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Abstract. In this paper, we study the problem of non parametric
estimation of an unknown regression function from dependent data
with sub-Gaussian errors. As a particular case, we handle the au-
toregressive framework. For this purpose, we consider a collection
of finite dimensional linear spaces (e.g. linear spaces spanned by
wavelets or piecewise polynomials on a possibly irregular grid) and
we estimate the regression function by a least-squares estimator
built on a data driven selected linear space among the collection.
This data driven choice is performed via the minimization of a pe-
nalized criterion akin to the Mallows’ Cp. We state non asymptotic
risk bounds for our estimator in some L2-norm and we show that
it is adaptive in the minimax sense over a large class of Besov balls
of the form Bα,p,∞(R) with p ≥ 1.

1. Introduction

We consider here the problem of estimating the unknown function f
from n observations (Yi, ~Xi), 1 ≤ i ≤ n drawn from the regression
model

Yi = f( ~Xi) + εi (1.1)

where ( ~Xi)1≤i≤n is a sequence of possibly dependent random vectors
in R

k and the εi’s are i.i.d. unobservable real valued centered errors
with variance σ2. In particular, if Yi = Xi and ~Xi = (Xi−1, . . . , Xi−k)

′

we recover the classical autoregressive framework of order k. In this
paper, we measure the risk of an estimator via the expectation of some
random L2-norm based on the ~Xi’s. More precisely, if f̂ denotes some
estimator of f , we define the risk of f̂ by

E[d2
n(f, f̂)] = E

[

1

n

n
∑

i=1

(

f( ~Xi) − f̂( ~Xi)
)2
]
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where for any functions s, t, d2
n(s, t) denotes the squared random dis-

tance n−1
∑n

i=1(s(
~Xi)−t( ~Xi))

2. We have in mind to estimate f thanks
to some suitable least-squares estimator. For this purpose we introduce
some finite collection of finite dimensional linear spaces {Sm, m ∈ Mn}
(in the sequel, the Sm’s are called models) and we associate to each Sm,

the least-squares estimator f̂m of f on it. Under suitable assumptions
(in particular if the ~Xi’s and the εi’s are independent sequences) the

risk of f̂m is equal to

E
[

d2
n(f, Sm)

]

+
dim(Sm)

n
σ2.

The aim of this paper is to propose some suitable data driven selection
procedure to select some m̂ among Mn in such a way that the least-
squares estimator f̂m̂ performs almost as well as the best f̂m over the
collection (i.e. the one which has the smallest risk). The selection
procedure that is considered is a penalized criterion of the following
form:

m̂ = arg min
m∈Mn

[

1

n

n
∑

i=1

(

Yi − f̂m( ~Xi)
)2

+ pen(m)

]

where pen is a penalty function mapping Mn into R+. Of course the
major problem is to determine such a penalty function in order to
obtain a resulting estimator f̃ = f̂m̂ that performs almost as well as
the best f̂m i.e. such that the risk of f̃ achieves, up to a constant, the
minimum of the risks over the collection Mn. More precisely we show
that one can find a penalty function such that

E

[

d2
n(f, f̃)

]

≤ C inf
m∈Mn

[

E
[

d2
n(f, Sm)

]

+
dim(Sm)Lm

n
σ2

]

(1.2)

where the Lm’s are related to the collection of models. If the collection
of models is not too “rich” then the Lm’s can be chosen to be constants
independent of n and the right-hand side of (1.2) turns out to be the
minimum of the risks (up to a multiplicative constant) among the col-
lection of least-squares estimators that are considered. In most cases
the Lm’s are either constants or of order ln(n).

There have been many studies concerning model selection based on
Mallows’ [22] Cp or related penalization criteria like Akaike’s or the
BIC criterion for regressive models (see Akaike [1, 2], Shibata [28, 29],
Li [20], Polyak and Tsybakov [27], among many others . . . ). A com-
mon characteristic of all their results is their asymptotic feature. More
recently, a general approach to model selection for various statistical
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frameworks including density estimation and regression has been de-
veloped in Barron, Birgé and Massart [7] with many applications to
adaptive estimation. An original feature of their viewpoint is its non
asymptotic character. Unfortunately, their general approach imposes
such restrictions to the regression Model (1.1) that it is hardly usable
in practice. Following their ideas, Baraud [5, 4] has extended their
results to more attractive situations involving realistic assumptions.
Baraud [4] is devoted to the study of fixed design regression while Ba-

raud [5] considers Model (1.1) when all random variables ~Xi’s and εi’s
are independent, the εi’s being i.i.d. with a moment of order p > 2.
Then Baraud, Comte and Viennet [6] relaxed the assumption of in-

dependence on the ( ~Xi)’s and the εi’s as well. Our approach here as
well as in the previous papers remains non asymptotic. Although there
have been many results concerning adaptation for the classical regres-
sion model with independent variables, to our knowledge, not much
is known concerning general adaptation methods for non parametric
regression involving dependent variables. It is not within the scope
of this paper to make an historical review for the case of independent
variables.
Concerning dependent variables, Modha and Masry [24] deal with the

model given by (1.1) when the process ( ~Xi, Yi)i∈Z is strongly mixing.
Their approach leads to sub-optimal rates of convergence. It is worth
mentioning, for a one dimensional first order autoregressive model, the
works of Neumann and Kreiss [26] and Hoffmann [16] which rely on the
approximation of an AR(1) autoregression experiment by a regression
experiment with independent variables. They study here various non
parametric adaptive estimators such as local polynomials and wavelet
thresholding estimators. Modha and Masry [25] consider the problem
of one step ahead prediction of real valued stationary exponentially
strongly mixing processes. Minimum complexity regression estimators
based on Legendre polynomials are used to estimate both the model
memory and the predictor function. Again their approach does not
lead to optimal rates of convergence, at least in the particular case of
an autoregressive model.
Of course, this paper must be compared with our previous work (Ba-
raud, Comte and Viennet [6]), where we had milder moment conditions
on the errors (the εi’s must admit moments of order p > 2) but stronger
condition on the collection of models. Now we require the εi’s to be sub-
Gaussian (typically, the εi’s are Gaussian or bounded) but we do not
impose any assumption on our family of models (except for finiteness);
it can be in particular as large as desired. Moreover, we no longer allow
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any dependency between the εi’s, but we can provide results for more
general types of dependency for the ~Xi’s, typically when some norm
connections are fulfilled (i.e. on the set Ωn defined by (3.6)). Any kind

