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Testing convex hypotheses on the mean of a Gaussian vector.
Application to testing qualitative hypotheses on a regression
function
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In this paper we propose a general methodology, based on multiple
testing, for testing that the mean of a Gaussian vector in R™ belongs to a
convex set. We show that the test achieves its nominal level, and charac-
terize a class of vectors over which the tests achieve a prescribed power.
In the functional regression model, this general methodology is applied to
test some qualitative hypotheses on the regression function. For example,
we test that the regression function is positive, increasing, convex, or more
generally, satisfies a differential inequality. Uniform separation rates over
classes of smooth functions are established and a comparison with other
results in the literature is provided. A simulation study evaluates some of
the procedures for testing monotonicity.

1. Introduction.

1.1. The statistical framework. We consider the following regression model:
(1) Y;=F(x;) +oei, i=1,...,n

where 21 < 22 < ... < z,, are known deterministic points in [0, 1], o is an unknown
positive number and (g;) i=1,..n is a sequence of i.i.d. unobservable standard Gaus-
sian random variables. From the observation of Y = (Y1,...,Y,)’, we consider the
problem of testing that the regression function F' belongs to one of the following
functional sets K:

(2) Kso={F:[0,1] — R, F is non-negative }

(3) K »={F:[0,1] — R, F is non-decreasing }

(4) K_ ={F:[0,1] — R, F is non-concave }

(5) Kpn = {F 0,1 — R, Va € [0, 1], %[R(x)F(w)] > 0} .

In the above definition of K, r, © denotes a positive integer and R a smooth, non-
vanishing function from [0, 1] into R. Choosing the function R equal to 1 leads to
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test that the derivative of order r is positive. Taking r = 1 and choosing a suitable
function R leads to test that a positive function F' is decreasing at some prescribed
rate. It is also possible to test that F' belongs to some classes of smooth functions.
These testing hypotheses will be detailed in Section 3.

The problem is therefore to test some qualitative hypothesis on F'. We shall show
that it actually reduces to testing that the mean of the Gaussian vector Y belongs
to a suitable convex subset of R™. Denoting by <, > the inner product of R", this
convex subset takes the form

C={feR", Vje{l,..,p} <fv;><0},

where the vectors {v1,...,v,} are linearly independent in R™. The aim of this paper
is to present a general methodology for the problem of testing that f belongs to
C and to characterize a class of vectors over which the tests achieve a prescribed
power. This general methodology is applied to test that the regression function F'
belongs to one of the sets K. For the procedures we propose, the least-favorable
distribution under the null hypothesis is achieved for F = 0 and ¢ = 1. Con-
sequently, by carrying out simulations, we easily obtain tests that achieve their
nominal level for fixed values of n. Moreover, we show that these tests have good
properties under smooth alternatives.

For the problem of testing positivity, monotonicity and convexity, we obtain tests
based on the comparison of local means of consecutive observations. A precise de-
scription of these tests is given in Section 2. For the problem of testing monotonicity,
our methodology also leads to tests based on the slopes of regression lines on short
intervals, as explained in Section 3.1. These procedures, based on “running gradi-
ents”, are akin to those proposed by Hall and Heckman (2000). For the problem of
testing that F' belongs to K, g with a non-constant function R we refer the reader to
Section 3.2. We have delayed the description of the general methodology for testing
that f belongs to C to Section 4. Simulations studies for testing monotonicity are
shown in Section 5. The proofs are postponed to Sections 6 to 10.

1.2. An overview of the literature. In the literature, tests of monotonicity have
been widely studied in the regression model. The test proposed by Bowman et
al. (1998) is based on a procedure described in Silverman (1981) for testing uni-
modality of a density. This test is not powerful when the regression is flat or nearly
flat as underlined by Hall and Heckman (2000). Hall and Heckman (2000) proposed
a procedure based on “running gradients” over short intervals for which the least-
favorable distribution under the null, when o is known, corresponds to the case
where F is identically constant. The test proposed by Gijbels et al. (2000) is based
on the signs of differences between observations. The test offers the advantage not to
depend on the error distribution when it is continuous. Consequently, the nominal
level of the test is guaranteed for all continuous error distributions. In the functional
regression model with random z;’s, the procedure proposed by Ghosal et al. (2001)
is based on a locally weighted version of Kendall’s tau. The procedure uses a kernel
smoothing with a particular choice of the bandwidth and as in Gijbels et al. (2000)
depends on the signs of the quantities (Y; — Y;)(x; — ;). They show that for
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certain local alternatives the power of their test tends to 1. Some comments on
the power of our test under those alternatives can be found in Section 3.3. In
Baraud, Huet and Laurent (2003) we propose a procedure which aims at detecting
discrepancies with respect to the L?(u,,)-distance where p, = n=*Y" | 8,,. This
procedure generalizes that proposed in Baraud, Huet and Laurent (2003) for linear
hypotheses. A common feature of the present paper with these two lies in the
fact that the proposed procedures achieve their nominal level and a prescribed
power over a set of vectors we characterize. In the Gaussian white noise, Juditsky
and Nemirovski (2000) propose to test that the signal belongs to the cone of non-
negative, non-decreasing or non-concave functions. For a given r € [1, 400, their
tests are based on the estimation of the L"-distance between the signal and the
cone. However, this approach requires that the signal have a known smoothness
under the null. In the Gaussian white noise model, other tests of such qualitative
hypotheses are proposed by Dimbgen and Spokoiny (2001). Their procedure is
based on the supremum over all bandwidths of the distance in sup-norm between
a kernel estimator and the null hypothesis. They adopt a minimax point of view to
evaluate the performances of their tests and we adopt the same in Sections 2 and 3.

1.3. Uniform separation rates and optimality. Comparing the performances of
tests naturally arises in the problem of hypothesis testing. In this paper, we shall
mainly describe the performances of our procedures in terms of uniform separation
rates over classes of smooth functions. Given ( in |0, 1], a class of smooth functions
F and a “distance” A(.) to the null hypothesis, we define the uniform separation
rate of a test ® over F, denoted by p(®, F,A), as the smallest number p such that
the test guarantees a power not smaller than 1 — 3 for all alternatives F' in F at
distance p from the null. More precisely,

(6) p(®,F,A)=inf{p>0, VF € F, A(F) > p=Pp (D rejects ) > 1 — (}.

In the regression or Gaussian white noise model, the word “rate” refers to the
asymptotics of p(®, F,A) = p (P, F,A) with respect to a scaling parameter 7
(the number of observations n in the regression model, the level of the noise in the
Gaussian white noise). Comparing the performances of two tests of the same level
amounts to comparing their uniform separation rates (the smaller the better). A
test is said to be optimal if there exists no better test. The uniform separation rate
of an optimal test is called the minimax separation rate. In the sequel, we shall
enlarge this notion of optimality by saying that a test is rate-optimal over F if its
uniform separation rate differs from the minimax one by a bounded function of 7.
Unfortunately, not much is known on the uniform separations rates of the tests men-
tioned in Section 1.2. The only exception we are aware of concerns the tests proposed
by Diimbgen and Spokoiny (2001) and Juditsky and Nemirovski (2000) in the Gaus-
sian white noise model (with 7 = 1/4/n), and Baraud, Huet and Laurent (2003) in
the regression model. The rates obtained by Juditsky and Nemirovski (2000) are
established for the problem of testing that F' belongs to XL N'H where H is a class of
smooth functions. In contrast, in the paper by Baraud, Huet and Laurent (2003) and
Diimbgen and Spokoiny (2001), the null hypothesis is not restricted to those smooth
functions belonging to K. For the problem of testing positivity and monotonicity,
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Baraud, Huet and Laurent (2003) established separation rates with respect to the
IL2(j,,)-distance to the null. For the problem of testing positivity, monotonicity and
convexity, Diimbgen and Spokoiny (2001) considered the problem of detecting a
discrepancy to the null in sup-norm. For any L > 0, their procedures are proved to
achieve the optimal rate (L log(n) /n)l/ % over the class of Lipschitz functions

Hl(L) = {F’ Vr,y € [Oal]’ |F($) —F(y)| < L|.’L‘—y|}.

The optimality of this rate derives from the lower bounds established by Ing-
ster (1993)[Section 2.4] for the more simple problem of testing F' = 0 against
F # 0 in sup-norm. More generally, it can easily be derived from Ingster’s results
(see Proposition 2) that the minimax separation rate (in sup-norm) over Holderian
balls

(1) Ho(L) ={F, Vo,y € [0,1], [F(z) = F(y)| < Llz —y[°} with s €]0, 1]

is bounded from below (up to a constant) by (L'/* log(n)/n)s/(H%). In the re-
gression setting, we propose tests of positivity, monotonicity and convexity whose
uniform separation rates over H (L) achieve this lower bound whatever the value
of s €]0,1] and L > 0. We only discuss the optimality in the minimax sense over
the Holderian balls Hs(L) with s €]0,1] and L > 0. To our knowledge, the mini-
max rates over smoother classes of functions remains unknown and it is beyond the
scope of this paper to describe them.

For the problem of testing monotonicity or convexity, other choices of distances
to the null are possible. For example the distance in sup-norm between the first
(respectively the second) derivative of F' and the set of non-negative functions. For
such choices, Diimbgen and Spokoiny also provided uniform separation rates for
their tests. In the regression setting, the uniform separation rates we get coincide
with their separation rates on the classes of functions they considered. We do not
know whether these rates are optimal or not neither in the Gaussian white noise
model nor in the regression one.

