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ABSTRACT:

Monolayer transition-metal dichalcogenides (TMDCs) in the 2H-phase are 

semiconductors promising for opto-valleytronic and opto-spintronic applications because 

of their strong spin-valley coupling. Here we report detailed studies of opto-valleytronic 

properties of heterogeneous domains in CVD-grown monolayer WS2 single crystals. By 

illuminating WS2 with off-resonance circularly-polarized light and measuring the resulting 

spatially resolved circularly-polarized emission (Pcirc), we find significantly large circular 

polarization (Pcirc up to 60% and 45% for - and -domains, respectively) already at 300 

K, which increases to nearly 90% in the -domains at 80 K. Studies of spatially resolved 
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photoluminescence (PL) spectroscopy, Raman spectroscopy, x-ray photoelectron 

spectroscopy (XPS), Kelvin-probe force microscopy (KPFM) and conductive atomic force 

microscopy (CAFM) reveal direct correlation among the PL intensity, defect densities and 

chemical potential, with the -domains showing lower defect densities and a smaller work 

function by 0.13 eV than the -domains. This work function difference indicates the 

occurrence of type-two band alignments between the - and -domains. We adapt a 

classical model to explain how electronically active defects may serve as non-radiative 

recombination centers, and find good agreement between experiments and the model. 

Scanning tunneling microscopic/spectroscopic (STM/STS) studies provide further 

evidences for tungsten vacancies (WVs) being the primary defects responsible for the 

suppressed PL and circular polarization in WS2. These results therefore suggest a 

pathway to control the opto-valleytronic properties of TMDCs via defect engineering. 

KEYWORDS: transition metal dichalcogenides, WS2, CVD, KPFM, CAFM, STM, valley 

polarization
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4

There has been a surge of intense research efforts on two-dimensional (2D) van der 

Waals (vdW) materials because of their interesting properties and great promise for 

technological applications.1-4 These 2D materials, such as semi-metallic graphene,5-9 

insulating h-BN,10-14 and semiconducting transition metal dichalcogenides (TMDCs),15-19 

can be synthesized on a wafer scale by chemical vapor deposition (CVD), which provides 

a feasible route towards practical applications. The electrical and optical properties of 

TMDCs can be significantly affected by crystal imperfections such as vacancies, 

impurities and grain boundaries.20-22 In particular, vacancies in TMDCs appear to be 

unpreventable and are naturally formed inside the single crystalline grains during the CVD 

growth process. Such vacancies can be primary contributors to carrier scattering, doping 

effects and varying optical properties in these materials. 

Among TMDCs in the 2H-phase, monolayer tungsten disulfide (WS2) consists of a plane 

of tungsten atoms sandwiched between top and bottom sulfur layers. It has been found 

that atomic vacancies of tungsten and sulfur are common occurrences in WS2, and that 

the electrical and optical properties of a given WS2 monolayer are dominated by the type 

of vacancies because of differences in the defect states. For instance, monolayer 
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5

hexagonal-shape WS2 (h-WS2) flakes with triangular heterogeneous defect domains have 

been synthesized by CVD under hydrogen-rich growth conditions, as reported by several 

research groups.23-27 Curiously, the optical emission in the h-WS2 flakes exhibits 

alternating areas of bright and dark photoluminescence (PL) emission within each h-WS2 

flake, and the resulting PL image looks similar to the radioactive hazard symbol, as 

exemplified by the left panel of Figure 1a. According to previous studies,23-27 the -

domains with a stronger PL intensity and higher mobility are associated with W-edges 

and S-vacancies (SVs), and the -domains with a significantly quenched PL intensity and 

lower electron mobility exhibit a blue-shifted PL peak position, and are associated with S-

edges and W-vacancies (WVs). A schematic illustration of the heterogeneous defect 

domains for WVs and SVs in a single crystalline h-WS2 is shown in the right panel of 

Figure 1a.

Similar to other monolayer TMDCs in the 2H-phase, monolayer WS2 is an ideal 

candidate for valleytronic applications due to its inequivalent K and K valleys at the edge 

of the Brillouin zone.28-29 Because of strong spin-orbit coupling and time-reversal 

symmetry, the valence bands (VB) in the K (K) valley have a large energy spin splitting 
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of ~ 420 meV for WS228-29 between the top spin-up (spin-down) band and the bottom spin-

down (spin-up) band. This difference results in valley-dependent optical selection rules: 

circularly polarized light with positive helicity (+) couples to the K valley and the negative 

helicity () couples to the K valley.30-32 It is therefore possible to selectively populate 

and manipulate the different valleys (K or K) by means of circularly polarized light. 

When monolayer WS2 is illuminated with circularly polarized light of photon energies 

larger than the energy gap, excitons (i.e., bound electron-hole pairs) are created in a 

single valley. The radiative decay of excitons within this valley subsequently generates 

circularly polarized light due to the optical selection rules. Therefore, measuring the 

circular polarization of photoluminescence (PL) provides a direct means to monitor the 

valley population. Valley populations will also be affected by intervalley scattering, a 

process that may be enabled by Coulomb interactions or impurity/phonon scattering.33-36 

At high temperatures or under a sufficiently high photon-excitation energy, large phonon 

populations will couple to the valleys, thereby reducing the valley specific populations. To 

date, most reports of circularly polarized PL spectra37-41 have only been observed in 
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7

systems measured at relatively low temperatures (< 30 K) or near the resonant excitation 

condition. 

