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Abstract. We present a family of multistep integrators based on the Adams-Bashforth methods.
These schemes can be constructed for arbitrary convergence order with arbitrary step size variation.
The step size can differ between different subdomains of the system. It can also change with time
within a given subdomain. The methods are linearly conservative, preserving a wide class of analyti-
cally constant quantities to numerical roundoff, even when numerical truncation error is significantly
higher. These methods are intended for use in solving conservative PDEs in discontinuous Galerkin
formulations, but are applicable to any system of ODEs. A numerical test demonstrates these prop-
erties and shows that significant speed improvements over the standard Adams-Bashforth schemes
can be obtained.
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1. Introduction. A common problem in computational fields is to find approx-
imate solutions to partial differential equations (PDEs). For hyperbolic PDEs, where
a solution typically describes an evolution of one or more fields through time, the
most common approach is to apply the method of lines, where the spatial coordinates
in the PDE are discretized, producing a large system of coupled ordinary differential
equations (ODEs). These systems of equations can then be discretized in time and
solved using standard explicit integration schemes.

To obtain correct solutions to these equations, the time discretization must be
fine enough for the integration to be stable. For a method-of-lines system, this limit
is primarily because of the Courant-Friedrichs-Lewy (CFL) condition, which limits
the step size to approximately the information propagation time between grid points.
The resulting step size can show large variation across the spatial domain because
of changes in the propagation speed or, more commonly, because of changes in the
spacing of the evaluation points. It is often desirable to increase the spatial resolution
in some regions to resolve rapidly varying parts of the solution, but this then restricts
the step size allowed for stability. Furthermore, in order to evaluate the system
right-hand side, it is necessary to know the entire state of the system at the time of
interest. The time step for the whole system is then set by the most restrictive of the
conditions over the entire domain. If the problematic points make up a small fraction
of the system, then the forced evaluations at the remaining points can dominate the
computational expense.

To reduce the computational cost of finding these solutions, we would like to
evaluate each point at intervals set by its own stability limit, rather than the smallest
limit for all the points. A method allowing this is known as a local time-stepping (LTS)
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(or multirate) method, as opposed to a global time-stepping (GTS) method. Such
a method must describe an update scheme for the frequently evaluated degrees of
freedom that does not require knowing the full state of the system.

Modifying a GTS method into an LTS one can have significant drawbacks. The
individual steps near locations of time step changes are typically more expensive
than for a GTS method, so the benefit of fewer derivative evaluations must outweigh
this overhead. Care must be taken when calculating the CFL limit near step size
changes to take into account variations in the characteristic speeds of the system in the
neighborhood of the element. [1] Furthermore, modifying the GTS scheme can destroy
numerically desirable properties of the integrator, such as a high convergence order.
LTS schemes also do not naturally provide exact conservation of linear conserved
quantities [2], a property often taken for granted for GTS integrators. In a physical
system, errors accumulated in these quantities (which can represent, for example,
total mass) can produce an approximate solution qualitatively different from the true
solution.

Early LTS schemes (for example [3]) typically used GTS integrators with different
time steps and performed interpolation to obtain data at times at which it was not
produced directly. Such schemes are easy to adapt to arbitrary mesh configurations
and can be constructed to obtain the same convergence order as the underlying GTS
method, but they do not preserve conserved quantities of the system. Corrections to
more accurately treat conservation laws were developed [4], but still only resulted in
approximate conservation.

More recently, many methods have been investigated as starting points for more
sophisticated LTS methods, including both substep [5, 6, 7, 8, 9, 10] and multistep [2,
11, 12] integrators and also less common methods such as leapfrog [11, 13], Richardson
extrapolation [14], ADER [15], and implicit methods [16]. Demirel et al. [17] have
even explored LTS schemes constructed from multiple unrelated GTS integrators.
Recently, Günther and Sandu [9] presented a very general family of multirate Runge-
Kutta-like methods based on the GARK family of integrators [18] that unifies many
of the previous Runge-Kutta-based LTS schemes. These methods are applicable to
any problem and can be constructed to have any order of accuracy, but they are not
conservative. Sandu and Constantinescu [2] presented an Adams-Bashforth-based
scheme based on evaluating the right-hand side of the evolution equations using a
combination of data at different times. This system is conservative and applicable to
any system of equations, but the method is limited to second-order accuracy at times
at which all degrees of freedom are evaluated and first-order accuracy at intermediate
times.

LTS integrators for the special case of linear systems have been developed based on
Adams-Bashforth [11], Runge-Kutta [7, 10], and leapfrog [11, 13] schemes. Of particu-
lar interest here, starting from the Adams-Bashforth methods, Grote and Mitkova [11]
found a family of high-order, conservative methods for integral ratios between step
sizes on different degrees of freedom. These methods use the linearity of the sys-
tem to split the equations into a form resembling multiple copies of the standard
Adams-Bashforth method.

Some authors have derived methods specialized to the discontinuous Galerkin or
finite volume formalisms. The structure of elements coupled comparatively weakly in
a standard way by exchange of fluxes allows for some simplifications to the problem.
Winters and Kopriva [12] presented a scheme using dense output of the integrators
for each element to calculate fluxes at intermediate times. This scheme is high-order
and allows for arbitrary step ratios and varying time steps, but it sacrifices the con-
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servative nature of its parent scheme. Gassner et al. [6] presented a similar method,
but restored conservation by treating the element and flux terms as a predictor and
corrector. Krivodonova [5] constructed a method based on a Runge-Kutta integra-
tor which, while not naturally conservative, was made so by adding a correction to
cancel any error in conservation whenever neighboring cells are aligned in time. Caval-
canti et al. [19] considered the addition of nonlinear operations, such as slope limiting,
to the integration step.

In this paper we present a generic, high-order, conservative scheme based on the
Adams-Bashforth family of explicit multistep methods. The method uses the idea of
performing single right-hand side evaluations using values from different times, in a
similar manner to previous work presented by Sandu and Constantinescu [2]. The
scheme is conservative and has the same convergence order as the Adams-Bashforth
integrator it is based on. The method allows for generic ratios of step sizes between
different degrees of freedom, as well as for arbitrarily varying the individual degrees of
freedom’s step sizes in time. While the applications discussed here are to discontinuous
Galerkin systems, the method is fully general and can be applied to any set of coupled
ODEs. When applied to a linear system with integral step size ratios, this scheme
reduces to the Adams-Bashforth-based scheme presented by Grote and Mitkova [11].