of dependency is permitted on the ~Xi’s as soon as the ~Xi’s and the εi’s
are independent sequences of random variables. In the autoregressive
framework, they are possibly arithmetically or geometrically β-mixing
(the definitions are recalled below). Note that Baraud [5] gave the
same kind of results in the independent framework under even milder
conditions but assuming that the errors are Gaussian. The techniques
involved are appreciably different. We can also refer to Birgé and Mas-
sart [8] for a general study of the fixed design regression with Gaussian
errors.
Let us now present our results briefly. One can find collections of mod-
els such that the estimator f̂m̂ is adaptive in the minimax sense over
some Besov balls Bα,p,∞(R) with p ≥ 1. Furthermore, in various statis-
tical contexts, we also show that the estimator achieves the minimax
rate of convergence although the underlying distribution of the ~Xi’s is
not assumed to be absolutely continuous with respect to the Lebesgue
measure. For other estimators and in the case of independent data,
such a result has been established by Kohler [18].
The paper is organized as follows: the general statistical framework
is described in Section 2, and the main results are given under an
Assumption (Hµ) in Section 3. Section 4 gives applications to minimax
adaptive estimation in the case of wavelets basis. Section 5 is devoted to
the the study of condition (Hµ) in the case of independent sequences
~Xi’s and εi’s or in the case of dependent sequences and (β-mixing)

variables ~Xi’s. Most proofs are gathered in Sections 6 to 9.

2. The estimation procedure

Let us recall that we observe pairs (Yi, ~Xi), i = 1, . . . , n arising from (1.1)

Yi = f( ~Xi) + εi.

The ~X ′
i = (Xi,1, ..., Xi,k)’s are random variables with law µi and we set

µ = n−1
∑n

i=1 µi. The εi’s are independent centered random variables.

The εi’s may be independent of the ~Xi’s or not. In particular, we
have in mind to handle the autoregressive case for which Yi = Xi and
~Xi = (Xi−1, ..., Xi−k)

′. Then the model can be written:

Xi = f(Xi−1, . . . , Xi−k) + εi, i = 1, . . . , n. (2.1)

Since we do not assume the εi’s to be bounded random variables, the
law of the ~Xi’s is supported by R

k. Nevertheless we aim at providing
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a “good” estimator of the unknown function f : R
k → R only on some

given compact set A ⊂ R
k.

Let us now describe our estimation procedure. We consider a finite
collection of finite dimensional linear spaces {Sm}m∈Mn

consisting of
A-supported functions belonging to L2(A, µ). In the sequel the linear
spaces Sm’s are called models. For each m ∈ Mn, we associate to each
model of the collection the least-squares estimator of f , denoted by
f̂m, which minimize over t ∈ Sm the least-squares contrast function γn

defined by

γn(t) =
1

n

n
∑

i=1

[

Yi − t( ~Xi)
]2

. (2.2)

Then, given a suitable penalty function pen(·), that is a nonnegative
function on Mn depending only on the data and known parameters, we
define m̂ as the minimizer over Mn of γn(f̂m) + pen(m). This implies
that the resulting Penalized Least Square Estimator (PLSE for short)

f̃ = f̂m̂ satisfies for all m ∈ Mn and t ∈ Sm

γn(f̃) + pen(m̂) ≤ γn(t) + pen(m). (2.3)

The choice of a proper penalty function is the main concern of this
paper since it determines the properties of the PLSE.

Throughout this paper, we denote by ‖ ‖ the Hilbert norm associated
to the Hilbert space L2(A, µ) and for each t ∈ L2(A, µ), ‖t‖2

n denotes

the random variable n−1
∑n

i=1 t2( ~Xi). For each m ∈ Mn, Dm denotes
the dimension of Sm and fm the L2(A, µ)-orthogonal projection of f
onto Sm. Moreover, we denote by R

∗
+ the set of positive real numbers

and by ν the Lebesgue measure.

3. Main Theorem

Our main result relies on the following assumption on the joint law of
the ~Xi’s and the εi’s:

(HX,ε)
(i) The εi’s are i.i.d. centered random variables that satisfy

for all u ∈ R

E [exp(uε1)] ≤ exp

(

u2s2

2

)

, (3.1)

for some positive s.
(ii) For each k ∈ {1, ..., n}, εk is independent of the σ-field

Fk = σ( ~Xj , 1 ≤ j ≤ k).
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Inequality (3.1) is fulfilled as soon as ε1 is a centered random variable
either Gaussian with variance s2 = σ2 or a.s. bounded by s. In the
autoregressive model given by (2.1), Condition (ii) is satisfied.

Theorem 3.1. Let us consider Model (1.1) where f is an unknown

function belonging to L2(A, µ) and the random variables εi’s and ~Xi’s
satisfy (HX,ε). Set fA = f1IA, let (Lm)m∈Mn

be nonnegative numbers
and set

Σn =
∑

m∈Mn

exp (−LmDm) . (3.2)

There exists some universal constant ϑ such that if the penalty function
is chosen to satisfy

pen(m) ≥ ϑs2 Dm

n
(1 + Lm) for all m ∈ Mn,

then the PLSE f̃ defined by

f̃ = f̂m̂ (3.3)

with

m̂ = argmin
m∈Mn

{

1

n

n
∑

i=1

[

Yi − f̂m( ~Xi)
]2

+ pen(m)

}

(3.4)

satisfies

E

[

‖fA − f̃‖2
n1IΩn

]

≤ C inf
m∈Mn

[

‖fA − fm‖2 + pen(m)
]

+ C ′ s
2Σn

n
(3.5)

where C and C ′ are universal constants and

Ωn =

{

ω/

∣

∣

∣

∣

‖t‖2
n

‖t‖2
− 1

∣

∣

∣

∣

≤ 1

2
, ∀t ∈

⋃

m,m′∈Mn

(Sm + Sm′) \ {0}
}

. (3.6)

Comments:

• For the proof of this result we use an exponential martingale
inequality given by Meyer [23] and chaining arguments that
can also be found in Barron, Birgé and Massart [7] to state
exponential bounds on supremum of empirical processes.

