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Abstract

We consider gedanken experiments to destroy an extremal or near-extremal BTZ

black hole by throwing matter into the horizon. These black holes are vacuum solu-

tions to (2+1)-dimensional gravity theories, and are asymptotically AdS3. Provided

the null energy condition for the falling matter, we prove the following—(i) in a

Mielke-Baekler model without ghost fields, when torsion is present, an extremal

BTZ black hole can be overspun and becomes a naked conical singularity; (ii) in

3-dimensional Einstein gravity and chiral gravity, which both live in torsionless lim-

its of Mielke-Baekler model, an extremal BTZ black hole cannot be overspun; and

(iii) in both Einstein gravity and chiral gravity, a near-extremal BTZ black hole

cannot be overspun, leaving the weak cosmic censorship preserved. To obtain these

results, we follow the analysis of Sorce and Wald on their gedanken experiments to

destroy a Kerr-Newman black hole, and calculate the second order corrections to

the black hole mass. Furthermore, Wald’s type of gedanken experiment provides an

operational procedure of proving the third law of black hole mechanics. Through

the AdS/CFT correspondence, our results on BTZ black holes also indicate that

a third law of thermodynamics holds for the holographic conformal field theories

dual to 3-dimensional Einstein gravity and chiral gravity.



Contents

1 Introduction 3

2 BTZ black hole and variational identities 5

2.1 First order variations . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Second order variations . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Gedanken experiment to destroy an extremal BTZ 13

4 Gedanken experiment to destroy a near-extremal BTZ 16

4.1 Chiral gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Einstein gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Conclusions and Discussions 22

1 Introduction

Weak cosmic censorship conjecture (WCCC) is formulated by Penrose [1] to postu-

late that spacelike curvature singularity should not be naked and should be hidden

inside a black hole horizon. A special case worthy of considering is the three dimen-

sional Banados-Teitelboim-Zanelli (BTZ) black hole, of which there is no curvature

singularity but a conical one. It is then interesting to ask if the WCCC still holds

in this case even there is no curvature singularity inside the BTZ black hole. If

yes, we may need to elaborate more on the philosophic cause of requiring WCCC

besides like “Nature abhors a naked singularity” [3]. This is what we would like to

consider in this paper.

The general proof or demonstration of WCCC is known to be notoriously dif-

ficult. One possible way is to find the critical situation in which the black hole

is almost having a naked singularity by subjecting to small perturbation. This

situation is when a Kerr-Newman black hole is in its near-extremal regime. A

super-extremal black hole possesses the naked singularity, and checking WCCC is

to see if a sub-extremal black hole in the near extremal limit can be turned into a

super-extremal one or not by throwing some matters. Along this line of thought, a

gedanken experiment was firstly proposed by Wald [4] to demonstrate the impossi-

bility of destroying an extremal Kerr-Newman black hole by throwing the matters

obeying the positive energy condition. The key ingredient in [4] is related to the
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linear variation of black hole mechanics [5, 6], i.e.,

δM − ΩHδJ − ΦHδQ ≥ 0 (1)

where M is the mass of the black hole, J the angular momentum, Q the charge, and

ΩH and ΦH are respectively the angular velocity and chemical potential evaluated

on the horizon. A similar consideration for the near extremal Reissner-Nordstrom

black hole was examined by Hubeny [7] and find that it can be overcharged to

violate WCCC by throwing a charged particle. See [9–12] for the follow-up works.

Recently, it was realized by Sorce and Wald [16] that the analysis of Hubeny’s

type experiment is insufficient at the linear order so that the second order variation

must be taken into account to check WCCC. They go beyond Hubeny’s type of first

order analysis for the near-extremal black hole based on an earlier development of

the second order variation (in-)equality of black hole mechanics [17], i.e.,

δ2M − ΩHδ
2J − ΦHδ

2Q ≥ −THδ2SBH (2)

with TH the Hawking temperature and and SBH Bekenstein-Hawking entropy. Un-

der the situation that the linear variation is optimally done, i.e., the inequality

(1) is saturated, they use (2) to show that the WCCC holds for Kerr-Newman

black holes in 4-dimensional Einstein-Maxwell gravity. In [16] it assumes that the

near-extremal black hole is linearly stable so that at very late time the pertur-

bation induced by falling matter becomes the perturbation towards another black

hole solution. Thus, the WCCC can be formally described as the condition for a

1-parameter family of black hole solutions

f(λ) > 0, for all λ ≥ 0 (3)

with f(λ) = 0 being the condition for extremal black hole, e.g., f(λ) = M(λ)2 −
J(λ)2

M(λ)2 − Q(λ)2 for a Kerr-Newman black hole of mass M(λ), angular momentum

J(λ) and charge Q(λ), and f(λ) = M(λ)2 + ΛJ(λ)2 for a BTZ black hole in 3-

dimensional anti-de Sitter space of cosmological constant Λ < 0. Note that there is

no need in this formulation to consider the self-force effects of the in-falling matters

to examine WCCC as done in [18–22].

