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We study the problem of estimating some unknown regression func-

tion in a β-mixing dependent framework. To this end, we consider some
collection of models which are finite dimensional spaces. A penalized least-

squares estimator (PLSE) is built on a data driven selected model among

this collection. We state non asymptotic risk bounds for this PLSE and
give several examples where the procedure can be applied (autoregression,

regression with arithmetically β-mixing design points, regression with mix-

ing errors, estimation in additive frameworks, estimation of the order of
the autoregression ...). In addition we show that under a weak moment

condition on the errors, our estimator is adaptive in the minimax sense

simultaneously over some family of Besov balls.

1. Introduction We consider the problem of estimating the unknown func-
tion f , from Rk into R, based on the observation of n (possibly) dependent data
(Yi, ~Xi), 1 ≤ i ≤ n, arising from the model

Yi = f( ~Xi) + εi.(1.1)

We assume that ( ~Xi)1≤i≤n is a stationary sequence of random vectors in Rk and
we denote by µ the common law of the ~Xi’s. The εi’s are unobservable identically
distributed centered random variables admitting a finite variance denoted by σ2

2 .
Throughout the paper we assume that σ2

2 is a known quantity (or that a bound on
it is known). In this introduction, we assume that the εi’s are independent random
variables. As an example of model (1.1), consider the case of a random design set
~Xi = Xi with values in [0, 1] with a regression function f assumed to satisfy some
Hölderian regularity condition

sup
0≤x<y≤1

|f(x)− f(y)|
(y − x)α

= |f |(α) < +∞(1.2)

for some α ∈ (0, 1]. Another possible illustration is a linear autoregressive model

Xi =
k′∑

j=1

βjXi−j + εi(1.3)

where k′ is an integer smaller than k. This means that Yi = Xi, ~Xi =
(Xi−1, . . . , Xi−k)′ and f(u1, ..., uk) =

∑k′

j=1 βjuj . Such models have been ex-
tensively studied in the past under the conditions that α or k′ are known. There
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have been some generalizations to the cases of unknown α and k′, but then the
results are typically given in an asymptotic form (as n→ +∞).

In this paper, the aim is to introduce an estimation procedure for Model (1.1)
which, when applied to some Hölderian function f satisfying (1.2) with unknown
values of α and |f |(α), will perform almost as well as a procedure based on the
knowledge of those two parameters. This is what is usually called adaptation. In the
same way, our procedure will result in estimation of Model (1.3) with an unknown
value of k′ (k′ ≤ k, k known) which is almost as good as if k′ were known. Moreover,
the results will be given in the form of non asymptotic bounds for the risk of our
estimators. Many other examples can be treated by the same method. One could,
for instance, replace the regularity conditions (1.2) by more sophisticated ones and
Model (1.3) by a nonlinear analogue.

In order to explain the main idea underlying the approach, let us turn back
to the two previous examples. Model (1.3) says that f belongs to some specific
k′-dimensional linear space Sk′ of functions from Rk′

to R. When k′ is known, a
classical estimator of f is the least squares estimator over Sk′ . Dealing with an
unknown k′ therefore amounts to choosing a “good” value k̂ of k′ from the data.
By “good”, we mean here that the estimation procedure based on k̂ should perform
almost as well as the procedure based on the true value of k′.

The treatment of Model (1.1) when f satisfies a condition of type (1.2) is ac-
tually quite similar. Let us expand f in some suitable orthonormal basis {φj}j≥1

of L2([0, 1], dx) (the Haar basis for instance). Then (1.1) can be written as Yi =∑∞
j=1 βjφj(Xi) + εi and a classical procedure for estimating f is as follows: define

SJ to be the J-dimensional linear space generated by φ1, . . . , φJ and f̂J to be the
least squares estimator on SJ , that is the least squares estimator for Model (1.1)
when f is supposed to belong to SJ . The problem is to determine from the data set
some Ĵ in such a way that the least squares estimator f̂Ĵ performs almost as well
as the best least-squares estimator of f , i.e. the one which achieves the minimum
of the risk.

In order to give a further explanation of the procedure, we need to be precise as
to the “risk” we are dealing with. Throughout the paper we consider least-squares
estimators of f , obtained by minimizing over a finite dimensional linear subspace
S ⊂ L2(Rk, dx) the (least squares) contrast function γn defined by

∀t ∈ L2(Rk, dx), γn(t) =
1
n

n∑
i=1

(Yi − t( ~Xi))2.(1.4)

A minimizer of γn in S, f̂S , always exists but might not be unique. Indeed, in
common situations the minimization of γn over S leads to an affine space of possible
solutions and then it becomes impossible to consider the L2(Rk, dx)-quadratic risk
of “the least-squares estimator” of f in S. In contrast, the (random) Rn-vector
(f̂S( ~X1), ..., f̂S( ~Xn))′ is always uniquely defined; this is the reason we consider the
risk of f̂S based on the design points, i.e.

E

[
1
n

n∑
i=1

(
f( ~Xi)− f̂S( ~Xi)

)2
]

= E
[
‖f − f̂S‖2n

]
.
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In addition, under suitable assumptions on the design set and the εi’s, the risk of
f̂S can be decomposed in a classical way into a bias and a variance term. More
precisely, we have

E[‖f − f̂S‖2n] ≤ d2
µ(f, S) + σ2

2

dim(S)
n

,(1.5)

where for t, s ∈ L2(Rk, µ), d2
µ(s, t) denotes E[(t( ~X1) − s( ~X1))2] and d2

µ(f, S) =
infs∈S d2

µ(f, s). The inequality (1.5) is usually sharp; note that equality occurs when
the ~Xi’s and the εi’s are independent for instance.

Coming back to Model (1.1) we see that the quadratic risk E[‖f − f̂J‖2n] is of
order

d2
µ(f, SJ) + σ2

2

J

n
,(1.6)

for SJ generated by the Haar basis (φj)1≤j≤J as above. Then (1.2) standardly
implies that dµ(f, SJ) ≤ C|f |(α)J−α whatever µ. When α and |f |(α) are known,
it is possible to determine the value of J that minimizes (1.6). If α and |f |(α) are
unknown, the problem of adaptation, that is doing almost as well as if they were
known, clearly amounts to choosing an estimation procedure Ĵ based on the data,
such that the estimator based on Ĵ is almost as good as the estimator based on the
optimal value of J . The analogy with the study of Model (1.3) then becomes obvious
and we have shown that the problem of adaptation to some unknown smoothness
for Hölderian regression functions amounts to what is generally called a problem
of model selection, that is finding a procedure solely based on the data to choose
one statistical model among a (possibly large) family of such models, the aim being
to choose automatically a model which is close to optimal in the family for the
problem at hand. Let us now describe this procedure.

We start with a finite collection of possible models {Sm,m ∈Mn} for f , each Sm

being a finite-dimensional linear subspace of L2(Rk). The family of models usually
depends on n and the function f may or may not belong to one of them. Let us
denote by f̂m the least squares estimator for Model (1.1) based on the model class
Sm. We look for a model selection procedure m̂ with values in Mn, based solely on
the data and not on any prior assumption on f , such that the risk of the resulting
procedure f̂m̂ is almost as good as the risk of the best least squares estimator in the
family. Therefore an ideal selection procedure m̂ should look for an optimal trade-
off between the bias term d2

µ(f, Sm) and the variance term σ2
2dim(Sm)/n. Our aim

is to find m̂ such that

E[‖f − f̂m̂‖2n] ≤ C min
m∈Mn

{
d2

µ(f, Sm) + σ2
2

dim(Sm)
n

}
,(1.7)

which means that, up to the constant C, our estimator chooses an optimal model.
It is important to notice that an estimator which satisfies (1.7) has many inter-

esting properties provided that the family of models Sm has been suitably chosen.
In particular this estimator is adaptive in the minimax sense with respect to many
well-known classes of smoothness. The connections between adaptation and model
selection and the nice properties of any estimator f̂m̂ satisfying (1.7) have been
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developed at length in Barron, Birgé and Massart (1999) Chapter 5 and many il-
lustrations of potential applications of our results can be found there and in Birgé
and Massart (1997). We shall content ourselves in the sequel with a limited number
of applications and we refer the interested reader to those papers.

Our model selection criterion is closely related to the classical Cp criterion of
Mallows (1973). For each model m we compute the normalized residual sum of
squares: γn(f̂m) = n−1

∑n
i=1[Yi − f̂m( ~Xi)]2 and we choose m̂ in order to minimize

among all models m ∈Mn the penalized residual sum of squares γn(f̂m)+pen(m).
Mallows’ Cp criterion corresponds to pen(m) = 2σ2

2dim(Sm)/n. In this paper, we
want to see how one needs to modify Mallows’ Cp when the errors or the covariates
are correlated.

There have been many studies concerning model selection based on Mallows’ Cp

or related penalized criteria like Akaike’s or the BIC criterion for regressive and
autoregressive models (see Akaike (1973; 1974), Shibata (1976; 1981), Li (1987),
Polyak and Tsybakov (1992), among many others . . . ). A common characteristic
of these results is their asymptotic character. Extensions of these penalized criteria
for data-driven model selection procedures have been done in Barron (1991; 1993),
Barron and Cover (1991) and Rissanen (1984). More recently, a general approach
to model selection for various statistical frameworks including density estimation
and regression has been developed in Birgé and Massart (1997) and Barron, Birgé
and Massart (1999), with many applications to adaptive estimation. An original
characteristic of their viewpoint is its non asymptotic feature. Unfortunately, their
general approach imposes restrictions on the regression model (1.1), (e.g. the re-
gression function needs to be bounded by some known quantity) which makes it
unattractive for practical issues. We relax such restrictions and also obtain non
asymptotic results. Our approach is inspired from Baraud’s (2000) work. Although
there have been many results concerning adaptation for the classical regression
model with independent variables, not much is known to our knowledge concern-
ing general adaptation methods for regression involving dependent variables. It is
not within the scope of this paper to make an historical review for the case of
independent variables.

Concerning dependent variables, it is worth mentioning the work of Modha and
Masry (1996) which deals with Model (1.1) when the process ( ~Xi, Yi)i∈Z is strongly
mixing and when the function f satisfies some Fourier-transform-type representa-
tion. In Modha and Masry (1998), the problem of one step ahead prediction of
real valued stationary exponentially strongly mixing processes is considered. Min-
imum complexity regression estimators based on Legendre polynomials are used
to estimate both the model memory and the predictor function. In the particular
case of an autoregressive model their approach does not lead to optimal rates of
convergence. In the case of a one dimensional first order autoregressive model, Neu-
mann and Kreiss (1998) and Hoffmann (1999) study the behavior of nonparametric
adaptive estimators (local polynomials and wavelet thresholding estimators) by ap-
proximating an AR(1) autoregression experiment by a regression experiment with
independent variables.
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Our estimation procedure is the same as that proposed by Baraud (2000) in the
case of a regression framework with deterministic design points and i.i.d. errors.
Thus, we show that the procedure is robust (to a certain extent) to possible de-
pendency between the data ( ~Xi, Yi)’s. More precisely, we assume that the data are
β-mixing (for a precise definition of β-mixing, see Kolmogorov and Rozanov (1960))
and we show that under an adequate condition on the decay of the β-mixing coeffi-
cients (for instance arithmetical or geometrical decay) the estimation procedure is
still relevant. Of course, this robustness with respect to dependency is obvious when
the sequences of ~Xi’s and εi’s are independent and when the εi’s are i.i.d.. Indeed,
the result can merely be obtained by arguing as follows. We start from Inequality
(11) in Baraud (2000, Corollary 3.1) which gives the result conditionally to the vari-
ables ~Xi’s. Then, by integrating with respect to those, one gets (1.7). We emphasize
that the result holds under mild assumptions on the statistical framework (an ad-
equate moment condition on the i.i.d. errors and stationarity of the distribution of
the ~Xi’s). Consequently, we shall only consider either the case where the sequences
of ~Xi’s and εi’s are dependent or the case where the εi’s are dependent.

