Angewandte manne

Supporting Information

Diketopiperazine Formation in Fungi Requires Dedicated Cyclization and Thiolation Domains

Joshua A. Baccile, Henry H. Le, Brandon T. Pfannenstiel, Jin Woo Bok, Christian Gomez, Eileen Brandenburger, Dirk Hoffmeister, Nancy P. Keller,* and Frank C. Schroeder*
anie_201909052_sm_miscellaneous_information.pdf

Table of Contents

1 Supporting Methods. 1
1.1 Strains, media, and growth conditions 1
1.2 Gene cloning, plasmid construction, and genetic manipulations 1
1.3 Nucleic acid analysis 2
1.4 Northern analysis 2
1.5 Fermentation and metabolome extraction 3
1.6 Analytic methods and equipment overview 3
1.7 Heterologous protein production 4
1.8 GliP product formation assays 4
1.9 GliP T_{3}-pantetheine detection 5
1.10 Compound 5 cyclization assay 5
1.11 ATP-[32P]pyrophosphate exchange assays 5
1.12 Synthesis of N-acetylcystamine-L-Phe-L-Ser (5) 6
1.13 Mining for putative DKP producing fungal NRPSs 6
1.14 Gene sequences for WT and mutant GliP proteins 7
2 Supporting Figures 13
3 Supporting Tables 21
4 Supporting References 33

1 Supporting Methods

1.1 Strains, media, and growth conditions

The fungal strains used in this study are listed in Table S3. Unless otherwise noted, all strains were grown at $30^{\circ} \mathrm{C}$ on glucose minimal medium $\left(\mathrm{GMM}^{[1]}\right)$ and, when appropriate, were supplemented with 0.56 g uracil $\mathrm{L}^{-1}, 1.26 \mathrm{~g}$ uridine $\mathrm{L}^{-1}, 1.0 \mathrm{~g}$ arginine L^{-1} and maintained as glycerol stocks at $-80{ }^{\circ} \mathrm{C}$. Escherichia coli strain DH5 α was propagated in LB medium with appropriate antibiotics for plasmid DNA.

1.2 Gene cloning, plasmid construction, and genetic manipulations

(a) A. fumigatus GliP truncation and complement strains: The gliP $\mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$ or T_{3} domain deletion strain (TJW139 or TJW140 respectively) was created in strain Af293.1 by replacing the $\mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$ or T_{3} domain with A. fumigatus pyrG using modified double joint $\mathrm{PCR}^{[2]}$ consisting of the following: 1 kb DNA fragment upstream of the $\mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$ or T_{3} domain, a 1.9 kb DNA fragment of A. fumigatus pyrG with glutathione gene terminator (primers glutapyrGF and glutapyrGR), ${ }^{[1,3]}$ and a 1 kb DNA fragment downstream of the $\mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$ or T_{3} domain. $30 \mu \mathrm{~L}$ of Sephadex® G-50 purified third round PCR product was used for fungal transformation. Polyethylene glycol based fungal transformation was done as previously described. ${ }^{[2,4]} \mathrm{C}_{\boldsymbol{T}} \mathrm{T}_{3}$ or T_{3} domain deletants were confirmed by PCR and Southern blot (Figure S11a) and the correct transformants, TJW139.30 and TJW140.16, were used for subsequent analysis.

For $\Delta \mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$ complementation, pJW162 was created by inserting a 3.6 kb PCR product with gpdA promoter using the primer pair gliPgpdF/CTglipR and cloning the subsequent product into BamH/Hindlll sites of pUCH2-8. ${ }^{[5]}$ This plasmid was used to transform TJW139.30 to complement a deletion of $\Delta \mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$. The resulting strain was called TJW178 and was confirmed by PCR and Southern blotting (Figure S11b). All fungal strains used in this study are listed in Table S3, and primers are listed in Table S4.
(b) A. fumigatus GliP point mutation: To introduce the histidine-to-alanine amino acid substitution in A. fumigatus, we first fully deleted gliP in a strain with a deleted akuA gene (TFYL44.1) to increase the rate of homologous recombination and decrease the amount of transformants that need to be screened to obtain the desired strain. The open reading frame of gliP was replaced with a copy of pyrG from A. parasiticus to complement the pyrG auxotrophy. To generate a construct to delete gliP, the flanking regions of the gliP open reading frame were amplified (gliP3'-F \& gliP3' R, and gliP5'-F \& gliP5'-R) as well as the A. parasiticus pyrG gene (Ap-pyrGF \& Ap-pyrGR). These PCR products were fused using double joint PCR and used to transform TFYL44.1 to create strain TBTP12.02 which was confirmed by Southern blot analysis (Figure S12). ${ }^{[6]}$ Two plasmids were then generated, one which included a full length copy of gliP (pBTP12), and one that contained a H1754A copy of gliP (pBTP13), both targeted to the akuA locus. The pBTP12 plasmid was assembled by amplifying akuA flanks (KU5'-F \& KU5'-R, and KU3'-F \& KU 3'-R), gliP (gliP-F \& gliP-R), and
A. fumigatus argB as the selectable marker (AFU argB fwd \& AFU argB rev). These PCR fragments were combined with a plasmid backbone amplified from a yeast shuttle vector (YS F/YS R) in a yeast transformation to allow for homologous recombination to assemble the fragments into a full plasmid. pBTP13 was assembled using the same fragments and method, except that the H1754A substitution was introduced by using primers containing the mutation and amplifying gliP in two separate PCR reactions (gliP-F \& gliP-H1754A-R, and gliP-H1754A-F \& gliP-R). TBTP12.02 was then transformed with pBTP12 and pBTP13 to generate TBTP99 and TBTP100 respectively, which were confirmed by Southern blot analysis (Figure S13). TBTP12.02 was taken to prototrophy by amplifying argB (AFU argB fwd \&AFU argB rev2) from A. fumigatus and selecting prototrophic transformants generating TBTP94.
(c) Heterologous gliP expression vectors: pET24b GliP was a gift from Robert A. Cramer, Jr. (Durham, NC), which was constructed as described. ${ }^{[7]}$ Truncations were made by PCR and reinstalled into pET24b with the previously utilized Ndel/Xhol restriction sites. All gliP mutants were constructed by applying PCR sitedirected mutagenesis on the original pET24 gliP as template using primers listed in Table S4. Competent E. coli NEB® 5-alpha (New England Biolabs) was transformed with the PCR reactions, which were sequenced to confirm accurate amplification.
(d) A. fumigatus GliP point mutation at amino acid 2095 (ser->ala) : To replace serine (TCG) to alanine (GCG) at 2095 amino acid position, we first created a single point mutation $(T \rightarrow G)$ using jont PCR. This mutated template was fused to a 1.9 kb DNA fragment of A. fumigatus pyrG with glutathione gene terminator (primers DgPT5'F and DgPCT3R) by joint PCR ${ }^{[1,3]}$. The fused 3kb PCR amplicon with the point mutation was used for transformation to Af293.1. Transformants were confirmed by Southern blotting (Figure S14) and sequeincing (data not shown) to obtain TJW201.38 for the subsequent experiments.

1.3 Nucleic acid analysis

Plasmid preparation, digestion with restriction enzyme, gel electrophoresis, blotting, hybridization, and probe preparation were performed by standard methods. ${ }^{[8]}$ Aspergillus DNA for diagnostic PCR was isolated using the previously described method. ${ }^{[9]}$ Sequence data were analyzed using the LASERGENE software package from DNASTAR.

1.4 Northern analysis

Strains were grown in liquid GMM at a concentration of 1.0×10^{6} spores per milliliter shaking at 225 rpm at $30^{\circ} \mathrm{C}$ for 24 hours, then $25^{\circ} \mathrm{C}$ for an additional 48 h or after 24 Gliotoxin (1), was added at $25 \mu \mathrm{~g} / \mathrm{mL}$ followed
by an additional 24 h of cultivation. Mycelia were harvested by filtering through Miracloth (CalBioChem), lyophilized, and total RNA was then isolated using Trizol (Invitrogen). The probe for gliG was prepared by PCR amplification of genomic DNA, and labeled with dCTP α P. ${ }^{32}$

1.5 Fermentation and metabolome extraction

A. fumigatus strains were inoculated (1.0×10^{6} spores $/ \mathrm{mL}$) into 25 mL GMM in 125 mL Erlenmeyer flasks at $30^{\circ} \mathrm{C}$ with shaking at 220 rpm . After 5 days, liquid fungal cultures including fungal tissue and media were frozen using a dry ice-acetone bath and lyophilized. The lyophilized residues were extracted with 12.5 mL of a mixture of acetonitrile, ethyl acetate, and water (80:15:5) for 0.5 h with vigorously stirring. Extracts were filtered over cotton, evaporated to dryness, and stored in 8 mL vials. Crude extracts were suspended in 1.0 mL of extraction solvent and centrifuged to remove insoluble materials, and the supernatant was subjected to LC-HRMS analysis.

1.6 Analytical methods and equipment overview

(a) NMR spectroscopy: NMR spectroscopic instrumentation: a Bruker Avance ${ }^{111} \mathrm{HD}\left(800 \mathrm{MHz}{ }^{1} \mathrm{H}\right.$ reference frequency, 201 MHz for ${ }^{13} \mathrm{C}$) equipped with a 5 mm CPTCL ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}$ cryo probe. Non-gradient phasecycled dqfCOSY spectra were acquired using the following parameters: 0.6 s acquisition time, 400-600 complex increments, 8,16 or 32 scans per increment. Non-gradient HSQC, HMQC, and HMBC spectra were acquired with these parameters: 0.25 s acquisition time, 200-500 complex increments, 8-64 scans per increment. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$ spectra were optimized for $\mathrm{J}_{\mathrm{H}, \mathrm{C}}=6 \mathrm{~Hz}$. HSQC spectra were usually acquired without decoupling. NMR spectra were processed and baseline corrected using MestreLabs MNOVA software packages. (b) Mass spectrometry: LC-HRMS was performed on a Thermo Scientific-Dionex Ultimate3000 UHPLC system equipped with a diode array detector and connected to a Thermo Scientific Q-Exactive Orbitrap operated in electrospray positive (ESI ${ }^{+}$) or electrospray negative (ESI ${ }^{-}$) ionization mode. Low-resolution HPLC-MS was performed on an Agilent 1100 series HPLC system equipped with a diode array detector and connected to a Quattro II mass spectrometer (Micromass/Waters) operated in ESI ${ }^{+}$or ESI- mode. Data acquisition and processing for the LC-HRMS was controlled by Thermo Scientific Xcalibur software. Data acquisition and processing for the HPLC-MS was controlled by Waters MassLynx software. (c) Chromatography: flash chromatography was performed using a Teledyne ISCO CombiFlash system. For
semi-preparative HPLC Agilent Zorbax Eclipse XDB-C18 or -C8 columns ($25 \mathrm{~cm} \times 10 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle diameter) were used. An Agilent Zorbax Eclipse XDB-C18 column ($4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle diameter) was used in the HPLC-MS analyses of in vitro protein activity assays. For semi-preparative and analytical HPLC acetonitrile (organic phase) and 0.1% acetic acid in water (aqueous phase) were used as solvents at a flow rate of $3.20 \mathrm{~mL} / \mathrm{min}$ or $1.0 \mathrm{~mL} / \mathrm{min}$, respectively. A solvent gradient scheme was used, starting at 5% organic for 3 min , followed by a linear increase to 100% organic over 25 min , holding at 100% organic for 8 min , then decreasing back to 5% organic for 1 min and holding at 5% organic for the final 6 min , a total of 40 min . An Agilent Zorbax RRHD Eclipse XDB-C18 column ($2.1 \times 100 \mathrm{~mm}$, $1.8 \mu \mathrm{~m}$ particle diameter) heated to $40^{\circ} \mathrm{C}$ was used in the LC-HRMS A. fumigatus mutant profiling analysis with acetonitrile (organic phase) and water (aqueous phase) with 0.1% acetic acid used as solvents at a flow rate of $0.5 \mathrm{~mL} / \mathrm{min}$. For data displayed in Figure 2 a solvent gradient scheme was used, starting at 5% organic with an immediate linear increase to 100% organic over 10.5 min , holding at 100% organic for 4 min , then decreasing back to 5% organic in 0.1 min and holding for the final 1.5 min , for a total of 16 min . For data displayed in Figure 4 a solvent gradient scheme was used, starting at 5% organic for 5 min , then a linear increase to 100% organic over 15 min , holding at 100% organic for 5 min , then decreasing back to 5% organic in 0.1 min and holding for the final 2.9 min , for a total of 28 min .

