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Abstract

The (m,n)-online Ramsey game is a combinatorial game between two players, Builder and Painter.

Starting from an infinite set of isolated vertices, Builder draws an edge on each turn and Painter immedi-

ately paints it red or blue. Builder’s goal is to force Painter to create either a red Km or a blue Kn using

as few turns as possible. The online Ramsey number r̃(m,n) is the minimum number of edges Builder

needs to guarantee a win in the (m,n)-online Ramsey game. By analyzing the special case where Painter

plays randomly, we obtain an exponential improvement

r̃(n, n) ≥ 2(2−
√

2)n+O(1)

for the lower bound on the diagonal online Ramsey number, as well as a corresponding improvement

r̃(m,n) ≥ n
(2−

√
2)m+O(1)

for the off-diagonal case, where m ≥ 3 is fixed and n → ∞. Using a different randomized Painter strategy,

we prove that r̃(3, n) = Θ̃(n3), determining this function up to a polylogarithmic factor. We also improve

the upper bound in the off-diagonal case for m ≥ 4.
In connection with the online Ramsey game with a random Painter, we study the problem of finding

a copy of a target graph H in a sufficiently large unknown Erdős–Rényi random graph G(N, p) using as

few queries as possible, where each query reveals whether or not a particular pair of vertices are adjacent.

We call this problem the Subgraph Query Problem. We determine the order of the number of queries

needed for complete graphs up to five vertices and prove general bounds for this problem.

1 Introduction

The Ramsey number r(m,n) is the minimum integer N such that every red/blue-coloring of the edges of the
complete graph KN on N vertices contains either a red Km or a blue Kn. Ramsey’s theorem guarantees the
existence of r(m,n) and determining or estimating Ramsey numbers is a central problem in combinatorics.
Classical results of Erdős–Szekeres and Erdős imply that 2n/2 ≤ r(n, n) ≤ 22n for n ≥ 2. The only
improvements to these bounds over the last seventy years have been to lower order terms (see [9, 26]), with
the best known lower bound coming from an application of the Lovász local lemma [14].

Off-diagonal Ramsey numbers, where m is fixed and n tends to infinity, have also received considerable
attention. In progress that has closely mirrored and often instigated advances on the probabilistic method,
we now know that

r(3, n) = Θ(n2/ logn).

The lower bound here is due to Kim [21] and the upper bound to Ajtai, Komlós and Szemerédi [1]. Recently,
Bohman and Keevash [8] and, independently, Fiz Pontiveros, Griffiths and Morris [18] improved the constant
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in Kim’s lower bound via careful analysis of the triangle-free process, determining r(3, n) up to a factor of
4 + o(1).

More generally, for m ≥ 4 fixed and n growing, the best known lower bound is

r(m,n) = Ωm(n
m+1

2 /(logn)
m+1

2 − 1
m−2 ),

proved by Bohman and Keevash [7] using the H-free process, while the best upper bound in this setting is

r(m,n) = Om(nm−1/(logn)m−2),

again due to Ajtai, Komlós and Szemerédi [1]. Here the subscripts denote the variable(s) that the implicit
constant is allowed to depend on.

There are many interesting variants of the classical Ramsey problem. One such variant is the size Ramsey
number r̂(m,n), defined as the smallest N for which there exists a graph G with N edges such that every
red/blue-coloring of the edges of G contains either a red Km or a blue Kn. It was shown by Chvátal (see
Theorem 1 in the foundational paper of Erdős, Faudree, Rousseau and Schelp [13]) that r̂(m,n) is just the
number of edges in the complete graph on r(m,n) vertices, that is,

r̂(m,n) =

(

r(m,n)

2

)

.

We will be concerned with a much-studied game-theoretic variant of the size Ramsey number, introduced
independently by Beck [4] and by Kurek and Ruciński [25]. The (m,n)-online Ramsey game is a game
between two players, Builder and Painter, on an infinite set of initially isolated vertices. Each turn, Builder
places an edge between two nonadjacent vertices and Painter immediately paints it either red or blue. The
online Ramsey number r̃(m,n) is then the smallest number of turns N that Builder needs to guarantee the
existence of either a red Km or a blue Kn.

It is a simple exercise to show that r̃(m,n) is related to the usual Ramsey number r(m,n) by

1

2
r(m,n) ≤ r̃(m,n) ≤

(

r(m,n)

2

)

. (1.1)

In the diagonal case, the upper bound in (1.1) has been improved by Conlon [10], who showed that for
infinitely many n,

r̃(n, n) ≤ 1.001−n

(

r(n, n)

2

)

.

The main result of this paper is a new lower bound for online Ramsey numbers.

Theorem 1. If, for some m,n,N ≥ 1, there exist p ∈ (0, 1), c ≤ 1
2m, and d ≤ 1

2n for which

p(
m

2 )−c(c−1)(2N)m−c + (1− p)(
n

2)−d(d−1)(2N)n−d ≤ 1

2
,

then r̃(m,n) > N .

In particular, if r̃(n) := r̃(n, n) is the diagonal online Ramsey number, Theorem 1 can be used to improve
the classical bound r̃(n) ≥ 2n/2−1 by an exponential factor. Indeed, taking p = 1

2 and c = d ≈ (1 − 1√
2
)n in

Theorem 1, we get the following immediate corollary.

Corollary 2. For the diagonal online Ramsey numbers r̃(n),

r̃(n) ≥ 2(2−
√
2)n−O(1).

As for the off-diagonal case, when m is fixed and n → ∞, Theorem 1 can be also used to substantially
improve the best-known lower bound. In this case, we take c ≈ (1 − 1√

2
)m, d = 0, and p = Cm logn

n for a

sufficiently large C > 0 to obtain the following corollary.
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Corollary 3. For fixed m ≥ 3 and n sufficiently large in terms of m,

r̃(m,n) ≥ n(2−
√
2)m−O(1).

For general m, Corollary 3 gives the best known lower bounds for the off-diagonal online Ramsey number.
However, it is possible to do better for m = 3 by using a smarter Painter strategy which deliberately avoids
building red triangles.

Theorem 4. For n → ∞,

r̃(3, n) = Ω

(

n3

log2 n

)

.

Roughly speaking, Painter’s strategy is to paint every edge blue initially, but to switch to painting
randomly if both endpoints of a freshly built edge have high degree. Also, when presented with an edge that
would complete a red triangle, Painter always paints it blue. The bound given in Theorem 4 is n times the
bound on the usual Ramsey number that comes from applying the Lovász Local Lemma [14]. However, our
argument is closer in spirit to an earlier proof of the same bound given by Erdős [12] using alterations. This
method for lower bounding r(3, n) was later generalized to all r(m,n) by Krivelevich [22] and we suspect
that Theorem 4 can be generalized to r̃(m,n) in the same way.

In the other direction, we prove a new upper bound on the off-diagonal online Ramsey number.

Theorem 5. For any fixed m ≥ 3,

r̃(m,n) = Om

(

nm

(logn)
⌊m/2⌋−1

)

.

In particular, note that Theorems 4 and 5 determine the asymptotic growth rate of r̃(3, n) up to a
polylogarithmic factor, namely,

Ω

(

n3

log2 n

)

≤ r̃(3, n) ≤ O
(

n3
)

.

Theorem 5 has a similar flavor to the improvement on diagonal online Ramsey numbers made by the first
author [10] and work on the so-called vertex online Ramsey numbers due to Conlon, Fox and Sudakov [11].
It is obtained by adapting the standard Erdős–Szekeres proof of Ramsey’s theorem to the online setting and
applying a classical result of Ajtai, Komlós and Szemerédi [1] bounding r(m,n).

In order to prove Theorem 1, we specialize to the case where Painter plays randomly. This is sufficient
because Builder, who we may assume has unlimited computational resources, will always respond in the
best possible manner to Painter’s moves. Therefore, if a random Painter can stop this perfect Builder from
winning within a certain number of moves with positive probability, an explicit strategy exists by which
Painter can delay the game up to this point. This motivates the following key definition.

Definition 6. For m,n ≥ 3 and p ∈ (0, 1), define r̃(m,n; p) to be the number of turns Builder needs to win
the (m,n)-online Ramsey game with probability at least 1

2 against a Painter who independently paints each
edge red with probability p and blue with probability 1− p. The online random Ramsey number r̃rand(m,n)
is the maximum value of r̃(m,n; p) over p ∈ (0, 1).

We note that there is a rich literature on simplifying the study of various combinatorial games by spe-
cializing to the case where one or both players play randomly (see [5, 20, 23]). For example, a variant of the
online Ramsey game with random Builder instead of random Painter was studied by Friedgut et al. [19].

We make the following conjectures about the growth rate of r̃rand(m,n).

Conjecture 7. (a) The diagonal online random Ramsey numbers satisfy

r̃rand(n, n) = 2(1+o(1)) 2
3n.

(b) The off-diagonal online random Ramsey numbers (m ≥ 3 fixed and n → ∞) satisfy

r̃rand(m,n) = n(1+o(1)) 2
3m.

3



These conjectures are motivated by a connection with another problem, which we now describe.
Let p ∈ (0, 1) be a fixed probability and suppose Builder plays the following one-player game, which we

call the Subgraph Query Game, on the random graph G(Z, p) with infinitely many vertices. The edges of
the graph are initially hidden. At each step, Builder queries a single pair of vertices and is told whether the
pair is an edge of the graph or not. Equivalently, the graph starts out empty and each edge is successfully
built by Builder with probability p (each edge may be queried at most once). In what follows, we use the
terms “query” and “build” interchangeably.

