

a direct connection between high, local star-formation activity and elevated σ0,

as suggested by some simulations. Generally, however, simulations and models

agree that stellar feedback is able to maintain galaxy-wide turbulence on scales

of 10-20 km s−1.

3.5.3 Marginally Toomre-stable disks

Turning to gravity-driven turbulence, an empirical model to describe the redshift

evolution of velocity dispersion is that of marginally stable disks, where (non-

interacting) galaxies are subject to gas replenishment from the halo or the cosmic

web, and to gas loss through either outflows or star formation (Noguchi, 1999;

Silk, 2001; Immeli et al., 2004a,b; Förster Schreiber et al., 2006; Elmegreen et al.,

4This finding does not extend to nuclear regions, since more complex circum-nuclear kine-

matic structure caused by a combination of nuclear outflows, radial inflow and bulge induced

rotation in a number of cases generates unresolved velocity fields that appear as an increased

velocity dispersion. To explore its true nature will require < 0.1′′ IFU spectroscopy on 30 m

class telescopes.
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2007; Genzel et al., 2008; Dekel et al., 2009; Dekel & Burkert, 2014; Bouché

et al., 2010; Krumholz & Burkert, 2010; Krumholz & Burkhart, 2016; Cacciato,

Dekel, & Genel, 2012; Davé, Finlator, & Oppenheimer, 2012; Lilly et al., 2013;

Saintonge et al., 2013; Rathaus & Sternberg, 2016; Leaman et al., 2017). In

this framework, the (in)stability of the disk directly corresponds to the level of

turbulence in the interstellar medium, where turbulence is fed through external

(accretion) and internal (radial flows, clump formation) events via the release of

gravitational energy, creating a self-regulation cycle to maintain marginal stability

(Dekel et al., 2009; Genel, Dekel, & Cacciato, 2012; but see Elmegreen & Burkert,

2010).

For a snapshot in time that represents the observation of a high−z galaxy,

this equilibrium situation is captured through the Toomre Q parameter (Toomre,

1964), where generally Q < Qcrit ≈ 1 indicates gravitational instability. Consid-

ering the one-component approximation for a gas disk, we can write (Binney &

Tremaine, 2008; Escala & Larson, 2008; Dekel, Sari, & Ceverino, 2009)

Qgas =
σ0κ

πGΣgas

=
σ0

πGΣgas

avc(r)

r
. (3.5)

Here, κ is the epicyclic frequency, a is a constant taking values of 1 and
√

2

for Keplerian and constant rotation velocity, respectively, and vc is the circular

velocity tracing the dynamical mass.

The framework of Toomre-(in)stability generally refers to the linear regime,

where perturbations are assumed to be axisymmetric. The galaxies studied here,

however, are in the non-linear limit where the ISM is turbulent and many stars

have formed (Mandelker et al., 2014). Inoue et al. (2016) investigated the stability

of simulated high−z disks, finding that large parts of the disks are in the non-

linear regime withQ > 1−3. This result however depends on gas fraction, which is

generally too low in the simulations. Indeed, for those simulated galaxies with the

highest gas fractions (fgas ∼ 0.4, still lower than for typical z ∼ 2 SFGs), Inoue

et al. (2016) find values more compatible with observational findings. Meng,

Gnedin, & Li (2019) argue in recent work that the Toomre−Q linear stability

analysis is still applicable to simulated high−z galaxies, with values of Q ∼
0.5− 1 in gas-rich regions (see also Behrendt, Burkert, & Schartmann, 2015, for

simulations of isolated gas-rich disks).

Generally, for a multi-component system an effective Q parameter has to be

computed, Q−1
eff =

∑
iQ
−1
i , where i refers to e.g. stars or different gas phases (e.g.

Wang & Silk, 1994; Escala & Larson, 2008; Genzel et al., 2011; Romeo & Falstad,

2013; Obreschkow et al., 2015, and references therein). Simulations of galaxy

formation support a picture where Qeff ∼ 1 for high−z galaxies, and Qeff ∼ 2− 3

for low−z galaxies where the increasing impact of a stellar disk increases Qcrit

(Hohl, 1971; Athanassoula & Sellwood, 1986; Bottema, 2003; Immeli et al., 2004a;

Kim & Ostriker, 2007; Agertz et al., 2009; Agertz, Teyssier, & Moore, 2009; Aumer

106



3.5 What drives the gas velocity dispersion?

Figure 3.10: Gas-to-baryonic mass fraction fgas as a function of Qgas, color-coded

by redshift. The arrows indicate the average value of Qgas at z ∼ 0.9 (blue), z ∼ 1.5

(green), and z ∼ 2.3 (red). fgas and Qgas are weakly anti-correlated with Spearman rank

correlation coefficient ρS = −0.30 and significance σρ = 3.6. Higher−z galaxies with

higher gas fractions reach values below Qgas = 1.

et al., 2010; Ceverino, Dekel, & Bournaud, 2010; Hopkins, Quataert, & Murray,

2011; Genel et al., 2012; Danovich et al., 2015). For gas-rich, thick disks instead

Qcrit decreases, such that for z & 1 galaxies values Qcrit ≈ 0.7 are expected (e.g.

Goldreich & Lynden-Bell, 1965; Kim & Ostriker, 2007; Wang et al., 2010; Romeo

& Agertz, 2014; Behrendt, Burkert, & Schartmann, 2015).

It has been shown that the gas-rich, star-forming disks observed at high red-

shift are at most marginally stable to gravitational fragmentation (Genzel et al.,

2011; see also Swinbank et al., 2017; Johnson et al., 2018; Tadaki et al., 2018; and

Fisher et al., 2017 for local high−z analogues), and Wisnioski et al. (2015) have

shown that the redshift evolution predicted by Equation (3.5) for Q ∼ 1 gas disks

is in remarkable agreement with observations (see also e.g. Green et al., 2014;

Turner et al., 2017; White et al., 2017; Johnson et al., 2018). In addition, Gen-

zel et al. (2011) have shown that on sub-kpc spatially resolved scales, values of

Q ∼ 0.2 can be reached in regions of star-forming clumps, possibly demonstrating

gravitational fragmentation at work.

We calculate Qgas for our galaxies following Eq. (3.5) by evaluating the circular

velocity at vc(r = 1.38Re). As mentioned in Section 3.3.3, this radius corresponds

to the theoretical peak of a Noordermeer disk with nS = 1, such that the local
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gradient of the rotation curve is flat, leading to a =
√

2. The circular velocity

vc is computed from the model rotation velocity corrected for pressure support

from the turbulent motions (Burkert et al., 2010, 2016; Wuyts et al., 2016b). In

Figure 3.10 we show fgas = Mgas/Mbar, with Mbar = M∗ + Mgas, as a function

of Qgas, color-coded by redshift as in Figure 3.4. Albeit large scatter, an anti-

correlation between fgas and Qgas is evident, such that galaxies with higher gas

fractions have lower Q (Spearman rank correlation coefficient ρS = −0.30 with

significance σρ = 3.6). This is in agreement with the theoretical prediction that

SFGs that are more gas rich have lower Q values. The average Qgas for our

galaxies in the redshift bins z ∼ 0.9; 1.5; 2.3 is Qgas = 1.2; 0.7; 0.5 (arrows in

Figure 3.10). Our results on the average offset of ionized vs. atomic+molecular

gas from Section 3.4.5 suggest that the cold gas tracing the bulk of the gas mass

might have lower velocity dispersion by 10−15 km −1. This would lower the Qgas

values by a factor ∼ 1.2− 2. While our calculation of the Toomre−Q parameter

is simplified through the omission of the stellar component, this suggests that

thick high−z disks with high gas fractions of & 50 % can be marginally stable

even down to Qgas < 0.7.

3.5.4 Combining feedback and gravity

While gravitational instabilities are likely important drivers of the elevated veloc-

ity dispersions at z > 1, the contribution from stellar feedback-driven turbulence

of the order of 10 − 20 km s−1 could become comparable or even dominant for

lower−z, low−σ0 galaxies. Therefore, one must consider both processes to get a

complete picture.

The combination of stellar feedback and gravitational processes for turbulence

driving has recently been investigated through the analytic model for structure

and evolution of gas in galactic disks by Krumholz et al. (2018), who combine pre-

scriptions for star formation, stellar feedback, and gravitational instabilities into

a unified ‘transport+feedback’ model to explain the range of observed dispersions

from z = 3 to the present day. In their model, gas is in vertical hydrostatic equi-

librium and energy equilibrium. This model assumes (isolated) rotating galactic

disks built of gas and stars within a quasi-spherical dark matter halo over a wide

redshift range. Disks are stable or marginally stable to gravitational collapse,

regulated by mass transport through the disk. The gas is in vertical hydrostatic

equilibrium, and in energy equilibrium such that losses through the decay of tur-

bulence are balanced by energy input into the system via stellar feedback and the

release of gravitational energy via mass transport through the disk.

Consistent with the discussion above, Krumholz et al. (2018) show in their

model that stellar feedback may maintain velocity dispersions of ∼ 10 km s−1,

creating a dispersion floor, while gravitational instabilities, for instance created

through radial mass transport through the disk, are necessary to constantly drive
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velocity dispersions beyond σ0 ∼ 20 km s−1 for moderate star-formation rates

(cf. also Figure 4 by Krumholz et al., 2018). They make a prediction for galactic

gas velocity dispersion and its correlation with SFR. Particularly, they show that

(see their Equation (60))

SFR =
0.42

πG

1

Q
· fgasv

2
circσ0, (3.6)

where we have substituted appropriate constants for high−z galaxies following

Krumholz et al. (2018). Specifically, we adopt a rotation curve slope of β = 0,

an offset between resolved and unresolved star formation law normalizations of

φa = 3, a fraction of ISM in the star-forming phase fsf = 1, a ratio of total

pressure to turbulent pressure at the midplane of φmp = 1.4, a star-formation

efficiency per free-fall time of εff = 0.0015, an orbital period of torb,out = 200 Myr,

and a maximum star-formation time-scale of tsf,max = 2 Gyr.

We make two adjustments to our data to properly compare to the model:

here, and for all of Section 3.5.4, we subtracted 15 km s−1 in quadrature from

our intrinsic dispersion values, denoted by σ0,15, to ensure consistency with the

theoretical model (see Krumholz & Burkhart, 2016 and Krumholz et al., 2018,

Appendix B). These 15 km s−1 represent the average combination of thermal

motions and expansion of Hii regions that enter our ionized gas velocity dispersion

measurement (see also Sections 3.3.4 and 3.4.5). We also modify our gas mass

fractions: the corresponding parameter used by Krumholz et al. (2018) describes

an effective gas fraction at the mid plane. This has typically higher values than

our gas fraction fgas because of the larger stellar scale heights compared to the

gas scale heights. For the comparison here we adopt a scaling factor of 1.5 for

our gas mass fractions, motivated by measurements in the Solar neighbourhood

(McKee, Parravano, & Hollenbach, 2015; Krumholz et al., 2018; M. Krumholz,

private communication).

To compare the model prediction from Equation (3.6) to our data, we group

correlated quantities and separate the star formation properties SFR and fgas

from the kinematic tracers vcirc and σ0. We show the result for our kinematic

sample in Figure 3.11, specifically SFR divided by gas fraction as a function of

circular velocity squared times intrinsic velocity dispersion. Figure 3.11 reveals a

clear trend between the displayed quantities, with a Spearman rank correlation

of ρS = 0.57 with significance σρ = 6.8. We also show model predictions from

Krumholz et al. (2018) as quoted in Equation (3.6) for three values of Q. There

is a tendency for higher−z galaxies to have a predicted Q . 1, consistent with

our results presented in Figure 3.10. Generally, however, our galaxies scatter

around Q = 1 at all redshifts. This suggests that SFGs self-regulate at all times

such that the population of SFGs evolves roughly along lines of constant Q. This

result is largely independent from the specific choices of parameters such as φa
or f, which will only affect the average Q value. Note that the above corre-

lation between SFR and velocity dispersion is predicted for both the combined
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Figure 3.11: SFR divided by gas fraction as a function of circular velocity squared

times intrinsic velocity dispersion for our kinematic sample, color-coded by redshift. The

lines show predictions from the ‘transport+feedback’ model by Krumholz et al. (2018)

for different values of Q (Equation (3.6)). We find a strong correlation between the

displayed quantities (ρS = 0.57; σρ = 6.8), where galaxies scatter around constant Q,

suggesting dominant self-regulation processes in our galaxies at all redshifts.

‘transport+feedback’ model and a model without feedback, but not for models

lacking the ‘transport’ component accounting for gravitational instabilities (see

also Krumholz & Burkhart, 2016).

In the following, we now investigate separately changes of circular velocity

and gas fraction in the σ0−SFR parameter space. In Figure 3.12 we show for

our kinematic sample the intrinsic velocity dispersion as a function of SFR, color-

coded by rotation velocity. As expected from the main sequence and Tully Fisher

relation (Tully & Fisher, 1977), which is in place for our data set at all redshifts

(Übler et al., 2017), our data display a gradient such that rotation velocity on

average increases with increasing SFR. As lines we plot the high−z model by

Krumholz et al. (2018), but we modify it such that we vary the galaxy circular

velocity from vcirc = 50 km s−1 to vcirc = 450 km s−1 in order to appropriately

cover the range of observed rotation velocities in our kinematic sample. In the

model framework, stellar feedback creates sustains a dispersion floor, represented

through the horizontal regime of the model lines. The predicted rapid increase of

velocity dispersion with SFR, the exact location here dependent on rotation veloc-

ity, requires the release of gravitational energy through radial transport through

the disk (see Krumholz et al., 2018, for details). The agreement between the the-
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Figure 3.12: Intrinsic velocity dispersion σ0,15 as a function of star formation rate

SFR, color coded by circular velocity. The data points show our kinematic sample. The

lines are predictions from the ‘transport+feedback high−z’ model by Krumholz et al.

(2018), where we additionally vary the galaxy circular velocity vcirc between 50 km s−1

and 450 km s−1 in steps of 50 km s−1. For 60 % of our galaxies in the σ0,15−SFR pa-

rameter space, the model predicts the correct rotation velocity, with all other parameters

being fixed as specified in the main text.

oretical model and our data is remarkably good: ∼ 60% of our data are matched

by the model for this simple variation of only the rotation velocity, with all other

parameters being fixed to the fiducial ‘transport+feedback high-z’ parameters.

For the gas fraction we can make only an approximate comparison. As men-

tioned in Section 3.2, gas masses for our galaxies are calculated applying the

scaling relation by Tacconi et al. (2018), since direct gas mass measurements are

not available for most of our galaxies. With this, we get the total gas mass over

the total baryonic mass per galaxy. Again, we use a scaling factor of 1.5 for our

gas mass fractions. In Figure 3.13 we show the same parameter space as in Fig-

ure 3.12 but now color coded by gas fraction. While galaxies with SFR . 10 M�
yr−1 have on average lower gas fractions, no strong trend is apparent at higher

SFRs. We show again lines based on the ‘transport+feedback high−z’ model

by Krumholz et al. (2018), but now we vary the gas fraction (and with it fg,P )

from fg,Q = 0.2 to fg,Q = 1.0 in order to explore the range of scaled gas frac-

tions of galaxies in our kinematic sample. With solid lines we show models with

vφ = 400 km s−1, and dashed lines show vφ = 200 km s−1. It becomes clear that

in the model framework galaxies at fixed SFR and σ0 can have higher fg,Q and
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Figure 3.13: Intrinsic velocity dispersion σ0,15 as a function of star formation rate

SFR, color coded by (scaled) gas fraction (see main text for details). The data points

show our kinematic sample. The lines are predictions from the ‘transport+feedback

high−z’ model by Krumholz et al. (2018), where we additionally vary fg,Q in lock-

step with fg,P between 0.2 and 1 in steps of 0.2, and the galaxy rotation velocity vφ
from 200 km s−1 (dashed lines) to 400 km s−1 (solid lines). The location of the model

predictions illustrate how the observed scatter in gas fractions at fixed SFR and σ0 may

be caused by different rotation velocities.

lower vφ, or lower fg,Q and higher vφ, but rotation velocity has to be varied to

cover the full range of SFRs in our observations.

Horizontal variations of the model predictions can be reached through chang-

ing the fraction of gas assumed to be in the star-forming ISM, and through changes

in the outer rotation curve slope. For instance, assuming only 20% of the gas to

be in the star-forming phase pushes the horizontal floor of the model below 10 km

s−1, and lowers the predicted SFR by almost an order of magnitude. Assuming

a dropping rotation curve, on the other hand, lifts the horizontal floor and in-

creases the predicted SFR. Assuming an outer rotation curve slope of β = −0.5

increases the horizontal saturation of the model to ∼ 32 km s−1, whilst increasing

the star-formation rate only marginally. Lang et al. (2017) have shown that the

typical outer rotation curve slope of galaxies in our sample is negative. This is

more pronounced at higher redshift, possibly offering an additional reason for the

elevated velocity dispersions at z & 2 in this model framework.

Considering these analytic model prescriptions, and the typical uncertainty of

the intrinsic dispersion measurements of δσ0 ∼ 10 km s−1 in our kinematic sample,
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Figure 3.14: Redshift-normalized intrinsic velocity dispersion as a function of bary-

onic mass. Blue, green, and red colors indicate z ∼ 0.9, z ∼ 1.5, and z ∼ 2.3

SFGs, respectively. Galaxies that host an AGN are shown as stars. Most galaxies

with log(Mbar/M�) & 11.3 have above-average velocity dispersions and about half of

them host an identified AGN.

we conclude that galaxies with σ0 & 35 km s−1 are dominated by gravitational

instability-driven turbulence. This encompasses more than 60% of galaxies in our

sample, underlining the importance of gravity-driven turbulence in star forming

galaxies at z ∼ 1− 3.

3.5.5 AGN feedback

As a final remark, we briefly want to comment on AGN feedback as a potential

additional source for elevated velocity dispersions in the SFGs in our kinematic

sample. While we excluded galaxies, or regions of galaxies, that are so strongly

affected by the AGN and associated outflows that the disk kinematics cannot be

recovered, we do not entirely exclude AGN. This ensures that we can explore

the full mass range covered by the KMOS3D survey, including the high-mass end

where at log(M∗/M�) > 11, above the Schechter mass, the fraction of AGN

increases rapidly (Förster Schreiber et al., 2014, 2018; Genzel et al., 2014b)

While we do not find significant correlations between z−normalized σ0 and

mass properties (Table 3.7), we do note a cloud of galaxies from all redshifts

with dispersions above average for the highest stellar (log(M∗/M�) > 11) and

baryonic masses (log(Mbar/M�) & 11.3) as shown in Figure 3.14. About half of

the log(Mbar/M�) & 11.3 above-average dispersion galaxies are known to host an

AGN (stars in Figure 3.14). We speculate that the energy deposited by strong

AGN feedback in the form of nuclear outflows could induce turbulence in the disk

via the re-accretion of material at larger radii.

It is important to keep in mind that outflow components with velocities sim-
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ilar to the galaxy rotation velocity can broaden the line width but may not be

distinguishable from the star-forming regions due to S/N limitations. Comparing

to the deep AO data from the SINS/zC-SINF survey that we show in Figure 3.9,

one of the three identified, log(M∗/M�) & 11 AGN (Q2343-BX610) shows above-

average velocity dispersions (after excluding the regions clearly affected by the

nuclear outflow), while the other two (D3a-6004, D3a-15504) have average dis-

persions.

3.6 Conclusions

We have investigated the evolution of the ionized gas intrinsic velocity dispersions,

σ0, between 0.6 < z < 2.6 based on data from our full KMOS3D survey. We have

selected a high-quality, rotation-dominated (vrot/σ0 ≥ 1) sample for which we

forward-modelled in a Bayesian framework the one-dimensional galaxy kinematics

extracted from the Hα velocity and velocity dispersion maps, taking into account

instrumental effects, beam smearing, and pressure support. Our main conclusions

are as follows:

• Assuming an isotropic and radially constant intrinsic velocity dispersion,

we find an average decrease of the Hα intrinsic dispersion for our kinematic

sample from σ0 ∼ 46 km s−1 at z ∼ 2.3 to σ0 ∼ 31 km s−1 at z ∼ 0.9, solid-

ifying trends previously reported in the literature (Section 3.4.1). Putting

our sample into the broader context of literature measurements from z = 4

to z = 0, tracing ionized, molecular, and atomic gas phases, confirms the

general increase of intrinsic galaxy velocity dispersion with redshift (Sec-

tion 3.4.4).

• Comparing the redshift evolution of ionized and molecular plus atomic gas

velocity dispersion, we find that the ionized gas dispersion is on average

higher by ∼ 12 km s−1 (Section 3.4.5). This offset can in principle be ac-

counted for through the different gas temperatures together with the line

broadening through expansion of Hii regions the ionized gas emission typi-

cally originates from.

• For our KMOS3D kinematic sample, we find that there is intrinsic scatter in

the σ0 distribution at fixed redshift after accounting for measurement and

modelling uncertainties, and it increases for our highest redshift slice (Sec-

tion 3.4.2). However, we cannot single out a physical mechanism behind

this scatter. This could imply that the velocity dispersion is highly variable

in time, due to a dynamic mechanism such as minor mergers or variation

in accretion (see Hung et al., 2019, for evidence from simulations). Alter-
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natively, the scatter could be caused by the interplay of different physical

properties responsible to maintain marginal stability (see Section 3.5.4).

• Investigating the physical driver of the elevated velocity dispersions at

higher redshift, we find that galaxies in our kinematic sample are at most

marginally Toomre-stable, i.e. they are consistent with their turbulence be-

ing powered through gravitational instabilities in a self-regulated environ-

ment (Sections 3.5.3 and 3.5.4).

• We find no evidence from our high-resolution SINS/zC-SINF AO data that

stellar feedback as traced through ΣSFR typically increases the velocity dis-

persion on sub-galactic scales beyond the average level, or that the local

velocity dispersion correlates strongly with ΣSFR, suggesting that contribu-

tions from stellar feedback to turbulence driving are minor for our z > 1

SFGs (Section 3.5.2).

• We find good agreement between data from our KMOS3D kinematic sam-

ple and predictions from the state-of-the-art analytical model of galaxy

formation and evolution by Krumholz et al. (2018), further strengthening

the evidence that the majority of our galaxies (& 60%) are dominated by

gravity-driven turbulence (Section 3.5.4).

The measurement of intrinsic gas velocity dispersion at z > 0 is challenging.

Next-generation instruments such as ERIS+AO at the VLT or HARMONI at

the ELT will expand current samples on spatial scales that are currently only

achievable for strongly lensed objects, and push spectral scales down to ∼ 15 km

s−1. The statistics from these observations will facilitate further investigation

of the scatter of the intrinsic velocity dispersion at fixed redshift, and tests of

theoretical predictions such as the transition regime from gravity-driven turbu-

lence to feedback-driven turbulence as a function of redshift and mass (Krumholz

et al., 2018). Deep, high-S/N observations of particularly molecular gas reaching

1–2 kpc resolution at z > 1 with NOEMA or ALMA are necessary to test if

the redshift evolution of molecular and ionized gas velocity dispersion is indeed

comparable.
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3.7 Appendix A – Example galaxies and fits

We show examples of galaxies in our kinematic sample together with their best-fit

kinematic models in Figure 3.15. See the figure caption for details.

