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In this paper we propose a general methodology, based on multiple

testing, for testing that the mean of a Gaussian vector in Rn belongs to a

convex set. We show that the test achieves its nominal level, and charac-
terize a class of vectors over which the tests achieve a prescribed power.

In the functional regression model, this general methodology is applied to

test some qualitative hypotheses on the regression function. For example,
we test that the regression function is positive, increasing, convex, or more

generally, satisfies a differential inequality. Uniform separation rates over

classes of smooth functions are established and a comparison with other
results in the literature is provided. A simulation study evaluates some of

the procedures for testing monotonicity.

1. Introduction.

1.1. The statistical framework. We consider the following regression model:

Yi = F (xi) + σεi, i = 1, ..., n(1)

where x1 < x2 < . . . < xn are known deterministic points in [0, 1], σ is an unknown
positive number and (εi)i=1,...,n is a sequence of i.i.d. unobservable standard Gaus-
sian random variables. From the observation of YYY = (Y1, . . . , Yn)′, we consider the
problem of testing that the regression function F belongs to one of the following
functional sets K:

K≥0 = {F : [0, 1] → R, F is non-negative }(2)

K↗ = {F : [0, 1] → R, F is non-decreasing }(3)

K^ = {F : [0, 1] → R, F is non-concave }(4)

Kr,R =
{

F : [0, 1] → R, ∀x ∈ [0, 1],
dr

dxr
[R(x)F (x)] ≥ 0

}
.(5)

In the above definition of Kr,R, r denotes a positive integer and R a smooth, non-
vanishing function from [0, 1] into R. Choosing the function R equal to 1 leads to
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test that the derivative of order r is positive. Taking r = 1 and choosing a suitable
function R leads to test that a positive function F is decreasing at some prescribed
rate. It is also possible to test that F belongs to some classes of smooth functions.
These testing hypotheses will be detailed in Section 3.
The problem is therefore to test some qualitative hypothesis on F . We shall show
that it actually reduces to testing that the mean of the Gaussian vector YYY belongs
to a suitable convex subset of Rn. Denoting by <,> the inner product of Rn, this
convex subset takes the form

C = {fff ∈ Rn, ∀j ∈ {1, ..., p} < fff,vvvj >≤ 0} ,

where the vectors {vvv1, ..., vvvp} are linearly independent in Rn. The aim of this paper
is to present a general methodology for the problem of testing that fff belongs to
C and to characterize a class of vectors over which the tests achieve a prescribed
power. This general methodology is applied to test that the regression function F
belongs to one of the sets K. For the procedures we propose, the least-favorable
distribution under the null hypothesis is achieved for F = 0 and σ = 1. Con-
sequently, by carrying out simulations, we easily obtain tests that achieve their
nominal level for fixed values of n. Moreover, we show that these tests have good
properties under smooth alternatives.

For the problem of testing positivity, monotonicity and convexity, we obtain tests
based on the comparison of local means of consecutive observations. A precise de-
scription of these tests is given in Section 2. For the problem of testing monotonicity,
our methodology also leads to tests based on the slopes of regression lines on short
intervals, as explained in Section 3.1. These procedures, based on “running gradi-
ents”, are akin to those proposed by Hall and Heckman (2000). For the problem of
testing that F belongs to Kr,R with a non-constant function R we refer the reader to
Section 3.2. We have delayed the description of the general methodology for testing
that fff belongs to C to Section 4. Simulations studies for testing monotonicity are
shown in Section 5. The proofs are postponed to Sections 6 to 10.

1.2. An overview of the literature. In the literature, tests of monotonicity have
been widely studied in the regression model. The test proposed by Bowman et
al. (1998) is based on a procedure described in Silverman (1981) for testing uni-
modality of a density. This test is not powerful when the regression is flat or nearly
flat as underlined by Hall and Heckman (2000). Hall and Heckman (2000) proposed
a procedure based on “running gradients” over short intervals for which the least-
favorable distribution under the null, when σ is known, corresponds to the case
where F is identically constant. The test proposed by Gijbels et al. (2000) is based
on the signs of differences between observations. The test offers the advantage not to
depend on the error distribution when it is continuous. Consequently, the nominal
level of the test is guaranteed for all continuous error distributions. In the functional
regression model with random xi’s, the procedure proposed by Ghosal et al. (2001)
is based on a locally weighted version of Kendall’s tau. The procedure uses a kernel
smoothing with a particular choice of the bandwidth and as in Gijbels et al. (2000)
depends on the signs of the quantities (Yj − Yi)(xi − xj). They show that for
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certain local alternatives the power of their test tends to 1. Some comments on
the power of our test under those alternatives can be found in Section 3.3. In
Baraud, Huet and Laurent (2003) we propose a procedure which aims at detecting
discrepancies with respect to the L2(µn)-distance where µn = n−1

∑n
i=1 δxi

. This
procedure generalizes that proposed in Baraud, Huet and Laurent (2003) for linear
hypotheses. A common feature of the present paper with these two lies in the
fact that the proposed procedures achieve their nominal level and a prescribed
power over a set of vectors we characterize. In the Gaussian white noise, Juditsky
and Nemirovski (2000) propose to test that the signal belongs to the cone of non-
negative, non-decreasing or non-concave functions. For a given r ∈ [1,+∞[, their
tests are based on the estimation of the Lr-distance between the signal and the
cone. However, this approach requires that the signal have a known smoothness
under the null. In the Gaussian white noise model, other tests of such qualitative
hypotheses are proposed by Dümbgen and Spokoiny (2001). Their procedure is
based on the supremum over all bandwidths of the distance in sup-norm between
a kernel estimator and the null hypothesis. They adopt a minimax point of view to
evaluate the performances of their tests and we adopt the same in Sections 2 and 3.

1.3. Uniform separation rates and optimality. Comparing the performances of
tests naturally arises in the problem of hypothesis testing. In this paper, we shall
mainly describe the performances of our procedures in terms of uniform separation
rates over classes of smooth functions. Given β in ]0, 1[, a class of smooth functions
F and a “distance” ∆(.) to the null hypothesis, we define the uniform separation
rate of a test Φ over F , denoted by ρ(Φ,F ,∆), as the smallest number ρ such that
the test guarantees a power not smaller than 1 − β for all alternatives F in F at
distance ρ from the null. More precisely,

ρ(Φ,F ,∆) = inf {ρ > 0, ∀F ∈ F , ∆(F ) ≥ ρ ⇒ PF (Φ rejects ) ≥ 1− β} .(6)

In the regression or Gaussian white noise model, the word “rate” refers to the
asymptotics of ρ(Φ,F ,∆) = ρτ (Φ,F ,∆) with respect to a scaling parameter τ
(the number of observations n in the regression model, the level of the noise in the
Gaussian white noise). Comparing the performances of two tests of the same level
amounts to comparing their uniform separation rates (the smaller the better). A
test is said to be optimal if there exists no better test. The uniform separation rate
of an optimal test is called the minimax separation rate. In the sequel, we shall
enlarge this notion of optimality by saying that a test is rate-optimal over F if its
uniform separation rate differs from the minimax one by a bounded function of τ .
Unfortunately, not much is known on the uniform separations rates of the tests men-
tioned in Section 1.2. The only exception we are aware of concerns the tests proposed
by Dümbgen and Spokoiny (2001) and Juditsky and Nemirovski (2000) in the Gaus-
sian white noise model (with τ = 1/

√
n), and Baraud, Huet and Laurent (2003) in

the regression model. The rates obtained by Juditsky and Nemirovski (2000) are
established for the problem of testing that F belongs to K∩H where H is a class of
smooth functions. In contrast, in the paper by Baraud, Huet and Laurent (2003) and
Dümbgen and Spokoiny (2001), the null hypothesis is not restricted to those smooth
functions belonging to K. For the problem of testing positivity and monotonicity,



4 Y. BARAUD, S. HUET, B. LAURENT

Baraud, Huet and Laurent (2003) established separation rates with respect to the
L2(µn)-distance to the null. For the problem of testing positivity, monotonicity and
convexity, Dümbgen and Spokoiny (2001) considered the problem of detecting a
discrepancy to the null in sup-norm. For any L > 0, their procedures are proved to
achieve the optimal rate (L log(n)/n)1/3 over the class of Lipschitz functions

H1(L) = {F, ∀x, y ∈ [0, 1], |F (x)− F (y)| ≤ L|x− y|} .