In this paper, we will check WCCC for BTZ black hole in 3-dimensional torsional

Mielke-Barkler gravity (MBG) [26–28] for the general falling matters 1. In some

special limit of MBG we have either Einstein gravity or chiral gravity [29], both

1See also recent papers [13,14] for the related discussion for special falling matters.
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of which have well-defined dual conformal field theory (CFT) in the context of

AdS/CFT correspondence [2]. Especially, the extremal black hole has zero surface

gravity, and corresponds to a dual CFT state at zero temperature. The motivation

of our study is two folds. First, we would like to see if WCCC holds even for the

naked conical singularity such as the one in BTZ, and at the same time extend

the formulation of [16] to more general gravity. Second, Wald’s type of gedanken

experiment provides an operational procedure of proving the third law of black hole

mechanics [8,10]: One cannot turn the non-extremal black hole into an extremal one

in the finite time-interval by throwing into the black hole the matters satisfying the

positive energy condition. We can turn the third law to become the one of black hole

thermodynamics if we adopted Bekenstein and Hawking’s point of view. Moreover,

through the AdS/CFT correspondence, this third law will also correspond to the

third law of the dual 2-dimensional CFT 2. Our results indicate that such a third law

of thermodynamics holds for the holographic CFTs dual to 3-dimensional Einstein

gravity and chiral gravity. Intuitively, the cooling procedure can be holographically

understood as throwing the coolant, i.e., matters of charge q and energy E with

q > E, into the black hole.

We organize the rest of the paper as follows. In Sec. 2 we derive the linear and

second order variational identities for the MB model, with which we can proceed

for the consideration of gedanken experiments for three ghost-free limits of MB

model, i.e., the Einstein gravity, chiral gravity and torsional chiral gravity. In Sec. 3

we consider the gedanken experiments for the extremal BTZ black hole by using

the linear variational identities and the null energy conditions. In Sec. 4 we check

WCCC for nonextremal BTZ black holes for the chiral gravity and Einstein gravity.

Finally in Sec. 5 we summarize our results and conclude with some discussions on

the issue of proving the third law and its implication to the holographic dual CFT.

2 BTZ black hole and variational identities

BTZ black holes are topologically non-trival solutions to the three-dimensional Ein-

stein gravity as well as the topological massive gravity (TMG) [23–25]. In fact, they

are solutions to a quite general category of gravity theory with the name Mielke-

Baekler (MB) model [26,27] which also incorporates torsion, with Einstein gravity

and TMG arise as limits in its parameter space. In this section, we derive the vari-

2See [31] for the earlier discussion for AdS5 case in the context other than WCCC.
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ational identities and canonical energy for this model following Wald’s formulation.

In three dimensional spacetime, it is convenient to express the gravity theory in

the first order formalism. The Lagrangian of a general chiral gravity with torsion,

namely the MB model, is as following:

L = LEC + LΛ + LCS + LT + LM , (4)

where

LEC =
1

π
ea ∧Ra , (5)

LΛ = − Λ

6π
εabc e

a ∧ eb ∧ ec , (6)

LCS = − θL

(
ωa ∧dωa +

1

3
εabc ω

a ∧ωb ∧ωc
)
, (7)

LT =
θT

2π2
ea ∧Ta , (8)

in which LEC is the Einstein-Cartan term, LΛ is the cosmological constant term

with Λ < 0, LCS is the Chern-Simons (CS) terms for curvature, LT is a translational

Chern-Simons term, and LM is the Lagrangian for the matter. We have defined the

dual spin connection ωa and the dual curvature 2-form Ra for simplicity:

ωa =
1

2
εabc ω

bc , Ra =
1

2
εabcR

bc . (9)

Variations of the Lagrangian (4-8) with respect to the dreibeins ea and dual spin

connections ωa gives rise to the equations of motion E
(e)
a = 0 and E

(ω)
a = 0 with

E(e)
a =

1

π

(
Ra +

θT

π
Ta −

Λ

2
εabc e

b ∧ ec
)
, (10)

E(ω)
a =

1

π

(
Ta − 2πθL Ra +

θT

2π
εabc e

b ∧ ec
)

(11)

for vanishing matter. For the case 1+2θTθL 6= 0 , the equations of motion are solved

by

T a =
T
π
εabc e

b ∧ ec , (12)

Ra = − R
2π2

εabc e
b ∧ ec , (13)

in which

T ≡ −θT + 2π2ΛθL

2 + 4θTθL

, R ≡ − θ2
T + π2Λ

1 + 2θTθL

. (14)

The MB model was originally proposed as a torsional generalization of TMG.

It has a Poincare gauge theory description, and there are propagating massive

gravitons just like in TMG. We will be especially interested in three limits:
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(i) Einstein gravity (with negative cosmological constant). This could be ap-

proached by taking the limit θL → 0 and θT → 0 .

(ii) Chiral gravity. The torsionless branch of the MB model, which is equivalent

to TMG, could be obtained by setting T = 0 according to (12) . It was pointed out

in [29] that TMG is only well defined at the critical point in which the dual CFT be-

come chiral. In our convention, the critical point is located at θL = − 1/(2π
√
−Λ) .

Hence the chiral gravity is approached by setting T = 0 first and then taking the

limit θL → − 1/(2π
√
−Λ) .

