
REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person 
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR 
FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
August 2012 

2. REPORT TYPE
Conference Paper 

3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 
Split Stream Flow Past a Blunt Trailing Edge with Application to 

5a. CONTRACT NUMBER 
 

Combustion Instabilities 5b. GRANT NUMBER 

 5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
Vicky Tian, Beverley McKeon, Ivett A Leyva 

5d. PROJECT NUMBER 
 

 5e. TASK NUMBER 
 

 
 

5f. WORK UNIT NUMBER 
Q0AY/23080533 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT  NO.

AFRL/RQRC 
10 E. Saturn Blvd. 
Edwards AFB CA 93524-7680 

 
 
 
 

 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
 
Air Force Research Laboratory (AFMC) 
AFRL/RQR 11. SPONSOR/MONITOR’S REPORT 
5 Pollux Drive       NUMBER(S)
Edwards AFB CA 93524-7048 AFRL-RQ-ED-TP-2012-249 

12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
Distribution A:  Approved for public release; distribution unlimited.  PA#12600. 
 

13. SUPPLEMENTARY NOTES  
To be presented at AIAA Joint Propulsion Conference, Atlanta, GA, 29 July 2012 – 1 August 2012. 
14. ABSTRACT 
 
 In shear coaxial injectors, commonly used for cryogenic liquid rocket engines, propellants traveling at different velocities are 
separated by the inner jet post before they come into contact with each other, mix, and combust. Knowing how the fluids mix 
and how susceptible they are to hydrodynamic instabilities is paramount for a successful liquid rocket engine. In this study, the 
wake behind a blunt trailing edge of a long plate, similar to an unwrapped coaxial injector, was studied in a water tunnel. Two 
fluid streams of different velocities were introduced on opposite sides of the plate. PIV was used to visualize and determine the 
influence of the velocity ratio of the split stream on the wake behavior. Measurements of the vortex shedding frequency were 
taken at various velocity ratios and compared with well characterized cases with a uniform free stream. Operating conditions 
ranged from Reynolds number 6,000 to 22,000 and velocity ratios 0.30 to 1.00. 

15. SUBJECT TERMS 
 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF 
RESPONSIBLE PERSON 
Douglas Talley  

a. REPORT 
 
Unclassified 

b. ABSTRACT 
 
Unclassified 

c. THIS PAGE
 
Unclassified 

SAR 14 
19b. TELEPHONE NO 
(include area code) 

N/A 
 Standard Form 

298 (Rev. 8-98) 
Prescribed by ANSI 
Std. 239.18 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/227196413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Distribution A: Approved for public Release; distribution unlimited 

 

Split Stream Flow Past a Blunt Trailing Edge with 
Application to Combustion Instabilities 

Vicky Tian1, Beverley McKeon2 
California Institute of Technology, Pasadena, CA 91125, USA 

Ivett A Leyva3 
Air Force Research Lab, Edwards AFB, CA 93524, USA 

In shear coaxial injectors, commonly used for cryogenic liquid rocket engines, 
propellants traveling at different velocities are separated by the inner jet post before they 
come into contact with each other, mix, and combust. Knowing how the fluids mix and how 
susceptible they are to hydrodynamic instabilities is paramount for a successful liquid rocket 
engine. In this study, the wake behind a blunt trailing edge of a long plate, similar to an 
unwrapped coaxial injector, was studied in a water tunnel. Two fluid streams of different 
velocities were introduced on opposite sides of the plate. PIV was used to visualize and 
determine the influence of the velocity ratio of the split stream on the wake behavior. 
Measurements of the vortex shedding frequency were taken at various velocity ratios and 
compared with well characterized cases with a uniform free stream. Operating conditions 
ranged from Reynolds number 6,000 to 22,000 and velocity ratios 0.30 to 1.00. 