Builder’s goal is to find a copy of a given graph H in the ambient random graph as quickly as possible.
We call this problem of minimizing the number of steps in the Subgraph Query Game the Subgraph Query
Problem. When H = Km, this may be seen as a variant of the online random Ramsey game, but where
Builder is only interested in finding a red copy of Km.

A version of this problem was studied independently by Ferber, Krivelevich, Sudakov and Vieira [16, 17],
although they were interested in querying for long paths and cycles in G(n, p). For instance, they showed

that if p ≥ log n+log logn+ω(1)
n , then it is possible to find a Hamiltonian cycle with high probability in G(n, p)

after (1 + o(1))n positive answers. In contrast, we are mainly interested in the setting where H is a fixed
graph to be found in a much larger random graph.

Definition 8. If p ∈ (0, 1), define f(H, p) to be the minimum (over all Builder strategies) number of turns
Builder needs to be able to build a copy of H with probability at least 1/2 in the Subgraph Query Game, if
each edge is built successfully with probability p.

It might appear equally reasonable to study the minimum number of turns in which one can build at least
one copy of H in expectation. However, for certain H , such as a clique Km together with many leaves off
a single vertex, it is possible to describe a strategy which has a tiny probability of successfully constructing
copies of H , but upon success immediately builds a large number of copies, attaining low success probability
but high expectation. Such a strategy is undesirable for application to online random Ramsey numbers, so
we use the first definition instead.

Conjecture 7 is motivated by the following conjecture regarding f(Km, p). The upper bound in this
conjecture is proved in Section 5.2.

Conjecture 9. For any m ≥ 4,
f(Km, p) = 2o(m)p−

2
3m+cm ,

where

cm =











m
2m−3 m ≡ 0 (mod 3)
2
3 m ≡ 1 (mod 3)
2m+8
6m−3 m ≡ 2 (mod 3).

The following result shows that the Subgraph Query Problem and the online random Ramsey game are
closely related.

Theorem 10. For any m,n ≥ 3 and p ∈ (0, 1),

r̃(m,n; p) ≤ min{f(Km, p), f(Kn, 1− p)} ≤ 3r̃(m,n; p).

Using Theorem 10, we can show that Conjecture 9 implies both cases of Conjecture 7. We can also
determine an approximately optimal value for the probability parameter p in the online Ramsey game with
random Painter.

Theorem 11. For m ≥ 3 fixed and n → ∞, there exists a p = Θ(m/n log(n/m)) for which

r̃rand(m,n) ≤ 3r̃(m,n; p).

We say that a graph has a k-matching if it contains k vertex-disjoint edges. Our main result on the
Subgraph Query Problem shows that graphs with large matchings are hard to build in few steps. We write
V (H) and E(H) for the vertices and edges of H and let v(H) = |V (H)| and e(H) = |E(H)|.
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Theorem 12. If H is a graph that contains a k-matching, then

f(H, p) = ΩH(p−(e(H)−k(k−1))/(v(H)−k)).

Together with the upper bound construction described in Section 5.2, this is enough to settle the growth
rate of f(Km, p) for m ≤ 5. In particular, it proves Conjecture 9 for m = 4, 5.

Theorem 13. The asymptotic growth rates of f(Km, p) for m = 3, 4, 5 are

f(K3, p) = Θ(p−3/2)

f(K4, p) = Θ(p−2)

f(K5, p) = Θ(p−8/3).

Asymptotically, the optimal k to pick in Theorem 12 for G = Km is k = (1− 1/
√
2)m. With this value,

we get the following bound on f(Km, p) which corresponds to Corollaries 2 and 3 in the online Ramsey
number setting.

Corollary 14. For all m ≥ 3,

f(Km, p) = Ωm(p−(2−
√
2)m+O(1)).

In studying the function f(H, p), we were naturally led to consider the following function. When H is
a graph with no isolated vertices, define t(H, p,N) to be the maximum expected number of copies of H
that can be built in N moves in the Subgraph Query Game with parameter p, the maximum taken over all
possible Builder strategies.

However, if H has isolated vertices, the expected value is zero or infinite. Instead, if H has exactly k
isolated vertices v1, . . . , vk, we define

t(H, p,N) := (2N)kt(H\{v1, . . . , vk}, p,N)

to capture the fact that the game with N turns involves at most 2N vertices and therefore might as well be
played on 2N fixed vertices.

Studying the threshold value of N for which t(H, p,N) ≥ 1 leads to Theorem 12 above. Intuitively, we
expect the best strategy for building a copy of H to be the same as the one which expects to build a single
copy of H in as few turns as possible.

Another natural question about the function t(H, p,N) is: if N is very large, what is the maximum
number of copies Builder can expect to build in the Subgraph Query Game? Here we show that for N
sufficiently large the strategy of taking O(

√
2N) vertices and building all pairs of edges between them is

asymptotically optimal for maximising t(Km, p,N), even though it is decidedly suboptimal for trying to
build a single copy of Km.

Theorem 15. For all m ≥ 2, p ∈ (0, 1), ε > 0, there exists C > 0 such that if N ≥ Cp−(2m−1)(log(p−1))2,
then

t(Km, p,N) = (1± ε)p(
m

2 )(2N)
m

2 .

The rest of the paper is organized as follows. In Section 2, we motivate and prove Theorem 1, our lower
bound on the online Ramsey number, via the method of conditional expectations. In Section 3, we prove
the lower bound Theorem 4 for r̃(3, n) using a Painter strategy designed to avoid red triangles. We prove
the upper bound Theorem 5 in Section 4. Then, in Section 5, we study the Subgraph Query Problem for its
own sake, proving the upper bound in Conjecture 9 as well as Theorems 10, 11, 12, 13 and 15. We include
a handful of open problems raised by our research in the closing remarks.

Unless otherwise indicated, all logarithms are base e. For clarity of presentation, we omit floor and ceiling
signs when they are not crucial. We also do not attempt to optimize constant factors in the proofs.
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2 General lower bounds

2.1 Motivation

In this section, we prove Theorem 1 via a weighting argument, motivated by the method of conditional
expectations and a result of Alon [2] on the maximum number of copies of a given graph H in a graph with
a fixed number of edges.

The first idea, the derandomization technique known as the method of conditional expectations (see
Alon and Spencer [3]), can be used to give the following “deterministic” proof of the classical lower bound
on diagonal Ramsey numbers. We will show that

(

r(n, n)

n

)

2−(
n

2)+1 ≥ 1.

Suppose that for some N ,
(

N

n

)

2−(
n

2)+1 < 1. (2.1)

Paint the edges of KN one at a time as follows. To each vertex subset U of order n, assign a weight w(U)
which is the probability that U becomes a monochromatic clique if the edges which remain uncolored at that
time are colored uniformly at randomly. That is, writing e(U) for the number of edges already colored in U ,

w(U) =











2−(
n

2)+1 e(U) = 0

2−(
n

2)+e(U) e(U) > 0 and all already colored edges in U are the same color

0 otherwise.

At every step, the total weight
∑

U w(U) is equal to the expected number of monochromatic cliques if the
remaining edges are painted uniformly at random. It is therefore possible to paint each edge so as not to
increase the total weight. Since the condition

∑

U w(U) < 1 is initially guaranteed by (2.1), we can maintain
this condition throughout the course of the game, ending with a coloring where there is no monochromatic
clique of order n.

We now wish to apply such a weighting argument to the online Ramsey game. The key observation is
that if r̃(n, n) is close to r(n, n), then, since the graph built by Builder has at least r(n, n) vertices, it must
be extremely sparse. In particular, most of the weight should be concentrated on sets U almost none of
whose edges are ever built.

This is where the idea behind Alon’s result [2] comes in. For any fixed graph H , that paper solves the
problem of determining the maximum possible number of copies of H in a graph with a prescribed number
of edges. Roughly speaking, Alon showed that the maximum number of copies of H can be controlled by
the size of the maximum matching in H . We show that this heuristic also applies to the online Ramsey
game, though it will be more convenient for our calculations to work with minimum vertex covers instead of
maximum matchings.

To make this idea work, instead of controlling the total weight function
∑

U w(U), we restrict the sum
to subsets U with a large minimum vertex cover, which are comparatively few in number. Even if the total
weight

∑

U w(U) becomes large, the amount of weight supported on sets U with a large vertex cover is
much smaller, and this is the only weight that stands a chance to make it to the finish line and complete a
monochromatic clique.

2.2 The proof

Using the weighting argument described informally above, we now prove a lower bound on the value of
r̃(m,n; p), where Painter plays randomly, independently coloring each edge red with probability p and blue
with probability 1− p.

Theorem 16. If, for some m,n,N ≥ 1 and p ∈ (0, 1), there exist c ≤ 1
2m and d ≤ 1

2n for which

p(
m

2 )−c(c−1)(2N)m−c + (1− p)(
n

2)−d(d−1)(2N)n−d ≤ 1

2
,

6



then r̃(m,n; p) > N .

We would like to show that regardless of Builder’s strategy, the online random Ramsey game lasts for
more than N steps with probability at least 1/2.

Suppose the game ends in at most N turns and, without loss of generality, is played on 2N vertices. Let
Gt, for 0 ≤ t ≤ N , be the state of the graph after t turns. Assign to each subset U ⊂ V (G) an evolving
weight function

w(U, t) =

{

p(
|U|
2 )−e(Gt[U ]) Gt[U ] is monochromatic red

0 otherwise.