• One can also define Ωn by
{

ω/

∣

∣

∣

∣

‖t‖2
n

‖t‖2
− 1

∣

∣

∣

∣

≤ ρ, , ∀t ∈
⋃

m,m′∈Mn

(Sm + Sm′) \ {0}
}

for some ρ chosen to be less than one, then (3.5) holds for some
constant C that now depends on ρ.
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• A precise calibration of the penalty term (best choices of ϑ and
Lm’s ) can be determined by carrying out simulation experi-
ments (see the related work for density estimation by Birgé and
Rozenholc [9]).

• When the ~Xi’s are random variables independent of the εi’s then
the indicator set 1IΩn

can be removed in (3.5) (see Section 5).
We emphasize that in this case no assumption on the type of
dependency between the ~Xi’s is required.

Below, we present a useful corollary which makes the performance of
f̃ more precise when Ωn (as defined by (3.6)) is known to occur with
high probability. Indeed, assume that:

(Hµ) There exists ℓ > 1 such that P(Ωc
n) ≤ Cℓ

nℓ
,

then the following result holds:

Corollary 3.1. Let us consider Model (1.1) where f is an unknown
function belonging to L2(A, µ) ∩ L∞(A, µ). Under the Assumptions of

Theorem 3.1 and (Hµ), the PLSE f̃ defined by (3.3) satisfies

E

[

‖fA − f̃‖2
n

]

≤ C inf
m∈Mn

[

‖fA − fm‖2 + pen(m)
]

+ C ′ s
2Σn

n

+ C ′′‖fA‖2
∞ + s2

n
(3.7)

where C and C ′ are universal constants, and C ′′ depends on Cℓ and ℓ
only.

The constants C and C ′ in Corollary 3.1 are the same as those in
Theorem 3.1. The proof of Corollary 3.1 is deferred to Section 6. We
shall then see that if Sm contains the constant functions then ‖fA‖2

∞

can be replaced by ‖fA −
∫

fAdµ‖2
∞. Comments on Condition (Hµ)

are to be found in Section 5.

4. Adaptation in the minimax sense

Throughout this section we take k = 1 for sake of simplicity and since
we aim at estimating f on some compact set, with no loss of generality
we can assume that A = [0, 1].

4.1. Two examples of collection of models. This section presents
two collections of models which are frequently used for estimation:
piecewise polynomials and compactly supported wavelets. In the se-
quel, Jn denotes some positive integer.
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(P) Let Mn be the set of pairs (d, {b0 = 0 < b1 < ... < bd−1 < bd =
1}) when d varies among {1, ..., Jn} and {b0 = 0 < b1 < ... <
bd−1 < bd = 1} among the dyadic knots Nj/2Jn with Nj ∈ N.
For each m = (m1, m2) ∈ Mn we define Sm as the linear span
generated by the piecewise polynomials of degree less than r
based on the dyadic knots given by m2. More precisely, if m1 =
d and m2 = {b0 = 0 < b1 < ... < bd−1 < bd = 1} then Sm

consists of all the functions of the form

t =

d
∑

j=1

Pj1I[bj−1,bj [,

where the Pj’s are polynomials of degree less than r. Note
that dim(Sm) = rm1. We denote by Sn the linear space Sm

corresponding to the choice m1 = 2Jn and m2 = {j/2Jn, j =
0, ..., 2Jn}. Since dim(Sn) = r2Jn, we impose the natural con-
straint r2Jn ≤ n.

By choosing for all m ∈ Mn Lm = ln(n/r)/r, Σn defined by (3.2)
remains bounded by a constant that is free from n. Indeed for each
d ∈ {1, ..., Jn},

|{m ∈ Mn/ m1 = d}| = Cd−1
2Jn−1

≤ Cd
2Jn ,

where Cd
k denotes the binomial coefficient

(

k
d

)

. Thus,

∑

m∈Mn

e−LmDm ≤
2Jn
∑

d=1

Cd
2Jn e− ln(n/r)d ≤ (1 + exp(− ln(n/r)))2Jn

≤ exp(n/r exp(− ln(n/r))) = e

using that 2Jn ≤ n/r.

(W) For all integer j let Λ(j) be the set {(j, k), k = 1, . . . , 2j}. Let
us consider the L2-orthonormal system of compactly supported
wavelets of regularity r,

{φJ0,k, (J0, k) ∈ Λ(J0)} ∪ {ϕj,k, (j, k) ∈ ∪+∞
J=J0

Λ(J)},
built by Cohen, Daubechies and Vial [10]; for a precise de-
scription and use, see Donoho and Johnstone [13]. These new
functions derive from Daubechies’ [11] wavelets at the interior of
[0, 1] and are boundary corrected at the “edges”. For some posi-
tive Jn, let Sn be the linear span of the φJ0,k’s for (J0, k) ∈ Λ(J0)
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together with the ϕj,k’s for (j, k) ∈ Λ̄n = ∪Jn−1
J=J0

Λ(J). We have

that dim(Sn) = 2J0 +
∑Jn−1

j=J0
|Λ(j)| = 2Jn ≤ n if Jn ≤ ln2(n).

We take Mn = P(Λ̄n), (P(A) denotes the power of the set A)
and for each m ∈ Mn, define Sm as the linear space generated
by the φJ0,k’s for (J0, k) ∈ Λ(J0) and the ϕj,k’s for (j, k) ∈ m.