1.7 Heterologous protein production

All C-terminal hexahistidine-tagged GliP mutants, and truncation expression constructs were used to transform E. coli BL21(DE3) (New England Biolabs), which was grown in Terrific Broth (TB) supplemented with $10 \mathrm{mM} \mathrm{MgCl}_{2}$ and selected with $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin. 10 mL overnight cultures were diluted into 1 L of TB in a 4 L flask and shaken at 200 RPM at $37^{\circ} \mathrm{C}$ to an OD of approximately 0.75 , cooled to $16{ }^{\circ} \mathrm{C}$ and further grown to an OD of roughly 1.0-1.2 and induced with $100 \mu \mathrm{M}$ IPTG. Cultures were maintained at $16^{\circ} \mathrm{C}$ at 200 RPM for an additional 24 hours before harvesting at $5,000 \times \mathrm{g}\left(4^{\circ} \mathrm{C}\right.$ for 10 min$)$ and stored at $-80^{\circ} \mathrm{C}$ until purification. All further steps occurred at $4^{\circ} \mathrm{C}$ unless otherwise noted. 20 g of frozen pellets were resuspended in 150 mL of 25 mM Tris $\mathrm{pH} 8.0,500 \mathrm{mM} \mathrm{NaCl}$, and sonicated. Lysed cells were spun at $20,000 \mathrm{xg}$ for 20 min , and the supernatant was collected and gently stirred with 1 mL HisPur Ni-NTA Resin (Thermo Fisher Scientific) for 30 min . During incubation, $5 \mu \mathrm{~L}$ of Benzonase (EMD Millipore) was added along with 1 mM MgCl . The slurry was loaded and passed through a column and the resin was washed with 20 column volumes of fresh lysis buffer. The protein was then eluted with 30 mL lysis buffer containing 150 mM imidazole and 10% glycerol. The elution was concentrated with an Amicon Ultra-15 30 kDa spin filter (EMD Millipore), flash frozen over liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$ until further purification. FPLC purification of proteins were performed using a HiLoad 16/600 Superdex 200 preparatory grade column run
on a Amersham Biosciences P-920 pump equipped with a UPC-900 detector and a Frac-950 fraction collector (GE Healthcare) with a running buffer of 20 mM Tris, $\mathrm{pH} 8.0,50 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM} \mathrm{MgCl}$, and 1 mM DTT. Fractions containing the protein of interest were combined and concentrated with an Amicon Ultra-15 30 kDa spin filter and flash frozen over liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$ until further analysis was required.

1.8 GliP product formations assays

GliP assays were first pantetheinylated in 75 mM Tris pH 8.0, $5 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 300 \mu \mathrm{M}$ coenzyme A, $1 \mu \mathrm{M} \mathrm{Sfp}$ synthase (New England Biolabs), and $1 \mu \mathrm{M}$ GliP (or GliP mutant) in $100 \mu \mathrm{~L}$ reactions at $25{ }^{\circ} \mathrm{C}$ for 1 hour. Following Sfp incubation, an additional $100 \mu \mathrm{~L}$ solution of 10 mM ATP, $800 \mu \mathrm{M}$ phenylalanine, and $800 \mu \mathrm{M}$ serine was added to initiate catalysis. Reactions were monitored with low-resolution HPLC-MS, as described above.

1.9 $\mathrm{GliP}_{\mathbf{T}}^{3}$-pantetheine detection

$1 \mu \mathrm{M}$ GliP in $100 \mu \mathrm{~L}$ was incubated with 75 mM Tris $\mathrm{pH} 8.0,5 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 300 \mu \mathrm{M}$ coenzyme $\mathrm{A}, 1 \mu \mathrm{M} \mathrm{Sfp}$ synthase at $25^{\circ} \mathrm{C}$. After 1 hour, proteins were digested with $1.5 \mu \mathrm{~g}$ of sequencing grade chymotrypsin (Promega) for 12 hours. Peptides were then reduced with 5 mM DTT for 20 minutes at $50{ }^{\circ} \mathrm{C}$, and thiols were capped with 15 mM iodoacetamide. Formic acid was added to $1 \%(\mathrm{v} / \mathrm{v})$, and peptides were prepared with $100-\mu \mathrm{l}$ Pierce C18 Tips (Thermo Scientific) per the manufacturer's protocol using $100 \mu \mathrm{~L}$ of the elution solution. Peptides were identified via LC-HRMS, as described above.

1.10 Compound 5 cyclization assay

$1 \mu \mathrm{M}$ GliP_S555A_S1582A in $100 \mu \mathrm{~L}$ was incubated with 50 mM Tris $\mathrm{pH} 7.5,5 \mathrm{mM} \mathrm{MgCl} 2,100 \mu \mathrm{M}$ coenzyme $\mathrm{A}, 1 \mu \mathrm{M} \mathrm{Sfp} \mathrm{synthase} \mathrm{at} 25^{\circ} \mathrm{C}$ for 30 min . Catalysis was initiated with $1 \mu \mathrm{~L}$ of 100 mM 5 , and after 10 minutes the reaction was quenched with $100 \mu \mathrm{~L}$ acetonitrile and immediately frozen over liquid nitrogen. Samples were thawed only immediately before HPLC analysis. Analysis was performed with lowresolution HPLC-MS, as described above.

1.11 ATP-[${ }^{32}$ P]pyrophosphate exchange assays

The reactions were set up in a total assay volume of $100 \mu \mathrm{~L}$ at $25^{\circ} \mathrm{C}$ in 100 mM phosphate buffer, 5 mM $\mathrm{MgCl}_{2}, 125 \mathrm{nM}$ EDTA, 5 mM ATP, 100 nM purified GliP proteins, $0.1 \mu \mathrm{M}\left[{ }^{32} \mathrm{P}\right]$ pyrophosphate ($50 \mathrm{Ci} / \mathrm{mmol}$), and 1 mM amino acid substrate were added. The reaction proceeded for 30 min before it was stopped (1% (w / v) activated charcoal, $4.5 \%(\mathrm{w} / \mathrm{v})$ tetrasodium pyrophosphate, $3.5 \%(\mathrm{v} / \mathrm{v})$ perchloric acid) and further processed as described. ${ }^{[10]}$ Pyrophosphate exchange was quantified on a scintillation counter (PerkinElmer TriCarb 2910TR).

1.12 Synthesis of N-acetylcystamine-L-Phe-L-Ser (5)

a) EDC (1.2 eq), HOBt (1.2 eq.), DIEA (3 eq.) DMF, $24 \mathrm{~h} . \mathrm{b}$) H_{2} (continuous stream), $\mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol} \%), 1.5$ h. c) N-acetylcystamine (1.5 eq.), EDC (1.2 eq.), HOBt (1.2 eq.), DIEA (3 eq.) DMF, $24 \mathrm{~h} . \mathrm{d}) 40 \%$ TFA, DCM, 1 h. ${ }^{[11]}$ e) 1 M phosphate buffer, pH 8, 48 h . See below for NMR assignments and spectra of 5. ${ }^{[12]}$

1.13 Mining for putative DKP producing NRPSs with ATCATC \boldsymbol{T}_{c} domain architecture (Table S1).

GliP (accession: AAW03307.1) was used as a query sequence for a blastp search of NCBl's Fungi (taxid: 4751) non-redundant protein database using the default parameters with a total of 20000 subject sequences. The resulting hits were exported to an excel sheet and dereplicated (for multiple alignments to the same sequence) and sorted for size (2100-2300 amino acids) to obtain NRPSs with the correct domain architecture. The resulting sequences (156) were parsed with Python to search for the conserved residues "SHXXXDXXS/T" in the C_{T} active site, which yielded 89 sequences that were manually curated to ensure
correct domain architecture and to remove homologs $>95 \%$ similarity to GliP, which likely produce gliotoxin.
The resulting 56 putative NRPSs are annotated in Table S1.

1.14 Gene sequences for GliP-WT and mutant GliP proteins.

GliP - WT (AFUA_6G09660)

ATGCCATCAGTAGTAGCGCTCGACCTCTGCCAGCTTTTTGACCGGTCCGTCGCTCGGACACCACACC AGCTGGCAGTCGATCATGAGAGCGGCTCGCTCACCTATACCGAACTCGATGTGGCCTCATCGAACCT GGCCCGAAAGCTAAAGCAAGAAGGAGTAGTCCCTGGGGAAGCGGTCCTCTTACTTACTGAGCACGG CACCCGGAATGTTGTCGCGCTGCTTGCCATCCTCAAGGCCCACGCCTGCTACGTTCCTCTGGACCGC AGCTCGTGGTCATCAGAGCGGATCCAGGCCGTGCTGGACGGGACAGACAGCCGGATTCTGATCAAC ACAACCGTCGAGCCGTTCGAAAGCCCGCGGCACAAAGTCATCCATCTGACCAGCGCCGATGTGACG ACTCTATCGACGGACCGCAGCACCACAAAGGTCATTCCCGACATCGCTCCCGAAGACCTCGCTTGTT TGATCTTTACCAGTGGGAGCACAGGTGTGCCCAAGGGAGTCATGATTCCACATCGTGCCGTAGCCAA TTATGCTCAGACCAGTCCATTCAACATGGATGTGCAGCCGGGAGACCGGGTACTGCATATCCTGTCG GTATCCTTTGATGCCTCTACGGGCATGCTGTTTTCCATTCTAGGCAACTCGGGCATCGTGGTCCCCG CCACGATGGACACCCTCTTCGACAAAGCGCAGTCCTGCTCCATCCTCGCGTCGACGCCGTCAATCCT GGCAACACTACCCCTGCCGACGGCCCTGCCAGACAGCTATCCCTACGTCCATACTATTCTGTTGGGT GGAGAGTCGCCACCCGCCCCGCTGTTGTCCAGCTGGCTTCAATTCGGCGTTCGCATCCTGAACGCG TACGGTCCTACTGAAACCACCTGTGCCTCGTTGATGCAGGAAGTAGAGGTCTGTCAGGAGACGGGAA TGATCAATCGCAGTATTATCGGTCGCCCAATGCCCAATGGACCGGTATACCTGCTACAGCCGGATAC GCTCCTCCCGGTCGAGGAAGAAGGCGAGGAAGGGGAGATTGCCATTGCGGGCGTCGGCCTGGCCC ACGGCTACTACCGAAATGCCGCACTAACAGCCGAGAAGTTTATCGAGTGGCACGGCAAGCGAGTCTA TCGCACCGGCGACCAAGGACGGTGGACACGCCGTAACGACGGCCAGCGCGTGGTGGAATTCCGCG GCCGCAGTGATCGCACCGTCAAGAACCGCGGATTCCTCGTCAATCTACCCGCCGATGTCGAGGAAC CGCTACGCCAGATGGGCTTCGGTGTCACCGACGTCTATGCTTCGCTGATCAACGGTCTCTTGGTTGC GCTGGTGACCCCGGCAACTGCAGATCTGGACGGCCTGCAGAGCGAGGCGGACCGTCGGCTGTCTT CTTTCCATCGGCCGGGACGATACTTGGCTGTCGATCAGTTTCCACTGTCAGCCAACGGCAAGATTGA TACCAAGGCCATTGAGAACATGCTGAAAGAGTATCAGGCGCGTCTCTGCGAGGGCACCGATGATGAA GAGACCACAGGGGGCGAGCGTCCTACGGAGCGCGAGCAAGTCATAGCCGAATGCATGTATACCGCG TTGGGGTTGGATCTCCCGTCGGCGTCGGCGTCCAAAGATTTCAATTTCTTCGCCATGGGCGGAAACT CCCTTGCTGCTCTTCGATTCACCTCCCTGTGCCGTGAGCGAGGCATCCTCCTCACTACCCGGGATCT GTACCTACATCCAACAGTCAGAGGCATTCTCCCGTATGCTCGTGACCTTGCTCATTCTGGTCTGCCTT TGCCAGACAAGGAGGAGCAAATCGACCACCGATTATCCCTCAAGGCCGAGGTTGCTGCGGCCCTTC ATCTCTTGGGCGACATTGACGTCGCTCCGTTGACTCCCCTTCAGCTACAACTGAGCGCTCCTATTTTC CAAAGCGATGGGACCAACACGAACCAGCTGCGGCAATCGTATCCCCTGGCCTCGGCCGAGCACATC TGCAATGCATGGCGACAGGTCGTCCTCAGTGAACCGGTCTTCCGAACGCAGATTGCGCTGGATATCG GGCCCGGTGTGCAGATCGTTCACGCTCAGCCACGGTGCCAGCCGCAGGAGATTACCTTTCACCGCC GGGAAGACTACAATGCTGCCTTGAGCGATCCTTCCCGTCTGCCGGTTGGACTGGGAATGCGTTTGGA ATTTATGAAATTTATGCCGAATGACGACGATGACGACGAGGGTGAAGTGACTGTCGTCTGGACGGCC CACCACAGCCTGATCGATGGTTACTCCCTGGGACTCATTCTGGCTCGGGTGCAGCAGGCAAGCCAG GGTGTCGCATCCTCCCGGGTCTCTTCCTTTGTAGACGCAGCGTGGAATCTGCTGAGCGTGCAGAAGC AGAGAGACACCGAGGCACGGCGGTTCTGGGAGCAGTATCTGCAGCCGGTACGGTCACTCACGAAAG CAGAGGCAACCACAACGCCTGTAGCACGGCCGTACCTCGCTCAGGAGGTGCTGTTCAAGCATGTGG GCGGCGTGGACGAGTTACACCGACTCGCATCCAGCTGCAGTGTCACCCTAGCGGCCGTCTACTACA CGGCGTGGGCCATGACGATTGCTCGGACGACCAAGTCCACCCTGGTAACTCTGGGAGTTGTCTTCTC TGGCCGCGAGATCCTCCCAGACGATGCGCAGGCCGTCGGCCCATTGATGGCCACTCTGCCCCTGGT ATGCCGCATTGACGGAGAAGCCTCGATTGAGCGCCAGCTGCAGACCACGTTCGAAGGTTTGGCAAC CATTAGCACCTACGCATGGTCTGCCCCAGATCAAATCGGGTACCGGGTCGACTCTCTGCTGGCGACG CAGTATGATTTCCCAACCTACGACCAACCCATCCCGCCGCAAAAGGAGCAGTTCTTCGAGAACACGA

