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A measurement and integration scheme is proposed to estimate the shape of a large
planar structure in space. Lightweight sun sensors distributed on the structure measure
the local angles relative to the sun. A reconstruction technique is introduced to estimate the
shape of the satellite through a decomposition on a function basis. The estimated shape is
determined by the coefficients associated with the basis functions which are calculated from
the measurements. A trade-off study to analyze the influence of different reconstruction
schemes and the position of the sensors is presented. An optimization scheme minimizes
the RMS error between the estimated and true shape. An experiment was conducted to
show the feasibility and performance of the proposed system at the lab scale. Finally, a
simulation of the accuracy of the presented solution on a 60 m space solar power module
is performed. The expected error is 0.7 mm RMS using sensors every 30 cm.

Nomenclature

A Measurement matrix, rad
Kŵ Covariance matrix of reconstructed shape, m2

M Number of basis functions
n Noise of sensors, rad
N Number of discrete locations where shape is defined
w True shape of structure, m
ŵ Estimated/Reconstructed shape of structure, m
q Coefficient associated with a basis function
q Vector of coefficients q
S Number of sensors on structure
Kθ Convariant matrix of measurements, rad2

MSE Mean Square Error matrix, m2

RMSE Root Mean Square Error, m
θ Measurements, rad
φ Basis function, m
Φ Matrix of basis functions, m

I. Introduction

Large planar spacecraft structures are required for applications such as solar sails, solar panels, and large
antennas. Traditionally, stiffness driven designs have been adopted for large spacecraft structures [1], but the
quest for more aggressive structural concepts, with the potential to achieve much lower areal densities and
lower cost through simpler structures, motivates studies of novel concepts for ultralight and highly flexible
structures. The Space Solar Power Initiative (SSPI) at Caltech aims to create a phased antenna array on
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a membrane-like structure. This array beams to Earth the energy gathered from photovoltaic elements, in
the microwave range. This approach requires the shape of the flexible structure to be measured in space
to enable correction, through phase shifting, for the deviation of the position of each antenna forming the
phased array [2].

The maximum RMSE on the shape measurement of the spacecraft needs to be a fraction of the operating
wavelength of the antenna array. For SSPI the radiation frequency is 10 GHz, and this requirement translates
into a precision on the order of a millimeter. [3]

Many techniques already exist to measure position in space. One can time-integrate acceleration, twice,
to obtain a position measurement, which however is affected by noise in the accelerometers leading to an
unbounded increase of the uncertainty of the position estimate. [4] Carrier-Phase Differential GPS is used for
precise spacecraft relative navigation [5] but lacks precision in geostationary orbits. Ranging systems have
been successfully used in space for precise distance measurements [6]. While their accuracy can be orders
of magnitude better than the previously stated requirement, they only measure point-to-point distance.
Synthetic aperture radar is used to map the earth with great precision [7]. A large viewing angle is however
required to avoid shadows. The same drawback also applies for ranging systems. None of these approaches
offers the key features of lightness, time stability, and ability to accurately estimate the shape of very large
structures.

We present a method to measure the shape of large planar spacecraft structures compatible with a space
solar power satellite. The proposed solution is presented, along with a type of sensors that appears to be
very suitable for this application. The mathematical framework to convert a discrete measurement set into a
continuous estimated shape for the spacecraft is then explained. A system trade-off is detailed to study the
parameters involved in the shape reconstruction scheme and the location of the sensors in order to minimize
the RMS error of the estimated shape. The viability of the proposed solution has been confirmed by means
of an experiment on a lab-scale structure, which has also provided error bounds for the accuracy achievable
with first-generation sensors. Finally, simulations were performed to estimate the accuracy of the presented
method on a large 60 m long structure, representing a full scale SSPI module.

II. Proposed Solution

It is proposed to use sun sensors spread on the structure, as shown in Figure 1. Each sensor measures two
components of the angle between the normal to the structure and the sun. Since the targeted application
for the system is a space solar power spacecraft which is always pointing at the sun to harvest energy, the
use of this type of sensors seems appropriate.

