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A Robust Encoding Scheme for Delivering
Artificial Sensory Information via

Direct Brain Stimulation
David A. Bjånes and Chet T. Moritz

Abstract— Innovations for creating somatosensation via
direct electrical stimulation of the brain will be required
for the next generation of bi-directional cortical neuropros-
theses. The current lack of tactile perception and proprio-
ceptive input likely imposes a fundamental limit on speed
and accuracy of brain-controlled prostheses or re-animated
limbs. This study addresses the unique challenge of iden-
tifying a robust, high bandwidth sensory encoding scheme
in a high-dimensional parameter space. Previous studies
demonstrated single dimensional encoding schemes deliv-
ering low bandwidth sensory information, but no compari-
son has been performed across parameters, nor with update
rates suitable for real-time operation of a neuroprosthesis.
Here, we report the first comprehensive measurement of
the resolution of key stimulation parameters such as pulse
amplitude, pulse width, frequency, train interval and number
of pulses. Surprisingly, modulation of stimulation frequency
was largely undetectable. While we initially expected high
frequency content to be an ideal candidate for passing high
throughput sensory signals to the brain, we found only mod-
ulation of very low frequencies were detectable. Instead, the
charge-per-phase of each pulse yields the highest resolu-
tion sensory signal, and is the key parameter modulating
perceived intensity. The stimulation encoding patterns were
designed for high-bandwidth information transfer that will
be required for bi-directionalbrain interfaces. Our discovery
of the stimulation features which best encode perceived
intensity have significant implications for design of any
neural interface seeking to convey information directly to
the brain via electrical stimulation.

Index Terms— Brain-computer-interface, cortical neuro-
prosthesis, electrical stimulation, sensory perception,
sensory stimulation.

I. INTRODUCTION

CORTICAL neuroprostheses offer a unique tool to
improve health and function via direct communication
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with the brain. Cortical stimulation is being explored to
convey visual [1]–[5], auditory [6]–[8], and somatosensory
information [9]–[16]. In order for these devices to faithfully
deliver high-bandwidth information to the brain, we must
understand how to reliably encode information within the
stimulation signals.

Although early studies demonstrated somatosensory feed-
back [11], [17]–[20], recent advances in neural recording
and decoding have largely outpaced progress in sensory
feedback. Current brain computer interfaces (BCIs) decode
neuronal activity, enabling subjects to complete a variety
of tasks [21]–[29]. Recent improvements to BCIs incorpo-
rate higher channel counts [30], [31] and machine learning
algorithms [32] to control biomimetic robotic arms in real-
time [33], [34]. As a result, human BCI users are able to
achieve control of 7-10 degrees of freedom [35], [36]. These
open-loop controllers, however, rely on slow visual feedback
pathways and may realize greater improvements by incorpo-
rating closed-loop sensory feedback [37], [38].

Achieving coordinated, dexterous control using a BCI
will likely require a short-latency, high-fidelity feedback
signal [39]. However, the optimal design of this signal is
the topic of much debate [40]. Biomimetic signal design-
ers have delivered electrical stimulation patterns similar to
the neural signals expected by the sensory cortex [11], [41].
By recording neural activation patterns of a sensation elicited
via mechanical stimuli, electrical stimulation mimicking those
recorded patterns can evoke similar sensations, which at times
may be indistinguishable from natural sensation [18], [42].
This technique is important for verifying the quality of the
elicited sensory percepts; unfortunately, it excludes typical
BCI users, whom may no longer receive natural sensory input
to their brain due to spinal cord injury or stroke.

Sensory substitution relies on the plasticity of the brain
to “substitute” an incoming artificial signal for a physical
sensation [43]. This second approach presents stimulation
first and measures the evoked sensation afterwards [20], [44].
By exploiting cortical adaptation, electrical stimulation has
artificially evoked a variety of sensations, utilized by
rodents [19], primates [17], [45] and human patients [46] to
solve sensorimotor tasks. Rather than answer this debate con-
clusively, the purpose of this paper is to address a more funda-
mental question. Regardless of the cortical region stimulated or
the sensation elicited, the community does not yet understand
the fundamentals of how individual stimulation parameters
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affect an evoked percept. Prior to incorporating any designed
high-resolution sensory feedback signal in bi-directional neu-
roprostheses, we seek to understand which parameters can
rapidly encode discriminable information.

The basic building blocks of a stimulation pattern are five
characteristic parameters: amplitude, pulse-width, frequency,
number of pulses, and train interval. By modulating these para-
meters, intra-cortical micro-stimulation (ICMS) can convey
sensory information delivered to primary sensory cortex. Infor-
mation can be encoded by modulating amplitude [18], [20],
pulse-width [16], frequency [11], [19], [47], and temporal
spike trains [48], [49]. Our comprehensive comparison aims
to determine the highest resolution parameters.