3.8 Appendix B – Alternative fits to our

KMOS3D velocity dispersions

We list fits to our KMOS3D velocity dispersion data from z = 2.6 to z = 0.6

in σ0 − log(1 + z) space and log(σ0) − log(1 + z) space in Tables 3.8 and 3.9,

respectively. These results agree with our fiducial fits in σ0 − z space listed in

Table 3.3, and do not change our conclusions.
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3.8 Appendix B – Alternative fits to our KMOS3D velocity dispersions

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.15: Example cases of galaxies in our kinematic sample. From top to bot-

tom, we show for each redshift slice a galaxy modelled with setup 1 and with setup 2

(see Section 3.3.2). From left to right, we show an IJH HST color-composite image;

the projected Hα velocity map; the projected Hα velocity dispersion map; the observed

velocity vrot(r) · sin(i) along the kinematic major axis (black) and the best-fit model

(red); the observed velocity dispersion σ(r) correspondingly; and the intrinsic model

circular velocity vcirc (black), rotation velocity vrot (grey dashed), and intrinsic veloc-

ity dispersion (blue) together with its uncertainties derived from the MCMC posterior

distribution (blue shading). The kinematic maps and profiles are corrected for the in-

strument line-spread function, but not for beam-smearing. The kinematic major axis

is indicated by the black dashed line on top of the velocity and dispersion maps, and

the black crosses indicate the midpoint between the observed minimum and maximum

velocities (not necessarily the kinematic center). Note that the intrinsic rotation curves

are falling by construction because we do not include a dark matter halo (but see Sec-

tion 3.3.2). Rows (a), (c), and (e) show examples from setup 1, and rows (b), (d), and

(f) show examples from setup 2.
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3. The Evolution of Gas Velocity Dispersion

3.9 Appendix C – Correlations of physical prop-

erties with velocity dispersion and redshift-

normalized velocity dispersion

We show correlations of various physical properties with velocity dispersion after

(see Equation (3.2)) and before correcting for the redshift dependence of σ0 in

Figures 3.16 and 3.17 (see also Table 3.7). While several properties positively

correlate with σ0, particularly SFR and Mgas, we do not find any significant

correlation after correcting for the redshift-dependence of σ0. This means that

we cannot readily identify a single physical driving source behind the intrinsic

scatter in σ0 (see discussions in Sections 3.4.2 and 3.5).
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and redshift-normalized velocity dispersion
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Figure 3.16: Redshift-normalized velocity dispersion (see Equation (3.2)) as a func-

tion of several physical properties. Colors show our redshift subsamples at z ∼ 0.9

(blue), z ∼ 1.5 (green), and z ∼ 2.3 (red). Spearman rank correlation coefficients ρS

and their significance σρ are listed in each panel for the full sample (black) and the

individual redshift bins (colors). We do not find any significant correlations between

redshift-normalized velocity dispersion and the considered physical properties (see Ta-

ble 3.7 for additional quantities) for our kinematic KMOS3D sample, meaning that we

cannot identify a single physical driving source behind the intrinsic scatter in velocity

dispersion.
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Figure 3.17: Velocity dispersion as a function of several physical properties. Colors

show our redshift subsamples at z ∼ 0.9 (blue), z ∼ 1.5 (green), and z ∼ 2.3 (red).

Spearman rank correlation coefficients ρS and their significance σρ are listed in each

panel for the full sample (black) and the individual redshift bins (colors). Velocity

dispersion positively correlates with several physical properties, some of which correlate

themselves with redshift. For our kinematic KMOS3D sample, we find the strongest and

most significant correlations between σ0 and SFR, as well as Mgas, which we further

investigate in Section 3.5.
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Chapter 4

Detailed Kinematics of

Individual Galaxies

In this Chapter we zoom in on the detailed, high-resolution kinematics of indi-

vidual galaxies in three dedicated studies. In Section 4.1 we present the resolved

outer rotation curves of a small set of galaxies based on ionized gas emission

probing into a radial regime where the dark matter halo may start to leave a

measurable imprint on the galaxy kinematics, therefore taking the first step in

resolving the multi-component mass budget in normal (and unlensed) z ∼ 1−2.5

main sequence galaxies. In Section 4.2 we analyse the resolved outer rotation

curve of one galaxy from two independent tracers, namely ionized and molec-

ular gas, to assess the reliability of the ionized gas in tracing the gravitational

potential and dynamical support. In Section 4.3 we use mock observations of

high-resolution cosmological simulations to validate the kinematic extraction and

modeling methodology used for our observational work, and to highlight potential

differences motivating future observational and theoretical work.
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4. Individual Kinematics

4.1 Strongly baryon-dominated disk galaxies at

the peak of galaxy formation ten billion

years ago

This Section is a reprint of the Nature publication Strongly Baryon-

dominated Disk Galaxies at the Peak of Galaxy Formation Ten

Billion Years ago by Genzel et al. (2017); doi:10.1038/nature21685;
c©Springer Nature. Reproduced with permission.

This work is based on observations obtained at the Very Large

Telescope (VLT) of the European Southern Observatory (ESO),

Paranal, Chile, under ESO program IDs 076.A-0527, 079.A-0341,

080.A-0330, 080.A-0635, 082.A-0396, 183.A0781, 091.A-0126, 092.

A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.B-

0065, and 097.A-0353.

Abstract – In the cold dark matter cosmology, the baryonic components of

galaxies – stars and gas – are thought to be mixed with and embedded in non-

baryonic and non-relativistic dark matter, which dominates the total mass of the

galaxy and its dark matter halo (White & Rees, 1978). In the local Universe, the

mass of dark matter within a galactic disk increases with disk radius, becoming

appreciable and then dominant in the outer, baryonic regions of the disks of star-

forming galaxies. This results in rotation velocities of the visible matter within

the disk that are constant or increasing with disk radius – a hallmark of the dark

matter model (Sofue & Rubin, 2001). Comparison between the dynamical mass

and the sum of stellar and cold-gas mass at the peak epoch of galaxy formation

ten billion years ago, inferred from ancillary data, suggest high baryon factions

in the inner, star-forming regions of the disks (Förster Schreiber et al., 2009;

van Dokkum et al., 2015; Price et al., 2016; Wuyts et al., 2016b). Although this

implied baryon fraction may be larger than in the local Universe, the system-

atic uncertainties (stellar initial mass function, calibration of gas masses) render

such comparisons inconclusive in terms of the mass of dark matter (Courteau &

Dutton, 2015). Here we report rotation curves for the outer disks of six massive

star-forming galaxies, and find that the rotation velocities are not constant, but

decrease with radius. We propose that this trend arises because of a combination

of two main factors: first, a large fraction of the massive, high-redshift galaxy

population was strongly baryon dominated, with dark matter playing a smaller

part than in the local Universe; and second, the large velocity dispersion in high-

redshift disks introduces a substantial pressure term that leads to a decrease in

rotation velocity with increasing radius. The effect of both factors appears to

increase with redshift. Qualitatively, the observations suggest that baryons in

the early Universe efficiently condensed at the centres of dark matter halos when
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4.1 Strongly baryon-dominated disk galaxies at the peak of galaxy formation
ten billion years ago

gas fractions were high, and dark matter was less concentrated.

Over the last few years, there have been significant studies of ionised gas

dynamics of redshift 0.6–2.6 star-forming galaxies. These were drawn from mass-

selected parent samples in cosmological deep fields, and from imaging and grism

surveys with the Hubble Space telescope (Förster Schreiber et al., 2009; Price

et al., 2016; Wisnioski et al., 2015; Grogin et al., 2011; Koekemoer et al., 2011;

Kong et al., 2006; Brammer et al., 2012; Momcheva et al., 2016), with well char-

acterized properties (see Section 4.1.1). We obtained deep (5-22 h integration),

imaging spectroscopy of the Hα emission line, with the near-infrared integral field

spectrometers SINFONI and KMOS on the Very Large Telescope of the European

Southern Observatory, as part of our “SINS/zC-SINF” and “KMOS3D ” surveys

(henceforth ‘IFS-samples’; Förster Schreiber et al., 2009; Wisnioski et al., 2015).

From the data we extract Hα rotation curves, rotation velocities as a function

of galactic radius, for several hundred star-forming galaxies (see Section 4.1.1).

Rotation curves give valuable constraints on the baryonic and dark matter mass

distributions in massive star-forming disks at the peak of cosmic galaxy forma-

tion 10 billion years ago, largely independent of assumptions on star-formation

histories and stellar mass functions.

Figure 4.1 shows the angular distributions of stellar mass/light, integrated Hα

intensity, Hα velocity and dispersion, together with cuts of the latter two along

the kinematic major axis, for six of our best star-forming galaxies. We selected

galaxies for deep spectroscopy from the IFS-samples to have large stellar masses

(log(M∗/M�) ∼ 10.6− 11.1), to not participate in a merger, to have rotationally

dominated kinematics, and to have large half-light radii (R1/2 ∼ 4− 9 kpc), such

that the disk penetrates far into the dark matter halo.

The extracted velocity and velocity dispersion fields in all cases demonstrate

that the sources are rotationally supported (Wisnioski et al., 2015; see Sec-

tion 4.1.1). The ratio of peak rotation velocity to the amplitude of random

motions, as estimated from the velocity dispersion in the outer disks, is between

4 and 9, lower than in present-day disks (vrot/σ0 ∼ 10 − 20), and in excellent

agreement with other observations (Förster Schreiber et al., 2009; Wisnioski et al.,

2015). This means that “turbulent” motions contribute significantly to the energy

balance (Burkert et al., 2010).
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Figure 4.1 Hα gas dynamics from KMOS and SINFONI in six massive star-forming

galaxies.
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Figure 4.1 (Cont.): The galaxies have redshifts between z = 0.9 and z = 2.4. KMOS

provides seeing-limited data (full-width at half-maximum, FWHM≈ 0.6′′); SINFONI

allows both seeing-limited and adaptive-optics-assisted observations (FWHM≈ 0.2′′).

(a) For each galaxy, the distribution of the integrated Hα line surface brightness is

shown (colour scale; with a linear scaling), superposed on the stellar surface density

(Σ∗; top three panels) or the H−band continuum surface brightness (ΣH; bottom three

panels) (white contours; square-root scaling). The horizontal white bar denotes the

physical size scale. (b) Velocity maps (colour scale; with extreme values indicated, in

km s−1) superposed on Σ∗ or ΣH contours (white lines; square-root scaling), derived

from fitting a Gaussian line profile to the Hα data in each pixel (0.05′′). All galaxies

have FWHM≈ 0.25′′ (2 kpc) except GS4 43501 and COS4 01351, which have FWHM≈
0.55′′− 0.67′′ (5 kpc). (c) Extracted line centroids (and ±1 r.m.s. uncertainties) along

the kinematic major axis (white line in (b)). For COS4 01351 (bottom panel) and GS4

43501 (fourth panel), we show SINFONI (black filled circles) and KMOS (open blue

circles) datasets; for D3a 15504 (top panel) we show SINFONI datasets at 0.2′′ (filled

black circles) and 0.5′′ (open blue circles) resolution. Red continuous lines denote the

best-fit dynamical model, constructed from a combination of a central compact bulge, an

exponential disk and an NFW halo without adiabatic contraction, with a concentration

of c = 4 at z ≈ 2 and c = 6.5 at z ≈ 1. For the modelling of the disk rotation, we also

take into account the asymmetric drift correction inferred from the velocity dispersion

curves ((d) and (e); Burkert et al., 2010). The times shown in each panel indicate

the total on-source integration time. (d), (e) Two-dimensional ((d); colour scale) and

major-axis ((e); with ±1r.m.s. uncertainties) velocity dispersion distributions inferred

from the Gaussian fits (after removal of the instrumental response: σinstr ≈ 37 km s−1

at z ≈ 0.85 and z ≈ 2.2; σinstr ≈ 45 km s−1 at z = 1.5), superposed on Σ∗ or ΣH

contours ((d); white lines). The numbers in (d) indicate the minimum and maximum

velocity dispersions. The colouring of the data and red lines in (e) are as in (c).

All physical units are based on a concordance, flat cold dark matter cosmology, with

cosmological constant Λ, matter density relative to the critical density of closing the

Universe Ωm = 0.3 and ratio of baryonic to total matter density Ωbaryon/Ωm = 0.17,

and for the z = 0 Hubble parameter H0 = 70 km s−1 Mpc−1.

127



4. Individual Kinematics

The most surprising result is that the projected rotation velocities along the

kinematic major axis (panels (c) in Figure 4.1) reach a maximum value |vmax| at

Rmax and decrease further out, symmetrically on either side of the galaxy centre.

Averaging the two sides of the galaxy further improves the signal-to-noise ratio

(Figure 4.2). The six rotation curves drop to v(Rout)/vmax ∼ 0.3−0.9 to 0.9 at the

outermost radius sampled. Falling rotation curves have previously been detected

at low redshift in some compact, high surface density, or strongly bulged disks

(such as Andromeda, Figure 4.2), although these are rare and drops are modest,

to v/vmax ∼ 0.8 − 0.95 (Sofue & Rubin, 2001; Casertano & van Gorkom, 1991;

Honma & Sofue, 1997; Carignan et al., 2006).

How common are the falling rotation curves at high redshift? We in-

vestigate the prevalence of falling rotation curves at high redshift. A a co-added

rotation curve (Lang et al., 2017) of 97 rotationally supported z ∼ 0.6 − 2.6

isolated disks from the same IFS samples that we use (but excluding the six

above) provides a representative and fairly unbiased sample of the redshift-stellar

mass-star formation rate, parameter space for log(M∗/M�) > 9.7 star-forming

galaxies (see Section 4.1.1 and Figure 4.4). Star-forming galaxies over the entire

mass range of the parent sample enter the stack (Figure 4.4). Within the uncer-

tainties, the stack confirms the results presented here for individual sources, and

implies that falling rotation curves at z = 0.7− 2.6 are common. The uncertain-

ties of individual velocity measurements in the faint outer disks are substantial,

such that the significance of the velocity drops in each individual data point is

≤ 3.5 rms. When all data points at > Rmax are considered together the statistical

significance for a non-flat, falling rotation curve becomes compelling (6-10 rms).

We investigated the possibility that the falling rotation curves are artefacts,

caused by warping of the disks, radial streaming along galactic bars, radial

changes in the direction of the kinematic axis, tidal interactions with nearby

satellites, non-equilibrium motions caused by variations in the amount and/or

the direction of the baryonic accretion (Section 4.1.1). We find interacting low

mass satellites in three of our six sources and evidence for some tidal stripping

in one, but the rotation curve is symmetric, even near the satellite. We do see

strong radial streaming confined to the nuclear region in one galaxy. Warps are

expected because of the non-planar accretion of gas from the intergalactic web,

but also less likely at high−z than in the low−z Universe to be stable, because

of the large, isotropic velocity dispersions. The point-symmetric, falling rotation

curves in Figure 4.1 argue against strong warping. We also find no evidence in

the two dimensional residual maps (data minus model) for radial variations in

the line of nodes, as a result of interactions and variations in the angular momen-

tum of the incoming gas (Figure 4.9). Four galaxies have massive bulges (ratio

of the mass of the bulge to that of the total galaxy, B/T > 0.3), which likely

will accentuate centrally peaked rotation curves. Keeping in mind the important
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effects of non-equilibrium dynamics in the early phases of galaxy formation, the

prevalence of point-symmetric, smooth rotation curves in all six cases suggests

that these are intrinsic properties of the galaxies.

We compare the final average of all seven rotation curves with an average

rotation curve of local massive disks (Catinella, Giovanelli, & Haynes, 2006), the

curves of the Milky Way (Bland-Hawthorn & Gerhard, 2016) and M31 (Carignan

et al., 2006), and the theoretical curve of a thin, purely baryonic, exponential

‘Freeman’ disk (Freeman, 1970) in panel (b) of Figure 4.2. All local rotation

curves are above the Freeman model, and thus require additional (dark) matter

in various amounts. This is not the case for the average high-redshift curve. It is

consistent with a pure baryonic disk to R ∼ 1.8 R1/2, and falls below it further

out.

Since high-redshift disks exhibit large random motions, the equation of hydro-

static equilibrium of the disk contains a radial pressure gradient, which results in

slowing down the rotation velocity (‘asymmetric drift’; Burkert et al., 2010, Sec-

tion 4.1.1). If we apply this correction and also allow for the resulting significant

thickness of the disk, the rotation curve indeed drops rapidly with radius, as long

as σ0 stays approximately constant. Figure 4.2 shows a vrot/σ0 ∼ 5 galaxy, which

provides an excellent match to the average observations.

Our analysis leaves little space for dark matter in the outer disks (and inner

halos) of massive, high-redshift star-forming galaxies. This conclusion is con-

sistent with the earlier, but less secure, analysis of the ‘inner disk dynamics’

(Förster Schreiber et al., 2009; van Dokkum et al., 2015; Price et al., 2016; Wuyts

et al., 2016b; Section 4.1.1). We quantify our conclusion by fitting the major axis

velocity and velocity dispersion data of each galaxy (Figure 4.1) with a three com-

ponent mass model, consisting of the sum of a central compact (spheroidal) stellar

bulge, an exponential gaseous and stellar disk (nSersic = 1), and a Navarro-Frenk-

White (NFW) dark matter halo (Navarro, Frenk, & White, 1996). The output

of the fitting is the dark matter to total mass fraction at R1/2, fDM(R = R1/2)

(Section 4.1.1). We list the fitting results (and ±2 rms uncertainties) in Table 4.1

and summarize in Figure 4.3, which compares the high-redshift data to previous

low-redshift results (Courteau & Dutton, 2015), and to the results of Wuyts et al.

(2016b). With these basic assumptions we find that the dark matter fractions

near the half-light radius for all our galaxies are modest to negligible, even if

the various parameter correlations and uncertainties are included (Figure 4.3 and

Section 4.1.1). We note that spatially variable σ0 and deviations from planarity

and exponential disk distributions undoubtedly make reality more complex than

can be captured in these simple models.

All six disks are ‘maximal’ (Courteau & Dutton, 2015). Their dark matter

fractions are at the lower tail of local star-forming disks, and in the same region

of vc-fDM parameter space as local massive, passive galaxies (Cappellari et al.,

2013) and some strongly bulged, early-type disks (Courteau & Dutton, 2015).
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Figure 4.2: (a) The various symbols denote the folded and binned rotation curve

data for the six galaxies in Figure 4.1, combined with the stacked rotation curve of 97

z)0.6− 2.6 star-forming galaxies (Lang et al., 2017; see Section 4.1.1). For all rotation

curves, we averaged data points located symmetrically on either side of the dynamical

centres, and plot the rotation velocities normalized by the maximum rotation velocity

against the radii R normalized by the radius at which the amplitude of the rotation

velocity is maximum (|vrot| = vmax), Rmax. Error bars are ±1 r.m.s. (b) The black

data denote the binned averages of the six individual galaxies, as well as the stack

shown in (a), with 1 r.m.s. uncertainties of the error-weighted means shown as grey

shading (the outermost point has lighter shading to indicate that only two data points

entered the average). In individual galaxies, Rmax depends on the ratio of bulge to total

baryonic mass of the galaxy, the size of the galaxy and the instrumental resolution,

leading to varying amounts of beam smearing. We assume an average value of Rmax ≈
(1.3 − 1.5) R1/2. For comparison, the grey dashed line indicates the slope of a typical

rotation curve for low-redshift (z = 0), massive (log(M∗/M�) ≈ 11), star-forming

disk galaxies (Catinella, Giovanelli, & Haynes, 2006), which are comparable to the six

galaxies we studied; the dotted red and solid green curves are the rotation curves of M31

(the Andromeda galaxy; Carignan et al., 2006) and the Milky Way (Bland-Hawthorn

& Gerhard, 2016). The thick magenta curve is the rotation curve of an infinitely thin,

‘Freeman’ exponential disk (Freeman, 1970) with Sérsic index nSersic = 1. The blue

curve is a turbulent, thick exponential disk, including ‘asymmetric drift’ corrections for

an assumed radially constant velocity dispersion of σ0 ≈ 50 km s−1 (and a ratio of

rotation velocity to dispersion of vrmrot/σ0 ≈ 5; Carignan et al., 2006).
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Figure 4.3: Dark-matter fractions fDM from different methods are listed as a function

of the circular velocity of the disk vc, at approximately the half-light radius of the disk

R1/2, for galaxies in the current Universe and about 10 Gyr ago. The large blue circles

with red outlines indicate the dark-matter fractions derived from the outer-disk rotation

curves for the six high-redshift disks presented here (Table 4.1), along with the ±2 r.m.s.

uncertainties of the inferred dark-matter fractions and circular velocities. The average

dark-matter fractions (and their ±1 r.m.s. errors/dispersions in the two coordinates)

obtained from the comparison of inner rotation curves and the sum of stellar and gas

masses for 92 z = 2−2.6 and 106 z = 0.6−1.1 star-forming galaxies are indicated by the

filled black circle and green triangle, respectively (Wuyts et al., 2016b).We compare these

high-redshift results to z = 0 estimates obtained using different independent techniques

for late-type, star-forming disks (crossed grey squares, red filled square; Courteau &

Dutton, 2015), for the Milky Way (crossed black circle; Bland-Hawthorn & Gerhard,

2016), for massive, bulged, lensed disks (crossed red circles; Courteau & Dutton, 2015),

and for passive early-type disks (thick magenta line; Cappellari et al., 2013). The

upward magenta arrow marks the typical change if the z = 0 data dark-matter haloes

are maximally adiabatically contracted.
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Dark matter fractions drop with increasing redshift from 0.8 − 2.36 (Table 4.1,

Figure 4.3). The agreement of the dark matter fraction in the z = 0.6− 2.6 star-

forming galaxies and local passive galaxies is interesting. Passive galaxies are

likely the descendants of the massive ‘main-sequence’ star-forming population

we are observing in our IFS-samples. Their star formation was likely quenched

rapidly at z ≤ 2 once they had grown to M∗,Schechter ∼ 1010.6−10.9 M�, after which

they transited to the passive galaxy sequence (Peng et al., 2010). The low dark

matter fractions in the high-redshift star-forming galaxies may thus be preserved

in the ‘archaeological’ evidence of the local passive population.

Why should high−z disks have been more baryon dominated than

low-redshift disks? First, high-redshift disks are gas rich and compact. Star-

forming galaxies at z ≈ 2.3 have molecular gas-to-stellar mass ratios about 25

times larger than those of z = 0 galaxies (Genzel et al., 2015) (Mmolgas/M∗ ∝ (1+

z)2.7), are 2.4 times smaller in size (van der Wel et al., 2014a) (R1/2 ∝ (1+z)−0.75),

and so have molecular gas surface densities that are more than two orders of mag-

nitude greater than those of local galaxies. Large gas columns can easily dissipate

angular momentum and drive gas inward. The strong redshift dependence of the

gas fractions could explain the drop of fDM between z = 2.3 and 1 (Figure 4.3).