Here we report successful CVD growth (Figure S1) of monolayer h-WS2 that exhibits 

significant circular polarization already at room temperature and nearly 90% circular 

polarization (CP) in the -domains at 80 K without the resonant excitation condition. 

Detailed characterizations by Raman spectroscopy, PL, X-ray photoemission 

spectroscopy (XPS) and conducting atomic force microscopy (CAFM) revealed that these 

h-WS2 samples were of high quality, large domains and low defect densities. Additionally, 

systematic studies of monolayer h-WS2 by spatially resolved PL maps and point spectra 

of polarized PL emission were made on the - and -domains of h-WS2 at both room 

temperature and low temperature (80K). We found that at room temperature, the PL 

spectra of neutral excitons exhibited a CP of ~ 50% and ~ 40% in the - and -domains, 

respectively. Moreover, the degree of circularly polarized emission in -domains 

approached ~ 90% at 80K, suggesting nearly perfect valley polarization. Spatially-

resolved CAFM studies revealed that the areal defect density was on the order of 1010 

cm-2 in the -domains and on the order of 1011 cm-2 in the -domains. Following a similar 
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analysis in Refs. 42 and 51, we related the areal defect density in each domain to the 

corresponding PL intensity and obtained an estimate for the non-radiative recombination 

lifetime.42,51 Additionally, spatially resolved studies using Kelvin-probe force microscopy 

(KPFM) found that the work function in the -domains was consistently larger than that in 

the -domains by  0.15 eV, suggesting type-2 semiconducting band alignments along the 

domain boundaries that are favorable for stabilizing interfacial excitons.52 Atomically 

resolved imaging and spectroscopic studies by scanning tunneling microscopy (STM) 

further revealed that the non-radiative defects were primarily associated with the WVs 

rather than SVs, consistent with the CAFM findings in regions of higher defect densities. 

Our results thus provide direct evidences for WVs being the primary non-radiative 

recombination sites in h-WS2 that are responsible for the suppression of PL intensity and 

circular polarization.

RESULTS AND DISCUSSION

Monolayer h-WS2 samples were synthesized on SiO2 (300 nm)/Si substrates by means 

of CVD, as schematically shown in Figures S1 and S2. The hexagonal flakes typically 

had lateral dimensions on the order of several tens to hundreds of micrometers so that 
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9

optical studies at many discrete locations across a single flake could be carried out. 

Further details for the h-WS2 growth processes are described in Methods and 

Supplementary Information Note 1.

Our monolayer h-WS2 samples exhibited typical fluorescence images analogous to the 

radioactive hazard symbol, as mentioned in the introduction and exemplified in Figure 1a. 

Spatially resolved topographic studies on the same samples using atomic force 

microscopy (AFM) revealed smooth topographic maps (Figure 1b). Specifically, while the 

height difference between the WS2 single crystal and the SiO2/Si substrate was ~ 0.85 

nm, which was consistent with the monolayer thickness of WS2, there was no discernible 

height differences between the two domains of different PL intensities (Figure 1d). 

Spatially resolved measurements of the AFM phase mode revealed a clear phase 

difference (1º) between the two domains (Figure 1c), and the resulting phase map 

correlated well with the pattern shown in Figure 1d. Similarly, spatially resolved Raman 

spectroscopic maps for the A1g and modes of a monolayer h-WS2 single crystal 1
2gE

(shown respectively in Figures 1e and 1f) also exhibited the same pattern. 
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10

Figure 1g shows a representative PL spectrum from 1.96 eV to 2.01eV for the typical 

A-exciton peak of h-WS2. The A-exciton PL peak for the -domain is redshifted compared 

to that of the -domain. This redshift may be attributed to tensile strain existed in the -

domains and/or to a higher carrier density. Moreover, the PL intensity in the -domains 

is always enhanced by about one order of magnitude when compared with the -domains.  

Generally speaking, the PL intensity can be modulated by a variety of factors such as 

stoichiometry, strain, doping and density of non-radiative recombination centers. To 

investigate the contributions from strain and doping effects, we performed Raman 

intensity and frequency mapping of the A1g and  modes, which displayed contrast 1
2gE

between the - and -domains (Figures 1e-f) and were similar to the PL mapping (Figure 

1d). We found that the strain-related mode exhibited a redshift in the -domain relative 1
2gE

to the -domain (0.5 cm1), indicating a tensile-strain effect. Similarly, the redshift (1.2 cm-

1) of the doping-related A1g mode in the -domain relative to the -domain implied carrier 

doping effects (Figure 1h), which was consistent with the observed PL redshift (Figure 

1g). The LA (M) mode at 176 cm1, which is associated with the longitudinal acoustic 

Page 10 of 56

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11

phonon at the M point of the Brillouin zone, may be considered as a useful indicator of 

the sample quality. Specifically, a finite intensity of the LA (M) mode implies the presence 

of defects or disorder that satisfied the q = 0 Raman selection rule. Additionally, the 

intensity of the LA (M) mode, I (LA), may be related to the inter-defect spacing (LD) 43 by 

the expression . Figure S3 demonstrates that the intensity of the LA (M) mode   2LA DI L

associated with the -domain was shown to be larger than that of the -domain, implying 

a shorter inter-defect distance and therefore a higher areal density of disorder in the -

domain that signifies more non-radiative recombination centers and a reduced PL 

intensity. 