CCTTTGCGCTGAGTCTCCTGGTCGAAGCTGATGCTCGTTTCCGCTTGGTGTACAATCCTTCCGTGCA CGGCGAGCAGACGGTCCAGCAATATGCCGACACGTTCCAACAGGCCCTCCAAGCGCTGGTGGGTGA TTCGACGATGGAGGCATGGCTCACGGGGCCGACAAAAGCACCGCTTGCCGTCGACCAAGCTTCTGA TATCCAACATGTCAATGTACCGAATGTGGCGTCGGCGTTCTATGCCTCGGTCGACCTCCACAAGGAT TTGATTGCCGTAGACGGACCAGGAGGCACGTTACCCTACCGGGAACTGGATCAAAAGTCGAACGCG GTGGCCTCGCATATTGCCAAACACTTCAGCAGGGCTCAAGTCATCGCCATCCACGCCGATGGAACCC TCAACTGGGTTGTCGGCATCCTGGGTATCCTGAAAGCCGGCTGCGCATACTGCCCACTCGATCCTGC GTATCCCATCGCGAGACGGGTCGCTGTGTACGAACAAAGCGGTGCCAGCGCGCTCCTCATCCCTAA TGCCTGCTCATCGTCCGCGGCCCTCCTGCCGATAACCGATCTTCGCGTCTTCACGATTCAAGAAACC GAGACAAGCGACACAAGCAGACAGCCATCGCTGCTCGCAAACGCAAATGAGGATGCCCTCATCGTCT TCACCTCCGGCACGACCGGCCGCCCCAAGGGGGTCCCCATCAGTCACAGGGGCCTTCTGGCTTTGC AGTCGAATCCCGAAGCCACCATGTTCAGCCGTCCCGGTCGTCGTATAGCTCAGTTCATGTCGCCTGC GTTCGACTACTGTGCCAACGAGATTTTCTCTGCGTTGCTGCATGGCGGAACCTTGGTGCTTCGGGAC CCGTCCGACCCCCTTGCCCATCTCGCGAAGGTCGATGTGTCGACAATTACTCCTTCTGTGCTCAGCG TGCTGAATCCAGACGACTATCCTAATCTCGACATGGTCTATGCAACAGGAGAACCCGTCACGCCCGG CTTGCTCGCTCGATGGGGCGAGGGCCGGGCATTCTACAATGCCTATGGTCCTGCAGAGTGCTCTATT TGCACGTCATTTACCCGCCTAGAGCCCGGCCAGCAGGTCACCATCGGAAACGCCGTTCGCACCGCG CGCATGTACATCCTGGACCCGGATCTCCAGCCCGTGTCGGACGGCCAAACCGGAGAGATCTTCCTG GCCGGACAACAGGTGATGCGAGGCTACGTGGGAGACGATGCCAAGACGGCCTACAGCGTGCTGCC GGATCCCTGGCATCCTGGTGAGCGGATGTATCGCACCGGCGACTACGGCTACTGGAACGCGGACAG ACAGATTGTCTACATCGGACGACTGGACCGGCAGGTCAAAATCCGTGGCTTCCGCGTCGAGCTCGC GGCGGTCGAGCAGAAGATGTACCAAGAGGAGCCGCGGCTTACCCAAGCGGCGGCTCTCGTTGTCAA CGATACTCTGGTGGCCTTTGTCATGCCGCTTGACGTGGATGTCAGCCGTCTGGAGCAGCGACTGCG CGAGTCCCTCCAACCCAGCTGGGTGCCTCAGGTGATTACCGCGCTGGAGGAGTTCCCTTGGACGGC CAACCGCAAGGTTGACTATCGCAAGCTGGCGGAGAGAGCCACCCTGACGCGGCCGGAGGACTCCCT GCCGCAGCAGAAGACGCCAGCAGGGATGACGGCAAAGGATGCTTCTATTGCGGACGGAATCGCAAC CCTGTGGAAGAACGTGCTGCGTCTGCAGGCAGGCGGCGGCTCTCGCAAGCTCTGTGAAGATGATGA CTTCCGTGCTCTGGGCGGCCATTCCGTTCTCCAGATGATGTTGGCGGCTCGCCTCGGCAGCACATTT GGCATCTCCGTGTCGATGCGCGATGTGATCGAGCACTCCACGCTGGCCGAGCAGGTCGAGCTGGTG CGCCGCAAACGTCAGGCCTCGACGGCCAAGCCACGGACCATCTGCGACGCGTTTCCCGACCACTGC CTGTCGCCGTTGGAGCGTCAGACGTGGTTCCAGTACCTGATCGCTGCTGACGTGCGCACGTTCAACA TTCCCGTCCTCTTGCATCTCGGCGGGACATTTGACCGCGACCGTCTCGTGCAGTCATTCAACGCCGT GTTGGCGTCACGCAAGATCTTCCGGACCAACTTTGTCGAGACATCACTCGGACCGTGTCGGATCTTC CGGGACACGCCGCCCCGAGTCCTTGTGTGCGACGGTGCGCTCGACACGACCAAGGAGATCGACCG GAGCTTTGACCTGGCTCGGGATGAGCTGATCCGCGTCTTCCTGGACCGTCGCACCCTCCTTGTGGTT ACCAGCCACGCCGTCGCCGATCTCAACAGCGTGCAGAATCTGCTGCAGGACGTCTCCGGCGTGTAC GCGGGAAGGACGACCCCAACACCGGACCGATGGCACTATCCCCGGGCCCCGGCCTGGTCCCGTCA GGCCACAGAGCAGGAACGGAAGTTCTGGTCGAAGTATCTCGAGGGGGCTCCCCAGCGTCTGGACAT CCCGCGGTATCCCGGCCAAATGGCGTTTGAAGGCCGCTCGCGCGTGTCCGAGTTCAAAGGCGACCT CGTTCGACGCGCCGTCACTCTGGGGCAGGAACATGGGTTGAGTCAGCACCAGCTGGTGTGTGCCGC CGTCGCGCAGACCCTCCAGTGGCTCGCCGGCTCGAACGACGTCGTTCTCGGCTCTCCGTGGGCCAA CCGCGGGCACACCGTGGAGCAAGAGTCGATGGGTCTGTTCCTCGATCGCCTGCCTCTTCGCTTCAA AACCCCTGTGAATGCAGACTGCGCCACCATCCTGCAGTCTACGCGTGCAGCGAGCCAGGCAGCCGT CTGCAATTCCATTCCATTCGAGCAGGTCCTGAACCTCCTCCACCTGCCGCGGACCATCCGGCAACAC CCGCTGTTCGAAGCCATGGTCACCTTTCATCTCAAGGGGGCAGTGGAAGATTGTCTCGCCATCGAGG GGCTGGAGGTGAAACGCGAGATGTGCTTTGCGTCCGGGGCCAAGTTCCTGCTCATGTTCGAATGGA CCGAGATCGAGGCGGATCACTGGACCCTGCGCATCGAGTATGACGACCACCAGCTCGACGACGCGA CCGTCACCACCATCGAGGACAGCATCCGATGTGTCCTCGAAGGGCTGGCGGATCGGCTCTCTCGCG CCGCCATCCACGAGCGCCTGAACGCCATGCACAAGACGGCCAGGACCAAGGTGGATTGGAACTTCT ACCGCCGGCTGGTGGGCATTCTGCAGCGTGAGATGGCGACCTGTCTGGGCGTCTCGCTGGATGAGT TCCCCTGCTCCGTCTCCTTCTTCGAGGCCGGCGGCGACTCGATCCAGGCCTGGCGGTTGAGCCGTC