(iii) Torsional chiral gravity. For the branch with non-vanishing torsion, we note

from the Lagrangian (4-8) that the torsion field Ta could not be kinematic since

there is no second order derivative of ωa. The torsion field should just contribute to

the interaction term in the linearized theory, while the propagators of the gravitons

should not be changed compared with TMG. We then expect that the MB model

also behaves well with no ghost at the critical point θL → − 1/(2π
√
−Λ) . Note

that by taking this limit first, we obtain T → π
√
−Λ / 2 hence the torsion field

could not be vanishing. This is a different limit from the case (ii), and we refer it

as the torsional chiral gravity.

An interesting class of solutions to the equations (12)(13) are the BTZ-like

solutions with non-vanishing torsion [30]. They are described by the following

dreibeins:

e0 = Ndt , e1 =
dr

N
, e2 = r

(
dφ+Nφdt

)
(15)

in which

N2(r) = −M − Λeff r
2 +

J2

4r2
, Nφ(r) = − J

2r2
(16)

with

Λeff ≡ −
T 2 +R
π2

, (17)

and the dual spin connections:

ωa = ω̃a +
T
π
ea , (18)

where the torsion free parts ω̃a are

ω̃0 = Ndφ , ω̃1 = − N
φ

N
dr , ω̃2 = −Λeff rdt + rNφdφ . (19)

Taking the torsion free limit T → 0, the above solutions recover the usual BTZ

black holes with Λeff = Λ . The horizons are located at

r2
± =

1

2Λeff

(
−M ∓

√
M2 + ΛeffJ2

)
(20)
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(note that Λeff < 0 for asymptotic AdS solutions), and the angular velocity of the

outer horizon is

ΩH =
J

2r2
+

=
r−
r+

√
−Λeff . (21)

The black hole temperature is fixed by the vanishing of the conical singularity of

the corresponding Euclidean metric:

TH = − Λeff

(
r2

+ − r2
−
)

2πr+
, (22)

and the surface gravity is κH = 2πTH .

2.1 First order variations

Wald’s gedanken experiment to destroy a black hole begins with considering a

general off-shell variation of the fields, which in principle incorporates all kinds of

possible perturbations of a black hole, including throwing matter into it. From the

variational identities one obtains general constrains obeyed by these perturbations.

The first order variation of the Lagrangian (4-8) gives rise to the equations of

motion as well as a surface term:

δL = δea ∧E(e)
a + δωa ∧E(ω)

a + dΘ(φ, δφ) , (23)

in which φ = (ea, ωa), E
(e)
a and E

(ω)
a are given by (10) and (11). The surface term

Θ(φ, δφ), called the symplectic potential, is evaluated to be

Θ(φ, δφ) =
1

π
δωa ∧ ea +

θT

2π2
δea ∧ ea − θL δω

a ∧ωa , (24)

from which one could define the symplectic current

Ω(φ, δ1φ, δ2φ) = δ1Θ(φ, δ2φ) − δ2Θ(φ, δ1φ) , (25)

which is conserved when the linearized equations of motion are satisfied:

dΩ = 0 . (26)

The Noether current 2-form associated with a vector field ξ, defined as

jξ = Θ(φ,Lξφ)− iξL , (27)

could be written in the form

jξ = dQξ + Cξ , (28)
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in which the Noether charge Qξ and the constraints Cξ are given by

Qξ =
1

π
(iξω

a)∧ ea +
θT

2π2
(iξe

a)∧ ea − θL (iξω
a)∧ωa , (29)

Cξ = −(iξe
a)∧E(e)

a − (iξω
a)∧E(ω)

a . (30)

Variation of equations (27)(28) gives rise to the following linear variational iden-

tity after integrating over a Cauchy surface Σ :∫
∂Σ
δQξ − iξΘ(φ, δφ) =

∫
Σ

Ω(φ, δφ,Lξφ)−
∫

Σ
δCξ −

∫
Σ

iξ(Eδφ) . (31)

The first term on the right hand side is recognized as the variation of the Hamilto-

nian Hξ associated with the diffeomorphism generated by the vector field ξ

δHξ =

∫
Σ

Ω(φ, δφ,Lξφ) , (32)

hence the following definition of conserved charge Hξ is proposed for solutions with

no interior boundary:

δHξ =

∫
∞
δQξ − iξΘ(φ, δφ) . (33)

For the timelike Killing field ∂/∂t and the rotational Killing field ∂/∂ϕ , the above

integration gives rise to the variation of the total mass M and the total angular

momentum J , respectively. For the BTZ-like black holes (15-19), it could be

evaluated that

M = M − 2θL (TM + πΛeffJ) , (34)

J = J + 2θL (πM − T J) . (35)

For the case that the equations of motion are satisfied and ξ is a Killing field,

the linear variational identity (31) yields∫
∂Σ
δQξ − iξΘ(φ, δφ) = −

∫
Σ
δCξ . (36)

For nonextremal black holes, the boundaries include the infinity as well as the

bifurcation surface B . If ξ is the horizon Killing field ξa = ∂/∂t + ΩH∂/∂ϕ , the

boundary integral over infinity is given by∫
∞
δQξ − iξΘ(φ, δφ) = δM− ΩHδJ , (37)

and the boundary contribution from the bifurcation surface B turns out to be the

variation of the black hole entropy∫
B
δQξ − iξΘ(φ, δφ) = TH δS . (38)
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The equation (36) then takes the form