In addition to the PL/Raman spectroscopic studies, spatially-resolved X-ray 

photoelectron emission spectroscopy (XPS) was carried out on monolayer WS2 

transferred to Au (111) / mica substrates (Figure 2a) to probe the chemical composition 

and stoichiometry of the h-WS2 single crystal. High-resolution XPS mapping performed 

on the h-WS2 samples revealed apparent hexagonal geometry, as exemplified in Figure 

S4a. Photoelectrons from core level of W and S atoms were acquired from both - and 
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12

-domains. As shown in Figures 2b and 2c, the corresponding binding energies in the -

domain (-domain) were 34.31 eV (34.44 eV) for W4f 5/2, 32.15 eV (32.28 eV) for W4f 7/2, 

162.87 eV (162.9 eV) for S2p3/2, and 163.07 eV (163.1 eV) for S2p1/2. Considering the error 

range of 0.025 eV for the binding energies determined using our XPS system, the upshift 

in the -domain binding energies (~ 0.13 eV) relative to those in the -domain was 

prominent for the W-4f peaks, in good agreement with the valance-band maximum shift 

due to doping-induced Fermi level modulation. In contrast, the upshift of the S-2p peaks 

(~ 0.03 eV) was much smaller and essentially negligible given the error range of our XPS 

system. This negligible upshift of the S-2p peaks in the -domain may be attributed to the 

tensile strain effect that affected the S-2p valence electrons more significantly, which 

contributed to a binding-energy downshift that compensated the doping-induced binding 

energy upshift. On the other hand, the tensile strain had much weaker effects on the W-

4f core electrons so that the doping-induced energy upshifts prevailed for the W-4f peaks 

in the -domain. 

We have also explored the surface potential (work function) of the - and -domains 

via Kelvin probe force microscopy (KPFM) because the work functions of semiconductor 
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13

2D materials are sensitive to the corresponding variable Fermi level. To determine the 

work function of the Al-coated AFM tip, we first performed UPS measurements on the Au 

(111) / mica sample, which found the work function of Au (111) to be 4.8 eV, as shown in 

Figure S4b. Next, we performed KPFM measurements using the Al-coated AFM tip on 

Au (111) / mica, which yielded the value of the contact potential difference ( ) between 0
CPDV

the Al-coated AFM tip and Au (111), where the contact potential difference ( ) was 0
CPDV

defined as the difference between the work function of the tip ( ) and that of Au (111), tip

so that . Finally, KPFM measurements using the Al-coated AFM tip on 0
CPD tip 4.8 eVeV  

h-WS2 yielded the contact potential difference ( ) between the Al-coated AFM tip and CPDV

different domains of the h-WS2 sample so that we obtained the following relation:

,             (1)
2 2CPD tip WS WS tip CPD,eV eV       

where is the work function of the WS2 sample. From spatially resolved 
2WS

measurements of VCPD, the work function difference between the - and -domains can 

be determined, and the resulting KPFM images are shown in Figures 2d and 2e. 
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14

A schematic representation of the band diagram with the Fermi levels for the - and -

domains relative to the vacuum level is shown in Figure 2f. The difference in the Fermi 

levels between the - and -domains can be calculated directly from VCPD using the 

following equation:

  ,          (2) , , CPD, CPD, CPDf f fE E E eV eV e V              

where ( ) and ( ) are the Fermi levels (work functions) of the - and -,fE   ,fE  

domains, respectively. Interesting, we note that the band diagram at the interface of the 

- and -domains is consistent with a type-2 band alignment that supports long-lived 

interfacial excitons.52

To investigate the degree of valley polarization in our monolayer h-WS2, we performed 

polarization-resolved PL spectroscopy measurements at both room temperature and 80 

K under the excitation of a 514 nm continuous-wave laser source, as schematically 

illustrated in Figure 3a. 

For spatially-resolved PL mapping, the sample was excited with  helicity and the laser 

was scanned across a (13 µm × 13 µm) area at a step size of 0.2 µm. The detection optics 
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15

were set first for the  analysis and then for the  analysis over the same area in two 

separate scans. The energy of the PL peak within the range of 1.9 eV to 2.1 eV for the 

  () detection was determined, and the PL intensity map taken at the peak energy is 

shown in Figure 3b for the  detection and in Figure 3c for the   detection, both obtained 

at room temperature (RT). These PL maps reveal the same emission pattern as the 

unpolarized excitation. This type of PL pattern, with lower PL intensity in the -domain 

and higher PL intensity in the -domain (about 10 times stronger than that in the -

domain), was common among all monolayer h-WS2 single crystals that we synthesized.

Given the polarization-resolved PL intensities I () and I (), the degree of circular 

polarization (Pcirc) is define by the following expression:

. (3)   
   circ

I I
P

I I
 
 

 

 






Using Eq. (3), the degree of circular polarization across a monolayer h-WS2 crystal was 

obtained and is illustrated in Figure 3d. The higher degree of polarization (DOP) in the -

domain (45% ~ 60%) and lower DOP in the -domain (20% ~ 45%) was found to be well 
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correlated to the PL intensity pattern. Similar results were also obtained for polarization-

resolved mapping acquired with the  excitation, as shown in Figure S5. 