Massive galaxies at high redshift are thought to grow by rapid gas accretion, gas

rich mergers and star formation triggered by this accretion (Guo & White, 2008;

Oser et al., 2010). In this dissipation dominated peak phase of galaxy growth

the centres of dark matter halos can become baryon-dominated in ‘compaction

events’ triggered by mergers, disk instabilities or colliding streams in the inter-

galactic web (Zolotov et al., 2015), or by gas ‘pile-up’ at early times when the gas

accretion rates were larger than the star formation consumption rates. However,

abundance matching results indicate that the average stellar-to-dark-matter ratio

at the virial radius of the halo does not depend strongly on cosmic epoch and

is well below the cosmic baryon fraction, fb ∼ 0.17, suggestive of very efficient

removal of baryons due to galactic outflows (Moster, Naab, & White, 2013).

Could the baryon dominance be caused by a lack of dark matter in

the inner disk? These dark matter haloes could deviate from the standard

NFW profile, with low concentration parameter (c < 5), if they were still growing

rapidly and not yet in equilibrium, or if they were perturbed by strong stellar

and AGN feedback. We briefly discuss some of these alternatives, such as low

concentration parameters, in Section 4.1.1, where we also give a first quantitative

comparison between observations and simulations.
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4.1.1 Methods

Galaxy Samples The galaxies discussed in this paper were taken from two

near-IR integral field spectroscopic samples (‘IFS-samples’) of distant, massive

(log(M∗/M�) & 9.6) star-forming galaxies, targeting primarily rest-frame optical

emission around the Hα line,

(1) The SINS/zC-SINF survey of z ∼ 1.5− 2.5 star-forming galaxies (Förster

Schreiber et al., 2009; Mancini et al., 2011) observed with SINFONI on the ESO

Very Large Telescope (Eisenhauer et al., 2003; Bonnet et al., 2004) (VLT) in

both seeing-limited mode (2R1/2,beam = FWHM ∼ 0.45′′ − 0.6′′) and at higher

resolution with adaptive optics (AO; FWHM∼ 0.15′′ − 0.25′′).

(2) The first 2.5-year sample from the ongoing five-year KMOS3D survey of

0.6 < z < 2.6 galaxies (Wisnioski et al., 2015), all observed in seeing-limited

mode (FWHM∼ 0.4′′− 0.7′′) with the KMOS multiplexed IFS instrument on the

VLT (Sharples et al., 2013).

The IFS-sample galaxies are bench-marked to be representative in all impor-

tant physical parameters of the high−z, ‘field’ star-forming population (stellar

mass, star formation rate, size). We have not included galaxies in very dense

(‘cluster’-like) environments, and mergers or strongly interacting galaxies are rel-

atively rare (Wisnioski et al., 2015). These galaxies are located on and around

(±0.6 dex) of the ‘star-formation main sequence’ at all redshifts included. Be-

low, we summarize the selection criteria used for drawing the individual objects

and the stacking sample from the SINS/zC-SINF and KMOS3D surveys, and then

discuss how their stellar, structural, and kinematic properties were derived. A

comprehensive description of the surveys, target selections, and galaxy properties

can be found in Grogin et al. (2011); Koekemoer et al. (2011); van Dokkum et al.

(2011); Brammer et al. (2012); Skelton et al. (2014); Momcheva et al. (2016).

Outer Rotation Curve Samples The six individual galaxies studied here

were selected for very sensitive follow-up observations primarily based on their

having (i) high quality and high signal-to-noise data in the initial SINFONI and

KMOS observations, (ii) rotation-dominated disk kinematics from Hα, with a

ratio of rotation velocity to velocity dispersion of vrot/σ0 > 3, (iii) no bright

neighboring galaxy in line or continuum emission, and (iv) extended well-resolved

star-forming disks. All six galaxies lie close to the main-sequence of star-forming

galaxies at log(M∗/M�) ≥ 10.5. By design, their half-light radii (R1/2 & 4 kpc)

place them in the upper half of the size distribution of massive star-forming galax-

ies, such that their disk emission probes further into the halo than for typical star-

forming galaxies and their inferred baryonic angular momenta are comparable or

larger than the population average (about 0.037, Burkert et al., 2016). Smaller

galaxies would therefore place less stringent constraints on the dark matter frac-

tion in the outer disk, while they are likely to be even more baryon dominated
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(van Dokkum et al., 2015). Although an optimum selection of rotation-curve

candidates would favour high-inclination galaxies, the six galaxies exhibit a wide

range of inclination (i ≈ 25◦− 75◦), with the low inclination systems drawn from

the AO SINS/zC-SINF sample (Förster Schreiber et al., 2018), which is high qual-

ity in terms of angular resolution and depth, but too small to allow an inclination

cut.

For the stacking analysis (Lang et al., 2017), we selected star-forming galaxies

based on their SINFONI or KMOS Hα kinematics and their Hubble Space Tele-

scope (HST) rest-optical morphologies as follows: (i) rotation-dominated disk

kinematics from Hα with vrot/σ0 > 1 , and (ii) detection of a significant change

of slope in the extracted velocity curve. The latter criterion is the most stringent

one: while roughly 3/4 of the parent KMOS3D and SINS/zC-SINF samples are

fairly unperturbed, rotation-dominated disks, only half of them show a flattening

of the velocity curve at large radii. This large downsizing from the initial sam-

ples is driven by the limited field of view (FOV) of the IFS data not reaching

the radius of velocity turnover for the more extended galaxies (about 3′′ × 3′′ for

the KMOS IFSs with which the largest parent sample was observed and for the

AO-assisted SINFONI data with a scale of 0.05′′ per pixel, and about 4′′ × 4′′ for

the seeing-limited SINFONI data at 0.125′′ per pixel with the on-source dither-

ing strategy used for most targets), or insufficient signal-to-noise at large radii to

detect a change of slope. The resulting stacking sample consists of 103 near-main-

sequence galaxies spanning 0.6 ≤ z ≤ 2.6 and 9.3 ≤ log(M∗/M�) ≤ 11.5. Their

size and angular momentum distributions overlap well with those of the bulk of

star-forming galaxies in similar redshift and mass ranges; there is only a mild

bias toward larger R1/2 for galaxies entering the stack especially for the z > 1.3

subset, caused primarily by the implicit signal-to-noise requirement at large radii

imposed by the necessity of detecting a velocity curve flattening. We performed

simulations to determine that the selection criteria and analysis methodology (see

below) did not introduce a significant bias in the shape of the resulting stacked

rotation curve. A more detailed discussion of the stacking methodology and so

on is provided below.

In Figure 4.4, we compare the distributions in stellar mass, star formation

rate, and size properties of the six individual galaxies, the stacking sample,

and the parent SINS/zC-SINF and KMOS3D samples to those of the underlying

log(M∗/M�) ≥ 9.0 galaxy population drawn from the 3D-HST survey source cat-

alog at JHAB < 26 mag (for which the mass completeness is below log(M∗/M�) =

9.0 out to z = 3; Skelton et al., 2014; Momcheva et al., 2016) in the five CANDELS

extragalactic fields (Grogin et al., 2011; Koekemoer et al., 2011). To account for

the large evolution in star formation rate and size at fixed mass, Figure 4.4 shows

the offsets in star formation rate relative to the main sequence at the same z and

M∗ (Whitaker et al., 2014), and the offsets in effective radius at rest-frame 5000Å
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Figure 4.4: (a) Location in stellar-mass – star-formation-rate space. The star-

formation rate (SFR) is normalized to that of the ‘main sequence’ (Whitaker et al.,

2014) at the redshift and stellar mass of each galaxy (SFRMS(z,M∗)). (b) Location

in stellar-mass – size space. The size is the half-light radius measured in the observed

H−band corrected to the rest-frame 5,000Å (R5000
e ) and normalized to that of the mass

– size relation for star-forming galaxies (van der Wel et al., 2014a) at the redshift and

stellar mass of each source (R5000
e,SFGs(z,M∗)). In (a) and (b), the greyscale image shows

the distribution of the underlying galaxy population at 0.7 < z < 2.7 taken from the

3D-HST source catalogue at log(M∗/M�) > 9.0 and KAB < 23 mag (the magnitude

cut applied when selecting KMOS3D targets and corresponding roughly to the complete-

ness limits of the parent samples for SINS/zC-SINF targets). The current 2.5-year

KMOS3D sample is shown with blue circles, and the SINS/zC-SINF sample with green

diamonds. The two KMOS3D and four SINS/zC-SINF galaxies with individual outer

rotation curves (RCs) are plotted as yellow circles and diamonds, respectively. Simi-

larly, the KMOS3D and SINS/zC-SINF galaxies included in the stacked rotation curve

are plotted as red circles and diamonds. All 3D-HST and KMOS3D galaxies are in-

cluded in (a), whereas only star-forming galaxies (SFGs) are shown in (b), defined as

having a specific star-formation rate higher than the inverse of the Hubble time at their

redshift. The galaxies with individual outer rotation curves lie on and up to a factor

of four times the main-sequence (MS) in star-formation rate (with mean and median

log(SFR/SFRMS)=0.24), and have sizes 1.2-2 times the M∗ − R5000
e relation (‘M-R

SFGs’; mean and median offset in log(R5000
e ) ≈ 0.2 dex). In star-formation rate and

R5000
e , the distribution of the stacked rotation-curve sample is essentially the same as

the reference 3D-HST population in mean/median offsets (approximately 0.06 dex above

the main-sequence and 0.07 dex above the mass – size relation) and in their scatter about

the relationships (approximately 0.3 dex in log(SFR) and 0.17 dex in log(R5000
e ); (see

van der Wel et al., 2014a; Whitaker et al., 2014).
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relative to the mass-size relation for star-forming galaxies (van der Wel et al.,

2014a).

Parent kinematic samples The SINS/zC-SINF Hα sample was drawn from

large optical spectroscopic surveys of high-redshift candidates photometrically

pre-selected in multi-band imaging surveys based on various magnitude and/or

color criteria at optical to mid-infrared wavelengths. As extensively described in

two articles (Förster Schreiber et al., 2009; Mancini et al., 2011), the SINS/zC-

SINF Hα sample collectively provides a reasonable representation of massive star-

forming galaxies at z ≈ 1.5−2.5, with some bias towards bluer systems stemming

from the primary criterion of having a secure optical spectroscopic redshift. In

addition, the objects chosen for the near-infrared SINFONI observations were

also required to have Hα falling away from bright OH sky lines and within high

atmospheric transmission windows, and to have an expected total Hα flux of

about 5× 10−17 erg s−1 cm−2 or, correspondingly, a star formation rate of about

10M�yr−1 assuming a typical visual extinction of AV ≈ 1 mag. The latter flux

criterion was applied last and did not significantly impact the final set of targets.

The KMOS3D sample is taken from the ‘3D-HST’ source catalog (Brammer

et al., 2012; Skelton et al., 2014; Momcheva et al., 2016) in fields with deep HST

imaging from the CANDELS Treasury program (Grogin et al., 2011; Koeke-

moer et al., 2011) and R ≈ 130λ = 1.1 − 1.7µm slitless spectroscopy using

the HST WFC3/G141 grism from the 3D-HST Treasury program (Wuyts et al.,

2011b). Multi-band photometry and grism spectra are extracted for sources

reaching JHAB ≈ 26 mag, redshifts are determined from the grism spectra (prob-

ing Balmer/4000-Å continuum break and/or emission lines) combined with the

full optical-to-mid-infrared photometry and supplemented with spectroscopic red-

shifts available from the literature (Skelton et al., 2014; Momcheva et al., 2016).

The KMOS3D targets are selected primarily to have a stellar mass 109.5M� (de-

rived from modeling the photometry; see below) and KAB = 23 mag, and a

sufficiently accurate redshift (dominated by grism and spectroscopic redshifts)

ensuring avoidance of sky lines and poor telluric transmission for Hα. No ex-

plicit cut in star formation rate, color, or size is applied. Both the 3D-HST and

KMOS3D near-infrared and mass selections result in a wide coverage of the full

underlying galaxy population 0.7 < z < 2.7, including the redder dust-obscured

and/or more passive objects. In the first 2.5 years of our on-going KMOS3D survey,

we emphasized high-mass targets (but over a very wide range of three orders of

magnitude in specific star formation rate relative to the ‘main sequence’ relation-

ship). The resulting mass distribution is weighted towards high masses compared

to a purely mass-selected sample; once accounting for this bias, the sample pro-

vides however a good representation of the underlying galaxy population in other

properties (Wisnioski et al., 2015; Burkert et al., 2016; Wuyts et al., 2016b).
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Global stellar and gas properties The global stellar properties were derived

following the procedures outlined by Wuyts et al. (2011b). In brief, stellar masses

were obtained from fitting the observed broadband optical to near-/mid-IR (rest-

UV to optical/near-IR) spectral energy distributions (SEDs) with population syn-

thesis models (Bruzual & Charlot, 2003), adopting a reddening law (Calzetti et al.,

2000), a Chabrier (2003) initial mass function, a solar metallicity, and a range

of star formation histories (constant star formation rate, exponentially declin-

ing or increasing star formation rates with varying e-folding timescales). Over

the mass and redshift ranges of the galaxies, gas-phase O/H abundances inferred

from rest-optical nebular emission lines suggest metallicities of about 1/4 to 1

times the metallicity of the Sun (Erb et al., 2006; Zahid, Kewley, & Bresolin,

2011; Zahid et al., 2014; Stott et al., 2013; Steidel et al., 2014; Wuyts et al., 2014,

2016a; Sanders et al., 2015). Varying the assumed metallicity in this range would

change the stellar masses in our modeling by less than 0.1 dex (Förster Schreiber

et al., 2009; Wuyts et al., 2007). Given this small impact and the uncertainties in

metallicity determinations for high-z star-forming galaxies (Kewley et al., 2013),

we chose to keep a fixed solar metallicity. We note that throughout the paper, we

define stellar mass as the ‘observed’ mass (‘live’ stars plus remnants), after mass

loss from stars.

The star formation rates were obtained from rest-frame ultraviolet + infrared

luminosities through the Herschel-Spitzer-calibrated ladder of star formation rate

indicators (Wuyts et al., 2011b) or, if infrared luminosities are not available (from

lack of observations or the source was undetected), from the broadband SED

modeling described above.

Individual determinations of molecular gas masses (from CO line or sub-

millimeter/far-infrared dust continuum emission) are scarce for our galaxy sam-

ples, and atomic hydrogen masses are not known for any of our high−z star-

forming galaxies. We computed molecular gas masses from the general scaling

relations between star formation rates, stellar masses, and molecular gas masses

for main sequence galaxies (as a function of redshift; Genzel et al., 2015; Tac-

coni et al., 2018). We assumed, as argued previously (Genzel et al., 2015), that

at z ∼ 1 − 3 the cold gas content of star-forming galaxies is dominated by the

molecular component such that the atomic fraction can be neglected. As such

the gas masses estimated from these scaling relations may be lower limits.

Structural properties The stellar structural parameters used as priors in our

detailed kinematic modeling were derived by fitting two-dimensional Sérsic mod-

els to the high-resolution H−band images from HST observations available for

all KMOS3D objects and most SINS/zC-SINF galaxies (Förster Schreiber et al.,

2011a,b; Wuyts et al., 2012, 2016b; Lang et al., 2014; van der Wel et al., 2014a;

Tacchella et al., 2016b,a). For the remainder of the SINS/zC-SINF galaxies (with-

out HST imaging), structural parameters were estimated from the line integrated
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Hα distributions and/or from the continuum images synthesized from the IFS

data, depending on the galaxy. To first order this approach is justified as high-

redshift star-forming galaxies are gas-rich with large star formation rates and

young stellar populations although there are some small systematic differences on

average because of the presence of substantial stellar bulges in the more massive

star-forming galaxies and of possible bright clumps and asymmetric distributions

in tracers of on-going star formation (Wuyts et al., 2013; Lang et al., 2014; Genzel

et al., 2014b; Tacchella et al., 2015b,a; Nelson et al., 2016b). Of the individual

galaxies and stacking sample of interest in the present study, only D3a 6397 lacks

HST imaging.

For all but the most massive z ≈ 1−3 star-forming galaxies, the stellar and Hα

surface brightness distributions of main-sequence galaxies across the mass- and

redshift range discussed in this paper are reasonably well fit by near-exponential

(Sérsic index nSersic ≈ 1−1.5) profiles (Wuyts et al., 2011a; Bell et al., 2012; Bruce

et al., 2014a,b; Lang et al., 2014; Genzel et al., 2014b; Tacchella et al., 2015b,a).

Above log(M∗/M�) ≈ 11, z ≈ 1 − 3 star-forming galaxies feature a prominent

stellar bulge component with characteristic Re ≈ 1 kpc and median bulge-to-total

ratio in H−band light reaching about 20% – 30% (and higher, about 40% – 50%

in terms of stellar mass ratio Lang et al., 2014; Tacchella et al., 2015b,a). While

central drops in Hα equivalent width, and even flux, of individual galaxies appear

to be more frequent at the high-mass end, there is nonetheless evidence that on

average the profiles are near-exponential (Nelson et al., 2016a) and that otherwise

large central gas and dust concentrations may be present and obscure the optical

light from star-forming regions in the inner parts of massive star-forming galaxies

(Tadaki et al., 2015, 2017; Nelson et al., 2016b; Barro et al., 2016). These findings

motivate our modeling assumption that the baryonic component is distributed in

a compact spheroidal bulge at the center of an exponential disk.

The half-light (effective) radii R1/2 estimates used for the galaxies refer to the

major axis radii. To determine the inclination from the best-fit axial ratios, we

account for the fact that for the mass range log(M∗/M�) > 10 spanned by most

galaxies of interest here, half or more of the high-redshift star-forming galaxies

consist of symmetric, oblate thick disks (Elmegreen et al., 2005; Law et al., 2012;

van der Wel et al., 2014b), linked to their large intrinsic gas velocity dispersion

(Genzel et al., 2006; Förster Schreiber et al., 2009; Kassin et al., 2012; Newman

et al., 2013; Tacconi et al., 2013; Wisnioski et al., 2015) and vrot/σ0 . 10. We

note that the H band probes a significant range of rest-frame wavelengths over

the 0.6 < z < 2.6 of the individual galaxies and stacked sample considered in this

work. A ‘k-correction’ (van der Wel et al., 2014a) should ideally be applied to

the structural parameters for consistency (and similarly, a statistical correction

between Hα and rest-optical sizes could be applied; Nelson et al., 2016a). How-

ever, the uncertainties adopted for the size and inclination priors are significant
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and larger than these corrections would be, and our modeling procedure accounts

for them.

Kinematic classification and properties The kinematic information was

derived from the SINFONI and KMOS data cubes following our well-established

methods (Förster Schreiber et al., 2009; Davies et al., 2011; Wisnioski et al.,

2015; where all details of the data reduction and calibration procedures can also

be found). In summary, for each galaxy we fitted Gaussian line profiles to each

IFS spatial pixel in the final reduced data cube, in some cases after some prior

smoothing to increase signal-to-noise ratios. The main kinematic parameters of

interest are then derived from the resulting spatially-resolved maps of the ve-

locity centroid and velocity dispersion: vrot, σ0, and PAkin. The quantity vrot is

the maximum rotational velocity corrected for beam smearing and inclination i

(vrot = cpsf,vvobs/ sin(i)), where vobs is half of the difference between the maximum

positive and negative velocities on both sides of the galaxy, and cpsf,v is the beam

smearing correction for velocity. The quantity σ0 is the intrinsic velocity disper-

sion, corrected for beam smearing (σ0 = cpsf,σσobs), where σobs is the measured

line width in the outer parts of the galaxy corrected for instrumental spectral

resolution (i.e., subtracting in quadrature σinstr), and cpsf,σ is the beam smearing

correction for the velocity dispersion. PAkin is the position angle of the kinematic

major axis passing through the extrema of the velocity field (the ‘line of nodes’).

The beam smearing corrections were derived based on model disks for a range

of masses, inclinations, ratios of galaxy to beam size, and radii of measurement

appropriate for the SINS/zC-SINF and KMOS3D data sets; all details are given

in Appendix A of reference (Burkert et al., 2016)).

With these kinematic maps and properties, a galaxy is classified as a ‘rotation

dominated’ disk if (Wisnioski et al., 2015)

1. the velocity map exhibits a continuous velocity gradient along a single axis;

in larger systems with good signal to noise ratio this is synonymous with

the detection of a ‘spider’ diagram in the two-dimensional, first moment

velocity map (van der Kruit & Allen, 1978);

2. vrot/σ0 > 1

3. the position of the steepest velocity gradient, as defined by the midpoint

between the velocity extrema along the kinematic axis, is coincident within

the uncertainties with the peak of the velocity dispersion map;

4. the morphological and kinematic major axes are in agreement (≤ 30◦); and

5. the kinematic center of the galaxy coincides with the maximum/centroid of

the stellar distribution.
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For the seeing limited KMOS3D survey, 83% of the resolved galaxies fulfill

criteria (1) and (2) (92% at z ≈ 1 and 74% at z ≈ 2; Wisnioski et al., 2015).

This fraction slowly drops if the stricter criteria (3), (4) and (5) are added, and

amounts to 70% if all 5 criteria are used. Similar results are obtained in the other

recent surveys (Genzel et al., 2014b; Tacchella et al., 2015a; Newman et al., 2013;

Förster Schreiber et al., 2018).

The six individual galaxies discussed in this paper, and the stacking sample,

satisfy all of the above disk criteria based on their SINFONI and KMOS data.

With the higher signal-to-noise of the deeper follow-up observations of the indi-

vidual galaxies, additional asymmetric features became apparent in the kinematic

maps of three of them, associated with gas inflows towards the center (D3a 15504;

Genzel et al., 2006), and gas outflows from the inner few kpc plausibly driven by

an AGN and from bright off-center clumps driven by star formation (D3a 15504,

zC 406690, zC 400569, D3a 6397; Genzel et al., 2011; Newman et al., 2012; Förster

Schreiber et al., 2014).

Kinematic Analysis and Mass Modelling In our kinematic analysis we

proceed as follows below. For details we refer the reader to published papers

(Burkert et al., 2010, 2016; Bland-Hawthorn & Gerhard, 2016), which provide

more details on the mathematical and fitting methodology. These papers also

refer to the publicly available data analysis tools in the ESO KMOS analysis

pipeline as well as the LINEFIT tool (Davies et al., 2011) and a generalized

fitting tool, MPEFIT, as well as the general cube analysis tool QFitsView1 to fit

the kinematics by a combination of an exponential disk and dark-matter halos.

