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Supplementary Information 
 
SI 1: Spike clustering and PN unit isolation 
 Because the only antennal lobe neurons that produce sodium action 
potentials are projection neurons (in locust, antennal lobe local neurons do not 
produce sodium action potentials, Laurent and Davidowitz, 1994), all spikes 
recorded with tetrodes could be attributed to PNs without ambiguity. 
 
SI Figure 1: 

 
 
This figure illustrates spike clustering from tetrode recordings of PN activity. We 
provide examples of spike clusters from categories 1, 2 and 4 of cluster isolation 
quality (SI Fig1A, B, C respectively). The three clusters are taken from the same 
data-set and have comparable signal-to-noise and variability properties. Each 
example belongs to the lower range of each category (i.e., these examples are 
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among the worst ones). For each cluster (A-C): i: Overlay and average (red) of 
the raw waveforms (3 ms at 15 kHz sampling, or 45 samples) on each of the 4 
tetrode sites. ii: SD test (Pouzat et al., 2002), showing the SD of each waveform 
(red) within its predicted 0.95 confidence interval (dotted lines) of the mean 
(stippled line). iii: Projection test (Pouzat et al., 2002), plotting the distance (in 
units of SD) between a tested cluster (left-hand-side distribution) and  every other 
recorded cluster (right-hand-side distributions), projected on the axis connecting 
their centers. Mean cluster separation becomes clearly worse from A to C. iv: ISI 
test (Pouzat et a., 2002) showing, for each cluster, the inter-spike interval (ISI) 
distribution, with a characteristic minimal interval due to refractoriness. To 

minimize risks of misclassification, we used data only from PN spike clusters 
from the first two quality categories (examples in A and B), as described in 
methods. The example in A falls just within the limits of the highest separation 
category (no event of any other cluster falls within 7 SDs of the cluster center); 
the example in B falls just within the limits of the second category (no other event 
within 5 SDs of the cluster center); the example in C is within the 4th category 
(less than 5 SD minimal distance between cluster centers).  See methods for 
details.   
 
 
SI 2: Structure and odor-evoked activity of the locust olfactory system 
 Recent work in locust (Perez Orive et al., 2002; 2004; Stopfer et al., 2003; 
Mazor and Laurent, 2005) showed that the representations of odors are 
dramatically sparsened between the first and second olfactory relays—the 
antennal lobe and mushroom body, respectively. In the antennal lobe (AL, Figure 
1A), the insect analog of the vertebrate olfactory bulb, odors are represented by 
distributed patterns of projection neuron (PN) activity. There are 830 PNs in each 
antennal lobe. When tested over 1 second-long odor pulses, individual PNs 
respond on average to about half of all odors presented, with odor- and neuron-
specific firing patterns (Mazor and Laurent, 2005; Perez-Orive et al., 2002; 
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Laurent, 2002; Laurent and Davidowitz, 1994; Laurent, 1996). At baseline, 
individual PNs fire spontaneously at rates between 2.5 and 4 spikes/s (Perez-
Orive et al., 2002; Mazor and Laurent, 2005). By contrast, in the mushroom body 
(Figure 1A), odors are represented by small subsets of highly selective Kenyon 
cells (KCs) in a large population of 50,000 neurons (Perez-Orive et al., 2002; 
Perez-Orive et al., 2004; Stopfer et al., 2003). Individual KCs respond equally 
specifically to mixtures (e.g., a fruit or flower blend) or to single-molecule odors; 
these spiking responses occur on a background of very little spontaneous firing 
(Laurent and Naraghi, 1994; Perez Orive et al., 2002; Mazor and Laurent, 2005). 
KC responses are associative—their high specificity matches only that of 

combinations of PNs—and often concentration invariant (Stopfer et al., 2003). 
 
PNs are the sole source of olfactory inputs to KCs. Previous work has 

identified several mechanisms contributing to KC specificity: for example, upon 
the presentation of an odor to the animal, PN responses phase-lock to a common 
20-30 Hz oscillation (Laurent and Davidowitz, 1994); this synchronization is 
exploited for coincidence detection by their targets (Perez-Orive et al., 2002 and 
2004). Because PN responses evolve over successive cycles of this periodic 
population output (Wehr and Laurent, 1996; Laurent et al., 1996; Mazor and 
Laurent, 2005) and because PNs generally fire 0 or 1 spike per cycle, the 
oscillation cycle is the time unit over which PN output is most appropriately 
characterized (Perez-Orive et al., 2002; Laurent, 2002; Mazor and Laurent, 
2005). Coincidence detection by KCs enables piecewise decoding of PN activity 
vectors—the sets of PNs active during each odor-evoked oscillation cycles 
(Perez-Orive et al., 2002; Perez-Orive et al., 2004; Laurent and Naraghi, 1994; 
Wehr and Laurent, 1996); each KC fires if it encounters an “appropriate” 
instantaneous PN activity vector within one oscillation cycle. KCs may thus be 
thought of as binary classifiers of PN activity vectors (Laurent, 2002).  
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SI 3: Technical issues 
 