The PL spectra of the -domain (Figure 3e) and the -domain (Figure 3f) taken at RT 

both displayed a single peak with the maximum intensity at 1.92 eV, indicating that the 

RT emission characteristics were dominated by the neutral excitons. These neutral 

excitons exhibited very large circular polarization at both the -domain (Pcirc ~ 50%) and 

-domain (Pcirc ~ 40%) of our h-WS2 samples even at RT, in stark contrast to recent 

reports by other groups (with Pcirc = 0.2% ~ 32%) on monolayer WS2,40-42 as summarized 

in Table S2. The PL peak for both domains was found to slightly blue-shift to 1.96 eV at 

a lower temperature (LT) 80 K. As exemplified in Figure 3g, the LT (80 K) PL intensity of 

the  detection at the -domain increased threefold relative to the corresponding RT 

signals, whereas the PL intensity of the  detection remained the same at 80 K. In 

particular, the DOP at the -domain approached nearly 90% at 80 K. In contrast, the LT 

(80K) PL spectra at the -domain revealed that the PL intensities for both the  and  

detections increased tenfold relative to the corresponding PL spectra at RT, as 
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exemplified by Figure 3h. However, the DOP of the -domain at 80 K remained largely 

the same as that at RT. 

Our finding of significant disparity in the DOP enhancement with decreasing 

temperature for two different domains is quite unusual: while the common observation of 

increasing PL intensity with decreasing temperature may be attributed to the reduction of 

thermally activated non-radiative recombination, this mechanism should have resulted in 

a comparable enhancement factor with decreasing temperature for the PL intensity in the 

same material. However, the enhancement factor for the PL intensity at LT was 

apparently different in different domains of the h-WS2 single crystal, which led to 

significantly different DOP at LT. A feasible explanation for such disparity in the DOP 

enhancement with decreasing temperature may be due to negligible non-radiative 

recombination centers for excitons in the -domain as opposed to more non-radiative 

recombination centers in the -domain. To shed light on this issue, we performed 

spatially-resolved conductive atomic force microscope (CAFM) measurements to be 

detailed below, which facilitated precise identifications of defects that could serve as the 
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non-radiative recombination centers and also provided direct quantifications of the areal 

defect density.

A schematic illustration of the experimental configuration for the conductive atomic force 

microscope (CAFM) measurements is shown in Figure 4a, where all data acquisition was 

done at RT in air. It is worth noting that careful sample preparation for the CAFM 

measurements was critically important to obtaining reproducible results. In particular, an 

atomically flat conductive substrate for the monolayer h-WS2 sample was necessary. For 

this purpose, we first transferred a thick piece of CVD-grown graphite onto an atomically 

flat Au (111) (200 nm) / mica substrate, followed by a monolayer of h-WS2 transferred 

from its CVD growth substrate onto the graphite/Au (111)/mica substrate. After the 

transfer, we annealed the combined sample-on-substrate in a hydrogen-argon gas 

mixture (with a ratio of H2 to Ar of 1 to 3) for 3 hours to remove possible contaminants 

and wrinkles, which helped improve the contact uniformity between the monolayer h-WS2 

and the graphite substrate. Details of the h-WS2 transfer and the annealing processes 

can be found in Methods and Supplementary Information. Lastly, a voltage was applied 

to the sample lead so that a current flowed between the Pt/Ir coated CAFM tip and the 
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sample, and this current was recorded by a current amplifier. By scanning the AFM tip 

across the sample and recording the currents at each pixel with a pixel spacing of 0.9 nm, 

we obtained spatially resolved CAFM maps over different domains of the h-WS2 sample.   

In these CAFM maps, the locations of defects were easily identified as distinct high-

current features: the defect locations generally exhibited more than 2 orders of magnitude 

higher currents than areas without defects. Additionally, the electrical characteristics of 

each defect could be well quantified by measurements of the current-voltage (I-V) curves, 

as exemplified in Figure 4b by the comparison of a typical I-V curve obtained on a defect 

with a reference I-V curve obtained away from any defects. The I-V curve associated with 

a defect exhibited much enhanced currents at bias voltages |V| > 0.3 V and was nearly 

symmetric about zero applied bias. These defect sites were generally much more 

conductive than regions without defects, as demonstrated by the comparison of the 

differential conductance taken on and off defects in the inset of Figure 4b.  

In Figures 4d-i, spatially-resolved CAFM differential conductance maps taken at a bias 

voltage of 0.9 V are shown over different 1 m × 1 m areas at locations specified on the 

h-WS2 single crystal in Figure 4c, which shows a spatial map of PL intensity taken on the 
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sample after its transfer onto the substrate for the CAFM measurements. The apparent 

visibility of defect locations in the CAFM maps enabled direct counting of the number of 

the defects in both the - and -domains. Specifically, for the -domain, we found 149 

defects in Figure 4d, which corresponded to a defect density of 1.49×1010 cm-2. Similarly, 

we obtained 175 defects (1.75×1010 cm-2) in Figure 4e, and 359 defects (3.59×1010 cm-2) 

in Figure 4f. For the -domain, we found 822 defects (8.22×1010 cm-2) in Figure 4g, 1370 

defects (1.37×1011 cm-2) in Figure 4h, and 1750 defects (1.75×1011 cm-2) in Figure 4i. 

These CAFM measurements clearly indicated that the areal density of these highly 

conductive defect sites was about one order of magnitude higher in the -domain than in 

the -domain. 

Here we emphasize that other types of defects not detectable by the CAFM 

measurements may exist, and in this work we only consider one specific type of defects 

that are most electrically active and correlate their densities with the corresponding 

spatially-resolved PL. In Figure 4j we compare the defect density and the PL intensity as 

a function of the position numerated along a line in Figure 4c, and find that the measured 

defect density generally anti-correlates with the PL intensity for both - and -domains. 
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A major challenge to understanding the excitonic behavior in h-WS2 is the wide variety 

of mechanisms that can affect the exciton recombination, including substrate effects, 

defect related recombination and other non-radiative recombination pathways44-51. From 

our experiments, the apparent anti-correlation between the defect density and the PL 

intensity is helpful in identifying the role of defects in the exciton recombination for 

monolayer h-WS2.