2. Tests based on local means for testing positivity, monotonicity and
convexity. We consider the regression model given by (1) and propose tests of
positivity, monotonicity and convexity for the function F. We first introduce some
partitions of the design points and notations that will be used throughout the paper.

2.1. Partition of the design points and notations. We first define an almost
regular partition of the set of indices {1,...,n} into ¢, sets as follows: for each k
in {1,...,4,} we set

k—1 14 k
Jpy=4qi€e{l,...,n}, — < — < —
- {’ b = <0 e}
and define the partition as

T ={J,k={1,...,0,}}.
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Then for each ¢ € {1,...,¢,}, we make a partition of {1,...,n} into ¢ sets by
gathering consecutive sets Ji. This partition is defined by

(8) J=S1= | Jni=1..¢

<<y
We shall use the following notations.

e We use a bold type style for denoting the vectors of R™. We endow R™ with
its Euclidean norm denoted by || ||.

e For v € R", let ||v]|oc = maxi<i<n |vs].
e For a linear subspace V of R™, Iy, denotes the orthogonal projector onto V.

e For a € Ry, D € N\{0} and u € [0,1], @~ '(u) and X},',.(u) denote the
1 — u quantile of respectively a standard Gaussian random variable and a
non-central x? with D degrees of freedom and non-centrality parameter a?.

e For x € R, [z] denotes the integer part of x.

e For each R"™-vector v and subset J of {1,...,n}, we denote by v; the R"-
vector whose coordinates coincide with those of v on J and vanish elsewhere.
We denote by v; the quantity >, ;v;/|J].

e We denote by 1 the R™-vector (1,...,1)" and by e; the ith vector of the canon-
ical basis.

o We define V,, cste as the linear span of {lJ, Je Jtn } Note that the dimension
of V,, cste €quals £,,.

e The vector € denotes a standard Gaussian variable in R"™.

e We denote by Pg , the law of the Gaussian vector in R™ with expectation f
and covariance matrix 021, where I,, is the n x n identity matrix. We denote
by Pr . the law of ¥ under the model defined by Equation (1).

e The level « of all our tests is chosen in ]0,1/2][.

2.2. Test of positivity. We propose a level a-test for testing that F belongs to
K>o defined by (2). The testing procedure is based on the fact that if F' is non-
negative, then for any subset J of {1,...,n}, the expectation of Y ; is non-negative.
For ¢ € {1,....,0,}, let T{(Y) be defined as

_JITY,
THY) = max — VYoo
e e AL

and let q;(¢,u) be the 1 — u quantile of the random variable T} (g). We introduce
the test statistic

Toq1= YY) —
(9) a,l EG{III}.?“},(ETL}{ 1( ) q1(€7ua)}a
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where u,, is defined as

(10) Uq = SUP {u €]0,1[,P (z {maxl }{Tf(e) —q(lu)} > O) < a} .

e{1,rln
We reject that F' belongs to K>q if 7,1 is positive.
Comment. When ¢ increases from 1 to £,, the cardinality of the sets J € J*
decreases. We thus take into account local discrepancies to the null hypothesis for
various scales.

2.3. Testing monotonicity. We now consider the problem of testing that F' be-
longs to K ~ defined by (3). The testing procedure lies on the following property: if
I and J are two subsets of {1,2,...,n} such that I is on the left of J and if F' € K ~,
then the expectation of the difference Y; — Y ; is non-positive. For £ € {2,....4,},
let 74 (Y) be defined as

Y, —Y
TLY) = max i JJY|| vVn—ty,

N 5
1<i<g<e Y| Y — Iy,

,cste

) ) —1/2
Nf= | — + ;
J <|Jf| Jfl)

where

and let g2(¢,u) be the 1 — u quantile of the random variable T4 (g). We introduce
the test statistic

_ 14 _
(11) Ta,2 - ée{g}?},{@n} {TZ (Y) q2(€v ’U,)} 9

where u,, is defined as

(12) g =sup {u €0, 1[,P ( max {T5(e) — ¢2(L,u)} > 0) < a} :

le{2,...,0,}

We reject that F' belongs to K » if Ty, 2 is positive.

2.4. Testing convexity. We now consider the problem of testing that F' belongs
to K_ defined by (4). The testing procedure is based on the following property: if
I, J and K are three subsets of {1,2,...,n}, such that J is between I and K and
if FF € K_, then we find a linear combination of Y;, Y 7, and Y  with non-positive
expectation. Let £ = (z1,...,2,) and for each £ € {3,....,0,}, 1 <i < j <k <,
let
A = L;j %y

ijk EJﬁ _ EJ{ ’

and

—1/2

1 1 1

N = — 20\ )2— (1 =\ )2 — .
ijk <|Jf +( z]k) |Jf| +( z]k:) |J£|
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For ¢ € {3,...,4,}, let

Yo=Y o — (1= MY e
TYY)= max i i Ik T

NE.
igicj<kse Py — Ty, YV =

and let g3(¢,u) be the 1 — u quantile of the random variable T%(¢). We introduce
the test statistic

74
(13) Top =, max, {T5(Y) = g3(fua) }

where u,, is defined as

(14) g =sup {u €]o, 1, P (ée{rgﬁn} {T5(e) — q3(t,u)} > 0) < a} .

We reject that F' belongs to K_ if T, 3 is positive.

2.5. Properties of the procedures. In this section we evaluate the performances
of the previous procedures under the null and under smooth alternatives.

PROPOSITION 1.  Let (Ty, K) be either (To1,K>0) or (Ta,2,K ) or (T3, K_).
We have

sup sup Pr, (T > 0) = a.

>0 Fek
Assume now that z; = i/n for alli =1,...,n and £,, = [n/2]. Let us fiz B €]0,1[ and
define for each s €)0,1] and L > 0

py = L1/(1429) (02 log(n)

s/(142s)

Then, for n large enough there exists some constant k depending on «, 3, s only such
that for oll F' € Hs(L) satisfying

= i _ >
(15) A(F) = jnf | F ~ Gl > np
we have

IP)F’[,—(TQ > 0) >1- ﬁ

Comment. This result states that our procedures are of size . Moreover, following
the definition of the uniform separation rate of a test given in Section 1.3, this result
shows that the tests achieve the uniform separation rate p, (in sup-norm) over the
Holderian ball Hs(L). In the following proposition, we show that this rate cannot
be improved at least in the Gaussian white noise model for testing positivity and
monotonicity. The proof can be extended to the case of testing convexity but is
omitted here.
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PROPOSITION 2.  LetY be the observation from the Gaussian white noise model

1
(16) dY (t) = F(t)dt + ﬁdW(t)7 fort €0,1],
where W is a standard Brownian motion. Let KC be either the set K> or K ~ and F
some class of functions. For the distance A(.) to K given by (15), we define

pul0, F) = inf p(®, F, A)

where p(®,F,A) is given by (6) and where the infimum is taken over all tests ® of
level 3av for testing “F = 07. We define p, (K, F) similarly by taking the infimum
over all tests ® of level a for testing “F € K”. The following inequalities hold.

(2) IfK: = K:ZO then
pu(IC, F) = pa(0, F).
If K = K ~ then for some constant x depending on o and (3 only

1 o
n(KsF) = 5 | pn(0,F) —k—=| .
P, 5) 2 3 [0a0.5) — 5
(i3) In particular, if F = Hs(L), for n large enough there exists some constant '
depending on o, 8 and s only such that

s/(142s)
(17) pn(KC, F) > w/ L1/ (1+29) <log(n)) _
n

The proof of the first part of the proposition extends easily to the regression frame-
work. The second part (i), namely Inequality (17), derives from (¢) and the lower
bound on p,, (0, F) established by Ingster(1993).

For the problem of testing the positivity of a signal in the Gaussian white noise
model, Juditsky and Nemirovski (2000) showed that the minimax separation rate
with respect to the L"-distance (r € [1,+o0[) is of the same order as p, up to a
logarithmic factor.

3. Testing that F satisfies a differential inequality. In this section, we
consider the problem of testing that F belongs to K, g defined by (5). Several
applications of such hypotheses can be of interest. For example, by taking r = 1
and R(z) = —exp(ax) (for some positive number a) one can test that a positive
function F' is decreasing at rate exp(—ax), that is, satisfies

Vz €[0,1],0 < F(z) < F(0) exp(—az).
Other kinds of decay are possible by suitably choosing the function R. Another
application is to test that F' belongs to the class of smooth functions

{F 0,1 - R, [FMe < L} :

To tackle this problem, it is enough to test that the derivatives of order r of the
functions Fiy(x) = —F(z) + La"/r! and Fy(x) = F(x) + La" /r! are positive. This
is easily done by considering a multiple testing procedure based on the data —Y; +
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Lz?/r! for testing that Fy is positive, and on Y; + La¥ /r! for testing that Fy is
positive.

In Section 3.1, we consider the case where the function R equals 1. The procedure
then amounts to testing that the derivative of order r of F' is non-negative. We
turn to the general case in Section 3.2.

We first introduce the following notations.

e For w € R, we set R*w the vector whose i-th coordinate (R x w); equals

e For k € N\ {0}, we denote by w*, the R"-vector (wf,...,wk), and we set
w® =1 by convention.

e For J C {1,...,n}, let us define X; as the space spanned by 1;,z;,--- 7:1:3_1.

3.1. Testing that the derivative of order r of F is non-negative. In this section,
we take R(z) = 1 for all € [0,1]. The procedure lies on the idea that if the
derivative of order r of F' is non-negative then on each subset .J of {1,2,...,n}, the
highest degree coefficient of the polynomial regression of degree r based on the pairs
{(x4, F'(2)),% € J} is non-negative. For example, under the assumption that F is
non-decreasing, the slope of the regression based on the pairs {(x;, F(z;)),7 € J}
is non-negative.