δM− ΩHδJ − TH δS = −
∫

Σ
δCξ . (39)

For Einstein gravity, the right hand side of (38) is exactly (κH/8π) δA , where A

is the area of the bifurcation surface, and κH is the surface gravity. For the MB

model, (38) gives rise to a rightful definition of the modified black hole entropy,

and it could be evaluated for the BTZ-like black holes that [15]

S = 4πr+ − 8πθL

(
T r+ − π

√
−Λeff r−

)
. (40)

We will consider the special situation that the perturbation vanishes near the in-

ternal boundary of the surface Σ, then equation (39) with δS = 0 would hold for

both extremal and non-extremal black holes. Noting (34)(35) and δS = 0 , (39)

turns out to be

(1 − 2θLT − 2πθLΩH) (δM − ΩHδJ) − 2πθLΛeff

(
r2

+ − r2
−

r2
+

)
δJ = −

∫
Σ
δCξ .

(41)

for BTZ-like black holes in the MB model.

The equations (39)(41) are derived from the Lagrangian without matter. How-

ever, since we didn’t enforce the linearized equations of motion to be satisfied, it

should be expected that these equations could also be used for considering per-

turbed solutions due to matter contribution. The right hand side of (41) would be

related to the energy-momentum tensor of the matter. To see this explicitly, we

first define the “energy-momentum 2-form” Σa and “spin current 2-form” τa as

follows:

Σa ≡
δLM

δea
, τa ≡

δLM

δωa
. (42)

The equations of motion with matter would be

E(e)
a = −Σa , E(ω)

a = − τa . (43)

Since Σa = τa = 0 in the background spacetime, from (30) we get

δCξ = (iξe
a)∧ δΣa + (iξω

a)∧ δτa . (44)

Σa should be related to the conserved canonical energy-momentum tensor Σ µ
a de-

fined by
√−g Σ µ

a ≡ ∂L
∂eaµ

= e µ
a L −

∂L
∂(∂µψ)

Daψ , (45)
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in which ψ is the matter field and LM = L d3x , from which we obtain

Σa =
1

2
εµνλ Σ λ

a dxµ∧ dxν . (46)

Note that

εµνλ = − 3k[µε̂νλ] , (47)

in which kµ is the future-directed normal vector to the horizon, and ε̂ is the volume

element on the horizon. The first term on the right hand side of (44) then turns

out to be

(iξe
a)∧ δΣa = − ξµkνδΣµν√−γ d2x , (48)

as ξµ ∝ kµ , the contribution of this term to the right hand side of equation (41) is

non-negative if and only if the null energy condition of matter energy-momentum

tensor δΣµν is satisfied:

kµkνδΣµν ≥ 0 . (49)

For the second term on the right hand side of (44), our “spin current 2-form”

τa is related to the canonical spin angular momentum tensor τ µ
ab defined by

√−g τ µ
ab ≡ ∂L

∂ω ab
µ

= − ∂L
∂(∂µψ)

fab ψ , (50)

in which fab are the representations of the generators of rotations appropriate to

ψ . Comparing (50) with (42), we obtain

τa = − 1

2
ε bca εµνλ τ

λ
bc dxµ ∧ dxν , (51)

hence the second term on the right hand side of (44) is reduced to

(iξω
a)∧ δτa = − (ξσωabσ) kλ δτ

λ
ab

√−γ d2x . (52)

For axially symmetric stationary black holes, in general we have [15]

iξω
a |H = − 1

2
κH ε

a
bc n

bc + iξK
a |H , (53)

in which nab is the binormal to the horizon and Ka is the dual contorsion 1-form

defined by T a = εabcK
b ∧ ec , satisfying the identity ωa = ω̃a + Ka. For BTZ-like

black holes, (18) gives

Ka =
T
π
ea . (54)

Using (53)(54), equation (52) turns out to be

(iξω
a)∧ δτa =

(
κHnµν +

T
π
ε σ
µν ξσ

)
kλδτ

µνλ√−γ d2x . (55)
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The first term on the right hand side is vanishing for extremal black holes. We

note that the sign of the second term could not be determined for torsional chiral

gravity unless the spin angular momentum tensor satisfies ε σ
µν kσkλδτ

µνλ ≥ 0 , of

which the physical meaning is not clear yet for us.

Combining all the results above, we obtain the linear variational identity with

vanishing inner boundary contributions for BTZ-like black holes in the MB model:

δM − ΩHδJ

= (1 − 2θLT − 2πθLΩH) (δM − ΩHδJ) − 2πθLΛeff

(
r2

+ − r2
−

r2
+

)
δJ

=

∫
Σ
d2x
√−γ

{
ξµkνδΣ

µν −
(
κHnµν +

T
π
ε σ
µν ξσ

)
kλδτ

µνλ

}
. (56)

For extremal BTZ black holes with κH = 0 and r+ = r− , the above identity takes

the following simpler form:

δM − ΩHδJ =
(

1 − 2θLT − 2πθL

√
−Λeff

)(
δM −

√
−Λeff δJ

)
=

∫
Σ
d2x
√−γ

{
ξµkνδΣ

µν − T
π
ε σ
µν ξσkλδτ

µνλ

}
. (57)