The remainder of this paper is structured as follows: Section 2 presents a deriva-
tion of the integration scheme. Section 3 discusses simplifications that are applicable
when the method is applied to some common special cases. Section 4 applies the
method to numerical test cases. An appendix lists specific formulas for methods of
order 2, 3, and 4.

2. The method.

2.1. Adams-Bashforth methods. Suppose we wish to numerically solve a set
of coupled first-order ordinary differential equations

(2.1)
dy

dt
= D(y),

where D(y), the time-derivative operator, is the right-hand side evaluated when the
system is in state y. A common method is to solve for the variables at a (monotonic)
sequence of times t0, t1, . . . using a kth-order Adams-Bashforth method

(2.2) ∆yn = ∆tn

k−1∑
j=0

αnjD(yn−j)

with ∆yn = yn+1 − yn, ∆tn = tn+1 − tn and the coefficients corresponding to the
step given by [12]

(2.3) αnj =
1

∆tn

∫ tn+1

tn

dt `j
(
t; tn, tn−1, . . . , tn−(k−1)

)
.

Here

(2.4) `n(t; t0, . . . , tk−1) =

k−1∏
j=0
j 6=n

t− tj
tn − tj

are Lagrange polynomials. We will not concern ourselves here with the process of
starting the evolution, that is, evaluating ∆yn for n < k − 1.
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If different degrees of freedom require different time steps for stability, it may
be desirable to evaluate these variables at different frequencies, in order to avoid
unnecessary computations for the more stable variables. Suppose we divide y into
S sets y1, . . . ,yS , and that we wish to evaluate ys at times ts0, t

s
1, . . .. We can then

split (2.1) into an equation for each of these sets:

(2.5)
dys

dt
= Ds

(
y1, . . . ,yS

)
,

where Ds is the result of D restricted to the set s. Any attempt to use this equation
to perform an LTS evolution immediately encounters the problem that evaluating its
right-hand side requires knowing the entire state of the system, which conflicts with
the goal of independent evaluation times for different degrees of freedom.

2.2. Conserved quantities. A linear conserved quantity is a quantity C ex-
pressible as an inner product of a vector c with the evolved variables (treated as a
vector)

(2.6) C = c · y,

with

(2.7) c ·D(y) = 0

for all values of y. Such a quantity is constant under exact integration of the system
and under integration using Euler’s method. An integrator is called (linearly) conser-
vative if all such quantities remain constant when integrating a system using it [20]. It
is desirable for an integrator to keep such quantities precisely constant (up to roundoff
error) rather than merely constant up to the truncation error of the scheme. Such
quantities often have an intuitive physical meaning, and frequently even a small rate
of drift can cause qualitative changes in the evolution of the system.

When solving a PDE representing a physical system, the most common linear
conserved quantities are integrals over the computational domain of fields represent-
ing densities. The vector c in these cases is the vector of coefficients necessary to
perform a numerical integral. In a discontinuous Galerkin scheme these coefficients
would combine quadrature weights on the elements and factors arising from coordinate
mappings of the elements relative to their canonical shapes.

2.3. Second-order 2 : 1 stepping. Let us first consider as an example the case
of a second-order scheme on two sets, A and B, with B being evaluated twice as
often as A. Call their step sizes ∆tA and ∆tB = ∆tA/2. This step pattern is shown
in Figure 1, where for simplicity we consider the steps starting from t = 0 leading
up to t = ∆tA. There are three types of steps to consider: the large step on set A,
labeled (a), and the first and second halves of that step on set B, labeled (b) and (c).
This case is considered in Sandu and Constantinescu [2], but the method presented
there only provides a second-order value when sets have stepped to the same time;
intermediate values are only accurate to first order.

We will start with the small step (b). For a GTS Adams-Bashforth method, this
step would be given by

(2.8) ∆yB
b = ∆tB

[
3

2
D̃B
(
0
)
− 1

2
D̃B
(
−∆tB

)]
,
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−∆tA

0

∆tA

−∆tB
0

∆tB
2∆tB

(a)
(b)

(c)

Fig. 1. The step pattern for a 2 : 1 method on two sets, with time steps ∆tA = 2∆tB. There
are three types of steps: the large step on element A marked (a), and the two types of small step on
B marked (b) and (c). For a second order method, we use only the two most recent values of the
variables when taking a step. Steps whose values are no longer needed for the indicated steps are
marked with dotted lines.

where we write D̃B instead of DB to remind ourselves that we cannot generally
obtain these values from a straightforward application of the derivative operator. At
time t = 0 we do have values over our entire system, so D̃B(0) can, in fact, be evaluated
by a simple use of the derivative operator, giving D̃B(0) = DB [yA(0),yB(0)].

We cannot evaluate D̃B(−∆tB) in this manner, because we do not have data for
yA at t = −∆tB , so we must construct it from the values at t = 0 and t = −2∆tB .
There are two reasonable choices of how to do this: average the known values of yA

to get a value at the desired time and use that to apply the derivative operator, or
apply the derivative operator at both times (using the value of yB at −∆tB both
times) and average the results. We choose the latter, giving step (b) as

(2.9) ∆yB
b = ∆tB

[
3

2
DB
[
yA
(
0
)
,yB

(
0
)]
− 1

4
DB
[
yA
(
0
)
,yB

(
−∆tB

)]
− 1

4
DB
[
yA
(
−∆tA

)
,yB

(
−∆tB

)]]
.

The error in averaging the derivatives is of order (∆tB)2, so it introduces an error of
order (∆tB)3 in the value after the step, preserving the second-order quality of the
base GTS method.

The second small step, (c), proceeds similarly, except that we now use a deriva-
tive at ∆tB instead of −∆tB . Instead of averaging the derivatives at different yA

we must therefore perform a (linear) extrapolation to obtain our approximate deriva-
tive D̃B(∆tB). After doing this, we obtain the rule

(2.10) ∆yB
c = ∆tB

[
9

4
DB
[
yA
(
0
)
,yB

(
∆tB

)]
− 3

4
DB
[
yA
(
−∆tA

)
,yB

(
∆tB

)]
− 1

2
DB
[
yA
(
0
)
,yB

(
0
)]]

.