We choose Lm = ln(n) in order to bound Σn by a constant that does
not depend on n:

∑

m∈Mn

e−LmDm ≤
2Jn
∑

D=1

CD
2Jn e− ln(n)D ≤ (1 + exp(− ln(n)))2Jn

≤ exp(n exp(− ln(n))) = e

using that 2Jn ≤ n.

4.2. Two results about adaptation in the minimax sense. For
p ≥ 1 and α > 0, we set

|t|α,p = sup
y>0

y−αwd(t, y)p, d = [α] + 1

|t|∞ = sup
x,y∈[0,1]

|t(x) − t(y)|

where wd(t, .)p denotes the modulus of smoothness of t. For a pre-
cise definition of those notions, we refer to DeVore and G.Lorentz [12],
Chapter 2, Section 7. We recall that a function t belongs to the Besov
space Bα,p,∞([0, 1]) if |t|α,p < ∞.

In this section we show how an adequate choice of the collection of
models leads to an estimator f̃ that is adaptive in the minimax sense
(up to a constant) over Besov bodies of the form

Bα,p,∞(R1, R2) = {t ∈ Bα,p,∞(A)/ |t|α,p ≤ R1, |t|∞ ≤ R2}
with p ≥ 1. In a related regression framework, the case p ≥ 2 was
considered in Baraud, Comte and Viennet [6] and it is shown there
that weak moment conditions on the εi’s are sufficient to obtain such
estimators. We shall take advantage here of the strong integrability
assumption on the εi’s to extend the result to the case where p ∈ [1, 2[.
The PLSE defined by (3.3) with the collections (W) or (P) described
in Section 4.1 (and the corresponding Lm’s) achieves the minimax rates
up to a ln(n) factor. The extra ln(n) factor is due to the fact that those
collections are “too big” for the problem at hand. In the sequel, we ex-
ibit a subcollection of models (W’) out of (W) which has the property
to be both “small” enough to avoid the ln(n) factor in the convergence
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rate and “big” enough to allow the PLSE to be rate optimal. The
choice of this subcollection comes from the compression algorithm field
and we refer to Birgé and Massart [8] for more details. It is also proved
there how to obtain a suitable collection from piecewise polynomials
instead of wavelets.

For a > 2 and x ∈ (0, 1), let us set

Kj = [L(2J−j)2J ] and L(x) =

(

1 − ln x

ln 2

)−a

, (4.1)

where [x] denotes the integer part of x, and

L(a) = 1 +

+∞
∑

j=0

1 + (a + ln(2))j

(1 + j)a
. (4.2)

Then we define the new collection of models (we take the notations
used in the description of collection (W)) by:

(W’) For J ∈ {J0, ..., Jn − 1}, let

MJ
n =

{

J−1
⋃

j=J0

Λ(j)

Jn−1
⋃

j=J

mj , mj ⊂ Λ(j), |mj| = Kj

}

and set Mn =
⋃Jn−1

J=J0
MJ

n. For m ∈ Mn, we define Sm as the
linear span of the φJ0,k’s for (J0, k) ∈ Λ(J0) together with the
ϕj,k’s for (j, k) ∈ m.

For each J ∈ {J0, ..., Jn − 1} and m ∈ MJ
n,

2J ≤ Dm = 2J +
Jn−1
∑

j=J

Kj ≤ 2J

(

1 +
+∞
∑

j=1

j−a

)

. (4.3)

Hence, for each J , the linear spaces belonging to the collection {Sm, m ∈
MJ

n} have their dimension of order 2J . Besides, it will be shown in Sec-
tion 8 that the space ∪m∈MJ

n
Sm has good (nonlinear) approximation

properties with respect to functions belonging to inhomogeneous Besov
spaces.

We give a first result under the assumption that µ is absolutely con-
tinuous with respect to the Lebesgue measure on [0, 1].

Proposition 4.1. Assume that (Hµ) and (HX,ε) hold and that µ ad-
mits a density with respect to the Lebesgue measure on [0, 1] that is
bounded from above by some constant h1. Consider the collection of
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models (W’) with Jn such that 2Jn ≥ Γn/ lnb(n) for some b > 0 and
Γ > 0. Let p ∈ [1, +∞] and set

(

1

p
− 1

2

)

+

≤ αp =







1

2

(

1

p
− 1

2

)[

1 +

√

2 + 3p

2 − p

]

if p < 2

0 else.

If αp < α ≤ r then ∀(R1, R2) ∈ R
∗
+ × R

∗
+, the PLSE defined by (3.3)

with Lm = L(a) for all m ∈ Mn satisfies

sup
f∈Bα,p,∞(R1,R2)

E

[

‖f − f̃‖2
n

]

≤ C1n
− 2α

2α+1 . (4.4)

where C1 depends on α, a, s, h1, R1, R2, b and Γ.

We now relax the assumption that µ is absolutely continuous with
respect to the Lebesgue measure.

Proposition 4.2. Assume that (Hµ) and (HX,ε) hold. Consider the

collection of models (W’) with Jn such that 2Jn ≥ Γn/ lnb(n) for some
b > 0 and Γ > 0. Let p ∈ [1, +∞] and set

α′
p =

1 +
√

2p + 1

2p
.

If α′
p < α ≤ r then ∀(R1, R2) ∈ R

∗
+ × R

∗
+, the PLSE defined by (3.3)

with Lm = L(a) for all m ∈ Mn satisfies

sup
f∈Bα,p,∞(R1,R2)

E

[

‖f − f̃‖2
n

]

≤ C2n
− 2α

2α+1 . (4.5)

where C2 depends on α, a, s, R1, R2, b and Γ.

Equations (4.4) and (4.5) hold for R2 = +∞ if the left-hand-side term
is replaced by

sup
f∈Bα,p,∞(R1,+∞)

E

[

‖f − f̃‖2
n1IΩn

]

i.e. no assumption on ‖f‖∞ is required provided that the indicator
function 1IΩn

is added.