Sun sensors are simple devices. While many different architectures exist [8–12], it has been decided to
use a design involving a quad-photodiode with an aperture hole on top, as shown in Figure 2a. This solution
makes the sensors very light (0.25 g for the first-generation sensor described in Section V). When the sensor
is pointed towards the Sun, the hole creates a spot on the 2× 2 photosensitive array as shown in Figure 2b.
By differentiating the sum of currents of the photodiodes on the left from the ones on the right, the tangent
of the angle θ can be computed. A similar calculation using the bottom and top photodiodes respectively
computes the angle β. Assuming a zero thickness aperture plate, the relations are

2h tan θ

D
=

(I1 + I2)− (I3 + I4)

I1 + I2 + I3 + I4
(1)

2h tanβ

D
=

(I1 + I4)− (I2 + I3)

I1 + I2 + I3 + I4
(2)

where Ik is the current of the kth photodiode, h the distance between the aperture plate and the photosen-
sitive plane, D the width of the aperture hole defined in Figure 2a, and θ and β the two components of the
angle from the sun defined in Figure 2b.

To measure the shape of the structure, only one spatial integration is required, as discussed in the next
section. The degree of risk of this solution is low: if one sensor fails, the overall shape measurement can still
be performed using the information from the other sensors, athough the magnitude of the error will increase.
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Figure 1: Schematic of proposed solution: 4 sun sensors placed on deformed structure
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Figure 2: Schematic of sun sensor.

III. Shape Reconstruction

This section discusses the integration scheme that reconstructs the shape of the structure from the
angle measurements. The measured angles correspond to the first derivative of the shape, hence a spatial
integration is needed. The shape of the structure, initially flat on the xy-plane is defined by the out-of-plane
displacement component along the z-axis (see Figure 1), w, at N discrete locations. We are looking for an
estimated, reconstructed shape of the type

ŵ =

M∑
k=1

qkφk = Φq (3)

where ŵ ∈ RN is the vector of estimated displacements, qk ∈ R are unique coefficients, φk ∈ RN are the
values of basis functions at the discrete locations, Φ ∈ RN×M is the matrix of basis functions, and q ∈ RM

is the vector of basis functions coefficients.
The basis functions need to satisfy the following properties:

1. The whole structure needs to be covered, i.e. for every discrete location (x, y) there is at least one k
with 0 ≤ k ≤M such that φk(x, y) 6= 0.

2. They should satisfy at least one Dirichlet boundary condition: the out-of-plane displacement has to be
imposed at one location, the starting point for the spatial integration.

3. They must be linearly independent, for the problem to be well-posed and the uniqueness of the coeffi-
cients qk.

4. They must be differentiable at the sensor locations, for the slopes to be defined at these points.

5. The whole set of sensor measurement needs to be covered, i.e. for every measurement θ there is at
least one k with 0 ≤ k ≤M such that θ 6= 0 when w = φk.
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6. They must possess sufficient approximation power, i.e. ŵ→ w as M →∞.

Piecewise polynomial functions or the modal functions (vibration eigenmodes) of the structure are the
most obvious choices.

In-order to reconstruct the shape of the structure, one needs to find the coefficients qk. They are
determined by the angle measurements. The maximum number of coefficients one can calculate is equal
to the number of sensor measurements S (equal to twice the number of sensors since each quad-photodiode
measures two angles). The reconstructed shape is described by the sum of M ≤ S basis functions. The
measured angles have to satisfy an equation analogous to Equation 3, and given by:

θ = Aq + n (4)

where θ ∈ RS is the vector of the measured angles, A ∈ RS×M are the corresponding angles (or derivatives)
of the basis functions at the sensor locations, and called measurement matrix, and n ∈ RS is the noise of
the measurements assumed zero mean and Gaussian with covariance Kθ ∈ RS×S .

The problem aims to minimize the Mean Squared Error between the reconstructed shape ŵ and the
actual true shape w. This error is given by

MSE = Kŵ + (E [ŵ]−w) (E [ŵ]−w)
T

(5)

where MSE ∈ RN×N , Kŵ ∈ RN×N is the covariance of ŵ and E [ · ] is the expected value function.
Kŵ represents the influence of the sensor noise on the estimated shape. In this least-squares sense, the
reconstructed shape follows the same equation as its expected value. From Equations 3 and 4, ŵ is given by

ŵ = ΦA+θ (6)

where A+ is the Moore-Penrose pseudoinverse of A.
Since the noise of the sensors is assumed Gaussian, a more interesting metric for this problem is the

average Root Mean Square (RMS) Error, defined by

RMSE =

√
Tr (MSE)

N
(7)

where RMSE ∈ R, Tr is the trace function, Tr (MSE) is the sum of the variance at each discrete location
and MSE the Mean Square Error matrix defined by Equation 5.