The case of β-mixing data is natural in the autoregression context, where, in
addition, the above condition on the β-mixing coefficients is usually met. This
makes the procedure of particular interest in this case.

Our techniques of proof are based on the work of Baraud (2000). Unfortunately,
the possible dependency of the ~Xi’s prevents us from directly using classical in-
equalities on product measures like Talagrand (1996) ’s concentration inequalities.
Taking advantage of the β-mixing assumptions, we instead use coupling techniques
derived from Berbee’s Lemma (1979) and inspired from Viennet’s (1997) work in
order to approximate the original sequence ( ~Xi)1≤i≤n by a new sequence built on
independent blocks.

Lastly, we mention that the results presented in this paper can be extended
to the case where the variance σ2

2 of the errors is unknown, which is the practi-
cal case, by estimating it by residual least-squares. For further details we refer to
Baraud’s (1998) PhD thesis, where a previous version of this work is available.

The paper is organized as follows: the estimation procedure and the main as-
sumptions are given in Section 2. We apply the procedure to various statistical
frameworks in Section 3. In each of these frameworks, we state non asymptotic
risk bounds, the proofs of those results being delayed to Section 6. Section 4 is
devoted to the main result (treating the case of independent errors), Section 5 to
an extension to the case of dependent errors. The proof of those results are given
in Sections 7 to 10.

2. The estimation procedure and the assumptions We observe pairs
(Yi, ~Xi), i = 1, . . . , n arising from Model (1.1) and our aim is to estimate the un-
known function f from Rk into R, on some (compact) subset A ⊂ Rk.

Our estimation procedure is the following one. We consider a finite family of
linear subspaces {Sm}m∈Mn

of (L2(A, dx), ‖ ‖). We assume that the Sm’s are finite
dimensional linear spaces consisting of A-compactly supported functions. Hereafter,
Dm denotes the dimension of Sm and fm the L2(Rk, µ)-projection of f onto Sm.
We associate to each Sm a least-squares estimator f̂m of f which minimizes among
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t ∈ Sm the empirical least-squares contrast function γn defined by (1.4). Note that
such a minimizer might not be unique as an element of Sm but the Rn-vector
(f̂m( ~X1), ..., f̂m( ~Xn))′ is uniquely defined. We select our estimator f̃ among the
family of least-squares estimators {f̂m}m∈Mn

in the following way: given a nonneg-
ative penalty function pen(·) on Mn, we define m̂ as the minimizer among Mn of
the penalized criterion

γn(f̂m) + pen(m)

and we set f̃ = f̂m̂ ∈ Sm̂. The choice of the penalty function is the main concern
of this paper.

The main assumptions used in the paper are listed below. Assumptions (Hε)
and (HX,ε) will be weakened in Section 5:

(HX) The sequence ( ~Xi)i≥0 is identically distributed with common law µ
admitting a density hX w.r.t. the Lebesgue measure which is bounded from
below and above, i.e.

0 < h0 ≤ hX(u) ≤ h1 ∀u ∈ A.

(Hε) The sequence εi’s are i.i.d. centered random variables admitting a finite
variance denoted by σ2

2 .

(HX,Y ) The sequence of the ( ~Xi, Yi)’s is β-mixing.

(HX,ε) For all i ∈ {1, ..., n}, εi is independent of the sequence ( ~Xj)j≤i.

(HS) There exists a constant Φ0 such that for any pair (m,m′) ∈ M2
n, and

any t ∈ Sm + Sm′

‖t‖∞ ≤ Φ0

√
dim(Sm + Sm′)‖t‖.(2.8)

Comments. Assumption (HX,Y ) is equivalent to the β-mixing of the sequence of
the ( ~Xi, εi)’s, which is the property which is used in the proof. As mentioned in the
introduction, if the sequences ( ~Xi)1≤i≤n and (εi)1≤i≤n are independent and the εi’s
are i.i.d., then the result can be obtained under milder conditions. In particular,
except stationarity, no other assumption on the distribution of the ~Xi’s is required.
Condition (HS) is most easily fulfilled when the collection of models is nested, i.e.
is an increasing sequence (for inclusion) of linear spaces and when there exists some
Φ0 such that for each m ∈Mn

‖t‖∞ ≤ Φ0

√
dim(Sm)‖t‖, ∀t ∈ Sm.(2.9)

This connection between the sup-norm and the L2(A, dx)-norm is satisfied for num-
bers of collections of models of interest. Birgé and Massart (1998), Lemma 6, have
shown that for any L2(A, dx)-orthonormal basis (φλ)λ∈Λ(m) of Sm:∥∥∥∥∥∥

∑
λ∈Λ(m)

φ2
λ

∥∥∥∥∥∥
1/2

∞

= sup
t∈Sm,t6=0

‖t‖∞
‖t‖

.(2.10)
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Hence (2.9) holds if and only if there exists an orthonormal basis (φλ)λ∈Λ(m) of Sm

such that ∥∥∥∥∥∥
∑

λ∈Λ(m)

φ2
λ

∥∥∥∥∥∥
1/2

∞

≤ Φ0

√
dim(Sm),(2.11)

and then the result is true for any orthonormal basis of Sm.

3. Examples In the section we apply our estimation procedure to various
statistical frameworks. In each framework, we give an example of a collection of
models {Sm, m ∈ Mn} and for some x > 1, choose the penalty term to be equal
to

pen(m) = x3Dm

n
σ2

2 , ∀m ∈Mn,

except in Section 3.3 where the penalty term is chosen in a different way. In each
case, we give sufficient conditions for f̃ = f̂m̂ to achieve the best trade-off (up to a
constant) between the bias and the variance term among the collection of estimators
{f̂m, m ∈Mn}. Namely, we show that for any ρ in ]1, x[

E
[
‖f1IA − f̃‖2n

]
≤
(
x+ ρ

x− ρ

)2

inf
m∈Mn

[
‖f1IA − fm‖2µ + 2x3Dm

n
σ2

2

]
+
R

n
,(3.12)

for some constant R = R(ρ) to be specified. With no loss of generality we shall
assume that A = [0, 1]k. Those results, proved in Section 6, derive from our main
theorems which are to be found in Sections 4 and Section 5.

3.1. Autoregression framework We deal with a particular feature of the regres-
sion framework (1.1), the autoregression framework of order 1 given by

Yi = Xi = f(Xi−1) + εi, i = 1, ..., n.(3.13)

The process is initialized with some real valued random variable X0.
We assume the following:

(HAR1): The random variable X0 is independent of the εi’s. The εi’s are
i.i.d. centered random variables admitting a density, hε, with respect to the
Lebesgue measure and satisfying σ2

2 = E[|ε1|2] < ∞. The density hε is a
positive bounded and continuous function and the function f satisfies for
some 0 ≤ a < 1 and b ∈ R

∀u ∈ R, |f(u)| ≤ a|u|+ b.(3.14)

The sequence of the random variables Xi’s is stationary of common law µ.

The existence of a stationary law µ derives from the assumptions on the εi’s and f .
To estimate f we use the collection of models given below.

Collection of piecewise polynomials: Let r be some positive integer and m(n) the
largest integer such that r2m(n) ≤ n/ ln3(n) i.e. m(n) = int[ln(n/ ln3(n))/(r ln(2))]
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(int[u] denotes the integer part of u). Let Mn be the set of integers {0, . . . ,m(n)},
for each m ∈ Mn we define Sm as the linear span of piecewise polynomials of
degree less than r based on the dyadic grid {j/2m, j = 0, . . . , 2m − 1} ⊂ [0, 1].

The result on f̃ is the following one.

Proposition 1. Consider the autoregression framework (3.13) and assume
that (HAR1) holds. If σp

p = E[|εi|p] <∞ for some p > 6 then (3.12) holds for some
constant R that depends on p, x, ρ, hε, σ

2
p, r, ‖f1IA −

∫
f1IAdx‖∞.

To obtain results in probability on ‖f1IA − f̃‖2n, it is actually enough to assume
E[|εi|p] <∞ for some p > 2, we refer to (4.29) and the comment given there.

3.2. Regression framework We give an illustration of Theorem 1 in case of re-
gression with arithmetically β-mixing design points. Of course the case of autore-
gression with arithmetically β-mixing Xi’s can be treated similarly. Let us consider
the regression model

Yi = f(Xi) + εi i = 1, ..., n.(3.15)

In this section, we consider a sequence εi for i ∈ Z and we take the Xi’s to be
generated by a standard time series model:

Xi =
+∞∑
k=0

akεi−1−2k.(3.16)

Then we make the following assumption

(HReg): The εi’s are i.i.d. Gaussian random variables. The aj ’s are such that
a0 = 1,

∑+∞
j=0 ajz

2j 6= 0 for all z with |z| ≤ 1 and for all j ≥ 1, |aj | ≤ Cj−d

for some constants C > 0 and d > 17.

The value 17 as bound for d is certainly not sharp. The model (3.16) for the Xi’s
together with the assumptions on the coefficients aj aim at ensuring that (HX,Y )
is fulfilled with arithmetically β-mixing variables. Of course, any other model
implying the same property would suit.
We introduce the following collection of models.

Collection of wavelets: For any integer J , let Λ(j) = {(j, k)/ k = 1, ..., 2j} and
let

{φJ0,k, (J0, k) ∈ Λ(J0)} ∪ {ϕj,k, (j, k) ∈
+∞⋃

J=J0

Λ(J)}

be an L2([0, 1], dx)-orthonormal system of compactly supported wavelets of reg-
ularity r built by Cohen, Daubechies and Vial (1993). For some positive integer
Jn > J0, let Sn be the space spanned by the φJ0,k’s for (J0, k) ∈ Λ(J0) and by
the {ϕj,k’s for (j, k) ∈ ∪Jn−1

J=J0
Λ(J)}. The integer Jn is chosen in such a way that

dim(Sn) = 2Jn is of order n4/5/ ln(n). We set Mn = {J0, ..., Jn − 1} and for each
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m ∈Mn we define Sm as the linear span of the φJ0,k’s for (J0, k) ∈ Λ(J0) and the
ϕj,k’s for (j, k) ∈ ∪m

J=J0
Λ(J).

For a precise description and use of these wavelet systems, see Donoho and
Johnstone (1998). These new functions derive from Daubechies’ wavelets (1992) at
the interior of [0, 1] and are boundary corrected at the “edges”.

Proposition 2. Assume that ‖f1IA‖∞ < ∞ and that for all m ∈ Mn, the
constant functions belong to Sm. If (HReg) is satisfied, then (3.12) holds true for
some constant R depending on x, ρ, h0, h1, σ

2
2 , C, d, ‖f1IA −

∫
f1IAdx‖∞.

3.3. Regression with dependent errors We consider the regression framework{
Yi = f( ~Xi) + εi, i = 1, ..., n
εi = aεi−1 + ui i = 1, ..., n.

(3.17)

We observe the pairs (Yi, ~Xi) for i = 1, ..., n.
We assume that

(HRd): The real number a satisfies 0 ≤ a < 1, and the ui’s are i.i.d. centered
random variables admitting a common finite variance. The law of the εi’s is
assumed to be stationary admitting a finite variance σ2

2 . The sequence of the
~Xi’s is geometrically β-mixing (i.e. satisfying (6.31)) and the sequences of the
~Xi’s and the εi’s are independent.