We could use the same procedure to evaluate the large step (a), but, as this would
not take into account the value yB(∆tB) used for taking the second small step, there
is no way this procedure could be conservative. This, however, gives us a hint as to
how to proceed: we treat the large step as having two internal steps, one for balancing
each of the small steps. In fact, in order to remain conservative, we must take each
of these internal steps using the same scheme as for the corresponding small step,
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except using the part of the derivative corresponding to set A. This can be seen by
considering a generic pair of methods for a step: ∆yA,B =

∑
i k

A,B
i DA,B

i . The change
in a linear conserved quantity during that step is
(2.11)

∆CA+∆CB = cA ·
∑
i

kAi DA
i +cB ·

∑
i

kBi DB
i =

∑
i

[
kAi c ·Di + (kBi − kAi )cB ·DB

i

]
.

The first term vanishes by (2.7), so the only way for two sets to take equal-sized steps
in a conservative manner is if they use the same step rule. The procedure for the
large step can therefore be found by summing (2.9) and (2.10), giving

(2.12) ∆yA
a =

∆tA
[

9

8
DA
[
yA
(
0
)
,yB

(
∆tB

)]
+

1

2
DA
[
yA
(
0
)
,yB

(
0
)]
− 1

8
DA
[
yA
(
0
)
,yB

(
−∆tB

)]
− 3

8
DA
[
yA
(
−∆tA

)
,yB

(
∆tB

)]
− 1

8
DA
[
yA
(
−∆tA

)
,yB

(
−∆tB

)]]
.

Note that the coefficients have changed by a factor of 2 compared to the previous
equations because of the change of the leading coefficient to ∆tA. As the two small
steps were accurate to second order and this is effectively their concatenation, it is
also accurate to second order.

2.4. Conservative time steppers. Let us return now to the task of finding a
general conservative, high-order LTS integrator. First, we will consider the implica-
tions of requiring an Adams-Bashforth-like LTS scheme to be conservative. For such
a scheme it only makes sense to evaluate (2.6) at times at which all the degrees of
freedom are evaluated. We therefore introduce a new quantity ỹn that is defined for
the entire set of degrees of freedom for each time t̃n at which any set is evaluated, and
is equal to y where the latter is defined. If we provide an update rule for ỹn then, as
long as portions of ỹn that we do not wish to evaluate are never used, we can obtain
an LTS method by summing the changes in ỹ on each of the sets between evaluations.
Furthermore, if the step from ỹn to ỹn+1 is conservative, then the implied full method
will be as well.

The condition for this small step to be conservative is

(2.13) 0 = c ·∆ỹn.

This is satisfied if we evaluate ∆ỹn using a standard Adams-Bashforth method, but
that would require values of ỹ that are not included in y. Comparing (2.7) and (2.13),
we see that we will obtain a conservative method if we take

(2.14) ∆ỹn =
∑
i

βniD(y1
ni, . . . ,y

S
ni)

for some set of coefficients βni and with ys
ni = ys(t) for some time t at which set s

is evaluated. The choices of these coefficients are not unique, but there is a natural
choice. We evaluate each step using a standard order-k Adams-Bashforth scheme,
but instead of using the derivatives of the function that we cannot evaluate, we use
approximate derivatives D̃n. As long as these are accurate to order k−1, we will lose
no formal accuracy for the step. We evaluate D̃n by treating D(y1(t1), . . . ,yS(tS))
as a function of the times t1, . . . , tS independently, and then performing a multidi-
mensional interpolation from known values. To obtain the required accuracy, we need
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evaluations at at least k times from each set, and it is natural to choose the most
recent values. The known values of D then form a lattice in the multidimensional
space. Multidimensional interpolation from such a lattice is not unique, but a natural
choice is to perform it as a series of one-dimensional interpolations.1 Combining all
these ideas, we have

(2.15) ∆ỹn =

k−1∑
q1=0

· · ·
k−1∑
qS=0

In;q1···qSD
(
y1
m1

n−q1 , . . . ,y
S
mS

n−qS

)
,

where ms
n is defined by tsms

n
≤ t̃n < tsms

n+1, i.e., it is the index of the last evaluation

on set s that can influence ∆t̃n (see Figure 2). The coefficients of the derivatives are

(2.16) In;q1···qS = ∆t̃n

k−1∑
i=0

α̃ni

S∏
s=1

`qs
(
t̃n−i; t

s
ms

n
, . . . , tsms

n−(k−1)

)
,

with α̃ni the Adams-Bashforth coefficients corresponding to the sequence of times t̃n.
For computational purposes, it is useful to rewrite these steps as

(2.17) ∆ỹn =

m1
n∑

q1=m1
n−(k−1)

· · ·
mS

n∑
qS=mS

n−(k−1)

Īn;q1···qSD
(
y1
q1 , . . . ,y

S
qS

)
,

where the coefficient is

(2.18) Īn;q1···qS = ∆t̃n

k−1∑
i=0

α̃ni

S∏
s=1

`ms
n−qs

(
t̃n−i; t

s
ms

n
, . . . , tsms

n−(k−1)

)
.

The full change in the value of a given set of degrees of freedom over an entire step
can then be obtained by summing the contributions of all these small steps. This will
give for each set of degrees of freedom an equation of the form

(2.19) ∆ys
m = ∆tsm

∑
q1

· · ·
∑
qS

asm;q1···qSD
(
y1
q1 , . . . ,y

S
qS

)
for some coefficients asm;q1···qS .

3. Special cases.

1This freedom arises from the fact that the system of equations defining this interpolation is
underdetermined for S and k greater than 1: we must find kS fitting coefficients but there are only(k+S−1

S

)
monomial terms of degree less than k (which are the ones relevant for an order k fit). A

general choice of interpolation coefficients will result in an interpolating polynomial containing all
terms of degree less than k in each of the ts individually. We therefore have the freedom to modify the
interpolation coefficients as long as the modification alters only terms in the interpolating polynomial
of total degree at least k. This freedom could be used, for example, to set certain coefficients to zero
to reduce the number of computations required or to decrease the effect of terms where the times on
different sets have large mismatches.

In the case where the step size on each set is constant, the alternative sets of interpolation
coefficients can be obtained by adding high-order products of discrete Chebyshev polynomials [21]
to the coefficients in (2.16) or (2.18). In the general case we know of no simple method to calculate
alternative coefficients. We have not investigated the use of such alternative coefficients in either of
these cases.
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tA → t̃ t̃→ tA t̃→ tB tB → t̃

nA3 = 4 mA
4 = 3 tA3 t̃4 tB2 mB

4 = 2 nB2 = 4

nA2 = 3 mA
3 = 2 tA2 t̃3 mB

3 = 1

nA1 = 2 mA
2 = 1 tA1 t̃2 mB

2 = 1

mA
1 = 0 t̃1 tB1 mB

1 = 1 nB1 = 1

nA0 = 0 mA
0 = 0 tA0 t̃0 tB0 mB

0 = 0 nB0 = 0

Fig. 2. Example of the values of ms
n and ns

m for an arbitrarily chosen step pattern on two sets.
These quantities give a mapping between the indices of the sequences of times tsm and t̃n, with ns

m
mapping indices of tsm to the corresponding indices of t̃n and ms

n performing the reverse map. In
cases where there is no tsm corresponding to a given t̃n the index given by ms

n is for the most recent
step.