Prior experiments focused on discrimination of two dis-
parate stimulation patterns rather than exploring the entire
parameter space. Early work in ICMS concluded discrimi-
nation was possible at very low frequencies (<44Hz), but
temporal resolution was poor [50]. Later work found discrim-
ination between two discrete frequency patterns possible, but
this required changing several other parameters to control for
consistent pulse delivery over the specified time period [17].
A comprehensive examination of amplitude discrimination
was completed in the primate model, but it did not measure
discriminability of any other parameters [16].

To directly test the fidelity of artificial cortical sensory
encoding, we compared the ability of rodent subjects to utilize
artificial sensory stimulation in the same behavioral task while
we systematically modulated each stimulation parameter. Our
primary goal was to identify the cortical stimulation pat-
terns which animals could discriminate during a forelimb
exploration task. We chose to deliver stimulation within the
sensorimotor cortex of rats in order to provide an intuitive
comprehension of the incoming signal. By measuring just-
noticeable-differences of five different parameters encoding
sensory feedback, we determined which parameters maximize
information transfer. We also compared the perceptual reso-
lution of each parameter using the same task and animals to
enable direct comparisons between parameters.

We tested the ability to discriminate different cortical stim-
ulation patterns using a modified rodent center-out task [51].
Rather than cue the animal for a particular target, stimulation
provided feedback of the joystick position within one of three
targets. We used performance of the task as a measure of
comprehension of the feedback signal.

To convey the maximum sensory information per time,
we tested stimulation trains that were brief. Our goal was
to determine whether short bouts of stimulation could be
perceived by the brain on the timescale of the sensory feedback
loop during a motor task (<50ms) [52]. We also wanted to test
stimulation trains which could both be perceived by the brain
and updated much faster than visual feedback (>200ms) [53].

We found clear differences between stimulation parameters
modulating spatial and temporal features. Our findings suggest
there is a lower subspace or plane used by the brain to interpret
electrical stimulation within the high dimensional manifold of
stimulation parameters measured. The individual discrimina-
tion curves obtained from modulating amplitude and pulse-
width showed the highest resolution. Further experiments

revealed both parameters may be modulating the same latent
variable, charge-per-pulse. Surprisingly, measurements from
temporal parameters such as frequency resulted in very low
resolution. These results have significant implications for the
design of high-bandwidth neural interfaces aiming to con-
vey sensory information to cortical networks via electrical
stimulation.

II. METHODS

A. Animal Care

Nine adult female Long-Evans rats (Charles River,
200-300g) were trained to perform a modified center-out
task [51]. Animals were housed 1-3 per cage during initial
training. The housing room light cycle was set to a 12-hour
day/night cycle, shifted such that the housing and behav-
ior room was dark from 9am-9pm. This permitted train-
ing/testing to take place during the animals’ active, dark
cycle. Ad libitum access to food was allowed throughout
the training, but animals were restricted from water in their
home cages. Free water was given for 1/2 hour each day
after their training/testing sessions. For correctly completing a
trial during the behavioral task sessions, drops of apple juice
were administered as a liquid reward (0.05ml). On weekends,
each animal was given free access to water. Animals were
weighed each day of restriction to ensure proper maintenance
of body weight. All procedures were approved by University
of Washington IACUC.

B. Modified-Center-Out Task

Each animal followed a 16 step protocol developed to train
rats to perform the modified center-out task [51]. Using a
3D printed joystick, rats explored three targets within the
workspace. A light cue illuminated when the rat entered the
desired target, while no light cue was presented when the rat
was exploring non-desired targets. Subjects received a liquid
reward for dwelling 1.25s in the illuminated target. If a rat
dwelled for 1.25s in a non-desired target, a timeout penalty
of 5s was assessed.

Animals completing over 200 trials per session with above
75% success rate were deemed proficient at the task. They
were then implanted with cortical stimulating electrodes and
direct cortical electrical stimulation replaced the light cue.

C. Implant

Each rat was implanted with a 16 channel micro-wire array
in sensorimotor cortex (Fig. 1), targeting layer 4-5. An 8x2
tungsten micro-wire array was soldered to a custom printed-
circuit-board (PCB) with mating connector (DF30) to vias
placed on the bottom of the PCB. Each micro-wire was 30µm
in diameter covered with 5µm thick insulation. The rows were
separated by 1.2mm, while the pitch between each electrode
in a row was 400µm (Fig. 1d).

The implant was lowered using a stereotaxic manipu-
lator (Kopf) within the cranial window to 1.5mm depth.
Ground wires were wrapped around several skull screws.
The array was secured in place using 2-part dental acrylic
(C.B. Metabond), exposing the DF-30 connector on top of the
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Fig. 1. A micro-wire array was implanted in the left forelimb sensorimotor
cortex. (a) Placement of seven skull screws (black dots) are overlaid on
cranial landmarks with location of craniotomy over sensorimotor cortex
(grey: 5mm × 3mm). (b) Coronal slice of the targeted cortical implant
location. Image adapted from [61]. (c) Hand-built 16 channel cortical
stimulating array. (d) Layout of array.

array for attachment to cables for delivering stimulation to,
and/or recording from, each electrode.