Geometrically β-mixing ~Xi’s can be generated by an autoregressive model with a
regression function g and errors ηi satisfying an assumption of the same kind as
(HAR1) in Section 3.1.

The main difference between this framework and the previous one lies in the
dependency between the εi’s. To deal with it, we need to modify the penalty term:

Proposition 3. Assume that ‖f1IA‖∞ < ∞, that (HX) and (HRd) hold and
that E[|ε1|p] <∞ for some p > 6. Let x > 1, if the penalty term pen satisfies

∀m ∈Mn, pen(m) ≥ x3

(
1 +

2a
1− a

)
Dm

n
σ2

2 ,(3.18)

then by using the collection of piecewise polynomials described in Section 3.1 and
applying the estimation procedure given in Section 2 we have that the estimator f̃
satisfies for any ρ ∈]1, x[,

E
[
‖f1IA − f̃‖2n

]
≤
(
x+ ρ

x− ρ

)2

inf
m∈Mn

[
‖f1IA − fm‖2µ + 2pen(m)

]
+
R

n
,(3.19)

where R depends on a, p, σp, ‖f1IA −
∫
f1IAdx‖∞, x, ρ, h0, h1,Γ, θ.

In contrast with the results of the previous examples, we cannot give a choice of
a penalty term which would work for any value of a. An unknown lower bound for
the choice of the penalty term seems to be the price to pay when the εi’s are no
longer independent. This example shows how this lower bound varies with respect
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to unknown number a, this number quantifying in some sense a discrepancy to
independence (the independence corresponds to a = 0). We also see that a choice
of the penalty term of the form

pen(m) = κ
Dm

n
σ2

2

with κ large is safer than a choice of κ close to 1. This should be kept in mind every
time the independence of the εi’s is debatable (we refer the reader to the comments
following Theorem 2).

3.4. Additive models We consider the additive regression models, widely used
in Economics, described by

Yi = ef + f1(X
(1)
i ) + f2(X

(2)
i ) + . . .+ fk(X(k)

i ) + εi(3.20)

where the εi’s are i.i.d. and ef denotes a constant. Model (3.20) follows from
Model (1.1) with ~Xi = (X(1)

i , X
(2)
i , . . . , X

(k)
i )′ and the additive function f :

f(x1, . . . , xk) = ef + f1(x1) + . . . + fk(xk). For identifiability, we assume that∫
[0,1]

fi(x)dx = 0, for i = 1, ..., k. Such a model assumes that the effects on Y of the
variables X(j) are additive. Our aim is to estimate f on A = [0, 1]k. The estimation
method allows to build estimators of f1, . . . , fk in different spaces.

Let ` be some integer. We define S(1)
` as the linear space of piecewise polynomials

t of degree less that r, r ≥ 1, based on the dyadic grid {j/2`, j = 0, . . . , 2`} ⊂ [0, 1],
satisfying

∫
[0,1]

t(x) dx = 0 and S
(2)
` as the linear span of the functions

ψ2j−1(x) =
√

2 cos(2πjx) and ψ2j(x) =
√

2 sin(2πjx) for j = 1, ..., 2`. Now
we set m1(n) (m2(n) respectively) the largest integers ` such that dim(S(1)

` )
(dim(S(2)

` ) respectively) is smaller than
√
n/ ln3(n). Lastly M(1)

n and M(2)
n denote

respectively the sets of integer {0, ...,m1(n)} and {0, ...,m2(n)}.
We propose to estimate the fi’s either by piecewise or trigonometric polynomials.
To do so, we introduce the choice function g from {1, ..., k} into {1, 2} and consider
the following collections of models.

Mixed additive collection of models: We setMn = Mk,n = {m = (k,m1, ...,mk), mj ∈
M(g(j))

n } and for each m = (k,m1, ...,mk) ∈Mn we define

Sm =

{
t(x1, ..., xk) = a+

k∑
i=1

ti(xi), (a, t1, ..., tk) ∈ R×
k∏

i=1

S(g(i))
mi

}
.

The performance of f̃ is given by the following result

Proposition 4. Assume that ‖f1IA‖∞ <∞, that the sequence of the ( ~Xi, Yi)
is geometrically β-mixing, i.e. satisfies (6.31) and that (HX), (Hε) and (HX,ε) are
fulfilled. Consider the additive regression framework (3.20) with the above collection
of models. If σp

p = E[|ε|p] < ∞ for some p > 6, then f̃ satisfies (3.12) for some
constant R depending on k, p, σp, ‖f1IA −

∫
f1IAdx‖∞, x, h0, h1,Γ, θ.
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We can deduce from Proposition 4 that our procedure is adaptive in the minimax
sense. The point of interest is that the additive framework avoids the curse of dimen-
sionality in the rate of convergence i.e. we can derive similar rates of convergence
for k ≥ 2 as for k = 1.

Let α > 0 and l > 2, we recall that a function f from [0, 1] into R belongs to the
Besov space Bα,l,∞ if it satisfies

|f |α,l = sup
y>0

y−αwd(f, y)l < +∞, d = [α] + 1,

where wd(f, y)l denotes the modulus of smoothness. For a precise definition of those
notions we refer to DeVore and Lorentz (1993), Chapter 2, Section 7. Since for l ≥ 2,
Bα,l,∞ ⊂ Bα,2,∞, we now restrict ourselves to the case where l = 2. In the sequel,
for any L > 0 Bα,2,∞(L) denotes the set of functions which belong to Bα,2,∞ and
satisfy |f |α,2 ≤ L. Then the following result holds.

Proposition 5. Consider Model (3.20) with k ≥ 2. Let L > 0, assume that
‖f1IA‖∞ ≤ L and that for all i = 1, ..., k, fi ∈ Bαi,2,∞(L) for some αi > 1/2.
Assume that for all i = 1, ..., k such that g(i) = 1, αi ≤ r. Set α = min{α1, ..., αk},
if E[|ε1|p] <∞ for some p > 6 then under the assumptions of Proposition 4,

E
[
‖f1IA − f̃‖2n

]
≤ C(k, L, α,R)n−

2α
2α+1 .(3.21)

Comments.

• In the case where k = 1, by using the collection of piecewise polynomials
described in Section 3.1, (3.21) holds under the weaker assumption that α > 0,
we refer the reader to the proof of Proposition 5.

• A result of the same flavor can be established in probability, this would require
a weaker moment condition on the εi’s. Namely, using (4.29) we show similarly
that for any η > 0, there exists a positive constant C(η) (also depending on
k, L, α and R) such that

‖f1IA − f̃‖n ≤ C(η)n−
α

2α+1 ,

with probability greater or equal to 1 − η, as soon as E[|ε1|p] < ∞ for some
p > 2.

3.5. Estimation of the order of an additive autoregression Consider an additive
autoregression framework,

Xi = ef + f1(Xi−1) + f2(Xi−2) + . . .+ fk(Xi−k) + εi(3.22)

where the εi’s are i.i.d. and ef denotes a constant. Under suitable assumptions en-
suring that the ~Xi = (Xi−1, ..., Xi−k)′’s are stationary and geometrically β-mixing,
the estimation of f1,...,fk can be handled in the same way as in the previous section.
The aim of this section is to provide an estimator of the order of autoregression, i.e.
an estimator of the integer k0 (k0 ≤ k, k being known) satisfying fk0 6= 0 and fi = 0
for all i > k0. To do so, let Mn =

⋃k
j=0Mj,n (we use the notations introduced in
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Section 3.4) and consider the collection of models {Sm, m ∈Mn}. We estimate k0

by k̂0 = k̂0(x) defined as the first coordinate of m̂, m̂ being given by

m̂ = arg min
m∈Mn

[
γn(f̂m) + x3Dm

n
σ2

2

]
.

We measure the performance of k̂0 via that of f̃ = f̂m̂, the latter being known,
under the assumptions of Theorem 1, to achieve the best trade-off (up to a constant)
between the bias term and the variance term among the collections of least-squares
estimators {f̂m, m ∈Mn}.

4. The main result In this section, we give our main result concerning the
estimation of a regression function from dependent data. Although this result con-
siders the case of particular collections of models, extension including very general
collections are to be found in the comments following the theorem.

4.1. The main theorem Let Sn be some finite dimensional linear subspace of
A-supported functions of L2(Rk, dx). Let {φλ}λ∈Λn

be an orthonormal basis of
Sn ⊂ L2(A, dx) and set Dn = |Λn| = dim(Sn). We assume that there exists some
positive constant Φ1 ≥ 1 such that for all λ ∈ Λn

(HSn
) ‖φλ‖∞ ≤ Φ1

√
Dn and |{λ′/ ‖φλ′φλ‖∞ 6= 0}| ≤ Φ1.

The second condition means that for each λ, the supports of φλ and φλ′ are disjoint
except for at most Φ1 functions φλ′ ’s. We shall see in Section 10 that those condi-
tions imply that (2.9) holds with Φ2

0 = Φ3
1. In addition we assume some constraint

on the dimension of Sn

(HDn)(Ψ,b) There exists an increasing function Ψ mapping R+ into R+ satis-
fying for some K > 0 and b ∈]0, 1/4[

∀u ≥ 1, ln(u) ∨ 1 ≤ Ψ(u) ≤ Kub,

such that

Dn ≤
n

Ψ(n) ln(n)
.(4.23)

Theorem 1. Let us consider Model (1.1) with f an unknown function from
Rk into R such that ‖f1IA‖∞ < ∞ and where Conditions (HX), (Hε) and (HX,ε)
are fulfilled. Consider a family {Sm}m∈Mn of linear subspaces of Sn. Assume that
{Sm}m∈Mn satisfies (HS) and that Sn satisfies (HSn) and (HDn)(Ψ,b). Suppose
that (HX,Y ) is fulfilled for a sequence of β-mixing coefficients satisfying

∀q ≥ 1, βq ≤M
[
Ψ−1 (Bq)

]−3
,(4.24)

for some M > 0 and for some constant B (given by (7.46)). For any x > 1, let pen
be a penalty function such that

∀m ∈Mn, pen(m) ≥ x3Dm

n
σ2

2 .
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Let ρ ∈]1, x[, for any p̄ ∈]0, 1], if there exists p > p0 = 2(1 + 2p̄)/(1 − 4b) such
that σp

p = E[|ε1|p] < ∞, we have that the PLSE f̃ defined by

f̃ = arg min
m∈Mn

{
γn(f̂m) + pen(m)

}
with γn(g) =

1
n

n∑
i=1

[
Yi − g( ~Xi)

]2
(4.25)

satisfies (
E
[
‖f1IA − f̃‖2p̄

n

])1/p̄

≤
(
x+ ρ

x− ρ

)2

inf
m∈Mn

[
|f1IA − fm‖2µ + 2pen(m)

]
+ C

Rn

n
(4.26)

where C is a constant depending on p, x, ρ, p̄,Φ0, h0, h1,M,K and Rn is given by

Rp̄
n = σ2p̄

p

[ ∑
m∈Mn

D−p/2+p̄
m +

|Mn|
n(1/4−b)(p−p0)

+
‖f1IA‖2p̄

∞

σ2p̄
p

]
.(4.27)

Comments.

1. The functions Ψ of particular interest are either of the form Ψ(u) = ln(u)
or Ψ(u) = uc with 0 < c < 1/4. In the first case, (4.24) is equivalent to a
geometric decay of the β-mixing coefficients (then, we say that the variables
are geometrically β-mixing), in the second case (4.24) is equivalent to an
arithmetic decay (the sequence is then arithmetically β-mixing).