AGTTGAAACGGGTTGGGCTGGAGGTGCCCATCTGCAACATCTTCGATCATCCCACGGCGCAGGATTT GGCACAGCGTCTTTACCGTCAGGTTCTTTAG

GliP- $\Delta \mathrm{T}_{3}$

ATGCCATCAGTAGTAGCGCTCGACCTCTGCCAGCTTTTTGACCGGTCCGTCGCTCGGACACCACACC AGCTGGCAGTCGATCATGAGAGCGGCTCGCTCACCTATACCGAACTCGATGTGGCCTCATCGAACCT GGCCCGAAAGCTAAAGCAAGAAGGAGTAGTCCCTGGGGAAGCGGTCCTCTTACTTACTGAGCACGG CACCCGGAATGTTGTCGCGCTGCTTGCCATCCTCAAGGCCCACGCCTGCTACGTTCCTCTGGACCGC AGCTCGTGGTCATCAGAGCGGATCCAGGCCGTGCTGGACGGGACAGACAGCCGGATTCTGATCAAC ACAACCGTCGAGCCGTTCGAAAGCCCGCGGCACAAAGTCATCCATCTGACCAGCGCCGATGTGACG ACTCTATCGACGGACCGCAGCACCACAAAGGTCATTCCCGACATCGCTCCCGAAGACCTCGCTTGTT TGATCTTTACCAGTGGGAGCACAGGTGTGCCCAAGGGAGTCATGATTCCACATCGTGCCGTAGCCAA TTATGCTCAGACCAGTCCATTCAACATGGATGTGCAGCCGGGAGACCGGGTACTGCATATCCTGTCG GTATCCTTTGATGCCTCTACGGGCATGCTGTTTTCCATTCTAGGCAACTCGGGCATCGTGGTCCCCG CCACGATGGACACCCTCTTCGACAAAGCGCAGTCCTGCTCCATCCTCGCGTCGACGCCGTCAATCCT GGCAACACTACCCCTGCCGACGGCCCTGCCAGACAGCTATCCCTACGTCCATACTATTCTGTTGGGT GGAGAGTCGCCACCCGCCCCGCTGTTGTCCAGCTGGCTTCAATTCGGCGTTCGCATCCTGAACGCG TACGGTCCTACTGAAACCACCTGTGCCTCGTTGATGCAGGAAGTAGAGGTCTGTCAGGAGACGGGAA TGATCAATCGCAGTATTATCGGTCGCCCAATGCCCAATGGACCGGTATACCTGCTACAGCCGGATAC GCTCCTCCCGGTCGAGGAAGAAGGCGAGGAAGGGGAGATTGCCATTGCGGGCGTCGGCCTGGCCC ACGGCTACTACCGAAATGCCGCACTAACAGCCGAGAAGTTTATCGAGTGGCACGGCAAGCGAGTCTA TCGCACCGGCGACCAAGGACGGTGGACACGCCGTAACGACGGCCAGCGCGTGGTGGAATTCCGCG GCCGCAGTGATCGCACCGTCAAGAACCGCGGATTCCTCGTCAATCTACCCGCCGATGTCGAGGAAC CGCTACGCCAGATGGGCTTCGGTGTCACCGACGTCTATGCTTCGCTGATCAACGGTCTCTTGGTTGC GCTGGTGACCCCGGCAACTGCAGATCTGGACGGCCTGCAGAGCGAGGCGGACCGTCGGCTGTCTT CTTTCCATCGGCCGGGACGATACTTGGCTGTCGATCAGTTTCCACTGTCAGCCAACGGCAAGATTGA TACCAAGGCCATTGAGAACATGCTGAAAGAGTATCAGGCGCGTCTCTGCGAGGGCACCGATGATGAA GAGACCACAGGGGGCGAGCGTCCTACGGAGCGCGAGCAAGTCATAGCCGAATGCATGTATACCGCG TTGGGGTTGGATCTCCCGTCGGCGTCGGCGTCCAAAGATTTCAATTTCTTCGCCATGGGCGGAAACT CCCTTGCTGCTCTTCGATTCACCTCCCTGTGCCGTGAGCGAGGCATCCTCCTCACTACCCGGGATCT GTACCTACATCCAACAGTCAGAGGCATTCTCCCGTATGCTCGTGACCTTGCTCATTCTGGTCTGCCTT TGCCAGACAAGGAGGAGCAAATCGACCACCGATTATCCCTCAAGGCCGAGGTTGCTGCGGCCCTTC ATCTCTTGGGCGACATTGACGTCGCTCCGTTGACTCCCCTTCAGCTACAACTGAGCGCTCCTATTTTC CAAAGCGATGGGACCAACACGAACCAGCTGCGGCAATCGTATCCCCTGGCCTCGGCCGAGCACATC TGCAATGCATGGCGACAGGTCGTCCTCAGTGAACCGGTCTTCCGAACGCAGATTGCGCTGGATATCG GGCCCGGTGTGCAGATCGTTCACGCTCAGCCACGGTGCCAGCCGCAGGAGATTACCTTTCACCGCC GGGAAGACTACAATGCTGCCTTGAGCGATCCTTCCCGTCTGCCGGTTGGACTGGGAATGCGTTTGGA ATTTATGAAATTTATGCCGAATGACGACGATGACGACGAGGGTGAAGTGACTGTCGTCTGGACGGCC CACCACAGCCTGATCGATGGTTACTCCCTGGGACTCATTCTGGCTCGGGTGCAGCAGGCAAGCCAG GGTGTCGCATCCTCCCGGGTCTCTTCCTTTGTAGACGCAGCGTGGAATCTGCTGAGCGTGCAGAAGC AGAGAGACACCGAGGCACGGCGGTTCTGGGAGCAGTATCTGCAGCCGGTACGGTCACTCACGAAAG CAGAGGCAACCACAACGCCTGTAGCACGGCCGTACCTCGCTCAGGAGGTGCTGTTCAAGCATGTGG GCGGCGTGGACGAGTTACACCGACTCGCATCCAGCTGCAGTGTCACCCTAGCGGCCGTCTACTACA CGGCGTGGGCCATGACGATTGCTCGGACGACCAAGTCCACCCTGGTAACTCTGGGAGTTGTCTTCTC TGGCCGCGAGATCCTCCCAGACGATGCGCAGGCCGTCGGCCCATTGATGGCCACTCTGCCCCTGGT ATGCCGCATTGACGGAGAAGCCTCGATTGAGCGCCAGCTGCAGACCACGTTCGAAGGTTTGGCAAC CATTAGCACCTACGCATGGTCTGCCCCAGATCAAATCGGGTACCGGGTCGACTCTCTGCTGGCGACG CAGTATGATTTCCCAACCTACGACCAACCCATCCCGCCGCAAAAGGAGCAGTTCTTCGAGAACACGA CCTTTGCGCTGAGTCTCCTGGTCGAAGCTGATGCTCGTTTCCGCTTGGTGTACAATCCTTCCGTGCA CGGCGAGCAGACGGTCCAGCAATATGCCGACACGTTCCAACAGGCCCTCCAAGCGCTGGTGGGTGA TTCGACGATGGAGGCATGGCTCACGGGGCCGACAAAAGCACCGCTTGCCGTCGACCAAGCTTCTGA TATCCAACATGTCAATGTACCGAATGTGGCGTCGGCGTTCTATGCCTCGGTCGACCTCCACAAGGAT

TTGATTGCCGTAGACGGACCAGGAGGCACGTTACCCTACCGGGAACTGGATCAAAAGTCGAACGCG GTGGCCTCGCATATTGCCAAACACTTCAGCAGGGCTCAAGTCATCGCCATCCACGCCGATGGAACCC TCAACTGGGTTGTCGGCATCCTGGGTATCCTGAAAGCCGGCTGCGCATACTGCCCACTCGATCCTGC GTATCCCATCGCGAGACGGGTCGCTGTGTACGAACAAAGCGGTGCCAGCGCGCTCCTCATCCCTAA TGCCTGCTCATCGTCCGCGGCCCTCCTGCCGATAACCGATCTTCGCGTCTTCACGATTCAAGAAACC GAGACAAGCGACACAAGCAGACAGCCATCGCTGCTCGCAAACGCAAATGAGGATGCCCTCATCGTCT TCACCTCCGGCACGACCGGCCGCCCCAAGGGGGTCCCCATCAGTCACAGGGGCCTTCTGGCTTTGC AGTCGAATCCCGAAGCCACCATGTTCAGCCGTCCCGGTCGTCGTATAGCTCAGTTCATGTCGCCTGC GTTCGACTACTGTGCCAACGAGATTTTCTCTGCGTTGCTGCATGGCGGAACCTTGGTGCTTCGGGAC CCGTCCGACCCCCTTGCCCATCTCGCGAAGGTCGATGTGTCGACAATTACTCCTTCTGTGCTCAGCG TGCTGAATCCAGACGACTATCCTAATCTCGACATGGTCTATGCAACAGGAGAACCCGTCACGCCCGG CTTGCTCGCTCGATGGGGCGAGGGCCGGGCATTCTACAATGCCTATGGTCCTGCAGAGTGCTCTATT TGCACGTCATTTACCCGCCTAGAGCCCGGCCAGCAGGTCACCATCGGAAACGCCGTTCGCACCGCG CGCATGTACATCCTGGACCCGGATCTCCAGCCCGTGTCGGACGGCCAAACCGGAGAGATCTTCCTG GCCGGACAACAGGTGATGCGAGGCTACGTGGGAGACGATGCCAAGACGGCCTACAGCGTGCTGCC GGATCCCTGGCATCCTGGTGAGCGGATGTATCGCACCGGCGACTACGGCTACTGGAACGCGGACAG ACAGATTGTCTACATCGGACGACTGGACCGGCAGGTCAAAATCCGTGGCTTCCGCGTCGAGCTCGC GGCGGTCGAGCAGAAGATGTACCAAGAGGAGCCGCGGCTTACCCAAGCGGCGGCTCTCGTTGTCAA CGATACTCTGGTGGCCTTTGTCATGCCGCTTGACGTGGATGTCAGCCGTCTGGAGCAGCGACTGCG CGAGTCCCTCCAACCCAGCTGGGTGCCTCAGGTGATTACCGCGCTGGAGGAGTTCCCTTGGACGGC CAACCGCAAGGTTGACTATCGCAAGCTGGCGGAGAGAGCCACCCTGACGCGGCCGGAGGACTCCCT GCCGCAGCAGAAGACGCCAGCAGGGATGACGGCAAAGGATGCTTCTATTGCGGACGGAATCGCAAC CCTGTGGAAGAACGTGCTGCGTCTGCAGGCAGGCGGCGGCTCTCGCAAGCTCTGTGAAGATGATGA CTTCCGTGCTCTGGGCGGCCATTCCGTTCTCCAGATGATGTTGGCGGCTCGCCTCGGCAGCACATTT GGCATCTCCGTGTCGATGCGCGATGTGATCGAGCACTCCACGCTGGCCGAGCAGGTCGAGCTGGTG CGCCGCAAACGTCAGGCCTCGACGGCCAAGCCACGGACCATCTGCGACGCGTTTCCCGACCACTGC CTGTCGCCGTTGGAGCGTCAGACGTGGTTCCAGTACCTGATCGCTGCTGACGTGCGCACGTTCAACA TTCCCGTCCTCTTGCATCTCGGCGGGACATTTGACCGCGACCGTCTCGTGCAGTCATTCAACGCCGT GTTGGCGTCACGCAAGATCTTCCGGACCAACTTTGTCGAGACATCACTCGGACCGTGTCGGATCTTC CGGGACACGCCGCCCCGAGTCCTTGTGTGCGACGGTGCGCTCGACACGACCAAGGAGATCGACCG GAGCTTTGACCTGGCTCGGGATGAGCTGATCCGCGTCTTCCTGGACCGTCGCACCCTCCTTGTGGTT ACCAGCCACGCCGTCGCCGATCTCAACAGCGTGCAGAATCTGCTGCAGGACGTCTCCGGCGTGTAC GCGGGAAGGACGACCCCAACACCGGACCGATGGCACTATCCCCGGGCCCCGGCCTGGTCCCGTCA GGCCACAGAGCAGGAACGGAAGTTCTGGTCGAAGTATCTCGAGGGGGCTCCCCAGCGTCTGGACAT CCCGCGGTATCCCGGCCAAATGGCGTTTGAAGGCCGCTCGCGCGTGTCCGAGTTCAAAGGCGACCT CGTTCGACGCGCCGTCACTCTGGGGCAGGAACATGGGTTGAGTCAGCACCAGCTGGTGTGTGCCGC CGTCGCGCAGACCCTCCAGTGGCTCGCCGGCTCGAACGACGTCGTTCTCGGCTCTCCGTGGGCCAA CCGCGGGCACACCGTGGAGCAAGAGTCGATGGGTCTGTTCCTCGATCGCCTGCCTCTTCGCTTCAA AACCCCTGTGAATGCAGACTGCGCCACCATCCTGCAGTCTACGCGTGCAGCGAGCCAGGCAGCCGT CTGCAATTCCATTCCATTCGAGCAGGTCCTGAACCTCCTCCACCTGCCGCGGACCATCCGGCAACAC CCGCTGTTCGAAGCCATGGTCACCTTTCATCTCAAGGGGGCAGTGGAAGATTGTCTCGCCATCGAGG GGCTGGAGGTGAAACGCGAGATGTGCTTTGCGTCCGGGGCCAAGTTCCTGCTCATGTTCGAATGGA CCGAGATCGAGGCGGATCACTGGACCCTGCGCATCGAGTATGACGACCACCAGCTCGACGACGCGA CCGTCACCACCATCGAGGACAGCATCCGATGTGTCCTCGAAGGGCTGGCGGATCGGCTCTCTCGCG CCGCCATCCACGAGCGCCTCGAGCACCACCACCACCACCACTGA