IV. Minimizing the RMS Error in 1D Case

For the sake of simplicity, we consider a beam-like structure aligned with the x-axis. All results shown is
this section can be straightforwardly extended to 2 dimensions.

A. Finite Element approach

An analysis of the method described in Section III is presented in the context of the finite element method
(FEM) [13]. The structure is divided into M elements and nodes. Each node xi has one degree of freedom:
its normal displacement component. The basis functions, usually called shape functions, are continuous,
piecewise-polynomial, such that

φk (xi) = δik for all i, k ∈ {1, ...,M} (8)

where δik is the Kronecker delta of i and k.
We introduce two numbers describing the reconstruction scheme:

1. The order of the element describes the polynomial order of the shape functions and is related to
the number of nodes in each element. In 1D, the number of nodes per element equals the order of the
element plus 1.

2. The order of the sensor distribution (or sensor order) describes the number of sensors per
element.
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The total number of nodes (discarding the ones used to apply the Dirichlet boundary conditions) and
shape functions M is equal to the number of elements times the order of the elements minus the number of
boundary conditions plus 1

M = (# elements)× (element order)− (# Dirichlet boundary conditions) + 1 (9)

The total number of sensors (or measurements) S is equal to the number of elements times the sensor order

S = (# elements)× (sensor order) (10)

To avoid ill-posed problems, the sensor order needs to be greater or equal to the element order (considering
the simple case of a single Dirichlet boundary condition), hence M ≤ S. Note that adding boundary
conditions simply overconstrains the problem.

Figure 3 shows the shape functions for elements and distributions of sensors of order 1 and 2. The sensors
and nodes are equally spaced.

1

(a) Element order: 1, Sensor order: 1

1

(b) Element order: 1, Sensor order: 2

1

(c) Element order: 2, Sensor order: 2

Figure 3: Finite element shape function for different element and sensor orders. Circles represent the nodes
and black rectangles represent the sensors.

For a fixed element order, a larger sensor order will tend to overconstrain the problem, as there are
too many sensors for the number of coefficients to calculate. This induces an averaging effect where many
measurements are averaged together to calculate a coefficient. This lowers the effect of the noise of the
sensors on the calculated coefficient (covariance Kŵ in equation 5), but the higher sensor order corresponds
to elements of larger size, which decreases the smoothness of the solution and increases the bias (second
term in equation 5). Hence, there is a trade-off to be made between the two orders in order to minimize the
RMS error.

Figure 4 shows a 30 m long beam undergoing a sinusoidal deformation of 2 m amplitude and simply
supported at one end. Twenty-four sensors are uniformly distributed and the nodes are equally spaced
between the sensors. The 3σ RMS error of the sensors is set to 0.017 deg (one arcminute). The results
presented in Figure 5 show that for lower element orders the bias is large because the solution is not smooth.
For larger element orders the solution is smoother so the bias remains small but the influence of the noise of
the sensors increases. The global minimum error is reached when the whole structure is considered as one
element, and hence from now on we will consider the structure as one element. Note that this optimization
is dependent on the actual shape to be reconstructed and the noise of the sensors. Different shapes will lead
to different sets of optimum element/sensor orders while the sensors noise influence the importance of the
covariance relative to the bias.

Different global basis functions will be considered from the finite element shape functions introduced in
Equation 8, including monomials and modal functions (vibration eigenmodes) of the structure. The latter
is an appropriate choice for a large structure in space that vibrates freely.
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Figure 4: Structure to test finite element reconstruction. Black rectangles represent the sensors.
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Figure 5: Results of finite element reconstruction of test structure.

B. Sensor Location

It was shown in Section III that the shape of the structure can be reconstructed from the sensor measurements
through the measurement matrix A (Equation 6). The noise of each sensor will also propagate to the final
solution through a similar equation. The covariance matrix of the position vector Kŵ ∈ RN×N is described
by

Kŵ = E
(
ŵŵT

)
− E (ŵ)E

(
ŵT
)

= ΦA+Kθ

(
A+
)T

ΦT (11)

Note that if the measurements are independent and have the same noise characteristics, the covariance
matrix of the measurement is Kθ = σ2

θI, where σ2
θ the variance of the measurements and I ∈ RS×S the

identity matrix. These assumptions are considered valid for this problem.
A good measure to minimize the covariance Kŵ is its trace [14]. This is equivalent to minimizing the

average variance of the position vector. Since this covariance is dependent on the position of the sensors
through the measurement matrix A, these locations can be optimized to find the global minimum of the
trace of Kŵ.