The value of w(U, t) is the probability that U becomes a red clique if the remaining edges are built.
We say that C ⊂ V (G) is a vertex cover of G if every edge is incident to some vertex v ∈ C. If U ⊂ V (G),

let c(U, t) be the size of the minimum vertex cover of Gt[U ]. Note that c(U, t) is a nondecreasing function
of t. For each pair (k, c) with k ≥ 2c, we will be interested in the total weight supported on sets of order k
with c(U, t) ≥ c,

wk,c(t) =
∑

|U|=k,c(U,t)≥c

w(U, t).

Since w(U,N) is nonnegative and w(U,N) = 1 if and only if U is a red clique, we see that for all c ≤ m/2,
wm,c(N) is an upper bound for the number of red copies of Km built after N turns. We would like to upper
bound the expected value of wm,c(N).

Lemma 17. With wm,c(t) as above, regardless of Builder’s strategy,

Ewm,c(N) ≤ p(
m

2 )−c(c−1)(2N)m−c.

Proof. Each U with the property c(U,N) ≥ c first achieves this property at a time tc(U). We say that U is
c-critical at this time. Write

w∗
k,c(t) =

∑

|U|=k,tc(U)=t

w(U, t)

to be the contribution of the c-critical sets U to wk,c(t). Crucially, if we focus on the family of U for which
tc(U) = t, their expected total weight will remain w∗

k,c(t) indefinitely. Thus,

Ewk,c(N) =
∑

t≤N

Ew∗
k,c(t).

Now, a set U which is c-critical at time t must be the vertex-disjoint union of the edge et that Builder
builds at time t and a set U ′ of size k − 2 with a vertex cover of order c− 1. Also, because U has a vertex
cover of order c− 1 before adding this edge et, the edges incident to et must also be incident to one of the
c − 1 vertices in the vertex cover of U ′, so et is incident to a total of at most 2c− 2 edges in U . It follows
that after turn t = tc(U),

w(U, t) ≤ p2k−2c−2w(U ′, t),

where in particular if U ′ is already not monochromatic then neither is U . The exponent comes from the fact
that among the total 2(k − 2) edges between et and U ′ at least 2(k − 2) − 2(c− 1) = 2k − 2c − 2 are thus
far unbuilt and still contribute factors of p to the weight of w(U, t). Thus, since each U ′ completes at most
one set U which is c-critical at time t,

w∗
k,c(t) ≤ p2k−2c−2wk−2,c−1(t).

Further, note that there can only be c-critical sets at time t if et is colored red, which occurs with
probability p. Otherwise, w∗

k,c(t) = 0. Taking expectations and using the fact that Ewk,m(t) is nondecreasing
in t gives

Ew∗
k,c(t) ≤ p · E[p2k−2c−2wk−2,c−1(t)]

≤ p2k−2c−1
Ewk−2,c−1(N).

7



Summing over all t,
Ewk,c(N) ≤ N · p2k−2c−1

Ewk−2,c−1(N).

Iterating this last inequality, we conclude that

Ewm,c(N) ≤ N c · p2mc−3c2
Ewm−2c,0(N)

≤ N c · p2mc−3c2 · (2N)m−2cp(
m−2c

2 )

≤ p(
m

2 )−c(c−1)(2N)m−c,

as desired.

The same analysis with the blue weight function

w′(U, t) =

{

(1 − p)(
|U|
2 )−e(Gt[U ]) Gt[U ] is monochromatic blue

0 otherwise

leads to the conclusion that Ew′
n,d(N) ≤ (1 − p)(

n

2)−d(d−1)(2N)n−d for all n ≥ 2d. The assumption of
Theorem 16 then implies that the expected number of red Km plus the expected number of blue Kn is at
most 1/2. This implies that the probability of containing either is at most 1/2, completing the proof of
Theorem 16. Theorem 1 follows as an immediate corollary.

3 Lower bound via alterations

In this section, we improve the lower bound for the off-diagonal online Ramsey numbers r̃(3, n) using a
different Painter strategy. Our proof extends an alteration argument of Erdős [12] which shows that

r(3, n) ≥ cn2

log2 n
,

for some constant c > 0. The main idea of Erdős’ proof was to show that in a random graph G(r, p) with
p ≈ r−1/2, only a small fraction of the edges need to be removed to destroy all triangles. Moreover, with
high probability, removing these edges doesn’t significantly affect the graph’s independence number.

Our proof involves a randomized strategy which pays particular attention to avoiding red triangles.
Instead of painting entirely randomly, Painter’s strategy is modified in two ways to avoid creating red
triangles. First, if an edge is built incident to a vertex of degree less than (n − 1)/4, Painter always paints
it blue. Second, if painting an edge red would create a red triangle, Painter again always paints it blue. In
all other cases, Painter paints edges red with probability p and blue with probability 1− p.

In order to show that this Painter strategy works, we first prove a structural result about Erdős–Rényi
random graphs. Roughly speaking, this lemma implies that if an edge is removed from each triangle in
G(r, p), the remaining graph still has small independence number.

Lemma 18. Suppose n is sufficiently large, p = 20 logn/n, r = 10−6n2/(logn)2 and G ∼ G(r, p) is an
Erdős–Rényi random graph. Then, with high probability, there does not exist a set S ⊂ V (G) of order n such

that more than n2

10 pairs of vertices in S have a common neighbor outside S.

Proof. Let E1 be the event that the maximum degree of G is at most 2rp. For a given vertex subset S of
order n, let E1(S) be the event that every vertex outside S has at most 2rp neighbors in S. Thus, E1 implies
E1(S) for all S.

For a set S of size n, let E2(S) be the event that at most n2

10 pairs of vertices in S have a common
neighbor outside S and let E2 be the event that E2(S) holds for all S. We will show E1 ∧E2 occurs w.h.p.
which in turn implies that E2 itself occurs w.h.p.

The distribution of deg(v) for a single vertex v ∈ G is the binomial distribution B(r − 1, p). Using the
Chernoff bound (see, e.g., Appendix A in [3]), we find that

Pr[deg(v) > 2rp] <
(e

4

)rp

< exp

(

− n

5 · 105 logn

)

.

8



Taking the union over all vertices of G, it follows that

Pr[E1] < r exp

(

− n

5 · 105 log n

)

,

so E1 occurs w.h.p.
Fix a set S of n vertices. For v ∈ V (G)\S, define degS(v) to be the number of neighbors of v in S. Since

E1 implies E1(S), we have
Pr[E1 ∧ E2(S)] ≤ Pr[E1(S) ∧ E2(S)].

We will show that this last probability is so small that we may union bound over all S.
For E1(S) to occur, the possible values of degS(v) range through [0, 2rp]. We will cut off the bottom of this

range and divide the rest into dyadic intervals. Let D0 = −1, D1 = 4enp,D2 = 8enp,D3 = 16enp, . . . , Dk =
2rp so that Di = 2Di−1 for each 2 ≤ i ≤ k − 1 and Dk ≤ 2Dk−1. The number of intervals k satisfies
k ≤ log2(r/n) ≤ 2 logn.

Define di to be the number of v ∈ V (G)\S satisfying Di−1 < degS(v) ≤ Di. For E2(S) to occur, it must
be the case that

∑

v 6∈S

(

degS(v)

2

)

≥ n2

10
,

as the left hand side counts each pair in S with a common neighbor outside S at least once. In particular,

k
∑

i=1

di

(

Di

2

)

≥ n2

10
. (3.1)

Notice that since D1 = 4enp = 80e logn and d1 ≤ r,

d1

(

D1

2

)

≤ r ·D2
1 =

64e2

104
n2 <

n2

20
,

so at least half the contribution of (3.1) must come from i ≥ 2. Thus,

k
∑

i=2

di

(

Di

2

)

≥ n2

20
. (3.2)

We would like to bound the probability that E1(S) and (3.2) occur simultaneously. Let T be the family
of all sequences (di)

k
i=1 which sum to r−n and satisfy (3.2). Given the choice of (di)

k
i=1, the number of ways

to assign vertices to dyadic intervals (Di−1, Di] is at most
(

r−n
d1,d2,...,dk

)

.

If i ≥ 2 and a vertex v is assigned to (Di−1, Di], the probability that degS(v) lies in that interval is at
most

Pr[degS(v) > Di−1] ≤
(

n

Di−1

)

pDi−1 ≤
(

enp

Di−1

)Di−1

.

If i = 1, then we simply use the trivial bound Pr[degS(v) ∈ (D0, D1]] ≤ 1. Thus,

Pr[E1(S) ∧ E2(S)] ≤
∑

(di)∈T

(

r − n

d1, d2, . . . , dk

) k
∏

i=1

Pr[degS(v) ∈ (Di−1, Di]]

≤
∑

(di)∈T

(

r − n

d1, d2, . . . , dk

) k
∏

i=2

(

(

enp

Di−1

)Di−1
)di

≤
∑

(di)∈T

k
∏

i=2

(

r ·
(

enp

Di−1

)Di−1
)di

,
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where we used
(

r−n
d1,d2,...,dk

)

< rd2+···+dk . Next, the number of compositions of r − n into k parts is at most

rk, so |T | ≤ rk and we have

Pr[E1(S) ∧ E2(S)] ≤ rk max
(di)∈T

k
∏

i=2

(

r ·
(

enp

Di−1

)Di−1
)di

≤ rk max
(di)∈T

exp

(

k
∑

i=2

di logAi

)

, (3.3)

where

Ai = r ·
(

enp

Di−1

)Di−1

.

It remains to maximize the exponent in (3.3) subject to (3.2). Consider the function

f(D) =
1

D2
log

(

r ·
(enp

D

)D
)

=
log r

D2
+

log(enp)

D
− logD

D
.