GliP- $\Delta \mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$

ATGCCATCAGTAGTAGCGCTCGACCTCTGCCAGCTTTTTGACCGGTCCGTCGCTCGGACACCACACC AGCTGGCAGTCGATCATGAGAGCGGCTCGCTCACCTATACCGAACTCGATGTGGCCTCATCGAACCT GGCCCGAAAGCTAAAGCAAGAAGGAGTAGTCCCTGGGGAAGCGGTCCTCTTACTTACTGAGCACGG CACCCGGAATGTTGTCGCGCTGCTTGCCATCCTCAAGGCCCACGCCTGCTACGTTCCTCTGGACCGC AGCTCGTGGTCATCAGAGCGGATCCAGGCCGTGCTGGACGGGACAGACAGCCGGATTCTGATCAAC

ACAACCGTCGAGCCGTTCGAAAGCCCGCGGCACAAAGTCATCCATCTGACCAGCGCCGATGTGACG ACTCTATCGACGGACCGCAGCACCACAAAGGTCATTCCCGACATCGCTCCCGAAGACCTCGCTTGTT TGATCTTTACCAGTGGGAGCACAGGTGTGCCCAAGGGAGTCATGATTCCACATCGTGCCGTAGCCAA TTATGCTCAGACCAGTCCATTCAACATGGATGTGCAGCCGGGAGACCGGGTACTGCATATCCTGTCG GTATCCTTTGATGCCTCTACGGGCATGCTGTTTTCCATTCTAGGCAACTCGGGCATCGTGGTCCCCG CCACGATGGACACCCTCTTCGACAAAGCGCAGTCCTGCTCCATCCTCGCGTCGACGCCGTCAATCCT GGCAACACTACCCCTGCCGACGGCCCTGCCAGACAGCTATCCCTACGTCCATACTATTCTGTTGGGT GGAGAGTCGCCACCCGCCCCGCTGTTGTCCAGCTGGCTTCAATTCGGCGTTCGCATCCTGAACGCG TACGGTCCTACTGAAACCACCTGTGCCTCGTTGATGCAGGAAGTAGAGGTCTGTCAGGAGACGGGAA TGATCAATCGCAGTATTATCGGTCGCCCAATGCCCAATGGACCGGTATACCTGCTACAGCCGGATAC GCTCCTCCCGGTCGAGGAAGAAGGCGAGGAAGGGGAGATTGCCATTGCGGGCGTCGGCCTGGCCC ACGGCTACTACCGAAATGCCGCACTAACAGCCGAGAAGTTTATCGAGTGGCACGGCAAGCGAGTCTA TCGCACCGGCGACCAAGGACGGTGGACACGCCGTAACGACGGCCAGCGCGTGGTGGAATTCCGCG GCCGCAGTGATCGCACCGTCAAGAACCGCGGATTCCTCGTCAATCTACCCGCCGATGTCGAGGAAC CGCTACGCCAGATGGGCTTCGGTGTCACCGACGTCTATGCTTCGCTGATCAACGGTCTCTTGGTTGC GCTGGTGACCCCGGCAACTGCAGATCTGGACGGCCTGCAGAGCGAGGCGGACCGTCGGCTGTCTT CTTTCCATCGGCCGGGACGATACTTGGCTGTCGATCAGTTTCCACTGTCAGCCAACGGCAAGATTGA TACCAAGGCCATTGAGAACATGCTGAAAGAGTATCAGGCGCGTCTCTGCGAGGGCACCGATGATGAA GAGACCACAGGGGGCGAGCGTCCTACGGAGCGCGAGCAAGTCATAGCCGAATGCATGTATACCGCG TTGGGGTTGGATCTCCCGTCGGCGTCGGCGTCCAAAGATTTCAATTTCTTCGCCATGGGCGGAAACT CCCTTGCTGCTCTTCGATTCACCTCCCTGTGCCGTGAGCGAGGCATCCTCCTCACTACCCGGGATCT GTACCTACATCCAACAGTCAGAGGCATTCTCCCGTATGCTCGTGACCTTGCTCATTCTGGTCTGCCTT TGCCAGACAAGGAGGAGCAAATCGACCACCGATTATCCCTCAAGGCCGAGGTTGCTGCGGCCCTTC ATCTCTTGGGCGACATTGACGTCGCTCCGTTGACTCCCCTTCAGCTACAACTGAGCGCTCCTATTTTC CAAAGCGATGGGACCAACACGAACCAGCTGCGGCAATCGTATCCCCTGGCCTCGGCCGAGCACATC TGCAATGCATGGCGACAGGTCGTCCTCAGTGAACCGGTCTTCCGAACGCAGATTGCGCTGGATATCG GGCCCGGTGTGCAGATCGTTCACGCTCAGCCACGGTGCCAGCCGCAGGAGATTACCTTTCACCGCC GGGAAGACTACAATGCTGCCTTGAGCGATCCTTCCCGTCTGCCGGTTGGACTGGGAATGCGTTTGGA ATTTATGAAATTTATGCCGAATGACGACGATGACGACGAGGGTGAAGTGACTGTCGTCTGGACGGCC CACCACAGCCTGATCGATGGTTACTCCCTGGGACTCATTCTGGCTCGGGTGCAGCAGGCAAGCCAG GGTGTCGCATCCTCCCGGGTCTCTTCCTTTGTAGACGCAGCGTGGAATCTGCTGAGCGTGCAGAAGC AGAGAGACACCGAGGCACGGCGGTTCTGGGAGCAGTATCTGCAGCCGGTACGGTCACTCACGAAAG CAGAGGCAACCACAACGCCTGTAGCACGGCCGTACCTCGCTCAGGAGGTGCTGTTCAAGCATGTGG GCGGCGTGGACGAGTTACACCGACTCGCATCCAGCTGCAGTGTCACCCTAGCGGCCGTCTACTACA CGGCGTGGGCCATGACGATTGCTCGGACGACCAAGTCCACCCTGGTAACTCTGGGAGTTGTCTTCTC TGGCCGCGAGATCCTCCCAGACGATGCGCAGGCCGTCGGCCCATTGATGGCCACTCTGCCCCTGGT ATGCCGCATTGACGGAGAAGCCTCGATTGAGCGCCAGCTGCAGACCACGTTCGAAGGTTTGGCAAC CATTAGCACCTACGCATGGTCTGCCCCAGATCAAATCGGGTACCGGGTCGACTCTCTGCTGGCGACG CAGTATGATTTCCCAACCTACGACCAACCCATCCCGCCGCAAAAGGAGCAGTTCTTCGAGAACACGA CCTTTGCGCTGAGTCTCCTGGTCGAAGCTGATGCTCGTTTCCGCTTGGTGTACAATCCTTCCGTGCA CGGCGAGCAGACGGTCCAGCAATATGCCGACACGTTCCAACAGGCCCTCCAAGCGCTGGTGGGTGA TTCGACGATGGAGGCATGGCTCACGGGGCCGACAAAAGCACCGCTTGCCGTCGACCAAGCTTCTGA TATCCAACATGTCAATGTACCGAATGTGGCGTCGGCGTTCTATGCCTCGGTCGACCTCCACAAGGAT TTGATTGCCGTAGACGGACCAGGAGGCACGTTACCCTACCGGGAACTGGATCAAAAGTCGAACGCG GTGGCCTCGCATATTGCCAAACACTTCAGCAGGGCTCAAGTCATCGCCATCCACGCCGATGGAACCC TCAACTGGGTTGTCGGCATCCTGGGTATCCTGAAAGCCGGCTGCGCATACTGCCCACTCGATCCTGC GTATCCCATCGCGAGACGGGTCGCTGTGTACGAACAAAGCGGTGCCAGCGCGCTCCTCATCCCTAA TGCCTGCTCATCGTCCGCGGCCCTCCTGCCGATAACCGATCTTCGCGTCTTCACGATTCAAGAAACC GAGACAAGCGACACAAGCAGACAGCCATCGCTGCTCGCAAACGCAAATGAGGATGCCCTCATCGTCT TCACCTCCGGCACGACCGGCCGCCCCAAGGGGGTCCCCATCAGTCACAGGGGCCTTCTGGCTTTGC AGTCGAATCCCGAAGCCACCATGTTCAGCCGTCCCGGTCGTCGTATAGCTCAGTTCATGTCGCCTGC GTTCGACTACTGTGCCAACGAGATTTTCTCTGCGTTGCTGCATGGCGGAACCTTGGTGCTTCGGGAC

CCGTCCGACCCCCTTGCCCATCTCGCGAAGGTCGATGTGTCGACAATTACTCCTTCTGTGCTCAGCG TGCTGAATCCAGACGACTATCCTAATCTCGACATGGTCTATGCAACAGGAGAACCCGTCACGCCCGG CTTGCTCGCTCGATGGGGCGAGGGCCGGGCATTCTACAATGCCTATGGTCCTGCAGAGTGCTCTATT TGCACGTCATTTACCCGCCTAGAGCCCGGCCAGCAGGTCACCATCGGAAACGCCGTTCGCACCGCG CGCATGTACATCCTGGACCCGGATCTCCAGCCCGTGTCGGACGGCCAAACCGGAGAGATCTTCCTG GCCGGACAACAGGTGATGCGAGGCTACGTGGGAGACGATGCCAAGACGGCCTACAGCGTGCTGCC GGATCCCTGGCATCCTGGTGAGCGGATGTATCGCACCGGCGACTACGGCTACTGGAACGCGGACAG ACAGATTGTCTACATCGGACGACTGGACCGGCAGGTCAAAATCCGTGGCTTCCGCGTCGAGCTCGC GGCGGTCGAGCAGAAGATGTACCAAGAGGAGCCGCGGCTTACCCAAGCGGCGGCTCTCGTTGTCAA CGATACTCTGGTGGCCTTTGTCATGCCGCTTGACGTGGATGTCAGCCGTCTGGAGCAGCGACTGCG CGAGTCCCTCCAACCCAGCTGGGTGCCTCAGGTGATTACCGCGCTGGAGGAGTTCCCTTGGACGGC CAACCGCAAGGTTGACTATCGCAAGCTGGCGGAGAGAGCCACCCTGACGCGGCCGGAGGACTCCCT GCCGCAGCAGAAGACGCCAGCAGGGATGACGGCAAAGGATGCTTCTATTGCGGACGGAATCGCAAC CCTGTGGAAGAACGTGCTGCGTCTGCAGGCAGGCGGCGGCTCTCGCAAGCTCTGTGAAGATGATGA CTTCCGTGCTCTGGGCGGCCATTCCGTTCTCCAGATGATGTTGGCGGCTCGCCTCGGCAGCACATTT GGCATCTCCGTGTCGATGCGCGATGTGATCGAGCACTCCACGCTGGCCGAGCAGGTCGAGCTGGTG CGCCGCAAACGTCAGGCCTCGACGGCCAAGCCACGGACCATCTGCGACGCGTTTCCCGACCACTGC CTCGAGCACCACCACCACCACCACTGA