We shall see in Section 5 that Condition (Hµ) need not be assumed

to hold when the sequences ( ~Xi)i=1,...,n and (εi)i=1,...,n are independent.
Moreover in this case one can assume R2 to be infinite. The proofs of
Propositions 4.1 and 4.2 are deferred to Section 8.

5. Study of Ωn and Condition (Hµ)

In this section, we study Ωn and we give sufficient conditions for (Hµ)
to hold. For this purpose, we examine various dependency structures
for the joint law of the ~Xi’s and the εi’s.
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5.1. Case of independent sequences ( ~Xi)i=1,...,n and (εi)i=1,...,n :

We start with the case of deterministic ~Xi’s. In this context it is clear
from the definition of Ωn that P(Ωn) = 1. Thus the indicator 1IΩn

can be
removed in (3.5). More precisely under the assumptions of Theorem 3.1
we have that for some universal constants C and C ′

E

[

‖fA − f̃‖2
n

]

≤ C inf
m∈Mn

[

‖fA − fm‖2
n + pen(m)

]

+ C ′ s
2Σn

n
. (5.1)

If the sequences ( ~Xi)i=1,...,n and (εi)i=1,...,n are independent then by

conditionning over the ~Xi’s (5.1) holds and it is enough to average

over the ~Xi’s to recover (3.5) where the indicator of Ωn is removed.
In conclusion in this context, Inequality (3.7) holds for any function
f ∈ L2(A, µ) with C” = 0. Let us emphasize again that in this case no

assumption on the type of dependency of the ~Xi’s is required.

5.2. Case of β-mixing ~Xi’s : The next proposition presents some de-
pendency situations where Assumption (Hµ) is fulfilled: more precisely,
we can check this assumption when the variables are geometrically or
arithmetically β-mixing. We refer to Kolmogorov and Rozanov [19] for
a precise definition of β-mixing and to Ibragimov [17], Volonskii and
Rozanov [31] or Doukhan [14] for examples. A sequence of random vec-
tors is said to be geometrically β-mixing if the decay of their β-mixing
coefficients, (βk)k≥0, is exponential, that is if there exists two positive
numbers M and θ such that βk ≤ Me−θk for all k ≥ 0. The sequence
is said to be arithmetically β-mixing if the decay is hyperbolic, that is
if there exists two positive numbers M and θ such that βk ≤ Mk−θ for
all k > 0.

Since our results are expressed in terms of µ-norm, we introduce a
condition ensuring that there exists a connection between this and the
ν-norm. We recall that ν denotes the Lebesgue measure.

(C1): The restriction of µ to the set A admits a density hX w.r.t.
the Lebesgue measure such that: 0 < h0 ≤ hX ≤ h1 where h0

and h1 are some fixed constants chosen such that h0 ≤ 1 ≤ h1.

A typical situation where (C1) is satisfied is once again the autore-
gressive model (2.1): in the particular case where k = 1 and where
the stationary distribution µε of the εi’s is equivalent to the Lebesgue
measure, it follows from Duflo [15] that the variables Xi’s admit a den-
sity hX w.r.t. the Lebesgue measure on R which satisfies: hX(y) =
∫

hε[y − f(x)]hX(x)dx. Then hX is a continuous function and since A
is a compact, there exist two constants h0 > 0 and h1 ≥ 1 such that
h0 ≤ hX(x) ≤ h1, ∀x ∈ A.
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Proposition 5.1. Assume that (C1) holds.

(i) If the process ( ~Xi) is geometrically β-mixing with constants M
and θ and if dim(Sn) ≤ n/ ln3(n) then (Hµ) is satisfied for the
collections (P) and (W) with ℓ = 2 and Cℓ = C(M, θ, h0, h1).

(ii) If the process ( ~Xi) is arithmetically β-mixing with constants
M and θ > 12 and if dim(Sn) ≤ n1−3/θ/ ln(n) then (Hµ) is
satisfied for the collections (P) and (W) with ℓ = 2 and Cℓ =
C(M, θ, h0, h1).

Proof. The result derives from Claim 5 in Baraud et al. [6] with ρ = 1/2:
(4.23) is fulfilled with Ψ(n) = ln2(n) in case (i) and Ψ(n) = n3/θ in case
(ii). �

Comments:

• Under suitable conditions on the function f the process (Xi)i≥1−k

generated by the autoregressive model (2.1) is stationary and
geometrically (M, θ)-mixing. More precisely, the classical con-
dition is (see Doukhan [14], Theorem 7 p.102):
(H⋆) (i) The εi’s are independent and independent of the initial
variables X0, . . . , X−k+1.

(ii) There exists non negative constants a1, . . . , ak and

positive constants c0 and c1 such that |f(x)| ≤
∑k

i=1 ai|xi| − c1

if maxi=1,...,k |xi| > c0 and the unique nonnegative real zero x0

of the polynomial P (z) = zk −
∑k

i=1 aiz
k−i satisfies x0 < 1.

Moreover, the Markov chain ( ~Xi) is irreducible with respect to
the Lebesgue measure on R

k.
In particular, the irreducibility condition for the Markov chain
( ~Xi) is satisfied as soon as µε is equivalent to the Lebesgue
measure.

• Examples of arithmetically mixing processes corresponding to
the autoregressive model (2.1) can be found in Ango Nze [3].

6. Proof of Theorem 3.1 and Corollary 3.1

In order to detail the steps of the proofs, we demonstrate consecutive
claims. From now on we fix some m ∈ Mn to be chosen at the end on
the proof.