3.1. Element splitting. These equations involve many more evaluations of the
derivative than the standard GTS Adams-Bashforth method, so in the form (2.19) the
LTS method is unlikely to be more efficient. However, if the couplings between the
sets of degrees of freedom are inexpensive to calculate compared to the interactions
within each set, then the required number of evaluations can be reduced.. Let us
suppose that the derivative on set s is split into a “volume” portion only depending
on set s itself and a “boundary” portion encoding the coupling to other sets:

(3.1) Ds
(
y1
q1 , . . . ,y

S
qS

)
= Vs(ys

qs) + Bs
(
y1
q1 , . . . ,y

S
qS

)
.

These names are motivated by finite volume and discontinuous Galerkin methods,
where the terms from the interior and boundaries of elements split in this manner.
Substituting this into (2.17) and summing over the small steps, the volume contribu-
tion to the full step on set s is

(3.2) (∆ys
m)vol =

m∑
qs=m−(k−1)

ns
m+1−1∑
n=ns

m

m1
n∑

q1=m1
n−(k−1)

· · ·
�
�
�

∑
qs

· · ·
mS

n∑
qS=mS

n−(k−1)

Īn;q1···qS

Vs(ys
qs),

where nsm is defined by t̃ns
m

= tsm (see Figure 2). This is the same form as the
GTS Adams-Bashforth method (2.2) using the bracketed expression as coefficients
(absorbing the ∆t factor). The bracketed expression does not depend on the form of
the derivative, so to evaluate it we can take the boundary coupling Bs to be zero,
in which case this is the only contribution to the step. As this is then a kth-order
GTS method and the Adams-Bashforth method is the unique kth-order method of
this form, the bracketed quantity must be the standard Adams-Bashforth coefficient.
Returning to the general case with a coupling, this shows that a set of degrees of
freedom can be evolved using the standard Adams-Bashforth method for the volume
portion with only the coupling terms evaluated using (2.17).

This simplification applies in intermediate cases as well: if the full derivative can
be split into portions each of which depends on only some of the degree-of-freedom
sets, each of those contributions to the step can be calculated independently us-
ing (2.17) ignoring non-contributing sets. In calculations where the sets are only
coupled pairwise, this implies that only the S = 2 case need be considered.

3.2. Two-set case. In the common case where the sets of degrees of freedom are
only coupled pairwise the update method reduces to a collection of standard Adams-
Bashforth methods and LTS methods with S = 2. For the two-set case, we call the
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sets A and B and define the selection functions ΘA
n , ΘB

n , and ΘAB
n to be one if t̃n is an

evaluation time for only set A, only set B, or both sets, respectively. By construction,
a time evaluated on neither set can never occur. These selection functions sum to
one, so we can write Īn;qAqB = ĪAn;qAqB + ĪBn;qAqB + ĪAB

n;qAqB with

(3.3) ĪA,B,AB
n;qAqB

= ∆t̃n

k−1∑
i=0

α̃niΘ
A,B,AB
n−i

`mA
n−qA

(
t̃n−i; t

A
mA

n
, . . . , tAmA

n−(k−1)

)
`mB

n−qB
(
t̃n−i; t

B
mB

n
, . . . , tBmB

n−(k−1)

)
.

By the definition of mn, t̃n is not older than tA,B

mA,B
n

, so, from the construction of the t̃n

we see that t̃n−i ≥ tA,B

mA,B
n −(k−1)

. This implies that if the t̃n−i is an evaluation time for

either set, it is one of the control points in the corresponding Lagrange polynomial.
We can therefore collapse those polynomials to obtain

ĪAn;qAqB = ΘA
nA
qA

∆t̃nα̃n,n−nA
qA
`mB

n−qB
(
tAqA ; tBmB

n
, . . . , tBmB

n−(k−1)

)
(3.4)

ĪAB
n;qAqB = δtA

qA
,tB

qB
∆t̃nα̃n,n−nA

qA
,(3.5)

and ĪBn;qAqB = ĪAn;qBqA . Some example values are shown in Tables 1 and 2. The

meaning of, for example, the first entry for (a) in Table 1 is that in (2.19) the coefficient
aA0;0,1 = 115/64 (where we have chosen to number the steps starting from t = 0 so the

step on set B at ∆tB is step 1), so the equation for this step begins

(3.6) yA
(
∆tA

)
− yA

(
0
)

= ∆tA
[

115

64
DA
[
yA
(
0
)
,yB

(
∆tB

)]
+ · · ·

]
.

Similarly, the lower-left entry for (c) in Table 2 indicates that one term in the second
small step is

(3.7) yB
(
2∆tB

)
− yB

(
∆tB

)
= ∆tB

[
2

3
DA
[
yA
(
− 2∆tA

)
,yB

(
∆tB

)]
+ · · ·

]
.

Additional tables of coefficients can be found in Appendix B.

4. Numerical results. We tested this scheme on a set of field equations eval-
uated using discontinuous Galerkin methods. In a DG formulation, the domain of
evolution is divided into elements, with each element containing a collection of nodes.
The evolution equations are evaluated locally within each element and this collection
of partial solutions is coupled by adding additional terms at the element bound-
aries obtained from comparison with neighboring elements. The application of the
LTS scheme to this type of problem is natural: the elements themselves can each
be evolved uniformly using a standard GTS method, with only the couplings to the
neighbors using the more complicated LTS equations.

For our test problem, we evolved the scalar wave equation:

(4.1)
∂2ψ

∂t2
= ∇2ψ.