GliP-C $\mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$ only

ATGCGCGATGTGATCGAGCACTCCACGCTGGCCGAGCAGGTCGAGCTGGTGCGCCGCAAACGTCAG GCCTCGACGGCCAAGCCACGGACCATCTGCGACGCGTTTCCCGACCACTGCCTGTCGCCGTTGGAG CGTCAGACGTGGTTCCAGTACCTGATCGCTGCTGACGTGCGCACGTTCAACATTCCCGTCCTCTTGC ATCTCGGCGGGACATTTGACCGCGACCGTCTCGTGCAGTCATTCAACGCCGTGTTGGCGTCACGCAA GATCTTCCGGACCAACTTTGTCGAGACATCACTCGGACCGTGTCGGATCTTCCGGGACACGCCGCCC CGAGTCCTTGTGTGCGACGGTGCGCTCGACACGACCAAGGAGATCGACCGGAGCTTTGACCTGGCT CGGGATGAGCTGATCCGCGTCTTCCTGGACCGTCGCACCCTCCTTGTGGTTACCAGCCACGCCGTC GCCGATCTCAACAGCGTGCAGAATCTGCTGCAGGACGTCTCCGGCGTGTACGCGGGAAGGACGACC CCAACACCGGACCGATGGCACTATCCCCGGGCCCCGGCCTGGTCCCGTCAGGCCACAGAGCAGGA ACGGAAGTTCTGGTCGAAGTATCTCGAGGGGGCTCCCCAGCGTCTGGACATCCCGCGGTATCCCGG CCAAATGGCGTTTGAAGGCCGCTCGCGCGTGTCCGAGTTCAAAGGCGACCTCGTTCGACGCGCCGT CACTCTGGGGCAGGAACATGGGTTGAGTCAGCACCAGCTGGTGTGTGCCGCCGTCGCGCAGACCCT CCAGTGGCTCGCCGGCTCGAACGACGTCGTTCTCGGCTCTCCGTGGGCCAACCGCGGGCACACCG TGGAGCAAGAGTCGATGGGTCTGTTCCTCGATCGCCTGCCTCTTCGCTTCAAAACCCCTGTGAATGC AGACTGCGCCACCATCCTGCAGTCTACGCGTGCAGCGAGCCAGGCAGCCGTCTGCAATTCCATTCC ATTCGAGCAGGTCCTGAACCTCCTCCACCTGCCGCGGACCATCCGGCAACACCCGCTGTTCGAAGC CATGGTCACCTTTCATCTCAAGGGGGCAGTGGAAGATTGTCTCGCCATCGAGGGGCTGGAGGTGAA ACGCGAGATGTGCTTTGCGTCCGGGGCCAAGTTCCTGCTCATGTTCGAATGGACCGAGATCGAGGC GGATCACTGGACCCTGCGCATCGAGTATGACGACCACCAGCTCGACGACGCGACCGTCACCACCAT CGAGGACAGCATCCGATGTGTCCTCGAAGGGCTGGCGGATCGGCTCTCTCGCGCCGCCATCCACGA GCGCCTGAACGCCATGCACAAGACGGCCAGGACCAAGGTGGATTGGAACTTCTACCGCCGGCTGGT GGGCATTCTGCAGCGTGAGATGGCGACCTGTCTGGGCGTCTCGCTGGATGAGTTCCCCTGCTCCGT CTCCTTCTTCGAGGCCGGCGGCGACTCGATCCAGGCCTGGCGGTTGAGCCGTCAGTTGAAACGGGT TGGGCTGGAGGTGCCCATCTGCAACATCTTCGATCATCCCACGGCGCAGGATTTGGCACAGCGTCTT TACCGTCAGGTTCTTTAG

2 Supporting Figures

LAEQVELVRRKRQASTAKPRTICDAFPDHCLSPLERQTWFQYLIAADVRTFNIPVLLHLGGTFDRDRLV QSFNAVLASRKIFRTNFVETSLGPCRIFRDTPPRVLVCDGALDTTKEIDRSFDLARDELIRVFLDRRTL LVVTSHAVADLNSVQNLLQDVSGVYAGRTTPTPDRWHYPRAPAWSRQATEQERKFWSKYLEGAPQRLDI PRYPGQMAFEGRSRVSEFKGDLVRRAVTLGQEHGLSQHQLVCAAVAQTLQWLAGSNDVVLGSPWANRGH TVEQESMGLFLDRLPLRFKTPVNADCATILQSTRAASQAAVCNSIPFEQVLNLLHLPRTIRQHPLFEAM VTFHLKGAVEDCLAIEGLEVKREMCFASGAKFLLMFEWTEIEADHWTLRIEYDDHQLDDATVTTIEDSI RCVLEGLADRLSRAAIHERLNAMHKTARTKVDWNFYRRLVGILQREMATCLGVSLDEFPCSVSFFEAGG DS IQAWRLSRQLKRVGLEVPICNIFDHPTAQDLAQRLYRQVL
Figure S1. Amino acid sequence of $\mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$ domains of GliP (Af293). Residues highlighted in yellow are conserved across C_{T} domains. ${ }^{[13]}$

Figure S2. gliI gene expression in WT(Af293) GliP- $\Delta \mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$ and $\mathrm{GliP}-\Delta \mathrm{T}_{3}$ A. fumigatus strains. 10^{7} spores $/ \mathrm{mL}$ were inoculated in 50 mL liquid GMM and incubated for 72 h at $25^{\circ} \mathrm{C}, 225 \mathrm{rpm}$, before total RNA extraction.

Figure S3. Gene expression of gliC, gliG, glil and gliJ in WT(Af293), $\Delta \mathrm{GliP}, \Delta \mathrm{Glil}$, and $\mathrm{GliP}-\Delta \mathrm{C}_{\mathrm{T}} \mathrm{T}_{3} A$. fumigatus strains. 10^{7} spores $/ \mathrm{mL}$ were inoculated in 50 mL liquid GMM and incubated for 24 h at $30{ }^{\circ} \mathrm{C}, 225$ rpm and an additional 24 h at $25^{\circ} \mathrm{C}, 225 \mathrm{rpm}$ before adding gliotoxin ($1,25 \mathrm{mg} / \mathrm{mL}$). After 24 h of further cultivation at $25^{\circ} \mathrm{C}$, total RNA was isolated from samples for gene expression analysis.

Figure S4. SDS-PAGE confirmation of recombinant GliP- $\Delta \mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$, $\mathrm{GliP}-\Delta \mathrm{T}_{3}$, and GliP-WT.

Figure S5. ATP-[32P]PP ${ }_{i}$ - radioisotope exchange assay results for (a) recombinant GliP-WT, (b) GliP- $\Delta \mathrm{T}_{3}$, and (c) GliP- $\Delta \mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$. Shown are raw turnover rates for L-Phe, L-Ser, L-His, and water for each enzyme, ${ }^{[14]}$ each assay was run in triplicate and analyzed with a student's t-test, ${ }^{*} \mathrm{P}<0.05,{ }^{* *} \mathrm{P}<0.005,{ }^{* * *} \mathrm{P}<0.0005$.

Figure S6. In vitro product formation assays with GliP. (top) L-Phe and L-Ser incubated with purified GliP variants furnishes 2. (bottom) Quantification of relative yield of 2 from each assay, as measured by integration of LC-MS ion-chromatograms $(\mathrm{n}=4)$. ${ }^{* *} p<0.01$, ${ }^{* * *} p<0.001$.
......VSEFKGDLVRRAVTLGQEHGLSQHQLVCAAVAQTLQWLAGSND
VVLGSPWANRGHTVEQESMGLFLDRLPLRFKTPVNADCATILQSTRA
ASQAAVCNSIPFEQVLNLLHLPRTIRQHPLFEAMVTFHLKGAVEDCLAI
EGLEVKREMCFASGAKFLLMFEWTEIEADHWTLRIEYDDHQLDDATVT
TIEDSIRCVLEGLADRLSRAAIHERLNAMHKTARTKVDWNFYRRLVGIL
QREMATCLGVSLDEFPCSVSFFEAGGDSIQAWRLSRQLKRVGLEVPIC
NIFDHPTAQDLAQRLYRQVL*

Figure S7. LC-HRMS/MS confirmation of phosphopantetheinyl modification of GliP-T3. See Supporting Methods for experimental details. ${ }^{[15]}$

Figure S8. In vitro cyclization activity of GliP- $\Delta \mathrm{T}_{1} \mathrm{~T}_{2}$ toward 5. (a) 5 can first be loaded onto T_{3} via transthiolation, then cyclized by the $\mathrm{C}_{\boldsymbol{T}}$ domain to form 2, or (b) the $\mathrm{C}_{\boldsymbol{T}}$ domain can directly cyclize 5 to form 2.

PENFLA_c013G03821 (Penicillium flavigenum) -SHAIADLNS-61 \% putative NRPS (Bipolaris victoriae FI3) -SHAITDLNS- 47 \% putative NRPS (Trichoderma virens Gv29-8) -SHMIADLNS-44 \% putative NRPS (Trichoderma virens Gv29-8) -SHMIADLN
putative NRPS (Escovopsis weberi) -SHSISDLGT- 39% putative NRPS (Escovopsis weberi) -SHSISDLGT- 39%
putative NRPS (Leptosphaeria maculans JN3) -SHMIGDRST- 31% Aspzo1_0162131 (Aspergillus zonatus) -SHVVGDAAT- 31% putative NRPS (Fusarium acenaceum) -SHVVGDAVT- 30 \% NFIA_064400 (Neosartorya fischeri) -SHVVGDAAT- 30 \% ATEG_08427 (Aspergillus terreus) -SHVVADATT- 30 \% TSTA_055660 (Talaromyces stipitatus) -HHIVIDKHS-30 \% Aspsy1_0160604 (Aspergillus sydowii) -HHIITDKAS- 30 \% Aspsy1_0160604 (Aspergillus sydowii) -HHIITDKAS- 30%
TRV_04720 (Trichophyton verrucosum) -SHVVGDATT- 29%

Figure S9: Examples for conservation of the $\mathrm{C}_{\boldsymbol{T}}$ domain in confirmed and putative DKP producing fungal NRPSs. (top) Conserved amino acid sequence in the C_{T} domains are highlighted in red text. Percentages are total amino acid similarity. (bottom) Phylogenetic tree for GliP homologs containing $\mathrm{C}_{\mathrm{T}} \mathrm{T}_{\mathrm{c}}$ tandem, see Supporting Methods 1.13 and Table S1 for more information. Scale bar is Grishin distance. ${ }^{[16-18]}$

Figure S10: Model for hexadehydroastechrome biosynthesis in Aspergillus fumigatus. Prenylation of a T_{C} tethered dipeptide (as opposed to prenylation of the cyclized DKP) would explain copious production of prenyltyptophan in Δ hasC mutant background (see references 17 and 19). DMATS: dimethylallyltryptophan synthase. ${ }^{[17,19]}$

Figure S11: Southern confirmation. (a) A. fumigatus $\mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$ and T_{3} deletion mutants. Genomic DNA was digested by Ndel. WT (10 kb), $\mathrm{C}_{\top} \mathrm{T}_{3}$ deletion (4.7 and 6 kb) and T_{3} deletion (4.7 and 7.3 kb). TJW139.30 and TJW140.16 were chosen for the subsequent experiments. (b) Complementation of $\mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$ deletion mutant. Genomic DNA was digested by BamH and Hindlll with 3.6 kb fragment expectation. TJW178.26 was chosen for subsequent experiment.

TBTP12

Figure S12: Confirmation of gliP deletion strain. The GliP open reading frame was replaced with a copy of pyrG from A. parasiticus. Genomic DNA was digested by EcoRl; the wildtype (WT) parental control shows the expected bands of 6.6 and 2.5 kb , and transformants 2 and 3 show the expected band size of 4.4 kb .