Claim 1: We have

‖fA − f̃‖2
n ≤ ‖fA − fm‖2

n +
2

n

n
∑

i=1

εi(f̃ − fm)( ~Xi)

+ pen(m) − pen(m̂). (6.1)
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Proof. Starting from (2.3) we know that γn(f̃) − γn(fm) ≤ pen(m) −
pen(m̂) and since γn(f̃)−γn(fm) = ‖f−f̃‖2

n−‖f−fm‖2
n−2n−1

∑n
i=1 εi(f̃−

fm)( ~Xi), the claim is proved for fA replaced by f namely

‖f − f̃‖2
n ≤ ‖f − fm‖2

n +
2

n

n
∑

i=1

εi(f̃ − fm)( ~Xi)

+ pen(m) − pen(m̂). (6.2)

Noticing that if t is a A-supported function then ‖f − t‖2
n = ‖f1IAc‖2

n +

‖fA − t‖2
n and applying this identity to t = f̃ and t = fm, we obtain

the claim from (6.2) after simplification by ‖f1IAc‖2
n.

�

Recall that Ωn is defined by equation (3.6), and for each m′ ∈ Mn, let

G1(m
′) = sup

t∈Bm′

1

n

n
∑

i=1

εit( ~Xi),

where Bm′ = {t ∈ Sm + Sm′/ ‖t‖ ≤ 1}.
The key of Theorem 3.1 relies on the following proposition which is
proved in Section 7.

Proposition 6.1. Under (H(X,ε)) for all m′ ∈ Mn

E

[

(

G2
1(m

′) − (p1(m
′) + p2(m))

)

+
1IΩn

]

≤ 1.6κs2 e−Lm′Dm′

n

where p1(m
′) = κs2Dm′(1 + Lm′)/n, p2(m) = κs2Dm/n and κ is a

universal constant (that can be taken to be 38).

Next, we show

Claim 2: There exists a universal constant C such that

C−1
E

[

‖fA − f̃‖2
n1IΩn

]

≤ ‖fA − fm‖2 + pen(m) + s2 Σn

n
.

Proof. From Claim 1 we deduce

‖fA − f̃‖2
n ≤ ‖fA − fm‖2

n + 2‖f̃ − fm‖G1(m̂)

+ pen(m) − pen(m̂). (6.3)
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On Ωn, we can ensure that ‖f̃ − fm‖ ≤
√

2‖f̃ − fm‖n, therefore the
following inequalities hold

2‖f̃ − fm‖G1(m̂)

≤ 2‖f̃ − fm‖n

√
2G1(m̂) ≤ 1

4
‖f̃ − fm‖2

n + 8G2
1(m̂)

≤ 1

4

(

‖f̃ − fA‖n + ‖fA − fm‖n

)2

+ 8G2
1(m̂)

≤ 1

2

(

‖f̃ − fA‖2
n + ‖fA − fm‖2

n

)

+ 8G2
1(m̂). (6.4)

Combining (6.3) and (6.4) leads on Ωn to,

‖fA − f̃‖2
n ≤ ‖fA − fm‖2

n +
1

2
‖fA − f̃‖2

n +
1

2
‖fA − fm‖2

n + pen(m)

+ 8G2
1(m̂) − pen(m̂)

≤ ‖fA − fm‖2
n +

1

2
‖fA − f̃‖2

n +
1

2
‖fA − fm‖2

n + pen(m)

+ 8p2(m) + 8(G2
1(m̂) − (p1(m̂) + p2(m))+

+ 8p1(m̂) − pen(m̂). (6.5)

By taking ϑ ≥ 8κ, we have

pen(m′) ≥ 8p1(m
′),

for all m′ ∈ Mn and 8p2(m) ≤ pen(m). Thus we derive from (6.5)

1

2
‖fA − f̃‖2

n1IΩn
≤ 3

2
‖fA − fm‖2

n + 2pen(m)

+ 8(G2
1(m̂) − (p1(m̂) + p2(m))+1IΩn

,

and by taking the expectation on both sides of this inequality we get

1

2
E

[

‖fA − f̃‖2
n1IΩn

]

≤ 3

2
‖fA − fm‖2 + 2pen(m)

+ 8
∑

m′∈Mn

E

[

(

G2
1(m

′) − (p1(m
′) + p2(m))

)

+
1IΩn

]

.

We conclude by using Proposition 6.1 and (3.2), and by choosing m
among Mn to minimize m′ 7→ ‖fA − fm′‖2 + pen(m′). This ends the
proof of Theorem 3.1 with C = 4 and C ′ = 16 × 1.6κ. �

For the proof of Corollary 3.1, we introduce the notation Πm̂ for the or-
thogonal projector (with respect to the usual inner product of R

n) onto
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the R
n-subspace {(t( ~X1), ..., t( ~Xn))′/t ∈ Sm̂}. It follows from the def-

inition of the least-squares estimator that (f̃( ~X1), ..., f̃( ~Xn))′ = Πm̂Y .

Denoting in the same way the function t and the vector (t( ~X1), ..., t( ~Xn))′,

we see that ‖fA−f̃‖2
n = ‖fA−Πm̂fA‖2

n+‖Πm̂ε‖2
n ≤ ‖fA‖2

n+n−1
∑n

i=1 ε2
i .

Thus,

E

[

‖fA − f̃‖2
n1IΩc

n

]

≤ ‖fA‖2
∞P(Ωc

n) +
1

n

n
∑

i=1

E
[

ε2
i 1IΩc

n

]

.

Let now x and y be positive constants to be chosen later, by a trunca-
tion argument we have

E
[

ε2
i 1IΩc

n

]

≤ x2
P(Ωc

n) + E
[

ε2
i 1I|εi|>x1IΩc

n

]

≤ x2
P(Ωc

n) + E
[

ε2
i e

y|εi|−yx1I|εi|>x1IΩc
n

]

≤ x2
P(Ωc

n) + 2y−2e−yx
E
[

e2y|εi|1IΩc
n

]

by using in the last inequality that for all u > 0, u2eu/2 ≤ e2u. Now
by (HX,ε) together with Hölder’s inequality (we set ℓ̄−1 = 1 − ℓ−1) we
have

E
[

e2y|εi|1IΩc
n

]

≤ E
1/ℓ̄
[

e2yℓ̄|εi|
]

P
1/ℓ(Ωc

n)

≤ 21/ℓ̄e2y2 ℓ̄s2

P
1/ℓ(Ωc

n).

