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Abstract. The present study is designed to explore the potential of bistatic scattering coefficients
(σ°) and machine learning algorithms for the estimation of rice crop variables using ground-
based multiangular, multitemporal, and dual-polarized bistatic scatterometer data. The bistatic
scatterometer measurements are carried out at eight different growth stages of the rice crop in the
angular range of incidence angle 20 deg to 70 deg for HH- and VV-polarization at 10-GHz
frequency in the specular direction with an azimuthal angle (φ ¼ 0). Several field measurements
are taken for the measurement of rice crop variables, such as vegetation water content, leaf area
index, and plant height at its various growth stages. Machine learning algorithms—such as fuzzy
inference system (FIS), support vector machine for regression (SVR), and generalized linear
model (GLM)—are used to estimate the rice crop variables using bistatic scatterometer data.
The linear regression analysis is carried out for the evaluation of the multiangular, multitemporal,
and dual-polarized datasets for the selection of optimum incidence angle and polarization for
accurate estimation of rice crop variables. The highest value of the coefficient of determination
(R2) is found at 30-deg incidence angle for VV-polarization. The sensitivity of copolarized ratio
of σ° with the rice crop variable is also evaluated using linear regression analysis for the esti-
mation of rice crop variables. The highest value of R2 is found to be at 35-deg incidence angle
between the copolarized ratio of σ° and rice crop variables. The performance of SVR model is
found superior in comparison to the FIS and GLM at VV-polarization and the copolarized ratio
of σ° for the estimation of rice crop variables. However, the copolarized ratio of σ° is found
superior to VV-polarized bistatic scatterometer data for the estimation of rice crop variables.
© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.12.034004]
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1 Introduction

Rice is a staple food for billions of people in the world. The accurate and effective estimation of
rice crop growth variables is one of the key steps in effective monitoring of rice crop growth.
The microwave remote sensing has a great potential to complement traditional remote sensing
techniques for monitoring and assessment of crop growth.1 The remote sensing for agricultural
applications requires relatively high temporal and spatial resolution data. The microwave sensors
may be more effective than optical sensors for the monitoring of rice growth stages in the tropical
monsoon climate region of Asia.

*Address all correspondence to: Rajendra Prasad, E-mail: rprasad.app@itbhu.ac.in

1931-3195/2018/$25.00 © 2018 SPIE

Journal of Applied Remote Sensing 034004-1 Jul–Sep 2018 • Vol. 12(3)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 23 Aug 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1117/1.JRS.12.034004
https://doi.org/10.1117/1.JRS.12.034004
https://doi.org/10.1117/1.JRS.12.034004
https://doi.org/10.1117/1.JRS.12.034004
https://doi.org/10.1117/1.JRS.12.034004
mailto:rprasad.app@itbhu.ac.in
mailto:rprasad.app@itbhu.ac.in
mailto:rprasad.app@itbhu.ac.in
mailto:rprasad.app@itbhu.ac.in


Several researchers have conducted experiments to investigate the microwave response of
rice crops at different radar configuration of space-borne2–5 and ground-based1,6–10 microwave
sensors. SooBum et al.11 have carried out ground-based monostatic measurements over the
whole period of rice crop growth at X-band with HH-, VV-, and HV-polarizations in the
incidence angle range of 0 deg to 70 deg. Oh et al.7 reported the ground-based polarimetric
(HH-, VV-, HV-, and VH-) scatterometer measurements during the rice crop growth cycle from
transplanting period to harvest period at C- and L-band for different incidence angles (i.e., 30 deg,
40 deg, 50 deg, and 60 deg). Inoue et al.6 used a multifrequency polarimetric scatterometer
system to investigate the interaction between microwave backscattering and rice crop growth
variables using five different frequencies (Ka, Ku, X, C, and L) with all the polarizations
(HH-, VH-, HV-, and VV-) and four incident angles (25 deg, 35 deg, 45 deg, and 55 deg) for
the entire growth period of the rice crop. The correlation between backscattering coefficients and
crop variables was also analyzed. The leaf area index (LAI) was found best correlated with the
backscattering coefficient at HH- and cross-polarization for C-band. However, the fresh biomass
was found best correlated with backscattering coefficient at HH- and cross-polarization for L-band.

Most of the previous researchers have used monostatic radar geometry to monitor the rice
growing areas and estimation of the rice crop variables. In the case of bistatic radar, the trans-
mitter and receiver are placed opposite to each other in different azimuthal configurations,
whereas the transmitter and receiver are placed at the same location in monostatic radar mea-
surements. The bistatic scattering coefficient can provide multidimensional information of land
features due to the diversity of geometry available to the transmitting and receiving antennas.
The bistatic scattering coefficient is more sensitive to the vegetation parameters than the back-
scattering coefficients. The bistatic scattering coefficients do not exhibit severe saturation effects
at the maturity of the crops and show a better sensitivity to crop growth variables at its various
growth stages than the backscattering coefficient.12

Until now, very few researchers have used bistatic radar geometry for the retrieval of rice crop
variables. Recently, German Aerospace Centre (DLR) and EADS Astrium have launched a mis-
sion for bistatic radar system with twin satellites (TerraSAR- X and TanDEM-X). Erten et al.13

showed that the TanDEM-X mission is capable of tracking the plant growth of rice crop. They
compared the performance of vertical and horizontal polarizations of TanDEM-X for the tem-
poral mapping of rice crop height. The difference in height was found 10 cm between the rice
plant height (PH) measurements in the HH- and VV-channels of TanDEM-X at reproductive
stage. Rossi and Erten14 have evaluated the potential of space-borne bistatic interferometric
synthetic aperture radar images for the monitoring of biophysical variables of the rice crop.
The X-band differential bistatic interferometry radar images showed great benefit in elevation
mapping of PH of rice crop by 32 digital elevation models. Therefore, it is needed to explore
the potential of bistatic radar for monitoring the growth stages of crop/vegetation.