For numerical purposes, this is usually written in a form that contains only first order
temporal and spatial derivatives. This is done by introducing the additional quantities
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−2∆tA

−∆tA

0

∆tA

−2∆tB
−∆tB

0

∆tB
2∆tB

(a)
(b)

(c)

(a) ∆tB 0 −∆tB −2∆tB

0 115
64

7
24 − 11

64 0

−∆tA − 115
96 0 − 11

32
5
24

−2∆tA 23
64 0 11

192 0

(b) ∆tB 0 −∆tB −2∆tB

0 23
12 − 1

2 0

−∆tA 0 −1 5
12

−2∆tA 0 1
6 0

(c) ∆tB 0 −∆tB −2∆tB

0 115
32 − 4

3
5
32

−∆tA − 115
48 0 5

16

−2∆tA 23
32 0 − 5

96
Table 1

A third-order method for two sets A and B with B evaluated twice as often as A. Coefficients
for the derivatives in (2.19) evaluated using data from A and B at the times indicated for (a) a step
of set A from 0 to ∆tA, and steps of set B (b) from 0 to ∆tB and (c) from ∆tB to 2∆tB = ∆tA.

π, the conjugate momentum of ψ, and ~Φ, the gradient of ψ, given by

π = −∂ψ
∂t

(4.2)

~Φ = ∇ψ.(4.3)

Eliminating the second derivatives in (4.1) by substituting these back in provides the
system of first-order evolution equations

∂ψ

∂t
= −π(4.4)

∂~Φ

∂t
= −∇π(4.5)

∂π

∂t
= −∇ · ~Φ(4.6)

where we have also taken a time derivative of (4.3) to cast it in the form of an evolution
equation. The DG elements were coupled using an upwind flux (see section 6 of [22]).

For this system of PDEs, the integrals of π and ~Φ are linear conserved quantities. This
carries over to the discretized system as long as the discretization procedure preserves
the standard vector calculus identities, which the DG scheme does. The integral of
the energy density of the field, E = (π2 + ~Φ2)/2 is also an analytically conserved
quantity, but it is not linear in the evolved variables.

We used for a domain a periodic two-dimensional square divided nonuniformly
into rectangular elements, as shown in Figure 3. The largest elements are 16 times as
large (linearly) as the smallest elements. The nodes in each element are distributed
as Legendre-Gauss-Lobatto points in each dimension.

For our test solution we used a sinusoidal plane wave propagating diagonally
across the square, with wavelength equal to half the length of the diagonal. Step
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−2∆tA

−∆tA

0

∆tA

−2∆tA

−∆tA

0

∆tB
2∆tB

(a)
(b)

(c)

(a) ∆tB 0 −∆tA −2∆tA

0 5
3

1
4 0 0

−∆tA − 10
9 0 − 2

9 0

−2∆tA 1
3 0 0 1

12

(b) ∆tB 0 −∆tA −2∆tA

0 17
12 0 0

−∆tA 0 − 7
12 0

−2∆tA 0 0 1
6

(c) ∆tB 0 −∆tA −2∆tA

0 10
3 − 11

12 0

−∆tA − 20
9 0 5

36

−2∆tA 2
3 0 0

Table 2
Rules for reducing the time step size in one set to start the algorithm in Table 1 from a GTS

state. For t ≤ 0 both sets step together at interval ∆tA, after which set B changes to a step of
∆tB = ∆tA/2. For steps before t = 0 the standard GTS rules can be used, and for steps beyond
t = ∆tA the rules in Table 1 apply.

Fig. 3. The domain used in the numerical tests: a square with periodic boundary conditions.
The element pattern is symmetrical, with each half of each axis divided into four equal-sized segments
and four smaller segments, each of which is half the size of its larger neighbor.



12 W. THROWE AND S. A. TEUKOLSKY

10−16

10−14

10−12

10−10

10−8

10−6

10−4

0 0.5 1 1.5 2 2.5 3

Linf LTS
E LTS

Linf GTS
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π GTS

π LTS

E
rr

or

Time (wave periods)

Fig. 4. The Linf norm of the error in ψ, π, and ~Φ, as well as the error in the integral over the
domain of the conjugate momentum and energy density, for GTS and LTS evolutions. Both runs
used a second-order stepper with 92 points per element. The integral of the conjugate momentum,
being a linear conserved quantity, is constant to numerical roundoff for both methods, while the other
errors reflect the integrator truncation error. The LTS truncation errors are larger because the error
is dominated by the regions where the step size is large. The appearance of the LTS error as multiple
lines is because the measured error is smaller at times when larger elements are not evaluated. The
integrated quantities are only evaluated at times when all elements have data.

sizes were restricted to be binary fractions of the wave period. When step sizes were
allowed to vary, they were chosen according to the CFL condition with the restriction
that they must be binary fractions of the wave period. The step size in each element
is determined by its smallest dimension, so all elements along the center of the refined
cross take steps of the same size, 16 times as small as the steps on the largest elements.
The step sizes then increased by factors of two moving outward to each next layer of
elements.

As shown in Figure 4, the overall error in the evolution is larger when using an
LTS integrator than when using a GTS integrator of the same smallest step size.
This is because the GTS integration is taking unnecessarily small steps in the large
elements, while the LTS integration is providing the largest time steps consistent with
stability. If desired, the LTS error could be reduced by choosing steps using a criterion
other than just stability. As the time steps throughout the domain are decreased, the
numerical results converge to the analytic value at the expected rate, as shown for
several integrator orders in Figure 5. Even for the largest possible time steps the
errors in the linear conserved quantities are at roundoff level.

Switching from a standard third-order GTS scheme to the LTS scheme, while
still using uniform step sizes throughout the domain, incurs a performance penalty
of a factor of approximately 0.8 because of the increased computational cost of the
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GTS order 1
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Fig. 5. Maximum difference from the analytic solution over all grid points over the first three
oscillations of the wave when artificially decreasing the step size below the CFL limit, showing the
expected convergence rates. All simulations used 92 points per element. The third-order GTS errors
(not shown) are dominated by the spatial discretization error of approximately 10−10.

boundary computations. However, once the step sizes are permitted to vary across
the domain the total number of steps can be reduced by the ratio of the total number
of steps across all elements during GTS and LTS, which in this case is 512/211,
providing a theoretical improvement by a factor of 2.43. This provides an upper
bound on the speed increase obtainable for this problem by any LTS scheme. In
practice, we observe an approximate speedup of 2.1 relative to the uniform-step LTS
integration, leading to a speedup of approximately 1.6 relative to the GTS scheme.
The effects on integration speed from the LTS method are not strongly dependent
on resolution, as shown in Figure 6, but integration is slower at higher time-stepper
order, as shown in Figure 7, which is consistent with the need to evaluate more points
for interpolating the couplings. The performance penalty of using an LTS scheme
with a fixed step size does not vary significantly across the tested cases, which is
expected because in the equal-step-size case no interpolation is necessary to compute
couplings between elements.