(1) We fit a Gaussian profile to each spaxel of the data cube, suitably smoothed

to deliver sufficiently high SNR in the outer parts of the galaxy. We infer the

systemic redshift (or velocity) of the galaxy by symmetrizing the red- and blue-

shifted peak velocities. We determine the position angle of the kinematic axis

PAkin by determining the line of nodes along the maximum velocity gradient,

as well as the morphological major axis of the galaxy PAmorph from the stellar

surface density map or the H−band HST map, and take an average. These

two angles typically agree to better than 5-7 degrees. Finally we determine the

galaxy centre x0, y0 from an average of the zero-crossing of the line of nodes, the

velocity dispersion peak and with the position of the central stellar bulge, which

is prominent in all 6 of our galaxies. This allows the determination of x0, y0

to about 0.5-1 pixel, which is small compared to the size of the final extraction

slitlet in the next step. We infer the disk’s inclination from the minor to major

axis ratio, q = b/a, of the stellar distribution or the HST H−band data, and

cos2(i) = (q2 − q2
0)/(1 − q2

0), with q0 ≈ 0.15 − 0.2 appropriate for z ≈ 1 − 3 (see

1http://www.mpe.mpg.de/~ott/QFitsView/
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references above). We have found in KMOS3D that this method works reasonably

well for inclined disks (Wuyts et al., 2016b) but naturally becomes very uncertain

for the three face-on disks in our sample, D3a 15504, zC 406690 and D3a 6397. In

these cases we included the inclination as a second order fit parameter to bring the

disk mass into a good match with the prior Mbaryon = Mbulge +M∗,disk +Mgas,disk.

(2) Next we go back to the original data cube and extract position-velocity and

position-velocity dispersion cuts along the best fit major axis by fitting Gaussian

profiles in software slits typically four to five pixels perpendicular to, and two to

three pixels along the line of nodes. This corresponds to about 1.1 and 0.5 resolu-

tion elements, respectively, and thus is approximately Nyquist sampled along the

line of nodes. To include systematic uncertainties, we multiply all fit errors by 1.5

and introduce lower ceiling uncertainties of ±5 and ±10 km s−1 for velocity and

velocity dispersion measurements, respectively. These scalings are derived from

bootstrapping, as well as error scaling of the final reduced chi-squared χ2
r to about

1 for five of the six sources. We do not consider the additional information from

deviations from Gaussian shape (the h3 and h4 components; Cappellari, 2016),

as this does not add any useful information on the outer disks, and only on the

details of the heavily beam-smeared data in the cores of the galaxies, which is of

secondary interest in this paper. We next subtract in squares the instrumental

line width to infer intrinsic velocity dispersions in each slit.

(3) Now we begin the fitting process to a model that consists of an n = 1

exponential disk (with effective radius R1/2,disk), a central bulge of Rbulge = 1 kpc

(with the B/T fit parameter giving the mass in the bulge relative to the total

(disk+bulge) baryonic mass Mbaryon,disk), the rest being in the n = 1 disk), plus

a dark matter halo. In those cases where we have a significant bulge, we assume

that the Hα light distribution only traces the disk component, which is empirically

justified (Wuyts et al., 2013; Nelson et al., 2016b). The assumption of exponential

disk distributions (n = 1) is supported quite well for the 3D-HST star-forming

population, which is characterized by n = 0.5 − 2 for most but the more bulge

dominated systems (Lang et al., 2014; Wuyts et al., 2016b). We assume that

the disk has a constant velocity dispersion, which we determine mainly in the

outer parts of each galaxy where the beam-smeared rotation component is small.

For the fitting we use a thin-exponential disk rotation curve (Freeman, 1970) but

correct for the effects of the significant scale height (hz ≈ (σ0/vrot(R1/2))R1/2)

with models (Noordermeer, 2008) that assume a constant scale height. Near R1/2

the Freeman disk rotates 15% faster than the corresponding spherical model, and

the Noordermeer correction is about 0.9-0.97 so that the final rotation velocity

is only 4-11% faster than the spherical model. For the dark matter halo, we use

an NFW model (Navarro, Frenk, & White, 1996). We do not consider adiabatic

contraction of the halo, such that the only parameter of the halo is its mass

Mvirial = M200,NFW, where we fix the concentration parameter c to a typical

value at the respective redshift (Bullock et al., 2001; Gao et al., 2008; Dutton
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& Macciò, 2014). The angular momentum parameter of the halo is implicitly

contained in R1/2,disk and the assumption jdisk = jDM (Burkert et al., 2016). This

yields 5 or 6 primary fit parameters, R1/2,disk, Mbaryon,disk, Mvirial, B/T , σ0 and in

three cases, also the disk inclination. As for the data we determine velocity and

velocity dispersion cuts for the model, convolve with the instrumental beam and

then find the weighted best fit in the usual χ2 minimization (using the Dysmal

tool; Förster Schreiber et al., 2009; Davies et al., 2011). For four or five of these

parameters we have priors from independent data: Inclination, B/T and R1/2

from the HST J , H imagery, Mbaryon,disk from the sum of stellar disk mass in

bulge and disk from the 3D-HST modelling and the (molecular) gas mass from

the scaling relations between M∗, star formation rate and z and Mmolgas (Genzel

et al., 2015; Tacconi et al., 2018). We use these priors and their uncertainties to set

upper and lower limits for the fitting range, as well as a constraint for inclination,

as described above. The dark matter halo mass Mvirial is a free parameter in the

fitting, with only a fixed lower limit of Mvirial = 107M�.

(4) We include in our fitting a correction of the disk rotation for pressure

effects due to the significant turbulent motions (asymmetric drift; Burkert et al.,

2010, 2016; Wuyts et al., 2016b). This correction lowers the rotation velocity in

the outer disk:

v2
rot = v2

c + 2σ2 d(lnΣ)

d(lnR)
= v2

c − 2σ2 R

Rd

, (4.1)

where Σ is the surface density distribution of the disk, which we assume to be

an exponential with scale length Rd = R1/2/1.68. The assumption of radially

constant velocity dispersion likely is a simplification. In that case the thickness

of the disk increases exponentially with radius. A superposition of a thin and

thick disk could lead to a radially increasing dispersion and a more steeply falling

rotation curve. This would create room for a somewhat higher dark matter frac-

tion at R1/2 and beyond than in the case of constant dispersion. In absence of

any clear evidence we prefer to stay with the simplest assumption of a constant

velocity dispersion.

Figure 4.5 shows the final χ2
r distributions for the most important parameter

for our study, the dark matter fraction at R1/2, fDM(R1/2). The number of inde-

pendent data points in the six galaxies varies between 30 and 54, and with the

error-scaling described above the best fit in five of the 6 galaxies has a minimum

of χ2
r,min = 0.98−1.7. The one exception, D3a 15504 (black line in Figure 4.5) has

χ2
r,min = 2.25. This is caused mainly by the overshooting of the central velocity

dispersion in two independent data sets that cannot be matched by the bulge plus

disk data, as well as a second outlier point in velocity just north of the nucleus.

We believe that the cause for these large near-nuclear deviations from the model

is strong non-circular, or bar streaming in combination with outflows from the

central AGN, which are well known to exist in this galaxy (Genzel et al., 2006;
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Figure 4.5: The reduced chi-squared as a function of the dark-matter fraction fDM at

R1/2 for the six galaxies in our sample, once the other parameters (x0, y0, the position

angle of the kinematic major axis PAmaj, i, σ0, R1/2 and B/T ) are fixed at their

best-fit values. Global minima are marked by circles; error bars give ∆χ2 ± 4 ranges,

corresponding to confidence levels of 95% (2 r.m.s.) under the assumption of single-

parameter Gaussian distributions. This is the most important parameter dependence

for our dataset.

Förster Schreiber et al., 2014). We will come briefly back to this issue when we

discuss the two-dimensional residual maps below.

Parameter correlations and Dark Matter fractions From Figure 4.5 it

becomes clear that the χ2
r vs fDM(R1/2) space is relatively flat for some of our

galaxies, and it is therefore important to systematically test the dependence of

fDM(R1/2) on physical properties which constrain the rotation curve other than

Mbaryon and the mass of the dark matter halo MDM, namely R1/2 and B/T .

For galaxies with very low fDM(R1/2) (zC 400569 and zC 406690), varying R1/2

within the uncertainties, or B/T in steps of 0.05 or 0.1, does not significantly alter

fDM(R1/2). For the other galaxies, changing B/T has a larger effect than changing

R1/2. We find most extreme changes for galaxy D3a 6397, with (∂fDM)/(∂B/T ) =

2.4 when going from the best-fit B/T = 0.35 to B/T = 0.3 (that is, towards

lower fDM(R1/2)), and with (∂fDM)/(∂R1/2) = 0.6 when going from the best-

fit R1/2 = 0.87 to R1/2 = 0.97 (that is, towards higher fDM(R1/2)). We show

145



4. Individual Kinematics

Figure 4.6: Changes in B/T and R1/2 are labelled ‘B/T ± 0.1’ and ‘Re ± 1σ’, re-

spectively, where 1σ is the uncertainty on R1/2 given in Table 4.1; χ2
red is the reduced

chi-squared.

schematically in Figure 4.6 how fDM and χ2
r change for changes in these various

parameters.

Generally, we find that increasing B/T leads to increased fDM(R1/2), which

can be understood in the sense that a higher fraction of the baryonic mass in the

central bulge decreases the relative contribution of the baryons to vcirc at R1/2.

For changing R1/2, the effects are less definite, but for the majority of cases we

find that increasing R1/2 again leads to increased fDM(R1/2). For these cases, this

can be understood in the sense that a larger R1/2 distributes the baryonic mass

onto a larger disk (i.e. less compact), leading to less relative contribution of the

baryons to vcirc at R1/2. Mean changes in fDM(R1/2) when increasing/decreasing

the best-fit B/T by the uncertainties given in Table 4.1, or increasing/decreasing

the best-fit B/T by 0.1, are all below ∆fDM = 0.13 (see also Figure 4.6).

The dark matter fraction depends also on the halo mass distribution. Our

best-fit models do not include the possible adiabatic contraction of the dark mat-

ter halo as a response to the formation of the central galaxy. Simulations show

that at high redshift (z ≈ 2) adiabatic contraction can have an effect on the cen-

tral dark matter density distribution (Johansson, Naab, & Ostriker, 2009; Dutton

et al., 2015). Its net effect, however, is not well constrained and depends largely

on the feedback implementation (Duffy et al., 2010), where strong supernova or

AGN feedback can even create central dark matter cores (Pontzen & Governato,

2012; Martizzi, Teyssier, & Moore, 2013). Recent work (Dutton et al., 2016) con-

structs a toy model of repeated inflow and outflow cycles for dwarf to Milky Way

type haloes to capture the various effects of baryons on the central dark matter
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Figure 4.7: Solid lines show the best fit; error bars show the variations in total (black,

grey), baryonic (green) and dark-matter (DM; purple) mass at the outermost projected

radius constrained by our data, if deviations from B/T and R1/2 within the uncertainties

are considered (only cases with χ2
red < 1.75 are considered). Dashed lines show the best

fit for a model with lower concentration parameter (c = 2 instead of c = 5); dashed-

dotted lines show the best fit for a model with adiabatic contraction (AC; Blumenthal

et al., 1986). Both modifications of the dark-matter profile lead to changes in the

cumulative mass that are smaller than those obtained by varying B/T and R1/2 within

the above uncertainties. The grey lines encompass variations in the dark-matter fraction

of fDM(R1/2) = [0.14, 0.27] (best-fit fDM(R1/2) = 0.19).

distribution. They find that high gas fractions and low star formation efficiencies

favour halo expansion, as well as extended baryon distributions. Another possi-

bility is ‘baryonic gas-pile-up’ at early times (Lilly et al., 2013). Since the star

formation accretion rate scales as (1+z)2−3 (Courteau et al., 2014) while the star

formation efficiency scales as (1 + z)0.6 (Genzel et al., 2015), star formation may

not be efficient enough at z > 2 − 3 to consume the incoming accreted baryonic

gas, and gas might pile-up in the inner disk (Lilly et al., 2013).

We tested the effect of adiabatic contraction on an NFW halo (Blumenthal

et al., 1986). Generally, for the constraints on the dark matter halo as set by our

data, we find that the effects of adiabatic contraction (or of modest variations of
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Figure 4.8: Shown are the velocities (data points, with 1 r.m.s. error bars) and

disk models for different inclinations (lines): 25◦ (red), 30◦ (blue), 40◦ (magenta) and

50◦ (green). The minor-axis cut favours a low inclination. In combination with the

morphology of the stellar surface density distribution (Figure 4.1) and the constraint

on the baryonic mass of the disk, this yields an overall inclination of 34◦±5◦ (Table 4.1).

Rmajor is the radial distance from the centre of the galaxy along the kinematic major

axis.

the concentration parameter) on fDM are lower than the effects of changing R1/2

or B/T within the uncertainties (Figure 4.7).

Two-dimensional Analysis Our analysis so far has used major axis cuts of

velocity and velocity dispersion to characterize the mass distribution. We used

the availability of the unique two dimensionality of integral field data to constrain

x0, y0 and PAkin. The question is whether two dimensional fitting of the gas kine-

matics might provide additional constraints. It turns out that for the relatively

low resolution data on compact high−z disks (with R1/2,disk/Rbeam ≈ 2.7 − 4.5)

indeed most of the rotation curve information is encapsulated on/near the major

axis. In deep AO data on moderate inclination, large disks, a kinematic esti-

mate of inclination may be obtained from the off-axis data, in addition to centre

and node direction. The 22h SINFONI AO data for D3a 15504 (Förster Schreiber

et al., 2018) can be used in this way, and Figure 4.8 shows the result. The analysis

of the minor axis cut data in this case support the evidence from the HST stellar

distribution and the baryonic to dynamical mass constraint that the inclination

of this galaxy is low, 34◦ ± 5◦ (Table 4.1).
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Figure 4.9: (a), (b) Residual maps (data minus model) for velocity ((a); vdata −
vmodel) and velocity dispersion ((b); σdata − σmodel), for the six galaxies studied here.

The colour scale is the same in all maps (from -200 km s−1 (purple) to +200 km s−1

(white)). Minimum and maximum values are noted in each map, as are the median

and median dispersion (‘disp’) values.

Kinematic residual maps Another way of utilizing the full two-dimensional

information is to construct two-dimension velocity and velocity dispersion residual

maps (data minus model), constructed from the major-axis cut method, and

then check whether systematic residuals appear (van der Kruit & Allen, 1978).

Figure 4.9 shows the corresponding residual maps for all 6 galaxies.

The residual maps broadly show that the simple model of a compact bulge,

plus n = 1 thick disk, plus NFW halo model does a fairly good job in accounting

for the data. With two or three exceptions discussed below, most of the residual

maps do not show large scale features or strong deviations that are comparable to

the amplitudes in the original maps. Average values in the twelve residual maps

range between -10 and +10 km s−1, a few percent of the maximum data range.

The median dispersions of the residuals range from 8-18 km s−1, comparable to

the measurement errors in most individual pixels, with two exceptions.

Kinematic anomalies: D3a 15504 One outlier is the galaxy D3a 15504 (top

left in Figure 4.9). As already discussed in the first paper discussing this galaxy

(Genzel et al., 2006), the strong (±65 km s−1), velocity gradient near the nucleus
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but along the minor axis of the galaxy had been apparent, which the deeper data

confirm. Related to this minor axis streaming, plus probably also influenced by a

strong, broad nuclear outflow component (Förster Schreiber et al., 2014), is the

high value of the nuclear velocity dispersion (≈ 175 km s−1), which cannot be

accounted for by the best-fitting disk model and thus shows up as a large outlier

in the velocity dispersion residual map. D3a 15504 has a small neighbour about

1.5′′ NW of the nucleus (PA= −450, visible in the stellar density contour map in

Figure 4.1), of mass (2− 3)× 109M� – about 3% of the stellar mass of the main

galaxy. Hα emission from the satellite is detected in our deep integral-field data

at a projected velocity of around +10 km s−1 (relative to the systemic velocity of

the main galaxy) – about 140 km s−1 redshifted relative to the projected rotation

velocity of the main galaxy at this radius. The neighbour thus is a satellite. The

position-velocity diagram of Hα emission shows that the satellite is connected

back to the main galaxy, clearly indicating that the two are interacting. We have

removed the well separated Hα emission of the satellite before fitting the rotation

curve in Figure 4.1.

Kinematic anomalies: zC 406690 zC 406690, the second galaxy from the

top in Figure 4.9, exhibits a significant anomaly in both velocity and velocity

dispersion residual map as well, in the outer south-western part of the rotating

ring structure, on and near ‘clump B’ (Genzel et al., 2011; Newman et al., 2012).

This anomaly is caused by localized blue-shifted, very broad (up to -1000 km s−1)

Hα emission near that clump, and can probably be explained by star formation

driven outflows. zC 406690 also has a companion located about 1.6′′ W of the

main ring galaxy, with 6 × 109M� in stellar mass (14% of the main system).

There is a marginal detection of Hα from that companion at around +100 km

s−1 relative to the systemic velocity of the main galaxy, in which case it is an

interacting satellite.

Kinematic anomalies: zC 400569 zC 400569, the third galaxy from the top

in Figure 4.9, has two neighbours. Both are fairly prominent in Hα, but are

not detected in [Nii], plausibly because of their low mass and metallicity. The

larger one, with a stellar mass of about 7× 109M� (5% of the mass of the main

galaxy, 1.3 × 1011M�) is 1′′ to the south-east of the nucleus of zC 400569, with

a projected velocity in Hα of -330 km s−1, appears to be edge on but does not

exhibit much of a velocity gradient along its major axis. The second neighbour,

1.5′′ to the south-east, has a stellar mass of 3× 109M� (2.3% of the main galaxy)

and shows an east-west velocity gradient of ±20 km s−1 around the centre, which

is blue-shifted by -410 km s−1 relative to the main galaxy. It thus appears that

zC 400569 is situated in a group of gas rich, satellites galaxies of low mass and

metallicity. The effect of the first galaxy on the line profiles is visible in the lower
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left of the velocity and velocity dispersion residuals in Figure 4.9, but does not

very much affects the dynamical analysis in Figure 4.1.

Neighbours and Warps Our analysis of the HST and Hα data of the six

galaxies shows that five sample galaxies have neighbours projected within 1′′ and

3.3′′ (8-25 kpc) of the main galaxy, and between 1% (GS4 43501, 4 × 108M�)

and 20% (COS4 01351, 1.2× 1010M�) of its mass. Of those five the detection of

Hα emission from the companion in three (in D3a 15504, zC400690, zC400569)

shows that these companions are indeed interacting satellites but probably not

in the other two galaxies (COS4 01351, GS4 43501). The Jacobi (or Roche, or

Hills) radius in a double galaxy system with mass M1 and M2, separated by R12,

defines the distance from the lower mass system M2, within which tidal forces by

the smaller system strongly perturb particles in the bigger system. This radius

is given by (Binney & Tremaine, 2008, Chapter 8)

rJ =

(
M2

3M1

)1/3

R12 = 3 kpc

(
M2/M1

0.05

)1/3
R12

12 kpc
(4.2)

Here we have already inserted the typical mass ratios and separations for the

satellite-main galaxy systems in our sample. This simple analysis shows that

tidal perturbations or stripping by the satellite can be somewhat important in

the outer parts of the main galaxies, if the satellite is within about R1/2 of the

main galaxy, as seems to be the case, for instance, for the north-western satellite

of D3a 15504.

In addition to interactions, warping can be important in the outer disks and is

frequently observed in the outer Hi layers of z ≈ 0 galaxies (including the Milky

Way; van der Kruit & Freeman, 2011). Theoretically this type of buckling or

firehose instability (with a predominant m = 2 mode) can occur in galaxy disks

with surface density Σ, with radial wavelengths of λ ≤ λJ = σ2
x/(GΣ), where

σx is the in-plane velocity dispersion, (Binney & Tremaine, 2008, Chapter 6.6.1;

Toomre, 1964) if the system is sufficiently cold in the vertical direction for the

instability to grow, which requires (Toomre, 1964; Merritt & Sellwood, 1994) hz <

σ2
z/(GΣ) such that σz/σx < 0.3 − 0.6, where σx is the velocity dispersion in the

galaxy plane and Hz is the disk scale-height. The current data for high−z galaxies

suggest that the velocity dispersion ellipsoid is isotropic (Genzel et al., 2011; van

Dokkum et al., 2015) (σx = σz), such that warping should be suppressed.

If the warp has a sufficiently high amplitude, it could indeed introduce a radial

dependence of the peak rotation velocity along the major axis. If the dominant

mode is uneven m = 1 (or m = 3, as in the Milky Way; Levine, Blitz, & Heiles,

2006), warps would also introduce the same sign of the change in the absolute

value of the peak rotation curve on the blue- and the redshifted side of the galaxy,

which could mimic a radial decrease (or increase) in the rotation curve, with equal
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probability. However, no significant increase is seen in any of the galaxies of the

SINS/zC-SINF or KMOS3D samples. If the mode is even (m = 2), one should

observe rotation curves that increase on one side, and decrease on the other. We

do not observe this feature in any of the six galaxies presented here. Finally, the

phase of the warp does not have to be aligned with the major axis and might

change with radius. Such precessions could be observed in the residual maps.

The data do not show any evidence for such an effect.

Comments on Overall Strategy This paper puts forward observational evi-

dence for very high baryon fractions (and correspondingly low dark matter frac-

tions) in several high mass disk galaxies at z ≈ 1 − 2. First hints for this result

came from Hα kinematics studies initially in the SINS sample (Förster Schreiber

et al., 2009), and more robustly in the KMOS3D sample (Wisnioski et al., 2015;

Wuyts et al., 2016b) and, independently by others in compact high−z star-

forming galaxies (van Dokkum et al., 2015), as well as in the MOSDEF survey

(Price et al., 2016). In these cases one infers the dynamical mass of the inner

star-forming disks of z ≈ 1 − 2.5 star-forming galaxies from the peak Hα ro-

tation velocity (or velocity dispersion), and then compares it with the baryonic

mass, that is, the sum of the stellar mass and the cold gas mass. The stellar

mass is estimated from population synthesis fitting of the UV/optical SEDs, and

the gas mass from CO or dust tracing the molecular hydrogen content (Förster

Schreiber et al., 2009; van Dokkum et al., 2015; Genzel et al., 2015; Wuyts et al.,

2016b; Price et al., 2016). Unfortunately this ‘inner disk dynamics’ technique,

even in the best cases of spatially well resolved kinematics, requires strong as-

sumptions on star formation histories, initial stellar mass functions and CO/dust

emission to H2-mass calibrations that are inherently not known better than ±0.2

to ±0.25 dex. Close to 50 years of experience of local Universe studies have taught

that robust statements on dark matter content cannot be done solely, and cer-

tainly not robustly, from the ‘central disk dynamics’ technique (Courteau et al.,

2014).

More robust statements on dark matter fractions are expected to come from

rotation curves in the outer disk and inner halo. We detected a few cases of

potentially falling Hα rotation curves in the best SINS/zC-SINF data a few years

ago but it took several years to collect enough integration time to make a solid

case for the six galaxies reported in this paper. However, these cases are biased

from the outset as we invested additional integration time only in galaxies for

which we already had prior evidence of falling rotation curves. In order to check

that these galaxies are not outliers in a population of star-forming galaxies with

primarily flat-rotation curves, we needed a statistical statement on the occurrence

of falling rotation curves in the high−z, massive star-forming population, even if

the individual rotation curves in these other galaxies were individually not good

enough for study. As the KMOS3D sample grew in size, we thus developed as a
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third element of our strategy a ‘rotation curve stacking’ technique on the overall

sample to test for the hypothesis that the individual cases were (or were not)

outliers. The results of this project (Lang et al., 2017) do confirm that falling

rotation curves appear to be common at z ≈ 1 − 2.5; see below for a summary,

and Lang et al. (2017) for the exhaustive technical discussion of the methodology

required to demonstrate the robustness of the result.