The optimality of this rate derives from the lower bounds established by Ing-
ster (1993)[Section 2.4] for the more simple problem of testing F = 0 against
F 6= 0 in sup-norm. More generally, it can easily be derived from Ingster’s results
(see Proposition 2) that the minimax separation rate (in sup-norm) over Hölderian
balls

Hs(L) = {F, ∀x, y ∈ [0, 1], |F (x)− F (y)| ≤ L|x− y|s} with s ∈]0, 1](7)

is bounded from below (up to a constant) by
(
L1/s log(n)/n

)s/(1+2s)
. In the re-

gression setting, we propose tests of positivity, monotonicity and convexity whose
uniform separation rates over Hs(L) achieve this lower bound whatever the value
of s ∈]0, 1] and L > 0. We only discuss the optimality in the minimax sense over
the Hölderian balls Hs(L) with s ∈]0, 1] and L > 0. To our knowledge, the mini-
max rates over smoother classes of functions remains unknown and it is beyond the
scope of this paper to describe them.
For the problem of testing monotonicity or convexity, other choices of distances
to the null are possible. For example the distance in sup-norm between the first
(respectively the second) derivative of F and the set of non-negative functions. For
such choices, Dümbgen and Spokoiny also provided uniform separation rates for
their tests. In the regression setting, the uniform separation rates we get coincide
with their separation rates on the classes of functions they considered. We do not
know whether these rates are optimal or not neither in the Gaussian white noise
model nor in the regression one.

2. Tests based on local means for testing positivity, monotonicity and
convexity. We consider the regression model given by (1) and propose tests of
positivity, monotonicity and convexity for the function F . We first introduce some
partitions of the design points and notations that will be used throughout the paper.

2.1. Partition of the design points and notations. We first define an almost
regular partition of the set of indices {1, . . . , n} into `n sets as follows: for each k
in {1, . . . , `n} we set

Jk =
{

i ∈ {1, . . . , n}, k − 1
`n

<
i

n
≤ k

`n

}
and define the partition as

J `n = {Jk, k = {1, ..., `n}} .
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Then for each ` ∈ {1, . . . , `n}, we make a partition of {1, . . . , n} into ` sets by
gathering consecutive sets Jk. This partition is defined by

J ` =

J`
j =

⋃
j−1

` < k
`n
≤ j

`

Jk, j = 1, . . . , `

 .(8)

We shall use the following notations.

• We use a bold type style for denoting the vectors of Rn. We endow Rn with
its Euclidean norm denoted by ‖ ‖.

• For vvv ∈ Rn, let ‖vvv‖∞ = max1≤i≤n |vi|.

• For a linear subspace V of Rn, ΠV denotes the orthogonal projector onto V .

• For a ∈ R+, D ∈ N\{0} and u ∈ [0, 1], Φ̄−1(u) and χ̄−1
D,a2(u) denote the

1 − u quantile of respectively a standard Gaussian random variable and a
non-central χ2 with D degrees of freedom and non-centrality parameter a2.

• For x ∈ R, [x] denotes the integer part of x.

• For each Rn-vector vvv and subset J of {1, ..., n}, we denote by vvvJ the Rn-
vector whose coordinates coincide with those of vvv on J and vanish elsewhere.
We denote by v̄vvJ the quantity

∑
i∈J vi/|J |.

• We denote by 111 the Rn-vector (1, ..., 1)′ and by eeei the ith vector of the canon-
ical basis.

• We define Vn,cste as the linear span of
{
111J , J ∈ J `n

}
. Note that the dimension

of Vn,cste equals `n.

• The vector εεε denotes a standard Gaussian variable in Rn.

• We denote by Pfff,σ the law of the Gaussian vector in Rn with expectation fff
and covariance matrix σ2In, where In is the n×n identity matrix. We denote
by PF,σ the law of Y under the model defined by Equation (1).

• The level α of all our tests is chosen in ]0, 1/2[.

2.2. Test of positivity. We propose a level α-test for testing that F belongs to
K≥0 defined by (2). The testing procedure is based on the fact that if F is non-
negative, then for any subset J of {1, . . . , n}, the expectation of ȲYY J is non-negative.
For ` ∈ {1, ..., `n}, let T `

1 (YYY ) be defined as

T `
1 (YYY ) = max

J∈J `

−
√
|J | ȲYY J

‖YYY −ΠVn,csteYYY ‖
√

n− `n,

and let q1(`, u) be the 1 − u quantile of the random variable T `
1 (εεε). We introduce

the test statistic

Tα,1 = max
`∈{1,...,`n}

{
T `

1 (YYY )− q1(`, uα)
}

,(9)
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where uα is defined as

uα = sup
{

u ∈]0, 1[, P
(

max
`∈{1,...,`n}

{
T `

1 (εεε)− q1(`, u)
}

> 0
)
≤ α

}
.(10)

We reject that F belongs to K≥0 if Tα,1 is positive.
Comment. When ` increases from 1 to `n, the cardinality of the sets J ∈ J `

decreases. We thus take into account local discrepancies to the null hypothesis for
various scales.

2.3. Testing monotonicity. We now consider the problem of testing that F be-
longs to K↗ defined by (3). The testing procedure lies on the following property: if
I and J are two subsets of {1, 2, . . . , n} such that I is on the left of J and if F ∈ K↗,
then the expectation of the difference ȲYY I − ȲYY J is non-positive. For ` ∈ {2, ..., `n},
let T `

2 (YYY ) be defined as

T `
2 (YYY ) = max

1≤i<j≤`
N `

ij

ȲYY J`
i
− ȲYY J`

j

‖YYY −ΠVn,csteYYY ‖
√

n− `n,

where

N `
ij =

(
1
|J`

i |
+

1
|J`

j |

)−1/2

,

and let q2(`, u) be the 1 − u quantile of the random variable T `
2 (εεε). We introduce

the test statistic

Tα,2 = max
`∈{2,...,`n}

{
T `

2 (YYY )− q2(`, u)
}

,(11)

where uα is defined as

uα = sup
{

u ∈]0, 1[, P
(

max
`∈{2,...,`n}

{
T `

2 (εεε)− q2(`, u)
}

> 0
)
≤ α

}
.(12)

We reject that F belongs to K↗ if Tα,2 is positive.

2.4. Testing convexity. We now consider the problem of testing that F belongs
to K^ defined by (4). The testing procedure is based on the following property: if
I, J and K are three subsets of {1, 2, . . . , n}, such that J is between I and K and
if F ∈ K^, then we find a linear combination of ȲYY I , ȲYY J , and ȲYY K with non-positive
expectation. Let xxx = (x1, . . . , xn)′ and for each ` ∈ {3, ..., `n}, 1 ≤ i < j < k ≤ `,
let

λ`
ijk =

x̄xxJ`
k
− x̄xxJ`

j

x̄xxJ`
k
− x̄xxJ`

i

,

and

N `
ijk =

(
1
|J`

j |
+ (λ`

ijk)2
1
|J`

i |
+ (1− λ`

ijk)2
1
|J`

k|

)−1/2

.
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For ` ∈ {3, ..., `n}, let

T `
3 (YYY ) = max

1≤i<j<k≤`
N `

ijk

ȲYY J`
j
− λ`

ijkȲYY J`
i
− (1− λ`

ijk)ȲYY J`
k

‖YYY −ΠVn,csteYYY ‖/
√

n− `n

,

and let q3(`, u) be the 1 − u quantile of the random variable T `
3 (εεε). We introduce

the test statistic

Tα,3 = max
`∈{3,...,`n}

{
T `

3 (YYY )− q3(`, uα)
}

,(13)

where uα is defined as

uα = sup
{

u ∈]0, 1[, P
(

max
`∈{3,...,`n}

{
T `

3 (εεε)− q3(`, u)
}

> 0
)
≤ α

}
.(14)

We reject that F belongs to K^ if Tα,3 is positive.

2.5. Properties of the procedures. In this section we evaluate the performances
of the previous procedures under the null and under smooth alternatives.

Proposition 1. Let (Tα,K) be either (Tα,1,K≥0) or (Tα,2,K↗) or (Tα,3,K^).
We have

sup
σ>0

sup
F∈K

PF,σ (Tα > 0) = α.

Assume now that xi = i/n for all i = 1, ..., n and `n = [n/2]. Let us fix β ∈]0, 1[ and
define for each s ∈]0, 1] and L > 0

ρn = L1/(1+2s)

(
σ2 log(n)

n

)s/(1+2s)

.