D. Selection of Electrode Site

In each animal, a stimulation site was chosen corresponding
to sensory activity related to the left forepaw, the limb used to
control the joystick. The activation of both sensory and motor
areas was measured prior to selecting the electrode for each
experiment to confirm that our stimulation site did not trigger
muscle activity or movement.

E. Sensory Evoked Potentials

In each animal, we measured sensory evoked poten-
tials (SEPs) and event related potentials (ERPs) to verify
final electrode location within the implanted cortical region.
Animals were lightly sedated using ketamine and xylazine.
The left forearm was shaved and two skin electrodes attached
one either side of the bicep muscles. We recorded Local Field
Potentials (LFPs) at a range of bicep stimulation amplitudes
to test for proportional neural responses, such as decreases
in onset latency and increasing amplitude to larger inputs.
Biphasic electrical pulses were delivered to the left bicep
muscle with amplitudes from 0.25mA – 2.0mA. Based on
conduction velocities, the cortical SEPs are expected to show
a graded, biphasic responses to stimulation about 20ms after
the pulse (Fig. 2a). Some sites showed no correlated activity,
with little variation in response to the changing stimulation
amplitudes. A heat map shows peak neural responses (Fig. 2b)
on each of the 16 electrodes in response to the same stimulus
pulse. We selected an electrode with a robust sensory response
and no motor activity or significant task correlated activity.
Channel 2 was chosen for this example animal in Figure 2.

F. Event Related Potentials

To identify any potential motor activity, animals performed
the center-out task using light cues while we captured neural

Fig. 2. Sensory Evoked Potentials (SEPs) and Event Related Potentials
(ERPs) were used to map cortical implant locations. (a) Recorded
cortical LFP waveforms were evoked from biphasic stimulation delivered
to the bicep muscle on the left forearm at amplitudes from 0.25mA – 2mA.
(b) A heat map shows peak sensory evoked responses. (c) Recorded
averaged ERPs for Pre, During, or Post activity for behavioral events such
as entering a particular target. Light cues were used for task feedback
during these recordings. (d) Heat map corresponding to the strength
of response above baseline, to visualize electrode sites dominated by
motor correlated activity. In this example, electrode 2 (black square) was
selected for stimulation due to high sensory (b) and low motor (d) activity.

activity. Event-related-potentials (ERPs) were recorded for
various behavioral events occurring during the task (Fig. 2c).
Single unit activity was thresholded and their firing rates
smoothed. The firing rates were averaged over behavioral
features, such as entering/exiting a target and initiating a
movement. The majority of sites showed no correlation.

Similarly to our SEP analysis, a heat map corresponding to
the strength of response above baseline indicated electrodes
dominated by correlated motor activity (Fig. 2d). If activity
was detected such as excitation post-event, sustained activity
during event or pre-event, these sites were excluded from
possible selection for the experiment. Finally, only electrodes
with impedance between 50-500kOhms were included.

G. Task Training With Stimulation

Once animals completed their initial recording sessions,
they were retrained to perform the task with stimulation cues
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Fig. 3. Experimental block diagram. A desktop computer initiated
each session’s parameters, the ACROBAT system measured behavioral
actions and triggered stimulation while the TDT system generated
waveforms and delivered sensory stimulation to the animal, or recorded
neural activity.

instead of light cues [47, steps 17-23]. A baseline stimulation
pattern was substituted for the light cue. This training allowed
the animals to become familiar with the stimulation. Since
the stimulation is presented as only feedback to the joystick
manipulation, we could see if the stimulation evoked visible
movements. If so, a different electrode site was chosen.

H. Experimental Setup

Our behavioral data collection system (Fig. 3) consisted of
the ACRoBaT training system [51], a desktop computer, and a
benchtop stimulator (Tucker Davis Technologies). Our ACRo-
BaT system integrated data from several sources, synchronized
timing variables, and output stimulation parameters in real-
time. The desktop computer logged behavioral variables and
sent session parameters to ACRoBaT’s onboard microproces-
sor. The benchtop stimulator received real-time stimulation
parameters via a custom serial protocol from the ACRoBaT
system. A 16 channel passive cable connected the stimulus
isolator (TDT MS16) to the implanted array on the animals’
head and allowed it to freely move around the arena.

I. Stimulation Parameters

We defined a set of five features (Fig. 4) to describe our
stimulation paradigm: amplitude, pulse width, pulse frequency,
train interval, and number of pulses [11], [16], [17], [20],
[48], [54]. We varied each parameter individually around a
base pattern with amplitude of 70µA, pulse-width of 200ms,
train interval of 100ms, pulse frequency of 300Hz, and five
pulses per train.