2. A choice of Dn small in front of n allows to deal with stronger dependency
between the (Yi, ~Xi)’s. In return, choosing Dn too small may lead to a serious
drawback with regard to the performance of the PLSE. Indeed, in the case of
nested models, the smaller Dn the smaller the collection of models and the
poorer the performance of f̃ .

3. Assumption (HSn) is fulfilled when Sn is generated by piecewise polynomials
of degree r on [0, 1] (in that case Φ1 = 2(r+ 1) suits) or by wavelets as those
described in Section 3.2 (a suitable basis is obtained by rescaling the father
wavelets φJ0,k’s).

4. We shall see in Section 10 that the result of Theorem 1 holds for a larger class
of linear spaces Sn (i.e. for Sn’s which do not verify (HSn)), provided that
(4.23) is replaced by

D2
n ≤

n

ln(n)Ψ(n)
.(4.28)

5. Take p̄ = 1, the main term involved in the right-hand side of (4.26) is usually

inf
m∈Mn

[
‖f1IA − fm‖2µ + 2pen(m)

]
.

It is worth noticing that the constant in front of this term, i.e.

C1(x, ρ) =
(
x+ ρ

x− ρ

)2
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only depends on x and ρ, and not on unpleasant quantities such as h0, h1. If
Theorem 1 gives no precise recommendation on the choice of x to optimize the
performance of the PLSE, it suggests, in contrast, that a choice of x close to
1 is certainly not a good choice since it makes the constant C1(x, ρ) blow up
(we recall that ρ must belong to ]1, x[). Fix ρ, we see that C1(x, ρ) decreases
to 1 as x becomes large; the negative effect of choosing x large being that it
increases the value of the penalty term.

6. Why does Theorem 1 give a result for values of p̄ 6= 1? By using Markov’s
inequality, we can derive from (4.26) a result in probability saying that for
any τ > 0,

P
[
‖f1IA − f̃‖2n > τ

(
inf

m∈Mn

[
‖f1IA − fm‖2µ + 2pen(m)

]
+
Rn

n

)]
≤ C ′

τ p̄

(4.29)
where C ′ depends on x, ρ, p̄, C. If E[|ε1|p] < ∞ for some p > 2 and if
it is possible to choose Ψ(u) of order a power of ln(u) (this is the case
when the (Yi, ~Xi)’s are geometrically β-mixing) then one can choose both
b in (HDn

)(Ψ,b) and p̄ small enough to ensure that p > 2(1 + 2p̄)/(1 − 4b).
Consequently we get that (4.29) holds true under the weak assumption that
E[|ε1|p] < ∞ for some p > 2. Lastly we mention that an analogue of (4.29)
where ‖f1IA− f̃‖2n is replaced by ‖f1IA− f̃‖2µ can be obtained. This can be de-
rived from the fact that, under the assumptions of Theorem 1, the (semi)norms
‖ ‖µ and ‖ ‖n are equivalent on Sn on a set of probability close to 1 (we refer
to the proof of Theorem 1 and for further details to Baraud (2001)).

7. For adequate collection of models, the quantity Rn remains bounded by some
number R not depending on n. In addition, if for all m ∈ Mn, the constants
belong to Sm, then the quantity ‖f1IA‖∞ involved in Rn can be replaced by
the smaller one ‖f1IA −

∫
f1IA‖∞.

5. Generalization of Theorem 1 In this Section we give an extension of
Theorem 1 by relaxing the independence of the εi’s and by weakening Assumption
(HX,ε). In particular, the next result shows that the procedure is robust to possible
dependency (to some extent) of the εi’s.
We assume that

(H’ε) The εi’s satisfy for some positive number ϑ

sup
t,‖t‖µ≤1

E

( q∑
i=1

εit( ~Xi)

)2
 ≤ qϑ(5.30)

for any 1 ≤ q ≤ n.

In addition Assumption (HX,ε) is replaced by the milder one

(H’X,ε) For all i ∈ {1, ..., n}, ~Xi and εi are independent.

Then the following result holds
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Theorem 2. Consider the assumptions of Theorem 1 and replace (Hε) by
(H’ε) and (HX,ε) by (H’X,ε). For any x > 1, let pen be a penalty function such
that

∀m ∈Mn, pen(m) ≥ x3Dm

n
ϑ.

Then, the result (4.26) of Theorem 1 holds for a constant C that also depends on ϑ.

Comments.

• In the case of i.i.d. εi’s and under Assumption (HX,ε) (which clearly implies
(H’X,ε)), it is straightforward that (5.30) holds with ϑ = σ2

2 . Indeed under
Condition (HX,ε), for all t ∈ L2(Rk, µ)

E

( q∑
i=1

εit( ~Xi)

)2
 =

q∑
i=1

E
[
ε2i t

2( ~Xi)
]

+ 0 = qσ2
2‖t‖2µ.

Then, we recover Theorem 1.

• Assume that the sequences ( ~Xi)i=1,...,n and (εi)i=1,...,n are independent
(which clearly implies (H’X,ε)) and that the εi’s are β-mixing. Then, we
know from Viennet (1997) that there exists a function dβ depending on the
β-mixing coefficients of the εi’s such that for all t ∈ L2(Rk, µ)

E

( q∑
i=1

εit( ~Xi)

)2
 ≤ qE

[
ε21dβ(ε1)

]
‖t‖2µ,

which amounts to taking ϑ = ϑ(β) = E
[
ε21dβ(ε1)

]
in (5.30). Roughly speaking

ϑ(β) is close to σ2
2 when the β-mixing coefficients of the εi’s are close to 0

which corresponds to the independence of the εi’s. Thus, in this context the
result of Theorem 2 can be understood as a result of robustness, since ϑ(β)
is unknown. Indeed, the penalized procedure described in Theorem 1 with a
penalty term satisfying, for some κ > 1,

∀m ∈Mn, pen(m) ≥ κ
Dm

n
σ2

2 ,

still works if ϑ(β) < κσ2
2 . This also means that if the independence of the εi’s

is debatable, it is safer to increase the value of the penalty term.

6. Proof of the propositions of Section 3

6.1. Proof of Proposition 1. The result is a consequence of Theorem 1. Let us
show that under (HAR1) the assumptions of Theorem 1 are fulfilled. Condition
(Hε) is direct. Under (3.14) it is clear that ‖f1I[0,1]‖∞ <∞ holds true. We now set
Sn = Sm(n) and Ψ(x) = ln2(x). Since

dim(Sn) = Dn ≤
n

ln3(n)
,
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(HDn)(Ψ,b) holds for any b > 0 and for some constant K = K(b). As to Conditions
(HS) and (HSn

), they hold with Φ0 = r (we refer to Birgé and Massart (1998)).
Under Condition (3.14), we know from Duflo (1997) that the process (Xi)i∈N admits
a stationary law µ. Furthermore, we know that if the εi’s admit a positive bounded
continuous density with respect to the Lebesgue measure then so does µ. This can
easily be deduced from the connection between hX and hε given by

hX(y) =
∫
hε(y − f(x))hX(x)dx ∀y ∈ R.

Then we can derive the existence of positive numbers h1 and h0 bounding the
density hX from above and below on [0, 1] and thus (HX) is true. In addition we
know from Doukhan (1994) that under (3.14) the Xi’s are geometrically β-mixing
i.e. there exist two positive constant Γ, θ such that

βq ≤ Γe−θq, ∀q ≥ 1.(6.31)

Since Ψ−1(u) = exp(
√
u), clearly there exists some constant M = M(Γ, θ) > 0 such

that

βq ≤ Γe−θq ≤Me−3
√

Bq, ∀q ≥ 1.

Lastly, the εi’s being independent of the sequence (Xj)j<i, (HX,ε) is true and
we know that the β-mixing coefficients of both sequences (Xi−1, εi)i=1,...,n and
(Xi−1)i=1,...,n are the same. Consequently, Condition (HX,Y ) holds and (4.24) is
fulfilled. By choosing p̄ = 1, Theorem 1 can be applied if E[|εi|p] < ∞ for some
p > 6/(1− 4b). This is true for b small enough and then (3.12) follows from (4.26)
with

Rn = σ2
p

[ ∑
m∈Mn

D−p/2+1
m +

|Mn|
n(1/4−b)(p−6/(1−4b))

+
‖f1I[0,1]‖2∞

σ2
p

]

≤ σ2
p

[
+∞∑
m=0

(r2m)−2 + sup
n≥1

ln(n)
n(1/4−b)(p−6/(1−4b))

+
‖f1I[0,1]‖2∞

σ2
p

]
= R′.

Take R = CR′ where C is the constant involved in (4.26) to finish the proof of
Proposition 1. �

6.2. Proof of Proposition 2. Conditions (HS) and (HSn
) are fulfilled (we refer

to Birgé and Massart (1998)). Next we check that (HX,Y ) holds true and more
precisely that the sequence (εi, Xi)1≤i≤n is arithmetically β-mixing with β-mixing
coefficients satisfying

∀q ∈ {1, ..., n}, βq ≤ Γq−θ,(6.32)

for some constants Γ > 0 and θ > 15. For that purpose, simply write (εt, Xt)′ =∑∞
j=0Aje(t − j) with e(t − j) = (εt−2j , εt−1−2j)′, for j ≥ 0, A0 is the 2 × 2-

identity matrix and Aj =
(

0 0
0 aj

)
. Then Pham and Tran’s (1985) Theorem 2.1
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implies under (HReg), that (εt, Xt) is absolutely regular with coefficients βn ≤
K
∑+∞

j=n

(∑
k≥j |ak|

)
≤ (KC)/((d− 1)(d− 2))n−d+2. This implies (6.32) with θ =

d − 2 > 15. In addition, it can be proved that if aj = j−d then βn ≥ C(d)n−d,
which shows that we do not reach the geometrical rate of mixing.
Clearly the other assumptions of Theorem 1 are satisfied and it remains to apply it
with p = 30 (a moment of order 30 exists since the εi’s are gaussian), Ψ(u) = u1/5

and p̄ = 1. An upper bound for Rn which is does not depend on n can be established
in the same way as in the proof of Proposition 1. �

6.3. Proof of Proposition 3. The line of proof is similar to that of Proposition 1,
the difference lying in the fact that we need to check the assumptions of Theorem 2.
Most of them are clearly fulfilled, we only check (HX,Y ) and (H’ε). We note that
the pairs ( ~Xi, Yi)’s are geometrically β-mixing (which shows that (HX,Y ) holds
true) since both sequences Xi’s and εi’s are geometrically β-mixing (since the εi’s
are drawn from a “nice” autoregression model, we refer to Section 3.1) and are
independent. Next we show that (H’ε) holds true with ϑ = (1+2a/(1−a))σ2

2 . This
will end the proof of Proposition 3. For all t ∈ L2(Rk, µ),

E

( q∑
i=1

εit( ~Xi)

)2
 ≤ q∑

i=1

‖t‖2µσ2
2 + 2

∑
i<j

E[εiεj ]E[t( ~Xi)t( ~Xj)].