To solve this minimization problem, our structure is discretized into possible locations for the sensors.
A Simulated Annealing algorithm (SA) [15] has been implemented to solve this multivariable, non-convex,
global minimization problem. The state is represented by a vector with size equal to the number of candidate
positions for the sensors, and filled with ones where it is chosen to locate a sensor, and zeros otherwise. The
transition between two steps is done by selecting two random indexes of the state vector and swapping the
values in between. From this state, the matrix A is computed to calculate the trace of Kŵ which is used as
the cost function. Note that when the sensor order is small, this problem becomes simple and a scanning
algorithm that tries every possible combination can be used.

This algorithm was applied to a single element using the finite element shape functions from Equation
8. The distance between each node is constant and equal to 25 mm. Trial positions for the sensors were set
every millimeter. The element and sensor order were equal and varied from 2 to 4. For the first order, the
placement of the sensor does not affect the covariance Kŵ. The results were compared to the result from a
scanning algorithm and are shown in Table 1. The variance of the sensor measurement σ2

θ is set to 1. Its
value does not affect the results of this minimization problem.

The scanning algorithm finds the optimum combination that minimizes the trace of Kŵ (cost) shown in
column 2 of Table 1. The third column shows that SA converges to a value close to the global minimum. The
location of the sensors is within 2 mm from the scanning algorithm results which is considered acceptable.
The number of calculations is orders of magnitude smaller and increases slowly with the number of sensors.
This result becomes useful when hundreds or thousands of sensors need to be positioned on a structure.
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For the three analyzed cases, Figure 6 shows the position of the sensors on the element. For the first
case, Figure 6a, the sensors are placed on the edge nodes where the full derivative is not defined (see Figure
3). The considered derivatives are respectively the right and left derivatives for the left and right sensors.

Order Scan cost SA cost Scan calculations SA calculations

2 6316 6350 1325 95

3 20862 20877 73149 155

4 40246 40728 4249574 75

Table 1: Comparison of simulation results using Scan and SA algorithms for simply supported beam.

0 10 20 30 40 50

Position [mm]

(a) Element order: 2, Sensor order: 2

0

Position [mm]

25 50 75

(b) Element order: 3, Sensor order: 3

0 20 40 60 80 100

Position [mm]

(c) Element order: 4, Sensor order: 4

Figure 6: Optimum location of sun sensors to minimize the influence of their noise on the reconstructed
shape using finite element shape functions. Circles correspond to the nodes and rectangles to the sensors.

V. Experiment

In order to show the feasibility and performance of the proposed solution, an experiment was conducted.
Sun sensors were made from off-the-shelf quad-photodiodes (TT Electronics OPR5911) with an aperture

plate made of a black polymer. This plate was centered on the array of photodiodes under a microscope. No
optimization has been made towards the size of the aperture hole (1.5 mm diameter) and its height relative
to the photosensitive plane (420 µm). These two parameters dictate the field of view and sensitivity of the
sensor. Note that it is possible to achieve an maximum sensitivity for a fixed field of view. This lowers the
influence of the current noise from each photodiode to the angle calculation and hence, lowers the sensor
angle noise.

The structure is a 30 cm by 5 cm, 50 µm thick Kapton strip. Silver traces were printed on the back side
to connect the photodiodes to an electronic circuit. This circuit was not located on the structure itself. The
sensors were placed on the front side and connected to the traces through small holes filled with conductive
epoxy. The epoxy provides electrical connection as well as mechanical bonding between the sensors and the
structure. The position of each sensor was optimized to reconstruct the shape using a 3rd order polynomial
function and with basis functions x, x2, x3.

The Kapton strip was clamped at the top, where the wires were bonded with conductive epoxy to the
silver traces. The wires connect to an electrical circuit to convert the current from the photodiodes to a
voltage readable by an Arduino board (Arduino Due). The structure hangs under gravity and is deformed
by a sliding plate placed at about 23 cm from the top.