We defined corresponding ranges of each of these parame-
ters for both safety [55]–[57] and ability to recruit cortical
neural populations. Amplitude defines the height of each pulse,
within a range from 5-120µA. Pulse Width defines the width
of each pulse, within a range from 50-500µs. Frequency
defines the rate of each stimulus pulse within a train, within a

Fig. 4. Five cortical stimulation parameters were independently mod-
ulated to measure perceptual sensitivity. Each stimulation pulse was
constant current, bi-phasic and symmetrical. Amplitude refers to the
height of each pulse phase, and pulse width the width of each phase.
Frequency is the rate of the pulses in a train. Pulses per Train is the
number of pulses in each train. Train Interval is the time between the
start of each train. These parameters were varied individually and in
some cases concurrently.

range from 50-400Hz. Pulse per Train defines the length of a
stimulation train (range of 5-20 pulses per train) and the Train
Interval defines the time between the start of stimulation trains
(varying from 50-400ms).

All stimulation pulses were bi-phasic, symmetrical, and
constant-current to prevent any charge build-up around the
electrode tip from damaging the surrounding tissue [55]–[57].
Current was delivered through the selected electrode and a
common reference wire, consistent with a bi-polar stimula-
tion protocol. The anodic phase was first delivered through
the selected electrode. Since both electrodes have similar
impedance, this definition is somewhat arbitrary.

J. Parameter Range Detection

The final step was to determine the lowest possible ampli-
tude and pulse width that animals could perceive. A threshold
detection task assessed whether animals could discriminate
between a stimulation pattern and sham pattern. Using the task
design outlined in Section B, three targets were presented in
each trial, with only one containing the stimulation pattern.
Animals were trained to explore the workspace and dwell in
the target delivering stimulation. By varying the amplitude and
pulse width on each trial, we determined the lowest perceivable
parameter values. Animals could perceive any value in our
defined range for the other three parameters.

K. Just-Noticeable-Differences

To reliably compare the resolution of each parameter, the
Just-Noticeable-Difference (JNDs) was explicitly measured.
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Fig. 5. A three-alternative forced-choice (3AFC) task was used to
assess discriminability. (a) A high intensity parameter value (such as
80µA amplitude) was chosen as the rewarded pattern, while a variety of
lower intensity parameters (70, 60, 50, 40, 30µA, etc.) were presented as
unrewarded patterns. The rewarded target was randomly chosen for each
trial, and both the other targets assigned the same lower intensity value.
(b) Discriminability is plotted as the performance of identifying the high
intensity parameter vs the lower value distractors. In this example, when
the difference between the rewarded parameter and the unrewarded
parameter is greater than 30µA, the animal was able to correctly identify
the higher value parameter more than 67% of the time. Chance for a
three-choice task is 33%.

The JND measurement is the magnitude of change required for
the animal to detect a difference between two signals. By using
this method to determine resolution of a signal, each pattern
was modulated until the animal could reliably discriminate
between rewarded and unrewarded patterns.

For simplicity, the rewarded pattern was nominally a “higher
intensity” pattern, corresponding to higher amplitude, longer
pulse width, shorter train intervals, higher pulses-per-train, and
higher frequency (Fig. 5). Conversely, unrewarded patterns
were “lower intensity”.

We used the three-alternative forced-choice (3AFC) task
described in Section B to measure sensory discriminability
(Fig. 5a). Animals were trained to explore the three targets in
the workspace, and rewarded for dwelling in the correct target.
When entering a target, stimulation pattern was delivered as
feedback. Performance, the percentage of correct trials, is used
to build a psychometric curve demonstrating the ability of the
animal to distinguish between the two stimulation patterns.
In this example (Fig. 5b), the JND, or the difference between
the rewarded amplitude and the unrewarded amplitude is 30µA
or a 40% change (Fig. 5b, bottom x-axis).

The target location of the two unrewarded and the single
rewarded pattern were randomized each trial (Fig. 5a).
The sensory threshold is nominally halfway between
chance (33%) and 100% [58], resulting in a threshold
of 67%.

While only a two-choice task may have sufficed, the three-
choice task was preferable given the tendency for animals to
repeatedly visit only one target. To encourage a more random
search strategy, a 20-trial history negatively biased the selec-
tion of the location of the reward target from targets where
the animal successfully accomplished the task previously.

Fig. 6. Psychometric curves capture performance of discrimination
between the rewarded “high intensity” pattern (shown in the legends)
vs the unrewarded value (plotted on the x axis). A range of 50-100 trials
were collected for each individual data point. (a) We measured individ-
ual psychometric curves throughout the perceivable range of stimulus
amplitude. Here, we show an example of five curves collected when the
rewarded intensity value ranged from 40 - 80µA. Within a single session,
the rewarded value was fixed. (b) The same results as (a) are normalized
to the percentage difference between the rewarded amplitude value and
the unrewarded amplitude value. (c) All the data in (b) are used to fit a
sigmoidal curve. These psychometric curves are calculated individually
for each animal. The JND measurement is calculated as the point which
this sigmoidal curve crosses the sensory threshold, 67% (dotted black
line). (d-f) Examples for the parameter pulse-width. Note the similarities
between (c) and (f).

