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ABSTRACT

A mechanically adjustable planar tuning element, for millimeter and submillimeter wave planar integrated cir-
cuits, has been developed and successfully demonstrated at 100 GHz. It functions analogously to a non -contacting
waveguide backshort, with Isl.], I -0.3 dB, yet can be fabricated with the simplicity of a planar circuit and scaled
for use throughout the millimeter and submillimeter wave spectrum.

I. INTRODUCTION

Parasitic reactance in various devices can seriously degrade their performance in millimeter wave and submillime-
ter wave applications. While effective, waveguide embedding circuits which use mechanically adjustable backshorts
to tune out the undesired reactance become more costly and difficult to fabricate as the design frequency increases.
Planar circuits offer an attractive alternative, but typically do not offer a means of post- fabrication optimization.
Presented here is a frequency scalable planar circuit element which can be mechanically adjusted to optimize the
performance of a planar circuit, functioning analogously to an insertable backshort in a waveguide circuit. Realiza-
tions for both millimeter wave (100 GHz) and submillimeter wave (620 GHz) applications of this design are presented
and the RF performance of the millimeter wave application is examined.

II. DESIGN, FABRICATION, AND TEST

The sliding planar backshort discussed here consists of a movable metal sheet or plate, with appropriately sized
and spaced holes, placed on top of a dielectric- coated planar transmission line. In this position, the metal pattern
creates a sequence of alternating low and high impedance quarter -wavelength sections of transmission line, resulting
in a non -contacting, broadband RF short circuit. Critical dimensions for the sliding plate and transmission line are
scaled, by frequency, from an empirically designed 2 GHz model [1].

The 100 GHz sliding short, shown in Fig. 1, was fabricated as an evaporated Cr -Ag -Cr pattern supported by a small,
movable quartz chip. It was placed, metal- side -down, on top of a planar test circuit consisting of a Cr -Au coplanar -
strip transmission line and planar dipole antenna, evaporated onto a quartz substrate and covered by a submicron
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Fig. 1. Top view (a) and cross section (b) of the mechanically
tunable planar detector circuit.
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Fig. 2. Two trials ()(x), without ( -), and with (- -) coupling
effect, shown for both wide (a) and narrow (b) sliding shorts.
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layer of polyimide. A GaAs Schottky beam -lead diode, used as a detector, was soldered across the antenna. A more
detailed description of the fabrication and test of this circuit can be found in a separate publication [2].

Measurements were made with the detector circuit illuminated by a modulated 100 GHz source. The detected
power, measured with a lock -in amplifier, was recorded with the sliding short manually positioned at various distances,
d in Fig. 1, along the transmission line. Measurements were repeated using two sliding short designs, both having
identical dimensions along the transmission line, but one with a wider metallization pattern across the line. Detected
power, normalized to the response with no backshort present (^_ 160 µV), is shown in Fig. 2 as a function of the
sliding short position, normalized to the guide wavelength for the coplanar strip transmission line (kg).

A theoretical model was developed for this circuit and is also shown in Fig. 2. The model includes calculations
for both conductor and radiation losses for the 190 41 coplanar strip transmission line and uses Is1 = -0.3 dB for
the sliding short, as measured in the 2 GHz experiment. A parasitic coupling effect between the sliding short and
antenna was also observed. An attempt was made to measure this coupling and the effect was added to the theoretical
response; this is also shown in Fig. 2.

A 620 GHz version of the sliding short was also fabricated. The captivated sliding element was, in this case, formed
by a combination of techniques borrowed from silicon surface micromachining and LIGA [3], illustrated in Fig. 3. It
involves depositing the gold sliding element, by electroplating with a mold, between two sacrificial layers of copper.
An overhanging polyimide guiding structure is then added in order to captivate the sliding element once the copper
is etched away. This process resulted in a movable metallic tuning plate, with one degree of freedom, which can be
readily fabricated on top of a planar transmission line to form a fully integrated, micromechanical tuning element.
This sliding short is shown in Fig. 4.
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