Notice that D1 = 4enp = 80e logn so that for D ≥ D1,

r ·
(enp

D

)D

≤ r ·
(

enp

D1

)D1

≤ r · 2−80e logn < 1.

Thus, f(D) takes negative values on [D1, Dk]. Its derivative is

f ′(D) = −2 log r

D3
− log enp

D2
+

logD

D2
− 1

D2
=

D(logD − log(e2np))− 2 log r

D3
.

Since r ≤ n2, we find that whenever D ≥ D1 = 4enp = 80e logn,

f ′(D) ≥ D log(4/e)− 2 log r

D3
≥ 80e log(4/e) · log n− 4 logn

D3
> 0,

and so f(D) is monotonically increasing on [D1, Dk] and attains its maximum value at Dk = 2rp. With
2rp = 4 · 10−5n/ logn and n sufficiently large, observe that

(

enp

2rp

)2rp

=

(

106e(logn)2

2n

)4·10−5n/ logn

≤ exp(−2 · 10−5n),

so that this maximum value is

f(2rp) ≤ 1010(logn)2

16n2
· log(n2 · exp(−2 · 10−5n)) ≤ −105(logn)2

16n
.

In particular, because
(

D
2

)

≥ D2/3 for D ≥ 3 and f(D) is always negative,

k
∑

i=2

di logAi =

k
∑

i=2

di

(

Di

2

)

· logAi
(

Di

2

)

≤ 3

k
∑

i=2

di

(

Di

2

)

· f(Di)

≤ 3f(Dk)

k
∑

i=2

di

(

Di

2

)

≤ 3f(2rp) · n
2

20

≤ −n(logn)2
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for any (di) ∈ T .
Returning to (3.3), it follows that

Pr[E1(S) ∧ E2(S)] ≤ rk max
(di)∈T

exp

(

k
∑

i=2

di logAi

)

≤ rk exp(−n(logn)2).

There are at most
(

r
n

)

≤ e2n log n subsets S of size n to consider and rk ≤ rn ≤ e2n logn as well, so

Pr[E1 ∧ E2] = Pr[E1 ∨
∨

S

E2(S)]

≤ Pr[E1] +
∑

S

Pr[E1 ∧ E2(S)]

≤ Pr[E1] +
∑

S

Pr[E1(S) ∧ E2(S)]

≤ Pr[E1] + exp(4n logn) · exp
(

−n(logn)2
)

.

Both summands on the right vanish rapidly, so E2 holds w.h.p., as desired.

With this lemma in hand, we are now ready to prove Theorem 4.

Proof of Theorem 4. Let p = 20 logn/n, r = 10−6n2/(logn)2 and N = (n−1)r
8 .

We will give a randomized strategy for Painter such that, regardless of Builder’s strategy, after N edges
are colored there is neither a red K3 nor a blue Kn w.h.p. Thus, there exists a strategy for Painter which
makes the game last more than N steps and the desired bound r̃(3, n) > N follows. Note that proving the
result with positive probability suffices, but our argument shows it w.h.p. for no additional cost.

We now describe Painter’s strategy. Initially, all vertices are considered inactive; a vertex is activated
when its degree reaches at least (n − 1)/4. The active vertices are labeled with the natural numbers in [r]
when they reach degree at least (n− 1)/4, using an arbitrary underlying order on the vertices to break ties.
Since N = (n− 1)r/8, there will never be more than r active vertices.

When Builder builds an edge (u, v), this edge is considered inactive if either u or v is inactive immediately
after (u, v) is built and active otherwise. The status of an edge remains fixed once it is built, so that inactive
edges remain inactive even if both of its incident vertices are active at a later turn. Painter automatically
colors inactive edges blue.

If Builder builds an active edge (u, v), Painter first checks if u and v have a common neighbor w such
that (u,w) and (v, w) are both red. For brevity’s sake, we call such a vertex w a red common neighbor of
u and v. If so, Painter paints (u, v) blue so as to not build a red triangle and we call such an edge altered.
Otherwise, Painter paints it red with probability p and blue with probability 1− p. Following this strategy,
Painter guarantees that no red triangles are built. It suffices to show that w.h.p. no blue Kn is built either.

Here is an equivalent formulation of Painter’s strategy. At the start of the game, Painter samples an
Erdős–Rényi graph G = G([r], p) on the labels which he keeps hidden from Builder. Inactive edges are
painted blue. When an active edge between vertices labelled i and j is built, it is painted red if and only if
i ∼ j in G and these two vertices currently have no red common neighbor.

Now, we apply Lemma 18 to the graph G. Letting E2(S) be the event that an n-set S has at most n2/10
pairs with outside common neighbors and E2 =

∧

S E2(S), we see that Pr[E2] → 0 as n → ∞.
For a set S ⊆ [r] of labels, write T (S) for the set of active vertices with labels in S. We seek to bound

the probability of the event B(T (S)) that T (S) is a blue n-clique at the end of the game. Because any
blue n-clique would have all of its vertices active (as each vertex of the n-clique would have degree at least
n− 1 ≥ (n− 1)/4), if none of the events B(T (S)) occurs, then no blue Kn is ever built. Once we show that
the probability of a single B(T (S)) is sufficiently small, we will apply the union bound over all S to show
that w.h.p. no blue Kn is built.

First, note that if any edge (u, v) in T (S) is altered (and hence blue), we may assume that their red
common neighbors lie outside T (S). Otherwise, there must be two red edges inside T (S) already and T (S)
can never become a blue n-clique.

11



With this in mind, conditioning on the event E2(S), at most n2/10 altered blue edges are built in T (S).
Within T (S) there can be at most n2/4 inactive edges. Assuming B(T (S)) occurs, there are at least

(

n

2

)

− n2

4
− n2

10
≥ n2

8

edges between vertices of T (S) that are both active and unaltered. For B(T (S)) to occur, each of these
active and unaltered edges would have to be colored blue on its turn. On the other hand, each of these edges
has a chance p of being colored red on that turn.

Thus, we find that

Pr[B(T (S))|E2(S)] ≤ (1− p)
n
2

8 ,

with one factor of 1− p for each unaltered active edge built in T (S). Thus,

Pr[
∨

S

B(T (S))] ≤ Pr[E2 ∧
∨

S

B(T (S))] + Pr[E2].

The second summand goes to zero, so it suffices to show the first does as well. We have

Pr[E2 ∧
∨

S

B(T (S))] ≤
∑

S

Pr[E2 ∧B(T (S))]

≤
∑

S

Pr[E2(S) ∧B(T (S))]

≤
∑

S

Pr[B(T (S))|E2(S)]

≤
(

r

n

)

(1 − p)
n
2

8 .

Using 1− p ≤ e−p, the right-hand side is at most

rne−pn2/8 ≤ en log r−pn2/8 = e−( 1
2+o(1))n logn,

also tending to zero as n → ∞. Thus, the probability that either E2 or some B(T (S)) occurs tends to zero.
Therefore, with high probability no blue Kn is built.

4 Off-diagonal upper bounds

In Section 2, we proved lower bounds of the form r̃(m,n) ≥ Ω(n(2−
√
2)m+o(m)) on the off-diagonal online

Ramsey numbers through an analysis of the online random Ramsey number. It is easy to give an upper
bound of the form r̃(m,n) ≤ O(n2m−2) simply by applying the Erdős–Szekeres bound for classical Ramsey

numbers and the trivial observation that r̃(m,n) ≤
(

r(m,n)
2

)

.
However, the simple inductive proof of the Erdős–Szekeres bound suggests a Builder strategy that does

considerably better. Namely, build many edges from one vertex until it has a large number of edges of one
color, then proceed inductively in that neighborhood. This strategy is particularly well suited to the online
Ramsey game because the number of edges built is only slightly more than linear in the number of vertices
used, allowing us to derive a bound of the form r̃(m,n) ≤ O(nm).

A slight variation on this argument allows us to bound the online Ramsey number in terms of the bounds
for classical Ramsey numbers.

Lemma 19. Let m ≤ n be positive integers with m fixed. Let m0 = ⌊m/2⌋+ 1 and n0 = ⌊√n⌋. Suppose L
is a positive real such that for all m0 ≤ m′ ≤ m and n0 ≤ n′ ≤ n,

r(m0, n
′) ≤ 1

L

(

m0 + n′ − 2

m0 − 1

)

,

r(m′, n0) ≤
1

L

(

m′ + n0 − 2

m′ − 1

)

.
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Then

r̃(m,n) ≤ Cmn

L

(

m+ n− 2

m− 1

)

for a constant Cm depending only on m.

Proof. We describe a general Builder strategy for the online Ramsey game with parameters m and n and
some savings parameter L. Let f(m,n) = 1

L
(

m+n−2
m−1

)

, so we have f(m − 1, n) + f(m,n − 1) = f(m,n) by
Pascal’s identity.

Begin by building f(m,n) − 1 edges out of a given initial vertex v1. If f(m − 1, n) of these edges are
colored red, we proceed to the red neighborhood of v1; otherwise, we proceed to the at least f(m,n − 1)
vertices in the blue neighborhood of v1. If at some step we reach a neighborhood with f(m−i, n−j) vertices,
we build f(m− i, n− j)− 1 edges inside this neighborhood from one of the vertices, which we label vi+j+1.
If f(m− i−1, n− j) of these edges are colored red, we proceed to the red neighborhood of vi+j+1; otherwise,
we proceed to the at least f(m − i, n − j − 1) vertices in the blue neighborhood of vi+j+1. We stop once
m reaches m0 or n reaches n0, ending up with either f(m0, n

′) vertices for some n0 ≤ n′ ≤ n or f(m′, n0)
vertices for some m0 ≤ m′ ≤ m. Once we reach this stage, we build all edges in the remaining set.