This adaptive algorithm was highly successful in preventing
repetitive movements to a single target location.

L. Normalization

To measure the resolution at the low, middle and high values
of the each parameter’s range, we collected several different
JND measurements, Since each parameter had a different
magnitude from min to max value (Section I), and in order
to directly compare paradigms, we normalized each parameter
range as a function of percent change (Fig. 6b,e). For example,
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if the rewarded value was 80µA, and the unrewarded value
was 30µA, normalization would set the percentage difference
at 62.5%.

We plot psychometric curves for a variety of amplitudes
and pulse-widths as an example in Fig. 6a,d. Normalized
psychometric curves are generated by plotting amplitude and
pulse width as a function of the percentage of the rewarded
parameter value. For each animal, these individual psychome-
tric curves were fit by a single sigmoidal curve (Fig. 6c,f) for
comparison across animals. The JND measurement, calculated
as percentage change required to cross the sensory threshold
(67%), was used to compare sensitivity across parameters and
animals. The normalized JND measurement can also be called
a Weber Fraction.

III. RESULTS

We compared the resolution of multiple stimulation
parameters applied to the same cortical electrode toward our
goal of developing a high-resolution sensory feedback signal
delivered via electrical stimulation to the sensorimotor cortex.

A. Just-Noticeable-Differences

We determined the just-noticeable-difference (JND) for a
variety of stimulation encoding paradigms, allowing us to
quantify perceptual resolution across the parameter space.
We modulated the intensity of a single stimulation parameter,
and fixed all other parameters at perceivable values.

To capture JND resolution across the entire range of perceiv-
able intensities, we equate discriminability with performance.
By measuring each animal’s ability to discriminate between a
high intensity sensation vs a lower intensity sensation, each
parameter’s perceptual resolution is found.

B. Single Parameters

Sensitivity of each parameter was calculated as the inverse
of the just-noticeable difference across all animals (Fig. 7a).
The highest resolution parameters pulse-width (n=5) and
amplitude (n=8) measured JND of 30%±3 and 34%±6,
respectively (Fig. 7b,c). In other words, a ∼30% change in
either parameter is required for the animal to reliably recognize
two patterns as distinct. This corresponds to a sensitivity of
∼70% (Fig. 7a). These were the lowest single parameter JND’s
measured. Interestingly, for both amplitude and pulse-width,
each of the individual psychometric curves overlapped when
normalized.

The measured resolution when modulating frequency
was surprisingly inconsistent (Fig. 7e), measuring a JND
of 86%±7 (sensitivity of 14%). Three of six animals tested
were unable to discriminate between even the highest (400Hz)
and lowest (50Hz) values of our range. Even the best perform-
ing animal had only moderate success at frequency discrimi-
nation, requiring a 60% change in frequency to discriminate
different stimulus trains (40% sensitivity) (Fig. 7e). The only
discriminable frequency pairs occurred when the lower fre-
quency was below 100Hz (see Discussion). Our conclusion is
that lower frequencies may be discriminable, but performance
declines when higher frequencies are used.

Fig. 7. Just-Noticeable-Difference (JND) curves for measuring percep-
tual sensitivity of modulating each parameter individually. (a) Sensitivity
is a direct measure of the perceptual resolution of each parameter.
The JND is calculated by the percentage difference required to cross
the sensory threshold (67%). This value is subtracted from 100% to
yield our sensitivity measure. Bars summarize where colored sigmoid
curves cross the sensory threshold, while error bars capture the standard
deviation of where each grey line crosses the sensory threshold. Pulse
Width has 2971 trials across 5 subjects, with 43±12 trials per data point.
Amplitude has 6283 trials across 8 subjects, with 56±30 trials per data
point. Train Interval has 1965 trials over 5 subjects, with 57±26 trials per
data point. Frequency has 2174 trials across 6 subjects, with 54±31
trials per data point. Pulse per Train had 2194 trials over 7 subjects
with 56±33 trials per data point. (b-f) A fitted sigmoid curve in color
shows the average response across all animals. In grey, each animal’s
individual data are shown as a fitted sigmoidal curve. Dotted lines show
data where the animal was asked to identify the lower intensity value.
Pulses per train is the only parameter which never crosses the sensory
threshold, thus its sensitivity score is 0. Y-axis shows percentage correct
of trials and x-axis show the percent change between the rewarded higher
intensity pattern and the unrewarded lower intensity patterns. Amplitude
and pulse-width modulation have the highest sensitivity to changes, while
the other parameters require the magnitude of change to be two times
or greater for the same discriminability performance.