Currently, the machine learning algorithms (i.e., artificial neural network, fuzzy logic,
support vector machine for regression and genetic algorithm, etc.) are widely used to analyze
the radar data for many agricultural applications. These machine learning algorithms may have
advantages over the semiempirical or physical models for the estimation of rice crop growth
variables using radar data. Yang et al.15 overcame the difficulties in the selection of the optimum
values of fuzzy logic parameters based on self-learning system. They found that the simulation is
stronger in robustness and higher in control accuracy. They also found the system performance to
be greatly enhanced. Lin et al.16 describe the particle swarm optimization (PSO) based approach
to select the optimum values of SVM parameters. They found better classification accuracy using
developed PSO + SVM approach in comparison to other approaches. Huang and Wang17 have
used genetic algorithm (GA) based approach to optimize the parameters and feature selection of
datasets for SVM. They evaluated the GA-based SVM classification accuracy with RBF kernel
and the grid algorithm using real-world datasets. Several researchers have developed robust
machine learning algorithms by selecting the appropriate model parameters using error-trial
methods, which provided the encouraging results.18–20 Frate et al.21 have trained two separate
artificial neural networks algorithms by physical vegetation model to retrieve the soil moisture
and wheat crop variables using L-band, dual-polarized, and multiangular radiometric data. They
found the retrieval process quite effective. Champs-Valls et al.22 have introduced the ε-Huber
loss function in the support vector regression (SVR) algorithms for the estimation of biophysical
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parameters using remotely sensed data. Their proposed model has provided more accurate, less
biased, and improved robust estimation results. Pandey et al.23 used the fuzzy inference system
(FIS) algorithms and scatterometer data for the estimation of crop variables. They found that the
estimated values were very close to the observed values of the crop variables. Jia et al.24 have
evaluated the potential of the artificial neural network for the estimation of rice crop biomass
using quad polarized ground-based scatterometer data and RADARSAT-2 data. They found high
correlation coefficients between measured rice crop biomass and estimated rice crop biomass for
both the datasets.

The objective of this research is focused on the application of two machine learning algo-
rithms (FIS and SVR) along with GLM to estimate the rice crop variables using multitemporal,
dual-polarized (HH- and VV-), and multiangular datasets acquired by ground-based bistatic scat-
terometer system at X-band. The copolarization ratio of σ° is also evaluated for the estimation of
rice crop variables. This paper has the following structure. In Sec. 2, we have discussed the
experimental set-up and measurements technique. Section 3 includes the details of various
machine learning algorithms along with GLM and their optimization method and evaluation
of datasets. Section 4 covers results and discussions. Section 5 contains the conclusions of
the present work.

2 Methods

An experimental campaign carried out by the bistatic scatterometer system along with rice
growth variables measurements is performed over the uniform rice crop field from August
13, 2012 to November 21, 2012. The angular response of bistatic scattering coefficients is ana-
lyzed over the rice growing season at X-band for HH- and VV-polarization. The multitemporal,
multiangular, and dual-polarized bistatic scatterometer data are also evaluated for the estimation
of rice crop variables.

2.1 Bistatic Scatterometer Measurement

The technical specifications and real photograph of bistatic scatterometer set-up are presented in
Table 1 and Fig. 1(a), respectively. Figure 1(b) shows the geometry of the bistatic scatterometer
system used in the present study. In the bistatic configuration, the transmitter and receiver are
placed on opposite side to each other during measurements made for microwave signature study
of rice crop at its various growth stages. The transmitter consists of PSG high power signal
generator (E8257D, 10MHz to 20 GHz), X-band pyramidal dual polarized horn antenna,
and antenna support tower. The receiver consists of EPM-P series power meter (E4416A),
peak and average power sensor (E9327A, 50 MHz to 18 GHz), pyramidal dual polarized horn
antenna, and antenna support tower. The polarization of the horn antenna is changed by using
90 deg E-H twister. The antenna support towers have the capability to change incidence angle
and height of transmitting and receiving antennas. The incidence angle and height of transmitting
and receiving antennas are measured by a pointer attached with the circular scale and linear scale,
respectively. The laser pointer is used to focus transmitting and receiving antenna beams at the
center of rice crop bed. The laser pointer helps to overlap the footprint of both (transmitting and
receiving) antennas at the center of the rice crop bed.

The bistatic measurements are carried out at HH- and VV- polarization in the incidence angle
range of 20 deg to 70 deg at steps of 5 deg. Three independent measurements are taken at each
incidence angles for azimuthal angle φ ¼ 0 in the specular direction during the whole life cycle
of rice growth.

The internal calibration of bistatic scatterometer system is done using the power ratio
method.25 The σ° of the distributed target is directly proportional to the ratio between received
power from the target and transmitted power. All the gain and losses are considered for the
measurement of received and transmitted power except antenna gain of the bistatic scatterometer
system.