Then, for n large enough there exists some constant κ depending on α, β, s only such
that for all F ∈ Hs(L) satisfying

∆(F ) = inf
G∈K

‖F −G‖∞ ≥ κρn(15)

we have

PF,σ(Tα > 0) ≥ 1− β.

Comment. This result states that our procedures are of size α. Moreover, following
the definition of the uniform separation rate of a test given in Section 1.3, this result
shows that the tests achieve the uniform separation rate ρn (in sup-norm) over the
Hölderian ball Hs(L). In the following proposition, we show that this rate cannot
be improved at least in the Gaussian white noise model for testing positivity and
monotonicity. The proof can be extended to the case of testing convexity but is
omitted here.
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Proposition 2. Let Y be the observation from the Gaussian white noise model

dY (t) = F (t)dt +
1√
n

dW (t), for t ∈ [0, 1],(16)

where W is a standard Brownian motion. Let K be either the set K≥0 or K↗ and F
some class of functions. For the distance ∆(.) to K given by (15), we define

ρn(0,F) = inf ρ(Φ,F ,∆)

where ρ(Φ,F ,∆) is given by (6) and where the infimum is taken over all tests Φ of
level 3α for testing “F = 0”. We define ρn(K,F) similarly by taking the infimum
over all tests Φ of level α for testing “F ∈ K”. The following inequalities hold.

(i) If K = K≥0 then

ρn(K,F) ≥ ρn(0,F).

If K = K↗ then for some constant κ depending on α and β only

ρn(K,F) ≥ 1
2

[
ρn(0,F)− κ

σ√
n

]
.

(ii) In particular, if F = Hs(L), for n large enough there exists some constant κ′

depending on α, β and s only such that

ρn(K,F) ≥ κ′L1/(1+2s)

(
log(n)

n

)s/(1+2s)

.(17)

The proof of the first part of the proposition extends easily to the regression frame-
work. The second part (ii), namely Inequality (17), derives from (i) and the lower
bound on ρn(0,F) established by Ingster(1993).
For the problem of testing the positivity of a signal in the Gaussian white noise
model, Juditsky and Nemirovski (2000) showed that the minimax separation rate
with respect to the Lr-distance (r ∈ [1,+∞[) is of the same order as ρn up to a
logarithmic factor.

3. Testing that F satisfies a differential inequality. In this section, we
consider the problem of testing that F belongs to Kr,R defined by (5). Several
applications of such hypotheses can be of interest. For example, by taking r = 1
and R(x) = − exp(ax) (for some positive number a) one can test that a positive
function F is decreasing at rate exp(−ax), that is, satisfies

∀x ∈ [0, 1], 0 < F (x) ≤ F (0) exp(−ax).

Other kinds of decay are possible by suitably choosing the function R. Another
application is to test that F belongs to the class of smooth functions{

F : [0, 1] → R, ‖F (r)‖∞ ≤ L
}

.

To tackle this problem, it is enough to test that the derivatives of order r of the
functions F1(x) = −F (x) + Lxr/r! and F2(x) = F (x) + Lxr/r! are positive. This
is easily done by considering a multiple testing procedure based on the data −Yi +
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Lxr
i /r! for testing that F1 is positive, and on Yi + Lxr

i /r! for testing that F2 is
positive.
In Section 3.1, we consider the case where the function R equals 1. The procedure
then amounts to testing that the derivative of order r of F is non-negative. We
turn to the general case in Section 3.2.

We first introduce the following notations.

• For www ∈ Rn, we set R ? www the vector whose i-th coordinate (R ? www)i equals
R(xi)wi.

• For k ∈ N \ {0}, we denote by wwwk, the Rn-vector (wk
1 , . . . , wk

n), and we set
www0 = 111 by convention.

• For J ⊂ {1, ..., n}, let us define XJ as the space spanned by 111J ,xxxJ , · · · ,xxxr−1
J .

3.1. Testing that the derivative of order r of F is non-negative. In this section,
we take R(x) = 1 for all x ∈ [0, 1]. The procedure lies on the idea that if the
derivative of order r of F is non-negative then on each subset J of {1, 2, . . . , n}, the
highest degree coefficient of the polynomial regression of degree r based on the pairs
{(xi, F (xi)), i ∈ J} is non-negative. For example, under the assumption that F is
non-decreasing, the slope of the regression based on the pairs {(xi, F (xi)), i ∈ J}
is non-negative.

Let `n = [n/(2(r + 1))], Vn be the linear span of
{
111J ,xxxJ , · · · ,xxxr

J , J ∈ J `n
}
, and

for each J ⊂ {1, . . . , n}

ttt∗J = − xxxr
J −ΠXJ

xxxr
J

‖xxxr
J −ΠXJ

xxxr
J‖

.

For each ` ∈ {1, ..., `n}, let T `(YYY ) be defined as

T `(YYY ) = max
J∈J `

< YYY , ttt∗J >

‖YYY −ΠVn
YYY ‖
√

n− dn(18)

and let q(`, u) denote the 1−u quantile of the random variable T `(εεε). We introduce
the following test statistic:

Tα = max
`∈{1,...,`n}

{
T `(YYY )− q(`, uα)

}
,(19)

where uα is defined as

uα = sup
{

u ∈]0, 1[, P
(

max
`∈{1,...,`n}

{
T `(εεε)− q(`, u)

}
> 0
)
≤ α

}
.(20)

We reject the null hypothesis if Tα is positive.

Comment. When r = 1, the procedure is akin to that proposed by Hall and
Heckman (2000) where for all `, q(`, uα) is the 1−α quantile of max`∈{1,...,`n} T `(εεε).
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3.2. Extension to the general case. The ideas underlying the preceding proce-
dures extend to the case where R 6≡ 1. In the general case, the test is obtained as
follows.

Let `n be such that the dimension dn of the linear space

Vn = Span
{
111J ,xxxJ , · · · ,xxxr

J , R ? 111J , ..., R ? xxxr
J , J ∈ J `n

}
(21)

is not larger than n/2. We define for each J ⊂ {1, . . . , n}

ttt∗J = −R ? (xxxr
J −ΠXJ

xxxr
J)

γJ
where γJ = ‖R ? (xxxr

J −ΠXJ
xxxr

J) ‖.(22)

We reject that F belongs to Kr,R if Tα defined by (19) is positive.

3.3. Properties of the tests. In this section, we describe the behavior of the
procedure. We start with some notations.

• Let us define the function Λ(F ) as

Λ(F )(x) =
dr

dxr
[R(x)F (x)],

and let ω be its modulus of continuity defined for all h > 0 by

ω(h) = sup
|x−y|≤h

|Λ(F )(x)− Λ(F )(y)| .

• For J ∈
⋃`n

`=1 J `, let us denote by x−J (respectively x+
J ) the quantities

min {xi, i ∈ J} (respectively max {xi, i ∈ J}) and set hJ = x+
J − x−J .

• Let fff = (F (x1), . . . , F (xn))′ and for each ` = 1, . . . , `n and β ∈]0, 1[, let

ν`(fff, β) =
(

q(`, uα)√
n− dn

√
χ̄−1

n−dn,‖fff−ΠVnfff‖2/σ2(β/2) + Φ̄−1(β/2)
)

σ.(23)

• For each ρ > 0, let

En,r(ρ) =
{

F : [0, 1] → R, F (r) ∈ Hs(L),− inf
x∈[0,1]

F (r)(x) ≥ ρ

}
.

We have the following result.

Proposition 3. Let Tα be the test statistic defined in Section 3.2. We have

sup
σ>0

sup
F∈Kr,R

PF,σ (Tα > 0) = α.

For each β ∈]0, 1[, we have

PF,σ (Tα > 0) ≥ 1− β,

if for some ` ∈ {1, . . . , `n} there exists a set J ∈ J ` such that either

− inf
i∈J

Λ(F )(xi) ≥ ν`(fff, β)
r!γJ

‖xxxr
J −ΠXJ

xxxr
J‖2

+ ω(hJ),(24)
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or

inf
x∈]x−J ,x+

J [
−Λ(F )(x) ≥ ν`(fff, β)

r!γJ

‖xxxr
J −ΠXJ

xxxr
J‖2

.(25)

Moreover, if R ≡ 1 then there exists some constant κ depending on α, β, s and r
only such that for n large enough and for all F ∈ En,r(ρn,r) with

ρn,r = κ

(
σ2 log(n)

n

)s/(1+2(s+r))

L(1+2r)/(1+2(s+r))

we have

PF,σ(Tα > 0) ≥ 1− β.