Measurements of resolution for train interval revealed
moderate, but consistent, sensitivity. The measured JND was
65%±7 (n=5). This corresponds to a 35% sensitivity for
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Fig. 8. To explore the effects of charge per pulse (CPP) we varied amplitude and pulse-width inversely, constraining the charge per pulse to be
equal. (a) In the black, we varied pulse-width negatively and amplitude positively such that the rewarded pattern had a wide pulse-width and small
amplitude. Unrewarded patterns had a shorter pulse-widths and higher amplitudes such that the charge, or area under the curve, was constrained.
3365 trials were recorded across 5 subjects. (b) In the black, we modulated amplitude negatively and pulse-width positively. The rewarded pattern
had high amplitude and short pulse-width, while the unrewarded patterns had lower amplitudes and longer pulse-widths. We recorded 2316 trials
across 4 subjects. (c) Here we combine amplitude and pulse-width positively. As expected, we see a significant boost in sensitivity. Shown in purple,
this psychometric curve crosses the sensory threshold at 11%. 245 trials were recorded in a single animal for purple curve. Total trial count for the
panel was 5926 across all conditions and 5 subjects.

train interval (Fig. 7a,d). We also measured an animal’s JND
discriminating (Fig. 7d, dotted line) between patterns when
stimulation pulses were delivered continuously, or pulses were
delivered grouped into trains (Fig. 4). This experiment revealed
that pulse trains occurring at a rate of faster than 100ms per
train were perceived as tonic, continuous stimulation, setting
a lower bound for perception of distinct pulse trains. Thus,
modulation of train interval is a reliable way to modulate
intensity, however, there are only a few discriminable steps
possible between the max. and min. of the tested range.

Modulation of the parameter pulses-per-train (PPT) yielded
little perceptible change. Six of seven animals could not dis-
criminate between the highest (20 pulses) and lowest (5 pulses)
number of pulses (Fig. 7f).

Since most animals were unable to discriminate between
the maximum and minimum values of PPT, we flipped the
experimental paradigm to test if the lower value was perceived
differently (Fig. 7f, dotted line). We rewarded the animal for
locating the lowest intensity sensation (5 pulses per train) and
discriminating between several higher unrewarded conditions
of 10, 12, 15, and 20 pulses per train. Only one animal was
able to succeed for a single pair of stimuli (5 vs 20 ppt).

In summary, pulse-width and amplitude have the greatest
sensitivity and allow animals to easily discriminate between
the rewarded intensity and the unrewarded intensities (Fig. 7a).
Temporal parameters such as train interval, frequency, and
pulses per train demonstrated surprisingly low sensitivity
during direct brain stimulation. Pulse-width and amplitude
therefore permit the highest resolution encoding scheme.

C. Charge-Per-Pulse (CPP)

Our discovery of the high sensitivity parameters for ampli-
tude and pulse-width informed two follow-up experiments to
further disentangle the effects of modulating charge-per-pulse.
In the first experiment, we held charge constant by reciprocally
modulating pulse-width and amplitude (Fig. 8a, black pulses).
Specifically, the product of the two parameters pulse-width
and amplitude was set to a constant value (16nC). When
comparing this psychometric curve with single parameter
modulation (red line in Fig. 8a), the animal is no longer able to
discriminate between any values in the encoded range (Fig. 8a,
black line). We repeated the experiment by rewarding the
“higher intensity” pattern as large amplitude values (Fig. 8b).
Here, the rewarded “high intensity” sensation was encoded as
a short pulse-width, high amplitude pulse and the unrewarded
“low intensity” values were a longer pulse-width, lower ampli-
tude pulse (Fig. 8b, black line). With charge-per-pulse held
constant, the animal couldn’t discriminate any values over
nearly the entire range.

This evidence suggested sensory cortex is responding to
the underlying variable charge-per-pulse. From this line of
reasoning, it follows that modulating this variable directly
would produce the highest JND, or highest resolution encoding
scheme. We tested this hypothesis and found a two-fold
improvement in sensitivity (Fig. 8c). When high intensity was
encoded as a long pulse-width, high amplitude pulse and low
intensity was encoded as a short pulse-width, low amplitude
pulse (Fig. 8c, purple line), only an 11% change was required



BJÅNES AND MORITZ: ROBUST ENCODING SCHEME FOR DELIVERING ARTIFICIAL SENSORY INFORMATION 2001

for discriminability compared to nearly a 30% change required
when amplitude or pulse-width were modulated individually.