Suppose now that we arrive at a set S of order f(m0, n
′). By construction, there are ℓ = m+n−m0−n′

vertices v1, . . . , vℓ such that m − m0 of the vertices vi are joined in red to every vj with j > i and every
w ∈ S. The remaining n−n′ vertices vi are joined in blue to every vj with j > i and every w ∈ S. But since

r(m0, n
′) ≤ 1

L

(

m0 + n′ − 2

m0 − 1

)

= f(m0, n
′),

the complete graph on S contains either a red Km0 or a blue Kn′ , either of which can be completed to a red
Km or a blue Kn by using the appropriate subset of v1, . . . , vℓ. If we had instead arrived at a set of order
f(m′, n0), a similar analysis would have applied.

Note that the total number of edges built in the branching phase is at most (m + n)f(m,n), while the
number built by filling in the final clique is at most max(f(m0, n)

2, f(m,n0)
2). Using the choice of m0

and n0, the total number of edges built is easily seen to be at most a constant in m times the previous
expression.

From here we derive Theorem 5.

Proof of Theorem 5. We apply the bound

r(m,n) = Om(nm−1/ logm−2 n),

due to Ajtai, Komlós and Szemerédi [1]. In particular, suppose m0 = ⌊m/2⌋ + 1, n0 = ⌊√n⌋ and m′, n′

satisfy m0 ≤ m′ ≤ m and n0 ≤ n′ ≤ n. Then, for some constants C,C′ > 0 depending only on m, we have

r(m0, n
′) ≤ C

logm0−2 n′ (n
′)m0−1 ≤ C′

log⌊m/2⌋−1 n

(

m0 + n′ − 2

m0 − 1

)

and

r(m′, n0) ≤
C

logm
′−2 n0

nm′−1
0 ≤ C′

log⌊m/2⌋−1 n

(

m′ + n0 − 2

m′ − 1

)

,

verifying the conditions of Lemma 19 with L = Ωm(log⌊m/2⌋−1 n). It follows by that lemma that there exists
another constant C′′ > 0 depending only on m for which

r̃(m,n) ≤ C′′n

log⌊m/2⌋−1 n

(

m+ n− 2

m− 1

)

.

Fixing m ≥ 3 and taking n → ∞, this implies

r̃(m,n) = Om

(

nm

(logn)
⌊m/2⌋−1

)

,

as desired.

We remark that while the statement and proof of Lemma 19 are designed for the case where m is a
constant, they can be easily modified to make them meaningful for all m and n.
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5 The Subgraph Query Problem

The vertex cover argument in Section 2 was motivated by our study of the closely-related Subgraph Query
Problem. Indeed, one can view this problem as an instance of the online Ramsey game with a random
Painter where Builder single-mindedly tries to build a clique in one color, ignoring the other color entirely.

Let p ∈ (0, 1) be the probability that Builder successfully builds any given edge in the Subgraph Query
Problem. We are primarily interested in the quantity f(H, p), which we defined as the minimum N for
which there exists a Builder strategy which builds a copy of H with probability at least 1

2 in N turns. Of
secondary interest is the quantity t(H, p,N), which we define as the maximum, over all Builder strategies,
of the expected number of copies of H that can be built in N turns. It is easy to see that

t(H, p,N) <
1

2
=⇒ f(H, p) > N.

Thus, upper bounds on t(H, p,N) yield lower bounds on f(H, p).

5.1 Connection with online Ramsey numbers

We first check that the Subgraph Query Problem gets easier when edges are built with higher probability.

Lemma 20. For any m ≥ 3, f(Km, p) is a nonincreasing function of p ∈ (0, 1).

Proof. Suppose p < q and f(Km, p) = N . This means that in the Subgraph Query Problem with parameter
p, Builder has an N -move strategy S to win with probability at least half. Strategy S is defined by Builder’s
choice of edge to build at each step, given the data of which edges were successfully built in previous steps.

Builder’s strategy for the Subgraph Query Problem with parameter q is as follows. For each edge that
Builder successfully builds, Builder then flips a biased coin that comes up heads p

q of the time. If the coin
comes up tails, Builder pretends the edge actually failed to build, and acts according to strategy S with
respect to only the edges for which the coin came up heads. Just looking at the edges which come up heads,
Builder is exactly following strategy S, and so builds a Km with probability at least 1/2 in N steps.

We now prove Theorem 10, which connects the Subgraph Query Problem to the online Ramsey game.
Recall the statement:

r̃(m,n; p) ≤ min{f(Km, p), f(Kn, 1− p)} ≤ 3r̃(m,n; p).

Proof of Theorem 10. We first show the left side of the inequality. Let N = min{f(Km, p), f(Kn, 1−p)} and
suppose that f(Km, p) is the smaller of the two. Then there exists an N -move Builder strategy which builds
a Km with probability at least half. Now, let Builder play the online Ramsey game against a random Painter
with the same probability parameter p. Builder’s strategy will be to treat red edges as successfully built and
blue edges as failed. In this way, Builder wins the online Ramsey game in N moves with probability at least
half, by constructing a red Km. Similarly, if f(Kn, 1 − p) were smaller, Builder would instead treat blue
edges as successfully built and red edges as failed. This would then guarantee the construction of a blue Kn

with probability at least half.
Now we show the right side of the inequality. Suppose N = r̃(m,n; p), so in the online Ramsey game

against random Painter with parameter p, there exists an N -move Builder strategy which builds a red Km

or blue Kn with probability at least half. In particular, this same strategy guarantees either a red Km with
probability at least 1

4 or a blue Kn with probability at least 1
4 .

Suppose the first is true. Then Builder plays the Subgraph Query Game using this same strategy, treating
red edges as successfully built and blue as failed. In N moves, he has at least a 1

4 chance of successfully
building a Km. Repeating this strategy three independent times on three different vertex sets, Builder uses
3N moves to build a Km with probability at least

1−
(

1− 1

4

)3

=
37

64
>

1

2
,

showing that f(Km, p) ≤ 3r̃(m,n; p) in this case. Similarly, if the second case occurs, f(Kn, 1 − p) ≤
3r̃(m,n; p). Either way, the smaller of f(Km, p) and f(Kn, 1− p) is bounded above by 3r̃(m,n; p).
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Now we show that Conjecture 9 about the Subgraph Query Problem directly implies Conjecture 7 about
online random Ramsey numbers.

Proof that Conjecture 9 implies Conjecture 7. Assume Conjecture 9, i.e., f(Km, p) = 2o(m)p−
2
3m+cm for all

m ≥ 3, p ∈ (0, 1). By Theorem 10, we have

r̃(m,n; p) = Θ(min{f(Km, p), f(Kn, 1− p)}). (5.1)

In the diagonal case of the online Ramsey game, (5.1) together with Lemma 20 implies that p = 1
2 gives

the online random Ramsey number to within a constant factor. Thus,

r̃rand(n, n) = 2
2
3n+o(n).

This proves part (a).
In the off-diagonal case, a value of p nearly optimizing the right hand side of (5.1) satisfies p = Θ(mn log n

m )
by Theorem 11, which is proved in Subsection 5.3. Plugging in this value of p, we get

r̃rand(m,n) = 2o(m)
(

Θ
(m

n
log

n

m

))− 2
3m+cm

,

which implies case (b) of Conjecture 7.

5.2 The Branch and Fill Strategy

We now prove the upper bound in Conjecture 9.
We will say it is possible to build a graph H in O(T ) turns, where T = T (p) is a function of p, if for

any p ∈ (0, 1) it is possible, in the Subgraph Query Game played with probability p, to build a copy of H
in O(T ) time with probability at least 1

2 . It is a simple fact about randomized algorithms that if one can
achieve any constant success probability in O(T ) time then one can iterate the algorithm to succeed with
probability 1− ε in O(T log ε−1) time.

We describe a Builder strategy to prove the upper bound in Conjecture 9 and conjecture that this is
essentially the optimal strategy for the Subgraph Query Problem for cliques.

Lemma 21. Let a ≥ 1, b ≥ 2 and n = a+ b+ 1 satisfy 2a+ 3− b ≥ 0. Then

f(Kn, p) = On(p
− 2a+b+1

2 +α

b ),

where α = min(1, b(2a+3−b)
2(b−1) ).

Proof. To build a clique Kn in O(T ) turns, where T = p−
2a+b+1

2 +α

b , we follow a strategy with three phases:

1. Build a clique U on a vertices. By induction, the number of turns needed will be negligible.

2. Find paT common neighbors of U in On(T ) time with high probability. This is done by repeatedly
picking a new vertex v and trying to build each of the edges between v and the vertices in U until one
fails. Let W be the set of common neighbors found in this way.

3. Among the vertices of W , pick a vertex w1 and try to build all edges incident to w1 within W . Let
W1 = N(w1) ∩W be the neighborhood determined. Try to build all

(|W1|
2

)

edges within W1. Remove
{w1}∪W1 from W and repeat a total of p−α times, picking w2, . . . , wp−α , finding their neighborhoods,
and filling them in. Here, α ∈ [0, 1] is a parameter which we have not yet specified.

After the process is complete, if any one of the Wi contains a b-clique W ′
i , then we are done, since U∪{wi}∪W ′

i

forms an n-clique.
It remains to determine the success probability and the number of steps taken in the above process.