Nomenclature 
t = plate thickness [m] 
U1 = mean free stream velocity of faster, unobstructed stream [m s-1] 
U2 = mean free stream velocity of slower, obstructed stream [m s-1] 
ρ = density of fluid [N s m-2] 
μ = dynamic viscosity [kg m-2] 
ƒ = shedding frequency of vortices from one stream [Hz] 
U_mean = ½ (U1 + U2) mean of two free streams [m s-1] 
VR = U1/U2 velocity ratio 
Re = Reynolds number using U_mean 
St = ƒ t/U - Strouhal number using U_mean 
 

I.   Introduction 
SHEAR coaxial injectors are a common choice for cryogenic liquid rocket engines such as the Shuttle SSME or 

the Delta IV booster, RS-68. In principle, the injector design is simple. There is an inner tube, carrying liquid 
oxygen, surrounded by a higher speed stream of hydrogen which flows through a concentric outer tube. As seen in 
Fig. 1, the propellants are separated by the inner jet post before they come into contact with each other, mix, and 
combust. This type of injector relies on the shear or difference in velocities between the two propellants to achieve 
good mixing.  Therefore, outer to inner jet velocity ratios of the order of 10 or more are typical.  When the two 
fluids are brought together at the end of the inner jet post, the flow is susceptible to hydrodynamic instabilities. The 
characteristics of a wake behind a cylinder or a blunt body have been widely characterized for the case of a single 
stream.  However, for the case of a split stream with different velocities, there is little knowledge about how the 
velocity ratio affects the wake structures and shedding frequency.  
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 In this project a shear coaxial injector is simplified into a basic split stream flow over a blunt trailing edge (Fig. 
2). This can be thought of as an “unwrapped” coaxial injector. This simplification was made for ease of visualization 
and measurements.  A good characterization of hydrodynamic instabilities for the case of non-reacting flows is the 
first step to understand how combustion and heat addition will affect such instabilities. It is expected that avoiding 
resonances between combustion processes and hydrodynamic instabilities results in more stable injector designs. 

 
 

 
 

Few investigators have documented the influence of a split stream flow around a trailing edge using hot wire 
measurements1,2,3,5,6,8.  In the case of flows with a split stream of different velocities, the wake dominates the mixing 
layer for some distance until the wake structures dissipate and the asymptotic turbulence structures of the mixing 
layer dominate.  The effect of the velocity ratio has been studied mostly as it relates to the mixing layer and not the 
wake region and its characteristic shedding frequency. Boldman et al., using an air wind tunnel and hot wire 
measurements, concluded that the average velocity should be used in computing the normalized frequency or 
Strouhal number6. Using four different velocity ratios, their results showed the frequency slightly decreased as the 
velocity ratio was reduced. The corresponding Strouhal numbers slightly decreased then increased as velocity ratio 
was reduced. However, studying the Strouhal number was not the focus of his study, and he did not make 
concluding comments about the trend. Tamura et al. having a similar set-up, had similar results using five velocity 
ratios8. They concluded that the Strouhal numbers for velocity ratios greater than 0.78 can be approximated by the 
Strouhal numbers of the uniform case. Their data also showed that below ratio 0.78, the Strouhal numbers decreased 
then increased from the uniform case. However, he did not comment on the results for ratios lower than 0.78. 
 Flows that present a combination of wake and shear layer phenomena are also very interesting from the point of 
view of linear stability analysis. For example, wakes are a well-known example of absolutely unstable flows 
whereas shear layers are a classical example of convectively unstable flows. Wallace and Redekopp9, in a 
computational study, map the stability characteristics (convective vs. absolutely unstable) for plane wake-shear layer 

 
Figure 1. Schematic of shear coaxial injector relevant parameters and features. 

 
 
Figure 2. Simplification of shear coaxial jet used in this study. 
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as a function of two parameters, a wake deficit parameter (velocity deficit divided by the mean velocity) and a 
velocity ratio (the velocity difference across the layer of nonzero vorticity divided by the mean velocity). They 
predict that downstream of the wake region, the vortex pattern should transition into a single row of vortex 
structures. Bocanegra-Evans and Allen10 confirmed experimentally those predictions showing that for certain 
velocity ratios, for the case of a splitter plate with a cylinder at the end, the flow has first a strong Von-Karman 
street mode which transitions to a single vortex rollup characteristic of shear layers. The single shear layer structures 
are seen in the high speed side of the flow.  Finally, more recently Laizet et al.11 using DNS studied the effect of the 
end geometry of the splitter plate (blunt, sharp beveled, truncated bevel) on the flow development. They also 
showed that for the case of a blunt edge, the wake gives way to a single vortex structure characteristic of shear 
layers.  
 The main objective of this study is to characterize the dependence of the hydrodynamic instabilities developed 
downstream of a blunt edge on the velocity ratio and Reynolds number between the two incoming streams. Particle 
Image Velocimetry (PIV) is used to visualize the flow field and measure the stream velocities and frequencies. 
Hotwire techniques can only measure velocity at a single point whereas PIV can measure velocity in a plane, thus 
providing a clearer picture of the structures in the wake. 