a. Do the STAs represent EPSPs? 
 While the feed-forward circuits we studied are relatively simple, estimating 
the statistics of connectivity between two neuron populations in the brain is 
difficult (Chadderton et al., 2004; Franks and Isaacson, 2006). First, determining 
what constitutes a bona fide EPSP from a spike-triggered average waveform can 
be ambiguous, because average EPSP shapes are affected by noise (and thus, 
by event numbers) and by spike discharge statistics.  We used three different 

methods to detect putative EPSPs, of which one only was based on visual 
inspection. All three yielded the same results. We also controlled for the effect of 
PN spike autocorrelations and found that the shape of the averaged KC EPSP 
was always consistent with the expected effect of PN discharge statistics. 
Second, high firing correlations between putative presynaptic neurons could 
influence estimates of connectivity. This is unlikely here: PN-PN spike time 
correlations calculated over 75 pairs during baseline were flat at all relevant time 
intervals. We also sampled more than 100 PN-PN pairs with simultaneous 
tetrode and intracellular recordings (data not shown): not a single direct 
connection was ever detected between PNs (Ron Jortner, Ofer Mazor and Gilles 
Laurent, in preparation). Third, experimental design could have led to an 
undesired bias in our sample; this is unlikely because all putative connections 
were detected post hoc, only after the PN spikes had been clustered and 
separated. Also, the mean KC EPSP amplitude was so small that single events 
could never be detected on line from within the noise of our intracellular 
recordings. The only selection criteria we applied to our data were based on 
recording quality, and were applied prior to any assessment of connectivity (see 
methods). This led to the elimination of over half of our initial data-set of paired 
recordings; loosening our selection criteria for analysis (for example by including 
PNs with less well separated waveform clusters) led to nearly identical results on 
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connection statistics. Fourth, PNs (tetrodes) and KCs (intracellular) were selected 
randomly and in all accessible regions of the antennal lobe and mushroom body, 
consistent with the widespread PN axon collateral projections in the mushroom 
body in this and other large insects (Ernst and Boeck, 1983). Together, these 
observations increase the confidence in our estimate that PN-KC mean 
connectivity is around 50 ± 13% (p<0.05). This estimate is consistent with three 
further observations: that there always existed physical overlap between any 
labeled KC’s dendritic tree and PN’s axon collateral arbor; that the modulations of 
membrane potential recorded in any single KC were highly correlated with those 
of a simultaneously recorded local field potential, reflecting the activity of all PNs; 

that most KCs tested with more than one PN were found to be connected (as 
assessed by the STAs) with half of those PNs.  We also note that EPSP 
amplitude was a function of KC membrane polarization: three examples are given 
below (SI Fig 2A), showing EPSPs at resting potential (blue) and at 
hyperpolarized potentials (green).  Group data are plotted in SI Fig 2B for two 
values of direct hyperpolarizing currents. Means over experiments are shown in 
red. 

 
SI Figure 2A:     
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These experiments confirm that PN-evoked EPSPs are chemically mediated and 
consistent with direct PN input.   
 
 SI Fig 2B: 

  
 
b. Firing threshold estimates 

Estimating the firing threshold of KCs (in mV and in numbers f of PN 
inputs) is more difficult. First, because their thresholds are high, KCs fire rarely 

(Perez-Orive et al., 2002); and opportunities for appropriate measurements are 
scarce. Second, because they were small, EPSP amplitudes were measured on 
averages of hundreds of sweeps. If PN-KC synaptic transmission failure rates 
were high, non-failure events could be significantly larger than the population 
mean (86 ± 44 µV). High failure rates seem unlikely, however, because we found 
no evidence for homosynaptic facilitation, normally correlated with low release-
probability (Katz and Miledi, 1968; Dobrunz and Stevens, 1997). More real is the 
possibility of non-linear dendritic summation. Indeed, we know that KC dendrites 
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summate supra-linearly in a voltage-dependent manner (Perez-Orive et al., 2002; 
2004; Laurent and Naraghi, 1994); a realistic estimate of the number of 
simultaneous PN inputs required to bring a KC to threshold would thus be lower. 
We also know that PN spike times during individual odor-evoked oscillation 
cycles are distributed (±10 ms) (Laurent and Davidowitz, 1994; Wehr and 
Laurent, 1996) and that the decay time constant of KC EPSPs decreases to just 
a few ms when KCs are sufficiently depolarized (Perez-Orive et al., 2002; 
Laurent and Naraghi, 1994): jitter in PN spike times and sharpening of KC 
EPSPs together lead to sub-linear summation. While acting as a selective filter 
for tightly synchronized PN inputs, these nonlinearities act on summation in 