A white diode was placed 30 cm away from the structure, to illuminate the sensors. A reference mea-
surement of the structure was performed with the Vic3D Digital Image Correlation (DIC) system. The DIC
measurements were used for comparison with the reconstructed shape and hence to estimate the performance
of our measurement and reconstruction technique. A pattern of white dots on a black background was spray
painted on the front side of the structure to use this system.
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Figure 7: Structure for the experiment: Kapton strip with silver traces on the back, painted black with
white spots on the front.

The first step of the experiment was to calibrate each sensor, i.e. to find the relationship between the
angle of each sensor and its output. This was performed by applying 5 different shapes to the structure.
While the measurements are directly provided by the sensors, the angles are measured by the DIC. The DIC
system also provides a measurement of the position of each sensor relative to the light to account for the bias
created by the finite distance of the source. The five data points were fitted by a piecewise linear function.
The calibration also provided information about the noise of each sensor (in a standard deviation sense). A
conservative number for the error is 3σ = 0.15 deg @ 1 Hz.

A different shape was imposed for the actual test. To account for the finite distance of the light source,
a loop was included in the reconstruction algorithm: a first shape is reconstructed and from the estimated
deflections, the position of each sensor is calculated. Then, the angles are corrected and fed back to calculate
a new shape. This loop is repeated until the difference between two consecutive reconstructed shapes is
smaller than a specified threshold.

The results are shown Figure 8. A third-order polynomial was used to recreate the shape of the structure
(element and sensor of order 3). The final RMS error between the estimated shape and the DIC measurement
was 0.2 mm.

This result confirms that our preliminary test apparatus and shape reconstruction tool are appropriate
to study this problem.

VI. Simulation of Large-Scale Structure

Simulations were carried out to estimate the performance of the proposed solution on a large structure,
which simulates a 60 m long and 1.5 m wide strip for an SSPI spacecraft.

The model is a 3D Euler-Bernoulli beam simply supported at both ends. 1000 sensors were uniformly
distributed on the structure, on a square grid with size of 30 cm. Their effects on the mass and stiffness
of the beam were neglected. The noise in the angle measurements was considered to be 0.15 deg RMS @ 1
Hz as derived from the experiment in Section V. Sensors measure two angles, as described in Figure 2b, to
capture both out-of-plane bending and torsion of the strip.

The strip was deformed to the shape of its first vibration mode with an amplitude of 50 cm. The variation
of each sensor angle was numerically simulated every 1 sec. Since the frequency of the first mode (0.004
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Figure 8: Results of the experiment

Hz) is orders of magnitude lower than the bandwidth of the measurement, the shape is considered static.
The matrices Φ (Equation 3) and A (Equation 4) were precomputed from a finite element model of the
structure. The integration scheme considered a single element (sensor order of 1000) of order 100. The basis
functions were the first 50 bending modes and the first 50 torsional modes calculated from the finite element
model. the discrete locations where the shape is computed form a grid of size 10 cm. Using Equation 6,
the reconstructed shape was calculated and then compared to the truth, i.e. the analytical shape of the first
mode.

Figure 9 shows the root mean square error as a function of the position on the strip. The error is defined
at each time step as the difference between the estimated shape and the truth for each discrete location as
in Equations 5 and 7. The RMS error reaches a maximum of 0.8 mm at the center of the strip and is equal
to 0.7 mm on average. If a phased antenna array working at 10 GHz were to be placed on this structure,
this would correspond to a loss of efficiency of 2.2%. [3]

0 20 40 60
Position

0

0.2

0.4

0.6

0.8

R
M

S
 e

rr
or

 [m
m

]

Figure 9: Root mean square error between the estimated and the true shape along a 60 m strip

VII. Conclusion

A technique to use distributed sensors to measure the shape of a large flexible structure in space has
been proposed. Different integration schemes have been analyzed and the existence of optimum parameters
to minimize the RMS error of the reconstructed shape has been established. Our final approach combines
measurements from sun sensors spread on a large area satellite with a model of its dynamics, to identify the
contribution of each vibration mode on the current shape and estimate its magnitude. An experiment was
conducted to validate the performance of such a system and our prediction tools. The RMS error obtained
on a 1D, 30 cm long structure with 3 sensors was 0.2 mm; matching our predictions. Simulations were
programmed to estimate the performance of this system on a large-scale structure. A RMS error of 0.7 mm
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was predicted which is within the requirements of the Space Solar Power Initiative.
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