Comments.

1. In the particular case where R ≡ 1, let us give the orders of magnitude of
the quantities appearing in the above proposition. Under the assumption that
‖fff − ΠVnfff‖2/n is smaller than σ2, one can show that ν` is of order

√
log(n)

(see Section 9.2). When R ≡ 1, we have γJ = ‖xxxr
J − ΠXJ

xxxr
J‖ and it follows

from computations that will be detailed in the proofs that

ν`(fff, β)
r!γJ

‖xxxr
J −ΠXJ

xxxr
J‖2

≤ C

√
log(n)
nh1+2r

J

(26)

for some constant C which does not depend on J nor n.

2. In the particular case where r = 1, Inequality (26) allows to compare our
result to the performances of the test proposed by Ghosal et al. (2001). For
each δ ∈]0, 1/3[, they give a procedure (depending on δ) that is powerful
if the function F is continuously differentiable and satisfies that for all x in
some interval of length n−δ, F ′(x) < −M

√
log(n)n−(1−3δ)/2 for some M large

enough.

By using (25) and the upper bound in (26) with hJ of order n−δ, we deduce
from Proposition 3 that our procedure is powerful too over this class of func-
tions. Note that by considering a multiple testing procedure based on various
scales `, our test does not depend on δ and is therefore powerful for all δ
simultaneously.

3. For r = 1 (respectively r = 2) and s = 1, Dümbgen and Spokoiny (2001) ob-
tained the uniform separation rate ρn,r for testing monotonicity (respectively
convexity) in the Gaussian white noise model.

4. For the problem of testing monotonicity (r = 1 and R ≡ 1), it is possible
to combine this procedure with that proposed in Section 2.3. More precisely,
consider the test which rejects the null at level 2α if one of these two tests
rejects. The so-defined test performs as well as the best of these two tests
under the alternative.
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4. A general approach. The problems we have considered previously reduce
to testing that fff = (F (x1), . . . , F (xn))′ belongs to a convex set of the form

C = {fff ∈ Rn, ∀j ∈ {1, ..., p} < fff,vvvj >≤ 0} ,(27)

where the vectors {vvv1, ..., vvvp} are linearly independent in Rn. For example, testing
that the regression function F is non-negative or non-decreasing amounts to testing
that the mean of YYY belongs respectively to the convex subsets of Rn

C≥0 = {fff ∈ Rn, ∀i ∈ {1, ..., n} fi ≥ 0} .(28)

and

C↗ = {fff ∈ Rn, ∀i ∈ {1, ..., n− 1} fi+1 − fi ≥ 0} .(29)

Clearly, these sets are of the form given by (27) by taking respectively p = n,
vvvj = −eeej and p = n − 1, vvvj = eeej − eeej+1. The following proposition extends this
result to the general case. Note that one can also define the set C as

C = {fff ∈ Rn, L1(fff) ≥ 0, . . . , Lp(fff) ≥ 0} ,

where the Li’s are p independent linear forms. We shall use this definition of C in
the following.

Proposition 4. For each r ∈ {1, . . . , n − 1} and i ∈ {1, ..., n− r} let φi,r be
the linear form defined for www ∈ Rn by

φi,r(www) = det


1 xi · · · xr−1

i wi

1 xi+1 · · · xr−1
i+1 wi+1

...
...

...
...

...
1 xi+r · · · xr−1

i+r wi+r

 .

If F belongs to K^ then fff = (F (x1), . . . , F (xn))′ belongs to

C^ = {fff ∈ Rn, ∀i ∈ {1, ..., n− 2}, φi,2(fff) ≥ 0} .(30)

If F belongs to Kr,R then fff belongs to

Cr,R = {fff ∈ Rn, ∀i ∈ {1, ..., n− r}, φi,r(R ? fff) ≥ 0} .

In view of keeping our notations as simple as possible, we omit the dependency of the
linear forms φi,r with respect to r when there is no ambiguity. The remaining part
of the section is organized as follows. In the next subsection, we present a general
approach for the problem of testing that fff belongs to C. In the last subsection, we
show how this approach applies to the problems of hypothesis testing considered in
Sections 2 and 3.
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4.1. Testing that fff belongs to C. We consider the problem of testing that the
vector fff = (f1, . . . , fn)′ involved in the regression model

Yi = fi + σεi, i = 1, ..., n.(31)

belongs to C defined by (27). Our aim is twofold. First, build a test which achieves
its nominal level, and second, describe for each n a class of vectors over which this
test is powerful.
The testing procedure. The testing procedure relies on the following idea: since
under the assumption that fff belongs to C, the quantities < fff,

∑p
j=1 λjvvvj > are

non-positive for all non-negative numbers λ1, · · · , λp, we base our test statistic on
random variables of the form < YYY ,

∑p
j=1 λjvvvj > for non-negative sequences of λj ’s.

We denote by T the subset of Rn defined by

T =

ttt =
p∑

j=1

λjvvvj , ‖ttt‖ = 1, λj ≥ 0,∀j = 1, ..., p

 .(32)

Let Tn be a finite subset of T such that there exists some linear space Vn, with
dimension dn < n containing the linear span of Tn. Let {qttt(α), ttt ∈ Tn} be a sequence
of numbers satisfying

P
[

sup
ttt∈Tn

(√
n− dn

< εεε, ttt >

‖εεε−ΠVn
εεε‖
− qttt(α)

)
> 0
]

= α.(33)

We reject the null hypothesis if the statistic

Tα = sup
ttt∈Tn

(√
n− dn

< YYY , ttt >

‖YYY −ΠVnYYY ‖
− qttt(α)

)
(34)

is positive.
Properties of the test. For all β ∈]0, 1[ and each ttt ∈ Tn let

vttt(fff, β) =
(

qttt(α)
1√

n− dn

√
χ̄−1

n−dn,‖fff−ΠVnfff‖2/σ2(β/2) + Φ̄−1(β/2)
)

σ.(35)

The order of magnitude of vttt(fff, β) is proved to be
√

log(n)σ under the assumption
that ‖f −ΠVnf‖2/n is smaller than σ2 as it is shown in the proof of Proposition 1.
We have the following result.

Theorem 1. Let Tα be the test statistic defined by (34). We have

sup
σ>0

sup
fff∈C

Pfff,σ (Tα > 0) = P0,1 (Tα > 0) = α.(36)

Moreover, if there exists ttt ∈ Tn such that < fff, ttt >≥ vttt(fff, β) then

Pfff,σ(Tα > 0) ≥ 1− β.

Comments. The values of the qttt(α)’s that satisfy (33) can be easily obtained by
simulations under P0,1. This property of our procedure lies in the fact that the
least-favorable distribution under the null is P0,1. Note that we do not need to use
bootstrap procedures to implement the test.
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4.2. How to apply these procedures to test qualitative hypotheses? In the sequel,
we give the choices of Tn and Vn leading to the tests presented in Sections 2 and 3.

For the test of positivity described in Section 2.2. We take Tn = Tn,1, with Tn,1 =⋃`n

`=1 T `
n,1, where for all ` ∈ {1, ..., `n}

T `
n,1 =

− 1√
|J |

∑
j∈J

eeej , J ∈ J `

 .

We take Vn = Vn,cste. Note that Vn,cste is also the linear span of Tn,1.

For the test of monotonicity described in Section 2.3. Let us define for each ` ∈
{2, ..., `n} and 1 ≤ i < j ≤ `,

eee`
ij = N `

ij

 1
|J`

i |
∑
l∈J`

i

eeel −
1
|J`

j |
∑
l∈J`

j

eeel

 .(37)

Note that N `
ij is such that ‖eee`

ij‖ = 1. We take Tn = Tn,2, with Tn,2 =
⋃`n

`=2 T `
n,2,

where

T `
n,2 =

{
eee`

ij , 1 ≤ i < j ≤ `
}

,

and we take Vn = Vn,cste. Note that Vn contains Tn,2.