By the standard Chernoff bounds, the sizes of all the sets Wi concentrate around their means with high
probability. Hence, with high probability,

|Wi| = (1 + o(1))pa+1(1− p)i−1T.
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A standard application of Janson’s inequality (see Chapters 8 and 10 of [3]) then implies

Pr[Wi contains a b-clique] = Ωb

(

min(p(
b

2)|Wi|b, 1)
)

= Ωb

(

min(p(a+1)b+(b2)(1 − p)(i−1)bT b, 1)
)

.

If i ranges up to p−α and α ≤ 1, then the decay factor (1− p)(i−1)b is Θb(1) and can be safely ignored. Since
the event that each Wi contains a b-clique is independent of all the others, we need only pick p, T, α for

which the expression p−αp(a+1)b+(b2)T b is a positive constant. If this is the case, then with at least constant
probability our strategy constructs an n-clique.

We also need to know that the total number of turns taken is On(T ). This is true in Phases 1 and 2
by design. With high probability, the number of turns taken in filling out each Wi is Oa(p

aT + p2(a+1)T 2).
Since this is repeated p−α times, it suffices to have

T = Oa(p
α−2(a+1))

for the number of turns to be O(T ). It remains to optimize the value of T subject to the constraints

T = Oa(p
α−2(a+1)) and p−αp(a+1)b+(b2)T b = Ωb(1). As long as 2a + 3 − b ≥ 0, this system has solutions.

Solving for α which minimizes T , we find that any

α ≤ b(2a+ 3− b)

2(b− 1)

works, as long as the decay condition α ≤ 1 was also satisfied.

Lemma 21 provides upper bounds for f(Km, p) for all m ≥ 4, where the shape of the power of p depends
on the residue class of m modulo 3.

Theorem 22. If p ∈ (0, 1), then f(K3, p) = O(p−3/2) and, for m ≥ 4,

f(Km, p) = Om(p−
2
3m+cm),

where

cm =











m
2m−3 m ≡ 0 (mod 3)
2
3 m ≡ 1 (mod 3)
2m+8
6m−3 m ≡ 2 (mod 3).

Proof. For m = 3, the bound is simple. Query Θ(p−3/2) pairs containing a given vertex v1 and then, among
the Θ(p−1/2) neighbors successfully found, query all pairs. For sufficiently large implied constants, the
probability that we build a triangle containing v1 is at least 1/2.

When m ≥ 4, we use Lemma 21, taking

(a, b) =



















(

m−3
3 , 2m

3

)

m ≡ 0 (mod 3)
(

m−4
3 , 2m+1

3

)

m ≡ 1 (mod 3)
(

m−2
3 , 2m−1

3

)

m ≡ 2 (mod 3).

This gives the required result.

We conjecture that the bounds in Theorem 22 are best possible up to the constant factor. In the next
two subsections, we prove this is the case for m ≤ 5.

5.3 Recursive graph building

Recall that f(H, p) is the number of queries needed in the Subgraph Query Problem to build a copy of H with
probability at least 1

2 . When H = Km, we can prove a lower bound on f(H, p) by combining Theorem 10
with Theorem 16.
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Proposition 23. If m ≥ 3 and c ≤ 1
2m, then

f(Km, p) ≥ 1

4
p−((m2 )−c(c−1))/(m−c).

Proof. Take N = 1
4p

−((m2 )−c(c−1))/(m−c), which is chosen so that

p(
m

2 )−c(c−1)(2N)m−c ≤ 1

4
.

Since (1− p)(
n

2)(2N)n → 0 as n → ∞, there is some n sufficiently large for which

p(
m

2 )−c(c−1)(2N)m−c + (1 − p)(
n

2)(2N)n ≤ 1

2
.

With d = 0, this choice of m,n,N, p, c, d satisfies the conditions of Theorem 16, so r̃(m,n; p) > N . By
Theorem 10, f(Km, p) ≥ r̃(m,n; p), giving the required result.

We now describe a general method for obtaining a similar lower bound on f(H, p) when H is not a clique.
As before, define t(H, p,N) to be the maximum expected number of copies of H that can be constructed in
N queries. The main result of this section bounds t(H, p,N) when H contains a large matching. To this
end, recall that a graph has a k-matching if it contains k disjoint edges.

Theorem 24. Let H be a graph containing a k-matching. Then there exists an absolute constant A > 1 for
which

t(H, p,N) ≤ (Ae(H))e(H)pe(H)−k(k−1)(2N)v(H)−k,

whenever pN ≥ 1.

For any edge e ∈ H , write H\e for the graph formed by removing the edge e from H . If U is a subset of
the vertices of H , write H\U for the induced subgraph of H on the complement of U . We begin by proving
the following pair of recursive bounds on t(H, p,N).

Lemma 25. If H is a simple labeled graph, then

t(H, p,N) ≤ p
∑

e∈E(H)

t(H\e, p,N) (5.2)

and
t(H, p,N) ≤ (1 + o(1))pN min

(u,v)∈E(H)
t(H\{u, v}, p,N), (5.3)

where the o(1) term tends to 0 as pN → ∞.

Proof. Suppose Builder follows an optimal strategy which achieves t(H, p,N) expected copies of H in N
turns. For each copy Hi of H that appears during the game, distinguish the edge ei which is built last in
Hi. For each e ∈ E(H), let te(H, p,N) be the maximum expected number of copies of H that Builder can
build, only counting those copies of H in which e is the last edge built. Then, clearly,

t(H, p,N) ≤
∑

e∈E(H)

te(H, p,N).

Furthermore, te(H, p,N) ≤ pt(H\e, p,N), since each copy of H\e can become exactly one copy of H with
success rate p if e is built. Inequality (5.2) follows.

As for recursion (5.3), note simply that the number of copies of H is bounded by the number of choices
for the images of the vertices u, v which are connected by an edge times the number of copies of H\{u, v}. By
the Chernoff bound, the number of choices of an edge is tightly concentrated around pN , so the inequality
follows.
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It remains to apply these inequalities recursively.

Proof of Theorem 24. By (5.3), there is an absolute constant A > 1 for which

t(H, p,N) ≤ ApN min
(u,v)∈E(H)

t(H\{u, v}, p,N) (5.4)

whenever pN ≥ 1.
We proceed by induction on the number of edges in H . When H is an empty graph on m vertices, the

result is trivial with k = 0. Let H be a labeled graph for which the induction hypothesis is true for every
graph with fewer edges than H . Let e ∈ E(H) run over all edges of H . We break into two cases:

Case 1. Every H\e contains a k-matching. Then, by induction and (5.2), it follows that

t(H, p,N) ≤ p
∑

e∈E(H)

t(H\e, p,N)

≤ pe(H)(A(e(H)− 1))e(H)−1 · pe(H)−1−k(k−1)(2N)v(H)−k

≤ (Ae(H))e(H)pe(H)−k(k−1)(2N)v(H)−k,

as desired.

Case 2. There exists e ∈ E(H) for which H\e contains no k-matching. Then, let e2, . . . , ek be k−1 edges
which complete a k-matching of H containing e. The edges incident to e must all be incident to one of the
ei or else H\e would contain a k-matching. Also, e cannot form a 4-cycle with any ei for the same reason.
From these two facts one finds that e can be incident to at most 2(k − 1) other edges in total. Let H ′ be
the graph obtained from H by removing the two vertices of e from H . Applying the induction hypothesis
on H ′, which is a graph on v(H)− 2 vertices with at least e(H)− (2k− 1) edges and a (k− 1)-matching, we
find that

t(H ′, p,N) ≤ (Ae(H ′))e(H
′)pe(H)−(2k−1)−(k−1)(k−2)(2N)v(H)−2−(k−1).

Combining this with inequality (5.4), we have

t(H, p,N) ≤ ApN · t(H ′, p,N)

≤ (Ae(H))e(H)pe(H)−k(k−1)(2N)v(H)−k,

as desired.

For our purposes, we will always assume pN ≥ 1. Otherwise, with high probability at most a constant
number of edges are built successfully in the Subgraph Query Game, so t(H, p,N) will be negligibly small.

Since t(H, p,N) < 1/2 implies f(H, p) > N , Theorem 24 immediately implies Theorem 12. Comparing
this with Proposition 23, we note that while Theorem 12 gives a bound for all graphs H , it gives an inferior
quantitative dependence on e(H). While this stronger quantitative dependence in Proposition 23 seems to
be only a minor benefit, it was needed in the proof of Theorem 11, which is why we retained the proof.

For large m, this bound only gives Corollary 14, that f(Km, p) = Ωm(p−(2−
√
2)m+O(1)), which is still far

from the conjectured growth rate p−
2
3m+O(1). However, for m ≤ 5, Theorem 12 can be used to pin down the

asymptotic growth rate of f(Km, p), proving Theorem 13.

Proof of Theorem 13. The upper bounds for these cases are proved in Section 5.2. Apply Theorem 12 by
taking k = 1 for m = 3 and k = 2 for m = 4, 5 to get the desired lower bounds.

When m ≥ 6, the matching argument of Theorem 24 does not seem sufficient for determining the exact
growth rate of f(Km, p). Indeed, we will now exhibit an infinite family of graphs for which Theorem 24 is
tight.

For k ≥ 1, let Hk be the graph on 2k vertices ai, bi, 1 ≤ i ≤ k, such that ai ∼ aj for all i 6= j, bi 6∼ bj for
all i 6= j, and ai ∼ bj if and only if i ≤ j. Thus Hk is a split graph consisting of a k-clique, a k-independent
set, and a half graph between them. We show that Theorem 24 is tight for Hk up to a constant factor.