The external calibration of bistatic scatterometer system is done using a flat and conducting
aluminum sheet. The amplitudes of the scattered signal from the scatter (rice crop) and reflected
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power from the perfectly smooth and conducting aluminum sheet are observed for the entire
angular range. The amplitudes of scattered power from scatter are normalized using the reflected
power by the aluminum sheet for the calibration of bistatic scatterometer system. The normalized
power is used to compute the σ° using radar equation. 26 The antennas are placed in the far-field
region from the center of the target to minimize the near-field interactions. The calibration of
the system is done regularly during the experiment to ensure the integrity of the system.

2.2 Study Site and Rice Growth Variables

An outdoor rice crop bed of area 4 m × 4 m (16 m2) is specially prepared for the transplanting of
the rice crop. The crop bed is flooded with water before transplanting the rice crop. The rice crop
bed is located in the study site besides the Department of Physics, Indian Institute of Technology
(BHU), Varanasi, India (latitude 25° 13′ 52″ N and longitude 82° 38′ 41″ E). The rice seeds were
sown in the nursery on July 10, 2012. After 1 month, the rice plants are uniformly transplanted in
the crop bed. The distance between each row of rice plants is kept 20 cm. The whole life cycle of
the rice crop is divided into its different phenological stages to understand the temporal microwave
scattering response of the rice crop growth variables at various growth stages. The entire growth
period of the rice crop can be divided into three major growth stages after transplanting, such as
(1) the vegetative stage, starting from effective tillering (August 13) and ending with panicle for-
mation (September 22); (2) the reproductive stage, it starts from panicle formation (September 22)
to heading (October 22); and (3) the ripening or maturating stage, it starts from heading through
soft dough (October 22) and ends with the formation of hard grains (November 21).

The bistatic measurements are carried out at eight different growth stages of rice crop (5, 18,
30, 45, 60, 75, 85, and 105 days after transplanting) at the interval of 10 to 15 days from
transplanting to ripening stage. The measurement of rice crop variables is carried out at the
time of each bistatic scatterometer measurement, as reported in Table 2.

Table 1 Specification of bistatic scatterometer system.

RF generator E8257D, PSG high power signal generator,
10 MHz to 20 GHz (Agilent Technologies)

Power meter E4416A, EPM-P series power meter,
10 MHz to 20 GHz (Agilent Technologies)

Power sensor Peak and average power sensor (E9327A,
50 MHz to 18 GHz)

Frequency (GHz) 10� 0.05 (X-band)

Beam width E plane (deg) 17.31

H plane (deg) 19.59

Band width (GHz) 0.80

Antenna gain (dB) 20.00

Cross-polarization isolation (dB) 40.00

Polarization modes Horizontal transmit – horizontal receive (HH)

Vertical transmit – vertical receive (VV)

Antenna type Dual-polarized pyramidal horn

Calibration accuracy (dB) 1.00

Platform height (m) 3.00

Incidence angle (deg) 20 deg (nadir) to 70 deg

Measurement interval 20 min
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Table 2 Measurement in days after transplanting and summary of the ground truth data.

Days after showing 5 18 30 45 60 75 85 105

VWC (kgm−2) 0.09 0.45 0.80 1.24 1.69 2.40 2.57 2.42

LAI (m2 · m−2) 0.32 1.25 1.27 1.39 1.87 1.92 2.12 1.98

PH (cm) 10.80 24.80 65.60 79.00 90.00 101.00 105.00 102.00

Stems per bunch 6.00 9.00 11.00 12.00 15.00 17.00 18.00 18.00

No. of leaves per stem 2.00 2.00 3.00 3.00 3.00 4.00 4.00 4.00

Bunches∕m2 42.00 42.00 42.00 42.00 42.00 42.00 42.00 42.00

Leaf length (cm) 7.45 14.82 18.66 26.42 31.92 34.74 35.47 36.21

Leaf width (cm) 0.16 0.45 0.50 0.80 0.99 1.10 1.20 1.34

Leaf thickness (mm) 0.19 0.19 0.19 0.19 0.20 0.21 0.24 0.30

Fig. 1 Pictorial representation of bistatic scatterometer system: (a) real photograph of bistatic
scatterometer system and (b) geometrical representation of bistatic scatterometer system.
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The rice crop variables like vegetation water content (VWC), LAI, PH, plant density, number
of stems per bunches, leaf length, leaf width, etc., are measured during each observation. The
VWC is defined as the total water content available in the plant constituents in 1-m2 area. The
total number of rice clusters at the crop bed is calculated and divided by 16 for the calculation of
a number of rice clusters perm2 (cluster density). The VWC is computed by using the destructive
method of rice clusters. Five rice clusters are taken from the different locations of the crop bed
during each observation. These five samples are selected from the outer edge of the crop bed so
that the crop lying in the footprint area of the antenna beam on the crop bed remains unaffected.
These five samples of rice clusters contain all type of rice clusters available in the crop bed.
The leaves and stalks of rice clusters (five samples) were dried in an oven at 100°C for
24 h. These five samples were weighed before and after drying. The average of all five samples
was taken to compute the overall VWC. The VWC can be computed as follows:

EQ-TARGET;temp:intralink-;e001;116;592VWC ¼ ðweight of fresh rice cluster − weight of dry rice clusterÞ × cluster density: (1)