A fourth approach in this overall strategy is the measurement of the baryonic

and stellar mass, Tully-Fisher relation, zero point offsets as a function of redshift.

This ‘Tully-Fisher zero-point evolution’ approach is related to the ‘inner-disk dy-

namics’ method above, but uses the redshift dependence of a population-averaged

property (the Tully-Fisher zero-point) instead of relying on the accurate determi-

nation of baryon fractions in individual galaxies. The results of the Tully-Fisher

technique for the KMOS3D sample (Übler et al., 2017) are in agreement with the

other three tests.

Stacking Analysis In the following we summarize the stacking analysis of Lang

et al. (2017) and refer the reader to that paper for a more detailed description.

Having established the properties of a few high quality outer disk rotation

curves in star-forming galaxies with long integrations, the next step is to char-

acterize the average rotation curve of a representative sample of z ≈ 0.6 − 2.6

massive star-forming disks, as drawn from the seeing-limited KMOS3D and AO-

assisted SINS/zC-SINF datasets. For this purpose, Lang et al. (2017) employed a

stacking approach to systematically determine the shape of outer rotation curves.

This stacking method is designed to leverage the faint outer ionized gas emis-

sion combining the signal of >100 massive star-forming galaxies at 0.6 < z < 2.6.

The methodology of this stacking technique first includes the normalization of

each individual rotation curve by its observed maximum velocity vmax and the

corresponding turnover-radius Rmax. Both vmax and Rmax are determined by

fitting the rotation curve with an exponential disk model convolved with the ap-

propriate instrumental resolution of the data set. Values for Rmax are also inde-

pendently derived for each galaxy by converting intrinsic half-light radii measured

on rest-frame optical HST images into observed turnover-radii, also taking into

account the effect of beam smearing as well as the shape of the mass distribution

(as parametrized by the Sérsic index). These independently derived Rmax are in

good agreement with the Rmax values measured on the actual rotation curves and

thus substantiate the validity of our Rmax measurements using pure exponential

disk models. Based on mock galaxy simulations, Lang et al. (2017) demonstrate

that the above technique of normalizing and stacking rotation curves is able to

reproduce both outer falling and rising rotation curves, with the latter being ex-

pected in case massive star-forming galaxies at high redshift are genuinely more

dark-matter dominated.

With Rmax and vmax derived for each galaxy, normalized position-velocity
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diagrams are generated which are then averaged into a stack from which a final

combined rotation is curve is constructed. Due to field-of-view limitations for

both KMOS and SINFONI AO observations, the number of galaxies available

at a given galacto-centric radius drops with distance to the centre, such that

the combined stacked rotation curve can be reliably determined out to about 2.4

Rmax, corresponding to several effective radii. Within this radius, the shape of

the resulting stack outlines a fall-off in rotation velocity beyond Rmax, symmetric

on either side from the center, reaching down to about 0.65 vmax. We show in

the left panel of Figure 4.2 a slightly altered version of the original stack (Lang

et al., 2017), where we remove D3a 15504, zC 400569 and GS4 43501, so that the

remaining stack and the individual rotation curves are completely independent

of each other. Lang et al. (2017) utilize template rotation curves of local spiral

galaxies (Catinella, Giovanelli, & Haynes, 2006) and show that the outer fall-off in

the stacked rotation curve deviates significantly from the (mildly rising) average

rotation curves of local analogues of similar mass at the same galactocentric radii.

In addition, Lang et al. (2017) evaluate the outer drop in their stack by a

comparison with models including baryons arranged in exponential disk configu-

ration with added dark-matter NFW halos, taking into account pressure gradients

in the outer disk resulting from a significant level of velocity dispersion. This com-

parison demonstrates that the stacked rotation curves can be explained by high

baryonic disk mass fractions (md = Mbaryon/MDM ≥ 0.05), in combination with

a significant level of pressure support in the outer disk. The latter is accounted

for by considering a value 4.8 < vrot/σ0 < 6.3 depending on radius, as found

to be the average for the sample of stacked galaxies. Considering galaxies with

strong pressure support (represented by a low vrot/σ0) for stacking, the resulting

averaged outer rotation curve steepens compared to a stack made with only high

vrot/σ0 galaxies, which supports the conclusion that a significant part of the outer

fall-off in the stacked rotation curve is driven by the presence of pressure effects

in the outer disk.

Lang et al. (2017) furthermore demonstrate that the above results are largely

independent of underlying model assumptions such as the presence or absence

of a central stellar bulge, the halo concentration parameter c, and the possible

adiabatic contraction of the host halo, since those do not appear to alter the

shape of the expected rotation curve significantly.

The above results are in good agreement with the conclusion drawn from our

six individual rotation curves. Most importantly, Lang et al. (2017) confirm that

outer falling rotation curves are a common feature among a larger representative

sample of massive star-forming galaxies at high redshift.

Comparison to Simulations In the following, we discuss how our results

compared to state-of-the-art cosmological simulations of galaxy formation, and

we briefly comment on the ‘thick disk’ phenomenon in local spiral galaxies.
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Any quantitative comparison between observations and simulations is chal-

lenged by the fact that fundamental properties of high−z galaxies are still not

matched by the large-volume simulations that are needed in order to produce

the observed diverse galaxy populations, as well as disk galaxies that are mas-

sive already at z ≈ 2. Also the effective co-moving spatial resolutions in cur-

rent simulations, such as Illustris and Eagle, are 1-3 kpc, which are not or only

barely sufficient to resolve bulges, giant star-forming clumps and other intra-

galactic structures, and the observed high star formation rates and gas fractions

are under-predicted in these simulations (Genel et al., 2014; Schaye et al., 2015).

Having said that, peaked rotation curves are produced in current simulations

mostly as a result of weak (or no) feedback (Johansson, Naab, & Ostriker, 2012;

Anglés-Alcázar et al., 2014). However, it is consensus now that stronger feedback

descriptions (momentum feedback from supernovae, or from active galactic nu-

clei) are needed in order to match many other observed galaxy properties, like

outflows, disk-like morphology, or angular momentum (Governato et al., 2007;

Scannapieco et al., 2009, 2012; Agertz, Teyssier, & Moore, 2011; Brook et al.,

2012b; Aumer et al., 2013; Hopkins et al., 2014; Marinacci, Pakmor, & Springel,

2014; Übler et al., 2014; Genel et al., 2015).

Given the limitations outlined above, a one-to-one comparison of our results

to simulations is not feasible. To nevertheless perform a qualitative compar-

ison to our z ≈ 2 galaxies, we utilize results from the Illustris cosmological

hydro-simulation as follows: we select galaxies at z = 2 with stellar masses of

10.9 < log(M∗/M�) < 11.3, and SFR > 55M�/yr, a total of 80 galaxies. Their

mean properties in terms of stellar size, stellar mass, and SFR are <R1/2,∗> =

5.6 kpc, <SFR>=120 M�/yr, <M∗> = 1.2 × 1011M�. We then inspect their

two-dimensional distributions of velocity and velocity dispersion, where a cut of

star formation rate surface density, ΣSFR > 0.01M� yr−1 kpc−2, has been applied.

Galaxies are classified as rotationally supported if they exhibit a continuous ve-

locity gradient along a single axis, and if the velocity dispersion map displays

a central peak which coincides with the kinematic center of the galaxy. This if

fulfilled for about 50% of the galaxies. Judging from the velocity and velocity dis-

persion maps, about 25% of the rotationally supported Illustris galaxies exhibit

falling rotation curves, i.e. 10-15% of the parent sample of 80 z = 2 SFGs.

In other simulations falling rotation curves are seen typically for very compact

systems, which do not represent the main population of simulated (or observed)

SFGs. Most simulations find larger vrot/σ0 than seen in the observed system, per-

haps due to their still modest spatial resolutions not capturing all the necessary

intra-galactic physics mentioned above. We note that typical intrinsic velocity

dispersions of the Illustris sample discussed above are 30-40 km s−1. A recent

paper connects peaked rotation curves in zoom simulations at z = 3 to higher

bulge-to-total fractions (Fiacconi, Feldmann, & Mayer, 2015). A significant frac-

tion of our high−z SFGs have indeed massive bulges. However, Lang et al. (2017)
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find that the effect of a bulge on the shape of the outer rotation curve is neg-

ligible for our otherwise fairly extended SFGs. Although our observed galaxies

are all star-forming and extended, these theoretical results give some support to

our interpretation of the evolution of our galaxies with cosmic time: the massive,

high−z SFGs are likely soon to be quenched, and will afterwards evolve on the

passive sequence into local, massive ETGs (Peng et al., 2010; Carollo et al., 2013).

There is an intriguing similarity between the turbulent high−z disks and the

‘thick disk’-phenomenon in local spiral galaxies (Bland-Hawthorn & Gerhard,

2016). The stellar population of the thick disk indicates a formation time of

z > 1− 2 while thin disk formation started at z ≈ 1 and lasts until today. Thus,

it is conceivable that our high redshift sample of disk galaxies shows the transition

period from thick disk to thin disk formation.

Data availability The data discussed here are available on the archive of the

European Southern Observatory (http://archive.eso.org/eso/eso_archive_

main.html).

156

http://archive.eso.org/eso/eso_archive_main.html
http://archive.eso.org/eso/eso_archive_main.html


4.2 Ionized and molecular gas kinematics in a z = 1.4 star-forming galaxy

4.2 Ionized and molecular gas kinematics in a

z = 1.4 star-forming galaxy

This Section is a reprint of the ApJL publication Ionized and

molecular gas kinematics in a z = 1.4 star-forming galaxy by

Übler et al. (2018); doi:10.3847/2041-8213/aaacfa; c©AAS. Re-

produced with permission.

This work is based on observations carried out with the IRAM

Interferometer NOEMA. IRAM is supported by INSU/ CNRS

(France), MPG (Germany) and IGN (Spain). Based on obser-

vations carried out with the LBT. The LBT is an international

collaboration among institutions in the United States, Italy and

Germany. LBT Corporation partners are: LBT Beteiligungsge-

sellschaft, Germany, representing the Max-Planck Society, The

Leibniz Institute for Astrophysics Potsdam, and Heidelberg Uni-

versity; The University of Arizona on behalf of the Arizona Board

of Regents; Istituto Nazionale di Astrofisica, Italy; The Ohio

State University, and The Research Corporation, on behalf of

The University of Notre Dame, University of Minnesota and Uni-

versity of Virginia.

Abstract – We present deep observations of a z = 1.4 massive, star-forming

galaxy in molecular and ionized gas at comparable spatial resolution (CO 3-2,

NOEMA; Hα, LBT). The kinematic tracers agree well, indicating that both gas

phases are subject to the same gravitational potential and physical processes af-

fecting the gas dynamics. We combine the one-dimensional velocity and velocity

dispersion profiles in CO and Hα to forward-model the galaxy in a Bayesian

framework, combining a thick exponential disk, a bulge, and a dark matter halo.

We determine the dynamical support due to baryons and dark matter, and find

a dark matter fraction within one effective radius of fDM(≤Re) = 0.18+0.06
−0.04. Our

result strengthens the evidence for strong baryon-dominance on galactic scales

of massive z ∼ 1 − 3 star-forming galaxies recently found based on ionized gas

kinematics alone.

4.2.1 Introduction

Our knowledge of the kinematics of star-forming galaxies (SFGs) at z = 1− 3 is

dominated by large surveys targeting ionized gas emission (e.g. Förster Schreiber

et al., 2009; Kriek et al., 2015; Wisnioski et al., 2015; Stott et al., 2016; Turner

et al., 2017). There is strong evidence that the ionized gas kinematics of massive,

high-redshift SFGs are dominated by ordered disk rotation, but a key question
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Figure 4.10: Left: HST color-composite image of EGS4-24985. The magenta line

shows the morphological position angle. Middle: Uniformly weighted CO(3-2) image.

The white ellipse shows the clean beam. Right: Hα (intensity color scale) and CO

(white intensity contours) PV diagram.

remains: how do the ionized gas kinematics, particularly the rotation curve and

intrinsic velocity dispersion, compare to that of neutral or molecular gas, which

dominate the gas mass budget?

Multi-phase, spatially-resolved data exist only for a handful of high-redshift

SFGs, where the kinematics of the different gas phases are found to agree (e.g.

Chen et al., 2017), or not (e.g. Swinbank et al., 2011 vs. Olivares et al., 2016). Yet,

deeper data are generally needed for at least one of the gas phases in these studies

to compare the kinematics in detail, and to disentangle the contributions from

baryons and dark matter. Genzel et al. (2013) showed through deep integrations

of a z = 1.5 galaxy that its kinematics in Hα and CO(3-2) agree. However, this

galaxy is undergoing a minor merger and is therefore not optimally suited to

kinematically analyze the galaxy’s baryon vs. dark matter content.

In this Letter, we analyze the Hα and CO(3-2) kinematics of a massive SFG at

z = 1.4, EGS4-24985. We have obtained deep data, 21 and 45hrs on source, with

the Large Binocular Telescope (LBT) and the NOrthern Extended Millimeter

Array (NOEMA), making this an unprecedented data set of two important trac-

ers of the gas kinematics in an SFG. We model the galaxy by combining a thick

exponential disk, a bulge, and an NFW (Navarro, Frenk, & White, 1996) halo,

using Markov chain Monte Carlo (MCMC) sampling. We discuss correlations

among the model parameters and constrain the galaxy’s dark matter fraction

within one effective radius (Re). Throughout, we adopt a Chabrier (2003) initial

mass function and a flat ΛCDM cosmology with H0 = 70kms−1Mpc−1, ΩΛ = 0.7,

and Ωm = 0.3.
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4.2.2 Data

4.2.2.1 Physical Properties of EGS4-24985

EGS4-24985 (R.A. 14h19m26.66s, Dec. +52◦51′17.0′′) is a z = 1.4 galaxy with a

stellar mass of M? = 7.4×1010M� and a star formation rate of SFR=98.8M�yr−1

(both derived following the techniques outlined by Wuyts et al., 2011b), placing it

in the upper half of the main sequence at this redshift (Whitaker et al., 2014). The

V−, I−, H−band ACS and WFC3 images reveal strong spatial color variations,

indicative of a mixture of stellar populations, or varying dust obscuration that

potentially hides a central mass concentration (Figure 4.10, left).

The morphological position angle PAH = 18◦, minor-to-major axis ratio qH =

0.60, Re,H = 0′′52 = 4.4kpc, and Sérsic index nS,H = 0.74 are constrained from

galfit (Peng et al., 2010) Sérsic models based on the 3D-HST team (Skelton

et al., 2014) version of CANDELS H-band (F160W) imaging (Grogin et al., 2011;

Koekemoer et al., 2011), presented by van der Wel et al. (2012). Assuming a ratio

of scale height to scale length of q0 = 0.2, typical for SFGs at this redshift (e.g. van

der Wel et al., 2014a), the estimated inclination is i = 55◦. There is a systematic

change in q as derived from other filters, q = 0.54 − 0.66 from F125W (J-band)

to F814W (I-band).

Assuming a bulge-to-disk decomposition with nS,disk = 1, nS,bulge = 4, we infer

the bulge-to-total fraction from the stellar mass map to be B/T = 0.13 ± 0.15

(Lang et al., 2014).

4.2.2.2 CO observations with NOEMA

To explore the kinematics of the cold gas, we observed the CO(3-2) line with the

IRAM interferometer NOEMA. At the redshift of the source, the CO(3-2) line

(rest frequency 345.796GHz) is shifted into the 2mm band. We observed EGS4-

24985 in the D (compact) and A (extended) configurations with 7 or 8 antennas

between November 2016 and April 2017. The total equivalent 8-antenna on-source

integration time was 45hrs in the D+A configuration, with a resolution of 0′′6−
1′′0. Weather conditions during the observing periods were excellent, with typical

system temperatures of ∼150K. The WiDEX spectral correlator provided 4GHz

of bandwidth per polarization with a fixed channel spacing of 2MHz. For phase

and amplitude calibration, every 20 minutes we alternated source observations

with observations of a bright quasar within 15◦ of the source. The absolute flux

calibration was done through bootstrapping from observations of LkHA-101 and

MWC-349 (0.36Jy and 1.45Jy at 144GHz), resulting in a continuum flux of 70µJy.

The data were calibrated using the CLIC package of the IRAM GILDAS2

2 http://www.iram.fr/IRAMFR/GILDAS
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Figure 4.11: One-dimensional velocity (left) and velocity dispersion (right) profiles

along the kinematic major axis in CO(3-2) (blue circles) and Hα (red diamonds). Due

to the spatial resolution of the observations, neighboring data points are not independent.

The projected distance increases from NE to SW of the kinematic center of the galaxy.

The extractions from the two tracers agree. In grey we show our fiducial model (see

Section 4.2.4.1).

software environment, and imaged and analyzed with the MAPPING routines

in GILDAS. We applied a uniform weighting scheme to create the data cube,

and then subtracted the 2mm continuum emission using channels free of line

emission. The final cube was CLEANED with the CLARK version of CLEAN

implemented in GILDAS, and reconstructed with a 0′′67× 0′′55 (PA=62◦) clean

beam (Figure 4.10, middle), to a spectral resolution of 19kms−1 with an rms noise

of 0.2mJy channel−1synthesized beam−1.

The molecular gas mass as measured from the CO(3-2) flux and using the

α(CO) conversion function by Genzel et al. (2015) is Mmol = 6.9×1010M�. With

a gas-to-baryonic mass fraction of Mmol/Mbar = 0.48, the galaxy is typical when

compared to larger samples at the same redshift (Tacconi et al., 2018). The CO

distribution has an approximate extent of Re,CO ≈ 0′′26 (measured from an ex-

ponential disk fit in the UV plane). The CO position-velocity (PV) diagram is

shown in Figure 4.10 (right, white contours).

4.2.2.3 Hα observations with LUCI at LBT

We obtained seeing-limited near-infrared spectroscopy of EGS4-24985 using the

LUCI1 and LUCI2 spectrographs in binocular mode (Buschkamp et al., 2012),

mounted at the Bent Gregorian focus of the two 8.4m mirrors of the LBT (Hill,

Green, & Slagle, 2006). The observations were carried out over five nights in
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March 2017, in clear weather or thin clouds, with seeing 0.′′6 − 1.′′0. We used a

pixel scale of 0′′25, the 210 grating in H−band and a slit width of 1′′0, yielding a

spectral resolution of R ∼ 3000. We adopted a two-point dithering pattern and an

exposure time of 5min per frame, for a total on-source time of 21hrs (summed from

both spectrographs). To facilitate acquisition, we used a multi-object mask and

chose PA= 20◦ to align the slit to the major axis of the galaxy (Section 4.2.2.1).

The data were reduced using the flame pipeline (Belli, Contursi, & Davies, 2018),

which outputs a rectified, sky-subtracted, wavelength-calibrated two-dimensional

(2D) spectrum. The corresponding Hα PV diagram is shown in Figure 4.10 (right,

color scale).

4.2.2.4 One-dimensional kinematic profiles

To create the one-dimensional (1D) velocity and dispersion profiles in CO, we

proceed as described by Genzel et al. (2017): we first fit a Gaussian profile to the

CO line emission in each spaxel of the data cube, smoothed over three spaxels

to ensure sufficient S/N in the outer parts of the galaxy. Accounting for the

galaxy’s systemic velocity, this results in the 2D velocity map. From this we

determine PAkin = 23◦ as the axis with the steepest velocity gradient. It agrees

with PAH , and with the PA of the Hα slit observations (SectionSection 4.2.2.1,

4.2.2.3). The CO 1D velocity and dispersion profiles are then constructed from

0.′′75 diameter apertures (as a compromise between the CO data resolution and

the seeing-limited Hα data) with the center spaced by 0.′′24 along PAkin.

To create the 1D profiles in Hα, we extract spectra in overlapping bins of two

to four spatial pixels and fit a Gaussian profile to the Hα line emission. The

choice of the number of spatial pixels used for the extraction of individual data

points does not substantially affect the extracted values, but allows for increased

S/N in the outer disk regions.

We trace Hα out to 19kpc (NE, ∼ 4.4Re,H) and 13kpc (SW, ∼ 3.1Re,H), and

CO out to 12kpc (∼ 2.8Re,H). These physical radii at z ∼ 1.4 are equivalent

to probing the rotation curve out to 23-35kpc for a galaxy of this stellar mass

at z ∼ 0 (van der Wel et al., 2014a). Figure 4.11 shows the 1D velocity and

dispersion profiles in CO and Hα along PAkin in observed space. The uncertainties

are derived from the Gaussian fits described above where noise has been taken

into account. The two tracers agree, indicating that they trace the same mass

distribution, most reliably in the outer disk where beam-smearing effects become

less important.

The galaxy’s intrinsic velocity dispersion, ∼15-30 km s−1, is at the lower end

of typical values of SFGs at this redshift (∼45 km s−1; Wisnioski et al., 2015;

see also Di Teodoro, Fraternali, & Miller, 2016). This is evident from the outer

regions of the 1D profile, where, under the assumption of constant intrinsic ve-

161



4. Individual Kinematics

locity dispersion, the effect of beam-smearing on the measured dispersion is low.

Therefore, in the case of EGS4-24985, the correction for pressure support from

the turbulent gas motions to the circular velocity is small (∼8 km s−1 at 2′′3),

and thus does not lead to a significant drop in the observed outer rotation curve.

Considering the limitations of the instrumental spectral resolution, the recovered

dispersion values represent upper limits.

4.2.3 Modelling

Since the 1D kinematic profiles of ionized and molecular gas agree within their

uncertainties, it is justified to combine them to improve constraints on our model

parameters. We have also separately analyzed the Hα and CO data and found

agreement of the results within the uncertainties (Table 4.2).

The kinematic modelling of our galaxy follows the methodology described by

Wuyts et al. (2016b) and Genzel et al. (2017). We build a mass model consisting

of a thick exponential disk (nS = 1, q0 = 0.2) a bulge (nS = 4, q0 = 1, Re = 1kpc),

and an NFW halo. We fit the mass model simultaneously to the 1D velocity and

dispersion profiles of Hα+CO along PAkin. For the baryonic mass distribution,

we account for a finite flattening following Noordermeer (2008). Our choice of an

nS = 1 disk plus bulge is motivated by the bulge-to-disk decomposition and the

likely high dust obscuration in the center of the galaxy.

The modelling uses an updated version of dysmal (Cresci et al., 2009; Davies

et al., 2011; Wuyts et al., 2016b). This code accounts for spectral and spatial

beam-smearing, and incorporates the effects of pressure support on the circular

velocity from the turbulent gas motions of the kinematic tracer, as described by

Burkert et al. (2010) and Wuyts et al. (2016b) (see also Dalcanton & Stilp, 2010,

for a detailed discussion). The most important update to dysmal consists of

the implementation of an MCMC sampling procedure using the emcee package

(Foreman-Mackey et al., 2013).