2.2 Second order variations

As pointed out in [16], for near-extremal black holes it is in general not sufficient to

consider just the linear order variation due to Hubeny-type violations. We therefore

construct further the second order variational identity. Variation of equation (31)

gives rise to

EΣ(φ; δφ) =

∫
∂Σ

[
δ2Qξ − iξδΘ(φ, δφ)

]
+

∫
Σ
δ2Cξ +

∫
Σ

iξ (δE ∧ δφ) , (58)

in which

EΣ(φ; δφ) ≡
∫

Σ
Ω(φ, δφ,Lξδφ) (59)

is Wald’s canonical energy of the off-shell perturbation δφ on Σ . For the case that

the background φ is a stationary black hole solution and ξ is the horizon Killing

field, the boundary contribution from infinity is simply∫
∞
δ2Qξ − iξδΘ(φ, δφ) = δ2M − ΩHδ

2J (60)

according to (37). The contribution from interior boundary would be vanishing if

there’s no perturbation in its neighborhood, as supposed before. Then equation

(58) turns out to be

δ2M − ΩHδ
2J = EΣ(φ; δφ) −

∫
Σ

iξ (δE ∧ δφ) −
∫

Σ
δ2Cξ . (61)
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Noting (43)(46)(51), the integrand of the second term on the right hand side is

evaluated to be

iξ (δE ∧ δφ) ≡ iξ

(
δE(e)

a ∧ δea + δE(ω)
a ∧ δωa

)
= ξτ Ξ[µντ ] dx

µ ∧ dxν , (62)

in which

Ξµντ = − 3

2
εµνλ

(
δΣ λ

a δeaτ + δτ λ
ab δωabτ

)
. (63)

Since ξ is tangent to the horizon, the pullback of (62) to the horizon vanishes, hence

this term gives no contribution. From (30), it turns out that

δ2Cξ = δ2

[
− d2x

√−γ
{
ξµkνΣµν −

(
κHnµν +

T
π
ε σ
µν ξσ

)
kλτ

µνλ

]}
. (64)

Substituting the above expression into (61) leads to the following identity for the

second order variation:

δ2M − ΩHδ
2J = EΣ(φ; δφ)

+ δ2

∫
Σ
d2x
√−γ

{
ξµkνΣµν −

(
κHnµν +

T
π
ε σ
µν ξσ

)
kλτ

µνλ

}
.

(65)

3 Gedanken experiment to destroy an extremal

BTZ

We now consider our gedanken experiment to destroy a BTZ black hole along the

line of Wald’s proposals [4,16]. In this section, we will deal with an extremal BTZ

black hole with mass M and angular momentum J . We wish to see if a naked

singularity can be made via throwing matter into the extremal black hole. Without

losing generality, we take our gravity theory as MB model, and then discuss its

three limits, torsional chiral gravity, chiral gravity and three-dimensional Einstein

gravity.

Considering a 1-parameter family of solutions φ(λ), φ0 = φ(0) is an extremal

BTZ black hole, which is a vacuum solution in MB model. The existence of event

horizon is determined by a function,

f(λ) = M(λ)2 + ΛeffJ(λ)2 , (66)
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If f(λ) ≥ 0, the spacetime is a BTZ black hole. If f(λ) < 0, it is a naked conical

singularity and WCCC is violated. We now consider perturbations to the extremal

black hole φ0. Then, to first order in λ, we have

f(λ) = 2λ
√
−Λeff |J |

(
δM −

√
−Λeff δJ

)
+O(λ2) , (67)

where we have used the extremal condition M =
√−Λeff |J | to eliminate M . It is

then evident that if δM <
√−Λeff δJ , f(λ) can be negative.

We would like to see whether this sort of violation of WCCC is possible if we

throw matter into the BTZ black hole in a certain way. Let Σ0 be an asymptotically

AdS hypersurface which extends from the future horizon to the spatial infinity. We

consider a perturbation δφ whose initial data for both fields δea and δωa on Σ0

vanishes in the neighborhood of the intersection between Σ0 and the horizon. We

assume that the initial data for matter sources δΣµν and δτµνλ also vanishes in this

neighborhood, and, only exists in a compact region of Σ0. That is, we consider

perturbations whose effects at sufficiently early times are negligibly small. To sim-

plify the discussion, we only consider the case where, as we evolve the perturbation,

all of the matter will fall through the horizon. Therefore, the whole evolutions of

the matter source δΣµν and δτµνλ stay in a shaded region as shown in Fig. 1. As

matter falls in, we further define a hypersurface Σ in the following way—it starts on

the future horizon in the region where the perturbation vanishes and extends along

the future horizon till all matter falls into the horizon; then it becomes spacelike,

approaches the spatial infinity and becomes asymptotically AdS. We denote the

horizon portion of Σ as H, and the spatial portion as Σ1.