All of these performance measurements are system-dependent, and should be im-
proved with more complex systems than the scalar wave. The overhead from switching
to LTS is independent of the system, and so should have a much smaller relative effect
for systems with expensive right-hand sides. The overhead from increasing the inte-
gration order is proportional to the cost of the calculations on the element boundaries
and so should decrease when these are much smaller than the right-hand-side cost.

5. Conclusions. When integrating systems of coupled ODEs, particularly those
arising from discretizations of PDE systems, it is often the case that time-step-related
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Fig. 6. Comparisons of run speed using different third-order integrators at various element
resolutions. The LTS and GTS algorithms are compared, and also compared to the LTS algorithm
running with a constant global step size. The horizontal line shows the ratio of the number of steps
on all elements taken when stepping globally and locally.

instabilities arise primarily in a small subset of the variables being integrated. Using
standard evolution schemes, this forces all degrees of freedom to be evolved with the
most restrictive stable time step, potentially causing significant waste of computa-
tional resources. A local time-stepping integrator removes this requirement, allowing
different degrees of freedom to be updated at different frequencies.

This paper has presented a local time-stepping scheme based on the Adams-
Bashforth family of multistep integrators. This method allows arbitrary step choices,
with a completely independent choice of time step for each variable. Unlike some pre-
vious schemes, it retains the full convergence order of the Adams-Bashforth integrator
it is based on. This method is also conservative in that all linear conserved quantities
of the system are constant to numerical roundoff under evolution.

The use of this method was demonstrated on a scalar wave equation evolved us-
ing the DG framework. The roundoff-level conservation of a conserved quantity was
demonstrated, and the expected convergence rate for other quantities was observed
for multiple integrator orders. For this problem, we observe an evolution speed im-
provement by a factor of approximately 1.6 from switching from the global to the local
scheme, although this number is strongly dependent on the integration order. We also
expect a bigger speedup if the right-hand side of the equations is more complicated
than the simple wave equation we used as a test case.

This method will be used for DG evolutions of general relativity and magnetohy-
drodynamics in upcoming work using the SpECTRE code [23].

Appendix A. Element splitting for general methods. When comparing
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Fig. 7. Comparisons of run speed using different integration orders on a domain with 52 points
per element. The LTS and GTS algorithms are compared, and also compared to the LTS algorithm
running with a constant global step size. The horizontal line shows the ratio of the number of steps
on all elements taken when stepping globally and locally.

integrators, one may wish to use a GTS integrator that is not usually expressed in
terms of volume terms and boundary couplings (for example, a Runge-Kutta method)
in a framework designed for an LTS integrator that is so expressed. This is easiest if
the GTS integrator can be cast into the element splitting form (Section 3.1).

All common explicit GTS integrators (both multistep and substep) can be written
in the form

(A.1) un+1 − un =
∑
i

Ai
n(un − un−i) + ∆tn

∑
i

Bi
nD(un−i).

Adams-Bashforth integrators are usually written in this form with the Ai
n = 0. Runge-

Kutta methods take some manipulation. For example, the second-order midpoint
method

(A.2) un+1 − un = ∆tD

[
un +

1

2
∆tD(un)

]
can be written as

u2n+1 − u2n = ∆t2nD(u2n)(A.3)

u2n+2 − u2n+1 = −(u2n+1 − u2n) + 2∆t2n+1D(u2n+1),(A.4)

where we have renumbered the steps so that the even numbered ones are the results
of complete RK steps and ∆tn = ∆t/2.
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For local time-stepping, the derivative values can depend on an additional set of
values vj (which have their own, similar, update equation), but where we still expect
the update rule to have the form of a linear combination:

(A.5) un+1 − un =
∑
i

Ai
n(un − un−i) + ∆tn

∑
i,j

Bij
n D(un−i, vmn−j).

We now perform an element splitting as in Section 3.1 by writing D(u, v) =
V (u) +B(u, v). Substituting this in gives

(A.6) un+1 − un =
[∑

i

Ai
n(un − un−i) + ∆tn

∑
i

(∑
j

Bij
n

)
V (un−i)

]
+ ∆tn

∑
i,j

Bij
n B(un−i, vmn−j).

Since a general method must be independent of the details of the V and B functions,
the bracketed terms in (A.6) must be the standard GTS method operating with only
the “volume” portion of the equations, and the last term is a coupling correction.
Notably, the coupling term does not require the function values directly, but only the
value of the coupling evaluated at those values.

When using a GTS method in an LTS framework, the u and v will be evaluated
at the same sequence of times and the coefficients Bij

n will be diagonal in i, j. Com-
paring (A.1) to the bracketed term in (A.6), we see that

∑
j B

ij
n = Bi

n, so for a GTS

method Bij
n = δijB

i
n. Combining all this, we find that

(A.7)

un+1 − un =
[∑

i

Ai
n(un − un−i) + ∆tn

∑
i

Bi
nV (un−i)

]
+ ∆tn

∑
i

Bi
nB(un−i, vn−i),

that is, when using an arbitrary GTS integrator in a framework designed for LTS,
one can evaluate the volume term using the standard GTS rule and the coupling
contribution by using the usual update formula but with all the non-derivative terms
set to zero. For the midpoint Runge-Kutta scheme above, this gives the split rule

u2n+1 − u2n = ∆t2nV (u2n) + ∆t2nB(u2n, v2n)

(A.8)

u2n+2 − u2n+1 =
[
(u2n+1 − u2n+1−1) + ∆t2n+1V (u2n+1)

]
+ ∆t2n+1B(u2n+1, v2n+1).

(A.9)

Appendix B. Tables of coefficients for 2 : 1 LTS rules.
Below are tables of coefficients for order 2, 3, and 4 LTS rules with 2 : 1 stepping,

as well as the coefficients for transitioning between LTS and GTS stepping in these
cases. The step patterns corresponding to these tables are shown in Figure 8.
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−2∆tA

−∆tA

0

∆tA

2∆tA

−4∆tB
−3∆tB
−2∆tB
−∆tB

0

∆tB
2∆tB
3∆tB
4∆tB

...

...

(a)
(b)

(c)

−2∆tA

−∆tA

0

∆tA

2∆tA

−2∆tA

−∆tA

0

∆tB
2∆tB
3∆tB
4∆tB

...

...

(d0)
(e0)

(f0)

(d1)
(e1)

(f1)

−4∆tB
−3∆tB
−2∆tB
−∆tB

0

∆tA

2∆tA

−4∆tB
−3∆tB
−2∆tB
−∆tB

0

∆tB
2∆tB
3∆tB
4∆tB

...