An instrument ACCUPAR LP-80 Ceptometer27–29 is used for the measurement of LAI of the
rice crop. The 20 samples of LAI are taken at different locations and at different sun ray direc-
tions on the rice crop bed. This instrument has a linear probe containing 80 light interception
sensors. The instrument can measure photosynthetically active radiation (PAR) and LAI. It mea-
sures the LAI by measuring the PAR above and below the canopy. The five measurements of LAI
are taken at each side of the crop bed (four sides of the crop bed along east, west, north, and south
directions). The average of all 20 LAI samples is taken to compute the overall LAI. The sun rays
direction, sunlight intensity, and alignment of the sensors are the important parameters for the
accurate measurement of LAI by ACCUPAR LP-80 Ceptometer instrument. We have taken the
measurements at all the four sides of the crop bed to avoid the error due to the direction of sun
rays. The bubble provided on the top of the probe should be kept at the center to minimize the
error in the alignment of the probe. The LAI measurements are taken during sufficient sunlight
required for accurate measurement.

A linear wooden scale of 2-m length is used to measure the PH in the crop bed under the
investigation. The wooden scale is kept vertically in the crop bed. Another thick wooden sheet
(5 mm) placed over the plants touched with the top edge of the plants. The thick wooden sheet
marks a point on the vertically linear scale and reads the average height of plants. A Vernier
caliper is used to measure the width and thickness of leaves of the rice crop. The linear
scale is used to measure the leaf length of the rice plants. The measurement of leaf length
is simple but width measurement is very tedious due to its shape. The leaf length was measured
from bottom to top tip of the leaf. The major size along the width of the leaf is considered as
the leaf width.

2.3 Evaluation of Datasets for the Estimation of Rice Crop Variables

The linear regression analysis is carried out between σ° and rice crop variables to evaluate the
higher sensitivity of σ° with the rice crop variable from multitemporal, multiangular, and dual-
polarized bistatic scatterometer data. The higher value of R2 tells the higher sensitivity between
σ° and rice crop variables. The value of R2 is found to be higher at 30-deg incidence angle for all
the rice crop variables with the σ° at HH- and VV-polarization. Figures 2 and 3 show matrix
correlation plot, which are drawn to evaluate the sensitivity of the σ° with all the rice crop var-
iables individually for 30-deg incidence angle at HH- and VV-polarization, respectively. In the
case of copolarization ratio of σ°, the value of R2 is found to be higher at 35-deg incidence angle.
Figure 4 is drawn to evaluate the sensitivity of copolarization ratio of σ° with all the rice crop
variables individually at 35-deg incidence angle. The sensitivity of σ° with the crop variables is
found to be higher at 30 deg and 35 deg in the case of both like polarization and copolarized
ratio, respectively. Thus, bistatic scatterometer system may be set at around 30 deg to 35 deg for
the accurate estimation of crop variables.

The HH- and VV-polarized σ° are found more sensitive to the rice VWC than the other rice
crop variables at its various growth stages, whereas the VV-polarized σ° is found more sensitive
for rice LAI and PH at various growth stages of rice crop than HH-polarized σ°. The polarization
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Fig. 3 Correlation matrix plot between bistatic scattering coefficients and rice crop variables at
VV-polarization.

Fig. 2 Correlation matrix plot between bistatic scattering coefficients and rice crop variables at
HH-polarization.
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of a microwave is sensitive to the shape, size, and orientation of the target elements. The hori-
zontal polarization gives the measure of the horizontal dimension of the scattering elements,
while the vertical polarization gives a measure of the vertical dimension. The VV-polarized
σ° contribution is found more dominant than the HH- polarized σ° due to the interaction
with the vertically oriented leaves and stems of the rice crop. Most of the rice crop constituents,
namely leaves and stems are vertically oriented. The total water content available in the rice crop
constituents is described by VWC of the rice crop. The change in water content in the plant
constituents at various growth stages of the rice crop is responsible for the changes in electrical
properties (dielectric constant) of the rice crop at microwave frequencies. The change in LAI and
PH of rice at its various growth stages is responsible for the changes in geometrical properties of
rice crop for the microwave. The copolarization ratio of σ° has shown higher sensitivity for all
the rice crop variables than HH- and VV-polarized σ°.

The sensitivities between each rice variable are found to be approximately similar at various
growth stages of the rice crop. It means that the changes in each rice crop variables have shown
significant correlation with other rice crop variables during the entire crop development. The
value of R2 is found slightly higher at HH-polarization just by 0.047 than the corresponding
value at VV-polarization for rice VWC. This difference of R2 does not indicate the significantly
higher sensitivity at HH-polarization than VV-polarization. The VV-polarized σ° may be the best
choice for the estimation of rice crop variables. Sensitivity of the copolarization ratio of σ° with
the rice crop variables is also investigated to determine the possibility of using a copolarization
ratio of σ° for the estimation of rice crop variables.