II.    Experimental Set up and Procedure 

A. Apparatus 
Tests were carried out in the NOAH water tunnel at the Graduate Aerospace Laboratories of California Institute 

of Technology. The experimental set up consisted of an upstream dividing plate 0.057m thick and 3.5m long. It was 
placed vertically in the water tunnel. Due to its length, the plate was constructed in three sections: two 1.5m long 
wooden planks treated with water-resistant paint and one 0.5m long acrylic hollow plate with a blunt trailing edge. 
The wood was placed upstream and the acrylic downstream, to give optical access through the plate at the location 
of the subsequent PIV measurements. 

B. Variation of Velocity Ratio 
The velocities of each stream in the water tunnel were controlled using honeycomb, wire mesh, and cloth. The 

plastic honeycomb had cells 1/8-inches in diameter, and blocks of the honeycomb approximately 1-inch and 2-inch 
thick were used. The wire mesh had a square mesh approximately 1/16-inches in width. The types of cloths used 
were loosely woven cotton cheesecloth, a slightly denser muslin cheesecloth, and polyester filter felt. 

To vary the velocity ratio, honeycomb, mesh, and cloth were introduced to one side of the plate while the other 
velocity remained unchanged. They were placed as far upstream at possible; in this case, at the start of the wooden 
plate. Because the velocity was not completely uniform across the flow due to boundary layers forming on the plate 
and walls, free stream velocity of each flow (U1 and U2) was taken as the time-average velocity measured in the 
stream.  
 
The following combinations were used to make the resulting velocity ratios: 

1) 2" honeycomb  
   VR: 1.00-0.93 

2) 2" honeycomb, 4 1" honeycomb, 3 screens, 2 muslin cloth 
   VR: 0.57-0.46 

3) 2" honeycomb, 4 1" honeycomb, 7 screens, 5 muslin cloth, 1 filter cloth 
   VR: 0.32-0.30 
 

The Reynolds number was calculated with the properties of water at room temperature and the average velocity 
of the two streams. The shedding frequency was non-dimensionalized using a Strouhal number (ƒ t/U_mean) with 
the shedding frequency of one stream (ƒ) as frequency, the plate thickness (t) as the length scale and the average 
velocity (U_mean) as the relevant velocity following Boldman6. 

C. Particle Image Velocimetry (PIV) 
A LaVision PIV system with and a Photonics DM20-527 solid-state laser was used to visualize the flow field, 

and measure the shedding frequencies and stream velocities. The PIV system used two high-speed Photron Fastcam 
APX-RS cameras mounted below the tunnel and a laser plane emitted from the side of the tunnel across the stream 
(Fig. 3). The plane was parallel to the flow aimed at the center height of the trailing edge. The sampling frequency 
was calculated based on the average velocity U_mean. 
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D. Operating Conditions 
The experiments presented here closely studied the effect of velocity ratio over three different Reynolds 

numbers.  The specific running conditions are given in Table 1. Each Reynolds number had a base case with a 
velocity ratio at or close to 1.00. These base cases were used to compare the shedding frequency to the known 
shedding frequency of non-split stream flows. A goal of this research was to find the trend between the changing 
velocity ratio and Strouhal number. 
 
Table 1. Running Conditions. 
 
Re VR  Re VR  Re VR 
6196 0.93  15,185 0.98  21,430 1.00 
6031 0.46  15,676 0.57  22,120 0.55 
6043 0.30  14,810 0.32  21,020 0.32 
 

III.   Results 

A.  Time Averaged Velocity 
 Fig. 4-15 present time-averaged U_mean, V_mean, U_rms, and V_rms for all nine cases studied. 
 
B.   Fourier Transform Analysis  

The power spectral density (PSD) of the velocity fluctuations was estimated using the Welch method of spectral 
estimation. Picking strategic locations in the stream allowed the shedding frequency to be picked out as the strongest 
peak in the power spectrum (Fig. 16).  

Looking at time-instantaneous contour plots the V component, span-wise flow, of velocity, vortices can be seen 
with alternating positive (red) and negative (blue) V components (Fig. 17). 

   
a)              b) 
Figure 3. a) PIV Set up.  b) PIV running. 
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Picking points on the centerline of mixing, Fourier analysis was done on each point to find the frequency with 
the highest power density (Fig. 18-20). The Fourier transform analysis was done on a few points on the center of 
mixing line where the contour lines are very close together. Selecting points along the center of mixing line gave the 
strongest signal for the shedding frequency. As a general observation, the shedding frequency was consistent along 
the center of mixing, regardless of distance from the trailing edge, excluding the area of recirculation. This can be 
seen in Fig. 18-20, in which power spectra along the mixing line peaked at the same frequency. Therefore, the same 
dominant frequency was measured at each point along the mixing line. The mixing line shifts, moving towards the 
faster free stream flow, as the velocity ratio increases. This can be seen in Fig. 4-6 and Fig. 10-12. 