Note that the construction below requires N to grow like a tower of p−1’s of height k. It is possible that
the same lower bound is false in the regime N ≤ p−C for any C = C(k) > 0.
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Theorem 26. For every k ≥ 1, the graph Hk defined above contains a k-matching and, for any p ∈ (0, 1),

t(Hk, p,N) = Ωk(p
e(Hk)−k(k−1)Nv(Hk)−k),

provided N is sufficiently large in terms of p.

Proof. In fact, Hk has k2 edges, 2k vertices, and contains a unique k-matching (ai, bi)i≤k. It will suffice to
show that for all p ∈ (0, 1) and N sufficiently large in terms of p,

t(Hk, p,N) = Ωk(p
kNk).

Builder’s strategy will involve constructing a nested sequence of vertex sets U1, U2, . . . , Uk. The first set U1 is
just an arbitrary set of N/k vertices. In each successive Ui, assuming |Ui| ≥

√
N we can pick Ni = N/(k|Ui|)

vertices a
(1)
i , a

(2)
i , . . . , a

(Ni)
i ∈ Ui and try to build all edges from each a

(j)
i to every other vertex in Ui. This

step takes at most N/k turns. The set Ui+1 is then defined to be the common neighborhood of a
(1)
i , . . . , a

(Ni)
i

within Ui.
Repeating this process k times, we use at most N turns. For N sufficiently large, with high probability

the edge density from a
(1)
i , a

(2)
i , . . . , a

(Ni)
i to the rest of |Ui| is (1 + o(1))p. Thus, the number of copies of Hk

built in this way is bounded below by

∏

i

(Ni · p|Ui|) ≥ (1 + o(1))(pN)k/kk,

since we can choose ai out of any of the Ni vertices a
(1)
i , . . . , a

(Ni)
i and bi out of any of its (1 + o(1))p|Ui|

neighbors. As long as N is large enough that |Uk| ≥
√
N with high probability, there will be enough vertices

in the last set Uk to perform the strategy. This argument successfully constructs Θk(p
kNk) copies of Hk.

Taking N to be a tower of (2 + 2p−1)’s of height k is sufficient.

We finish the subsection with an application of the preceding results and prove Theorem 11. Recall that
this theorem states that for m fixed and n → ∞, a value of p for which r̃rand(m,n) ≤ 3r̃(m,n; p) satisfies
p = Θ(mn log n

m ).

Proof of Theorem 11. By Theorem 22,

f(Km, p) = Om(p−2m/3),

and in fact it can be checked from the proof that the explicit dependence on m is polynomial. Moreover,
using Proposition 23 with c = 0, we have that

f(Km, p) ≥ 1

4
p−

m−1
2 ≥ 1

4
p−m/3,

since m−1
2 ≥ m

3 for m ≥ 3. Putting all this together, there exists an absolute constant A > 0 for which

1

4
p−m/3 ≤ f(Km, p) ≤ mAp−2m/3 (5.5)

for all m ≥ 3, p ∈ (0, 1).
By Theorem 10, we have

r̃(m,n; p) ≤ min{f(Km, p), f(Kn, 1− p)} ≤ 3r̃(m,n; p).

Pick some p0 ∈ (0, 1) which maximizes the function min{f(Km, p), f(Kn, 1 − p)}. Such a p0 exists be-
cause f(Km, p) is nonincreasing in p, f(Kn, 1 − p) is nondecreasing, and both are integer-valued. Then,
r̃rand(m,n) ≤ 3 · r̃(m,n; p0). It remains to check that we could have chosen p0 = Θ(mn log n

m ). By (5.5) and
the fact that the bounds are continuous, we have

1

4
p
− 1

3m
0 ≤ nA(1− p0)

− 2
3n
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and
1

4
(1− p0)

− 1
3n ≤ mAp

− 2
3m

0 .

Since m ≥ 3 is fixed and n → ∞, the first inequality implies p0 → 0. In particular, log(1 − p0) =
−p0 +O(p20). Taking the logarithm of both sides in the inequalities above, we have

−1

3
m log p0 − log 4 ≤ A logn+

2

3
n(p0 +O(p20))

and
1

3
n(p0 +O(p20))− log 4 ≤ A logm− 2

3
m log p0.

Taking n → ∞ and dividing through by mp0, these inequalities combine to show

log(1/p0)

p0
= Θ

( n

m

)

and it follows that p0 = Θ(mn log n
m ), as desired.

5.4 The value of t(K
m
, p, N) for large N

In this section, we investigate the behavior of the function t(Km, p,N) as N → ∞. We find that when N
is very large, the essentially optimal strategy for building as many copies of Km as possible is to fill in the
edges of a clique on

√
2N vertices. This is in stark contrast with the rather delicate procedure described in

Section 5.2 to build a single copy of Km.

5.4.1 Chernoff bounds and subjumbledness

We will need a standard lemma (see, for example, [24, Theorem 2.1]) saying that with high probability all
moderately large induced subgraphs of a random graph G(N, p) have the expected number of edges. Recall
that if U ⊂ V (G) is a vertex subset of G, we write G[U ] for the induced subgraph on U .

Lemma 27. If G = G(N, p) and ε > 0, then, with high probability,

e(G[U ]) = (1 ± ε)p

(|U |
2

)

for all |U | = Ωε(p
−1 logN).

In the literature (see [24] and its references), this pseudorandomness property is usually called jumbled-
ness. We also use this term, though in a slightly different way to how it is usually used.

Definition 28. A graph G is (p,M, ε)-jumbled if, for every U ⊆ V (G) with |U | ≥ M ,

e(G[U ]) = (1± ε)p

(|U |
2

)

.

A graph G is (p,M, ε)-subjumbled if it is a subgraph of some (p,M, ε)-jumbled graph.

In what follows, we will show that subjumbled graphs cannot have too many cliques. For the graph-
building problem, the heuristic is that it’s not possible to build more copies of H in a known jumbled graph
G with pN queries than it is with N queries in G(N, p).
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5.4.2 Degeneracy

Define a graph to be d-degenerate if there exists an ordering of the vertices v1, . . . , vn such that |N(vi) ∩
{v1, . . . , vi−1}| ≤ d for all i. The following simple lemma is well known.

Lemma 29. Every graph with E edges is
√
2E-degenerate.

Proof. We exhibit the degenerate ordering by picking the vertices backwards from vn to v1. At each step,
pick vi to be the minimal degree vertex in the current graph and delete it. Note that d(vi) ≤ i− 1 because
there are only i points left and also d(vi) ≤ 2E

i because the sum of the degrees is at most 2E and vi has

minimal degree. It follows that at every step d(vi) ≤ min(i, 2E
i ) ≤

√
2E, as desired.

This is not quite sufficient for our purposes, but it gives the main idea. What we really need is a better
understanding of degeneracy in jumbled graphs. In what follows, given a candidate ordering v1, . . . , vn of
the vertices, we write N−(vi) = N(vi) ∩ {v1, . . . , vi−1} and d−(vi) = |N−(vi)|.

Lemma 30. Any (p,M, ε)-subjumbled graph on N edges is max((1 + ε)M
√
p, (1 + ε)

√
2pN)-degenerate.

Proof. Let H be a graph on N edges that is a subgraph of some (p,M, ε)-jumbled graph G. We again pick
vertices of the graph H in order of increasing degree among the remaining vertices. Let the resulting order
be v1, . . . , vn and write Ui = {v1, . . . , vi}. The construction guarantees that vi is of minimal degree in G[Ui].

If i ≤ M , then the subgraph H [v1, . . . , vi] has at most as many edges as H [v1, . . . , vM ], which has at
most (1 + ε)pM2/2 edges. Thus,

d−(vi) ≤ min
(

i,
(1 + ε)pM2

i

)

≤ (1 + ε)M
√
p.

Otherwise, if i > M , the induced subgraph H [v1, . . . , vi] has at most (1+ ε)pi2/2 edges and it clearly cannot
have more than e(H) = N edges. Because vi is of minimal degree in this induced subgraph,

d−(vi) ≤
2

i
min

( (1 + ε)pi2

2
, N
)

= min((1 + ε)pi, 2Ni−1)

≤ (1 + ε)
√

2pN

and so every vertex has d−(vi) ≤ max((1 + ε)M
√
p, (1 + ε)

√
2pN), as desired.

5.4.3 Counting cliques

We are ready to prove the following lemma. Recall the standard notation that t(K,H) is the number of
labeled graph homomorphisms from K to H . Up to a lower order term, this is the same as counting labeled
copies of K in H . In fact, the equality is exact in the case we care about, where K is a clique and H is a
simple graph without self-loops.

Lemma 31. For all p ∈ (0, 1), m,M ≥ 2 and 0 < ε < 1, if H is a (p,M, ε)-subjumbled graph with N edges,
then

t(Km, H) ≤ (1 +Om(ε+ p1/2N−1/2))p(
m

2 )(2p−1N)
m

2 +Om

(

m−1
∑

k=2

p
m+k(k−3)

2 ·Mm−k ·N k

2

)

.