For the test of convexity presented in Section 2.4. Let us define for each ` ∈
{3, ..., `n}, 1 ≤ i < j < k ≤ `,

eee`
ijk = N `

ijk

 1
|J`

j |
∑
l∈J`

j

eeel − λ`
ijk

1
|J`

i |
∑
l∈J`

i

eeel − (1− λ`
ijk)

1
|J`

k|
∑
l∈J`

k

eeel

 .(38)

Note that N `
ijk is such that ‖eee`

ijk‖ = 1. We take Tn = Tn,3, with Tn,3 =
⋃`n

`=3 T `
n,3,

where

T `
n,3 =

{
eee`

ijk, 1 ≤ i < j < k ≤ `
}

,

and we take Vn = Vn,cste. Note that Vn contains Tn,3.

For the test of F ∈ Kr,R presented in Section 3. We take

Tn,4 =
`n⋃

`=1

T `
n where T `

n =
{
ttt∗J , J ∈ J `

}
and Vn = Vn,4 defined by (21). Note that Vn contains Tn,4.

We justify these choices of Tn by the following proposition proved in Section 7.

Proposition 5. Let C and Tn be either (C≥0, Tn,1), (C↗, Tn,2), (C^, Tn,3) or
(Cr,R, Tn,4). There exist vvv1, . . . , vvvp for which C is of the form given by (27) and for
which T , defined by (32), contains Tn.
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5. Simulation studies . In this section we describe how to implement the
test for testing F ∈ K↗ and we carry out a simulation study in order to evaluate
the performances of our tests both when the errors are Gaussian and when they
are not. We first describe how the testing procedure is performed, then we present
the simulation experiment and finally discuss the results of the simulation study.

5.1. The testing procedures. We carry out the simulation study for the two
testing procedures described in Sections 2.3 and 3.1. In the sequel, the procedure
based on differences of local means and described in Section 2.3 is called LM and
the procedure based on local gradients defined below (from the test statistic given
in Section 3.1 with r = 1) is called LG.
In the case of the procedure LM, we set TLM = Tα,2 defined in (11). For each `, the
quantiles q2(`, uα) are calculated as follows. For u varying among a suitable grid of
values u1, . . . , um, we estimate by simulations the quantity

p(uj) = P
(

max
l=1,...,`n

{
T `

2 (εεε)− q2(`, uj)
}

> 0
)

,

εεε being a n-sample of N (0, 1), and we take uα as max {uj , p(uj) ≤ α}. Note that
uα does not depend on (xi, i = 1, . . . , n), but only on the number of observations
n.
In the case of the procedure LG, the test statistic is defined as follows. For each
` = 1, . . . , `n and for J ∈ J `, we take

ttt∗J =
x̄J111J − xxxJ

‖x̄J111J − xxxJ‖
.

The space Vn reduces to Vn,lin the linear space of dimension 2`n generated by{
111J ,xxxJ , J ∈ J `n

}
.

The test statistic Tα takes the form

TLG = Tα,4 = max
`=1,...,`n

{
T `

4 (YYY )− q4(`, uα)
}

,

where for each ` ∈ {1, . . . , `n},

T `
4 (YYY ) = max

J∈J `

√
n− 2`n

< YYY , ttt∗J >

‖YYY −ΠVn,linYYY ‖
,

and q4(`, uα) denotes the 1− u quantile of the random variable T `
4 (εεε).

The procedure for calculating q4(`, uα) for ` = 2, . . . , `n is the same as the procedure
for calculating the q2(`, uα)’s.

5.2. The simulation experiment. The number of observations n equals 100, xi =
i/(n + 1), for i = 1, . . . , n and `n is either equal to 15 or 25.
We consider three distributions of the errors εi, with expectation zero and vari-
ance 1.

1. The Gaussian distribution: εi ∼ N (0, 1) .
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2. The type I distribution: εi has density sfX(µ+ sx) where fX(x) = exp{−x−
exp(−x)} and where µ and s2 are the expectation and the variance of a
variable X with density fX . This distribution is asymmetrical.

3. The mixture of Gaussian distributions: εi is distributed as πX1 + (1− π)X2

where π is distributed as a Bernoulli variable with expectation 0.9, X1 and
X2 are centered Gaussian variables with variance respectively equal to 2.43s
and 25s, π,X1 and X2 are independent. The quantity s is chosen such that
the variance of εi equals 1. This distribution has heavy tails.

We consider several functions F that are presented below. For each of them, we
simulate the observations Yi = F (xi) + σεi. The values of σ2 and of the distance in
sup-norm between F and K↗ are reported in Table 1:

d∞(F,K↗) =
1
2

sup
0≤s≤t≤1

(F (s)− F (t)).

Let us comment the choice of the considered functions.

• F0(x) = 0 corresponds to the case for which the quantiles q(`, uα) are calcu-
lated.

• The function F1(x) = 15111x≤0.5(x−0.5)3 +0.3(x−0.5)−exp(−250(x−0.25)2)
presents a strongly increasing part with a pronounced dip around x = 1/4
followed by a nearly flat part on the interval [1/2, 1].

• The decreasing linear function F2(x) = −ax, the parameter a being chosen
such that a = 1.5σ.

• The function F3(x) = −0.2 exp(−50(x− 0.5)2) deviates from F0 by a smooth
dip while the function F4(x) = 0.1 cos(6πx) deviates from F0 by a cosine
function.

• The functions F5(x) = 0.2x + F3(x) and F6(x) = 0.2x + F4(x) deviate from
an increasing linear function in the same way as F3 and F4 do from F0.

Let us mention that it is more difficult to detect that F5 (respectively F6) is non-
increasing than to detect that F3 (respectively F4) is. Indeed, adding an increasing
function to a function F reduces the distance in sup-norm between F and K↗.
This is the reason why the values of σ are smaller in the simulation study when we
consider the functions F5 and F6.
In Figure 1 we have displayed the functions F` for ` = 1, . . . , 6 and for each of
them one sample simulated with Gaussian errors. The corresponding values of the
test statistics TLM and TLG for α = 5% and `n = 25 are given. For this simulated
sample, it appears that the test based on the statistic TLM leads to reject the null
hypothesis in all cases, while the test based on TLG reject in all cases except for
functions F2 and F4.
The results of the simulation experiment based on 4000 simulations are presented
in Tables 2 and 3.
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F σ2 d∞(F,K↗)
F0(x) 0.01 0
F1(x) 0.01 0.25
F2(x) 0.01 0.073
F3(x) 0.01 0.1
F4(x) 0.01 0.1
F5(x) 0.004 0.06
F6(x) 0.006 0.08

Table 1

Testing monotonicity : simulated functions F , values of σ2 and distance in sup-norm between
F and K↗.

Fig. 1. For each function F`, ` = 1, . . . , 6, the simulated data Yi = F`(xi) + σεi for i = 1, . . . n

are displayed. The errors εi are Gaussian normalized centered variables. The value of the test
statistics TLM and TLG, with α = 5%, are given for each example.

`n = 15 `n = 25
Errors Distribution TLM TLG TLM TLG

Gaussian 0.049 0.050 0.046 0.051
Type I 0.048 0.072 0.064 0.085
Mixture 0.064 0.117 0.093 0.180

Table 2

Testing monotonicity : levels of the tests based on TLM and TLG.

`n = 15 `n = 25
F TLM TLG TLM TLG

F1 0.85 0.99 0.99 1.
F2 0.96 0.96 0.99 0.99
F3 0.99 0.73 1 0.98
F4 0.89 0.71 0.99 0.94
F5 0.99 0.69 0.99 0.87
F6 0.87 0.79 0.98 0.93

Table 3

Testing monotonicity : powers of the tests based on TLM and TLG when the errors are Gaussian.
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5.3. Comments on the simulation study. As expected, the estimated level of
the test calculated for the function F0(x) = 0 is (nearly) equal to α when the errors
are distributed as Gaussian variables.
When `n = 25, the estimated levels of the tests for the Mixture and Type I errors
distributions are greater than α (see Table 2). Let us recall that when `n is large,
we are considering statistics based on the average of the observations on sets J with
small cardinality. Therefore, reducing `n improves the robustness to non-Gaussian
errors distribution. This is what we get in Table 2 for `n = 15. It also appears that
the method based on the local means is more robust than the method based on the
local gradients, and that both methods are more robust for the Type I distribution
that is asymmetric but not heavy tailed, than for the Mixture distribution.
Except for the function F1, the estimated power is greater for the procedure based
on the local means than for the procedure based on the local gradients (see Table 3).
For both procedures the power of the test is larger with `n = 25 than with `n = 15.
However, except for the function F1, the loss of power is less significant for the
procedure based on the local means.