Figure S13: Confirmation of gliP complementation and cluster expression. (a) Genomic DNA was extracted and digested with BamHI; wild-type (WT) parental control shows the expected band of 4.7 kb while all transformants show the expected banding pattern of 6.7 and 5.4 kb . (b) Northern analysis of gliG expression in wild-type strains (AF293 \& TBTP105) as well as Δ gliP (TBTP94), gliP complement strain (TBTP99) and the gliP-H1754A point mutant (TBTP100). Strains were grown in liquid GMM for 72 h at $25^{\circ} \mathrm{C}$ at 225 RPM.

TJW201.
WT 71528293334384594

Figure S14: Southern confirmation of S2095A point mutant. Genomic DNA was digested by Ndel. WT (10 kb), and point mutation (4.7 and 7.5 kb). TJW201.38 was chosen for the subsequent experiments.

3 Supporting Tables

Table S1. Fungal NRPSs with homologous domain architecture to GliP
$\left.\begin{array}{|l|l|l|l|}\hline \text { Accession } & \text { Name } & \text { Species } & \text { [\%] similarity } \\ \hline \text { GAQ03188.1 } & \begin{array}{l}\text { nonribosomal peptide } \\ \text { synthetase 10 }\end{array} & \text { Aspergillus lentulus } & 93.192 \\ \hline \text { XP_024683983.1 } & \begin{array}{l}\text { nonribosomal peptide } \\ \text { synthase GliP }\end{array} & \text { Aspergillus novofumigatus IBT 16806 }\end{array}\right] 91.589$.

SUPPORTING INFORMATION

ABV48729.1	non ribosomal peptide synthase	Penicillium lilacinoechinulatum	59.605
RYP29373.1	hypothetical protein DL767_006759	Monosporascus sp. MG133	40.071
ETR98473.1	acetyl-CoA synthetaselike protein	Trichoderma reesei RUT C-30	39.666
XP_006961011.1	non-ribosomal peptide synthetase, partial	Trichoderma reesei QM6a	39.666
OTA04143.1	NRPS protein	Trichoderma parareesei	38.861
PTB75339.1	non-ribosomal peptide synthetase	Trichoderma Iongibrachiatum ATCC 18648	38.482
PKK53446.1	hypothetical protein CI102_1861	Trichoderma harzianum	38.28
XP_024772669.1	hypothetical protein M431DRAFT 496332	Trichoderma harzianum CBS 226.95	38.28
XP_024745528.1	non-ribosomal peptide synthetase	Trichoderma citrinoviride	38.279
XP_018138929.1	nonribosomal peptide synthase GliP2	Pochonia chlamydosporia 170	37.562
RZR63507.1	hypothetical protein I1G_00004049	Pochonia chlamydosporia 123	37.466
OAA41296.1	non-ribosomal peptide synthetase	Metarhizium rileyi RCEF 4871	36.233
XP_022397513.1	hypothetical protein ASPGLDRAFT 51264	Aspergillus glaucus CBS 516.65	31.302
AAS92545.1	SirP	Leptosphaeria maculans	31.2
XP_022577239.1	hypothetical protein ASPZODRAFT 162131	Penicilliopsis zonata CBS 506.65	30.66
KGO76902.1	AMP-dependent synthetase/ligase	Penicillium italicum	30.45
KPA37248.1	non-ribosomal peptide synthetase	Fusarium langsethiae	30.277
XP_001263173.1	nonribosomal peptide synthase GliP2	Aspergillus fischeri NRRL 181	30.072
GAO85048.1	nonribosomal peptide synthetase 5	Aspergillus udagawae	30.072
XP_025480600.1	putative Nonribosomal peptide synthetase 5	Aspergillus neoniger CBS 115656	30.062
OQE90703.1	hypothetical protein PENNAL c0011G10486	Penicillium nalgiovense	30
KEY80879.1	nonribosomal peptide synthase GliP2	Aspergillus fumigatus var. RP-2014	29.991
OXN05566.1	hypothetical protein CDV58 05250	Aspergillus fumigatus	29.95
EDP52461.1	nonribosomal peptide synthase GliP2	Aspergillus fumigatus A1163	29.937
KMK60067.1	nonribosomal peptide synthase GliP-like protein	Aspergillus fumigatus $Z 5$	29.905
EWZ79981.1	hypothetical protein FOWG_16001	Fusarium oxysporum f. sp. Iycopersici MN25	29.883

SUPPORTING INFORMATION

RYC81866.1	Nonribosomal peptide synthetase 5	Fusarium oxysporum f. sp. narcissi	29.883
GAQ04194.1	nonribosomal peptide synthetase 5	Aspergillus lentulus	29.878
XP_754329.2	HasD	Aspergillus fumigatus Af293	29.86
EWY87626.1	hypothetical protein FOYG_11806	Fusarium sp. FOSC 3-a	29.835
EKG15398.1	AMP-dependent synthetase/ligase	Macrophomina phaseolina MS6	29.786
EWZ34065.1	hypothetical protein FOZG_12081	Fusarium oxysporum Fo47	29.758
PCD30303.1	hypothetical protein AU210_009885	Fusarium oxysporum f. sp. radicis- cucumerinum	29.713
EXL47760.1	hypothetical protein FOCG_10286	Fusarium oxysporum f. sp. radicis- lycopersici 26381	29.668
RKK80740.1	Nonribosomal peptide synthetase 5	Fusarium oxysporum	29.668
XP_020126697.1	nonribosomal peptide synthase 2	Diplodia corticola	29.51
KIL87746.1	non-ribosomal peptide synthetase	Fusarium avenaceum	29.499
XP_001217048.1	hypothetical protein ATEG_08427	Aspergillus terreus NIH2624	29.451
RMJ26839.1	non-ribosomal peptide synthase	Phialosimplex sp. HF37	29.341
KXG49620.1	AMP-dependent synthetase/ligase	Penicillium griseofulvum	29.328
OAL68959.1	hypothetical protein A7D00_7126	Trichophyton violaceum	29.255
DAA76165.1	TPA_exp: Nonribosomal peptide synthase GliP	Trichophyton benhamiae CBS 112371	29.25
XP_003021172.1	nonribosomal peptide synthase GliP	Trichophyton verrucosum HKI 0517	29.185
XP_003013751.1	nonribosomal peptide synthase GliP	Trichophyton benhamiae CBS 112371	29.061
XP_024677137.1	nonribosomal peptide synthase GliP2	Aspergillus novofumigatus IBT 16806	29.04
EGE05589.1	nonribosomal peptide synthase GliP2	Trichophyton equinum CBS 127.97	28.799
EZF68370.1	hypothetical protein H104_00006	Trichophyton rubrum CBS 289.86	28.798
XP_024704292.1	nonribosomal peptide synthase GliP2	Aspergillus steynii IBT 23096	28.444
KKP03905.1	hypothetical protein THAR02_03993	Trichoderma harzianum	24.906
nonribosomal peptide	Penicillium brasilianum	24.415	
synthetase 13			

-NRPSs with $>95 \%$ similarity to GliP are excluded from this table, as they likely produce gliotoxin (1).

WILEY-VCH

SUPPORTING INFORMATION

Table S2. LC-HRMS data of reported compounds

Compound	HR-ESI $(+/-)$ Observed (m/z)	Ion	Calculated Ion Formula	Calculated m/z	Retention time [min $]$
1	263.1030	$\left[\mathrm{M}-\mathrm{S}_{2}+\mathrm{H}\right]^{+}$	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}$	263.1032	5.00
2	235.1080	$[\mathrm{M}+\mathrm{H}]^{+}$	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$	235.1082	2.30
3	279.0801	$\left[\mathrm{M}-\mathrm{SCH}_{3}+\mathrm{H}\right]^{+}$	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}$	279.0803	3.84
4	309.0906	$[\mathrm{M}+\mathrm{H}]^{+}$	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}$	309.0908	5.00

Table S3. Fungal strains used in this study

Name	Genotype	Reference
Af293	Wild type	$[20]$
Af293.1	A. fumigatus pyrG1	$[20]$
Af293.6	A. fumigatus pyrG1, argB1	$[20]$
ARC2	$\Delta g l i P::$ para pyrG1	$[21]$
TJW139.3	$\Delta C_{2} T_{3}$ gliP:: para pyrG1	This study
TJW140.16	ΔT_{3} gliP:: para pyrG1	This study
TJW201.38	GliP2095ser->ala::AfpyrG; pyrG1	This study
TBTP94.1	pyrG1; $\Delta g l i P:: A . p ~ p y r G 1 ; ~ \Delta a k u A ~$	This Study
TBTP99.1	pyrG1; $\Delta g l i P:: A . p$ pyrG1; gliP::Af. argB::akuA	This Study
TBTP100.6	pyrG1; $\Delta g l i P:: A . p$ pyrG1; gliP-H1754A::Af. argB::akuA	This Study
TFYL44	pyrG; argB-; Δ akuA	[22]
TBPT12	pyrG; argB-; $\Delta g l i P:: A . p ~ p y r G ; \Delta a k u A ~$	This study
TBTP94	pyrG; $\Delta g l i P:: A . p ~ p y r G ; ~ \Delta a k u A ~$	This study
TBTP99	pyrG; $\Delta g l i P:: A . p ~ p y r G ; ~ g l i P:: A f . ~ a r g B:: a k u A ~$	This study
TBTP100	pyrG; $\Delta g l i P:: A . p ~ p y r G ; ~ g l i P ~ H 1754 A:: A f . ~ a r g B:: a k u A ~$	This study
TBTP105	$\Delta a k u A:: A . p$. pyrG; pyrG1	This study

SUPPORTING INFORMATION

Table S4. PCR primer sets used in this study

Name	Sequence (5'-3')	Purpose
DgPCT5'F	TGGTCTATGCAACAGGAGAACCC	$\Delta \mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$
DgPCT5'R	GGGTGAAGAGCATTGTTTGAGGCGACCGGTTCAAAACG CGTCGCAGATGGTCCGTGGC	$\Delta \mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$
glutapyrGF	TGAACCGGTCGCCTCAAACAATGC	$\Delta \mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$
glutapyrGR	CTGTCTGAGAGGAGGCACTGATG	$\Delta \mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$
DgpCT3'F	GGCATCACGCATCAGTGCCTCCTCTCAGACAGTTCTTCC ACACGGTATACATTGTAGCC	$\Delta \mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$
DgPCT3'R	ATTCGCGAGCTCAACCGCATGG	
DgPT5'F	TTGTCGAGACATCACTCGGACC GGAACTCATCCAGCGAGACGCC	$\Delta \mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$
DgPT5'R	AAAGTCACAGGATCCAAGCTGTAAGGATTTCGGCACGG	$\Delta \mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$
gliPgpdF	GCGTGGAGTGCTCGATCACATCGCGCATTGTGATGTCTG CTCAAGCGGGGTAGCTG	$\Delta \mathrm{C}_{\mathrm{T}} \mathrm{T}_{3}$
Complementation		