For i < j,

E[εiεj ] = E
[
εi(uj + ...+ akuj−k + ...+ aj−i−1ui−1 + aj−iεi)

]
= 0 + aj−iσ2

2 ,

thus

E

( q∑
i=1

εit( ~Xi)

)2
 ≤ q‖t‖2µσ2

2 + 2
∑
i<j

aj−iE[t( ~Xi)t( ~Xj)]σ2
2

≤

q + 2
∑

1≤i<j≤q

aj−i

 ‖t‖2µσ2
2 ,

by Cauchy-Schwarz’s inequality. Therefore, we obtain

E

( q∑
i=1

εit( ~Xi)

)2
 ≤ q

(
1 +

2a
1− a

)
‖t‖2µσ2

2 ,

which gives the result. �

6.4. Proof of Proposition 4. Proposition is a consequence of Theorem 1. It is
enough to apply it with p̄ = 1. In the sequel, we check that the assumptions of
the theorem are fulfilled and we bound Rn (given by (4.27)) by some constant that
does not depend on n. To bound the β-mixing coefficients of the sequence of the
(Yi, Xi)’s, we argue as in the proof of Proposition 1, with Sn = S(mg(1)(n),...,mg(k)(n)),
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dim(S(mg(1)(n),...,mg(k)(n))) ≤
√
n/ ln3(n) and Ψ(n) = ln2(n). Inequality (4.28) is

verified (thus condition (HSn
) can be omitted). Let us now check (HS). Since for

all m,m′ ∈ Mn, Sm + Sm′ and Sn belong to the collection of models {Sm, m ∈
Mn}, the assumption (HS) holds true if we prove that (2.9) is satisfied for any
Sm, m ∈ Mn. Now note that for each m ∈ Mn, the following decomposition in
L2([0, 1]k, dx1...dxk) holds

Sm = R.1I
⊥
⊕ S(1)

m

⊥
⊕ ...

⊥
⊕ S(k)

m ,

where S(i)
m = {t ∈ Sm, t(x1, ..., xk) = ti(xi)} and 1I denotes the constant function

on [0, 1]k. Clearly, S(i)
m satisfies (2.9) if and only if S(g(i))

mi does, which is true. Now
the fact that the Sm’s satisfy (2.9) is a consequence of this lemma

Lemma 1. Let S(1),..., S(k) be k linear spaces which are piecewise orthogonal
in L2([0, 1]k, dx1 . . . dxk). If for each i = 1, . . . , k, S(i) satisfies (2.9), then so does
S = S(1) + ...+ S(k).

Proof. The result follows from a Cauchy Schwarz argument: for all ti ∈ S(i),
i = 1, ..., k,

‖
k∑

i=1

ti‖∞ ≤
k∑

i=1

‖ti‖∞ ≤ Φ0

(
k∑

i=1

√
dim(S(i))‖ti‖

)

≤ Φ0

(
k∑

i=1

dim(S(i))

)1/2( k∑
i=1

‖ti‖2
)1/2

= Φ0

√
dim(S)‖

k∑
i=1

ti‖.

�

To finish the proof of Proposition 4 we bound Rn by some constant R which does
not depend on n. Note that |Mn| is of order a power of ln(n) so the point is to
show that

∑
m∈Mn

D−2
m (we recall that p̄ = 1 and p > 6) remains bounded by some

quantity which does not depend on n. Now for each m = (k,m1, ...,mk) ∈ Mn we
have that Dm is of order 2m1 + ... + 2mk , thus by using the convexity inequality
k−1(a1 + ...+ ak) ≥ (a1...ak)1/k which holds for any positive numbers a1, ..., ak, we
obtain that

∑
m∈Mn

D−2
m is bounded (up to a constant) by

∞∑
m1=0

...
∞∑

mk=0

(2m1 + ...+ 2mk)−2 ≤
∞∑

m1=0

...
∞∑

mk=0

2−2(m1+...+mk)/k

=

 ∞∑
j=0

2−2j/k

k

= R <∞.

�
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6.5. Proof of Proposition 5. Let k ≥ 2. We start from (3.12) and bound the bias
term. Let f

′

m the L2([0, 1], dx) projection of f onto Sm, we have that ‖f1IA−fm‖2µ ≤
‖f1IA − f

′

m‖2µ ≤ h1‖f − f
′

m‖2 by (HX) and for each m = (k,m1, ...,mk),

‖f − f
′

m‖2 =
k∑

i=1

∫
[0,1]

(
fi(x)− f

′

m,i(x)
)2

dx,

where f
′

m,i denotes the L2([0, 1], dx) projection of fi onto S
(g(i))
mi . Lastly we

use standard results of approximation theory (see Barron, Birgé and Mas-
sart (1999), Lemma 13 or DeVore and Lorentz (1993)) which ensure that∫
[0,1]

(
fi(x)− f

′

m,i(x)
)2

dx ≤ C(αi, L)D−2αi
mi

(if g(i) = 1, this holds true in
the case of piecewise polynomials since r ≥ αi). We obtain (3.21) by taking for
each i = 1, ..., k, mi ∈ M(i)

n such that Dmi
is of order n1/(2αi+1) which is possible

since αi > 1/2 and therefore n1/(2αi+1) ≤ Dn (at least for n large enough). In
the one dimensional case, by considering the piecewise polynomials described in
Section 3.1, Dn is of order n/ ln3(n) (such a choice is possible in this case) and
then a choice of m among Mn such that Dm is of order n1/(2α+1) is possible for
any α > 0. �

7. Proofs of Theorems 1 and 2 The proof of Theorem 2 is clear from the
proof of Theorem 1. Indeed the assumptions (HX,ε) and (Hε) are only needed in
(8.53) and (8.56). For the rest of the proof assuming (H’X,ε) is enough. It remains
to notice that an analogue of (8.53) and (8.56) is easily obtained from Assumption
(H’ε).
Now we prove Theorem 1. The proof is divided in consecutive claims.

Claim 1. ∀m ∈Mn,

‖f1IA − f̃‖2n ≤ ‖f1IA − fm‖2n +
2
n

n∑
i=1

εi(f̃ − fm)( ~Xi) + pen(m)− pen(m̂).(7.33)

Proof of Claim 1. By definition of f̃ we know that for all m ∈ Mn and
t ∈ Sm

γn(f̃) + pen(m̂) ≤ γn(t) + pen(m).

In particular this holds for t = fm and algebraic computations lead to

‖f − f̃‖2n ≤ ‖f − fm‖2n +
2
n

n∑
i=1

εi(f̃ − fm)( ~Xi) + pen(m)− pen(m̂).(7.34)

Note that the relation

‖f − t‖2n = ‖f1IA − t‖2n + ‖f − f1IA‖2n
is satisfied for any A-supported function t. Applying this identity respectively to
t = f̃ and t = fm (those functions being A-supported as elements of

⋃
m′∈Mn

Sm′),
we derive (7.33) from (7.34). �
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Claim 2. Let qn, qn,1 be integers such that 0 ≤ qn,1 ≤ qn/2, qn ≥ 1. Set ui =
(εi, ~Xi), i = 1, ..., n, then there exist random variables u∗i = (ε∗i , ~X

∗
i ), i = 1, ..., n

satisfying the following properties:

• For ` = 1, ..., `n = [n/qn], the random vectors

~U`,1 =
(
u(`−1)qn+1, ..., u(`−1)qn+qn,1

)′ and ~U∗`,1 =
(
u∗(`−1)qn+1, ..., u

∗
(`−1)qn+qn,1

)′
have the same distribution, and so have the random vectors

~U`,2 =
(
u(`−1)qn+qn,1+1, ..., u`qn

)′ and ~U∗`,2 =
(
u∗(`−1)qn+qn,1+1, ..., u

∗
`qn

)′
.

• For ` = 1, ..., `n,

P
[
~U`,1 6= ~U∗`,1

]
≤ β(qn−qn,1) and P

[
~U`,2 6= ~U∗`,2

]
≤ βqn,1 .(7.35)

• For each δ ∈ {1, 2}, the random vectors ~U∗1,δ, ...,
~U∗`n,δ are independent.

Proof of Claim 2. The claim is a corollary of Berbee’s coupling lemma (1979)
(see Doukhan et al. (1995)) together with (HX,Y ). For further details about the
construction of the u∗i ’s we refer to Viennet (1997), see Proposition 5.1 and its
proof p. 484. �

We set

A0 = h2
0(1− 1/ρ)2/(80Φ4

1h1),(7.36)

and we choose qn = int[A0Ψ(n)/4] + 1 ≥ 1 (int[u] denotes the integer part of u)
and qn,1 = qn,1(x) to satisfy

√
qn,1/qn +

√
1− qn,1/qn ≤

√
x, namely qn,1 of order

((x − 1)2 ∧ 1)qn/2 works. For the sake of simplicity, we assume qn to divide n i.e.
n = `nqn and we introduce the sets Ω∗ and Ωρ defined as follows:

Ω∗ =
{

(εi, ~Xi) = (ε∗i , ~X
∗
i )/ i = 1, ..., n

}
and for ρ ≥ 1,

Ωρ =

‖t‖2µ ≤ ρ‖t‖2n, ∀t ∈
⋃

m,m′∈Mn

Sm + Sm′

 .

We denote by Ω∗ρ the set Ω∗ ∩ Ωρ. From now on, the index m denotes a minimizer
of the quantity ‖f1IA − fm′‖2µ + pen(m′) for m′ ∈ Mn. Therefore, m is fixed and,
for the sake of simplicity, the index m is omitted in the three following notations.
Let B(m′, µ) be the unit ball in S(m′) = Sm′ + Sm with respect to ‖ ||µ, i.e.

B(m′, µ) =

{
t ∈ Sm′ + Sm/ ‖t‖2µ =

1
n

E

[
n∑

i=1

t2( ~Xi)

]
≤ 1

}
.

For each m′ ∈Mn, we set D(m′) = dim(S(m′)).



ADAPTIVE ESTIMATION IN AUTOREGRESSION 21

Claim 3. Let x, ρ be numbers satisfying x > ρ > 1. If pen is chosen to satisfy

pen(m′) ≥ x3Dm′

n
σ2

2 ,(7.37)

then

‖f1IA − f̃‖2n1IΩ∗
ρ

≤ C1(x, ρ)
[
‖f1IA − fm‖2n + 2pen(m)

]
+
x(x+ ρ)
x− ρ

n−2Wn(m̂),(7.38)

where Wn(m′) is defined by

Wn(m′) =

( sup
t∈B(m′,µ)

n∑
i=1

ε∗i t( ~X
∗
i )

)2

− x2nD(m′)σ2
2


+

,

for m′ ∈Mn and where C1(x, ρ) = (x+ ρ)2/(x− ρ)2 > 1.

Proof of Claim 3. The following inequalities hold on Ω∗ρ. Starting from
(7.33) we get

‖f1IA − f̃‖2n ≤ ‖f1IA − fm‖2n +
2
n
‖f̃ − fm‖µ

n∑
i=1

ε∗i
(f̃ − fm)( ~X∗

i )
‖f̃ − fm‖µ

+ pen(m)− pen(m̂)

≤ ‖f1IA − fm‖2n +
2
n
‖f̃ − fm‖µ sup

t∈B(m̂,µ)

n∑
i=1

ε∗i t( ~X
∗
i ) + pen(m)− pen(m̂).

Using the elementary inequality 2ab ≤ xa2 + x−1b2, which holds for any positive
numbers a, b, we have

‖f1IA − f̃‖2n ≤ ‖f1IA − fm‖2n + x−1‖f̃ − fm‖2µ + n−2x

(
sup

t∈B(m̂,µ)

n∑
i=1

ε∗i t( ~X
∗
i )

)2

+pen(m)− pen(m̂).