5.4. Comparison with other works. As expected, the power of our procedure
TLG for the function F1 is similar to that obtained by Hall and Heckman (2000).
The decreasing linear function F2(x) = −ax has already been studied by Gijbels et
al. (2000) with a = 3σ. They get an estimated power of 77%.
Gijbels et al. (2000) studied the function 0.075F3/0.2 with σ = 0.025 and obtained
a simulated power of 98%. With the same function and the same σ, we get a power
equal to one, for both procedures and for `n = 15 and `n = 25.
Gijbels et al. (2000) and Hall and Heckman (2000) calculated the power of their
test for the function F7(x) = 1 + x − a exp(−50(x − 0.5)2) for different values of
a and σ. When a = 0.45 and σ = 0.05, we get a power equal to 1 as Gijbels et
al do. When a = 0.45 and σ = 0.1, we get a power equal to 76% when using the
procedure TLM with `n = 25 or `n = 15. Gijbels et al. (2000) got 80% and Hall and
Heckman (2000) a power larger than 87%.

6. Proof of Theorem 1

Level of the test: we first prove that for all ttt ∈ Tn, qttt(α) > 0. Indeed, thanks
to (33), we have

P
[√

n− dn
< εεε, ttt >

‖εεε−ΠVn
εεε‖
− qttt(α) > 0

]
≤ P

[
sup
ttt∈Tn

(√
n− dn

< εεε, ttt >

‖εεε−ΠVnεεε‖
− qttt(α)

)
> 0
]

≤ α < 1/2.

Since the random variable
√

n− dn < εεε, ttt > /‖εεε−ΠVn
εεε‖ is symmetric (distributed

as a Student with n − dn degrees of freedom) we deduce that qttt(α) is positive. In
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the sequel let us set

σ̂n = ‖YYY −ΠVn
YYY ‖/

√
n− dn.

Since for all fff ∈ C and j ∈ {1, ..., p}, < fff, vj >≤ 0 we have that for all t ∈ Tn,

< fff, ttt >=
p∑

j=1

λj < fff, vj >

‖
∑p

j=1 λjvj‖
≤ 0.

Hence, < YYY , ttt >=< fff, ttt > +σ < εεε, ttt >≤ σ < εεε, ttt > and therefore for all fff ∈ C and
σ > 0,

Pfff,σ [Tα > 0] ≤ Pfff,σ

[
sup
ttt∈Tn

(
< εεε, ttt >

σ̂n/σ
− qttt(α)

)
> 0
]

≤ Pfff,σ

[
σ̂n

σ
< sup

ttt∈Tn

< εεε, ttt >

qttt(α)

]
.

We now use the following lemma for non-central χ2-random variables:

Lemma 1. For all u > 0, fff ∈ Rn and σ > 0

Pfff,σ [σ̂n < σu] ≤ P0,1 [σ̂n < u] .

This lemma states that a non-central χ2-random variable is stochastically larger
than a χ2-random variable with the same degrees of freedom. For a proof we refer
to Lemma 1 in Baraud, Huet and Laurent (2003).
Since Tn ⊂ Vn, the random variables < εεε, ttt > for ttt ∈ Tn are independent of σ̂n and
thus by conditioning with respect to the < εεε, ttt >’s and using Lemma 1 we get

sup
σ>0

sup
fff∈C

Pfff,σ [Tα > 0] ≤ P0,1

[
σ̂n < sup

ttt∈Tn

< εεε, ttt >

qttt(α)

]
= P0,1 [Tα > 0] = α.

The reverse inequality being obvious, this concludes the proof of (36).

Power of the test: For any fff ∈ Rn and σ > 0

Pfff,σ (Tα ≤ 0) = Pfff,σ (∀ttt ∈ Tn, < YYY , ttt >≤ qttt(α)σ̂n) .

Setting

xn(fff, β) =
σ√

n− dn

√
χ̄−1

n−dn,‖fff−ΠVnfff‖2/σ2(β/2),

we have

Pfff,σ (σ̂n > xn(fff, β)) = β/2.

It follows that for all fff ∈ Rn and σ > 0,

Pfff,σ (Tα ≤ 0) ≤ inf
t∈Tn

Pfff,σ (< YYY , ttt >≤ qttt(α)xn(fff, β)) + β/2

≤ inf
t∈Tn

Pfff,σ (σ < εεε, ttt >≤ qttt(α)xn(fff, β)− < fff, ttt >) + β/2.
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Since ‖t‖ = 1, < εεε, ttt > is distributed as a standard Gaussian variable, and therefore
Pfff,σ (Tα ≤ 0) ≤ β as soon as there exists t ∈ Tn such that

qttt(α)xn(fff, β)− < fff, ttt >≤ −σΦ̄−1(β/2).

This concludes the proof of Theorem 1.

7. Proof of Propositions 4 and 5 Let us denote by Ir the set of increasing
sequences of r + 1 indices in {1, ..., n} that is

Ir = {(i1, ..., ir+1), i1 < · · · < ir+1, ij ∈ {1, ..., n}} .(39)

For iii = (i1, ..., ir+1) ∈ Ir and vvv ∈ Rn we set

φiii(vvv) = det


1 xi1 · · · xr−1

i1
vi1

1 xi2 · · · xr−1
i2

vi2
...

...
...

...
...

1 xir+1 · · · xr−1
ir+1

vir+1

 .(40)

For iii = (i, ..., i + r) φiii(vvv) = φi(vvv) where φi(vvv) is defined by Equation (30). For
www1, ...,wwwq q vectors of Rn, we set

Gram(www1, ...,wwwq) = det (G) where G = (< wwwi,wwwj >)1≤i,j≤q.

Let us define

C̃r,R = {fff ∈ Rn, ∀iii ∈ Ir, φiii(R ? fff) ≥ 0} .(41)

The proofs of Propositions 4 and 5 rely on the following lemma.

Lemma 2. The following equalities hold. First,

C̃r,R = Cr,R.(42)

Assume that fff = (F (x1), ..., F (xn))′ where F is such that RF is r-th times differ-
entiable. Then for each iii ∈ Ir there exists some ciii ∈]xi1 , xir+1 [ such that

φiii(R ? fff) =
Λ(F )(ciii)

r!
φiii(xxxr).(43)

For J ⊂ {1, . . . , n} let ttt∗J be defined by (22). We have

− < fff, ttt∗J >= N−1
J

∑
iii∈Ir∩Jr+1

φiii(R ? fff)φiii(xxxr).(44)

where NJ = Gram(111J ,xxxJ , ...,xxxr−1
J )γJ .

The proof of the lemma is delayed to the Appendix.
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7.1. Proof of Proposition 4. The result concerning K^ is clear as a function F
is non-concave on [0, 1] if and only if for all x, y, z in [0, 1] with x < y < z one has

det

1 x F (x)
1 y F (y)
1 z F (z)

 ≥ 0.

Let us now turn to the set Kr,R. First note that the n−r linear forms fff 7→ φi,r(R?fff)
are independent since the linear space

{fff ∈ Rn, ∀i ∈ {1, ..., n− r} φi,r(R ? fff) = 0} ,

which is generated by
1
R

? 111,
1
R

? xxx, ...,
1
R

? xxxr−1,

is of dimension r. Second, the fact that fff belongs to C̃r,R is a straightforward
consequence of (43) since under the assumption that F ∈ Kr,R, Λ(F )(x) ≥ 0 for all
x, and since the Vandermond determinants φiii(xxxr) are positive for all iii ∈ Ir.

7.2. Proof of Proposition 5. The result is clear in the case where C≥0. For the
other cases we use the following lemma.

Lemma 3. Let W be the orthogonal of the linear space generated by the vvvj’s for
j = 1, ..., p. If ttt∗ 6∈ W satisfies for all fff ∈ C

< ttt∗ −ΠW ttt∗, fff >≤ 0

then
ttt∗ −ΠW ttt∗

‖ttt∗ −ΠW ttt∗‖
∈ T .