The VV-polarized σ° and the copolarization ratio of σ° are used as the input datasets while the
rice crop variables namely VWC, LAI, and PH are used as the output datasets for the training and
testing of machine learning algorithms. In the present study, the data acquisition is carried out at
eight different growth stages of the rice crop. The large datasets are required for the proper train-
ing of the machine learning algorithms. The σ° and rice crop variables are interpolated into 101
datasets at the interval of 1 day from 5 to 105 days after transplanting of rice crop at 30-deg
incidence angle for VV-polarization. The cubic spline interpolation method is used to perform
the interpolation of datasets. The interpolated datasets for the various growth stages of rice crop
are used for the training and testing of machine learning algorithms. Eighty one datasets (at 6-9,

Fig. 4 Correlation matrix plot between copolarization ratio of σ° and rice crop variables.
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11-14, 16-19, 21-24, 26-29, 31-34, 36-39, 41-44, 46-49, 51-54, 56-59, 61-64, 66-69, 71-74,
76-79, 81-84, 86-89, 91-94, 96-99, and 105 days after transplanting) out of 101 datasets are
selected for the training while the remaining 20 datasets (at 5,10, 15, 20, 25, 30, 35, 40, 45,
50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 100 days after transplanting) are kept separately
for the testing purposes of machine learning algorithms.

The six different combinations of datasets are used for the training and testing of machine
learning algorithms. The inputs and outputs of these datasets are (i) input: VV-polarized σ°
and output: rice VWC; (ii) input: VV-polarized σ° and output: rice LAI; (iii) input: VV-polar-
ized σ° and output: rice PH; (iv) input: copolarized ratio of σ° and output: rice VWC;
(v) input: copolarized ratio of σ° and output: rice LAI; and (vi) input: copolarized ratio
of σ° and output: rice PH. Each dataset is used separately for training and testing of machine
learning algorithms.

3 Machine Learning Algorithms

3.1 Fuzzy Logic

Fuzzy logic is a mathematical approach dealing with membership functions (MFs), fuzzy sets,
and fuzzy operators to form many sets of rules to establish the suitable relationships between
given input and output datasets. These set of rules deal with approximate, rather than fixed and
exact reasoning. The fuzzy logic variables may have truth values with ranges in degree between
0 and 1 in comparison to the traditional binary logic (fuzzy logic variables may have only true or
false values). The fuzzy logic provides a better understanding of the things present in the world
that surrounds us and is defined by a nondistinct boundary based upon vague, ambiguous, impre-
cise, noisy, and missing input information.30

The membership values of all the inputs generated through MF at fuzzification layer exist in
the premise part. This process is called fuzzification of the fuzzy logic. All these membership
values of FIS algorithms are combined to the firing strength (weight) by using a fuzzy logic
controller. The crisp output is produced by the generation of qualified consequents for each
rule depending on the firing strength. This process is called defuzzification of fuzzy logic.31

The two steps are necessary to follow the fuzzy logic for any computation, namely data cluster-
ing and developing FIS algorithms.

Many supervised and unsupervised data clustering techniques are available to categories and
identify the different group of datasets. In the present study, the unsupervised subtractive clus-
tering method32 is used for clustering or grouping the same categories of datasets generated from
σ° and rice crop variables. The subtractive clustering method is used to estimate the number of
clusters and the cluster centers in a set of data. The subtractive clustering method assumes each
data point as a potential cluster center and calculates the likelihood that each data point would
define the cluster center based on the density of surrounding data points. First, it considers all
the data points with the highest potential to be the first cluster and removes all the data points.
The surrounding area of the cluster center is determined by the radii of the clusters. The next
data cluster and its central location can be determined by the iterative process of all data within
radii of the cluster center.

The FIS algorithm is a Sugeno type fuzzy model having a systematic approach for gen-
erating the fuzzy rules from a given input–output dataset.33,34 The FIS algorithms generally
composed of five layers, such as input layer, MF or fuzzification layer, rule layer, consequent
layer, output or defuzzification layer. The first layer contains input nodes. The input nodes
directly transmit inputs to the next layer. The mathematical representation at first layer is
given by Eq. (2):

EQ-TARGET;temp:intralink-;e002;116;141Oð1Þ
i ¼ xi: (2)

The second layer is called as MF or fuzzification layer. At this layer, the membership value
specifies the degree to which an input value belongs to a fuzzy set. The Gaussian MF is assumed
to calculate the membership values for the input xi:
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EQ-TARGET;temp:intralink-;e003;116;735Oð2Þ
ij ¼ exp

�
−
½Oð1Þ

i −mij�2
σ2ij

�
(3)

wheremij and σij are the mean and standard deviation of the Gaussian MF of the j’th term of i’th
input variables.

The third layer in the FIS algorithms is called rule layer. In this layer, the output at each node
is determined by the AND operation between the outputs of the second layer. The product rule is
utilized to determine the firing strength of each rule. The function of each rule is as follows:

EQ-TARGET;temp:intralink-;e004;116;635Oð3Þ
j ¼

Y
j

Oð2Þ
ij : (4)

The fourth layer is called consequent layer. The inputs to the layer 4 are delivered from the
output of layer 3 and other inputs from the input variables of layer 1. Mathematically, the output
at the nodes of layer 4 is as follows:

EQ-TARGET;temp:intralink-;e005;116;561Oð4Þ
j ¼ Oð3Þ

j

�
woj þ

Xn
i

wijxi

�
; (5)

where wij are the corresponding parameters of the consequent part.
The last layer or output layer or defuzzification layer represented by only one node indicates

the overall outputs by performing the summation of all incoming signals as follows:

EQ-TARGET;temp:intralink-;e006;116;483y ¼ O5 ¼
P

R
j¼1 O

ð4Þ
jP

R
j¼1 O

ð3Þ
j

¼
P

R
j¼1 O

ð3Þ
j ðwoj þ

P
n
i wijxiÞP

R
j¼1 O

ð3Þ
j

; (6)

where R is the number of fuzzy rules and n is the number of input variables.35

3.2 Support Vector Regression

The SVMs for regression are first introduced by Vapnik et al.36 The SVR algorithm performs
linear regression in the feature space using ε-insensitive loss function. At the same time, it tries to
reduce the model complexity by minimizing kw2k. The SVR algorithm is mathematically
formulated as follows:

EQ-TARGET;temp:intralink-;e007;116;336Min
1

2
kw2k þ C

XN
i¼1

ðξi þ ξ�i Þ; (7)

subject to

EQ-TARGET;temp:intralink-;e008;116;292wTϕðxiÞ − yi ≤ εþ ξi; (8)

EQ-TARGET;temp:intralink-;e009;116;269yi − wTϕðxiÞ ≤ εþ ξ�i ; (9)

where ξi; ξ�i ≥ 0; i ¼ 1; : : : ; N and ϕ maps the data point x into high-dimensional feature space
and linear regression with ε-insensitive loss function performed is the feature space. Here, ϕ is
the kernel function, N is the number of training data, xi and yi are vectors used in the training
process. As a consequence, the dimension of w is that of ϕðwÞ and hence, there is no attempt to
express the target function in terms of w.32 The least squares approach is used to choose the
parameters (ξi; ξ�i ) to minimize the sum of the squared deviations of the data.

3.3 Generalized Linear Model

In statistical models, the GLM relates the responses to linear combinations of predictor variables,
including many commonly encountered types of dependent variables and error structures as
special cases.37,38 One variable is considered to be an independent variable xi, and the other
is considered to be a dependent variable yi.

39 They are represented as follows:

EQ-TARGET;temp:intralink-;e010;116;86yi ¼ xibþ ei; (10)
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where i ¼ 1; : : : ; n; yi is a dependent variable, xi is the independent predictors, b is a vector of
unknown parameters, and ei is stochastic disturbances. GLM models are characterized by
stochastic component, systematic component, and link between the random and systematic
components.40

3.4 Description and Optimization of Machine Learning Parameters

The FIS algorithm is realized by formulating the data clustering for the estimation of rice crop
variables using bistatic scatterometer data. The subtractive clustering algorithm is used for

Table 3 Optimum parameters for fuzzy logic during data clustering and generation of FIS.

Rice crop variable No. of clusters No. of fuzzy rules Radii value Polarization

VWC 4.00 4.00 0.10 VV

LAI 3.00 3.00 0.10 VV

PH 6.00 6.00 0.20 VV

VWC 3.00 3.00 0.10 HH/VV

LAI 3.00 3.00 0.10 HH/VV

PH 4.00 4.00 0.20 HH/VV

Fig. 5 MF plot at HH-polarization for (a) VWC, (b) LAI, and (c) PH.
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the clustering of six different datasets to generate the fuzzy rules for FIS algorithm between σ°
and rice crop variables. Table 3 depicts the optimum values of FIS parameters (radii values,
number of clusters, and number of fuzzy rules) obtained for all six datasets (described in
Sec. 2.3). The Sugeno or Takagi–Sugeno–Kang type FIS algorithm is used to generate a
fuzzy inference system to predict the desired output. The optimum value of cluster radii is
required to obtain the desired result by FIS algorithm. The clustering of datasets is useful before
the application of fuzzy rules.

The clustering of datasets helps to set the number of fuzzy rules for the estimation of rice crop
variables using bistatic scatterometer data. The number of clusters is basically equal to the num-
ber of fuzzy rules. It categorizes the entire datasets into different clusters depending upon the
variability of σ° at VV-polarization and copolarization ratio of σ° with the temporal variation of
the rice crop variables. The number of data clusters generated by using subtractive clustering
depends upon the Euclidean distance between the cluster center and the data points, which are
also known as radii of the cluster. The desired retrieval accuracy depends on the selection of the
optimum value of radii. The optimization of cluster radii in the datasets is an important task to
generate the optimum and desired results by FIS algorithm.

For the VWC and LAI, the number of clusters is found approximately same but slightly lesser
than the number of clusters for PH. The maximum number of clusters is found for the PH. The
numerical values of VWC and LAI are found between 0 and 3. The numerical values of PH
varied between 10.8 and 102 cm in our crop bed. The analysis based on numerical range of
datasets helps to reduce the number of attempts in trial and error method for the computation
of the optimum values of clusters and radii for a given FIS.

Figures 5(a)–5(c) and 6(a)–6(c) show the MF curve that defines the relation of each point in
the input space mapped with the membership value (or degree of membership) between 0 and 1
at VV-polarization and copolarization for rice VWC, LAI, and PH, respectively. The input values

Fig. 6 MF plot at VV-polarization for (a) VWC, (b) LAI, and (c) PH.
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are coded in the form of MF. The Gaussian MF is used to establish the fuzzy rules between
each cluster in the present study.

The epsilon support vector regression (ε-SVR) approach is also used for the estimation of rice
crop variables using VV polarized σ° and copolarized ratio of bistatic scattering coefficients.
The estimation accuracy by SVR depends on the selection of the optimum values of cost (C),
epsilon (ε), and the kernel parameters.

The trial-and-error approach is used for the selection of optimum and best parameters of the
SVR. The error between estimated and observed values of rice crop variables is continuously
monitored during the training of SVR. The optimum value of hyperparameter (σ) of the Gaussian
radial basis kernel function is selected using the heuristics method.