...

(g0)
(h0)

(i0)

(g1)
(h1)

(i1)

−2∆tA

−∆tA

0

∆tB
2∆tB
3∆tB
4∆tB

−4∆tB
−3∆tB
−2∆tB
−∆tB

0

∆tB
2∆tB
3∆tB
4∆tB

...

...

(j0) (j0)

(j1) (j1)

(j2) (j2)

(j3) (j3)

−2∆tA

−∆tA

0

∆tA

2∆tA

−4∆tB
−3∆tB
−2∆tB
−∆tB

0

∆tA

2∆tA

...

...

(k0) (k0)

(k1) (k1)

Fig. 8. Step patterns during (a–c) steady state 2 : 1 evolution, (d–f) transition to LTS by
decreasing a step size, (g–i) transition to LTS by increasing a step size, (j) transition back to GTS
by decreasing a step size, and (k) transition back to GTS by increasing a step size. The labels
correspond to the tables given in Appendix B. The coefficients for transitioning back to GTS are the
same for both elements. The numbered labels are extended upwards as necessary until the steady-state
values are reached.

For the transition rules, the number of steps requiring special coefficients depends
on the order of the integrator. Only tables for steps affected by the transition are
shown below, after which either the 2 : 1 rule or the GTS rule should be used, as
appropriate.

B.1. Order 2.

LTS 2 : 1 rule

(a) ∆tB 0 −∆tB (b) 0 −∆tB (c) ∆tB 0

0 9
8

1
2

− 1
8

0 3
2

− 1
4

0 9
4

− 1
2

−∆tA − 3
8

0 − 1
8

−∆tA 0 − 1
4

−∆tA − 3
4

0
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Transition to LTS by decreasing a step size

(d0) ∆tB 0 −∆tA (e0) 0 −∆tA (f0) ∆tB 0

0 9
8

3
8

0 0 5
4

0 0 9
4

− 1
2

−∆tA − 3
8

0 − 1
8

−∆tA 0 − 1
4

−∆tA − 3
4

0

Transition to LTS by increasing a step size

(g0) ∆tB 0 −∆tB (h0) 0 −∆tB (i0) ∆tB 0

0 3
2

1
2

0 0 3
2

0 0 3 − 1
2

−∆tB − 3
4

0 − 1
4

−∆tB 0 − 1
2

−∆tB − 3
2

0

Transitioning to GTS

(j0) 0 −∆tB (k0) 0 −∆tB

0 3
2

− 1
4

0 2 − 1
2

−∆tA 0 − 1
4

−∆tA 0 − 1
2

B.2. Order 3.

LTS 2 : 1 rule

(a) ∆tB 0 −∆tB −2∆tB (b) 0 −∆tB −2∆tB

0 115
64

7
24

− 11
64

0 0 23
12

− 1
2

0

−∆tA − 115
96

0 − 11
32

5
24

−∆tA 0 −1 5
12

−2∆tA 23
64

0 11
192

0 −2∆tA 0 1
6

0

(c) ∆tB 0 −∆tB

0 115
32

− 4
3

5
32

−∆tA − 115
48

0 5
16

−2∆tA 23
32

0 − 5
96

Transition to LTS by decreasing a step size

(d0) ∆tB 0 −∆tA −2∆tA (e0) 0 −∆tA −2∆tA

0 5
3

1
4

0 0 0 17
12

0 0

−∆tA − 10
9

0 − 2
9

0 −∆tA 0 − 7
12

0

−2∆tA 1
3

0 0 1
12

−2∆tA 0 0 1
6

(f0) ∆tB 0 −∆tA

0 10
3

− 11
12

0

−∆tA − 20
9

0 5
36

−2∆tA 2
3

0 0

Transition to LTS by increasing a step size

(g0) ∆tB 0 −∆tB −2∆tB (h0) 0 −∆tB −2∆tB

0 23
8

7
24

0 0 0 23
12

0 0

−∆tB − 23
8

0 − 11
24

0 −∆tB 0 − 4
3

0

−2∆tB 23
24

0 0 5
24

−2∆tB 0 0 5
12
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(i0) ∆tB 0 −∆tB (g1) 3∆tB 2∆tB ∆tB 0

0 23
4

− 4
3

0 ∆tA 23
12

7
24

− 11
72

0

−∆tB − 23
4

0 5
12

0 − 23
12

0 − 11
24

5
24

−2∆tB 23
12

0 0 −∆tB 23
24

0 11
72

0

(h1) 2∆tB ∆tB 0 (i1) 3∆tB 2∆tB ∆tB

∆tA 23
12

− 4
9

0 ∆tA 23
6

− 4
3

5
36

0 0 − 4
3

5
12

0 − 23
6

0 5
12

−∆tB 0 4
9

0 −∆tB 23
12

0 − 5
36

Transitioning to GTS by decreasing a step size

(j0) 0 −∆tB −2∆tB (j1) ∆tB 0 −∆tB

0 23
12

− 1
2

0 ∆tB 23
12

0 − 5
36

−∆tA 0 −1 5
12

0 0 − 4
3

5
12

−2∆tA 0 1
6

0 −∆tA 0 0 5
36

Transitioning to GTS by increasing a step size

(k0) 0 −∆tB −2∆tB (k1) ∆tA 0 −∆tB

0 19
6

− 5
4

0 ∆tA 37
18

0 − 5
36

−∆tA 0 − 5
2

7
6

0 0 − 13
6

5
6

−2∆tA 0 5
12

0 −∆tA 0 0 5
12

B.3. Order 4.