Let £, = [n/(2(r 4+ 1))], V;, be the linear span of {IJ,a:J, e, Je JZ"}, and
for each J C {1,...,n}

27 — T, a7 |
For each £ € {1,...,£,}, let T*(Y') be defined as

<Y,t5 >
1 rt — SR by Sy

and let (¢, u) denote the 1 —u quantile of the random variable 7*(g). We introduce
the following test statistic:

1 T, = Tt —
( 9) a Ze{rlr}?.),{ln} { (Y> q(f, ua)} 5

where u,, is defined as

(20) U = SUp {u €lo, 1[,P < max {T*(e) — q(t,u)} > 0> < a} )

Lef{l,....0,}

We reject the null hypothesis if T, is positive.

Comment. When r = 1, the procedure is akin to that proposed by Hall and
Heckman (2000) where for all £, (¢, u,) is the 1 —a quantile of maxycyq,.. 4,3 T (g).
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3.2. Extension to the general case. The ideas underlying the preceding proce-
dures extend to the case where R #Z 1. In the general case, the test is obtained as
follows.

Let #,, be such that the dimension d,, of the linear space
(21) V, =Span{l;,2;, -2}, R*1;,..,Rxz,J € T}
is not larger than n/2. We define for each J C {1,...,n}

~ Rx(z] —Iy,x7)

(22) th = oy where v; = ||R* (z7; — Iy, z7) ||.

We reject that F belongs to K, g if T, defined by (19) is positive.

3.3. Properties of the tests. In this section, we describe the behavior of the
procedure. We start with some notations.

e Let us define the function A(F') as
dzx”
and let w be its modulus of continuity defined for all h > 0 by

w(h) = sup [A(F)(x) = A(F)(y)].

|lz—y|<h

A(F)(z) =

[R(z)F(x)],

e For J € U§l1 JY, let us denote by x; (respectively x}r) the quantities

min {z;, i € J} (respectively max {z;, i € J}) and set hy =z} — 2.

o Let f = (F(x1),...,F(x,)) and for each £ =1,...,¢, and g €]0, 1], let

@) w9 = (e T s O/ + 87572 ) o

e For each p > 0, let

Enrlp) = {F :[0,1] = R, F") e H (L), — ir[%)fu F)(z) > p} .
ze|0,

We have the following result.

PrROPOSITION 3.  Let Ty, be the test statistic defined in Section 3.2. We have

sup sup Pp, (T >0) =
>0 Fek, r

For each (3 €]0,1], we have
IEDF,U (Ta > 0) Z 1 _5a
if for some € € {1,...,4,} there exists a set J € J* such that either

. rlyg
(24) —%gf]A(F)(xi) 2 Ve(fﬁ)m +w(hy),
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or

. vy
(25) inf  —AE)(z) 2 vl B) i
w€lay o (@) ) €7 — T, 75 2

Moreover, if R = 1 then there exists some constant k depending on «,3,s and r
only such that for n large enough and for all F' € &, (pp,r) with

o2 log(n)\ */ (1+2(s+m)
P = %( ng( )) I,(1+2r)/(142(s+7))

we have

Pro(To >0) >1- 3.

Comments.

1. In the particular case where R = 1, let us give the orders of magnitude of
the quantities appearing in the above proposition. Under the assumption that
|f — Iy, f||*/n is smaller than o2, one can show that v is of order \/log(n)
(see Section 9.2). When R = 1, we have v; = ||z7; — ILx, 27| and it follows
from computations that will be detailed in the proofs that

vy log(n)
(26) ve(f,8) Tz <C v
27 — T, 27| nhlt?

for some constant C' which does not depend on J nor n.

2. In the particular case where r = 1, Inequality (26) allows to compare our
result to the performances of the test proposed by Ghosal et al. (2001). For
each 6 €]0,1/3[, they give a procedure (depending on 4) that is powerful
if the function F' is continuously differentiable and satisfies that for all z in
some interval of length n=%, F'(x) < —M/log(n)n~(*=39)/2 for some M large
enough.

By using (25) and the upper bound in (26) with h; of order n=%, we deduce
from Proposition 3 that our procedure is powerful too over this class of func-
tions. Note that by considering a multiple testing procedure based on various
scales ¢, our test does not depend on § and is therefore powerful for all §
simultaneously.

3. For r = 1 (respectively r = 2) and s = 1, Diimbgen and Spokoiny (2001) ob-
tained the uniform separation rate p,, , for testing monotonicity (respectively
convexity) in the Gaussian white noise model.

4. For the problem of testing monotonicity (r = 1 and R = 1), it is possible
to combine this procedure with that proposed in Section 2.3. More precisely,
consider the test which rejects the null at level 2« if one of these two tests
rejects. The so-defined test performs as well as the best of these two tests
under the alternative.
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4. A general approach. The problems we have considered previously reduce
to testing that f = (F(z1),..., F(z,))" belongs to a convex set of the form

(27) C={feR", Vje{l,..,p} <fv;><0},

where the vectors {1, ...,v,} are linearly independent in R™. For example, testing
that the regression function F' is non-negative or non-decreasing amounts to testing
that the mean of Y belongs respectively to the convex subsets of R™

(28) CZQ = {f S Rn, Vi € {1, 777,} fz > O}
and
(29) C/:{fERn, VZG{].,ﬂ’l—].} fH»l_szO}

Clearly, these sets are of the form given by (27) by taking respectively p = n,
v; = —ej and p =n — 1, v; = e; — e;41. The following proposition extends this
result to the general case. Note that one can also define the set C as

C={feR" Li(f) 20,...,Ly(f) > 0},

where the L;’s are p independent linear forms. We shall use this definition of C in
the following.

PROPOSITION 4.  For each r € {1,...,n—1} andi € {1,....,n —r} let ¢; , be
the linear form defined forw € R™ by
1 -~-a:ffl w;
1Zipr - 0 wigs
birw)=det| T

i Litr 95:;1 Wity
If F belongs to K_ then f = (F(x1),...,F(x,)) belongs to
(30) C_.={feR", Vie{l,..,n—2}, ¢i2(f) >0}.
If F' belongs to Ky g then f belongs to

Crr={feR", Vie{l,...,n—r}, ¢ (Rxf)>0}.

In view of keeping our notations as simple as possible, we omit the dependency of the
linear forms ¢; , with respect to » when there is no ambiguity. The remaining part
of the section is organized as follows. In the next subsection, we present a general
approach for the problem of testing that f belongs to C. In the last subsection, we
show how this approach applies to the problems of hypothesis testing considered in
Sections 2 and 3.
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4.1. Testing that f belongs to C. We consider the problem of testing that the
vector f = (f1,..., fn) involved in the regression model

(31) Y,=fi+oe, i=1,..,n.

belongs to C defined by (27). Our aim is twofold. First, build a test which achieves
its nominal level, and second, describe for each n a class of vectors over which this
test is powerful.

The testing procedure. The testing procedure relies on the following idea: since
under the assumption that f belongs to C, the quantities < f,Zle Ajv; > are
non-positive for all non-negative numbers Ay, ---, A,, we base our test statistic on
random variables of the form <Y, Z§:1 Ajv; > for non-negative sequences of A;’s.
We denote by 7 the subset of R defined by

p
(32) T=qt=> Nvj, [t =1, \>0¥j=1,.,p
j=1

Let 7, be a finite subset of 7 such that there exists some linear space V,,, with
dimension d,, < n containing the linear span of 7,,. Let {¢:(«),t € 7,,} be a sequence
of numbers satisfying

t
(33) P {sup <\/n — dn& — qt(a)> > 0} = a.
teT,, le — Ty, el

We reject the null hypothesis if the statistic

(34) 1= sup (Vi =~ aa)

teT, Y -y, Y|
is positive.

Properties of the test. For all 8 €]0,1[ and each t € 7,, let

(35) w(f.B) = (Qt(a)\/nl_idn\/xgidm|f_Han|2/02 (B/2) + é_l(ﬁ/2)> .

The order of magnitude of v¢(f, §) is proved to be y/log(n)o under the assumption
that || f — Iy, f||*/n is smaller than o2 as it is shown in the proof of Proposition 1.
We have the following result.

THEOREM 1.  Let T, be the test statistic defined by (34). We have

(36) supsupPs , (To, > 0) =Py 1 (Tn > 0) = a.
>0 feC

Moreover, if there exists t € T,, such that < f,t >> v (f,3) then
Pt (T >0) > 1 - 3.

Comments. The values of the ¢:(a)’s that satisfy (33) can be easily obtained by
simulations under Py ;. This property of our procedure lies in the fact that the
least-favorable distribution under the null is Py ;. Note that we do not need to use
bootstrap procedures to implement the test.
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4.2. How to apply these procedures to test qualitative hypotheses? In the sequel,
we give the choices of 7,, and V,, leading to the tests presented in Sections 2 and 3.