Generally speaking, the PL intensity is proportional to the PL quantum yield (QY) of 

excitons, and a standard QY is defined by the following expression:

, (4) 1 1 1QY r r nr     

where  r ( nr) is the average radiative (non-radiative) recombination time of excitons. 

Typically the non-radiative recombination rate  may be further divided into two 1
nr 

components if we assume that excitons do not interact with each other. That is,

 (5)1 1 1
, , ,nr nr sub nr defect     
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where is the average non-radiative recombination time for substrate related effects, ,nr sub

which may also include any other non-radiative recombination mechanisms, and  ,nr defect

is the average non-radiative recombination time for defect-related effects.

To understand the correlation between the defect density and PL intensity, we followed 

a similar analysis by Rosenberger et al.42 Specifically, we assumed that the defect-related 

non-radiative recombination occurred when excitons collided with defects and resulted in 

non-radiative recombination. For an exciton with an effective collision radius r traveling 

with a speed v, an area swept by the exciton over a time period t in the 2D sheet with a 

defect density nd would result in N collisions, where N = nd (2rvt). Therefore, the collision 

time between the exciton and defects can be defined by the following expression:,nr defect

 (6)
 

1
, ,

1 , 2 .
2 2nr defect nr defect d

d d

t t rvn
N n rvt rvn

      

Combining Eqs. (4)-(6) and assuming that the QY and the empirical PL intensity, (PL)exp, 

are related by a scaling coefficient C, we arrived at the following relation:42

 (7)
1

exp 1 1
,

( ) .
2

r

r nr sub d

PL C
rvn


 



 
 
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Empirically, the values of  r in different domains could be directly determined from time 

resolved PL (TRPL), which yielded  r = 1.5 ns in the -domain and  r = 230 ps in the -

domain for monolayer h-WS2. These values were consistent with the range of 0.2 ~ 4 ns 

reported in the literature for monolayer WS2.43,48,50 If we further assumed that a thermal 

speed of excitons at room temperature (RT) of v = 105 m/s,53,54 and an effective collision 

radius r = 2.1 nm based on previous reports,54 we obtained in Figure 4k the relation 

between the spatially varying PL intensity of a monolayer h-WS2 on graphite/Au 

(111)/mica and the corresponding local defect density. The solid black line represents the 

fitting curve for the PL measurements using Eq. (7) with the fitting parameters C = 3.1×105 

and  nr,sub = 30 ps. These fitting parameters were consistent for both domains in h-WS2, 

which implies that our direct quantification of the defect density nd helped decouple the 

defected-related non-radiative recombination (associated with ) from other 1
, 2nr defect drvn  

non-radiative mechanisms (associated with ).1
,nr sub 

To understand why the DOP differed in the - and -domains, we considered a rate 

equation model in the steady state to find the relationship between the DOP and defect-
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related non-radiative recombination. As detailed in Supplementary Information Note 6, 

the circular polarization Pcirc for neutral excitons in the steady-state rate model can be 

given by the following expression:

 , (8)
 

 
 

2
2 0

0
1(1 )

1 2 1 2

imp phonon

circ
ex intervalley ex intervalley

PPP
 

   

      
 

where P0 is the theoretical degree of circular polarization, ( ) is the neutral ex intervalley

exciton (intervalley) relaxation time, and (1  ) represents the selectivity in the initial 

excitation with 0 <  < 1.32 In particular, we may express  = imp + phonon to account for 

impurity/defects/substrate-related and phonon-assisted recombination effects that led to 

inter-valley mixing from finite-momentum scattering,32 with (1  ) decreasing with 

increasing scattering densities and increasing temperature. Thus, from Eq. (8) we expect 

Pcirc to increase with either decrease in , increase in , or decrease in . For both ex intervalley

- and -domains of the same h-WS2 sample, given that they were excited with the same 

laser power and wavelength, and were also exposed to the same ambient, we may 

assume that the optically generated exciton densities and were the same for both ex
Kn ex

Kn 

domains.  
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In monolayer TMDCs at RT, the non-radiative lifetimes may be several orders of 

magnitude shorter than the radiative lifetime so that the overall exciton lifetime is much 

reduced. From our CAFM measurements at RT and using Eqs. (6) – (7) to fit the PL 

intensities, we found that the -domains with lower defect densities would exhibit higher 

PL intensities and longer non-radiative lifetimes ( nr = 4.7 ps ~ 10 ps for nd = 3.59×1010 

cm-2 ~ 1.49×1010 cm-2), whereas the -domains with higher defect densities would exhibit 

lower PL intensities and shorter non-radiative lifetimes ( nr = 1.1 ps ~ 2.6 ps for nd = 

1.75×1011 cm-2 ~ 8.22×1010 cm-2). By considering the radiative ( r) and non-radiative ( nr) 

lifetimes of excitons in both domains, we could directly estimate the exciton lifetime  ex 

by the relation , which yielded larger values of  ex = 4.72 ps ~ 10 ps for the 1 1 1
ex r nr     

-domains and smaller values of  ex = 1.1 ps ~ 2.6 ps for the -domains at RT. 