We now use the linear variational identity with vanishing inner boundary con-

tributions (57) for this choice of Σ. As we will show later, this identity constrains

the sign of f(λ). We notice that in e.q. (57), the integral in the second line is

not positive definite due to the spin angular momentum term and its coupling to

torsion. That is, in torsional chiral gravity, whether WCCC can hold depends on

an additional relation between the spin angular momentum and the torsion. The

physical origin of this additional information needed is unclear, and is beyond our

scope of this paper. We will leave it to a future work. In the torsionless limit

T → 0 , however, this integral would be non-negative as long as the null energy

condition is satisfied. From now on, we will focus on this limit, and assume the

falling matter satisfies the null energy condition. Then f(λ) is non-negative only if

14
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Figure 1: Carter-Penrose diagram of an extremal BTZ black hole. The shaded region

consists of the falling matter which all goes into the black hole. The perturbation

δφ vanishes in a neighborhood of Σ0 ∩H.

the constant factor on the rhs of the first line of e.q. (57) is non-negative,

1− 2θLT − 2πθL

√
−Λeff ≥ 0 . (68)

For chiral gravity, we choose θL = −1/(2π
√
−Λ), and send T → 0. The in-

equality (68) is then satisfied. Therefore extremal BTZ black hole in chiral gravity

cannot be destroyed in our experiment, and WCCC is preserved.

For three-dimensional Einstein gravity with a negative cosmological constant,

both torsion and Chern-Simons interaction vanish, thus we set θL → 0 and θT → 0.

The inequality (68) is then satisfied. Consequently, extremal BTZ black hole in

three-dimensional Einstein gravity cannot be destroyed, leaving WCCC preserved.
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4 Gedanken experiment to destroy a near-

extremal BTZ

For extremal BTZ black holes, we have found that WCCC can be violated in the

presence of torsion. With torsion being turned off, we have seen that WCCC is

preserved in both chiral gravity and three-dimensional Einstein gravity, provided

the material null energy condition. In four-dimensional Einstein gravity, Hubeny [7]

proposed that violations of WCCC might be possible if one threw matter into a

near-extremal black hole in an appropriate manner. In order to examine whether

Hubeny-type violations can truly happen, one has to calculate the energy and

momentum of the matter beyond the linear order. In this section, we will examine

the Hubeny-type violations for a near-extremal BTZ black hole in chiral gravity

and three-dimensional Einstein gravity respectively.

As shown in Fig. 2, we similarly choose Σ0 and Σ like we did for the extremal

BTZ case. The only difference is that, the two hypersurfaces now terminate at the

bifurcation surface B. We further assume that the second order perturbation δ2φ

for both fields δea and δωa also vanishes in a neighborhood of B. Again, we simplify

our discussions by restricting to the case where all matter falls into the black hole.

We will make one additional assumption that, the perturbation δφ approaches a

perturbation δφBTZ towards another BTZ black hole at sufficiently late times. This

can be achieved by choosing a Σ whose horizon portion H extends to sufficiently

late times where the perturbation becomes stationary.

4.1 Chiral gravity

We now consider our thought experiment to destroy a near-extremal BTZ black

hole (M,J) in chiral gravity for which T = 0 and θL = − 1
2π
√
−Λ

. Thus, using

(34-35) it is straightforward to see

δM− ΩHδJ =

(
1 +

ΩH√
−Λ

)(
δM −

√
−ΛδJ

)
, (69)

and the first law of black hole thermodynamics yields

THδS = δM− ΩHδJ . (70)

where the black hole entropy is given by [15]

S = 4π (r+ − r−) . (71)
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Figure 2: Carter-Penrose diagram of a near-extremal BTZ black hole. The shaded

region consists of the falling matter which all goes into the black hole. The pertur-

bation δφ and δ2φ vanishes in a neighborhood of B.

Recall (56), the null energy condition for the falling matter yields the first order

relation that

δM ≥
√
−ΛδJ . (72)

Assuming the first order perturbation has been optimally done, i.e. δS = 0, such

that

δM =
√
−ΛδJ . (73)

For some constant entropy S, we can then plot the line of constant entropy in the

parameter space of BTZ black holes, which is shown in Fig. 3.

We are now ready to discuss our experiment to destroy the near-extremal BTZ

black hole. Starting from a point (M0, J0) in the parameter space, after a per-

turbation of the spacetime as induced by falling matter, we will always arrive at

another point (M1, J1). At the linear order, the change from one point to another

will correspond to a tangent vector in the parameter space. For any S, the line of
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Figure 3: The parameter space of BTZ black holes in chiral gravity. The black solid

line corresponds to extremal BTZ black holes. Any point above this line corresponds

to a non-extremal BTZ black hole, while any point below the line is a naked conical

singularity. The orange dashed line is one of the lines of constant entropy, which is

parallel to the line for extremal BTZ black holes. Starting with some point on the

constant entropy line, any tangent vector will always be parallel to the extremal BTZ

line. That is, there is no hubeny-type violation that can overspin a near-extremal

BTZ black hole in chiral gravity.

constant entropy is given by

M =
(√
−Λ
)
J − Λ

16π2
S2 . (74)

The slope of the constant entropy line is then equal to that of the line representing

extremal BTZ black holes. Since the tangent to the constant entropy line is a lower

bound to all physically-realizable perturbations, a non-extremal BTZ black hole

will at most be perturbed to another BTZ black hole with the same entropy. There

is no Hubeny-type violation of weak cosmic censorship for the BTZ black hole in

three-dimensional chiral gravity, thus WCCC is preserved.
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4.2 Einstein gravity