Free parameters in our modelling are Mbar, Re, B/T , i, σ0, and the NFW

halo mass Mhalo. We choose the prior halo mass to be typical for the redshift and

stellar mass of our galaxy (Moster, Naab, & White, 2013). The concentration

parameter is fixed to a value typical for this halo mass and redshift, c = 4.4

(Dutton & Macciò, 2014). We verify that the typical concentration parameters for

the range of halo masses derived from the MCMC sampling are broadly consistent

with this value (∆c ∼ 0.2 for the 1σ distribution of sampled halo masses). We

explore setups with lower/higher concentrations (c = 2; 8), and consequently find

lower/higher fDM(≤Re) and higher/lower Mhalo, consistent with our main results

(Table 4.2). We do not consider adiabatic contraction since its net effect at high

redshifts is not well constrained (e.g. Duffy et al., 2010).
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In calculating the model likelihood, we assume Gaussian measurement noise.

For the purpose of parameter inference, we choose Gaussian priors for all model

parameters that reflect our prior state of knowledge about their values and uncer-

tainties (Table 4.2). As discussed in Section 4.2.2.1, q and Re are independently

constrained through galfit models. The adopted uncertainties of σi = 10◦ and

σRe = 0′′10 are conservative estimates (see van der Wel et al., 2012). Through

our choice of narrow Gaussian priors for these parameters, we translate their un-

certainties directly into the modelling. We choose B/T = 0.2 with σB/T = 0.15

to account for a possible bulge hidden by dust extinction. For Mbar and Mhalo, we

adopt uncertainties of ∼ 50%. For σ0, our estimate is roughly based on the outer

values of the dispersion profile. If we adopt flat priors for Mhalo and B/T , we

find consistent results. We also explored a model with fixed stellar and gaseous

exponential disks, no bulge, free σ0, Mhalo, and c, leading to a central dark matter

fraction of < 1% (Table 4.2).

For our fiducial model, we set up the MCMC sampling of the posterior prob-

ability function of the parameters with 180 walkers, a burn-in phase of 500 steps,

and a running phase of 2000 steps. The length of the burn-in was designed to

ensure convergence of the chains, while the length of the final run was designed

to be >10 times the maximum autocorrelation time of the individual parameters.

The acceptance fraction of the final run was 0.35.

4.2.4 Results

4.2.4.1 Parameter correlations and fiducial model

The MCMC sampling of the joint posterior probability distributions of the model

parameters is visualized in the top rows of Figure 4.12. The median values and 1σ

confidence ranges of the marginalized distributions are indicated by the dashed

vertical lines in the 1D histograms (see also second column in Table 4.2).

For the 2D marginalized distributions, contours show the 1σ, 2σ, and 3σ

confidence levels. The strongest correlation is between inclination and Mbar.

This is expected, since any inclination correction to the observed rotation velocity

directly affects the inferred dynamical mass. This is also reflected to a smaller

extent in the correlation between inclination and Mhalo.

Since the posterior distribution is well behaved, we choose our fiducial model

to be represented by the median values of the individual marginalized distribu-

tions, with uncertainties represented by the 1σ confidence ranges. The median

values are also shown as blue squares in the 2D histograms in Figure 4.12. Every

median lies close to the mode of the posterior distribution in projection, indicating

that they lie in the most likely parameter space.

The 1D profiles of velocity and dispersion corresponding to the fiducial model

in observed space are shown as grey lines in Figure 4.11.
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4.2 Ionized and molecular gas kinematics in a z = 1.4 star-forming galaxy

Figure 4.12: MCMC sampling of the joint posterior probability distribution of the

model parameters, Mbar, Re, B/T , i, σ0, and Mhalo (top rows) from a combined fitting

to the Hα+CO data. The median values and 1σ confidence ranges of the marginalized

distributions are indicated by the dashed vertical lines in the 1D histograms, and given

on top of each histogram. The median values are also shown as blue squares on top of

the 2D histograms. All of the median values lie close to the modes of the 2D histograms.

The contours show the 1σ, 2σ, 3σ confidence levels of the 2D distributions. The bottom

row histograms show fDM(≤Re), calculated from the intrinsic models. Median values

are indicated in red. For the sampled parameter space, dark matter is sub-dominant

within Re.
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Figure 4.13: Left: Rotation curve in observed vs. intrinsic space. The grey squares

show the folded, observed velocity (Hα+CO) as a function of projected distance from

the center. The red dashed line is our fiducial model in observed space. The dash-

dotted yellow line shows the model rotation velocity in observed space, corrected for

beam-smearing (‘bs’). The dotted blue line shows the intrinsic model rotation velocity,

further corrected for inclination (‘inc’). The solid blue line shows the intrinsic model

circular velocity, further corrected for pressure support (‘ps’), and the shaded area shows

the 1σ uncertainties of the inclination correction. Right: Intrinsic rotation curve of

the fiducial model. The solid and dotted blue lines are as in the left panel. The baryonic

contribution by the bulge and disk is shown as a dashed green line, and the dark matter

contribution as a dash-dotted purple line. The inner solid and the outer dashed vertical

grey lines respectively show Re, and the radius where baryons and dark matter contribute

equally to the potential.

4.2.4.2 Central dark matter fraction

We measure the enclosed dark matter fraction at Re from the intrinsic prop-

erties of the dysmal model defined by the median sampling results, and find

fDM(≤Re=0.′′49) = v2
DM(Re)/v

2
circ(Re) = 0.20. vDM is the contribution to the cir-

cular velocity of the dark matter halo, and vcirc is the total circular velocity. The

galaxy is strongly baryon-dominated within Re. This baryon-dominance prevails

out to r = 1.′′46 (3Re). Our model agrees with the baryonic disk being ‘maxi-

mal’, vdisk(Rmax)/vcirc(Rmax) = 0.90, where Rmax = 0.′′44 is the radius where the

disk velocity reaches its peak value (e.g. van Albada et al., 1985). The intrinsic

model rotation curve and mass component curves are shown in Figure 4.13. The

inferred baryon-to-total mass fraction md = 0.03 is compatible with predictions

from abundance matching estimates that account for gas mass (Burkert et al.,

2016).

Through the MCMC sampling, we also gather information on the probability
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distribution of fDM(≤Re), which is not itself a model parameter but calculated

from the intrinsic models. In Figure 4.12 (bottom row) we show the 1D and

2D histograms of the marginalized posterior distribution of the fDM(≤Re) values

associated with the sampled parameter space. While correlations with some of

the model parameters are evident, particularly with Mbar and with the structural

parameters Re and B/T , dark matter is sub-dominant within Re for the explored

parameter space. We use the median and 1σ confidence ranges of the marginal-

ized probability distribution to estimate fDM(≤Re) and its uncertainties, and find

fDM(≤Re) = 0.18+0.06
−0.04.

4.2.5 Discussion and conclusions

We have presented kinematic data of a z = 1.4 SFG based on independent and

deep Hα and CO(3-2) observations. We find that the ionized and molecular

gas trace the same gravitational potential, as their kinematics agree within the

uncertainties. Thus, we combine them to model the galaxy.

We use MCMC sampling to constrain a mass model consisting of a thick

exponential disk, a bulge, and an NFW halo. We find that the galaxy’s central

region is baryon-dominated with a dark matter fraction of fDM(≤Re) = 0.18+0.06
−0.04.

This is in agreement with recent findings of low central dark matter fractions in

high-redshift SFGs by several groups (Förster Schreiber et al., 2009; van Dokkum

et al., 2015; Alcorn et al., 2016; Price et al., 2016; Stott et al., 2016; Wuyts et al.,

2016b; Genzel et al., 2017; Lang et al., 2017).

Together with vcirc(Re) = 296kms−1, this places EGS4-24985 into the same

region of the vcirc-fDM parameter space as the two z ∼ 1.5−1.6 galaxies observed

in Hα by Genzel et al. (2017) – a region also populated by massive local SFGs (e.g.

Persic & Salucci, 1988; Begeman, Broeils, & Sanders, 1991; de Blok et al., 2008;

Lelli, McGaugh, & Schombert, 2016a) and early-type galaxies (e.g. Cappellari

et al., 2013). The latter are the likely descendants of massive SFGs at z ∼ 1− 3.

Our result supports the interpretation by Genzel et al. (2017) that the low central

dark matter fractions observed during the peak epoch of cosmic star formation

rate density might be preserved over the rest of cosmic history, as massive SFGs

quench and evolve into passive galaxies. Also, this suggests that massive disks

are baryon-dominated in their centers at all times.

The low pressure support in our galaxy results in a flat intrinsic rotation curve

despite the low fDM(≤Re), thus setting it apart from the galaxies presented by

Genzel et al. (2017). It also implies that in this case the slope of the rotation

curve in the outer disk region is a closer tracer of the relative contributions of

baryons and dark matter to the rotational support of the galaxy. The low intrinsic

dispersion further suggests that the galaxy is more settled than other galaxies at

this redshift with otherwise comparable physical properties (Genzel et al., 2017),
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indicating that any potential dissipative condensation has happened at earlier

times (e.g. Dekel & Burkert, 2014). Still, EGS4-24985 falls on the high-redshift

Tully-Fisher relations (Übler et al., 2017).

The agreement of the deep Hα and CO data especially in the outer disk helps

to alleviate concerns that ionized gas kinematics at high redshift might be un-

representative of the galaxy kinematics, and could instead be circum-galactic or

in-/outflowing gas in disguise. Future studies with high-quality resolved kine-

matics traced through multiple gas phases in SFGs at similar redshifts will be

important to statistically corroborate our result.
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4.3 Detailed kinematics of IllustrisTNG50 mas-

sive, star-forming galaxies at z ∼ 2 from the

observer’s perspective

This Section is based on a paper draft comparing in detail the

mock-observed kinematics of massive, star-forming galaxies in

the state-of-the-art IllustrisTNG50 cosmological simulation to

the real galaxies presented in Section 4.1.

Abstract – We study the projected one- and two-dimensional kinematics of

M∗ ≈ 1011M�, star-forming galaxies in the IllustrisTNG50 simulation from the

observational perspective. Using standard observational techniques, we success-

fully recover the intrinsic kinematics of the star-forming gas from mock data

cubes. We discuss several differences between the observed and simulated galax-

ies, most importantly: (i) the simulated galaxies have lower gas-to-stellar mass

ratios than predicted by scaling relations. (ii) All simulated galaxies show clear

signs of disk rotation but they appear more irregular compared to observations.

We find large, asymmetric vertical and radial velocity components in all sim-

ulated galaxies. As a consequence, along different lines of sight the extracted

circular kinematics can vary by up to 100 km s−1. (iii) The rotation velocities

of the simulated galaxies are higher than those of observed galaxies with compa-

rable baryonic masses due to substantial amounts of dark matter in the central

regions. For galaxies with sufficiently regular kinematics, we successfully recover

the central dark matter fraction using standard dynamical modelling tools.

4.3.1 Introduction

Recent studies of massive (M∗ ≈ 1011M�) star-forming galaxies (SFGs) at redshift

z ∼ 2, near the peak of cosmic star-formation rate density, have demonstrated

that these rapidly evolving galaxies differ from present-day systems in several

fundamental ways. The z ∼ 2 galaxies have higher gas-to-stellar mass ratios

(Mgas/M∗ ∼ 1; e.g. Genzel et al., 2015; Scoville et al., 2017; Tacconi et al., 2018),

are forming stars more rapidly (with star-formation rates SFR& 100M� yr−1;

e.g. Whitaker et al., 2014; Speagle et al., 2014), and have higher intrinsic veloc-

ity dispersions relative to ordered rotational speeds (σ0/vrot ∼ 0.2; e.g. Förster

Schreiber et al., 2006; Genzel et al., 2008, 2011; Wisnioski et al., 2015; Simons

et al., 2017; Übler et al., 2019). Spatially resolved kinematic studies have revealed

that the central regions of massive z = 2 SFGs are strongly baryon-dominated,

with dark matter fractions much lower than typical SFGs at the current epoch

(e.g. Martinsson et al., 2013a,b; Alcorn et al., 2016; Price et al., 2016; Wuyts

et al., 2016b). Furthermore, the typical rotation curves of massive, high−z SFGs
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drop beyond 1.3-1.5 effective radii, indicating the significant role of pressure gra-

dients in partially supporting the disk structures due to high velocity dispersions

(Lang et al., 2017; Genzel et al., 2017).

The IllustrisTNG simulations (e.g. Springel et al., 2018) have provided a high

resolution computation of cosmologically evolving galaxy structures with suffi-

cient detail that direct comparisons to the observed SFGs are now possible, par-

ticularly for the highest-resolution run TNG50 (Nelson et al., 2019; Pillepich et al.,

2019).

The goal of this paper is to directly compare massive TNG50 SFGs at z = 2 to

observed galaxies. Our main focus is on the rotational kinematics, the associated

dark-matter distributions, and the properties and roles of non-ordered motions.

For this purpose we apply the same data extraction pipeline and modelling tools

to the TNG50 galaxies that were applied to the real galaxies in the observational

study by Genzel et al. (2017). This approach enables several types of comparisons.

First, since the internal structures of the simulated galaxies can be inspected

directly, we can assess how accurately the observational pipelines recover these

intrinsic structures. Second, given the observational results, e.g. the apparent

role of pressure support as indicated by the declining rotation curves, we can ask

whether the TNG50 galaxies successfully reproduce the observed properties, or

not. The direct comparisons that we present in this paper will serve to inform

both observers and simulators of possible caveats in the interpretation of real data

and the reliability of the simulated galaxies.

4.3.2 The observational picture

Recent observational work revealed dropping rotation curves for a sample of six

massive SFGs at 0.9 < z < 2.4 (Genzel et al., 2017; Section 4.1). Through

dynamical modelling of these deep and high-quality data, it was possible to infer

the central dark matter fractions for these galaxies using a standard NFW halo

(Navarro, Frenk, & White, 1996). This analysis showed that particularly the z &
2 targets had very low to negligible central dark matter fractions of fDM(Re) =

v2
DM(Re)/v

2
circ(Re) ≤ 0.15. The results based on these individual targets were

confirmed by Lang et al. (2017) for a representative sample of 101 SFGs through

stacking, demonstrating that falling rotation curves are indeed common among

the more massive 0.6 < z < 2.6 SFG population, and in particular for systems

with lower vrot/σ0 which are more common at higher redshift.3

3We note that for SFGs with different physical properties, for instance lower baryonic masses

and surface densities, smaller bulges, and lower−z systems there exists a variety of outer rotation

curve shapes.
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4.3.2.1 Physical properties

The SFGs presented by Genzel et al. (2017) had been selected for follow-up

observations based on previously available data from the SINS/zC-SINF and

KMOS3D integral-field spectroscopicsurveys (Förster Schreiber et al., 2009, 2018;

Wisnioski et al., 2015, 2019). This selection was based on the quality of the

available data, the kinematic properties of the galaxies (vrot/σ0 > 3), and the

extended galaxy sizes and high surface brightnesses (see Section 4.1.1 for more

details).

All galaxies in the sample by Genzel et al. (2017) lie along or somewhat above

the main sequence of SFGs at their respective redshifts, but their effective radii

are slightly larger with respect to the main population due to the selection criteria.

Their stellar masses are in the range 4×1010 < M∗/M� < 1.2×1011. All galaxies

have rotation velocities vrot > 250 km s−1 and high intrinsic velocity dispersions

34 km s−1 < σ0 < 76 km s−1.

4.3.2.2 Observational interpretation

The steep drop in the observed rotation curves can be explained by a combination

of two effects: (i) the very low fDM(Re), and (ii) the high turbulent motions which

counter-act part of the gravitational potential, thus leading to a reduction of the

rotational speed as a function of radius. An important insight from this study

was that the inferred central dark matter fractions are much lower than what

would have been predicted from abundance matching techniques (Moster, Naab,

& White, 2013, 2018).

Proposed reasons for this are connected to small-scale physical processes which

might not be adequately capture in large-scale simulations: (i) high−z SFGs are

more gas-rich smaller than their equal-mass z = 0 counterparts, with dissipation

processes efficiently channeling baryonic material to the central regions. (ii) Dark

matter could be removed from the central galactic regions due to strong feedback

(for which there is growing evidence from observations of gas outflows at high

redshift, e.g. Förster Schreiber et al., 2018), or heating of the halo via dynamical

friction caused by in-spiraling baryonic material. A consequence of this would

be a change in the dark matter density profile with a less dense core, such as a

Burkert (1995) or Einasto (1965) profile.

Based on comparison to the mass budget in local galaxies, and on the high

baryonic masses already assembled in the high−z galaxies, Genzel et al. (2017)

concluded that the results are consistent with high−z SFGs likely evolving into

early-type systems by the present day, after further consumption and/or ejection

of their available cold gas. This picture is supported by other lines of evidence,

including clustering properties and abundance matching (e.g. Adelberger et al.,

2005; Behroozi et al., 2013; Moster, Naab, & White, 2013, 2018; Papovich et al.,

2015). Since present-day early-type galaxies have similarly low central dark mat-
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ter fractions as the objects studied by Genzel et al. (2017), this suggests that the

central mass budget is set early on in the evolution of the most massive galaxies.

We would like to emphasize a few more important points from the observa-

tional perspective:

(i) Dropping rotation curves require low dark matter fractions, but the reverse

is not necessarily true. If the effect of pressure support is small due to low

gas velocity dispersion, galaxies can still be baryon-dominated and have flat

rotation curves (e.g. Übler et al., 2018).

(ii) However, it has been demonstrated through the work by Lang et al. (2017)

based on more than 100 high−z SFGs that the typical rotation curve of

massive SFGs at z > 1 drops beyond ∼ 1.3 − 1.5Re. This drop is more

pronounced for higher−z galaxies due to their typically lower vrot/σ0 ratios

and therefore the more important role of pressure support.

(iii) Through the collection of additional, deep data sets of galaxies at lower

z and with lower baryonic masses, a picture emerges where the central

dark matter fraction depends on several physical properties, best captured

in the baryonic surface density such that galaxies with higher baryonic

surface densities have lower fDM(Re) (work in preparation). This reflects

observations in the local Universe (e.g. Persic & Salucci, 1988; Begeman,

Broeils, & Sanders, 1991; de Blok et al., 2008; Lelli, McGaugh, & Schombert,

2016b).

4.3.2.3 Note on modelling assumptions

For the baryonic mass distribution, Genzel et al. (2017) chose a combination of

a thick exponential and axisymmetric disk and a compact, central bulge. These

choices are well motivated by the typical structural properties of high−z SFGs

(Wuyts et al., 2011b; van der Wel et al., 2014b; Lang et al., 2014), and the

available ancillary data for the targets (see Genzel et al., 2017, for details).

The dynamical analysis further accounts for the pressure support expected

from the high turbulent motions as shown by Burkert et al. (2010, 2016). This is

in line with other high−z kinematic studies (e.g. Kassin et al., 2007, 2012; Wuyts

et al., 2016b; Simons et al., 2016, 2017; Übler et al., 2017; Price et al., 2019).

For the dynamical modelling, Genzel et al. (2017) chose a standard NFW halo

with a concentration parameter c fixed to the typical value predicted on basis of

the stellar mass and redshift of the galaxies (based on the work by Moster, Naab,

& White, 2013; Dutton & Macciò, 2014).
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4.3.3 Simulated galaxies and methodology

4.3.3.1 The TNG50 simulation

The TNG50 simulation (Nelson et al., 2019; Pillepich et al., 2019) is the highest-

resolution volume of the IllustrisTNG project, with a uniform periodic-boundary

cube of 51.7 co-moving Mpc on a side, and 2 × 21603 total initial resolution

elements, half dark-matter particles and half gas cells. The simulations are run

with the unstructured moving-mesh code Arepo (Springel, 2010) and incorporate

dark matter, gas, stars, black holes, and magnetic fields. The dark matter and

baryonic mass resolutions are 4.5×105M� and 8.5×104M�, respectively, and the

gravitational softening lengths at z = 2 are 575 comoving pc for stars and dark

matter, and adaptive for gas with a typical size of 100 pc. The simulations account

for star formation, stellar population evolution, chemical enrichment following

nine species through supernovae type Ia and II and through AGB stars, gas

radiative processes, the formation, coalescence, and growth of supermassive black

holes, and feedback from supernovae and black holes. TNG50 adopts a Planck

Collaboration et al. (2016) cosmology with h = 0.6774, Ωb = 0.0486, Ωm =

0.3089, ΩΛ = 0.6911, and σ8 = 0.8159.

4.3.3.2 Sample selection

To select simulated galaxies that most closely resemble the available deep obser-

vational data, we choose central galaxies in the same stellar mass range as for

the observed sample, 4 × 1010 < M∗/M� < 1.2 × 1011, and star-formation rates

SFR & 50M� yr−1. In total, 12 galaxies in the TNG50 volume meet these criteria

at z = 2. Of those, we further exclude five galaxies that are either very compact,

therefore hampering the extraction of kinematics out to sufficiently large radii,

or clearly interacting or disturbed. We show projected maps of those dismissed

galaxies in Appendix 4.3.7.

Figure 4.14 compares in terms of stellar mass, SFR, size, and gas-to-stellar-

mass ratio our final sample to the observational sample by Genzel et al. (2017),

on top of the underlying population of SFGs at 1.5 < z < 2.5 based on the

3D-HST catalogue (Brammer et al., 2012; Skelton et al., 2014; Momcheva et al.,

2016). The simulated galaxies are well matched in size, and have comparable but

somewhat lower SFRs. Their gas-to-stellar-mass ratios are systematically lower

by ∼ 20−30 %. In Table 4.3 we list the physical properties of the selected TNG50

galaxies.
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Table 4.3: Physical properties of the selected TNG50 galaxies.

ID M∗/M� Mgas/M� Re,disk/kpca B/T a SFR/M� yrb

#1 1.0× 1011 5.5× 1010 4.4 0.33 71

#2 1.1× 1011 7.5× 1010 9.7 0.16 119

#3 1.5× 1011 1.0× 1011 8.9 0.19 113

#4 4.7× 1010 5.4× 1010 6.9 0.17 48

#5 1.2× 1011 5.5× 1010 5.0 0.19 92

#6 5.3× 1010 3.1× 1010 6.0 0.20 70

#7 6.2× 1010 3.7× 1010 4.4 0.22 50

a Measured from two-component Sérsic fits to the intrinsic, az-

imuthally averaged baryonic mass distribution.
b Instantaneous star-formation rate.

4.3.3.3 Mock Observations

For each selected galaxy we generate mock observations from a number of lines

of sight. We first align the coordinate system of the galaxy using its moment of

inertia tensor of the star-forming gas, such that the galactic plane approximately

coincides with the x−y−plane, and the axis of rotation coincides with the shortest

axis of the mass distribution. We then define a line of sight by an inclination angle

with respect to the z−axis and an orientation angle with respect to the x−axis.

For each line of sight we then bin the star-forming gas cells into a cube in

position-position-velocity space of dimensions 40 kpc × 40 kpc × 1600 km s−1,

where the size of each voxel is 0.5 kpc in the spatial directions and 40 km s−1

in the velocity direction. The cube is centered spatially on the potential mini-

mum (which is also, in practice, the center of rotation) and along the velocity

direction on the center-of-mass velocity of the stellar component of the galaxy

(which differs insignificantly from that of the gas). Then it is convolved with a

three-dimensional Gaussian with a FWHM of 2 kpc and 80 km s−1 in the spatial

and velocity directions, respectively, to mimic the effects of the instrument point

spread function (PSF) and line spread function (LSF; see Förster Schreiber et al.,

2018).