Table 4 shows the optimum values of hyperparameters, number of support vectors, and val-
ues of objective function at ε ¼ 0.1 and C ¼ 5 during the training of SVR for the estimation of
rice crop variables using VV and copolarized ratio of σ°.

4 Results and Discussion

4.1 Time Series Analysis of Bistatic Scattering Coefficients and Rice
Crop Variables

Utmost care is taken to avoid the possibility of variability in the measurement of each of the rice
crop variables. However, the sources of possibility for the variability in the measurement of rice
crop variables may be due to the counting of clusters∕m2, measurements of weights before and
after drying the samples, and sunlight condition.

Figures 7(a)–7(c) show a temporal trend of the rice crop variables as a function of days after
transplanting. The VWC is found to increase up to the reproductive stage and the middle of the
repining stage, and then after started decreasing. The temporal trend of LAI is found to increase
rapidly during the vegetative stage and then after increases slowly at the middle of the ripening
stage and finally started decreasing. The temporal behavior of rice PH is found increasing rapidly
during the vegetative stage and then after is found to increase slowly.

Figures 8 and 9 show the temporal signature of σ° in the incidence angle range of 20 deg to
70 deg at steps of 5 deg for HH- and VV-polarization as a function of day of observations made
after transplanting. Figure 10 shows the temporal trend of copolarized ratio of σ°. Each point on
the graph shows the average of three independent measurements of σ° by repeating the mea-
surements. The temporal trend of σ° was found decreasing at a certain point and then slightly
increases at all the incidence angles for HH- and VV-polarizations. The σ° shows decreasing
behavior with increasing rice crop growth variables. The saturation in the temporal trend of
σ° is not found at any growth stage of rice crop grown in our crop bed. The σ° is found sensitive
even for a small change in the rice crop variables during its various growth stages.41,42 The larger
dynamic ranges of σ° are found to be 23 and 27 dB for HH- and VV-polarization at 30-deg

Table 4 Optimum parameter SVR during training of algorithms [class of SVM used: ksvm; type of
SVM used: ε-SVR (regression); kernel function used: Gaussian radial basis].

Rice crop
variables

Epsilon
(ε)

Cost
(C)

Hyperparameter
(σ)

Number of support
vectors

Objective function
value Polarization

VWC 0.10 5.00 98.02 50 −78.33 VV

LAI 0.10 5.00 14.22 47.00 −75.17 VV

PH 0.10 5.00 28.49 43.00 −46.44 VV

VWC 0.10 5.00 14.06 42.00 −118.02 HH/VV

LAI 0.10 5.00 7.19 49.00 −102.19 HH/VV

PH 0.10 5.00 11.69 44.00 −94.25 HH/VV
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incidence angle, respectively. At the vegetative stage, the σ° of the rice crop in the specular
direction is dominated by the reflection of the coherent component due to water underneath.

As the crop grows, the leaves become dense, it blocks the random scattering by water under-
neath and contributes the random scattering by the stems and leaves of the rice crop during
the reproductive stage. Therefore, the σ° decreases during the reproductive stage. During the
reproductive stage, the contribution of the coherent component of the microwave in the specular
direction decreases. At the ripening stage of rice crop, the increasing trend of σ° is found.
The trend of the copolarization ratio is found to be approximate flatter pattern after 30 days of
transplanting. As the crop grows, the dominance of random scattering is found to increase.

Fig. 8 Temporal variation of bistatic scattering coefficient at different incidence angles for
HH-polarization.

Fig. 7 Temporal variation of rice crop variables for (a) VWC, (b) LAI, and (c) PH.
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4.2 Estimation of Rice Crop Variables

The performance of different machine learning algorithms (FIS and SVR) along with GLM
model is evaluated by comparing the values of some performance indices [RMSE, bias (%),
and R2] during training and testing of machine learning algorithms and GLM using the six differ-
ent datasets described in Sec. 2.3. The values of performance indices are computed between
estimated and observed rice crop variables.

Figures 11(a)–11(c) depict the scatter plot with 1:1 line between observed and estimated
values of rice crop variables by FIS using training and testing datasets. Figures 12(a)–12(c)
depict the scatter plot with 1:1 line between observed and estimated values of rice crop variables
by SVR using training and testing datasets. The estimation accuracy by SVR depends on
the selection of the optimum values of cost (C), epsilon (ε), and the kernel parameters.
Figures 13(a)–13(c) depict the scatter plot with 1:1 line between observed and estimated values
of rice crop variables by GLM using training and testing datasets, respectively. Tables 5–7 depict
the values of performance indices during training and testing of the FIS, SVR, and GLM, respec-
tively, between the observed and estimated values of rice crop variables using VV-polarized σ°
and the copolarized ratio of σ°. The performance indices analysis during the testing of the
developed model shows the relatively higher values of R2 by SVR model among the three
different models. The R2 values obtained by SVR are found to be 0.986, 0961, and 0.988 for
VWC, LAI, and PH, respectively, at copolarized ratio of σ°.

The performance of FIS and SVR algorithms for the estimation of rice crop variables during
training and testing using dataset (VV-polarized σ° and the copolarized ratio of σ°) is evaluated
by comparing the values of performance indices for all three rice crop variables. The values of

Fig. 10 Temporal variation of the polarization ratio (HH pol./VV pol.) at different incidence angles.