Additionally, the large differences in the defect density between the - and -domains 

gave rise to lower selectivity (i.e., smaller (1)2 ) in the -domains. Therefore, the nearly 

temperature independent Pcirc in the -domain may be understood in terms of the 

competing effects between increasing (1)2 and decreasing ( ex)1 with decreasing 
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temperature according to Eq. (8). In contrast to the -domain, ( ex)1 in the -domain did 

not decrease as much with decreasing temperature due to far fewer non-radiative 

recombination sites, whereas the selectivity (1)2 increased more significantly with 

decreasing temperature due to diminishing phonon and negligible imp. Therefore, the value 

of Pcirc increased dramatically with decreasing temperature in the -domains according 

to Eq. (8), consistent with our experimental finding.

While the temperature-dependent PL intensities and DOP in both the - and -domains 

of h-WS2 can be consistently explained in terms of the differences in the density of 

electrically-active defects, the microscopic origin for these defects is not yet understood. 

By performing scanning tunneling microscopy (STM) measurement on monolayer WS2 

single crystals,55,56 we obtained atomically spatial-resolved images associated with either 

the SVs (Figure 5a) or the WVs (Figure 5d). 

For the SV sites of WS2, as exemplified by the white dash triangles in Figure 5a, the 

corresponding tunneling conductance spectra were found to be comparable to those of 

vacancy-free regions. Specifically, both the tunneling current (I) vs. bias voltage (V) 

spectra and the corresponding (dI/dV)-vs.-V spectra taken at a SV (represented by the 
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red curves in Figures 5b and 5c for the SV location 1 shown in Figure 5a) is essentially 

indistinguishable from those taken at a vacancy-free region (represented by the orange 

curves in Figures 5b and 5c for the vacancy-free location 2 shown in Figure 5a). In 

particular, the (dI/dV) spectra revealed that the valence band maximum (VBM) and 

conduction band minimum (CBM) were located at EVBM ~ 1.1 eV and ECBM ~ +0.9 eV, 

respectively, yielding a band gap of Eg = ECBM  EVBM = ~2 eV (Figure 5c). In contrast, for 

the WV sites as exemplified by the large white dashed triangle in the Figure 5d, the 

tunneling spectra taken at the WV sites 1 and 2, respectively illustrated by the blue and 

green curves in Figure 5e for the I-vs.-V spectra and in Figure 5f for the (dI/dV)-vs.-V 

spectra, revealed an enhance differential conductance at smaller biased voltages and a 

smaller bandgap of  ~ 1.1eV, with the VBM and CBM move to ~ 0.8 eV and ~ +0.3 eV, 

respectively. These spectra associated with the WVs were qualitatively similar to the 

CAFM measurements in Figure 4b, even though direct quantitative comparison of the 

tunneling conductance data from STM with the contact conductance data derived from 

CAFM is not straightforward without detailed information and modeling of the nanoscale 

interfacial properties between the AFM tip and WS2. Overall, the combined information 
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derived from atomically resolved STM studies and the nanoscale CAFM measurements 

strongly suggests that the WV sites rather than the SV sites in monolayer WS2 are the 

primary non-radiative combination centers that are responsible for the reduction in the PL 

intensity and DOP. 

The aforementioned scenario of a higher WV density in the -domain is not only 

consistent with the observation of reduced PL intensities and DOP but also accounts for 

the larger work function in the -domain (as found by the KPFM studies) because of the 

excess hole-doping associated with WVs in WS2. Therefore, we have been able to 

provide a unified description for the varying chemical, electronic and optical properties of 

different domains in monolayer h-WS2 in terms of the varying WV densities.

Finally, we note that a well-defined, net valley polarization can be established along the 

boundary between the - and -domains under circularly polarized light as the result of 

their different DOP. Hence, the domain boundaries in our monolayer h-WS2 samples may 

be considered as one-dimensional topological channels so that a Hall bar device 

patterned along one of the domain boundaries is expected to exhibit CPL-induced valley 

Hall currents even at room temperature. Such opto-valleytronic and related opto-
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spintronic phenomena for devices fabricated along the topological channels in monolayer 

h-WS2 will be an interesting topic for future investigation.

CONCLUSION

In summary, our experimental investigations based on spatially resolved 

measurements of PL, Raman spectroscopy, XPS, KPFM, CAFM and STM have clarified 

the microscopic physical origin for markedly different reports of PL properties in CVD-

grown monolayer WS2 by attributing the differences to varying densities of tungsten 

vacancies (WVs) that act like non-radiative recombination centers. We have also 

demonstrated large circular polarizations in the PL spectra of our monolayer CVD-grown 

h-WS2 single crystals under off-resonant illumination and at relatively high temperatures 

(from RT to 80 K) when compared with other TMDCs, as detailed in Tables S1 and S2 

and summarized in Figure S7. The occurrence of type-two band alignments along the 

domain walls of h-WS2 further promises longer exciton lifetimes along the domain 

boundaries. This work therefore suggests a pathway towards engineering valley 

Page 29 of 56

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



30

polarizations and exciton lifetimes in TMDCs by controlling the type and density of defects 

that serve as non-radiative exciton recombination sites.
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METHODS

Sample preparation 

Pre-treatment of SiO2/Si substrate: SiO2/Si substrates (300 nm SiO2) were used for the 

CVD growth of WS2. Prior to the growth, SiO2/Si substrates were first soaked and 

sonicated in acetone and isopropyl alcohol (IPA) for 30 minutes to remove organic 

impurities, and then soaked in Nanostrip for 60 minutes, and finally washed with deionized 

water and dried with nitrogen gas.