We then convert the instantaneous SFR into Hα luminosity (Kennicutt, Jr.,

1998). Note that the simulations do not account for extinction, and we therefore

do not perform a dust correction. This should not importantly affect our results

since we model the galaxy kinematics. To account for realistic noise properties,

including from random and systematic sources, and in particular stemming from

the strong and rapidly variable night sky line emission in the near-IR, we embed

the mock data cube into a real noise cube from a SINFONI observation at z ≈ 2.

For this, we convert and interpolate the mock data cube to angular size and

wavelength, such that our final cube sampling is 0.05′′×0.05′′×2.45 Å. At z = 2,
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Figure 4.14: Physical properties of TNG50 galaxies selected for kinematic analysis

(colored symbols) in comparison to the observational reference sample by Genzel et al.

(2017) (G17, white circles), and to the population of SFGs at 1.5 < z < 2.5 based on the

3D-HST catalogue (grey scale; Brammer et al., 2012; Skelton et al., 2014; Momcheva

et al., 2016). Offset from the main sequence (top left), effective radius (top right), and

gas-to-stellar mass ratio (bottom) are shown as a function of stellar mass. In the top

left panel, the SFR is normalized to the main sequence as derived by Whitaker et al.

(2014) at the redshift and stellar mass of each galaxy, using the redshift-interpolated

parametrization by Wisnioski et al. (2015). In the bottom panel, gas masses for the 3D-

HST galaxies are computed from the scaling relation by Tacconi et al. (2018) (T18).The

TNG50 galaxies lie along the main sequence, with a tendency towards lower star forma-

tion rates compared to the observed galaxies, have sizes similar to the reference sample

by Genzel et al. (2017), but their gas-to-stellar mass ratios are lower by ∼ 20− 30 %.
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1′′ corresponds to 8.01 kpc, and 1 Å corresponds to 15 km s−1. The mock line

emission is scaled to reproduce the typical signal-to-noise ratio (S/N) of the deep

high−z observations, with an average S/N per spaxel of S/N ≈ 3 − 5 in the

galaxy outskirts, and S/N & 20 in the bright central regions.

Finally, we also generate for each galaxy and each line of sight a mock K−band

image that has the same spatial dimensions and pixel resolution as the Hα cubes.

These are based on the simulated stellar populations and are also dust-free.

4.3.3.4 Kinematic Extractions

With our mock data cubes in hand, we derive the kinematic properties of the

simulated galaxies in the same way as was done for the real galaxies presented by

Genzel et al. (2017). First, we derive the two-dimensional projected Hα velocity

and velocity dispersion fields using linefit (Davies et al., 2009, 2011; Förster

Schreiber et al., 2009). This code takes into account the instrument line spread

function and fits a Gaussian model for each spaxel of the data cube. For the

extraction of one-dimensional kinematic profiles (the rotation curve and the dis-

persion profile), we go back to the mock data cube and place a pseudo-slit of

width 0.24′′ on the kinematic major axis of the galaxies to generate a position-

velocity diagram. Through horizontal cuts of width 4 pixels we then extract

one-dimensional line profiles for different positions along the kinematic major

axis. From those, we extract the velocity and velocity dispersion as a function

of distance from the center using linefit. Following Genzel et al. (2017), we

introduce minimum uncertainties of ±5 km s−1 for the velocity and ±10 km s−1

for the velocity dispersion.

4.3.3.5 Modelling

For the modelling of our mock galaxies we use the dynamical fitting code dys-

mal (Cresci et al., 2009; Davies et al., 2011; Wuyts et al., 2016b; Übler et al.,

2018), a forward-modelling code that allows for the combination of multiple mass

components. It accounts for flattened spheroidal potentials (Noordermeer, 2008),

includes the effects of pressure support on the rotation velocity, accounts for

beam-smearing effects through convolving with the two-dimensional PSF of each

galaxy, and for the instrument line-spread function. For our modelling, we use

a thick exponential disk, a central bulge, and a dark matter halo. We assume a

velocity dispersion that is isotropic and constant throughout the disk, and use a

flat prior between 10 and 100 km s−1.

Baryonic parameters Targets observed in kinematic studies often benefit

from high-resolution ancillary imaging data that provide estimates on structural

properties such as size, axis ratio (hence disk inclination), and bulge-to-total

(B/T ) fractions. The intrinsic baryonic components of the simulated galaxies are
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reasonably well fit by a double-exponential profile. We have verified through two-

component Sérsic fits to the artificial K−band images of the simulated galaxies

that we can recover the intrinsic effective radii Re, bulge-to-total ratio B/T , and

Sérsic indices nS within the uncertainties.

For our fiducial modelling, we fix the Sérsic indices and the effective radii of

the disk and bulge components, and use Gaussian priors on B/T and the baryonic

mass, centered on the intrinsic values with standard deviations and hard bounds

of 0.1 and typically ±0.3 for B/T , and 0.2 dex and ±0.5 dex of solar mass for

the baryonic mass. With this approach, we fold into our modelling the typical

uncertainties on those parameters expected from observational data, and allow

for modelling solutions with somewhat deviant parameters, keeping in mind also

the approximate measurement of the ‘intrinsic’ structural parameters.

We also explored models with a Gaussian prior on the disk effective radius

Re, but found that due to the highly asymmetric rotation curves of the simulated

galaxies (see Section 4.3.4.2) Re is poorly constrained for most galaxies and lines

of sight. Because the central dark matter fraction fDM(Re) is naturally very

sensitive to this value, we fix the disk effective radius for our fiducial models.

Dark matter density profile The results presented by Genzel et al. (2017)

assume a standard NFW dark matter halo profile for the dynamical modelling

(Navarro, Frenk, & White, 1996). The NFW model is a two-power-law density

model of the form

ρ(r) =
ρ0

(r/rS)α(1 + r/rS)β−α
, (4.3)

where α = 1 and β = 3, and rS is the halo scale radius.

Through modified NFW fits to the intrinsic dark matter density distributions,

we find that all simulated haloes have a steeper inner slope with respect to a pure

NFW halo, with individual values of α = 1.4 − 1.7 (see also Lovell et al., 2018).

An example is shown in Figure 4.15. We also constrain the halo concentration

parameter c = R200/rS, where R200 is the innermost radius within which the mean

density exceeds 200 times the critical density of the Universe. rS is defined to

be the radius where the slope of the density profile matches −(β + α)/2. This is

by definition −2 for an NFW halo, but varies for our modified NFW haloes with

values ≤ −2, leading to larger scale radii. For our modified NFW fits, we find a

range of concentration parameters c = [2.4; 6.4]. We note that the exact values

of α, rS, and correspondingly c are sensitive to the the radius out to which mass

is included for the fit, and we always fit out to radii beyond R200.

For the bulk of our modelling we adopt the modified NFW profiles for the

dark matter distribution, and leave the total halo mass as a free parameter be-

tween Mhalo = 1011 − 1013.5M�, but we also perform modelling with standard

NFW haloes for consistency with the modeling presented by Genzel et al. (2017),
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Figure 4.15: Two-power-law density fit to the spherically averaged dark matter density

distribution of the halo of galaxy #3. On the galaxy scale (r . 30 kpc), the dark matter

density is well fit by a modified NFW halo with α = 1.5, while a standard NFW fit with

α = 1 underestimates the central dark matter density. This halo has a virial radius

R200 ≈ 174 kpc with a total mass of log(M200/M�) = 12.70. For our modified NFW

fit we find a scale radius rS ≈ 55 kpc, corresponding to a concentration parameter of

c = 3.1.

and to assess the impact of the assumed dark matter halo profile on the inferred

central dark matter fractions.

To summarize, in our standard modelling setup we leave the following four pa-

rameters free, using flat or truncated Gaussian priors: the total baryonic mass

Mbar, the baryonic bulge-to-total fraction B/T , the intrinsic velocity dispersion

σ0, and the total halo mass Mhalo. All other parameters are fixed, including the

bulge and disk effective radii and Sérsic indices, inclination, and position angle.

Using dysmal, we simultaneously fit the extracted one-dimensional velocity

and velocity dispersion profiles. We apply Markov chain Monte Carlo (MCMC)

sampling to determine the model likelihood based on comparison to the extracted

profiles, and assuming Gaussian measurement uncertainties. To ensure conver-

gence of the MCMC chains, we model each galaxy with ≥ 200 walkers per free

parameter, and a burn-in phase followed by a running phase of 100 steps each
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Figure 4.16: Projected two-dimensional maps of the convolved intrinsic parameters

(top row: ΣSFR; second row: velocity; third row: velocity dispersion) and recovered

parameters from the mock observations with S/N ≥ 5 (fourth row: velocity; bottom row:

velocity dispersion) for the seven selected TNG50 galaxies (columns). The projections

correspond to an inclination of i = 60◦. The panels show 40 kpc × 40 kpc in projection,

and the color scale shows [-2; 1] for log(ΣSFR), [-400; 400] km s−1 for velocity, and

[0; 150] km s−1 for velocity dispersion. The agreement between the intrinsic and the

recovered kinematic properties in regions of high star-formation rate surface density is

very good.

(>10 times the maximum autocorrelation time of the individual parameters).

For each free parameter, we adopt the median of all model realizations as our

best fit value, with asymmetric uncertainties corresponding to the 68th percentile

confidence ranges of the one-dimensional marginalized posterior distributions.

4.3.4 Results

4.3.4.1 Comparison of two-dimensional kinematics

In Figure 4.16 we compare the two-dimensional maps of velocity and velocity

dispersion based on the kinematic properties after convolution with the PSF and

LSF on the one hand, and on the other hand based on our mock observations
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Figure 4.17: Extracted kinematics along five different lines of sight (columns) for

galaxy #3. Top row: star-formation rate surface density, 40 kpc × 40 kpc in projection;

second row: extracted velocity along the kinematic major axis; bottom row: extracted

velocity dispersion along the kinematic major axis, corrected for the ‘instrument’ LSF.

Particularly the rotation velocities can differ substantially along different lines of sight.

Variations in the velocity dispersion are more modest, and typically within the uncer-

tainties. Not shown here are velocity and dispersion extractions for emission regions

with highly non-Gaussian line profiles, typically found in the central 0.2 − 0.5′′ of the

mock data.

including noise. Through the addition of noise in the mock observation, the fainter

emission in the outskirts of the galaxies can’t be recovered, including low-surface

brightness inflows and tidal features. However, above S/N ≥ 5 the recovery of

the intrinsic kinematics is very good.

4.3.4.2 Line-of-sight variations

The columns in Figure 4.16 show one line of sight per galaxy. In order to in-

vestigate the regularity of the simulated kinematics, we extract for each galaxy

two- and one-dimensional kinematics from the mock observations along five ran-

dom lines of sight, but keeping the inclination fixed. In Figure 4.17 we compare

the one-dimensional velocity and velocity dispersion profiles extracted along the
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Figure 4.18: Extracted rotation velocities along five different lines of sight (colors) for

galaxies #1, #2, #4, #5, #6, and #7 (from left to right and top to bottom). We find

large variations in extracted major axis velocities along different lines of sight for all

simulated galaxies.

different lines of sight for galaxy #3, for which the high surface brightness re-

gion is most extended. From this example it is evident that the kinematics can

vary substantially between different lines of sight, with differences in the outer

rotation velocities of ∼ 150 km s−1, much larger than the typical uncertainties

of ∼ 30 − 50 km s−1 in the outer regions. The velocity dispersions are gener-

ally more similar along different lines of sight, with maximum variations in the

outer regions of ∼ 30 km s−1 and typical uncertainties on the extracted values of

∼ 30− 60 km s−1.

Furthermore, for each line of sight the extracted rotation curves are rela-

tively asymmetric if comparing the approaching and receding side, to a degree

that cannot be accounted for by fitting uncertainties. In fact, these asymmetries

are seen in the intrinsic data. We find such asymmetries of individual lines of

sight, and differences between lines of sight for all seven galaxies, as illustrated

in the comparative plots for the major axis velocities of the other six galaxies in

Figure 4.18.
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Figure 4.19: One-dimensional velocity and velocity dispersion profiles for galaxy #5,

sightline 1 (black circles with error bars) and the corresponding best-fit model (red dia-

monds). The model matches the data well within the uncertainties.

4.3.4.3 Dynamical modelling and recovery of the central dark matter

fraction

We model all seven galaxies with five lines of sight each with our fiducial mod-

elling setup. Generally, the asymmetric kinematics along the major axis as dis-

cussed above hamper successfull modelling with dysmal because the code as-

sumes axisymmetric mass distributions. One case with relatively symmetric one-

dimensional kinematics is shown in Figure 4.19 (black points with errors) for

galaxy #5, sightline 1, together with our best fit (red diamonds) as constrained

through the medians of the posterior probability distributions from the MCMC

chains (Figure 4.20). In Figure 4.20, best-fit parameters are indicated by the blue

squares and vertical lines, while the true values are indicated by green stars and

vertical dash-dotted lines or regions. In the bottom row we also show the cor-

responding histograms for the inferred dark matter fraction within the effective

radius. We recover the central dark matter fraction fDM(Re) within one standard

deviation. In Figure 4.20, we also see the typical (anti-)correlations between dark

matter and baryonic mass, and its distribution.

In Table 4.4 we list the best-fit parameters for the simulated galaxy #5, in-

cluding the inferred fDM(Re), for the five lines of sight, together with the corre-

sponding intrinsic values. Generally, we recover the intrinsic parameters within

one or two standard deviations. However, sightlines 2, 3, and 4, which give all

relatively asymmetric one-dimensional kinematics, all overestimate the total bary-

onic mass, and underestimate the total dark matter halo mass. The central dark
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Figure 4.20: MCMC sampling of the joint posterior probability distribution of the

model parameters, Mbar, B/T , σ0, and Mhalo (top rows) for galaxy #5, sightline 1. The

median values and 1σ confidence ranges of the marginalized distributions are indicated

by the dashed vertical lines in the one-dimensional histograms, and given on top of

each histogram, and 2σ confidence ranges are indicated by the dotted vertical lines. The

median values are also shown as blue squares on top of the two-dimensional histograms.

All of the median values lie close to the modes of the two-dimensional histograms. The

contours show the 1σ, 2σ, 3σ confidence levels of the two-dimensional distributions.

The bottom row histograms show fDM(≤Re), calculated from the MCMC realizations.

Median values are indicated in red. As green stars we show the corresponding intrinsic

parameters of the simulated galaxies for Mbar, B/T , σ0, and fDM(≤Re). For σ0 we

give a range of values indicated by the shaded region in the one-dimensional histogram

and by the error bars in the two-dimensional histograms, where the star simply indicates

the midpoint. These regions encompass the range of σ0 values as measured from the

intrinsic azimuthally-averaged kinematics. We recover the dark matter fraction at 1Re
within one standard deviation.
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matter fractions are poorly constrained for sightlines 2 and 3, and underestimated

for sightline 4.

In Table 4.4 we also list our best fit for sightline 1 using a standard NFW

halo instead of the modified, intrinsically constrained halo profile. This setup

produces a higher baryonic mass compared to the modified NFW setup. Recall

from Figure 4.15 that the NFW fit generally underestimates the dark matter

density within the inner ∼ 10 kpc. In order to still reproduce the observed

rotation curve shape, the baryonic mass has to be increased. In the present case,

however, this effect is small if a very high concentration parameter is assumed –

we use c = 17 for the NFW profile.

In Appendix 4.3.8 we list the best fit parameters for all galaxies and lines of

sight for our fiducial modelling setup.

Dealing with asymmetries We have tested two approaches in dealing with

the asymmetric kinematics: (i) ‘symmetrization’ of the one-dimensional extracted

kinematics through rotating/folding and averaging, a method that can also be ap-

plied to real data, and (ii) ‘equilibration’ of the intrinsic kinematics before creat-

ing the mock data through artificially removing part of the non-circular motions,

namely vertical motions perpendicular to the disk plane. In Appendix 4.3.9 we

show examples of both approaches and discuss their effect.

4.3.4.4 Intrinsic kinematics of the simulated galaxies

The simulated galaxies differ in a number of ways from the systems observed by

Genzel et al. (2017). To better understand the origin of these differences, we

investigate the intrinsic kinematic properties of the galaxies. As for the different

lines of sight, these properties are not accessible for real galaxies, but their study

can highlight effects which are potentially relevant to observational work.

In Figure 4.21 we show different measures of the intrinsic, one-dimensional

velocity and velocity dispersion profiles for all selected galaxies. While the circular

velocity vcirc (black line) is calculated from the enclosed mass, resulting in a

smooth curve, all other properties are measured from the azimuthally averaged

star-forming gas.
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Three different measures of the intrinsic velocity dispersion are shown: the ra-

dial velocity dispersion σr (turquoise), the vertical velocity dispersion σz (green),

and the three-dimensional velocity dispersion σ3D/
√

3 (blue). All three measures

agree extremely well, suggesting that the velocity dispersion is isotropic. Further-

more, beyond r ∼ 2 kpc the velocity dispersion is remarkably constant, suggesting

the existence of a galaxy-wide pressure floor. Generally, the dispersion values of

20− 50 km s−1 are in the lower part of the observed scatter at z ∼ 2, which cov-

ers the range ∼ 20− 100 km s−1 for SFGs, with a median value of ∼ 50 km s−1

(Wisnioski et al., 2015; Übler et al., 2019).

Out to r ∼ 10 kpc and sometimes beyond, the gas rotation velocity vrot

(salmon) approximately traces the circular velocity. The light brown lines show

the rotation velocity corrected for pressure support, often used in observations as

an attempt to recover the circular velocity (e.g. Burkert et al., 2016; Wuyts et al.,

2016b; Lang et al., 2017; Genzel et al., 2017; Übler et al., 2017, 2018). Due to

the high rotation velocities (∼ 300−400 km s−1) and the low velocity dispersion,

the relative effect of the pressure support correction is comparably small for most

simulated galaxies.

All galaxies show substantial amounts of vertical motions vz (purple lines

show |vz|) and radial motions vr (magenta). The magnitudes of these motions

are often correlated (e.g., galaxy #1, top left panel), suggesting streaming motions

diagonal to the galactic plane, potentially connected to minor mergers (as opposed

to pure radial inflow triggered by a bar or disk instabilities). Adding these non-

circular motions to the rotation velocity, together with the pressure correction,

leads to the dark brown line which generally corresponds better to the total

circular velocity than the light brown line, accounting only for pressure support.

We note that the largest non-circular motions are seen for galaxies #6 and #7

(bottom panels) at distances r & 10 kpc from the center, beyond the visible extent

of these galaxies. These motions therefore most likely correspond to low-surface

brightness, misaligned accretion streams.

4.3.5 Discussion

4.3.5.1 Recovery of intrinsic properties with the observational pipeline

Generally, the recovery of the simulated galaxy kinematics through the observa-

tional pipeline, i.e. the creation of two-dimensional kinematic maps and of one-

dimensional major axis kinematics, works satisfactorily. Modulo accounting for

random and correlated noise features, the recovered properties correspond well to

the intrinsic kinematics.

The application of the dynamical modelling tool to recover the intrinsic mass

profiles from the extracted kinematics proved more difficult. A limitation here

is the assumed axisymmetry of the mass distribution and kinematics. While the

azimuthally averaged mass profiles of the simulated galaxies are well fit by a
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Figure 4.21: Different measures of the intrinsic and azimuthally averaged velocity and

velocity dispersion of the selected simulated galaxies, as indicated in the legend. Beyond

r ∼ 2 kpc, the velocity dispersion is approximately constant with radius (blue and green

lines). All galaxies show substantial radial (magenta) and vertical motions (purple).

Accounting for the turbulent and non-circular motions (light and dark brown), it is

possible to approximately recover the intrinsic circular velocity (black).
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double-exponential for the baryonic component and a modified NFW halo, the

projected two-dimensional and one-dimensional major axis kinematics as traced

by the star-forming gas show clear deviations from axisymmetry. This is further

reflected in the rotation velocities along different lines of sight (but with identical

inclination) which can display large differences amongst each other, with up to

∆vrot > 100 km s−1. For the more symmetric cases of individual line-of-sight

kinematics, however, we are able to recover the central dark matter fraction within

the uncertainties constrained through our MCMC modelling.

It is crucial to realize that for the dynamical modelling we have fixed the

density profile of the dark matter halo to a modified NFW profile with exponents

as measured from the intrinsic data, leaving only the total mass of the halo free.

Forcing a fit with a standard NFW profile typically leads to increased estimates

of the total baryonic mass, and decreased estimates of the central dark matter

fraction.

4.3.5.2 Comparison between simulated and real galaxies

As discussed in Section 4.3.3.2 the simulated galaxies lie in a similar parame-

ter space of stellar mass, star formation properties, and sizes, compared to the

galaxies observed by Genzel et al. (2017). With respect to their gaseous mass,

one galaxy (#3) lies on the scaling relations by Tacconi et al. (2018), and one

galaxy (#4) exceeds the predicted gas mass by 25%. The other four objects have

gas masses between 60 and 90% of their predicted values. Correspondingly, the

intrinsic velocity dispersions measured from the star-forming gas are in the lower

half of the observed scatter for z ∼ 2 SFGs (e.g. Übler et al., 2019).

The rotation velocities of the simulated galaxies, on the other hand, are higher

than typical observed values, with vcirc ∼ 300− 400 km s−1 for all galaxies, indi-

cating a higher central mass concentration. In the simulations, this mass concen-

tration is provided by dark matter. The intrinsic halo profiles are steeper than

NFW, and more so due to the presence of baryons (Lovell et al., 2018). As a

consequence of the somewhat lower velocity dispersions and the higher rotation

velocities, the effects of pressure support, which can be substantial for observed

galaxies (see Genzel et al., 2017; but also Übler et al., 2018), are not very impor-

tant for the simulated galaxies.

For the dynamical modelling of the z ∼ 2 galaxies presented by Genzel et al.

(2017), a standard NFW halo was assumed. Our modelling of the simulated

galaxies shows that the assumed halo profile has an effect on the inferred central

dark matter fraction, and that in the particular case of the studied TNG50 galax-

ies an NFW halo profile systematically underestimates the central dark matter

fractions. We note that in the case of the observed SFGs, any additional large

central dark matter mass would have been reflected in higher rotation velocities

(as we find it in this work for the simulated galaxies). Given the observed shape of
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the observed rotation curves, a higher central dark matter density would require

a substantial decrease in baryonic mass of the observed galaxies.

Regarding the kinematic asymmetries in the simulated galaxies, it is important

to realize that the galaxies discussed by Genzel et al. (2017) have been carefully

selected to enable this challenging work. Certainly there exist real high−z galaxies

with asymmetric kinematics. Due to the low number statistics of the observed and

simulated sample, we cannot conclusively determine how ‘different’ the simulated

galaxies are in this respect. It is however noteworthy that all TNG50 galaxies in

the explored M∗ − SFR−Re−parameter space show kinematic asymmetries.