In summary, we find the most discriminable parameters
to be charge-per-pulse, pulse-width, and amplitude. These
parameters require changes of only 11%, 30% and 34%,
respectively. Train interval is also reliable, but requires a 65%
change to be detected as different. Frequency is an unreliable
parameter for conveying sensory information, as half of our
animals were unable to interpret any change in frequency
when the charge-per-time is carefully controlled. Modulating
pulse-per-train also seemed to have little effect on perception,
possibly due to the small number of events (5-20 pulses) and
the short intervals per train.

IV. DISCUSSION

Our goal was to determine the most effective and efficient
parameters to convey information directly to cortical networks
via electrical stimulation. We directly compared the perceptual
resolution of different stimulus parameters using the same
task, animals and electrode sites. Our results demonstrate that
modulating either amplitude or pulse-width requires only a
30% change to discriminate between two different stimuli.
Modulating amplitude and pulse width concurrently is even
more effective, requiring only an 11% change in stimulus
charge. These paradigms for encoding intensity have the
highest sensitivity and therefore the greatest bandwidth for
information transfer. Therefore, the charge-per-pulse (CPP) is
a primary means for conveying information directly to cortex.

A. Unreliable Frequency Discrimination

Surprisingly, we find discrimination between high frequency
pulse trains to be an unreliable way to convey sensory feed-
back. Five out of six animals were completely unable to
discriminate between any frequency tested (n=3) or only able
to discriminate between the highest and lowest frequencies in
the range (n=2).

Given the historical emphasis on frequency modulation
in the sensory stimulation literature, we seek to reconcile
our findings. Specifically, several studies suggested frequency
discrimination was not only possible, but likely the most
promising feedback method [17], [19], [47], [50]. Below, we
carefully compare our results to prior work.

Romo conducted experiments to measure discriminability
between mechanical flutter stimuli applied to a fingertip and
different low frequency ICMS (less than 44Hz). Non-human
primates were reliably able to substitute sensations caused by
mechanical flutter stimuli with low frequency tonic stimulation
[46, Fig. 1d]. Frequencies ranging from 10Hz to 30Hz ade-
quately mapped to the same range of mechanical stimuli.
However, the task became more difficult when discrimi-
nating between two different low frequency ICMS patterns
[46, Fig. 5c, grey line]. The primate could discriminate
between ICMS at 20Hz and 30Hz, but this represents a 50%
difference in frequency. It would be highly impractical to
deliver artificial sensory feedback at such a low rate due
to the resulting low bandwidth. Furthermore, frequency dis-
crimination was highly sensitive to cortical depth and proper

localization of the receptive field. This suggests that only par-
ticular brain networks are sensitive to changes in stimulation
frequency.

A prior study using a brain-machine-brain interface pro-
vided direct cortical feedback in response to exploration of
a three target workspace [17]. Primates were rewarded for
discriminating between two different stimulation frequencies
and a third target with no stimulation. This successful demon-
stration of interleaved decoding of motor intent and delivery of
sensory feedback indicated that animals might be able to dis-
criminate between 200Hz vs. 400Hz stimulation. The different
stimulation trains were carefully designed to interleave with
recording blocks, and deliver the same amount of total charge
over a 500ms window. This, however, meant frequency was
not the only parameter modulated. When frequency doubled
over the same train length, the number of pulses also doubled,
and the train-interval doubled as well. Our data suggest that
animals in this study may have cued on the change in train-
interval, perhaps more so than the difference between these
high frequency trains.

In a related study, rats chose from one of three water ports
based on the frequency of electrical stimulation delivered
to the whisker representation of S1 [19]. Stimulation was
delivered in a continuous train with frequency proportional to
their orientation towards the correct target, with a maximum
of 300Hz. These rats performed the task well when the ports
were located at disparate locations throughout the circular
arena. When the ports were closer than 60 degrees from
each other, however, the animals’ performance significantly
declined. Although the paper does not provide the exact
mapping from target location to stimulation frequency, based
on our results we predict that stimulation frequency was below
100Hz when the animal was facing more than 60 degrees
from the correct port. With such low stimulation frequencies,
the total charge-per-time delivered during these trains of stim-
ulation would also be decreased, providing an additional cue.

Separate experiments in the non-human primate measured
the just-noticeable-difference (JND) of different amplitudes of
stimulation [16]. The authors explored different pulse-widths,
frequencies and pulse train lengths while they tested for
stimulus amplitude discrimination. Their results demonstrate
no significant change in amplitude JNDs across a frequency
range from 50Hz to 500Hz, suggesting the frequency com-
ponent does not contribute to a perceived stimulus intensity
[16, Fig 4b]. Our data reinforce this interpretation since our
animals were unable to discriminate between similar high
frequency stimulation trains.

We carefully examined the data from our single animal
that appeared to adequately discriminate frequency. The most
likely explanation of higher performance in this animal is that
the particular cortical network activated was quite sensitive to
stimulation at 75Hz. This animal could reliably distinguish
between 75Hz and nearly every other frequency, but was
unable to discriminate between similar percentage differences
between higher frequencies in the range.