Synthesis of mono- and multilayer WS2: We used WO3 and S as precursors in an 

atmospheric pressure CVD system to grow monolayer h-WS2 on Si/SiO2 substrates. A 

schematic drawing of the home-built CVD system is shown in Figure S1. Our setup 

includes the following parts: a quartz tube with a diameter of 1 inch and a length of 100 

cm, a one-inch inner diameter (I.D.) horizontal split tube furnace (Lindberg Blue M), two 

mass flow controllers calibrated for Ar and H2, with stainless steel flanges at both ends 

connected to a chiller water circulation system operating at 10 C. 

In the first step of the procedure, 95 mg WO3 precursor mixed with 5mg KI was placed 

in a quartz boat containing the SiO2/Si substrates set face-down directly above the W 

Page 31 of 56

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



32

source precursor, and the quartz boat was then positioned at the center of the furnace. A 

second boat containing 100 mg S (Alfa Aesar, 99.999+ %) was placed upstream at 16 

cm away from the W source. Next, the system was pump down to 3×102 torr to eliminate 

air and moisture. After the system reached the base pressure, the Ar/H2 (80/40 sccm) 

carrier gas was introduced until atmospheric pressure was achieved. The furnace was 

then heated up with a ramp rate of 35 C/min to the growth temperatures (750 to 850 C). 

The Sulphur component melted at 150 C was sent into the furnace at the growth 

temperature to grow h-WS2. The sample growth procedure proceeded for 10 minutes, 

after which the furnace was directly opened to room temperature to stop the reaction 

immediately. 

Transfer of mono- and multilayer WS2: Polystyrene (PS) was used as the supplementary 

film to peel off the WS2 crystals from sapphire substrates. PS (M.W. 192000) dispersed 

in toluene solution (20 mg/mL) was spin-coated on top of the WS2 sample at a speed of 

3000 rpm. The edge of the PS film was scribed with a blade, and then the sample of PS/h-

WS2/Si-substrate was inserted into water slowly. The PS/h-WS2 film became peeled off 

naturally in water, and was subsequently rinsed with deionized-water thrice before it was 
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picked up and placed onto the target substrate. The PS coating was removed with toluene 

after baking the sample at 80°C for 60 minutes.

Characterizations by atomic probe microscopy and Kelvin probe force microscopy 

Atomic Force Microscopy (AFM) (Bruker Dimension Icon) under the tapping mode was 

applied to characterize the surface morphology of the WS2 film transferred onto the 

SiO2/Si substrate. The Kelvin probe force microscopy (KPFM) measurements were 

conducted on a Bruker Dimension Icon SPM. Doped silicon PFQNE-AL probes (Bruker) 

with a probe radius of 5 nm and a spring constant of 0.8 N/m were used for the electrical 

measurements. 

Spectroscopic characterization 

The quality of the WS2 film was characterized using Raman spectroscopy, PL 

measurements, X-ray photoemission spectroscopy (XPS), and Ultraviolet photoemission 

spectroscopy (UPS). The Raman spectra were taken with a Renishaw M1000 and 

Renishaw InVia Raman spectrometer system using a 514.3 nm laser (2.41 eV) as the 
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excitation source. A 50 objective lens with a numerical aperture of 0.75 and a 2400 

lines/mm and 1800 lines/mm grating were chosen during the measurement to achieve 

better signal-to-noise ratio. XPS and UPS studies were performed under ultra-high 

vacuum (residual gas pressure 5 ×109 torr) with a Kratos AXIS Ultra DLD and a magnetic 

immersion lens that consisted of a spherical mirror and concentric hemispherical 

analyzers with a delay-line detector (DLD). An Al Kα (1.486 KeV) monochromatic source 

and He 1 (21.2 eV) source were used as excitation sources for the XPS and UPS 

measurements, respectively. Ejected electrons were collected at a 90° angle from the 

horizontal. The time-resolved PL measurements were taken on an inverted microscope 

(Zeiss Axio Observer) equipped with an avalanche photodiode (Picoquant PDM series 

with PicoHarp 300 timing electronics). For the PL lifetime measurements, a 400 nm 

picosecond laser diode (70 ps pulse duration, 40 MHz repetition rate; PicoQuant) 

excitation source was used, and a 400 nm band pass filter was placed after laser source 

to purify the laser beam. A 100× objective lens with a numerical aperture of 0.9 (Zeiss, 

Inc.) was used to focus the pulsed laser to a small spot of 1.6 × 10−6 cm2 with an estimated 

peak power density of 7.5 kW cm−2.
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STM/STS sample preparation and measurements 

For the STM/STS studies, we transferred many flakes of WS2 (with lateral dimensions 

of all grains greater than 10 m) onto a commercial substrate with an atomic flat layer of 

Au (111) (200 nm thick) on mica so that the surface of the Au (111) / mica substrate was 

almost fully covered by monolayer WS2 single crystals. The WS2 / Au (111) / mica sample 

was annealed and sealed in vacuum, and then loaded onto our Omicron VT STM system. 