Thus we deduce that

E

[

‖fA − f̃‖2
n1IΩc

n

]

≤ (‖fA‖2
∞ + x2)P(Ωc

n) + 21+1/ℓ̄y−2e2y2 ℓ̄s2−yx
P

1/ℓ(Ωc
n).

We now choose x = 2
√

ℓ̄s and y = 1/x and under (Hµ) we get

E

[

‖fA − f̃‖2
n1IΩc

n

]

≤
[

(‖fA‖2
∞ + 4ℓ̄s2)Cℓ + 23+1/ℓ̄e−1/2C

1/ℓ
ℓ ℓ̄s2

] 1

n
.

The proof of Corollary 3.1 is completed by combining this inequality
with the result of Claim 2.
Moreover, if for all m ∈ Mn, 1I ∈ Sm then we notice that all along
the proof, f can be replaced by f + c = g where c is a given constant.
Indeed, in this case, gm = fm + c, ĝm = f̂m + c, so that f −fm = g−gm

and f − f̂m = g − ĝm. If we choose c = −
∫

fAdµ, we find the same
result with ‖fA‖∞ replaced by ‖fA −

∫

fAdµ‖∞ in the last inequality.
�

7. Proof of Proposition 6.1

7.1. A key Lemma. To prove the proposition we use the following
lemma which is inspired by a work on exponential inequalities for mar-
tingales due to Meyer [23], Proposition 4 p.168.
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Lemma 7.1. Assume that Condition (HX,ε) holds, then for any posi-
tive numbers ǫ, v we have:

P

[

n
∑

i=1

εit( ~Xi) ≥ nǫ, ‖t‖2
n ≤ v2

]

≤ exp

(

− nǫ2

2s2v2

)

. (7.1)

Proof. Let Mn =
∑n

i=1 εit( ~Xi), M0 = 1 and Gn the σ-field generated

by the εi’s, for i < n and the ~Xi’s for i ≤ n. Note that E(Mn) = 0.
For each λ > 0 we have

P
[

Mn ≥ nǫ, ‖t‖2
n ≤ v2

]

≤ exp
(

−λnǫ + nv2s2λ2/2
)

E
[

exp(λMn − λ2n‖t‖2
ns2/2)

]

.

Let

Qn = exp

(

λMn − 1

2
λ2s2n‖t‖2

n

)

= exp

(

λMn − 1

2
λ2s2

n
∑

i=1

t2( ~Xi)

)

we find that:

E(Qn|Gn) = Qn−1E

[

exp

(

λ(Mn − Mn−1) −
1

2
λ2s2t2( ~Xn)

)

|Gn

]

= Qn−1 exp(−1

2
λ2s2t2( ~Xn))E

(

exp(λεnt( ~Xn))|Gn

)

≤ Qn−1 exp(−1

2
λ2s2t2( ~Xn)) exp(

1

2
λ2s2t2( ~Xn)) = Qn−1,

using the independence between εn and ~Xn together with Assumption
(HX,ε). Then EQn ≤ EQn−1 which leads to EQn ≤ EQ0 = 1. Thus

P
[

Mn ≥ nǫ, ‖t‖2
n ≤ v2

]

≤ exp(−n sup
λ>0

(λǫ − λ2s2v2/2))

= exp

(

−n
ǫ2

2s2v2

)

.

This proves (7.1). �

7.2. Proof of Proposition 6.1. Throughout this section we set

Zn(t) =
1

n

n
∑

i=1

εit( ~Xi).

The proof of Proposition 6.1 is based on a chaining argument which has
also been used by van de Geer [30] for an analogous purpose. Indeed it
is well known (see Lorentz, Von Golitschek and Makovov [21], Chapter
15, Proposition 1.3, p.487) that, in a linear subspace S ⊂ L2(A, µ) of
dimension D, we can find a finite δ-net, Tδ ⊂ B, where B denotes the
unit ball of S, such that
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• For each 0 < δ < 1, |Tδ| ≤
(

3
δ

)D
.

• For each t ∈ B, there exists tδ ∈ Tδ such that ‖t − tδ‖ ≤ δ.

We apply this result to the linear space Sm+Sm′ of dimension D(m′) ≤
Dm + Dm′. We consider δk-nets, Tk = Tδk

, with δk = δ02
−k (δ0 < 1

that is to be chosen later) and we set Hk = ln(|Tk|). Given some point
t ∈ Bm′ = {t ∈ Sm + Sm′/ ‖t‖ ≤ 1}, we can find a sequence {tk}k≥0

with tk ∈ Tk such that ‖t − tk‖2 ≤ δ2
k. Thus we have the following

decomposition that holds for any t ∈ Bm′

t = t0 +
∞
∑

k=1

(tk − tk−1).

Clearly ‖t0‖ ≤ 1 and for all k ≥ 1, ‖tk−tk−1‖2 ≤ 2(δ2
k+δ2

k−1) = 5δ2
k−1/2.

In the sequel we denote by Pn(.) the measure P(. ∩ Ωn) (actually only
the inequality ‖t‖2

n ≤ 3
2
‖t‖2 holding for any t ∈ Sm + Sm′ is required).

Let (xk)k≥0 be a sequence of positive numbers that will be chosen later
on. Let us set

∆ =
√

3s2

(

√
x0 +

∑

k≥1

δk−1

√

5xk/2

)

,

we have that

Pn

[

sup
t∈Bm′

Zn(t) > ∆

]

= Pn

[

∃(tk)k∈N ∈
∏

k∈N

Tk / Zn(t0) +
+∞
∑

k=1

Zn(tk − tk−1) > ∆

]

≤ P1 + P2

where

P1 =
∑

t0∈T0

Pn

[

Zn(t0) >
√

3s2x0

]

,

P2 =

∞
∑

k=1

∑

tk−1∈Tk−1
tk∈Tk

Pn

[

Zn(tk − tk−1) > δk−1

√

15s2xk/2
]

.