4.3.6 Conclusions

We have studied the detailed kinematics of massive, z = 2 SFGs from the Illus-

trisTNG50 simulation along different lines of sight. Our focus was on the ob-

servational perspective: through mock observations and application of the same

observational tools for kinematic analysis and modelling, we have compared the

simulated galaxies to those observed by Genzel et al. (2017) who found high bary-

onic surface densities and low central dark matter fractions for massive z ∼ 1− 2

SFGs.

Our main conclusions are as follows:

• All simulated galaxies show asymmetric kinematics particularly in the cir-

cular velocity fields and profiles, which can also vary by up to 100 km s−1

along different lines of sight. In addition, all galaxies show substantial ver-

tical and radial velocity components.

• The extracted one- and two-dimensional kinematics from the mock data

cubes, using the same observational tools, correspond well to the intrinsic

galaxy kinematics.

• For the less asymmetric kinematics, we can recover the central dark matter

fraction within the uncertainties.

• The simulated galaxies differ in a few important ways from the observed

sample by Genzel et al. (2017): (i) their SFRs and gas masses are lower;

(ii) their rotation velocities are higher, while their velocity dispersions are

in the lower part of the observed scatter at z ∼ 2; and (iii) their central

dark matter fractions are higher.

Since real galaxies can ever only be observed from one line-of-sight, the sub-

stantial differences among different lines of sight in the simulated galaxy kinemat-

ics may serve as a caution to observers. However, considering the differences in

other physical parameters between the simulated and observed sample, it is not

ultimately clear that the features seen in the simulated galaxies would show up
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in real galaxies, since the simulated galaxies appear to not resemble the observed

galaxies in various ways. This might also be due to low-number statistics from

both the observational perspective (6 galaxies discussed by Genzel et al. (2017))

and the simulation perspective (only 12 TNG50 galaxies match the selection in

stellar mass and SFRs).

From the observational perspective, work in progress is substantially extend-

ing the available outer rotation curve sample with constrained central dark matter

fractions towards lower baryonic masses, velocities, and redshifts. It will be inter-

esting to compare TNG50 or next-generation simulated galaxies to these systems

for which better statistics will be available.

Our analysis shows that it may also be valuable to explore dynamical mod-

elling with halo profiles that deviate from the standard NFW. For instance, if

baryonic masses are allowed to decrease, a dark matter profile with a steeper

inner slope can lead to higher central dark matter fractions.

4.3.7 Appendix A – Dismissed galaxies

In Figure 4.22 we show those 5/12 simulated galaxies that met the stellar mass and

SFR selection cuts, but were dismissed from further kinematic analysis because

they show signatures of strong interaction or disturbance, and/or they are too

compact for a kinematic analysis using the standard observational tools (including

noise).

4.3.8 Appendix B – Best-fit parameters

In Table 4.5 we list the best-fit parameters for all galaxies for our fiducial mod-

elling setup.

For galaxy #1, the central dark matter fraction is not well constrained for

all lines of sight but sl4. The ‘emission line’ profiles of this object are highly

non-Gaussian in the central ±2 kpc for most lines of sight, and only for sl1 and

sl4 we can extract reliable Gaussian fits to the central kinematics. The galaxy

shows also high vertical and radial motions between r = 5 − 10 kpc, leading to

uncertain measurements of the velocity dispersion, and is likely in a stage of rapid

accretion.

For galaxy #2, we recover the intrinsic baryonic parameters reasonably well.

The central dark matter fractions are somewhat too high for sl2, sl3, and sl5, but

all agree within 2σ.

For galaxy #3, we find asymmetric rotation velocities. The best-fit baryonic

mass and B/T are systematically over-estimated, while the central dark matter

fraction is under-estimated.

Galaxy #4 appears to be in a stage of rapid assembly or post merger. It has

relatively symmetric rotation curves but very asymmetric velocity dispersion pro-
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convolved intrinsic properties of dismissed galaxies

Figure 4.22: Projected two-dimensional maps of the convolved intrinsic parameters

(top row: ΣSFR; second row: velocity; third row: velocity dispersion) for the five dis-

missed TNG50 galaxies (columns). The projections correspond to face-on, i.e. an in-

clination of i = 0◦. The panels show 40 kpc × 40 kpc in projection, and the color scale

shows [-400; 400] km s−1 for velocity, and [0; 150] km s−1 for velocity dispersion. The

galaxies were dismissed due to strong interaction/disturbance signatures and/or because

they were too compact for a kinematic analysis with the standard observational tools.

files, likely due to its high vertical motions. The different lines of sight, however,

show rotation velocities with differences of up to ∆vobs ≈ 150 km s−1. Particu-

larly sl1 shows very low rotation velocities. For this sightline, we cannot recover

the intrinsic parameters. The uncertainties in both the kinematic extractions and

the best-fit dynamical modelling are relatively large, such that we can recover the

central dark matter fraction for the other lines of sight within the uncertainties.

We find the largest halo mass and central dark matter fraction for sl5 which shows

also the highest rotation velocities.

Galaxy #5 shows very asymmetric rotation velocities and different kinematic

profiles from different lines of sight. We find baryonic masses that differ by up

to ∆(Mbar/M�) ≈ 0.5 dex, and halo masses that differ by up to ∆(Mhalo/M�) ≈
1.3 dex. The central dark matter fractions also differ by > 30%. However, for sl1

and sl5 we get very good fits to the extracted one-dimensional kinematics. For

those lines of sight, the best-fit values agree reasonably well with the intrinsic

parameters.

For galaxy #6, we get poor fits to the extracted one-dimensional kinematics,

except for sl3. For this line of sight, we also recover the intrinsic parameters within

the uncertainties. The poor fits for the other lines of sight are mostly due to the
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velocity dispersion profiles, which are very asymmetric for these other cases. In

this galaxy, the intrinsic, azimuthally averaged velocity dispersion is elevated in

the central region and reaches a constant level only beyond ∼ 3− 4 kpc.

For galaxy #7, the extracted rotation curves are relatively symmetric, but

very different between different lines of sight. We get reasonable fits for most

lines of sight, but the central dark matter fraction is constrained only for sl1

and sl2 which show rising rotation curves, while the other lines of sight with flat

rotation curves yield only upper limits.

Table 4.5: Best-fit parameters for all simulated galaxies and lines of sight with the

fiducial modelling setup. We list the median together with the 1σ confidence ranges,

or the 2σ value as an upper/lower limit if no reliable best-fit parameter could be con-

strained. The fiducial modelling setup uses Gaussian priors centered on the intrinsic

values for Mbar and B/T , with standard deviations of 0.5 dex of solar masses and 0.1,

respectively, flat priors for Mhalo and σ0, in the ranges log(Mhalo/M�) = [11; 13.5] and

σ0 = [10; 100] km s−1, respectively, and the halo density profiles is fixed to the intrinsic,

modified NFW profile.

galaxy log(Mbar/M�) B/T σ0 [km s−1] log(Mhalo/M�) fDM(Re)

#1 sl1 11.29± 0.07 0.40+0.13
−0.07 70+13

−14 < 12.34 < 0.41

#1 sl2 11.38+0.07
−0.09 0.34+0.07

−0.05 29+12
−11 11.81+0.51

−0.53 < 0.51

#1 sl3 11.26+0.09
−0.13 0.32± 0.06 45+15

−17 12.09+0.46
−0.66 < 0.71

#1 sl4 11.12+0.13
−0.19 0.26+0.06

−0.07 71+11
−12 12.29+0.37

−0.61 0.45+0.22
−0.24

#1 sl5 11.23+0.10
−0.14 0.30+0.06

−0.05 31± 13 12.11+0.44
−0.62 < 0.73

intrinsic 11.19 0.33 ∼ 27− 51 12.99 (c = 3.5) 0.40

#2 sl1 11.49+0.15
−0.14 0.25+0.08

−0.05 < 22 12.39+0.22
−0.44 0.45+0.14

−0.20

#2 sl2 11.34+0.19
−0.15 0.17+0.05

−0.04 16+5
−4 12.83+0.14

−0.27 0.68+0.10
−0.17

#2 sl3 11.24+0.15
−0.16 0.15+0.05

−0.03 18+3
−2 12.87+0.10

−0.14 0.75+0.07
−0.11

#2 sl4 11.45+0.17
−0.15 0.19+0.06

−0.04 < 40 12.54+0.22
−0.43 0.54+0.13

−0.23

#2 sl5 11.34± 0.11 0.20± 0.04 < 12 12.73+0.09
−0.12 0.65+0.07

−0.09

intrinsic 11.27 0.16 ∼ 18− 50 12.79 (c = 3.1) 0.51

#3 sl1 11.59+0.10
−0.11 0.24+0.06

−0.04 25± 6 12.17+0.33
−0.57 0.30+0.14

−0.16

#3 sl2 11.64+0.04
−0.05 0.30+0.05

−0.03 < 25 11.47+0.38
−0.31 < 0.30

#3 sl3 11.57+0.10
−0.12 0.25+0.05

−0.04 24+6
−12 12.34+0.25

−0.45 0.36+0.13
−0.16

#3 sl4 11.58± 0.11 0.23+0.05
−0.04 19± 6 12.33+0.28

−0.51 0.35+0.14
−0.17

#3 sl5 11.59+0.09
−0.11 0.27+0.06

−0.05 < 32 12.22+0.29
−0.51 0.31+0.13

−0.15

intrinsic 11.40 0.19 ∼ 28− 42 12.70 (c = 3.1) 0.50

#4 sl1 10.92+0.05
−0.08 0.27+0.09

−0.05 55± 5 < 11.56 0.23+0.07
−0.03

#4 sl2 11.03+0.21
−0.24 < 0.12 32± 8 12.42+0.22

−0.45 0.57+0.17
−0.25

#4 sl3 11.11+0.13
−0.15 0.19± 0.05 40± 10 12.19+0.34

−0.56 0.42+0.18
−0.20

#4 sl4 11.02± 0.11 0.12± 0.04 34+5
−6 11.96+0.19

−0.29 0.42+0.11
−0.14

#4 sl5 10.98+0.26
−0.23 0.08+0.07

−0.05 37+7
−8 12.82+0.13

−0.31 0.69+0.12
−0.22

intrinsic 11.00 0.17 ∼ 16− 40 12.60 (2.4) 0.58

#5 sl1 11.22+0.15
−0.12 0.18± 0.04 32+3

−4 12.53+0.12
−0.26 0.56+0.09

−0.16
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#5 sl2 11.61± 0.02 0.03+0.01
−0.00 44± 3 11.30+0.29

−0.19 < 0.61

#5 sl3 11.42+0.01
−0.03 0.16± 0.01 31± 3 < 11.72 < 0.25

#5 sl4 11.41+0.07
−0.08 0.21+0.04

−0.02 29± 3 12.03+0.23
−0.28 0.29+0.11

−0.09

#5 sl5 11.14+0.07
−0.08 0.25+0.06

−0.04 38± 3 12.43+0.08
−0.09 0.56+0.06

−0.07

intrinsic 11.24 0.19 ∼ 27− 53 12.43 (c = 6.0) 0.42

#6 sl1 10.84+0.17
−0.20 0.17+0.05

−0.07 58± 8 12.12+0.19
−0.31 0.66+0.13

−0.18

#6 sl2 10.89± 0.17 0.19+0.06
−0.05 46+11

−13 12.24+0.21
−0.36 0.66+0.13

−0.20

#6 sl3 11.04+0.10
−0.12 0.25+0.06

−0.05 40+10
−11 11.67+0.31

−0.40 0.39+0.16
−0.15

#6 sl4 11.20+0.06
−0.19 < 0.03 69± 7 < 12.06 0.27+0.22

−0.10

#6 sl5 11.13+0.09
−0.11 0.31+0.12

−0.07 53+13
−14 11.45+0.38

−0.31 0.27+0.16
−0.09

intrinsic 10.92 0.20 ∼ 11− 32 12.22 (c = 6.4) 0.47

#7 sl1 10.90+0.16
−0.19 0.16± 0.05 38± 5 12.28+0.15

−0.22 0.63+0.12
−0.16

#7 sl2 11.09+0.20
−0.27 < 0.18 57+7

−8 12.13+0.28
−0.53 0.49+0.23

−0.25

#7 sl3 11.05± 0.04 > 0.31 34+6
−7 < 11.66 0.19+0.07

−0.04

#7 sl4 11.09+0.06
−0.07 0.38± 0.07 < 16 11.47+0.27

−0.26 0.24+0.11
−0.07

#7 sl5 11.06+0.07
−0.12 0.23± 0.06 30± 10 11.59+0.35

−0.38 0.31+0.17
−0.13

intrinsic 11.00 0.22 ∼ 14− 33 12.25 (c = 6.2) 0.46

4.3.9 Appendix C – Approaches to dealing with kinematic

asymmetries

Here we show examples of our two approaches to dealing with asymmetric kine-

matics as discussed in Section 4.3.4.3, ‘symmetrization’ and ‘equilibration’.

Symmetrization In Figure 4.23 we show the original one-dimensional kine-

matic extractions for galaxy #5, sightline 2 (red) and the corresponding ‘sym-

metrized’ profiles (blue). To symmetrize the one-dimensional extractions, the

profiles are rotated (for the velocity) or folded (for the dispersion) around the

kinematic center, interpolated onto a common grid, and averaged, with uncer-

tainties added in quadrature. In the example shown the symmetrization helps

to make the rotation velocity regular, and to smooth out the noise spike at a

projected distance of ∼ 1′′. Otherwise, the S/N is not affected.

Equilibration In Figure 4.24 we show the intrinsic convolved and projected

two-dimensional kinematics for galaxy #3, sightline 2 before (left) and after

(right) removing vertical and radial motions. Clearly, this leads to more sym-

metric and smoother velocity and velocity dispersion maps, emphasizing the im-

pact of these non-circular motions. In Figure 4.25 we compare the corresponding

one-dimensional kinematic extractions after creating mock data cubes for the

processed galaxy with the original extractions. Note that for this exercise we

use the identical noise cube in order to ensure a consistent comparison. In good

agreement with the intrinsic two-dimensional kinematics shown in Figure 4.24,
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 #5 sl2

 #5 sl2 symmetrized

 #5 sl2

 #5 sl2 symmetrized

Figure 4.23: One-dimensional kinematic extractions from the mock data cubes before

(red) and after (blue) ‘symmetrization’ for galaxy #5, sightline 2. The kinematics

become symmetric, and features such as the noise spike at projected distance ∼ 1′′ get

smoothed out.

the fall-off on the receding side of the rotation curve is less extreme after equili-

bration, while the velocity dispersion along the kinematic major axis is not much

affected. The more regular behaviour of the kinematics facilitates the line fitting

and results in higher S/N on average (∆S/N ≈ 0.07 for the full two-dimensional

map, with ∆S/N ∼ 10 in the center) such that the uncertainties on the extracted

kinematics are smaller, and extractions out to larger distances from the center

are possible.
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original equilibrized

Figure 4.24: Intrinsic projected SFR surface density, velocity, and velocity dispersion

maps before (left) and after (right) removing velocity components vertical and radial

with respect to the disk plane (‘equilibrized’) for galaxy #3, sightline 2. The projections

correspond to an inclination of i = 60◦. The panels show 40 kpc × 40 kpc in projection,

and the color scale shows [-400; 400] km s−1 for velocity, and [0; 150] km s−1 for

velocity dispersion. Both the velocity and velocity dispersion fields become smoother

and more regular with the vertical motions removed.
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 sl2

 sl2 equilibrized

 sl2

 sl2 equilibrized

Figure 4.25: One-dimensional kinematic extractions from the mock data cubes before

(red) and after (blue) removing velocity components vertical to the disk plane for galaxy

#3, sightline 2. The rotation curve becomes less asymmetric, and through increased

S/N extractions at larger galactocentric distances are possible. The velocity dispersion

is less affected.
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Chapter 5

Conclusions

This thesis presents the kinematics of star-forming galaxies (SFGs) during the

peak epoch of cosmic star formation rate density and shortly after, at 0.5 < z <

2.5, both in a population-averaged sense and with greater detail for individual

systems. This is done based on the highest-quality and deepest data currently

available from the ground, taken with integral-field instruments such as SINFONI

and particularly the efficient multi-IFU KMOS, but also longslit observations and

radio interferometry.

Together, the presented work tackles important questions in galaxy evolution

that can now be addressed for the first time to such an extent. In the study of the

Tully-Fisher relation (Chapter 2) we investigate how the average dynamical sup-

port of star-forming galaxies is distributed between gas, stars, and dark matter at

different cosmic times, and how this fits into a cosmological context. In Chapter 3

we quantify the redshift evolution of the velocity dispersion, which encompasses

the turbulent, non-circular motions in galaxies. These turbulent motions create a

pressure term counter-acting part of the gravitational potential, and are therefore

crucial in order to trace back the dynamical potential the galaxy is embedded in.

In Chapter 4 we present the deepest and most detailed observations currently

available of high−z galaxy kinematics out to ∼ 3 effective radii and for one ob-

ject in two different gas phases (Sections 4.1 and 4.2). This work reveals very low

central dark matter fractions in these massive SFGs, in tension with standard

NFW dark matter halo models. To investigate this tension in more detail, we

analyze in Section 4.3 the kinematics of corresponding simulated galaxies from

the state-of-the-art IllustrisTNG50 simulation, and identify several differences be-

tween the simulated and observed objects, suggesting that the observed galaxies

have no counterpart in the simulation. The simulated objects appear to be out of

equilibrium, have lower gas masses and gas velocity dispersions, but much higher

central concentrations of dark matter.

Coming back to the questions posed in Section 1.4, we can now conclude:
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5. Conclusions

• Do kinematic galaxy scaling relations known from the local Universe exist

at z ∼ 1− 2? If so, how do they compare, and what drives their evolution?

Yes, kinematic scaling relations such as the Tully-Fisher relation exist al-

ready at z ∼ 2.3. Its evolution with cosmic time can be explained through

the interplay of baryonic and dark matter on galaxy scales, and through

the conversion of gas into stars. To accurately recover kinematic scaling

relations, it is important to take into account the contribution from turbu-

lent motions, which steadily increase with increasing redshift, to the total

dynamical support.

• What dominates the dynamical support of SFGs over cosmic time, and why?

The presented work unambiguously shows that on galaxy scales the average,

dominant source of dynamical support changes with redshift: for massive,

high−z galaxies, the potential created through gas and stars dominates over

the contribution from dark matter, while for typical SFGs in the local Uni-

verse dark matter dominates.

We emphasize, however, that this is not determined through a simple redshift-

dependence, but in detail depends also on other factors such as the galaxy

mass. Reflecting observations in the local Universe, a good proxy for the

central dark matter fraction also of high−z SGFs is the baryonic surface

density, as we will show in future work.

• What is the interplay of baryonic and dark matter on galaxy scales, and

is our theoretical understanding of the structure evolution of dark matter

reconcilable with observations?

The high-quality observations discussed in this thesis reveal a tension with

predictions from theoretical models, suggesting the the interplay of baryonic

and dark matter on galaxy scales is more complex than currently captured

in simulations. While many present-day properties of simulated galaxies

correspond well to observations, it is possible that details of, for instance,

feedback implementations are responsible for the mismatch at higher red-

shift.

During the peak epoch of cosmic star formation rapid baryonic assembly,

high gas fractions, and high star formation rates define galactic evolution.

More numerous and even more detailed observational studies will help to

pin down the physical processes in need of refinement in cosmological sim-

ulations.

Future studies with next-generation instruments such as ERIS (the Enhanced

Resolution Imager and Spectrograph) in adaptive-optics mode on the VLT, or

HARMONI (the High Angular Resolution Monolithic Optical and Near-infrared

Integral field spectrograph) on the Extremely Large Telescope (ELT) will push

beyond currently available spatial and spectral resolutions, enabling systematic
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and statistic studies of detailed galaxy kinematics. Multi-phase studies will be

crucial in pinning down baryonic conversion and feedback processes at high−z
to guide sub-grid models needed in cosmological simulations. Subsequent com-

parisons between next-generation simulations and observations are warranted to

ensure that we can make progress in the field of galaxy evolution in the early

Universe.
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A. Caldú-Primo & A. Schruba, Molecular Gas Velocity Dispersions in the

Andromeda Galaxy, AJ, 151, 34 (2016).
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de la Société Scientifique de Bruxelles, 47, 49–59 (1927).

A. K. Leroy et al., The Star Formation Efficiency in Nearby Galaxies: Mea-

suring Where Gas Forms Stars Effectively, AJ, 136, 2782–2845 (2008).

A. K. Leroy et al., Heracles: The HERA CO Line Extragalactic Survey, AJ,

137, 4670–4696 (2009).

E. S. Levine, L. Blitz, & C. Heiles, The Vertical Structure of the Outer

Milky Way H I Disk, ApJ, 643, 881–896 (2006).

R. C. Levy et al., The EDGE-CALIFA Survey: Molecular and Ionized Gas

Kinematics in Nearby Galaxies, ApJ, 860, 92 (2018).

S. J. Lilly et al., Gas Regulation of Galaxies: The Evolution of the Cosmic Spe-

cific Star Formation Rate, the Metallicity-Mass-Star-formation Rate Relation,

and the Stellar Content of Halos, ApJ, 772, 119 (2013).

R. C. Livermore et al., Resolved spectroscopy of gravitationally lensed galaxies:

global dynamics and star-forming clumps on ∼ 100 pc scales at 1 < z < 4,

MNRAS, 450, 1812–1835 (2015).

M. R. Lovell et al., The fraction of dark matter within galaxies from the Illus-

trisTNG simulations, MNRAS, 481(2), 1950–1975 (2018).

D. Lutz et al., PACS Evolutionary Probe (PEP) - A Herschel key program,

A&A, 532, A90 (2011).

221



Bibliography

M.-M. Mac Low & R. S. Klessen, Control of star formation by supersonic

turbulence, Reviews of Modern Physics, 76, 125–194 (2004).

M.-M. Mac Low, R. McCray, & M. L. Norman, Superbubble Blowout Dy-

namics, ApJ, 337, 141 (1989).

M.-M. Mac Low et al., Kinetic Energy Decay Rates of Supersonic and Super-
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1359–1364 (2008).

P. Noterdaeme et al., Evolution of the cosmological mass density of neutral

gas from Sloan Digital Sky Survey II - Data Release 7, A&A, 505, 1087–1098

(2009).

D. Obreschkow et al., Low Angular Momentum in Clumpy, Turbulent Disk

Galaxies, ApJ, 815, 97 (2015).

V. Olivares et al., Spatially Resolved Spectroscopy of Submillimeter Galaxies at

z ' 2, ApJ, 827, 57 (2016).

L. Oser et al., The Two Phases of Galaxy Formation, ApJ, 725, 2312–2323

(2010).

E. C. Ostriker & R. Shetty, Maximally Star-forming Galactic Disks. I. Star-

burst Regulation Via Feedback-driven Turbulence, ApJ, 731, 41 (2011).

E. Papastergis, E. A. K. Adams, & J. M. van der Hulst, An accurate

measurement of the baryonic Tully-Fisher relation with heavily gas-dominated

ALFALFA galaxies, A&A, 593, A39 (2016).

C. Papovich et al., ZFOURGE/CANDELS: On the Evolution of M* Galaxy

Progenitors from z = 3 to 0.5, ApJ, 803(1), 26 (2015).
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