The discussions above can be applied to the BTZ black holes in three-dimensional

Einstein gravity as well. That is, we turn off both torsion and Chern-Simons inter-

actions in MB model. In this case, the linear variational identity is given by

δM− ΩHδJ = δM − ΩHδJ . (75)

Given the material null energy condition, we similarly find that

δM − ΩHδJ ≥ 0 . (76)

Once a first order perturbation is optimally done by choosing δM = ΩHδJ , accord-

ing to the first law of black hole thermodynamics, we will also find a lower bound

for all perturbations given by δS = 0. In the Einstein gravity, S = 4πr+, and the

curve of constant entropy is given by

M =
4π2

S2
J2 − Λ

16π2
S2 . (77)

We plot one of such curves in Fig. 4.

As shown in Fig. 4, if the initial spacetime is an extremal BTZ black hole, a

tangent vector at this point is also tangent to the line representing extremal BTZ

solutions. Therefore given extremality, the best one can do is to deform the black

hole to another extremal BTZ black hole. WCCC is then preserved and no naked

singularities will form. However, if one starts at a slightly non-extremal BTZ black

hole, the tangent to the curve of constant entropy is possible to move the original

point to another point located in the section representing naked conical singularities.

This type of violation of WCCC is exactly the Hubeny-type violation, which can

be found at the linear order for near-extremal black holes. As we will see in the

following discussions, a conclusive answer to whether this type of perturbations

truly leads to a violation of WCCC requires calculations to the second order.

Now we consider a 1-parameter family of solutions φ(λ), φ0 = φ(0) is a nearly

extremal BTZ black hole in three-dimensional Einstein gravity. We then expand

f(λ) in e.q. (66) to second order in λ,

f(λ) =
(
M2 − α2J2

)
+ 2λ

(
MδM − α2JδJ

)
+ (78)

+ λ2
[
(δM)2 − α2(δJ)2 +Mδ2M − α2Jδ2J

]
+O(λ3) ,
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Figure 4: The parameter space of BTZ black holes in the three-dimensional Einstein

gravity. The black solid line corresponds to extremal BTZ black holes. Any point

above this line corresponds to a non-extremal BTZ black hole, while any point below

the line is a naked conical singularity. The orange dashed curve is one of the curves

of constant entropy, which meets the extremal BTZ line tangentially. The tangent

vector at the point of an extremal BTZ black hole will always bring it to another

extremal BTZ solution. However, starting from a slightly non-extremal BTZ black

hole, to linear order, the tangent vector can perturb the spacetime to become a

naked conical singularity.

where we have introduced a parameter α =
√

Λ. For convenience we also introduce

a parameter ε according to

ε =
r2

+ − r2
+,extremal

r2
+,extremal

=

√
M2 − α2J2

M
. (79)

The background spacetime corresponds to ε� 1, and ε→ 0 is the extremal limit.

The null energy condition for the matter fields yields δM − ΩHδJ ≥ 0, which

is equivalent to the statement that black hole entropy always increases. If we

only consider perturbations to first order in λ, that entropy always increases will

constrain f(λ) by

f(λ) ≥M2ε2 − 2λε
(
α2JδJ

)
+O(λ2) . (80)
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It is then evident from this inequality that, when δJ ∼ εM/α, it is possible to make

f(λ) < 0 by some careful choice of δJ . This is exactly the Hubeny-type violation

of WCCC. The problem is that when δJ ∼ εM/α, the violation of f(λ) ≥ 0 is of

order M2ε2 ∼ α2(δJ)2, which is not fully captured to first order in λ. Therefore

to determine whether there is a true violation of WCCC, one needs to calculate all

quantities in e.q. (80) to the appropriate order.

We now consider the second order variations in order to give a bound for f(λ).

Given the null energy conditions for the falling matter, we can obtain the following

relation from the second order variational identity with no inner boundary contri-

butions (65),

δ2M − ΩHδ
2J ≥ EΣ(φ; δφ) , (81)

where the canonical energy EΣ is given by

EΣ(φ; δφ) = EH(φ; δφ) + EΣ1(φ; δφ) (82)

=

∫
H

Ω(φ, δφ,Lξδφ) +

∫
Σ1

Ω(φ, δφ,Lξδφ) .

In (3+1)-dimension, the term EH(φ; δφ) is identified as the total flux of gravita-

tional wave energy into the black hole [17]. In (2+1)-dimensional Einstein gravity,

however, there is no propagating degree of freedom in the bulk, i.e. there are no

gravitational wave solutions. Thus EH(φ; δφ) = 0. A more rigorous way to see this

can be done by following the calculation of the canonical energy as in [17], and we

similarly find that∫
H

Ω(φ, δφ,Lξδφ) =
1

4π

∫
H

(κu)δσabδσ
abε̂+

1

16π

∫
H∩Σ1

(κu)δgabδσabε̂ , (83)

where κ is the surface gravity, u is an affine parameter on the future horizon, δσab

is the perturbed shear of the horizon generators, and ε̂ is the volume element. In

three dimension, it is found that every null geodesic congruence is shear-free [32],

i.e. σab = 0, therefore δσab = 0 on H and the canonical energy on H vanishes.