Proof. The vector ttt∗ − ΠW ttt∗ belongs to the linear space generated by the vvvj ’s
and thus one can write ggg∗ = ttt∗ − ΠW ttt∗ =

∑p
j=1 λjvvvj . It remains to show that

the λj ’s are non-negative. Let us fix j0 ∈ {1, ..., p} and choose fff j0 in Rn satisfying
< fff j0 , vvvj >= 0 for all j 6= j0 and < fff j0 , vvvj0 >< 0 . Such a vector exists since
the vvvj ’s are linearly independent in Rn. Clearly fff j0 belongs to C and therefore
< fff j0 , ggg∗ >= λj0 < fff j0 , vvvj0 >≤ 0 which constraints λj0 to be non-negative. This
concludes the proof of Lemma 3. �

Let us consider the case where C = C↗. We apply Lemma 3. In this case, W is the
linear space generated by 111, we get that for all ` ∈ {2, ..., `n} and 1 ≤ i < j ≤ `, eee`

ij

satisfies ΠWeee`
ij = 0. Moreover ‖eee`

ij‖ = 1 and

∀fff ∈ C↗, < fff,eee`
ij >= N `

ij

(
f̄J`

i
− f̄J`

j

)
≤ 0.

Let us consider the case where C = C^. In this case, p = n − 2 and for all j =
1, . . . , n− 2,

vvvj = (xj+1 − xj+2)eeej + (xj+2 − xj)eeej+1 + (xj − xj+1)eeej+2.
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Since ‖eee`
ijk‖ = 1, by Lemma 3 it is enough to prove that

(i) for all fff ∈ W , < fff,eee`
ijk >= 0,

(ii) for all fff ∈ C^, < fff,eee`
ijk >≤ 0.

First note that for all fff ∈ Rn,

< fff,eee`
ijk >= N `

ijk

(
f̄J`

j
− λ`

ijkf̄J`
i
− (1− λ`

ijk)f̄J`
k

)
.(45)

Clearly if fff = 111 or fff = xxx, < fff,eee`
ijk >= 0 and since by definition of C^, W is

the linear space generated by 111 and xxx, (i) holds true. Let now fff ∈ C^. There
exists some convex function F mapping [x1, xn] into R such that F (xi) = fi for all
i = 1, ..., n (take the piecewise linear function verifying this property for instance).
Let i < j < k and l ∈ J`

j . We set

µl
ik =

x̄xxJ`
k
− xl

x̄xxJ`
k
− x̄xxJ`

i

.

Note that 0 ≤ µl
ik ≤ 1 and that

xl = µl
ikx̄xxJ`

i
+ (1− µl

ik)x̄xxJ`
k
.

Since F is convex on [x1, xn] we have for all l ∈ J`
j ,

F (xl) ≤ µl
ikF (x̄xxJ`

i
) + (1− µl

ik)F (x̄xxJ`
k
)

≤ µl
ikf̄ffJ`

i
+ (1− µl

ik)f̄ffJ`
k
.

Note that
∑

l∈J`
j
µl

ik/|J`
j | = λ`

ijk. We derive from the above inequality that

f̄J`
j

=
1
|J`

j |
∑
l∈J`

j

F (xl) ≤ λ`
ijkf̄J`

i
+ (1− λ`

ijk)f̄J`
k
,

which, thanks to (45), leads to (ii).

Let us consider the case where C = Cr,R. By Lemma 2 we know that C̃r,R = Cr,R

and therefore for each iii ∈ Ir, the linear form fff 7→ φiii(R ?fff) is a linear combination
of the linear forms fff 7→ φi(R?fff) with i = 1, . . . , n−r. Consequently, if www ∈ W then
for all iii ∈ Ir, φiii(R ? www) = 0. For each J ⊂ {1, . . . , n}, ttt∗J defined by (22) satisfies
‖ttt∗J‖ = 1. By applying (44) with fff = www, we get < www,ttt∗J >≤ 0 for all www ∈ Cr,R and
< www,ttt∗J >= 0 for all www ∈ W . Consequently, by Lemma 3, ttt∗J belongs to T .

8. Proof of Proposition 1

8.1. Proof for (Tα, C) = (Tα,1, C≥0). We prove the proposition by applying
Theorem 1. We decompose the proof into six steps.
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Step 1 For all integer N ≥ 1, let T̄−1
N (u) denote the 1 − u quantile of a Student

random variable with N degrees of freedom. We have for all u ∈]0, 1[,

T̄−1
N (u) ≤ 1 + C

{
log1/4

(
1
u

)
+ log1/2

(
1
u

)
exp

(
2
N

log
(

1
u

))}
(46)

for some absolute constant C > 0.

Proof of step 1 Let F̄−1
1,N (u) denote the 1− u quantile of a Fisher variable with 1

and N degrees of freedom, then

T̄−1
N (u) =

√
F̄−1

1,N (u).

It follows from Lemma 1 in Baraud, Huet and Laurent (2003) that for all u ∈]0, 1[,
N ≥ 1,

F̄−1
1,N (u) ≤ 1 + 2

√
2 log1/2(

1
u

) +
3N

2

{
exp

(
4
N

log
(

1
u

))
− 1
}

.

Using the inequality exp(x)− 1 ≤ x exp(x) which holds for all x > 0, we obtain

F̄−1
1,N (u) ≤ 1 + 2

√
2 log1/2

(
1
u

)
+ 6 log

(
1
u

)
exp

(
4
N

log
(

1
u

))
and since

√
a + b ≤

√
a +

√
b for all a > 0 and b > 0√

F̄−1
1,N (u) ≤ 1 + C

{
log1/4

(
1
u

)
+ log1/2

(
1
u

)
exp

(
2
N

log
(

1
u

))}
for some absolute constant C > 0.

Step 2 For all ` ∈ {1, ..., `n}, t ∈ T `
n,1, we have

qttt(α) = q1(`, uα) ≤ C(α)
√

log(n).(47)

Proof of step 2 On the one hand, by definition of q1(`, .)

α = P0,1 (Tα,1 > 0) ≤
`n∑

`=1

P
(
T `

1 (εεε)− q1(`, uα) > 0
)
≤ `nuα,

and thus

uα ≥ α/`n.(48)

On the other hand, for all ` ∈ {1, . . . , `n} and J ∈ J `, the random variables

UJ =
−
∑

i∈J εi

‖εεε−ΠVn
εεε‖

√
n− dn

|J |

being distributed as Student variables with n−dn degrees of freedom, we have that

P
(

T `
1 (εεε) > T̄−1

n−dn

(
uα

|J `|

))
≤
∑

J∈J `

P
(

UJ > T̄−1
n−dn

(
uα

|J `|

))
≤ uα(49)
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and thus q1(`, uα) ≤ T̄−1
n−dn

(
uα/|J `|

)
. This inequality together with (48) and (46)

leads to (47), as |J `| ≤ `n ≤ n/2 and n− dn = n− `n ≥ n/2.

Step 3 For all fff = (F (x1), ..., F (xn))′ with F ∈ Hs(L),

‖fff −ΠVn,cstefff‖2

n
≤ C(s)L2n−2s.(50)

Proof of step 3 Note that the vector

f̃ff =
`n∑

k=1

F (x̄Jk
)111Jk

belongs to Vn,cste and therefore

‖fff −ΠVn,cstefff‖2 ≤ ‖fff − f̃ff‖2

=
`n∑

k=1

∑
i∈Jk

(F (xi)− F (x̄Jk
))2

≤
`n∑

k=1

∑
i∈Jk

L2`−2s
n

= nL2`−2s
n .

Noting that `n = dn ≥ n/4, we get (50).

Step 4 Assuming that n ≥ (L/σ)1/s, there exists some constant C depending on
s and β only such that

χ̄−1
n−dn,‖fff−ΠVn,cstefff‖2/σ2(β/2)

n− dn
≤ C.(51)

Using the inequality due to Birgé (2001) on the quantiles of non-central χ2 we have
that

χ̄−1
n−dn,a2(β/2) ≤ n− dn + a2 + 2

√
(n− dn + 2a2) log(2/β) + 2 log(2/β).

Setting a = ‖fff −ΠVn,cstefff‖/σ and using (50) we derive that

χ̄−1
n−dn,a2(β/2)/(n− dn) ≤ C(β, s).(52)

Step 5 Under the assumption of step 4, for all ttt ∈ Tn,

vttt(fff, β) ≤ κ∗
√

log(n)σ,

for some constant κ∗ depending on α, β, s only.



TESTING CONVEX HYPOTHESES 25

Proof of step 5 We recall that

vttt(fff, β) =
(

qttt(α)
1√

n− dn

√
χ̄−1

n−dn,‖fff−ΠVnfff‖2/σ2(β/2) + Φ̄−1(β/2)
)

σ.