The base pressure of the system was 2 1011 torr. Atomically resolved topographic and 

spectroscopic measurements were carried out on monolayer WS2 samples at room 

temperature using a Pt/Ir STM tip.
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Figure 1. Monolayer h-WS2 optical characterizations: (a) Left panel: Fluorescence images 
showing a radioactive hazard symbol-like optical emission pattern in the fluorescence intensity 
from a CVD-grown large monolayer WS2 single crystal. Right panel: Schematic illustration of 
heterogeneous defect domains in single crystalline hexagonal WS2. AFM measurements of (b) the 
surface topography and (c) the phase for a monolayer h-WS2 single crystal. The scale bar is 10μm. 
(d) PL intensity mapping of a monolayer h-WS2 single crystal at the PL peak energy of 1.96 eV. 
The brighter PL domain () and darker PL domain () show threefold symmetry. Similar 
symmetries are also found in the Raman spectral intensity mapping for (e) the A1g mode and (f) 
the mode. Here the scale bars for (d-f) correspond to 5µm. (g) Representative PL point spectra 1

2gE
for the - and -domains of a monolayer h-WS2. (h) Representative Raman spectra for the 
corresponding - and -domains as in (e) and (f).
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Figure 2. Chemical bonding and work function characterization in heterogeneous domains: (a) 
Schematic of the monolayer h-WS2 on Au (111) / mica substrate. Selected XPS spectra of the -
domain (top) and -domain (bottom) for (b) W-4f and (c) S-2p, showing an upshift by ~ 0.13 eV 
(~ 0.03 eV) in the W-4f (S-2p) peaks of the -domain relative to those of the -domain. The error 
range for the binding energies determined by our XPS system is 0.025 eV. (d) KPFM image of 
the heterogeneous domains of a monolayer h-WS2. (e) Work function plot along the white line in 
(d). (f) Estimated Fermi levels (Ef, and Ef,) and the corresponding conduction band (CB) and 
valence band (VB) positions of the - and -domains with respect to the vacuum level based on 
KPFM.
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Figure 3. Circularly-polarized emission of monolayer h-WS2 neutral excitons: (a) Schematic of 
circularly polarized emission on monolayer h-WS2 under + 514nm (2.41 eV) excitation. (b) An 
intensity map for the + polarized emission and (c) an intensity map for the  polarized emission. 
(d) A spatial map for the degree of valley polarization Pcirc in a monolayer h-WS2 single crystal. 
(e-f) Representative + (red) and  (blue) PL intensity spectra taken at room temperature on the 
- and -domains, respectively. (g-h) Representative + (red) and  (blue) PL intensity spectra 
taken at 80 K on the - and -domains, respectively. 
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Figure 4. Electrical characterizations of the monolayer h-WS2: (a) Schematic illustration of the 
experimental setup for the CAFM measurements. A CVD-grown thick multilayer graphene sample 
was transferred onto an atomically flat Au (111) / mica substrate to provide a conductive backplane 
for the measurement. A monolayer h-WS2 sample was subsequently transferred onto the thick 
multilayer graphene using the transfer method described in Methods. (b) I-V curves taken on a 
defect and off a defect, showing a drastic difference in the conduction characteristics between a 
defect region and the pristine h-WS2. The inset figure in (b) shows the dI/dV characteristics 
corresponding to the I-V curve in the main panel of (b). (c) PL map of the h-WS2 sample, with 
numbers 1 through 6 labeled in both one of the -domains and one of the -domains. The numbers 
correspond to the locations where detailed CAFM maps were taken. (d-i) CAFM measurements 
of the locations (1, 2, 3, 1, 2, 3) labeled in (c), exhibiting defect densities in the -domain: 
(d) 1.49×1010 cm-2 for 1, (e) 1.75×1010 cm-2 for 2, (f) 3.59×1010 cm-2 for 3, and in the -domain: 
(g) 8.22×1010 cm-2 for 1, (h) 1.37×1011 cm-2 for 2, (i) 1.75×1011 cm-2 for 3. (j) Defect density 
and PL intensity as a function of position along the dashed line shown in (c) across the - and -
domains, showing apparent anti-correlation between the defect density and the PL intensity. (k) 
The model presented in Eq. (7). The red points correspond to the PL measurements of the -
domain, and blue points correspond to the PL measurements of the -domain. (l) TRPL results, 
showing PL decay profiles of the - and -domains. The black lines are fitting curves using a 
single exponential decay function. 

Page 45 of 56

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



46

Figure 5. Scanning tunneling microscopic and spectroscopic studies of WS2 monolayer: (a) 
Atomically-resolved of SVs (as indicated by the white triangles) on a sample of monolayer WS2 
on Au substrate. The topography was recorded under 0.7V, 1.2nA. Here the white solid circle 1 
refers to the location of a SV in the center of a white triangle, and the white solid circle 2 refers 
to the location of a vacancy-free region. (b) Tunneling current (I) vs. sample biased voltage (V) 
spectra taken at a SV (1) and defect free region (2), showing consistent energy gaps of ~ 2.0 
eV. Here the vertical dashed line corresponds to E = 0 (the Fermi level). (c) (dI/dV)-vs.-V spectra 
obtained from the regions 1 and 2 shown in (a). (d) Atomically-resolved WVs (shown by the 
white triangle) on a sample of monolayer WS2 on Au substrate, with the topography recorded 
under 0.7V, 1.2nA. (e) I-vs.-V spectra taken at two WVs (white solid circles 1 and 2 in (d)), 
showing a reduced energy gap of 1.1 eV. The vertical dashed line corresponds to E = 0 (the Fermi 
level). (f) (dI/dV)-vs.-V spectra obtained from the regions 1 and 2 shown in (d). The tunneling 
spectra associated with the WVs are qualitatively similar to the CAFM measurements at non-
radiative defect sites, suggesting that the WVs are responsible for the non-radiative defects that 
suppress PL and DOP in h-WS2.
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