For the test of positivity described in Section 2.2. We take 7,, = Ty, 1, with 7, 1 =
Uﬁ;l T, 1, where for all £ € {1,....0,}

Tne,1: Zeyv JeJ’
\/\J|JEJ

We take V;, = V), cste- Note that V, cste is also the linear span of 7p, ¢

For the test of monotonicity described in Section 2.3. Let us define for each ¢ €
{2, lp}and 1 <i<j<l{,

(37) efj ij |J£‘ Z € - Zel

leJ? leJ"
Note that Nj; is such that [lef;|| = 1. We take T,, = T, o, with T,, 5 = Z " Tl
where
Ti,={el;, 1<i<j<t},

and we take V;, = V,, cste. Note that V;, contains 7, o

For the test of convezity presented in Section 2.4. Let us define for each ¢ €
{3, 0}, 1 <i<j<k<U,

1
Y4
(38) eijk zgk | [l Z € — )‘mk ‘J/| Z € — ij}) J

leJt leJf | k' leJt

Note that NJ,f is such that ||e”k|| = 1. We take 7, = 7,, 3, with 7, 5 = Ue 5T,

where
Tig={e, 1<i<j<k<t},
and we take V,, =V}, cste. Note that V,, contains 7,, 3

For the test of F' € K, r presented in Section 3. We take

Ln
T = U’T,f where T! = {t3, J € J}
(=1
and V,, =V, 4 defined by (21). Note that V;, contains 7, 4

We justify these choices of 7,, by the following proposition proved in Section 7.

PROPOSITION 5. Let C and T, be either (C>0,7n,1), (C~,Tn2), (C_,Tn3) or
(Cr.ryTna). There exist vy, ...,v, for which C is of the form given by (27) and for
which T, defined by (32), contains Tp,.
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5. Simulation studies . In this section we describe how to implement the
test for testing F' € K » and we carry out a simulation study in order to evaluate
the performances of our tests both when the errors are Gaussian and when they
are not. We first describe how the testing procedure is performed, then we present
the simulation experiment and finally discuss the results of the simulation study.

5.1. The testing procedures. We carry out the simulation study for the two
testing procedures described in Sections 2.3 and 3.1. In the sequel, the procedure
based on differences of local means and described in Section 2.3 is called LM and
the procedure based on local gradients defined below (from the test statistic given
in Section 3.1 with r = 1) is called LG.

In the case of the procedure LM, we set T = Tg 2 defined in (11). For each ¢, the
quantiles g2(¢, u,) are calculated as follows. For u varying among a suitable grid of
values u1, ..., Un,, we estimate by simulations the quantity

puj) =P (l_maxé {Tf(e) —q2(l,uy)} > 0) ,
€ being a n-sample of N(0,1), and we take u, as max {u;,p(u;) < a}. Note that
uq does not depend on (x;,4 = 1,...,n), but only on the number of observations
n.

In the case of the procedure LG, the test statistic is defined as follows. For each
¢=1,...,¢, and for J € J¢, we take

O Tjly—x;
Tz, -y

The space V;, reduces to V,, 1in the linear space of dimension 2/, generated by
{lJ,.'cJ,JE jgn}.

The test statistic Ty, takes the form

where for each £ € {1,...,¢,},

<Y, t5 >

THY) = max \/n — 20, Yl

Jegt ||Y — Iy,

n,lin

and g4(¢,u,) denotes the 1 — u quantile of the random variable T} ().
The procedure for calculating g4 (¢, uy) for £ =2, ... £, is the same as the procedure
for calculating the ¢o (¢, uq)’s.

5.2. The simulation experiment. The number of observations n equals 100, x; =
i/(n+1), fori=1,...,n and ¢, is either equal to 15 or 25.
We consider three distributions of the errors ¢;, with expectation zero and vari-
ance 1.

1. The Gaussian distribution: &; ~ N(0,1) .
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2. The type I distribution: €; has density sfx (u+ sx) where fx () = exp{—x —
exp(—z)} and where u and s? are the expectation and the variance of a
variable X with density fx. This distribution is asymmetrical.

3. The mixture of Gaussian distributions: ¢; is distributed as 7X; + (1 — m)Xs
where 7 is distributed as a Bernoulli variable with expectation 0.9, X; and
X, are centered Gaussian variables with variance respectively equal to 2.43s
and 25s, 7, X7 and X5, are independent. The quantity s is chosen such that
the variance of €; equals 1. This distribution has heavy tails.

We consider several functions F' that are presented below. For each of them, we
simulate the observations Y; = F'(z;) + o¢;. The values of o2 and of the distance in
sup-norm between F' and K ~ are reported in Table 1:

du(FK) =5 sw_(F(s) = F().

Let us comment the choice of the considered functions.

e Fy(x) = 0 corresponds to the case for which the quantiles ¢(¢, u,) are calcu-
lated.

e The function Fy(z) = 151,<¢.5(x —0.5)3 4+ 0.3(x — 0.5) — exp(—250(z — 0.25)?)
presents a strongly increasing part with a pronounced dip around z = 1/4
followed by a nearly flat part on the interval [1/2,1].

e The decreasing linear function Fy(x) = —ax, the parameter a being chosen
such that a = 1.50.

e The function F3(z) = —0.2exp(—50(z — 0.5)?) deviates from Fy by a smooth
dip while the function Fy(x) = 0.1cos(6mz) deviates from Fy by a cosine
function.

e The functions F5(z) = 0.2 + F3(x) and Fg(z) = 0.2z + F4(x) deviate from
an increasing linear function in the same way as F3 and Fy do from Fj.

Let us mention that it is more difficult to detect that Fs (respectively Fg) is non-
increasing than to detect that F3 (respectively Fy) is. Indeed, adding an increasing
function to a function F' reduces the distance in sup-norm between F' and K .
This is the reason why the values of ¢ are smaller in the simulation study when we
consider the functions F5 and Fg.

In Figure 1 we have displayed the functions Fy for £ = 1,...,6 and for each of
them one sample simulated with Gaussian errors. The corresponding values of the
test statistics Tiy and Tig for o = 5% and ¢, = 25 are given. For this simulated
sample, it appears that the test based on the statistic 71\ leads to reject the null
hypothesis in all cases, while the test based on T1,g reject in all cases except for
functions F5 and Fj.

The results of the simulation experiment based on 4000 simulations are presented
in Tables 2 and 3.
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F o? doo (F, K )
Fo(z) [ 001 [0
Fi(z) | 0.01 | 025
Fy(z) | 0.01 | 0.073
Fs(z) | 0.01 | 0.1
Fy(z) | 0.01 | 0.1
Fs(x) | 0.004 | 0.06
Fs(x) | 0.006 | 0.08
TABLE 1

17

Testing monotonicity : simulated functions F, values of o2 and distance in sup-norm between

F and K .

Fic. 1. For each function Fy, 0 =1,...,6, the simulated data Y; = Fy(x;) +oe; fori=1,...n
are displayed. The errors €; are Gaussian normalized centered variables. The value of the test
statistics Ty and Tyg, with o = 5%, are given for each example.

£, =15 b, =25
Errors Distribution | Tom Tria Tim iye
Gaussian 0.049 0.050 | 0.046 0.051
Type I 0.048 0.072 | 0.064 0.085
Mixture 0.064 0.117 | 0.093 0.180
TABLE 2

Testing monotonicity : levels of the tests based on Ty and TG

{, =15 l, =25
F | Ty Tie | Tim Tic
Fy | 0.85 0.99 | 0.99 1.
F5 1096 096 | 099 0.99
F3 | 099 0.73 1 0.98
Fy | 0.89 0.71 ] 099 0.94
Fs | 099 0.69 | 0.99 0.87
Fs | 0.87 0.79 | 0.98 0.93
TABLE 3

Testing monotonicity : powers of the tests based on Ti v and 11, when the errors are Gaussian.
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5.3. Comments on the simulation study. As expected, the estimated level of
the test calculated for the function Fy(x) = 0 is (nearly) equal to o when the errors
are distributed as Gaussian variables.

When ¢,, = 25, the estimated levels of the tests for the Mixture and Type I errors
distributions are greater than « (see Table 2). Let us recall that when £, is large,
we are considering statistics based on the average of the observations on sets J with
small cardinality. Therefore, reducing ¢,, improves the robustness to non-Gaussian
errors distribution. This is what we get in Table 2 for ¢,, = 15. It also appears that
the method based on the local means is more robust than the method based on the
local gradients, and that both methods are more robust for the Type I distribution
that is asymmetric but not heavy tailed, than for the Mixture distribution.
Except for the function Fi, the estimated power is greater for the procedure based
on the local means than for the procedure based on the local gradients (see Table 3).
For both procedures the power of the test is larger with ¢,, = 25 than with ¢,, = 15.
However, except for the function F, the loss of power is less significant for the
procedure based on the local means.

5.4. Comparison with other works. As expected, the power of our procedure
T for the function F} is similar to that obtained by Hall and Heckman (2000).
The decreasing linear function F»(z) = —ax has already been studied by Gijbels et
al. (2000) with a = 30. They get an estimated power of 77%.

Gijbels et al. (2000) studied the function 0.075F3/0.2 with o = 0.025 and obtained
a simulated power of 98%. With the same function and the same o, we get a power
equal to one, for both procedures and for ¢, = 15 and ¢,, = 25.

Gijbels et al. (2000) and Hall and Heckman (2000) calculated the power of their
test for the function Fy(x) = 1+ 2 — aexp(—50(x — 0.5)?) for different values of
a and 0. When a = 0.45 and o = 0.05, we get a power equal to 1 as Gijbels et
al do. When a = 0.45 and ¢ = 0.1, we get a power equal to 76% when using the
procedure Ty, with £, = 25 or £, = 15. Gijbels et al. (2000) got 80% and Hall and
Heckman (2000) a power larger than 87%.