On Ω∗ρ ⊂ Ωρ, we know that for all t ∈
⋃

m′∈Mn
Sm + Sm′ , ‖t‖2µ ≤ ρ‖t‖2n, hence

‖f1IA − f̃‖2n ≤ ‖f1IA − fm‖2n + x−1ρ‖f̃ − fm‖2n + n−2x

(
sup

t∈B(m̂,µ)

n∑
i=1

ε∗i t( ~X
∗
i )

)2

+pen(m)− pen(m̂)

≤ ‖f1IA − fm‖2n + x−1ρ
(
‖f̃ − f1IA‖n + ‖f1IA − fm‖n

)2

+n−2x

(
sup

t∈B(m̂,µ)

n∑
i=1

ε∗i t( ~X
∗
i )

)2

+ pen(m)− pen(m̂),

by the triangular inequality. Since for all y > 0 (y is chosen at the end of the proof)(
‖f̃ − f1IA‖n + ‖f1IA − fm‖n

)2

≤ (1 + y)‖f̃ − f1IA‖2n + (1 + y−1)‖f1IA − fm‖2n,



22 Y. BARAUD, F. COMTE, G. VIENNET

we obtain

‖f1IA − f̃‖2n(1− ρ
1 + y

x
)

≤ ‖f1IA − fm‖2n(1 + ρ
1 + y−1

x
) + n−2x

(
sup

t∈B(m̂,µ)

n∑
i=1

ε∗i t( ~X
∗
i )

)2

+ pen(m)− pen(m̂)

≤ ‖f1IA − fm‖2n(1 + ρ
1 + y−1

x
) + pen(m) + x3Dm +Dm̂

n
σ2

2

−pen(m̂) +
x

n2

( sup
t∈B(m̂,µ)

n∑
i=1

ε∗i t( ~X
∗
i )

)2

− x2nD(m̂)σ2
2


+

,

using that D(m̂) ≤ Dm̂ +Dm. Since the penalty function pen satisfies (7.37) for all
m′ ∈Mn, we obtain that on Ω∗ρ

‖f1IA − f̃‖2n(1− ρ1 + y

x
) ≤ ‖f1IA − fm‖2n(1 + ρ

1 + y−1

x
) + 2pen(m) + xn−2Wn(m̂),

which gives the claim by choosing y = (x− ρ)/(x+ ρ). �

Claim 4. For p ≥ 2(1 + 2p̄)/(1− 4b) we have,

E
[
‖f1IA − f̃‖2p̄

n 1IΩ∗
ρ

]
≤ C p̄

1 (x, ρ)
[
‖f1IA − fm‖2µ + 2pen(m)

]p̄
+
C

np̄

(
Φ0h

−1/2
0

)p

σ2p̄
p

[ ∑
m′∈Mn

D
−p/2+p̄
m′ + (2K)p |Mn|

n(1−4b)(p−2(1+2p̄)/(1−4b))

]
,

where C is a constant that depends on x, ρ, p, p̄.

Proof of Claim 4. By taking the power p̄ ≤ 1 of the right- and left-hand
side of (7.38) we obtain

‖f1IA − f̃‖2p̄
n 1IΩ∗

ρ

≤ C p̄
1 (x, ρ)

[
‖f1IA − fm‖2n + 2pen(m)

]p̄
+
(
x(x+ ρ)
n2(x− ρ)

)p̄

W p̄
n(m̂)

≤ C p̄
1 (x, ρ)

[
‖f1IA − fm‖2n + 2pen(m)

]p̄
+
(
x(x+ ρ)
n2(x− ρ)

)p̄ ∑
m′∈Mn

W p̄
n(m′).

By taking the expectation on both sides of the inequality and using Jensen’s in-
equality we obtain that

E
[
‖f1IA − f̃‖2p̄

n 1IΩ∗
ρ

]
≤ C p̄

1 (x, ρ)
[
‖f1IA − fm‖2µ + 2pen(m)

]p̄
+
(
x(x+ ρ)
n2(x− ρ)

)p̄ ∑
m′∈Mn

E
[
W p̄

n(m′)
]
.(7.39)
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We now use the following result,

Proposition 6. Under the assumptions of Theorem 1,

C(p, p̄)−1
∑

m′∈Mn

E
[
W p̄

n(m′)
]

≤ C(p, p̄)−1
∑

m′∈Mn

E

( sup
t∈B(m′,µ)

n∑
i=1

ε∗i t( ~X
∗
i )

)2

− x

(√
qn,1

qn
+
√

1− qn,1

qn

)2

nD(m′)σ2
2

p̄

+


≤ xp̄/3

(
x1/3 − 1

)p̄−p

np̄
(
Φ0h

−1/2
0

)p

σ2p̄
p

[ ∑
m′∈Mn

D
−p/2+p̄
m′ +

qp
n|Mn|

np(p−2)/[4(p−1)]−p̄

]
.

The proof of the second inequality is delayed to Section 8, the first one is a
straightforward consequence of our choice of qn,1.
Using Proposition 6 we derive from (7.39) that

E
[
‖f1IA − f̃‖2p̄

n 1IΩ∗
ρ

]
≤ C p̄

1 (x, ρ)
[
‖f1IA − fm‖2µ + 2pen(m)

]p̄
+
C(x, p, p̄)

np̄

(
Φ0h

−1/2
0

)p

σ2p̄
p

[ ∑
m′∈Mn

D
−p/2+p̄
m′ +

qp
n|Mn|

np(p−2)/[4(p−1)]−p̄

]
.(7.40)

Since A0 ≤ 1 and 1 ≤ Ψ(n) ≤ Knb we have

qp
n ≤ 2pΨ(n)p ≤ (2K)pnbp

hence by using that p(p− 2)/[4(p− 1)] ≥ (p− 2)/4 we get

qp
n|Mn|

np(p−2)/[4(p−1)]−p̄
≤ (2K)p |Mn|

n(1/4−b)(p−2(1+2p̄)/(1−4b))
.(7.41)

Note that the power of n, (1/4 − b)(p − 2(1 + 2p̄)/(1 − 4b)) is positive for p >
2(1 + 2p̄)/(1− 4b). The result follows by gathering (7.40) and (7.41). �

Claim 5. Under the assumptions of Theorem 1, we have

P
[
Ω∗cρ

]
≤ 2(M + e16/A0)n−2(7.42)

and

E
[
‖f1IA − f̃‖2p̄

n 1IΩ∗c
ρ

]
≤ (2(M + e16/A0))1−2p̄/p

(
‖f1IA‖2p̄

∞ + σ2p̄
p

)
n−p̄.(7.43)

Proof of Claim 5. For the proof of (7.43) we refer to Baraud (2000) (see
proof of Theorem 6.1, (49) with q = p̄ and β = 2) noticing that p ≥ 2(1 + 2p̄)/(1−
4b) > 4p̄/(2 − p̄) (p̄ ≤ 1). By examining the proof, it is easy to check that if the
constants belong to the Sm’s then ‖f1IA‖∞ can be replaced by ‖f1IA −

∫
f1IA‖∞.

To prove (7.42) we use the following Proposition, which is proved in Section 9:
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Proposition 7. Under the assumptions of Theorem 1, for all ρ > 1,

P
[
Ω∗cρ

]
≤ 2n2 exp

[
−A0

Ψ(n) ln(n)
qn

]
+ 2nβqn,1 .(7.44)

Since qn = int[A0Ψ(n)/4] + 1 ≤ A0Ψ(n)/4 + 1 we have

2n2 exp
[
−A0

Ψ(n) ln(n)
qn

]
≤ 2n2 exp

[
4 ln(n)

(
−1 +

4
A0Ψ(n) + 4

)]
≤ 2
n2
e16/A0 ,(7.45)

Ψ(n) being larger than ln(n). Now, set

B = [A0((x− 1)2 ∧ 1)/8]−1 = [h2
0((x− 1)2 ∧ 1)(1− 1/ρ)2/(640Φ3

0h1)]−1.(7.46)

Since qn ≥ A0Ψ(n)/4, under Condition (4.24) we have

2nβqn,1 ≤ 2nM
[
Ψ−1

(
((x− 1)2 ∧ 1)

Bqn
2

)]−3

≤ 2nM
[
Ψ−1 (Ψ(n))

]−3
=

2M
n2

.(7.47)

Claim 5 is proved by gathering (7.45) and (7.47). �

The proof of Theorem 1 is completed by combining Claim 4 and Claim 5.

8. Proof of Proposition 6 We decompose the proof into two steps:

Step 1. For all m′ ∈Mn,

E

[(
sup

t∈B(m′,µ)

n∑
i=1

ε∗i t( ~X
∗
i )−

(√
qn,1

qn
+
√

1− qn,1

qn

)√
nD(m′)σ2

)p

+

]

≤ C(p)σp
p

[
np/2 + (Φ0h

−1/2
0 )pqp

nD(m′)p/2np2/[4(p−1)]
]
.(8.48)

Proof. Using the result of Claim 2, we have the following decomposition:

n∑
i=1

ε∗i t( ~X
∗
i ) =

`n∑
`=1

 ∑
i∈I

(1)
`

ε∗i t( ~X
∗
i ) +

∑
i∈I

(2)
`

ε∗i t( ~X
∗
i )


where for ` = 1, ..., `n, I(1)

` = {(`− 1)qn + 1, ...., (`− 1)qn + qn,1} and I(2)
` = {(`−

1)qn+qn,1+1, ...., `qn = (`−1)qn+qn,1+qn−qn,1}. Denoting E∗1 =
√
`nqn,1D(m′)σ2

and E∗2 =
√
`n(qn − qn,1)D(m′)σ2 we have

E

[(
sup

t∈B(m′,µ)

n∑
i=1

ε∗i t( ~X
∗
i )− E∗1 − E∗2

)p

+

]
≤ 2p−1E


 sup

t∈B(m′,µ)

`n∑
`=1

∑
i∈I

(1)
`

ε∗i t( ~X
∗
i )− E∗1


p

+
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+ 2p−1E


 sup

t∈B(m′,µ)

`n∑
`=1

∑
i∈I

(2)
`

ε∗i t( ~X
∗
i )− E∗2


p

+

 .
Since the two terms can be bounded in the same way, we only show how to bound
the first one. To do so, we use a moment inequality proved in Baraud (2000,
Theorem 5.2 p. 478): consider the sequence of independent random vectors of(
R× Rk

)qn,1 , ~U∗1 , ...., ~U
∗
`n

defined by ~U∗` = (ε∗i , ~X
∗
i )

′

i∈I
(1)
`

for ` = 1, ..., `n, and con-

sider Gm′ = {gt/ t ∈ B(m′, µ)} the set of functions gt mapping
(
R× Rk

)qn,1 into R
defined by

gt

(
(e1, ~x1), ..., (eqn,1 , ~xqn,1)

)
=

qn,1∑
i=1

eit(~xi).

By applying the moment inequality with the ~U∗` ’s and the class of functions Gm′

we find for all p ≥ 2

C(p)−1E


 sup

t∈B(m′,µ)

`n∑
`=1

∑
i∈I

(1)
`

ε∗i t( ~X
∗
i )− E∗1


p

+



≤ E

 sup
t∈B(m′,µ)

`n∑
`=1

∣∣∣∣∣∣∣
∑

i∈I
(1)
`

ε∗i t( ~X
∗
i )

∣∣∣∣∣∣∣
p+Ep/2

 sup
t∈B(m′,µ)

`n∑
`=1

 ∑
i∈I

(1)
`

ε∗i t( ~X
∗
i )


2

= Vp + V
p/2
2(8.49)

provided that

E

 sup
t∈B(m′,µ)

`n∑
`=1

∑
i∈I

(1)
`

ε∗i t( ~X
∗
i )

 ≤ E∗1 =
√
`nqn,1D(m′)σ2.(8.50)

Throughout this section, we denote by G`(t) the random process

G`(t) =
∑

i∈I
(1)
`

ε∗i t( ~X
∗
i )

which is repeatedly involved in our computations. It is worth noticing that it is
linear with respect to the argument t.

