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Text S1: Mechanics of thin nematic elastomer bilayers

We discuss the mechanics of nematic elastomer bilayers and show that the model developed by Agostiniani and
DeSimone (59 ) for thin nematic elastomer bilayers yields an inverse proportionality between curvature, k, and
thickness, h, in good agreement with in our experimental observations. This relation is observed in our samples
(particularly for LTn7 hinges), even though the majority of our samples are thick plates. For a more relevant
comparison between our experimental results and the calculation of x discussed below, we highlight the direct
proportionality between curvature and hinge angle, 6, in specimens with near-homogeneous curvature (such as ours).
Namely, 6 ~ xkw, where w is hinge width.

Their model is derived based on the condition that there is an isometry constraint on the midplane of thin bilayers
due to kinematic frustration (i.e., there is no stretching, and only deformed configurations with zero Gaussian
curvature can be achieved). This constraint is an approximation that can be rationalized by contrasting the scaling of
stretching and bending energies with regards to plate thickness, h. While the former is linear with h, the latter scales
with h3. This means that bending deformations are heavily favored as structures become increasingly slender, hence
the inclusion of the midplane isometry constraint.

Some of the printed LCE hinges are thin and behave in accordance with this regime, but most of our samples are
thicker to generate higher torque outputs. In this case, anticlastic bending is observed at the free edges of the hinges,
meaning that midplane isometry is not preserved. Because we have limited data on thin LCE actuators, we do not
directly compare our results to fittings of parameters used in their model. However, we note that the decreasing
curvature with increasing thickness observed in our experiments is characteristic of other bilayer growth systems
(57,58 ) and is consistent with the behavior predicted by their model for thin nematic elastomers. We offer an
intuition for the mechanics that govern our hinges by summarizing a calculation based on their model, which
illustrates that sheet thickness is the characteristic length scale that determines curvature in the thin specimen limit.

It is beyond the scope of this study to develop a theory for the curving of thick LCE bilayers.

Kinematics

Denote the coordinate frame for an initially flat midsurface as X = {X,Y}. The deformed configuration is x =

{z(X,Y), y(X,Y), 2(X,Y)}. The unit-normal to the deformed surface is
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The second fundamental form of the midsurfaces is given by:




We express this form through the following identity:
Vx n=0=V(Vx-n)=0

In Einstein summation notation, this can be written as:
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Thus, the second fundamental form can be expressed as follows:
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At a fixed point on the surface, given an orthonormal tangent vector basis, the principal curvatures are the eigen-

values of A,.

Summary of the Agostiniani & DeSimone model

Consider a nematic elastomer sheet with a small thickness hy and reference configuration domain w®x (—hg/2, ho/2).
The material has a shear modulus p > 0, energy per unit volume ¢ > 0, and a dimensionless material parameter
g > 0 which couples the magnitude of spontaneous in-plane strains in each layer to the nematic director, n. Taking

(n® n) as the 2 x 2 upper left part of n ® n, the symmetric tensor M is a function of ag, hg, n:
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and is related to the spontaneous linear strain in each layer E as follows:
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Agostiniani and DeSimone’s model for LCE bilayers gives the following functional for the limiting 2D plate

2.2

theory. The isometric deformation y € Wi : (V'y)TV'y = I, which minimizes this functional corresponds to

equilibrium.
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In this functional, Here, @, is a doubly-relaxed energy density that is related to M through the following set of

functions:

e A volumetric term, W;:
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e An effective bulk modulus, ~:
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e The relaxed energy density, Qs:

Q2(D) = 2u (lsym(D)[* + v tr*D) ,

where |A| = \/tr(AAT).
e The doubly-relaxed energy density Qy:
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Calculation for an orthogonal bilayer

To compare the results of this model to a thin bilayer with same director as our fabricated samples, we consider
a bilayer where n; = (1,0,0) in the top layer defined by Z € [0,ho/2), and ny = (0,1,0) in the bottom layer
Z € (—ho/2,0). Then,
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Inserting into the strain energy, we have
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where a;; are the elements of A,. We seek to minimize
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under the constraint of isometric deformations y € VV?SO2 . (V'y)TV'y = I, over the entire domain. The sheet’s

flat initial configuration, nematic order symmetry, and the isometric deformation constraint require solutions of the

form

k 0 0
A, = or Ay =
0 0 0 k

The boundary conditions impose yyy -n = 0 at the edges located at X = 0 and X = € (in the reference

configuration), so we restrict ourselves to deformations which result in curvatures of the form



A, =

Assuming homogeneous curvature in the deformed configuration, the minimization problem becomes:
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This has the solution
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Remembering that «g, ¢ and p are material parameters, this is consistent with the inverse proportionality
between curvature and thickness that is observed in many systems with differential growth across bilayers, including
our experiments. We remind the reader that hinge angle is directly proportional to curvature for homogeneously-
curved specimens. As such, the Agostiniani & DeSimone model predicts the following relation between hinge angle

and thickness for thin LCEs:

0 x —
0

Our experiments show that this prediction may extend to thicker specimens. We believe this model provides an
intuition for the mechanics that govern our hinges, but note that the observation of anticlastic bending in our

thicker samples shows that the isometric assumption should not be maintained in a rigorous theory for thick LCE

bilayers.
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Figure S1. LCE and structural tile ink rheology. (A) Apparent viscosity as a function of shear
rate for LTy and HTy; LCE inks at printing temperature 26°C and 55°C, respectively. (B) Storage
(G’) and loss (G") moduli as a function of shear stress at 1 Hz for LTx; and HTns LCE inks at the
respective printing temperatures of 26°C and 55°C. (C) Apparent viscosity as a function of shear
rate for the structural polymer ink under ambient conditions. (D) Storage (G") and loss (G”) moduli
as a function of shear stress at 1 Hz for the structural polymer ink under ambient conditions.
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Figure S2. Differential scanning calorimetry curves for the LCE inks. The two oligomeric
LCE inks exhibit L7n;and HTn; values of approximately 24°C and 94°C, respectively. [Note: From
this data, the 7, and smectic-to-nematic transition temperature (7sy) for the H7n; ink are
approximately -20 °C and 20 °C, respectively.]
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Figure S3. LCE alignment. 2D wide angle X-Ray scattering patterns of unidirectional printed
(A) LTns and (B) HTnr LCEs. (C) Normalized intensity as a function of azimuthal angle. (D)
Normalized radial intensity as a function of the momentum transfer vector ¢ = (4n/A) sin 6.
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Figure S4. Actuation response of unidirectional printed LCEs. The measured contractile and
expansion strain observed perpendicular and parallel to the print direction, respectively, as a
function of temperature for unidirectional aligned LCE actuators printed from L7y; and H7n; inks
[Note: Sample dimensions are approximately 20 mm x 5 mm x 0.375 mm.]
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Figure S5. Bending angle as a function of temperature. Bending angles 0 of (A) L7n; and (B)
HTy LCE hinges (0.25 mm thick) with varying width (w=1-4 mm) as a function of temperature.
Due to residual stress that arises from printing and cross-linking the L7x; LCE hinges in the
isotropic phase, their measured bending angle is negative at low temperatures.
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Figure S6. Bending angle as a function of hinge dimensions. Bending angles of LCE hinges of
varying thickness (4) and width (w), when actuated above their 7Tx;. Hinge angles 6 are measured
at 120°C and 150°C for the L7x; and HTn; LCE hinges, respectively. Maximum bending angle is
180° due to panel collision.
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Figure S7. Valley fold bending angles. Printed LCE hinges (0.25 mm thick) of varying width w
exhibit valley folds with smaller bending angles 6 than their mountain fold counterparts.
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Figure S8. Repeatable hinge folding. Bending angles § of LTn; and HTn; LCE hinges (0.25 mm
thick and 2 mm wide) when cycled above and below 7.

Figure S9. Triangulated polyhedron actuation sequence at ambient temperature. (A) The
triangulated polyhedron in its second, partially folded configuration after heating to actuate the top
LTy section. (B) The triangulated polyhedron in its third, fully folded configuration after heating
to actuate the bottom HT7y; section. All images are taken under ambient conditions.
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Figure S10. Free body diagrams of self-propelling rollbot. (A) Moment diagrams for
calculating the torque at the L7y LCE hinge (b) that requires the greatest torque for self-
reconfiguration into a pentagonal prism. Here, m is the mass of each panel, g is gravitational
acceleration, L is the length of each panel. (B) Moment diagrams for calculating the torque
requirements of H7n; LCE hinges that induce self-propulsion. Here, M is the entire mass of the
structure, ¢ is the offset of the center of mass C.M. from the tipping point, / is the length of the
propelling plate, o is the offset of the hinge from the tipping vertex, o. A no-friction assumption is
taken for the contact between the structure and the ground. Only forces that affect a torque about
the tipping point are shown for clarity in the image.
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Figure S11. Torque requirements of hinges for self-propelling rollbot. (A) Torque required

from L7n; LCE hinges for self-assembly into a pentagon as a function of folding angle 6. (B)

Torque required from H7n; LCE hinges as a function hinge angle for self-propulsion. The required
moment is zero at the tipping point. A 63° hinge angle induces a 36° tipping angle about the vertex.



Linear stage
Rotary Stage
Heater

Hinge

Axially stiff rod

Force sensor

Figure S12. Torque measurement experimental setup. Torque of the LCE hinges can be
measured (left) as a function of angle @ by rotating a rotary stage (right). The force sensor is
attached to the hinge at the end of the panel, approximately 1 cm from the edge of the LCE
component, which is in contact with a thin heater. A linear stage is used to ensure that the hinge
tile attached to the force sensor is parallel to the sensor surface. Scale bars are 1 cm.
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Figure S13. Torque measurements for hinges of varied dimensions. / indicates hinge
thickness in mm, w indicates hinge width in mm, and @ is the folding angle.