6. Proof of Theorem 1

Level of the test: we first prove that for all ¢ € 7, ¢(«) > 0. Indeed, thanks
to (33), we have

<egt>
P n—d,———— —q(a) >0
| e @) > 0)
t
<P [sup (\/n - dn& — qt(a)) > O}
teT, lle — v, &
<a<1/2

Since the random variable vn — d,, < e,t > /||e — Iy, €| is symmetric (distributed
as a Student with n — d,, degrees of freedom) we deduce that ¢ («) is positive. In



TESTING CONVEX HYPOTHESES 19

the sequel let us set
Gn =Y =y Y||/V/n —d,.
Since for all f € C and j € {1,...,p}, < f,v; >< 0 we have that for all t € 7,,,

P )\j<f,’l)j>

<ft>=Y LoD <,
25 Ao

Hence, <Y, ,t >=< f,t > +0 <e,t >< 0 < &,t > and therefore for all f € C and
o >0,

<eg,t>
Pty [Ty >0 <Ps, |su . —q(a) ] >0
o> 0 <Py s (S22 - @) >

<&t >
<P¢, {Jn < su . }
o te7, qe(a)

We now use the following lemma for non-central y2-random variables:

LEMMA 1. Forallu>0, feR” ando >0

]P)fﬁ [6n < O"LL] < ]P)OJ [6’n < U] .

This lemma states that a non-central x?-random variable is stochastically larger
than a y?-random variable with the same degrees of freedom. For a proof we refer
to Lemma 1 in Baraud, Huet and Laurent (2003).

Since 7,, C V,,, the random variables < g,¢t > for t € 7,, are independent of &, and
thus by conditioning with respect to the < €, >’s and using Lemma 1 we get

N <eg,t>
supsup Pg , [T, > 0] < Py |0y < sup
>0 feC teT, (@)

= ]P)U,l [Ta > O] = .

The reverse inequality being obvious, this concludes the proof of (36).

Power of the test: For any f € R™ and o > 0
Pfo(Ta <0) =Pfo (Vt €Ty, <Yt >< g()6n).
Setting

n(f.5) = ﬁﬁ;ﬁdmuf_nwp 102 (5/2),
we have
Pto (6n > zn(f,B)) = B/2.
It follows that for all f € R™ and o > 0,
Pt o (To <0) < tieann Py o (<Y, t >< (), (f,3) + B/2

< tler’llf" IP>f,cr (0 <&t >< Qt(a)l‘n(fﬁ)— < fvt >) +ﬁ/2
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Since ||t]| = 1, < g,t > is distributed as a standard Gaussian variable, and therefore
Pt o (To <0) < 3 as soon as there exists ¢t € 7, such that

qt(a)$n(fa6)_ < fat >§ _0671(6/2)

This concludes the proof of Theorem 1.

7. Proof of Propositions 4 and 5 Let us denote by Z,. the set of increasing
sequences of r + 1 indices in {1,...,n} that is

(39) I, = {(il, ...,i,qu), < < ir+1, ij € {1771%}}

For i = (i1,...,4r41) € Z, and v € R™ we set

1z, x; Vi,
-1
1 T i
(40) ¢i(v) = det . .
' -1
1 Lipyr =" .%‘;T+1 Vg1

For i = (4,...,1 + 1) ¢;(v) = ¢;(v) where ¢;(v) is defined by Equation (30). For
w', ..., w7 q vectors of R", we set

Gram(w', ..., w?) = det (G) where G = (< w',w’ >)1<; j<q-
Let us define
(41) Crr={f ER", VieI, ¢i(Rxf)>0}.

The proofs of Propositions 4 and 5 rely on the following lemma.

LEMMA 2.  The following equalities hold. First,

(42) Cr,r = Cp,R.

Assume that f = (F(z1), ..., F(x,))" where F is such that RF is r-th times differ-
entiable. Then for each i € I, there exists some ¢; €|x;,,x;, | such that

(43) ¢i(R*f) = T%(mq

For J C {1,...,n} let t% be defined by (22). We have

(44) —<fty>=N;' > (R fdi(a).
i€Z,NJr+

where Ny = Gram(1;,2, ...,mffl)'y!].

The proof of the lemma is delayed to the Appendix.
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7.1. Proof of Proposition 4. The result concerning C_ is clear as a function F'
is non-concave on [0, 1] if and only if for all z,y, z in [0, 1] with < y < z one has

1z F(x)
det [ Ly F(y) | >0.
1z F(z)
Let us now turn to the set K, g. First note that the n—r linear forms f — ¢; .. (Rxf)
are independent since the linear space

{(FeER", Vie{l,...n—r} ¢ (Rxf) =0},

which is generated by

l*1 l*z lac.'ar;r_l
R 7R 7""R b

is of dimension r. Second, the fact that f belongs to CNT, Rr is a straightforward
consequence of (43) since under the assumption that F' € K, g, A(F)(z) > 0 for all
x, and since the Vandermond determinants ¢;(x") are positive for all i € Z,..

7.2. Proof of Proposition 5. The result is clear in the case where C>¢. For the
other cases we use the following lemma.

LEMMA 3.  Let W be the orthogonal of the linear space generated by thev;’s for
j=1,...,p. Ift" € W satisfies for all f € C

<tF —Iwt*, f ><0
then

t* — Iy t*
*714/*67.
[ — Mt

Proof. The vector t* — Il t* belongs to the linear space generated by the v;’s
and thus one can write g* = t* — Tlwt* = >-0_, A\ju;. It remains to show that
the \;’s are non-negative. Let us fix jo € {1,...,p} and choose f7° in R" satisfying
< f?°v; >= 0 for all j # jo and < f7°,v;, >< 0 . Such a vector exists since
the v;’s are linearly independent in R". Clearly f7° belongs to C and therefore
< flo g* >= Ajo < fjo,'vjo >< 0 which constraints Aj, to be non-negative. This
concludes the proof of Lemma 3. O

Let us consider the case where C = C ». We apply Lemma 3. In this case, W is the

linear space generated by 1, we get that for all £ € {2,...,4,} and 1 <i < j < /¥, efj

satisfies HWefj = 0. Moreover ||efj|| =1 and

VfecC , <f7efj >= ij (fJf _fJ]‘f> <0.

Let us consider the case where C = C_. In this case, p = n — 2 and for all j =
1,...,n—2

vj = (41 — Tjr2)e; + (Tjv2 — v5)ej41 + (T — Tjp1)ej10.
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Since ||efjk|| =1, by Lemma 3 it is enough to prove that

(i) for all f € W, < f,ef;;, >=0,

(i) forall feC_, < f,efjk ><0.

First note that for all f € R",
(45) < f7efjk >= Niéjk (f]f - )‘fjkaf - (1= )‘fjk)ﬁlﬁ) .

Clearly it f =1 or f =z, < f,efjk >= 0 and since by definition of C_, W is
the linear space generated by 1 and @, (i) holds true. Let now f € C_. There
exists some convex function F' mapping |21, z,] into R such that F(z;) = f; for all
i =1,...,n (take the piecewise linear function verifying this property for instance).
Let i < j < k and | € J{. We set

l Ty~

Hip = —— —~— -
x x
JE Jf

Note that 0 < p!, <1 and that
1 = i ge + (1= i )2 ¢
Since F' is convex on [x1,x,] we have for all | € Jf,
F(z;) < NékF(ij) +(1- /‘ék)F("E,]ﬁ)
< pipk e+ (L= pig) f e
Note that >, g phe/ |Jf| = /\fjk. We derive from the above inequality that

1

frr==p
AV

Z F(z) < Afjkaf +(1- )‘fjk)fJﬁv
leJt

which, thanks to (45), leads to (ii).

Let us consider the case where C = C, g. By Lemma 2 we know that ér, r=CrR
and therefore for each i € Z,., the linear form f — ¢;(R* f) is a linear combination
of the linear forms f — ¢;(R*f) withi =1,...,n—r. Consequently, if w € W then
for all 4 € Z,., ¢;(R+w) = 0. For each J C {1,...,n}, t; defined by (22) satisfies
IIt7|| = 1. By applying (44) with f = w, we get < w,t; >< 0 for all w € C, r and
<w,t; >=0 for all w € W. Consequently, by Lemma 3, t; belongs to 7.

8. Proof of Proposition 1

8.1. Proof for (Tn,C) = (Ta1,C>0). We prove the proposition by applying
Theorem 1. We decompose the proof into six steps.



TESTING CONVEX HYPOTHESES 23

Step 1 For all integer N > 1, let Tﬁl(u) denote the 1 — u quantile of a Student
random variable with N degrees of freedom. We have for all u €]0, 1],

_ 1 1 2 1
(46) Ty'(uw)<14C {1og1/4 (u) + log!/? (u) exp (N log (u))}
for some absolute constant C' > 0.

Proof of step 1 Let Fl_[l\, (u) denote the 1 — u quantile of a Fisher variable with 1
and N degrees of freedom, then

Tﬁl(u) = Fl_}\,(u)

It follows from Lemma 1 in Baraud, Huet and Laurent (2003) that for all u €]0, 1],

N>1,
. 1 3N 4 1
F“{,(u) <1+ 2\/510g1/2(a) + {exp (N log (u)) — 1} :

Using the inequality exp(z) — 1 < zexp(z) which holds for all > 0, we obtain

R ORIERTE)

and since va + b < \/a+ Vb for all a > 0 and b > 0

Fiyw)<1+C {1og1/4 <i) +1log'/? (i) exp (; log (i))}

for some absolute constant C' > 0.

Step 2 Forall £ €{1,...0,}, t € T, |, we have
(47) at(a) = i (l, ua) < Cla)y/log(n).

Proof of step 2 On the one hand, by definition of ¢ (¢, .)