 
 

 
Figure 16. Shedding frequency schematic. The upward 
and downward facing arrows show the v-component flow 
direction of certain points on the vortex. 
 

 
   Figure 17. Example of vortices with v-component contours.  

 
 
Figure 21. Schematic showing key components. 
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IV.   Discussion 
Looking at the U_mean and V_mean contour plots, we see many trends consistent with previous literature and 

trends that were unexpected. At the uniform, moderate, and extreme velocity ratio, with increasing Reynolds 
number, the area of recirculation shortens. This is expected from literature. Also, with increasing Reynolds number, 
the two rotating vortices in the area of recirculation become more defined. This is indicated by larger color contrasts 
in the contour plots. Observed only at moderate and extreme velocity ratios, the center of mixing is skewed towards 
the faster stream. As the velocity ratio decreases, the skew becomes more prominent. This phenomenon was not 
mentioned by any previous literature of similar experiments. 

As velocity ratio increases with constant Reynolds number, the length of the area of recirculation seems 
uncorrelated. There is no linear relation to model the length of the area of recirculation. However, it can be noted 
that in all Reynolds number, the uniform cases have the shortest and smallest area of recirculation 
 The lower velocity ratios gave power spectra with multiple peaks. This may be due to the flow behind the 
trailing edge transitioning from a wake to a mixing layer. In a mixing layer, there is no clear shedding frequency; 
therefore, the lack of a clear singular shedding frequency in this experiment may be explained by this phenomenon.  
 
Table 2. Calculated Strouhal Numbers. 
 
Re VR St  Re VR St  Re VR St 
6196 0.93 0.224  15,185 0.98 0.235  21,430 1.00 0.228 
6031 0.46 0.237  15,676 0.57 0.250  22,120 0.55 0.292 
6043 0.30 0.275/0.402  14,810 0.32 0.295  21,020 0.32 0.307 

 
 
Calculating the shedding frequency and Strouhal number was the main objective. In the uniform flow case, 

previous literature has shown the Strouhal number has been shown to be independent of Reynolds numbers in the 
range of 5,000 to 20,0002. Boldman shows that, independent of Reynolds number, the Strouhal number of flow 
around a brunt trailing edge is 0.201. The PSD method shows very similar measurements in the uniform case. 
Therefore, it can be concluded that the PSD method is valid for measuring Strouhal number. A generalization of the 
relationship between velocity ratio and calculated Strouhal number can be seen in Fig. 22. 

 

 
 

 Figure 22. Velocity Ratio vs. Strouhal number. Take note that the low Re produced 
two equally tall peaks on the PSD at the extreme velocity ratio. Therefore, this plot 
shows two Strouhal numbers for the low Re, extreme VR case. 
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At constant Reynolds number and decreasing velocity ratio, the following changes are observed in the Strouhal 
number: 
 

• Low Re: St = (0.224, 0.237, 0.275) increase of 22.8% 
• Med Re: St = (0.235, 0.250, 0.295) increase of 25.5% 
• High Re: St = (0.228, 0.292, 0.307) increase of 34.7% 

 
At constant velocity ratio and increasing Reynolds number, the following changes are observed in Strouhal number: 
 

• Uniform VR: St = (0.224, 0.235, 0.228) fluctuation of 4.9%, no linear correlated with Re 
• Moderate VR: St = (0.237, 0.250, 0.292) increase of 23.2% 
• Extreme VR: St = (0.275/0.402, 0.295, 0.307) increase of 11.6%, excluding the possible outlier 0.402 

 

V.   Conclusions 
An experimental study was performed to find the dependence of Strouhal number (St) with velocity ratio for a 

split stream flow past a blunt trailing edge. The Strouhal number was defined using the split stream mean velocity 
(from previous literature) and the thickness of the trailing edge as the length scale. Three Reynolds numbers 
(=ρU_mean/µ) were studied. The experiments were conducted in a water tunnel. The primary diagnostic method 
was PIV.  