We first show that (8.50) is true. Let ϕj , j = 1, ..., D(m′) be an orthonormal basis
of Sm +Sm′ ⊂ L2(A,µ). For each t ∈ B(m′, µ) we have the following decomposition

t =
D(m′)∑
j=1

ajϕj ,

D(m′)∑
j=1

a2
j ≤ 1.(8.51)
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By Cauchy-Schwarz’s inequality we know that

`n∑
`=1

G`(t) =
D(m′)∑
j=1

aj

(
`n∑

`=1

G`(ϕj)

)
≤

D(m′)∑
j=1

(
`n∑

`=1

G`(ϕj)

)2
1/2

.

Thus, by using Jensen’s inequality we obtain

E

[
sup

t∈B(m′,µ)

`n∑
`=1

G`(t)

]
≤

D(m′)∑
j=1

E

(
`n∑

`=1

G`(ϕj)

)2
1/2

=

D(m′)∑
j=1

`n∑
`=1

E[G2
`(ϕj)]

1/2

(8.52)

the random variables (G`(ϕj))`=1,...,`n being independent and centered for each
j = 1, ..., D(m′). Now, for each ` = 1, ..., `n, we know that the laws of the vectors
(ε∗i , ~X

∗
i )

i∈I
(1)
`

and (εi, ~Xi)i∈I
(1)
`

are the same, therefore under Condition H(X,ε)

E
[
G2

`(ϕj)
]

= E


 ∑

i∈I
`(1)

εiϕj( ~Xi)

2
 ≤ ∑

i∈I
(1)
`

E[ε2i ]E[ϕ2
j ( ~Xi)] = qn,1σ

2
2 ,(8.53)

which together with (8.52) proves (8.50).
Let us now bound Vp and V2 respectively.
The connection between ‖.‖∞ and ‖.‖µ over Sm + Sm′ allows to write that for

all t ∈ B(m′, µ),

‖t‖∞ ≤ Φ0h
−1/2
0

√
D(m′)× 1.(8.54)

Thus,

Vp = E

 sup
t∈B(m′,µ)

`n∑
`=1

∣∣∣∣∣∣∣
∑

i∈I
(1)
`

ε∗i t( ~X
∗
i )

∣∣∣∣∣∣∣
p

≤ |I(1)
` |p−1E

 sup
t∈B(m′,µ)

`n∑
`=1

∑
i∈I

(1)
`

|ε∗i |p|t( ~X∗
i )|p



≤ qp−1
n,1

(
Φ0h

−1/2
0

√
D(m′)

)p−2

E

 sup
t∈B(m′,µ)

`n∑
`=1

∑
i∈I

(1)
`

|ε∗i |pt2( ~X∗
i )

 .
Using (8.51) and Cauchy-Schwarz’s inequality we get

Vp ≤ qp−1
n,1

(
Φ0h

−1/2
0

√
D(m′)

)p−2

E

 `n∑
`=1

D(m′)∑
j=1

∑
i∈I

(1)
`

|ε∗i |pϕ2
j ( ~X

∗
i )
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≤ qp−1
n (Φ0h

−1/2
0 )p−2nD(m′)p/2σp

p ,

recalling that `nqn,1 ≤ `nqn ≤ n. Since for p ≥ 2, p2/[4(p− 1)] ≥ 1 one also has

Vp ≤ qp
n(Φ0h

−1/2
0 )pσp

pD(m′)p/2np2/[4(p−1)].(8.55)

We now bound V2. A symmetrization argument (see Giné and Zinn (1984)) gives

V2 = E

[
sup

t∈B(m′,µ)

`n∑
`=1

G2
`(t)

]

≤ sup
t∈B(m′,µ)

`n∑
`=1

E
[
G2

`(t)
]
+ 4E

[
sup

t∈B(m′,µ)

∣∣∣∣∣
`n∑

`=1

ξ`G
2
`(t)

∣∣∣∣∣
]

≤ nσ2
2 + 4E

[
sup

t∈B(m′,µ)

∣∣∣∣∣
`n∑

`=1

ξ`G
2
`(t)

∣∣∣∣∣
]
,(8.56)

where the random variables ξ`’s are i.i.d. centered random variables independent
of the ~X∗

i ’s and the ε∗i ’s, satisfying P[ξ1 = ±1] = 1/2. It remains to bound the last
term in the right-hand side of (8.56). To do so, we use a truncation argument. We
set M` = max

i∈I
(1)
`

|ε∗i |. For any c > 0, we have

E

[
sup

t∈B(m′,µ)

∣∣∣∣∣
`n∑

`=1

ξ`G
2
`(t)

∣∣∣∣∣
]
≤ E

[
sup

t∈B(m′,µ)

∣∣∣∣∣
`n∑

`=1

ξ`G
2
`(t)1IM`≤c

∣∣∣∣∣
]

+ E

[
sup

t∈B(m′,µ)

∣∣∣∣∣
`n∑

`=1

ξ`G
2
`(t)1IM`>c

∣∣∣∣∣
]
.(8.57)

We apply a comparison theorem (Theorem 4.12 p. 112 in Ledoux and Tala-
grand (1991)) to bound the first term of the right-hand side of (8.57): we know
that for each t ∈ B(m′, µ) the random variables G`(t)1IM`≤c’s are bounded by
B = qn,1Φ0h

−1/2
0

√
D(m′)c (using (8.54)) and are independent of the ξl’s. The

function x 7→ x2 defined on the set [−B,B] being Lipschitz with Lipschitz constant
smaller than 2B, we obtain (Eξ denotes the conditional expectation with respect
to the ε∗i ’s and the X∗

i ’s)

Eξ

[
sup

t∈B(m′,µ)

∣∣∣∣∣
`n∑

`=1

ξ`G
2
`(t)1IM`≤c

∣∣∣∣∣
]
≤ 4BEξ

[
sup

t∈B(m′,µ)

∣∣∣∣∣
`n∑

`=1

ξ`G`(t)1IM`≤c

∣∣∣∣∣
]

≤ 4BEξ

D(m′)∑
j=1

(
`n∑

`=1

ξ`G`(ϕj)1IM`≤c

)2
1/2

≤ 4B

D(m′)∑
j=1

`n∑
`=1

G2
`(ϕj)

1/2

.
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We now decondition with respect to the random variables ε∗i ’s and ~X∗
i and using

(8.53) we get

E

[
sup

t∈B(m′,µ)

∣∣∣∣∣
`n∑

`=1

ξ`G
2
`(t)1IM`≤c

∣∣∣∣∣
]
≤ 4qn,1Φ0h

−1/2
0 D(m′)σ2

√
nc

≤ 4q2n,1Φ
2
0h
−1
0 D(m′)σp

√
nc,(8.58)

noticing that qn,1, Φ0h
−1/2
0 are both greater than 1.

Now, we bound the second term of the right-hand side of (8.57). We have

E

[
sup

t∈B(m′,µ)

∣∣∣∣∣
`n∑

`=1

ξ`G
2
`(t)1IM`>c

∣∣∣∣∣
]
≤ E

[
sup

t∈B(m′,µ)

`n∑
`=1

G2
`(t)1IM`>c

]

≤ E

D(m′)∑
j=1

`n∑
`=1

G2
`(ϕj)1IM`>c



≤ qn,1E

D(m′)∑
j=1

`n∑
`=1

M2
` 1IM`>c

∑
i∈I

(1)
`

ϕ2
j ( ~X

∗
i )



≤ qn,1c
2−p

`n∑
`=1

E

Mp
`

∑
i∈I

(1)
`

D(m′)∑
j=1

ϕ2
j ( ~X

∗
i )




≤ q2n,1c
2−pΦ2

0h
−1
0 D(m′)

`n∑
`=1

E [Mp
` ]

using (2.11). Lastly, since Mp
` ≤

∑
i∈I

(1)
`

|ε∗i |p we get

E

[
sup

t∈B(m′,µ)

∣∣∣∣∣
`n∑

`=1

ξ`G
2
`(t)1IM`>c

∣∣∣∣∣
]
≤ q2n,1Φ

2
0h
−1
0 nD(m′)σp

pc
2−p.(8.59)

By gathering (8.58) and (8.59) we obtain that for all c > 0

E

[
sup

t∈B(m′,µ)

∣∣∣∣∣
`n∑

`=1

ξ`G
2
`(t)

∣∣∣∣∣
]
≤ 4q2n,1Φ

2
0h
−1
0 σpD(m′)

√
n
(
c+

√
nσp−1

p c2−p
)
.

We choose c = σpn
1/(2p−2), and thus from (8.56) we get

V2 = E

[
sup

t∈B(m′,µ)

∣∣∣∣∣
`n∑

`=1

ξ`G
2
`(t)

∣∣∣∣∣
]
≤ nσ2

2 + 8q2nΦ2
0h
−1
0 σ2

pD(m′)np/[2(p−1)],(8.60)

which straightforwardly proves Step 1 by combining (8.49), (8.55) and (8.60). �
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Step 2. For all x > 1, m′ ∈Mn, p̄ < 2p

n−p̄E

( sup
t∈B(m′,µ)

n∑
i=1

ε∗i t( ~X
∗
i )

)2

− x

(√
qn,1

qn
+
√

1− qn,1

qn

)2

nD(m′)σ2
2

p̄

+


≤ C(p, x)(Φ0h

−1
0 )pσp

p

[
D(m′)−(p/2−p̄) + qp

nn
p̄−p(p−2)/(p−1)

]
.

Proof. We set Zn(m′) = supt∈B(m′,µ)

∑n
i=1 ε

∗
i t( ~X

∗
i ) ≥ 0 and

E∗ =
(√

qn,1

qn
+
√

1− qn,1

qn

)√
nD(m′)σ2 ≥

√
nD(m′)σ2.

Since x > 1, there exists η > 0 such that x = (1 + η)3 (i.e. η = x1/3 − 1). Thus for
all τ > 0

P
[
Z2

n(m′) ≥ (1 + η)3 (E∗)2 + τ
]
≤ P

[
Z2

n(m′) ≥
(

(1 + η)E∗ +
√

τ

(1 + η−1)

)2
]

≤ P
[
Zn(m′)− E∗ ≥ ηE∗ +

√
τ

(1 + η−1)

]
≤ P

[
Zn(m′)− E∗ ≥

√
η2(E∗)2 +

τ

(1 + η−1)

]

≤
(
η2(E∗)2 +

τ

(1 + η−1)

)−p/2

E
[
(Zn(m′)− E∗)p

+

]
≤
(

x1/3

x1/3 − 1

)p/2 E
[
(Zn(m′)− E∗)p

+

](
(x1/3 − 1)x1/3nD(m′)σ2

2 + τ
)p/2

,

using Markov’s inequality. Now, for each p̄ such that 2p̄ < p, the integration with
respect to the variable τ leads to

E
[(
Z2

n(m′)− x (E∗)2
)p̄

+

]
=
∫ +∞

0

p̄τ p̄−1P
[
Z2

n(m′)− x (E∗)2 ≥ τ
]
dτ

≤
(

x1/3

x1/3 − 1

)p/2

E
[
(Zn(m′)− E∗)p

+

] ∫ +∞

0

p̄τ p̄−1(
(x1/3 − 1)x1/3nD(m′)σ2

2 + τ
)p/2

dτ

≤ p

p− 2p̄

(
x1/3(x1/3 − 1)

)p̄(
x1/3 − 1

)p E
[
(Zn(m′)− E∗)p

+

]
(nD(m′)σ2

2)p/2−p̄
,

and using Step 1, we get

E
[(
Z2

n(m′)− x (E∗)2
)p̄

+

]
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≤ C

(
x1/3(x1/3 − 1)

)p̄(
x1/3 − 1

)p (Φ0h
−1/2
0 )pσ2p̄−p

2 σp
pn

p̄
(
D(m′)−(p/2−p̄) + qp

nD(m′)p̄n−p(p−2)/[4(p−1)]
)

≤ C

(
x1/3(x1/3 − 1)

)p̄(
x1/3 − 1

)p (Φ0h
−1/2
0 )pσ2p̄

p np̄
(
D(m′)−(p/2−p̄) + qp

nn
p̄−p(p−2)/[4(p−1)]

)
,

since D(m′) = dim (Sm + Sm′) ≤ n. The constant C depends on p and p̄. �

It is now easy to prove Proposition 6 by summing up over m′ in Mn.