Ly

a:]P)Ol 1>0 Z _q1£ua)>0)§€nua7
(=1

and thus
(48) Uy = afly,.
On the other hand, for all £ € {1,...,4,} and J € J*, the random variables

—2icsCi [n—dy

Uj=
le — Ty, ell | |J]

being distributed as Student variables with n —d,, degrees of freedom, we have that

(49) P (Tf(s) > T, ([‘70;')) <Y P (UJ ST, (&‘;')) < g

Jegt
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and thus ¢; (4, u,) < Tn__ldn (ua/|T*). This inequality together with (48) and (46)
leads to (47), as |J| < 4, <n/2 and n —d, =n — £, >n/2.

Step 3 For all f = (F(x1),..., F(zy,)) with F € Hs(L),
If =Ty, e fII?

(50) -

< C(s)L*n=2.

Proof of step 8 Note that the vector

belongs to V;, cste and therefore

If =Ty, . FIP < 1F = FIP

Noting that ¢, = d,, > n/4, we get (50).

Step 4 Assuming that n > (L/o)/*, there exists some constant C' depending on
s and [ only such that

——1
Xn—dp | f~Tlv, oo FII? /0 (8/2)

(51) <cC.

n—d,

Using the inequality due to Birgé (2001) on the quantiles of non-central x? we have
that

X Lan a2 (8/2) S 0= dy +a® +2¢/(n — d, + 2a2) log(2/B) + 2log(2/).

Setting a = ||f — v, _...fll/o and using (50) we derive that

,cste

(52) XoLay a2 (8/2)/(n = dy) < C(B,5).

Step 5 Under the assumption of step 4, for all t € 7,,,

ve(f,8) < w7\/log(n)o,

for some constant x* depending on «, (3, s only.
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Proof of step 5 We recall that

1 ——1 -1
v (f,B) = <qt(a)m\/xn—dm|f—Han|2/(72 (8/2) + @ (5/2)> ag.
We conclude by using the elementary inequality

>1(8/2) < \/210g(2/P),

by gathering (47) and (51).
We conclude the proof with this final step.

Step 6 There exists a constant x depending on «, 8 and s only, such that if n
large enough, and F’ satisfies

53 i F < - ny
(53) Jnin (x) < —rp
then, there exists t* € 7, such that
(54) <.f7t* >Z ’Ut*(faﬁ)'

Proof of step 6 Since F € Hs(L), under Assumption (53), there exists
j€{1,2,...,n} such that

F(j/n) < —kpp + Ln™".

For n large enough, Ln=* < kp, /2, hence F(j/n) < —kpp/2.
Let us take k satisfying

g _ (ZH*)QS/(1+2S)

where k* is defined at step 5.
Let us define

(55) o(n) = l(f{f)”] ,

and J as the element of J%"™) containing j. Note that for n large enough, l(n) €

{1,...,6,}.
Now, for all k € J, since F € H,(L)

fe = F(zy) = —F(x;) + F(zj) + F(xr)
< —Kpn/2 + Ljon — z,l°
< —Kpn/2+ Le(n)~*°

IA

—kpn /4
and thus, by taking t* € 7,, ; as
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we derive that

<ft >=—Jfs
> /| T|kpn /4.

By construction of the partition of the data, we have for all positive integers p <
q < r that

(56) H <, < m +1.

q

For all j € {1,...,4(n)}, J = Jf(") (see (8)) is a union of |IZ ml = [Ga/t(n)]
disjoint sets of cardinality at least [n/¢,]. Hence

51 2 m [M * 5w

since [z] > x/2 for all x > 1. Therefore we get

n Pn 1/s
> Iy )
(57) 2 n/(46m)) > 5 (522
using (55).
This implies that
e T R\ V29 .
>V (2 >
< f,t* > (4L) Kpn > K oy/log(n)

by definition of k.

8.2. Proof for (Ta,C) = (Tu,z2,C ). We follow the proof of Theorem 1 for
(Tw,C) = (Tw,1,C>0) : the results of steps 1 to 5 still hold. The proof of step 2
differs in the following way: Equation (49) becomes

IN

<egel > _ .
Z P ! > T_1 v < Uy,
1<i<j<t le — v, ...&ll/(n—£,) | |

We conclude the proof of step 2 by noticing that for all ¢ € {1,...,4,}, |’Tng2| is
bounded from above by n?/4.

Step 6 For n large enough, under the assumption that

(58) Gmf |1 — Glloo = Kpn,

there exists t* € 7, 2, such that <t*, f >> v-(f, 5).
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Proof of step 6 Let us first remark that

o B
o IF=Gla < sup_(F(a)= F()).

0<z<y<1

Indeed, let G* € K ~ be defined as

G*(y) = Ozug F(x).
<z<y

Then,

it |[F=Glle < IF =Gl = _sup_(F(z)~ F(y))
ex 0<z<y<1

Hence, under Assumption (58), there exists < y such that F(z) — F(y) > kpn.
Since F' € H (L), if |z; —z| < 1/n and |z; —y| < 1/n, then

F(z;) — F(xj) > kpp —2Ln"° > kp, /2

for n large enough. Hence, there exists 1 < i < j < n such that F(z;) — F(z;) >

Kpn 2.
w-[(2)']

Let us set

which belongs to {1, ..., £,} at least for n large enough. Let I and J be the elements
of ™) satisfying i € I and j € J.

Arguing as in step 6 of Section 8.1, since F' € H(L),

f1 > F(x;) — Lé(n)™* and f; < F(zj)+ Lt(n)~*
and we deduce that
f1—f7 > Kpn/2 —2LL(n)"° > Kp, /4.

This implies that there exists 1 < i* < j* < {(n) with I = J,. ‘M) and J = Je(n)
such that
l(n {(n r r {(n) KPn
z(]z,f >= Nz*(_]*) (f[ - fj) Z Nz*(j*)T
Using Inequality (56), and since ¢, = [n/2], we have that for all K € J4™),

2Ji] =wi=s (] )
[
IEar

We now conclude as in the proof of step 6 by taking t* = ee

which implies that

(n
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8.3. Proof of Theorem 1 for (Ty,C) = (Ty,3,C_). We follow the proof of The-

orem 1 for the case (T,,C) = (Ty,1,C>0): the results of steps 1 to 5 still hold.
Nevertheless, the proof of step 2 differs in the following way: Equation (49) be-

comes
P Tie) > T} Yo
( 3(5) n—dy ('7;5,3

<e el > _ u
< P L > 7T 1 X < Uq-
Z <||E — My, ..&ll/(n— ) = "\ T, :

1<i<j<k<t

We conclude the proof of step 2 by noticing that for all ¢ € {1,...,4,}, |Trf’3| is
bounded from above by n?/8.

Step 6 For n large enough, under the assumption that
59 inf ||F —Gleo >

(59) Al e = Kpn,

there exists t* € 7, 3 such that

< t*a f > Ut~ (faﬁ)
Proof of step 6 We decompose the proof into three parts.

Part 1: For n large enough, and all F' € H(L) satisfying (59), we have
inf - 00 > n 4a
Jof I = gllee 2 Kpn/

with f = (F(z1),. .., F(zn))'.

Proof of Part 1 We first prove the following inequality :
inf ||[F— <2Ln* inf — .
(60) B IF = Glleo <2Ln™° +3 inf |If — gl

Part 1 derives obviously from this inequality.

For all g € C_, we consider the function G4 € K_ defined as the piecewise linear
function such that for all i Gg(x;) = g; and such that Gg4 is affine on the interval
[0, 22]. Then infgex_ [|[F — Glloo < ||F — Gglloo. Moreover, by setting xo = 0 and
go = GQ(O)’

[ = Gglloo

= s sw  |F() - Gy()l
i€{1,...,n} z€[x;_1,74]

< sup sup  |F(2) = F(x;) + F(x:) — Gg(2:) + Gg(wi) — Gg()
i€{l,...,n} x€[x;—1,2;)

SIn*+|f—gllo+ sup |gi-1 — gil

i€{l,....,n
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since SUp, ey, , 4,1 |Gg(Ti) —Gg ()| = |Gg(2;) —Gg(xi-1)| (G is linear on [z;_1, z;]).
In addition, noticing that |g1 — go| = |g2 — ¢1],

sup  |gi —gi—1| < sup  |gi — fi + fi — fii1 + fic1 — gi-1]
ie€{1,...,n} i€{2,...,n}

<2|f = glloo + Ln""
This concludes the proof of (60).

Part 2: for all f € R,

. T — Ty Tj — T4
61 f - < a - o
(61) Jof 1f —gllo < L <fg P fi po— fk)+,

where for z € R, ()4 = 21,50 denotes the positive part of x.

Proof of Part 2 Let us define g* € C_ as follows: g7 = f1 and fori =1,...,n — 1,
fe — 97

k>ip(xipt1—x;).
J?kfl'i) }(’L+1 7,)

st =i +int {
In words, if Fj;, denotes the piecewise linear function on [z1, 2] taking the value
fi at x;, then g* is the vector (G}, (z1), ..., G};,(xr))" where G, is the largest
convex function satisfying for all u € [z1,z,] Gj;,(v) < Fiin(u). Note that the
function Gj;,, is also piecewise linear and satisfies that for all j € {1,...,n} such

that Fin(x;) — G}y, (z5) > 0, there exist 1 <1¢ < j < k < n such that

T — Ty Tj — Tg

Fiin ;) = Gon (25) = f5 = — i = 0 fe
Consequently,
I£ = 9"lloo = max_(Fin(ey) = Giiu(a;))
< max (fj—xk_xjfi—xj_xifk>
1<i<j<k<n T — T4 T — X4 +

Part 8 Let ' = k/4. We set,

L(n)=1+

6L \/*
<"5/pn> .