Then we only need to calculate the canonical energy on Σ1. According to our

assumption, the perturbation δφ, as induced by the falling matter, approaches a

perturbation δφBTZ towards another BTZ solution on Σ1. Also since δφBTZ has no

gravitational wave energy through H, we may replace Σ1 by Σ and obtain that

EΣ1(φ; δφ) = EΣ(φ; δφBTZ) . (84)

We use the general second order variational identity (58) on this Σ. As before,

we consider a one-parameter family of BTZ black holes, δφBTZ(β). The black hole
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mass and angular momentum are given by M(β) = M + βδMBTZ and J(β) =

J + βδJBTZ, where δMBTZ and δJBTZ are fixed by the first order perturbation for

φ(λ). Therefore for this family of solutions, we have δ2M = δ2J = δE = δ2C = 0,

the only nonvanishing contributions come from the inner boundary integral, which

yields,

EΣ1(φ; δφ) = −THδ
2SBTZ . (85)

With the canonical energy being calculated, (81) now reads

δ2M − ΩHδ
2J ≥ −THδ

2SBTZ . (86)

Here the temperature of the BTZ black hole is given by

TH = −Λ(r2
+ − r2

−)

2πr+
=

αMε

π
√

2M(1 + ε)
. (87)

The second order variation of the black hole entropy is calculated as

δ2SBTZ = (δJ)2

(
−παM

[
α2J2(3ε+ 2) + 2M2ε2(ε+ 1)

]
√

2ε3 [M3(ε+ 1)]3/2

)
(88)

+ (δJδM)

(
π
√

2αJ(ε+ 2)

Mε3
√
M3(ε+ 1)

)
+ (δM)2

(
π(ε− 2)(ε+ 1)√
2αε3

√
M3(ε+ 1)

)
.

where we have used the relation that for this family of solution, δ2M = δ2J = 0.

We assume that the first order perturbation is optimally done, i.e. δM = ΩHδJ ,

and we use the inequality (86) to constrain f(λ) in e.q. (78). We obtain that

f(λ) ≥M2ε2 − 2λε
(
α2JδJ

)
+ λ2α

4J2(δJ)2

M2
+O(λ3, ελ2, ε2λ, ε3) , (89)

which can be further written as

f(λ) ≥
(
Mε− λα

2JδJ

M

)2

+O(λ3, ελ2, ε2λ, ε3) . (90)

Consequently, f(λ) ≥ 0 when second order variations in λ are also taken into

account. Our gedanken experiment cannot destroy a near-extremal BTZ black hole

in three-dimensional Einstein gravity, thus WCCC is preserved.

5 Conclusions and Discussions

In this paper we have considered the gedanken experiments of destroying the BTZ-

like black holes by following the similar line of Wald’s proposals for 4D Einstein
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gravity [4,16] for three different limits of Mielke-Baekler (MB) model of 3D gravity.

They are (i) Einstein gravity, (ii) chiral gravity and (iii) torsional chiral gravity.

All three limits are free of perturbative ghost and show different behaviors in the

gedanken experiments. We find that there are Hubeny-type violations for Einstein

gravity but none for chiral gravity when trying to destroy a nonextremal BTZ

black hole. However, in these two theories, the WCCC holds for both extremal and

nonextremal BTZ black holes if the falling matter obeys the null energy condition.

It is philosophically interesting to see that WCCC prevails here even the BTZ

singularity is just conical singularity.

On the other hand, for the torsional chiral gravity there is additional contribu-

tion to the null energy condition from the spin angular momentum tensor even at

the linear order of variations. Thus, the WCCC will hold or not depending on the

imposition of additional null energy-like condition for the spin angular momentum

tensor. If WCCC does not hold for the first order variations, one needs to check

the 2nd order variation to see if there is Hubeny-type violation. However, the full

formalism of deriving the second order variational equalities for MB model is out

of scope of this paper, and it deserves as a future work.

The third law of gravity was first proposed by Israel and a sketchy proof is

also given [8], which states that one cannot turn a nonextremal black hole into an

extremal one by throwing the matters in a finite time interval. Later, the detailed

proof was then given by Sorce and Wald [16] as described and adopted in this paper.

In the context of AdS/CFT correspondence, the temperature of the boundary CFT

is the same as the Hawking temperature of bulk black hole. Thus, our results in this

paper can serve as an operational proof of thermodynamic third law by mapping

our gedanken experiment around the BTZ black hole holographically to the cooling

process of the boundary CFT toward zero temperature. Our generalization to BTZ

black holes though seems straightforward, but its implication to the third law of

thermodynamics for the holographic condensed matter systems is nontrivial and

deserves further study. Especially, the generalization to the higher dimensional

AdS black holes for more general gravities will give the holographic test of the

third law of thermodynamics for the more realistic systems. We plan to attack this

problem in the near future.

Before ending the paper, we comment on one more point about the proof of the

third law by noticing that the equality of (90) holds for one particular choice of

parameter λ. This implies that one can reach the extremal black hole at the second
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order for this particular case. To pin down the issue, one needs to check the third

order of variation for this particular λ value. This is too involved to carry out just

for a measure-zero possibility. However, it is still an interesting issue for the future

work.
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