A decrease of St by about 35% with increasing velocity ratio for three different Reynolds numbers was 
measured. 

It was also observed that with increasing Reynolds number the area of recirculation shortens, which agrees with 
previous literature. Also, with increasing Reynolds number, the two rotating vortices in the area of recirculation 
become more defined. As the velocity ratio increases, the center of mixing is skewed towards the faster stream. As 
the velocity ratio decreases, the skew becomes more prominent. This phenomenon was not mentioned by any 
previous literature of similar experiments. 

As velocity ratio increases with constant Reynolds numbers, the length of the area of recirculation seems 
uncorrelated.  However, it can be noted that in all Reynolds numbers, the uniform cases have the shortest and 
smallest area of recirculation 
 A changing frequency with velocity ratio means a rocket design must account for several shedding frequencies, 
since matching between a natural frequency and a chamber acoustic frequency could lead to amplification of 
pressure and heat transfer oscillations. 
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  Figure 4. U_mean of low Re.    Figure 5. U_mean of med Re.     Figure 6. U_mean of high Re. 
  Top Row: Re =  6,200 VR = 0.93  Top Row: Re = 15,200 VR = 0.98    Top Row: Re = 21,400 VR = 1.00 
  Middle Row: Re=6,000 VR=0.46  Middle Row: Re=15,700 VR=0.57    Middle Row: Re=22,100 VR=0.55 
  Last Row: Re=6,000 VR=0.30   Last Row: Re=14,800 VR=0.32     Last Row: Re=21,000 VR=0.32 
 
  Note: The contour color levels are not uniform through all plots. 
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  Figure 7. U_prime RMS of      Figure 8. U_prime RMS of        Figure 9. U_prime RMS of 
  low Re.              med Re.              high Re. 
  Top Row: Re =  6,200 VR = 0.93      Top Row: Re = 15,200 VR = 0.98       Top Row: Re = 21,400 VR = 1.00 
  Middle Row: Re=6,000 VR=0.46     Middle Row: Re=15,700 VR=0.57      Middle Row: Re=22,100 VR=0.55 
  Last Row: Re=6,000 VR=0.30      Last Row: Re=14,800 VR=0.32       Last Row: Re=21,000 VR=0.32 
 
  Note: The contour color levels are not uniform through all plots. 
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  Figure 10. V_mean of low Re.   Figure 11. V_mean of med Re.     Figure 12. V_mean of high Re  
  Top Row: Re =  6,200 VR = 0.93   Top Row: Re = 15,200 VR = 0.98     Top Row: Re = 21,400 VR = 1.00 
  Middle Row: Re=6,000 VR=0.46   Middle Row: Re=15,700 VR=0.57     Middle Row: Re=22,100 VR=0.55 
  Last Row: Re=6,000 VR=0.30    Last Row: Re=14,800 VR=0.32  Last Row: Re=21,000 VR=0.32 
 
  Note: The contour color levels are not uniform through all plots. 
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  Figure 13. V_prime RMS of   Figure 14. V_prime RMS of      Figure 16. V_prime RMS of 
  low Re.         med Re.            high Re. 
  Top Row: Re =  6,200 VR = 0.93  Top Row: Re = 15,200 VR = 0.98    Top Row: Re = 21,400 VR = 1.00 
  Middle Row: Re=6,000 VR=0.46  Middle Row: Re=15,700 VR=0.57    Middle Row: Re=22,100 VR=0.55 
  Last Row: Re=6,000 VR=0.30   Last Row: Re=14,800 VR=0.32     Last Row: Re=21,000 VR=0.32 
 
  Note: The contour color levels are not uniform through all plots. 
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   Figure 18. PSD of low Re.       Figure 19. PSD of med Re.     Figure 20. PSD of high Re. 
   Top Row: Re =  6,200 VR = 0.93      Top Row: Re = 15,200 VR = 0.98      Top Row: Re = 21,400 VR = 1.00 
  Middle Row: Re=6,000 VR=0.46      Middle Row: Re=15,700 VR=0.57      Middle Row: Re=22,100 VR=0.55 
  Last Row: Re=6,000 VR=0.30       Last Row: Re=14,800 VR=0.32       Last Row: Re=21,000 VR=0.32 
 
 Legend: 
 Blue- At the tip of the area of recirculation 
 Magenta- 1.0 cm from the tip of the area of recirculation 
 Red- 2.0 cm from the tip of the area of recirculation 
 Black- 3.0 cm from the tip of the area of recirculation 
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