SUPPORTING INFORMATION

KU5'-R	GGTATGGATTGTCATCAGCCATAGTGAG	Complement
gliP-F	TTCTCACTATGGCTGATGACAATCCATACCCGCTCGCCA ATATGCTTGC	Complement
gliP-R	GAAAATTTGTCTTGGATGCAGACCGCGTTCCTGTGACGA ACTCGACGAGG	Complement
gliP-H1754A-R	ACGGCTGCGCTGGTAACCACAAGGAGG	Complement Mutant Copy
gliP-H1754A-F	GCACCCTCCTTGTGGTTACCAGCGCAGCCGTCGCCGAT CTCAACAGCGTG	Complement Mutant Copy
AFU argB fwd	GAACGCGGTCTGCATCCAAG	Complement
AFU argB rev	TGGTTAGTAACATTCAGACAGTCGGCATGCAGGGACTGA ACCTGGTGAATCG	Complement
KU3'-F	GCATGCCGACTGTCTGAATGTTACTAACC	Complement
KU3'-R	TCACATGTTCTTTCCTGCGTTATCCCCTACACCAAGAAGC TCACCACCCC	Complement
AFU argB rev2	AGCATCCATTCTGCGTCTCG	Complement
gliP_S555A_fwd	AAGAGCAGCAAGGGCGTTTCCGCCCATGG	$\begin{array}{ll} \text { SDM of gliP- } \\ \text { S555A } \end{array}$
gliP_S555A_rev	CCATGGGCGGAAACGCCCTTGCTGCTCTT	$\begin{aligned} & \text { SDM of gliP- } \\ & \text { S555A } \end{aligned}$
gliP_H1754A_fwd	TTGTGGTTACCAGCGCCGCCGTCGCCGATC	$\begin{aligned} & \text { SDM of gliP- } \\ & \text { H1754A } \end{aligned}$
gliP_H1754A_rev	GATCGGCGACGGCGGCGCTGGTAACCACAA	$\begin{aligned} & \text { SDM of gliP- } \\ & \text { H1754A } \end{aligned}$
gliP_S1582A_rev	CTGGAGAACGGCATGGCCGCCCAGAGC	$\begin{aligned} & \text { SDM of gliP- } \\ & \text { S1582A } \end{aligned}$
gliP_S1582A_rev	GCTCTGGGCGGCCATGCCGTTCTCCAG	$\begin{aligned} & \text { SDM of gliP- } \\ & \text { S1582A } \end{aligned}$
pET21_gliPCTT3_fwd	CtctagaaataatttgtttaactttaagaaggagatatacatATGCGCGATGT GATCGA	Truncation to express gliPC2T3
$\begin{aligned} & \text { pETet21_gliPC2T3_r } \\ & \text { ev } \end{aligned}$	tgttagcagccggatctcagtggtggtggtggtggtgAAGAACCTGACGGT AAAGACGCT	Truncation to express gliPC T_{3}
Ptmt5'F	AGTCATTCAACGCCGTGTTGGC	S2095A mutation

WILEY-VCH
SUPPORTING INFORMATION

Ptmt5'R	GACGGCTCAACCGCCAGGCCTGGATCGCGTCGCCGCC GGCCTCGAAGAAGGAG	S2095A mutation
Ptmt3'F	GGCGACGCGATCCAGGCCTGGCGGTTGAGCC	S2095A mutation
Ptmtnested5‘R	GGTGAAGAGCATTGTTTGAGGCGACCGGTTCAAAGA ACCTGACGGTAAAGACGCTGTGCC	S2095A mutation
PtmtglutpyrGF	CGTCAGGTTCTTTGAACCGGTCGCCTCAAACAATGC	S2095A mutation
gliGF	AAAGGTGAGTCGAGTCGACGC	Northern probe
gliGR	ATACTCTTTCTCGCCATGGCC	Northern probe
gliiinF	TTCGTTGGCACCGCATGCATGG	Northern probe
gliiinR	AGATAGCCGTCCATTTCTGCCC	Northern probe
gliJF	AAGAGGTACCTCTGATCGACGG	Northern probe
gliJR	TATCCTCGTTCCACACCTCGTCG	Northern probe
gliCF	AGTTCTTCCGCAACTCGCACC	Northern probe
gliCR	AGCCAGGAATGTGTCATCCCG	Northern probe

SUPPORTING INFORMATION

Table S5. ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(151 \mathrm{MHz})$ NMR spectroscopic data for compound 5 in a 80:20 mixture of methanol- d_{4} : chloroform- d_{3}.

Chemical shifts were referenced to $\delta\left(\mathrm{CH} \mathrm{D}_{2} \mathrm{OD}\right)=3.31 \mathrm{ppm}$ and $\delta\left({ }^{13} \underline{\mathrm{C}} \mathrm{HD}_{2} \mathrm{OD}\right)=49.00 .{ }^{13} \mathrm{C}$ chemical shifts were determined via HMBC, HSQC and direct observation ${ }^{13} \mathrm{C}$ spectra. ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ - J-coupling constants were determined from the acquired ${ }^{1} \mathrm{H}$ or dqfCOSY spectra. HMBC correlations are from the proton(s) stated to the indicated ${ }^{13} \mathrm{C}$ atom.

5

No.	δ_{c}	Proton	$\mathbf{\delta H}\left(J_{\mathrm{HH}}[\mathrm{Hz}]\right)$	HMBC
1	129.28	$1-\mathrm{H}$	$7.24\left(J_{1,2}=7.5\right)$	3
2	127.68	$2-\mathrm{H}_{2}$	$7.21\left(J_{2,1}=7.5\right)\left(J_{2,3}=7.4\right)$	2,4
3	128.92	$3-\mathrm{H}_{2}$	$7.25\left(J_{3,2}=7.4\right)\left(J_{3,5}=1.0\right)$	$1,3,5$
4	133.65			$3,4,6,7$
5	36.87	$5-\mathrm{H}_{\mathrm{a}}$	$2.98\left(J_{5 \mathrm{a}, 5 \mathrm{~b}}=14.0\right)\left(J_{5 \mathrm{a}, 6}=8.2\right)\left(J_{5 \mathrm{a}, 3}=1.0\right)$	$3,4,6,7$
	$5-\mathrm{H}_{\mathrm{b}}$	$3.28\left(J_{5 \mathrm{~b}, 5 \mathrm{a}}=14.0\right)\left(J_{5 \mathrm{~b}, 6}=5.5\right)\left(J_{5 \mathrm{a}, 3}=1.0\right)$	$4,5,7$	
6	54.39	$6-\mathrm{H}$	$4.26\left(J_{6,5 \mathrm{a}}=8.2\right)\left(J_{6,5 \mathrm{a}}=5.5\right)$	
7	168.86			$7,10,11$
8		$8-\mathrm{NH}$		9,11
9	61.54	$9-\mathrm{H}$	$4.55\left(J_{9,10 \mathrm{a}}=4.0\right)\left(J_{9,10 \mathrm{~b}}=4.5\right)$	9,11
10	61.70	$10-\mathrm{H}_{\mathrm{a}}$	$3.75\left(J_{10 \mathrm{a}, 10 \mathrm{~b}}=11.8\right)\left(J_{10 \mathrm{a}, 9}=4.0\right)$	
		$10-\mathrm{H}_{\mathrm{b}}$	$3.84\left(J_{10 \mathrm{~b}, 10 \mathrm{a}}=11.8\right)\left(J_{10 \mathrm{~b}, 9}=4.5\right)$	11,14
11	198.19			13,16
12				
13	28.44	$13-\mathrm{H}_{2}$	$2.90\left(J_{13,14}=12.0\right)$	16
14	38.48	$15-\mathrm{H}_{2}$	$3.27\left(J_{14,13}=12.0\right)$	
15		$15-\mathrm{NH}$		
16	172.01			1
17	22.31	$17-\mathrm{H}_{3}$	1.86	

WILEY-vCH

SUPPORTING INFORMATION

WILEY-VCH

SUPPORTING INFORMATION

WILEY-VCH

SUPPORTING INFORMATION

4 Supporting References

[1] J. A. Baccile, J. E. Spraker, H. H. Le, E. Brandenburger, C. Gomez, J. W. Bok, J. Macheleidt, A. A. Brakhage, D. Hoffmeister, N. P. Keller, et al., Nat Chem Biol. 2016, 12, 419.
[2] J. W. Bok, A. A. Soukup, E. Chadwick, Y.-M. Chiang, C. C. C. Wang, N. P. Keller, Mol. Microbiol. 2013, 89, 963.
[3] A. M. Calvo, J. Bok, W. Brooks, N. P. Keller, Appl. Environ. Microbiol. 2004, 70, 4733.
[4] J. W. Bok, N. P. Keller, Eukaryotic Cell 2004, 3, 527-535.
[5] J. W. Bok, S. A. Balajee, K. A. Marr, D. Andes, K. F. Nielsen, J. C. Frisvad, N. P. Keller, Eukaryotic Cell 2005, 4, 1574.
[6] J.-H. Yu, Z. Hamari, K.-H. Han, J.-A. Seo, Y. Reyes-Domínguez, C. Scazzocchio, Fungal Genet Biol. 2004, 41, 973.
[7] C. J. Balibar, C. T. Walsh, Biochemistry 2006, 45, 15029.
[8] T. Mamiatis, E. F. Fritsch, J. Sambrook, J. Engel, Molecular Cloning: A Laboratory Manual. 1985.
[9] J. W. Bok, Y.-M. Chiang, E. Szewczyk, Y. Reyes-Domingez, A. D. Davidson, J. F. Sanchez, H.C. Lo, K. Watanabe, J. Strauss, B. R. Oakley, et al., Nat. Chem. Biol. 2009, 5, 462.
[10] P. Schneider, S. Bouhired, D. Hoffmeister, Fungal Genet. Biol. 2008, 45, 1487.
[11] M. E. Due-Hansen, S. K. Pandey, E. Christiansen, R. Andersen, S. V. F. Hansen, T. Ulven, Org. Biomol. Chem. 2016, 14, 430.
[12] R. R. Forseth, E. M. Fox, D. Chung, B. J. Howlett, N. P. Keller, F. C. Schroeder, J. Am. Chem. Soc. 2011, 133, 9678.
[13] X. Gao, S. W. Haynes, B. D. Ames, P. Wang, L. P. Vien, C. T. Walsh, Y. Tang, Nat. Chem. Biol. 2012, 8, 1.
[14] R. R. Forseth, S. Amaike, D. Schwenk, K. J. Affeldt, D. Hoffmeister, F. C. Schroeder, N. P. Keller, Angew. Chem. Int. Ed. Engl. 2012, 52, 1590.
[15] P. C. Dorrestein, S. B. Bumpus, C. T. Calderone, S. Garneau-Tsodikova, Z. D. Aron, P. D. Straight, R. Kolter, C. T. Walsh, N. L. Kelleher, Biochemistry 2006, 45, 12756.
[16] a G. M. Boratyn, A. A. Schäffer, R. Agarwala, S. F. Altschul, D. J. Lipman, T. L. Madden, Biol. Direct 2012, 7, $12 . \quad$ bN. V. Grishin, J. Mol. Evol. 1995, 5, 675-679.
[17] W.-B. Yin, J. A. Baccile, J. W. Bok, Y. Chen, N. P. Keller, F. C. Schroeder, J. Am. Chem. Soc. 2013, 135, 2064.
[18] D. M. Gardiner, A. J. Cozijnsen, L. M. Wilson, M. S. C. Pedras, B. J. Howlett, Mol. Microbiol. 2004, 53, 1307.
[19] A. Kremer, S. M. Li, Chem. Biol. 2008, 15, 729.
[20] T. Xue, C. K. Nguyen, A. Romans, D. P. Kontoyiannis, G. S. May, Arch. Microbiol. 2004, 182, 346.
[21] R. A. Cramer, M. P. Gamcsik, R. M. Brooking, L. K. Najvar, W. R. Kirkpatrick, T. F. Patterson, C. J. Balibar, J. R. Graybill, J. R. Perfect, S. N. Abraham, et al., Eukaryotic Cell 2006, 5, 972.
[22] K. Throckmorton, P. Wiemann, N. P. Keller, Toxins (Basel) 2015, 7, 3572.

Main text reference \#25: K. D. Clevenger, R. Ye, J. W. Bok, P. M. Thomas, M. N. Islam, G. P. Miley, M. T. Robey, C. Chen, K. Yang, M. Swyers, E. Wu, P. Gao, P.M. Thomas, C.C. Wu, N.P. Keller, N.P. Kelleher, ACS Chem. Biol. 2018, 57, 3237.

Main text reference \#26: M. T. Robey, R. Ye, J. W. Bok, K. D. Clevenger, M. N. Islam, C. Chen, Gupta, M. Swyers, E. Wu, P. Gao, P.M. Thomas, C.C. Wu, N.P. Keller, N.L. Kelleher, Biochemistry 2018, 13, 1142.