LTS 2 : 1 rule

(a) ∆tB 0 −∆tB −2∆tB −3∆tB (b) 0 −∆tB −2∆tB −3∆tB

0 1925
768

− 1
12

− 55
384

0 3
256

0 55
24

− 295
384

0 3
128

−∆tA − 1925
768

0 − 55
128

7
12

− 27
256

−∆tA 0 − 295
128

37
24

− 27
128

−2∆tA 385
256

0 55
384

0 − 27
256

−2∆tA 0 295
384

0 − 27
128

−3∆tA − 275
768

0 − 11
384

0 3
256

−3∆tA 0 − 59
384

0 3
128

(c) ∆tB 0 −∆tB −2∆tB

0 1925
384

− 59
24

185
384

0

−∆tA − 1925
384

0 185
128

− 3
8

−2∆tA 385
128

0 − 185
384

0

−3∆tA − 275
384

0 37
384

0

Transition to LTS by decreasing a step size

(d0) ∆tB 0 −∆tA −2∆tA −3∆tA (e0) 0 −∆tA −2∆tA −3∆tA

0 833
384

47
384

0 0 0 0 99
64

0 0 0

−∆tA − 833
384

0 − 37
128

0 0 −∆tA 0 − 187
192

0 0

−2∆tA 833
640

0 0 461
1920

0 −2∆tA 0 0 107
192

0

−3∆tA − 119
384

0 0 0 − 25
384

−3∆tA 0 0 0 − 25
192
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(f0) ∆tB 0 −∆tA −2∆tA (d1) 3∆tB 2∆tB ∆tB 0 −∆tA

0 833
192

− 125
96

0 0 ∆tA 1925
768

− 25
192

− 65
768

0 0

−∆tA − 833
192

0 19
48

0 0 − 1925
768

0 − 65
256

29
96

0

−2∆tA 833
320

0 0 − 37
480

−∆tA 385
256

0 65
768

0 − 3
64

−3∆tA − 119
192

0 0 0 −2∆tA − 275
768

0 − 13
768

0 0

(e1) 2∆tB ∆tB 0 −∆tA (f1) 3∆tB 2∆tB ∆tB 0

∆tA 211
96

− 125
192

0 0 ∆tA 1925
384

− 59
24

185
384

0

0 0 − 125
64

47
48

0 0 − 1925
384

0 185
128

− 3
8

−∆tA 0 125
192

0 − 3
32

−∆tA 385
128

0 − 185
384

0

−2∆tA 0 − 25
192

0 0 −2∆tA − 275
384

0 37
384

0

Transition to LTS by increasing a step size

(g0) ∆tB 0 −∆tB −2∆tB −3∆tB (h0) 0 −∆tB −2∆tB −3∆tB

0 55
12

− 1
12

0 0 0 0 55
24

0 0 0

−∆tB − 55
8

0 − 11
24

0 0 −∆tB 0 − 59
24

0 0

−2∆tB 55
12

0 0 7
12

0 −2∆tB 0 0 37
24

0

−3∆tB − 55
48

0 0 0 − 3
16

−3∆tB 0 0 0 − 3
8

(i0) ∆tB 0 −∆tB −2∆tB (g1) 3∆tB 2∆tB ∆tB 0 −∆tB

0 55
6

− 59
24

0 0 ∆tA 275
96

− 1
12

− 11
96

0 0

−∆tB − 55
4

0 37
24

0 0 − 275
48

0 − 11
16

7
12

0

−2∆tB 55
6

0 0 − 3
8

−∆tB 275
48

0 11
24

0 − 3
16

−3∆tB − 55
24

0 0 0 −2∆tB − 55
32

0 − 11
96

0 0

(h1) 2∆tB ∆tB 0 −∆tB (i1) 3∆tB 2∆tB ∆tB 0

∆tA 55
24

− 59
96

0 0 ∆tA 275
48

− 59
24

37
96

0

0 0 − 59
16

37
24

0 0 − 275
24

0 37
16

− 3
8

−∆tB 0 59
24

0 − 3
8

−∆tB 275
24

0 − 37
24

0

−2∆tB 0 − 59
96

0 0 −2∆tB − 55
16

0 37
96

0

(g2) 5∆tB 4∆tB 3∆tB 2∆tB ∆tB (h2) 4∆tB 3∆tB 2∆tB ∆tB

2∆tA 165
64

− 1
12

− 11
80

0 3
320

2∆tA 55
24

− 59
80

0 3
160

∆tA − 275
96

0 − 11
24

7
12

− 3
32

∆tA 0 − 59
24

37
24

− 3
16

0 165
64

0 11
48

0 − 9
64

0 0 59
48

0 − 9
32

−∆tB − 55
48

0 − 11
120

0 3
80

−∆tB 0 − 59
120

0 3
40

(i2) 5∆tB 4∆tB 3∆tB 2∆tB

2∆tA 165
32

− 59
24

37
80

0

∆tA − 275
48

0 37
24

− 3
8

0 165
32

0 − 37
48

0

−∆tB − 55
24

0 37
120

0
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Transitioning to GTS by decreasing a step size

(j0) 0 −∆tB −2∆tB −3∆tB (j1) ∆tB 0 −∆tB −2∆tB

0 55
24

− 295
384

0 3
128

∆tB 55
24

0 − 37
120

0

−∆tA 0 − 295
128

37
24

− 27
128

0 0 − 59
24

37
32

0

−2∆tA 0 295
384

0 − 27
128

−∆tA 0 0 37
48

− 3
8

−3∆tA 0 − 59
384

0 3
128

−2∆tA 0 0 − 37
480

0

(j2) 2∆tB ∆tB 0 −∆tB

2∆tB 55
24

0 0 − 3
32

∆tB 0 − 59
24

0 3
8

0 0 0 37
24

− 9
16

−∆tA 0 0 0 − 3
32

Transitioning to GTS by increasing a step size

(k0) 0 −∆tB −2∆tB −3∆tB (k1) ∆tA 0 −∆tB −2∆tB

0 9
2

− 55
24

0 1
12

∆tA 8
3

0 − 3
8

0

−∆tA 0 − 55
8

31
6

− 3
4

0 0 − 35
6

27
8

0

−2∆tA 0 55
24

0 − 3
4

−∆tA 0 0 27
8

− 11
6

−3∆tA 0 − 11
24

0 1
12

−2∆tA 0 0 − 3
8

0

(k2) 2∆tA ∆tA 0 −∆tB

2∆tA 71
30

0 0 − 3
40

∆tA 0 − 17
6

0 3
8

0 0 0 8
3

− 9
8

−∆tA 0 0 0 − 3
8
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Christian D. Ott, Mark A. Scheel, and Trevor Vincent. Spectre: A task-based discontinuous
galerkin code for relativistic astrophysics. J Comp Phys, 335:84–114, 2017.


	1 Introduction
	2 The method
	2.1 Adams-Bashforth methods
	2.2 Conserved quantities
	2.3 Second-order 2:1 stepping
	2.4 Conservative time steppers

	3 Special cases
	3.1 Element splitting
	3.2 Two-set case

	4 Numerical results
	5 Conclusions
	Appendix A. Element splitting for general methods
	Appendix B. Tables of coefficients for 2:1 LTS rules
	B.1 Order 2
	B.2 Order 3
	B.3 Order 4

	References