If there exist 1 <1 < j < k < n such that

Tp — T T — x4
fi— Lfi — L——fr > K'pn
T — T4 T — X4

then there exist [ = Jf*(n), J = Jfﬁ") and K = J,fi") with ¢* < 5% < k¥, such that

= T —Tj = Tj—X

(62) fr—

—— L fre > W pa /4.
T — X T —XJ



30 Y. BARAUD, S. HUET, B. LAURENT

Proof of part 3 Note that

6L 1/s
63 (n) >
(63) = (5-)

and that for n large enough ¢(n) € {1, ...,4,}.
In the sequel, we shall use the following inequalities

1
— 7 < _
4(n) and rl%ag( = Tp| < 20(n)

64) VEe{l,JJK —ay| <
( ) € { IE) }a lrﬁ%)é ‘xl i | =
and the following notations

N A T
Ty — T TK —T1

We bound A from below as follows:
A=fi=Ai— 1 =Nfk
+fr=fi M = AT+ =N fe — (1= N fk

> kpn+ f1 =i+ A =Nfi =M1 = fi) + A =N fi — (1= N(f& — fx)

> kpn —2max {|fr — fil | f1 = fi] . [ Fxc = fe|} = | A= AL 1fi = fal -
Let us now bound from above the quantities

|fi = ful, max {|f1 — fil .| fs = Fil, |fx = fel}, A=A

Since F' € H,(L), we have that
(65) [fi = fil = |F(2:) = F(axy)| < Ll — i
and by using (64) that
(66) max {|fr — fil . |fs = f;
For each (I, E) € {(i,I),(j,J), (k, K)}, let

)

N fx = fel} < Le(n)—>.

hi =2zp — i,

we have

3= T — T+ hy —h; _ (1+(hk —hj)/(xk—xj))
T — X + hy — h; 1+(hk*hz)/(xk*$1)
_ (b — hy) /(@i — @) — (he — hi) [ (z — ;)
=1+ T+ (. — o) (e — ) )
and as from (64) max {|hx — h;|, |hx — hi|} < £(n)~!, we deduce that
(hi = hy)/(x — i) — (hie — ha) /(2h — T0)
1+ (hk — hl)/(mk — 1’1)

= A=A
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where
1

o ROIEEE)

In order to bound ¢ from above, note that since F' € H,(L),
Kpn < fi = Afi = (1= N fk
= A(F(z5) = F(xi) + (1= A) (F(x;) — F(x))
< Lmax {|z; — zi|°, |z — 2]}
and therefore
xp — x;| > max {|z; — x|, |zr — 2|}
= {max {Ja; — il oy — 5"}
()"

Thus, we deduce by (63) and the fact that s €]0, 1] that

LY/ 1
69 < <
o = Won ot = 6
By gathering (65), (66), (67), we get
A > K p, —2L6(N)"° — 2L1 f 5\ij —x;]°.
By using (68), (69) and (63) we finally get
5175
A = k'p, —2L0(n)"° —2LL(n)~"° T3
1 1
> K/ i
> fi-3 (14 =) )

> K pn /4.
Let us now conclude the proof of step 6. Under the assumption that
inf [|f —glloc > 'pn
geC_
we know from (61) that there exists ¢ < j < k such that

Ty — T Tj— T
fi— Lfi = L fk = Kpn,
LTk — Tj Tk — Ti

and from (62) that there exists [ = J.\"”, J = J" and K = J,") with i* < j* <
k* such that

¢ ¢ = ¢ = ¢ = N'Z(T'L)k K pn
< Fref e >= N (B = NS i = (= NS i) = =
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Noting that for all £ € {I,J, K}

Ly 4y, n
FEl>2 > >
122 5] = 2 iy
and that ||ef£?2k*||2 <1/I|+1/|J| 4+ 1/|K|, we have that

1 n

N > )
IR AN [T K TV 12¢(n)

As €(n) < 2(12L/(K'pn))"/* at least for n large enough, we deduce that

/ 1/s
N o)
watkr =\l 8(12L)1/s

Consequently, we get

n

£(n) s)/s
< f7ei*j*k* > 2 \/(”/va)(1+2 / 121/5128L1/5

> r"y/log(n)o,
for k' suitably chosen. It remains to take t* = efE?Zk* € 7, 3 to complete the proof.

9. Proof of Proposition 3 . The proof of Proposition 3 is divided into two
parts. In Section 9.1 we show that if (24) or (25) hold, then Pr, (T, > 0) > 1 — (.
The second part of the proposition is shown in Section 9.2.

9.1. Proof of the first part of Proposition 3. We only prove the result under
Condition (24), the proof under Condition (25) being almost the same. By combin-
ing (43) and (44) we obtain that if F' is such that RF' is r-th times differentiable,
then for all J C {1, ...,n} there exists a sequence {c,-, 1€l N J”‘l} verifying both
¢ €] minje s xj, max;jecy ;[ and

X _ AF)(¢ ,

(70) S R D S )
i€Z,.NJr+1 '
where N; = Gram(1,,z, ...,a;ffl)'yj. Let i* € J such that
inf A(F)(r:) = ACF)(r:-).

We have for all ¢ €]z, 27,

A(F)(e) < AF) (i) +w(hy).
Besides, by taking f = (z7/R(z1), ..., 2] /R(xs))" in (44) we get that

1 z — Hy,z7|?

o Z d)f(xr) _ || J Xy J” )

N,
T iezr,nirh VI
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Now, by using (70) and (24) we deduce that
< f,t5>

> AOESTL Y g
ieZ,.NJr+1
T o__ |2
= — (A(F)(zi+) + w(hy)) W
> v (f,B),

and we conclude thanks to Theorem 1.

9.2. Proof of the second part of Proposition 3. In order to prove this second
part, we apply the first part of the proposition.

Evaluation of v (f, 5). Let us prove that for all J € U, 7@,

vy (f, B) < k"y/log(n)o

where k* depends on «, (3, s, r only. We use Steps 1 to 5 in the proof of Proposition 1.
For Steps 1,2 and 5 the proof is similar as in the proof of Proposition 1.

Step 3. For all f = (F(z1), ..., F(x,)) with F") e H,(L),

If — Iy, f?
n

(71) < C(s,r)LPn =20+,

Proof of step 8 We recall that V,, is the linear space generated by
{1,,25,...35,J € T} .
Note that the vector
t, r _
f= > <F(xJk)1Jk +) %(@u - xJlik)l>
k=1 =1
belongs to V;,. Hence, using that F(") € H,(L),

If =Ty, fII?
<|If - fI?
Ln xT; ul Upr—1 2
:ZZ / / (F(r)(UT.)—F(T)(i‘Jk)> duy ... duy
k=14i€J} u1==Ty, JU2=Tyy Ur==ZJ,
Ly
< Z Z [20720+)
k=1ieJy

< C(S, T)L2n172(r+s)

since £, > n/(4(r + 1)) using that [x] > x/2 for x > 1.
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Step 4. Assuming that n > (L/o)"/ (") there exists some constant C' depending
on s,r and S only such that

1
X, If 11y, f12/02(B/2)
n—dy,

(72) <C.

The proof is similar to the proof of Step 4 in Proposition 1 by using (71).

Evaluation of v;. Let us prove that there exists some constant C' depending on
r only such that, for J such that |J]| >r+1,

2r+1
2 /|
Y 2 c n2r .
Since for all 4, x; = i/n, by translation
2 r T2
vy = &l — Wx, 27|
7]
1 . . . 1) 2
= min E (ZT—ao—alz—...—a,«,lzT 1) .
’I’LQT aQ,-.-Ar—1 % 1
i—

By setting for all j € {0,...,r — 1} a; = b;|J|"77, we have

|J] )
min E (i’”*ao—alif...faT_liT*l)

i=1

1 |J] i r i r—1 2
= [ J|2r+1 ; _— — | —bp—... = b1 | — .
I, min J|;<(|J|) 0 1(|J> >

Since

converges as |J| — oo towards
! 2
min / (mr —bg—...— bT_lxr_l) dx,
b(Jv'--abel 0

which is positive, we obtain that there exists some constant C' > 0 such that for |J]|
large enough,

‘J|2r+1

G=C

n2r

Moreover, since for |J| > r+ 1, 42 > 0, the above inequality holds for |J| > r + 1,
possibly enlarging C.
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Evaluation of w(hy). Let J € J®. Since F(") € H,(L), and since h; defined in
Theorem 3 satisfies 0 < hy < 1/¢,

wihy) = sup  |FU () = FU(y)|

|z—y|<h,

< Les.

Conclusion. Let us prove in conclusion that if

73 inf FO)(z) < —pp,
(73) Lot () < —pn,

then (24) holds for some J € Uﬁ;lj(f).
Since, F(") € H,(L) under (73), there exists j € {1,...,n} such that
F(T)(x]) < —Pn,r Ln™* < _pn,r/2

for n large enough.
Let

am:l(ﬂﬁ2m>MH%Hj.

For n large enough, £(n) € {1,...,£,}. Let J be the element of J“(™) containing
j. Note that |J| > n/(2¢(n)) at least for n large enough. This implies that, for n
large enough,

> oy ey

2
’YJEC n2r —

It follows that

*

KL s ()
o Vlog) = e o Lit(m)

1427 <02 log(n) ) T

< gl T+2r+2s
- n

v (F28) 2 + w(hy) <
YJ

for some constant x depending on «, 3, s, . This concludes the proof of the propo-
sition.

10. Appendix

10.1. Proof of Lemma 2.
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Proof of (42). Clearly, on has C~T,R C Cr.r. We prove Cp g C C;VR by using repeat-
edly the following claim.