Since on Ωn, ‖t‖2
n ≤ (3/2)‖t‖2 for each t ∈ Sm + Sm′ , we deduce from

Lemma 7.1 that for all x > 0

P

[{

Zn(t) ≥
√

3s‖t‖
√

x
}

∩ Ωn

]

≤ exp (−nx) . (7.2)

Applying repeatedly this inequality with t = t0 ∈ T0 (‖t0‖ ≤ 1) and
with t = tk − tk−1 (‖tk − tk−1‖2 ≤ 5δ2

k−1/2), we get P1 ≤ exp(H0 −nx0)
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and P2 ≤
∑

k≥1 exp(Hk−1 + Hk − nxk). We now choose x0 such that

nx0 = H0 + Lm′Dm′ + τ

and for k ≥ 1, xk is chosen to satisfy

nxk = Hk−1 + Hk + kD(m′) + Lm′Dm′ + τ.

If D(m′) ≥ 1 then kD(m′) ≥ k and supt∈Bm′
Zn(t) being nonnegative

we derive

Pn



 sup
t∈Bm′

Z2
n(t) > 3s2

[

√
x0 +

∑

k≥1

δk−1

√

5xk/2

]2




≤ e−τe−Lm′Dm′

(

1 +

∞
∑

k=1

e−k

)

≤ 1.6e−τe−Lm′Dm′ . (7.3)

Else, Sm + Sm′ = {0} and obviously (7.3) holds.
Now, it remains to show

3ns2

(

√
x0 +

∑

k≥1

δk−1

√

5xk/2

)2

≤ κs2(Dm′(1 + Lm′) + Dm + τ).

Indeed by integrating (7.3) with respect to τ we obtain the expected
result

E

[(

G2
1(m

′) − κs2Dm′(1 + Lm′) + Dm

n

)

+

1IΩn

]

≤ 1.6κs2 e−Lm′Dm′

n

reminding that G1(m
′) = supt∈Bm′

Zn(t).
By Schwarz inequality, we know
(

√
x0 +

∑

k≥1

δk−1

√

5xk/2

)2

≤
(

1 +
∑

k≥1

δk−1

)(

x0 +
5

2

∑

k≥1

δk−1xk

)

= (1 + 2δ0)

(

x0 +
5

2

∑

k≥1

δk−1xk

)

.

We set c = c(δ0) = max{2 ln(2) + 1, ln(9/2δ2
0)} ≥ 1. Since for all k ≥ 0

Hk ≤ ln(3/δk)D(m′), we have for all k

nxk ≤ (ln(9/2δ2
0) + k(1 + 2 ln(2)))D(m′) + Lm′Dm′ + τ

≤ c(k + 1)D(m′) + Lm′Dm′ + τ

≤ c(k + 1) (Dm + D′
m(1 + Lm′) + τ) .
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Thus,

n(x0 +
5

2

∑

k≥1

δk−1xk)

≤ c(1 + 5δ0

∞
∑

k=1

(k + 1)2−k)(Dm′(1 + Lm′) + Dm + τ)

≤ c(1 + 15δ0)(Dm′(1 + Lm′) + Dm + τ),

and the result follows since 3c(1 + 2δ0)(1 + 15δ0) ≤ 38 = κ for δ0 =
0.0138. �

8. Proof of Propositions 4.1 and 4.2

First we check that equation (3.2) leads to a finite Σn. Using the
classical inequality on the binomial coefficients

ln(C
Kj

2j ) ≤ Kj

(

1 + ln(2j/Kj)
)

,

we get

ln
(

|MJ
n|
)

≤
∑

j≥J

ln
(

C
Kj

2j

)

≤
∑

j≥J

2J

(1 + j − J)a
[1 + (j − J) ln(2) + a ln(1 + j − J)]

≤
∑

j≥J

2J

(1 + j − J)a
[1 + (a + ln(2))(j − J)]

= 2J(L(a) − 1),

and as for all m ∈ MJ
n, Dm ≥ 2J , we derive

Σn =
∑

m∈Mn

e−L(a)Dm ≤
+∞
∑

J=0

∑

m∈MJ
n

e−L(a)Dm

≤
∑

J≥0

e2J (L(a)−1)−L(a)2J

=
∑

J≥0

e−2J

< +∞.

Thus by applying Corollary 3.1 with

pen(m) = ϑs2Dm

n
(1 + L(a)),
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we obtain by using (4.3)

E

[

‖fA − f̃‖2
n

]

≤ C inf
J∈{0,...,Jn}

[

‖fA − f̃J‖2 + ϑs2 Ca2
J

n
(1 + L(a))

]

+ C ′ s
2Σn

n
+ C”

R2 + s2

n
, (8.1)

where Ca = 1 +
∑

j≥1 j−a. We know from Birgé and Massart [8]

that ∀f ∈ Bα,p,∞(R1, R2), ∀J ∈ {0, ..., Jn} there exists some f̃J ∈
⋃

m∈MJ
n
Sm such that

• if r ≥ α > (1/p − 1/2)+

‖f − f̃J‖ ≤
√

h1‖f − f̃J‖ν

≤ C(h1, R1, Γ)

[

2−αJ +

(

n

lnb(n)

)−α+(1/p−1/2)+
]

(8.2)

• if r ≥ α > 1/p

‖f − f̃J‖ ≤ ‖f − f̃J‖∞

≤ C(R1, Γ)

[

2−αJ +

(

n

lnb(n)

)−α+1/p
]

. (8.3)

By minimizing (8.1) with respect to J and using (8.2) (respectively (8.3))
we obtain (4.4) (respectively (4.5)) noting that for α > αp (respectively
α > α′

p)
(

n

lnb(n)

)−α+(1/p−1/2)+

≤ n−2α/(2α+1)

(respectively (n/ lnb(n))−α+1/p ≤ n−2α/(2α+1)) at least for n large enough.
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man. Séminaire de Probabilités de l’Université de Strasbourg, 68/69 (1969)
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