Fig. 9 Temporal variation of bistatic scattering coefficient at different incidence angles for
VV-polarization.
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Fig. 12 (a–c) Relative scatter plots with 1:1 line between SVR estimated and observed rice crop
variables: (a) VWC, (b) LAI, and (c) PH using training and validation datasets for VV-polarized σ°
and copolarized ratio of σ°.

Fig. 11 (a–c) Relative scatter plots with 1:1 line between FIS estimated and observed rice crop
variables: (a) VWC, (b) LAI, and (c) PH using training and testing datasets for VV-polarized σ° and
copolarized ratio of σ°.
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estimated and observed rice crop variables are found to be very close during training and testing
by these machine learning algorithms. The performance of GLM, for the estimation of rice crop
variable by VV-polarized σ° and the copolarized ratio of σ°, is found equally good during the
training and testing datasets. The estimation of VWC is found to be better than the LAI and PH
by SVR, FIS, and GLM using VV-polarized σ°, while the estimation of PH is found better
than VWC and LAI using a copolarized ratio of σ° during training and testing of these machine
learning algorithm and GLM.

Fig. 13 (a–c) Relative scatter plots with 1:1 line between GLM estimated and observed rice crop
variables: (a) VWC, (b) LAI, and (c) PH using training and validation datasets for VV-polarized σ°
and copolarized ratio of σ°.

Table 5 Statistical performance indices during training and testing using FIS.

Performance parameter

VV HH/VV

VWC LAI PH VWC LAI PH

Training of algorithm

RMSE 0.133 0.104 8.059 0.096 0.129 3.700

Bias (%) 1.093 0.213 −0.021 0.277 0.213 −0.021

R2 0.973 0.947 0.932 0.985 0.920 0.985

Testing of algorithm

RMSE 0.133 0.103 7.901 0.095 0.120 3.676

Bias (%) 1.332 −0.101 −0.510 1.175 −0.329 0.102

R2 0.972 0.943 0.932 0.986 0.923 0.985
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The aforementioned analysis and comparison of performance indices indicate that the FIS
and SVR algorithms may provide better results than GLM for the estimation of rice crop var-
iables using VV-polarized σ° and the copolarized ratio of σ°. However, the performance of SVR
is found superior to the FIS and GLM during the training and testing of these algorithms. The
estimated values of LAI and PH are also found in good agreement with the observed values using
VV-polarized σ° and the copolarized ratio of σ° dataset by machine learning algorithm and GLM.
The estimation of rice crop variables is found more accurate using a copolarized ratio of σ°
dataset than VV-polarized σ° dataset by all the machine learning algorithm and GLM used in
the present study.

5 Conclusion

The decreasing trend of σ° with the age of rice crop is observed in the angular range of the
incidence angle 20 deg to 70 deg at steps of 5 deg at HH- and VV-polarization for X-band during
vegetative and reproductive stages, whereas increasing trend is observed during ripening stage.
The computed copolarization ratio of σ° showed the decreasing trend with the age of rice crop for
the entire range of incidence angles. The maximum values of R2 are found at 30-deg and 35-deg
incidence angles for both like polarization and copolarized ratio of σ°, respectively. However,

Table 6 Statistical performance indices during training and testing of SVR.

Performance parameter

VV HH/VV

VWC LAI PH VWC LAI PH

Training of algorithm

RMSE 0.221 0.113 10.315 0.090 0.099 3.491

Bias (%) 3.319 0.040 −7.207 0.002 −1.944 −1.325

R2 0.983 0.939 0.979 0.987 0.961 0.988

Testing of algorithm

RMSE 0.210 0.103 10.516 0.988 0.092 3.387

Bias (%) 3.773 −0.101 −7.724 0.059 −1.804 −0.502

R2 0.986 0.943 0.979 0.986 0.961 0.988

Table 7 Statistical performance indices during training and testing of GLM.

Performance parameter

VV HH/VV

VWC LAI PH VWC LAI PH

Training of algorithm

RMSE 0.505 0.358 15.823 0.249 0.168 7.207

Bias (%) 3.81 × 10−5 2:77 × 10−5 3.86 × 10−7 2.142 −0.475 0.064

R2 0.752 0.612 0.730 0.823 0.800 0.851

Testing of algorithm

RMSE 0.511 0.359 16.048 0.248 0.169 7.097

Bias (%) 0.480 −0.304 0.130 1.773 −0.574 0.952

R2 0.734 0.570 0.711 0.817 0.791 0.849
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the VV-polarized σ° is found more sensitive in comparison to HH-polarized σ° with the rice crop
variables. The copolarized ratio of σ° is found to be more sensitive with crop growth variables in
comparison to both like polarizations. The FIS and SVR provide better results than GLM for
the estimation of rice crop variables using VV-polarized σ° and copolarization ratio of σ°.
The approach of copolarized ratio provides a more accurate estimation of rice crop variables
by FIS, SVR, and GLM algorithms in comparison to VV-polarized σ°. However, the perfor-
mance of SVR is found to be more accurate than the FIS and GLM algorithms. The estimation
of VWC is found more accurate than the other rice crop variables by all three different algo-
rithms. Nevertheless, the estimated values of LAI and PH are also found to be in agreement with
the observed values. The present study may help to determine the optimum incidence angle,
polarization, and suitable machine learning algorithm for the estimation of rice crop variables
for effective monitoring of rice crop growth using bistatic scatterometer system on-board
satellite.
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