Cramm 1. Let 0 < up < ug < oo < Upg1 < Upgo < 1 be an increasing sequence
of r + 2 points of [0,1]. Let vy, ..., 42 be real numbers verifying that

1 uy --- ugfl Vg
r—1
o 1 uz - ug V3
Dl(l,uT+2,...,uT+2,UT+2) = det . . . . . Z 0

r—1
Ltpgg - upip Vo

and
1 w ~-u§_1 U1
-1
1 wg ---uy vy

D'r+2 = det . . . . . > 0.
Lpgy -+ U3 ] Vg
Then for all j € {2,...,7 + 1}
1w ---ul " v
1 ’L[/j71 .« ..

r—1 _
Dj(laur+27 ~-~7u7'+27vr+2) = det 1 Ujpp

1
Ttupqo - upyg Urg

Proof of the Claim. For real numbers t1, ..., t,, we set vand(¢1, ..., t,-) the Vandermond
determinant
IRTEE fl“—l
vand(ty,...,t,) =det [ 1 1 1
Tt - tr=t

"1 v;)". Let us fix

and for j = 1,...,r + 2 we denote by u; the vector (1,u;, ey U

j €{2,...,r+ 1}. By expanding the determinant
Dj(l, UT_‘_Q, veny U:J_r%, UT+2)
by its last column we get that if j € {2,...,7},

-1
Dj(1, g0,y Uy 5, Vrg2) = Vpgovand (s, .o, Uj 1, Uji1, ooy Upg1)
-1
+ Dj(l,u7-+2, ...,u;+2, ),
andif j=r+1

-1 -1
Dy (1, g2,y Uy 5, Vpp2) = Upyovand(uy, ..., ) + Dypg1 (1, U g2, 0y, 5, 0).
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Since the u;’s are increasing, the Vandermond determinants are positive and there-
fore D; (1, up42, ..., u:jr%, Up42) s increasing with respect to v,.42. On the other hand,
since by assumption

-1 -1
D1(1,tpq2y e Uy {5, Vpg2) = Upyovand(ug, ..., Upy1) + D1 (1, trg2, oy, 5,0) >0
we have that

r—1

D1(17UT+27"'aur+2’0) *

Upyo 2 — =v,
vand (ug, ..., Ur41)

and deduce that
—1 —1
Dj(1,upy2, sty 5, Urg2) > Di(1,Up g0, uy 5, 0%).

It remains to show that Dj(l,’lty-_l,_g,...,u:__,’_%,’l)r_i_g,v*) > 0. When v,49 = v* we
have that D1(1, w2, ...,u:;%,v*) = 0 and therefore u* = (1, U412, ...,uﬁ;%,v*)’ is
a linear combination of us,...,u, 1. Let us denote by A\ the coordinate of u* on uy.
By Cramer’s formula we have that for k € {3,...,r}

vand (g, ..., Ug—1, Ugt1y ey Upt2)
Vand (Ug, oo, Ug—1, Ukt1y ooy Ur g1, Uk)

- (-1)

Ak =

p—popr VANd (U, ooy U1, Uk 15 vy Urg2)
vand (ug, ..., Ur41)

)

r—q vand(usz, ..., Ur42) vand(ug, ..., Up, Ur12)

)\2 = (71) and )\r+1 =

vand(ug, ..., Ury1) vand(ug, ..., Ury1)

Hence, the positivity of the Vandermond determinants implies that ); is of the sign
of (—=1)"=7*1, Since u* = Z;i; Ak, by linearity of the determinant

r—1 | % r—1
Dj(l,ur+2,...,ur+2,v ) :Aij(l,Uj,...,Uj ,’Uj)

= (—1)T_j+1>\jDr+1

and thus, as D41 > 0, D;(1, upq2, ...,u?;%,v*) > 0.
Proof of (48). For = € [x;,,2;,,,] let us set

R R(z)F ()
1 oxy 20 ' R(xi,)F(zy,)

i2

h(z) = det
r—1
1 Lipgr " Ti g R(xiT+1)F(xiT+1)
1 = -zt g
. r—1 r
1 x;, b
—Xdet . )
X r—1 _r
1 Tirg Lipsr Tirga
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where A is such that h(z1) = 0. Since h is r-times differentiable and satisfies h(z;,) =
h(zxi,) = -+ = h(xjr41) = 0, there exists some ¢; €|x;,,z;, ., [ such that

00 - 0 A(F) ()
1wy, -al b R(xi,)F(zs,)

1 Lipgq " xril R(l.ir+l)F(xir+1)

Trg1
o 0 --- 0 r!
. ... T_l T
1 z, x;, x5,
—Adet | . . . . . )
. ... T71 T
1 xlr+l mir+1 Tpt1

leading to A = A(F)(¢;)/r!. We get the result by substituting the expression of A
in the equality h(x1) = 0.
Proof of (44). We start with the following claim.

CLAIM 2. Let W be a linear subspace of RF of dimension q € {1,....k — 1} and
{w?, ..., w?} a basis of W. Then for all u,v in R*

Gram(w?, ..., w?) < u, (I — ) >

1 q ) ... q )
Wi o Wy Uiy Wi, w;, o Uiy
= g det det S
o Wit igt1 Yig+1 Wigs Wigt1 Vigs
(74)
where

Gram(w', ...,w?) = det (G) with G = (< w’,w’ >)1<;<q-

We conclude thanks to the claim by taking u = Rx f, v =", — Iy, 2", W = X
and k = |J].

Proof of the Claim. For z € R¥, let B(z) the k x (g + 1) matrix

1 q
wl...wl z1

koot
We obtain the result by computing

<whw'> - <whw! ><w;,v>

det (B(u)' B(v)) = det

<wlw! > <wlw! > <w,v>
<u,wl> - <uwwl!> <uv>
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by two different ways. The first way is direct: since Il v is a linear combination of
the w?’s we have

det (B(u)' B(v))
<wlw! > <whw! ><w (I -Ty)v >

— det : : : :
<wlw! > <wlw! ><wi (I-Ty) >
<u,w'> - <u,w! > <u, (I Ty >
<whw' > - <w',w! > 0

= det : ' :
<wdw' > <wl,w?! > 0
<u,w!'> o <wuw? > <u, (I -y >

= Gram(w', ..., w?) <u, (I — Iy )v > .
The other way is to use the Cauchy-Binet formula (see Horn and Johnson (1991)):
we calculate det (B(u)'B(v)) as a function of the (¢ + 1) x (¢ + 1) minors of the
matrix B(u) and B(v) which leads to the right-hand side of (74) and concludes the
proof.

10.2. Proof of Proposition 2.
Case K = K>o. Let Pp be the law of Y. under the model defined by Equation (16).
Let ® be a test of level a of hypothesis F' € K>g. Let us define the test ¥ of
hypothesis “F = 0” against “F # 07 which rejects the null if &(Y) = 1 or if
®(—Y) = 1. Since 0 € K>( and since

Po(B(Y) = 1) = Po(@(~Y) = 1) < a,

the test W is of level 2ar < 3av. Let p,, (P, F) be the A-uniform separation rate of ®
over F. It is enough to show that

pn(®, F) > pn(0,F).

To do so, we show that the || ||so-uniform separation rate of ¥ over F is not larger
than p, (®, F) which means that for all ' € F such that ||F||ec > pn(®P,F) we have
Pr(R(Y)=1)=21-p.

Let F € F. If ||Flloo > pn(®,F) then

cither A(F) = sup (—F(2)lp@)>0) = pn(®,F) or A(=F) > p,(®,F).
z€[0,1]

In the first case, by definition of p,(®,F) we have Pp (®(Y)=1) > 1 — 3 and
consequently Pp (¥(Y) = 1) > 1 — (. Note that in the other case the same is true
since by symmetry of the law of Y — F

Pr(@(~Y) =1) = P_p (@(Y) = 1).
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Case K = K ~. We argue similarly. Let ® be a test of level a of hypothesis F' € K .
We also consider the test @ of level « of “F = 0” against “F # 0” which rejects the

null when /n ‘ fol dY(t)‘ is large enough (namely, larger than the 1 — o quantile of

a standard Gaussian random variable). Finally, we define the test ¥ of hypothesis
“F = 0” against “F # 07 which rejects the null if ®(Y) =1 or ®(-Y) =1 or
®'(Y) = 1. Since 0 € K _», we have that the so-defined test ¥ is of level 3.

Some easy computations shows that there exists some constant x depending on «
and 3 only such that ® rejects the null with probability not smaller than 1 — 3 as

soon as ’fol F(t)dt‘ is larger than ko /y/n (the sum of the 5 and 1 — & quantiles of
a standard Gaussian suits for ). On the other hand, note that

A(F) = swp_(F(s) - F(t)

and thus, by definition of the A-separation rate, p, (®,F), of ® over F, ¥ rejects the
null with probability not smaller than 1 — 3 under all alternatives F' € F satisfying

max{A(F), A(—F)} = & sup |F(t) — F(s)| > pn(®, F).

2 o<t,s<1
1
/ F(s)ds
0
1

/0 F(s)ds
/01 F(s)ds

U rejects the null with probability larger than 1 — § under all alternative F such
that

Therefore, since

[F[loe < sup
tefo0,1]

+

F(t)—/o F(s)ds

1
< / sup |F(t) — F(s)|ds+
0 tefo,1]

< sup |F(t)— F(s)|+
t,s€[0,1]

[Flloc > 2pn (P, F) —i—/ia/\/ﬁ,

and the result follows.
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