Synthesizing prior work with our current findings,
we conclude that lower frequency discrimination may
be possible for frequencies below approximately 100Hz.



2002 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 27, NO. 10, OCTOBER 2019

Fig. 9. Overlapping JND curves for all animals tested on amplitude and
pulse-width modulation (n = 13). 9254 trials represented.

Performance significantly degrades, however, when using
higher frequencies to convey sensory feedback. The inability
to perform frequency discrimination when charge-per-time is
fixed could be evidence of a fundamental upper limit on
the brain’s ability to discriminate between higher stimulus
frequencies. We also emphasize the rarity of finding a location
sensitive to any changes in frequency, both in our data and
prior work [50]. This suggests that only a few particular
networks in the sensory cortex are sensitive to frequency,
rather than the wide-spread sensitivity to charge observed here.

B. Modeling of Neural Network Activation

It would be advantageous to be able to accurately model the
selective activation of sensory regions, and use it to explore
the effects of electrical stimulation on perception. Given the
high dimensional stimulation parameter space, computational
models could reduce the substantial workload to experimen-
tally test all stimulation conditions and their interactions.
While the field has yet to coalesce upon a verified model,
a leaky integrator model of delivered charge can successfully
predict perceived intensity [47], reinforcing our findings that
charge is the primary variable for modulating perception
intensity.

In this prior work, a model was experimentally validated
by selecting several fixed points in the stimulation parameter
space (varying frequency, amplitude, and train duration). The
parameters of the model were estimated through threshold
detection tasks, and it accurately predicted trained rodent
behavior discriminating between several fixed points in the
space. This model, however, was separately fit with different
parameters for each set of comparisons that varied along each
dimension, making it difficult to generalize.

C. Weber’s Law

We see significant evidence that perceived intensity of
ICMS may follow Weber’s Law [60] for amplitude and
pulse-width modulation (Fig. 9), in contrast to previous
findings [16]. Weber’s Law predicts that perceived intensity
will be proportional to the percent change of a stimulus,
rather than an absolute unit of value (such as micro-amps).
When normalizing to percent change of amplitude and pulse-
width, each resulting psychometric curve overlaps (Fig. 6b,e).

Thus, normalized JND, or Weber fractions, are relatively con-
stant throughout the entire dynamic range. This finding has
important implications for feedback using stimulation design,
since we identify the highest sensitivity at the lower end of
the range.

D. Implications for Neural Interface Design

The goals of our experiments were to determine the sen-
sory resolution and to maximize the band-width of direct
brain stimulation parameters. Given that most BCI technology
uses visual feedback as the primary mechanism for guiding
control strategies, our ICMS feedback patterns were designed
to improve on the slow visual feedback pathway (∼200ms
delay). Therefore, we explored relatively short train-intervals
(nominally 100ms) and a small number of pulses-per-train
(<20) so that future applications could achieve feedback
rates of 10Hz. In comparison, others who have studied
electrical stimulation have used relatively long pulse trains
(200–1000ms) and a large number of pulses (>50-100 pulses
per train) [11], [14], [47], [54]. These differences in stimu-
lus train length may also help to explain the differences
between our results and previous studies. We emphasize
that longer pulse trains may compromise the temporal res-
olution of rapid sensory feedback, especially in real-time
neural interface applications. Co-adaptive learning effects of
long-term use of feedback may also improve discrimination
performance.

Few prior studies have directly compared stimulation para-
meters in the same animal and brain region. We chose the
rodent model and a high-throughput behavior task [51] in
order to test these encodings in the same cortical circuit of
each animal. This allowed us to collect thousands of trials
to robustly compare the sensory discrimination of different
parameters. Although differences in stimulus perception may
exist between the rodent and primate brain, our results provide
guidance for testing promising sensory encoding schemes in
non-human primates and human subjects.

V. CONCLUSION

In conclusion, we have determined the most promising
parameters to deliver high-resolution sensory feedback via
electrical stimulation to the cortex. We find that animals are
most sensitive to changes in amplitude and pulse-width, which
modulate the charge of the delivered pulses. Surprisingly,
animals showed little ability to discriminate frequencies above
100 Hz. Finally, animals were able to detect train-intervals but
not the number of pulses in the train.

With the knowledge of which features animals can detect
in an artificial electrical stimulation pattern, we can now
design stimulation encoding models to maximize resolution
of an input signal. With the goal of delivering high band-
width information directly to the brain, we validated stim-
ulation parameters which could be updated and interpreted
quickly. We recommend using the parameters amplitude and
pulse-width to modulate intensity of a given percept (Fig. 8c,
purple line). If further input range is needed, we also recom-
mend modulating train interval, although future experiments
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are required to determine orthogonality of these parameters.
In summary, modulating charge-per-phase reliably encodes
information via direct electrical cortical stimulation in the
rapidly expanding field of cortical neuroprostheses.
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