9. Proof of Proposition 7 Since P(Ω∗cρ ) = P(Ωc
ρ ∩Ω∗) + P(Ω∗c) and since it

is clear from Claim 2 that

P(Ω∗c) ≤ `n
(
β(qn−qn,1) + βqn,1

)
≤ 2nβqn,1 ,(9.61)

the result holds if we prove

P(Ωc
ρ ∩ Ω∗) ≤ 2n2 exp

(
−A0

Ψ(n) ln(n)
qn

)
.(9.62)

In fact, we prove a more general result, namely:

P(Ωc
ρ ∩ Ω∗) ≤ 2D2

n exp
(
−h

2
0(1− 1/ρ)2

16h1

n

qnL(φ)

)
(9.63)

where L(φ) is a quantity specific to the orthonormal basis (φλ)λ∈Λn
, defined as

follows.
Let (φλ)λ∈Λn be a L2(dx)-orthonormal basis of Sn and as in Baraud (2001) define
the quantities:

V =

(√∫
A

φ2
λ(x)φ2

λ′(x)dx

)
λ,λ′∈Λn×Λn

, B = (‖φλφλ′‖∞)λ,λ′∈Λn×Λn
,

and for any symmetric matrix A = (Aλ,λ′),

ρ̄(A) = sup
{aλ},

P
λ a2

λ=1

∑
λ,λ′

|aλ||aλ′ ||Aλ,λ′ |.

We set

L(φ) = max{ρ̄2(V ), ρ̄(B)}.(9.64)

Then, to finish the proof of Proposition 7, it remains to check that

L(φ) ≤ K ′ n

Ψ(n) ln(n)
,(9.65)

for some constant K ′ independent of n (we shall show the result for K ′ = Φ4
1).

Under (HSn
), Lemma 2 in Section 10 ensures that

L(φ) ≤ Φ4
1Dn,

which together with (4.23) leads to (9.65).
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Now we prove Inequality (9.63). First note that if ρ > 1,

sup
t∈Sn/{0}

‖t‖2µ
‖t‖2n

≥ ρ⇔ sup
t∈Sn/{0}

(
−νn(t2)
‖t‖2µ

)
≥ 1− 1

ρ
,

where νn(u) = (1/n)
∑n

i=1(u( ~Xi)− Eµ(u)) denotes the centered empirical process.
Then for ρ > 1,

P∗
(

sup
t∈Sn/{0}

‖t‖2µ
‖t‖2n

≥ ρ

)
≤ P∗

(
sup

t∈Bµ
n(0,1)

|νn(t2)| ≥ 1− 1
ρ

)
where we denote by P∗(A) the probability P(A ∩ Ω∗), and by Bn

µ(0, 1) = {t ∈
Sn, ‖t‖µ ≤ 1}.
For t ∈ Bµ

n(0, 1), t =
∑

λ∈Λn
aλφλ with

∑
λ∈Λn

a2
λ ≤ h−1

0 , and we have

sup
t∈Bµ

n(0,1)

|νn(t2)| ≤ supP
λ a2

λ≤1

h−1
0

∣∣∣∣∣∣
∑

λ,λ′∈Λ2
n

aλaλ′νn(φλφλ′)

∣∣∣∣∣∣
≤ supP

λ a2
λ≤1

h−1
0

∑
λ,λ′∈Λ2

n

|aλ||aλ′ ||νn(φλφλ′)|

Let x = h2
0(1 − 1/ρ)2/(16h1L(φ)). Then on the set {∀(λ, λ′) ∈ Λ2

n/νn(φλφλ′) ≤
2Vλ,λ′

√
2h1x+ 2Bλ,λ′x}, we have

sup
t∈Bµ

n(0,1)

|νn(t2)| ≤ 2h−1
0

(√
2h1xρ̄(V ) + xρ̄(B)

)

≤ (1− 1/ρ)

(
1√
2

(
ρ̄2(V )
L(φ)

)1/2

+
h0(1− 1/ρ)

8h1

ρ̄(B)
L(φ)

)

≤ (1− 1/ρ)
(

1√
2

+
1
8

)
≤ (1− 1/ρ).

The proof of Inequality (9.63) is then achieved by using the following claim.

Claim 6. Let (φλ)λ∈Λn be an L2(A, dx) basis of Sn. Then, for all x ≥ 0 and
all integer q, 1 ≤ q ≤ n,

P∗
(
∃(λ, λ′) ∈ Λ2

n/|νn(φλφλ′)| > 2Vλ,λ′

√
2h1x+ 2Bλ,λ′x

)
≤ 2D2

n exp
(
−nx
qn

)
.

This implies that

P(Ωc
ρ ∩ Ω∗) ≤ 2D2

n exp
(
−h

2
0(1− 1/ρ)2

16h1

n

qnL(φ)

)
,

and thus Inequality (9.63) holds true. �

Proof of Claim 6. Let ν∗n(φλφλ′) = ν∗n,1(φλφλ′) + ν∗n,2(φλφλ′) be defined by

ν∗n,k(φλφλ′) =
1
`n

`n−1∑
l=0

Z∗l,k(φλφλ′), k = 1, 2
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where for 0 ≤ l ≤ `n − 1,

Z∗l,k(φλφλ′) =
1
qn

∑
i∈I(k)

l

(
φλ( ~X∗

i )φλ′( ~X∗
i )− Eµ(φλφλ′)

)
, k = 1, 2.

We have

P
(
|νn(φλφλ′)| > 2Vλ,λ′

√
2h1x+ 2Bλ,λ′x

)
≤ P∗

(
|ν∗n,1(φλφλ′)| > Vλ,λ′

√
2h1x+Bλ,λ′x

)
+ P

(
|ν∗n,2(φλφλ′)| > Vλ,λ′

√
2h1x+Bλ,λ′x

)
= P1 + P2.

Now, we bound P1 and P2 by using Bernstein’s inequality (see Lemma 8 p.366 in
Birgé and Massart (1998)) applied to the independent variables Z∗l,k, which sat-
isfy ‖Z∗l,k‖∞ ≤ Bλ,λ′ and E1/2[(Z∗l,k)2] ≤

√
h1Vλ,λ′ . Then we obtain P1 + P2 ≤

2 exp(−x`n), which proves the claim 6. �

10. Constraints on the dimension of Sn Most elements of the following
proof can be found in Baraud (2001), but we recall them for the paper to be self-
contained.

Let Sn be the linear subspace defined at the beginning of Section 4. We recall
that Sn is generated by an orthonormal basis (φλ)λ∈Λn and that Dn = |Λn|. In the
previous section the conditions on Sn (given by (HSn)) and Dn (given by (4.23))
are used to prove (9.65). To obtain (9.65) we proceed into two steps: first, under
some particular characteristics of the basis (φλ)λ∈Λn

(in the case of Theorem 1 these
characteristics are given by (HSn

)), we state an upper bound on L(φ) depending
on Φ1(or Φ0) and Dn. Secondly, starting from this bound we specify a constraint on
Dn for (9.65) to hold. In the next lemma we consider various cases of linear spaces
Sn (including those considered in Theorem 1) and provide upper bounds on L(φ)
according to the characteristics of one of their orthonormal basis.

Lemma 2. Let L(φ) be the quantity defined by (9.64).

1. If Sn satisfies (2.9) then L(φ) ≤ Φ2
0D

2
n.

2. Under (HSn
), L(φ) ≤ Φ4

1Dn. Moreover, (2.9) holds true with Φ2
0 = Φ3

1.

We obtain from 1. and 2. that the constraints on Dn given by (4.28) and (4.23)
lead to (9.65).

Proof of 1. On the one hand, by Cauchy-Schwarz’s inequality we have that

ρ̄2 (V ) ≤
∑

λ,λ′∈Λn

∫
φ2

λφ
2
λ′ ≤

∑
λ′∈Λn

∫ (∑
λ∈Λn

φ2
λ

)
φ2

λ′

≤ ‖
∑

λ∈Λn

φ2
λ‖∞

∑
λ′∈Λn

∫
φ2

λ′ ≤ Φ2
0D

2
n,
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using (2.11). On the other hand, by (2.9) we know that ‖φλ‖∞ ≤ Φ0

√
Dn×1. Thus,

using similar arguments one gets

ρ̄(B) ≤ Φ2
0D

2
n,

which leads to L(φ) ≤ Φ2
0D

2
n. �

Proof of 2.. We now prove that (2.9) holds true in the case 2. Note that for
all x, ∑

λ∈Λn

φ2
λ(x) ≤ Φ1‖φλ‖2∞ ≤ Φ3

1Dn.

thus, (2.11) holds true with Φ2
0 = Φ3

1.
Under (HSn

), ∆(λ) = {λ′ ∈ Λn / φλφλ′ 6≡ 0} satisfies |∆(λ)| ≤ Φ1 and

∀λ ∈ Λn, ∀λ′ ∈ ∆(λ),
∫
φ2

λφ
2
λ′ ≤ Φ2

1Dn.

Therefore,

ρ̄(V ) = sup
{(aλ)λ,

P
λ a2

λ=1}

∑
λ

∑
λ′∈∆(λ)

|aλ||aλ′ |
(∫

φ2
λφ

2
λ′

)1/2

≤
√

Φ2
1Dn sup

{(aλ)λ,
P

λ a2
λ=1}

∑
λ

|aλ|
∑

λ′∈∆(λ)

|aλ′ |

=
√

Φ2
1DnWn.

Besides, ∀λ ∈ Λn,∀λ′ ∈ ∆(λ), ‖φλφλ′‖∞ ≤ Φ2
1Dn and thus

ρ̄(B) = supP
λ a2

λ=1

|aλ||aλ′ |‖φλφλ′‖∞ ≤ Φ2
1DnWn.

Lastly,

W 2
n ≤ supP

λ a2
λ=1

∑
λ∈Λn

 ∑
λ′∈∆(λ)

|aλ′ |

2

≤ Φ1 supP
λ a2

λ=1

∑
λ∈Λn

∑
λ′∈∆(λ)

a2
λ′

= Φ1 supP
λ a2

λ=1

∑
λ′∈Λn

∑
λ∈∆(λ′)

a2
λ′ = Φ1 supP

λ a2
λ=1

∑
λ′∈Λn

|∆(λ′)|a2
λ′

≤ Φ2
1.

In other words, ρ̄(V ) ≤ Φ2
1

√
Dn and ρ̄(B) ≤ Φ3

1Dn, which gives the bound L(φ) ≤
Φ4

1Dn since Φ1 ≥ 1. �
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BARAUD, Y. (2001). Model selection for regression on a random design. Preprint 01-10, DMA,
Ecole Normale Supérieure, Paris.

BARAUD, Y. (2000). Model selection for regression on a fixed design, Probab. Theory Relat.

Fields 117, 467–493.

BARRON, A.R. (1991). Complexity regularization with application to artificial neural networks,

Proceedings NATO Advanced Study Institute on Nonparametric Functional estimation,
G.Roussas, Ed., Dordrecht, The Netherlands: Kluwer, 561–576.

BARRON, A.R. (1993). Universal approximation bounds for superpositions of a sigmoidal func-
tion processes. IEEE Trans. Inform. Theory 39, 930–945.
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