opposite ways; the extent to which one might dominate the other is so far 
unknown. With these observations, our initial estimate of the KCs’ firing 
thresholds was f ≈ 100 concurrent PN inputs per oscillation cycle (i.e., about a 
quarter of their mean inputs). This range for f is commensurate with the mean 
number of PN spikes produced per oscillation cycle (100-150) during an odor 
stimulus (Mazor and Laurent, 2005) but, as described in the discussion section, 
probably unrealistically high.  
 
c. Importance of EPSPs’ amplitude distribution for threshold estimate. 

Our data reveal a distribution of EPSP amplitudes; we estimated the firing 
threshold f (in numbers of concurrent PN spikes) by dividing the KC spike 
threshold by the mean amplitude of the PN-evoked EPSPs. Is, however, the 
EPSP amplitude distribution Gaussian? And if not, would our estimate of f be 
different if we took the shape of the distribution into account?  

 
We first note that the EPSP amplitude distribution was indeed skewed (3rd and 4th 
moments of the amplitude distribution: 1.4 and 5, respectively). Under such 
conditions, the Central Limit Theorem says that if a set of n independent random 
variables come from a distribution with a finite variance, then their sum will be 
approximately normally distributed and increasingly so as n approaches infinity. 
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We thus ran simulations, by drawing sets of n random events (EPSPs) randomly 
from the experimental (skewed) EPSP amplitude distribution (where n=1, 2, 5, 
10, 20, 50, 100, 200 and 400) and measured their sum, 1,000 times over. As 
predicted, the distributions of those summed EPSPs became more Normal as n 

increased (SI Figure 3); for n≥50,the Gaussian hypothesis could no longer be 

rejected (Lilliefors test, p<0.05). 
 

SI Figure 3: 

 
 
We then ran a set of simulations in which we drew, one by one, EPSPs out of the 
skewed, experimental distribution (with mean amplitude = 86µV) and summed 
them until spike threshold (8.9mV) was crossed. This operation was repeated 

1,000 times. The frequency distribution of f (number of simultaneous spikes, or 
EPSPs) is shown in SI Figure 4. In these simulations, the number f of inputs 
required to cross the threshold was 103.4±5 (mean ± SD, 1000 draws), in 
excellent agreement with the predicted value: 103.1±4.4 (assuming Gaussian 



Jortner, Farivar and Laurent, Supplementary Information 

9 

distribution of the sum). 
 
SI Figure 4: 

 
 

We plot below the distribution of RMS error (in %) between simulated and 
predicted values for f. The error is less than 4% on average (SI Fig 5). 

 
SI Figure 5: 

 
 

 In conclusion, our estimates of f are only minimally influenced by the fact 
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that the EPSPs are drawn from a distribution that is not Gaussian, in great part 
because thresholds are high (>50).  
 
 
SI 4: Expressing KC response probability p given antennal lobe state (a) 
and KC firing threshold (f) 
 
Method 1. 
 
Let us assume some network state of the antennal lobe, with a active PNs out of 
n. A hypothetical Kenyon cell samples m out of the n PNs. We will express the 
probability that this network state drives the KC across its firing threshold, f 
(expressed in numbers of PN inputs). If f > a, the threshold can never be 
crossed; we will therefore assume f ≤ a.   
 
We begin by calculating the probability p that exactly f active PNs fall within the 
m sampled by the KC. The total number of ways to pick m neurons out of n is  
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Dividing this number by the total number of combinations, we get the probability 
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Similarly, the number of combinations where at least f active PNs (f ≤ a) fall 
within the m sampled by the KC is 
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Again dividing by the total number of combinations, the probability is 
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Method 2. 
 
A different way to approach this problem is as follows. We choose one KC, hard-
wired to m PNs (out of n), and draw an antennal lobe network state with a active 
PNs (among n); what is the probability p that at least f of the active PNs fall within 
the m sampled by the KC? 
 
The total number of ways to pick a active PNs out of n is  
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The number of combinations where f active PNs are in the group sampled by the 
KC is 
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Thus, the probability is:  
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Similarly, the number of combinations where at least f active PNs (f ≤ a) fall 
within the m sampled by the KC is 
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Dividing this number by the total number of combinations, the probability is:  
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Equivalence. 
 
Equations (3) and (6) are equivalent:  
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