Proof. Take a degenerate ordering v1, . . . , vn of H such that vi is of minimum degree in H [v1, . . . , vi]. By
Lemma 30,

d−(vi) ≤ max((1 + ε)M
√
p, (1 + ε)

√

2pN),

where the second term dominates as soon as N ≥ M2/2. Conditioning on whether or not vn is in the copy
of Km+1 we are counting, we see that

t(Km+1, H)− t(Km+1, H\vn) = (m+ 1)t(Km, H [N−(vn)]).
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In particular, writing t(m,N) = max∗e(H)=N t(Km, H), where the maximum is taken over all graphs H with

N edges that are subgraphs of some (p,M, ε)-jumbled graph, we find that

t(m+ 1, N) ≤ max
d≤U(N)

[

t(m+ 1, N − d) + (m+ 1)t(m, e+(d))
]

, (5.6)

where U(N) = max((1 + ε)M
√
p, (1 + ε)

√
2pN) and e+(d) is any upper bound on the number of edges in a

graph on d vertices that is a subgraph of a (p,M, ε)-jumbled graph. The function e+ we take is

e+(d) =











d2

2 d < M
√
p

(1 + ε)pM
2

2 M
√
p ≤ d < M

(1 + ε)pd
2

2 d ≥ M.

To see that e+(d) is indeed an upper bound on the number of edges in a graph on d vertices that is a
subgraph of a (p,M, ε)-jumpled graph, we use the trivial bound when d is small, extend to a size M set to
use jumbledness when d is somewhat close to M , and use jumbledness directly for d larger than M .

We are left to bound t using the system of inequalities (5.6). Write

t∗(m,N) = p(
m

2 )(2p−1N)
m

2

for the approximate optimum value of t(m,N). We induct on m. The base case is t(2, N) = 2N . Assume,
by induction, that for some m ≥ 2,

t(m,N) ≤ (1 +Om(ε+ p1/2N−1/2))t∗(m,N) +Om

(

m−1
∑

k=2

p
m+k(k−3)

2 ·Mm−k ·N k

2

)

.

We would like to show that the same inequality holds for m+ 1. Iterating (5.6), there exists a sequence
(di)i≥1 of positive integers summing to N for which

di ≤ U
(

N −
∑

1≤j<i

dj

)

and
t(m+ 1, N) ≤ (m+ 1)

∑

i≥1

t(m, e+(di)),

which implies, by the induction hypothesis, that

t(m+ 1, N) ≤ (1 +Om(ε+ p1/2N−1/2))(m+ 1)
∑

i≥1

t∗(m, e+(di))

+Om+1

(

m−1
∑

k=2

p
m+k(k−3)

2 ·Mm−k ·
[

∑

i≥1

e+(di)
k

2

])

. (5.7)

Since e+(d) is constant on the range M
√
p ≤ d < M , the optimal choice of di will never have any points

in this range. The main term of (5.7) can thus be separated into the sum over di < M
√
p and the sum over

di ≥ M :
∑

i≥1

t∗(m, e+(di)) ≤
∑

di≥M

t∗
(

m, (1 + ε)pd2i /2
)

+
∑

di<M
√
p

t∗
(

m, (1 + ε)d2i /2
)

. (5.8)

Note that m ≥ 2, so t∗(m,N) is a convex nondecreasing function in N . Also, the function e+(d) is nonde-
creasing and convex in d except for the jump discontinuity at d = M

√
p. Therefore, in each of the ranges

above, t∗(m, ·) and e+(·) are both convex nondecreasing functions.
To bound the first sum in (5.8), we pass to an integral. Write

Ni = N −
∑

j≤i

di.
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Then

∑

di≥M

t∗(m, e+(di)) ≤
∑

i≥1

t∗
(

m, (1 + ε)pd2i /2
)

=
∑

i≥1

∫ Ni−1

Ni

t∗(m, (1 + ε)pd2i /2)

di
dx.

Because t∗(m, (1 + ε)pd2/2)/d is an increasing function of d and di ≤ U(Ni−1) = (1 + ε)
√

2pNi−1, we have

∑

i≥1

∫ Ni−1

Ni

t∗(m, (1 + ε)pd2i /2)

di
dx ≤

∑

i≥1

∫ Ni−1

Ni

t∗(m, (1 + ε)p((1 + ε)
√

2pNi−1)
2/2)

(1 + ε)
√

2pNi−1

dx

≤
∑

i≥1

∫ Ni−1+(1+ε)
√
2pN

Ni+(1+ε)
√
2pN

t∗(m, (1 + ε)p((1 + ε)
√
2px)2/2)

(1 + ε)
√
2px

dx

≤
∫ N+(1+ε)

√
2pN

0

t∗(m, (1 + ε)3p2x)√
2px

dx.

We had to shift integrals in the second step to guarantee that every value of x in the range of integration is
at least Ni−1.

Next, t∗(m,N) is a polynomial in N , so we can absorb the (1 + ε) into the error term. Similarly, we
can pull out an error term of (1 + (1 + ε)

√

2p/N) from the bounds of the integral to simplify. Reorganizing
various error terms, we get

∫ N+(1+ε)
√
2pN

0

t∗(m, (1 + ε)p2x)√
2px

dx ≤ (1 +Om+1(ε+ p1/2N−1/2))

∫ N

0

t∗(m, p2x)√
2px

dx.

Finally, explicitly evaluating the integral, we have

∫ N

0

t∗(m, p2x)√
2px

dx =

∫ N

0

p(
m

2 )(2p−1p2x)
m

2
dx√
2px

= 2
m−1

2 p
m

2−1
2

∫ N

0

x
m−1

2 dx

=
1

m+ 1
2

m+1
2 p

m
2−1
2 x

m+1
2

∣

∣

∣

N

0

=
1

m+ 1
p(

m+1
2 )(2p−1N)

m+1
2

=
1

m+ 1
t∗(m+ 1, N).

Estimating the second sum in (5.8) trivially, we get

∑

i≥1

t∗(m, e+(di)) ≤ (1 +Om+1(ε+ p1/2N−1/2))t∗(m+ 1, N) +Om+1

( N

M
√
p
t∗
(

m,
pM2

2

))

.

To check the error terms in (5.7) match up is similar: break up each sum into the sums over di ≥ M and
di < M

√
p. The first sum is estimated by an integral and the second trivially. The result is

Om+1

(

m−1
∑

k=2

p
m+k(k−3)

2 ·Mm−k ·
[

∑

i≥1

e+(di)
k

2

])

≤ Om+1

(

m
∑

k=2

p
m+1+k(k−3)

2 ·Mm+1−kN
k

2

)

,

which is the right error term for t(m+ 1, N), completing the induction.
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In particular, and this is essential, the implicit constants in this lemma do not depend on M . As an
immediate corollary, we now prove Theorem 15. Note that the N above is the number of edges in H , which
will correspond to (1 + o(1))pN below if N is the number of queries made in the Subgraph Query Game.

Proof of Theorem 15. Applying the Chernoff bound from Lemma 27, we see that for any ε > 0 we can
take some M = Cp−1 logN so that the random graph G(2N, p) is (p,M, ε)-jumbled with high probability.
Also with high probability, the number of edges built in N queries is (1 + o(1))pN . It is easy to check that
the exponentially small probabilities with which either of these are false have negligible impact on the value
of t(Km, p,N). The subgraph H built by Builder must therefore satisfy the hypotheses of Lemma 31 with
(1 + o(1))pN edges.

The main term dominates the error terms for N sufficiently large, giving the expected answer which is

just p(
m

2 )(2N)
m

2 , the number of m-cliques in G(
√
2N, p). This happens once the main term outgrows the

largest error term, the term with k = m − 1. This happens at N = Ω(p−(2m−3)M2), so it suffices to have
N ≥ ω(p−(2m−1) log2 (p−1)). This proves the upper bound in Theorem 15. Of course, the lower bound is
proved by the strategy of building all edges among

√
2N vertices.

6 Concluding remarks

It is an interesting problem to close the gap in the bounds for the online Ramsey number r̃(m,n). In
particular, we know that there are positive constants c, c′ for which cn3/(logn)2 ≤ r̃(3, n) ≤ c′n3 and
it seems plausible that these bounds could be brought closer together. Indeed, we conjecture that the
lower bound can be improved to cn3/ logn by considering the following Painter strategy motivated by the
triangle-free process [6]. Painter applies the triangle-free process to obtain an auxiliary triangle-free graph
G on vertex set {1, 2, . . . , r} with r = c0n

2/ logn. Painter does not reveal this auxiliary graph. As before,
we label vertices that reach degree n/4 with 1, . . . , r as they arrive at degree n/4. When Builder adds an
edge between two vertices in which both vertices have degree at least n/4, then these vertices have labels,
say i and j, and Painter paints the edge with the color of the edge ij in G. Otherwise, they color the edge
blue. This coloring clearly contains no red triangles, but it remains to show that it contains no blue Kn.

In studying the online Ramsey number, we were usually led by the idea that Builder’s optimal strategy
is to fill out an extremely sparse graph on the vertex set they touch. However, if Builder is restricted to
play on a small vertex set, this intuition seems to go awry. If we define r̃(m,n;N) in the same manner as
the online Ramsey number but with the additional restriction that only N vertices are allowed, then we
conjecture that the function r̃(m,n;N) increases substantially as N decreases from 2r̃(m,n), the maximum
number of vertices in a graph with r̃(m,n) edges, down to its minimal meaningful value r(m,n).

The order of growth of f(Km, p) is still open for m ≥ 6. In particular, Theorems 12 and 22 show that
f(K6, p) = Ω(p−13/4) and f(K6, p) = O(p−10/3) and we conjecture that the upper bound is correct. This
belief is rooted in our conviction that the upper bound for t(H, p,N) given by Theorem 24, upon which
Theorem 12 relies, is not tight when N is on the order of f(H, p). Because of the examples in Theorem 26,
these upper bounds can be tight when N is very large, so further progress on this problem would need to
be more sensitive to the size of N . It is plausible that any advance on this question and its generalizations
could also impinge on our estimates for online Ramsey numbers.
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