We conclude by using the elementary inequality

Φ̄−1(β/2) ≤
√

2 log(2/β),

by gathering (47) and (51).
We conclude the proof with this final step.

Step 6 There exists a constant κ depending on α, β and s only, such that if n
large enough, and F satisfies

min
x∈[0,1]

F (x) ≤ −κρn,(53)

then, there exists ttt∗ ∈ Tn such that

< fff, ttt∗ >≥ vttt∗(fff, β).(54)

Proof of step 6 Since F ∈ Hs(L), under Assumption (53), there exists
j ∈ {1, 2, . . . , n} such that

F (j/n) ≤ −κρn + Ln−s.

For n large enough, Ln−s ≤ κρn/2, hence F (j/n) ≤ −κρn/2.
Let us take κ satisfying

κ

4
= (2κ∗)2s/(1+2s)

where κ∗ is defined at step 5.
Let us define

`(n) =

[(
4L

κρn

)1/s
]

,(55)

and J as the element of J `(n) containing j. Note that for n large enough, `(n) ∈
{1, ..., `n}.
Now, for all k ∈ J , since F ∈ Hs(L)

fk = F (xk) = −F (xj) + F (xj) + F (xk)

≤ −κρn/2 + L|xk − xj |s

≤ −κρn/2 + L`(n)−s

≤ −κρn/4

and thus, by taking ttt∗ ∈ Tn,1 as

ttt∗ = − 1√
|J |

∑
i∈J

eeei,
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we derive that

< fff, ttt∗ > = −
√
|J |f̄J

≥
√
|J |κρn/4.

By construction of the partition of the data, we have for all positive integers p ≤
q ≤ r that [

r

q

]
≤ |Ir

p,q| ≤
[
r

q

]
+ 1.(56)

For all j ∈ {1, . . . , `(n)}, J = J
`(n)
j (see (8)) is a union of |I`n

j,`(n)| ≥ [`n/`(n)]
disjoint sets of cardinality at least [n/`n]. Hence

|J`(n)
j | ≥

[
n

`n

] [
`n

`(n)

]
≥ n

4`(n)

since [x] ≥ x/2 for all x ≥ 1. Therefore we get

|J | ≥ n/(4`(n)) ≥ n

4

(
κ

ρn

4L

)1/s

(57)

using (55).
This implies that

< fff, ttt∗ >≥
√

n

8

(κρn

4L

)1/(2s)

κρn ≥ κ∗σ
√

log(n)

by definition of κ.

8.2. Proof for (Tα, C) = (Tα,2, C↗). We follow the proof of Theorem 1 for
(Tα, C) = (Tα,1, C≥0) : the results of steps 1 to 5 still hold. The proof of step 2
differs in the following way: Equation (49) becomes

P

(
T `

2 (εεε) > T̄−1
n−dn

(
uα

|T `
n,2|

))

≤
∑

1≤i<j≤`

P

(
< εεε,eee`

ij >

‖εεε−ΠVn,csteεεε‖/(n− `n)
> T̄−1

n−dn

(
uα

|T `
n,2|

))
≤ uα.

We conclude the proof of step 2 by noticing that for all ` ∈ {1, ..., `n}, |T `
n,2| is

bounded from above by n2/4.

Step 6 For n large enough, under the assumption that

inf
G∈K↗

‖F −G‖∞ ≥ κρn,(58)

there exists ttt∗ ∈ Tn,2, such that < ttt∗, f >≥ vttt∗(fff, β).
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Proof of step 6 Let us first remark that

inf
G∈K↗

‖F −G‖∞ ≤ sup
0≤x≤y≤1

(F (x)− F (y)).

Indeed, let G∗ ∈ K↗ be defined as

G∗(y) = sup
0≤x≤y

F (x).

Then,

inf
G∈K↗

‖F −G‖∞ ≤ ‖F −G∗‖∞ = sup
0≤x≤y≤1

(F (x)− F (y)).

Hence, under Assumption (58), there exists x < y such that F (x) − F (y) ≥ κρn.
Since F ∈ Hs(L), if |xi − x| ≤ 1/n and |xj − y| ≤ 1/n, then

F (xi)− F (xj) ≥ κρn − 2Ln−s ≥ κρn/2

for n large enough. Hence, there exists 1 ≤ i < j ≤ n such that F (xi) − F (xj) ≥
κρn/2.
Let us set

`(n) =

[(
8L

κρn

)1/s
]

,

which belongs to {1, . . . , `n} at least for n large enough. Let I and J be the elements
of J `(n) satisfying i ∈ I and j ∈ J .
Arguing as in step 6 of Section 8.1, since F ∈ Hs(L),

f̄I ≥ F (xi)− L`(n)−s and f̄J ≤ F (xj) + L`(n)−s

and we deduce that

f̄I − f̄J ≥ κρn/2− 2L`(n)−s ≥ κρn/4.

This implies that there exists 1 ≤ i∗ < j∗ ≤ `(n) with I = J
`(n)
i∗ and J = J

`(n)
j∗ ,

such that

< eee
`(n)
i∗j∗ , f >= N

`(n)
i∗j∗

(
f̄I − f̄J

)
≥ N

`(n)
i∗j∗

κρn

4
.

Using Inequality (56), and since `n = [n/2], we have that for all K ∈ J `(n),

2
[

`n

`(n)

]
≤ |K| ≤ 3

([
`n

`(n)

]
+ 1
)

,

which implies that

N
`(n)
i∗j∗ =

√
|I||J |
|I|+ |J |

≥ C

√
`n

`(n)
.

We now conclude as in the proof of step 6 by taking ttt∗ = eee
`(n)
i∗j∗ .
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8.3. Proof of Theorem 1 for (Tα, C) = (Tα,3, C^). We follow the proof of The-
orem 1 for the case (Tα, C) = (Tα,1, C≥0): the results of steps 1 to 5 still hold.
Nevertheless, the proof of step 2 differs in the following way: Equation (49) be-
comes

P

(
T `

3 (εεε) > T̄−1
n−dn

(
uα

|T `
n,3|

))

≤
∑

1≤i<j<k≤`

P

(
< εεε,eee`

ijk >

‖εεε−ΠVn,csteεεε‖/(n− `n)
> T̄−1

n−dn

(
uα

|T `
n,3|

))
≤ uα.

We conclude the proof of step 2 by noticing that for all ` ∈ {1, ..., `n}, |T `
n,3| is

bounded from above by n3/8.

Step 6 For n large enough, under the assumption that

inf
G∈K^

‖F −G‖∞ ≥ κρn,(59)

there exists ttt∗ ∈ Tn,3 such that

< ttt∗, f >≥ vttt∗(fff, β).

Proof of step 6 We decompose the proof into three parts.

Part 1: For n large enough, and all F ∈ Hs(L) satisfying (59), we have

inf
ggg∈C^

‖fff − ggg‖∞ ≥ κρn/4,

with fff = (F (x1), . . . , F (xn))′.

Proof of Part 1 We first prove the following inequality :

inf
G∈K^

‖F −G‖∞ ≤ 2Ln−s + 3 inf
ggg∈C^

‖fff − ggg‖∞.(60)

Part 1 derives obviously from this inequality.
For all ggg ∈ C^, we consider the function Gggg ∈ K^ defined as the piecewise linear
function such that for all i Gggg(xi) = gi and such that Gggg is affine on the interval
[0, x2]. Then infG∈K^ ‖F − G‖∞ ≤ ‖F − Gggg‖∞. Moreover, by setting x0 = 0 and
g0 = Gggg(0),

‖F −Gggg‖∞
= sup

i∈{1,...,n}
sup

x∈[xi−1,xi]

|F (x)−Gggg(x)|

≤ sup
i∈{1,...,n}

sup
x∈[xi−1,xi]

|F (x)− F (xi) + F (xi)−Gggg(xi) + Gggg(xi)−Gggg(x)|

≤ Ln−s + ‖f − g‖∞ + sup
i∈{1,...,n}

|gi−1 − gi|
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since supx∈[xi−1,xi] |Gggg(xi)−Gggg(x)| = |Gggg(xi)−Gggg(xi−1)| (G is linear on [xi−1, xi]).
In addition, noticing that |g1 − g0| = |g2 − g1|,

sup
i∈{1,...,n}

|gi − gi−1| ≤ sup
i∈{2,...,n}

|gi − fi + fi − fi−1 + fi−1 − gi−1|

≤ 2‖fff − ggg‖∞ + Ln−s

This concludes the proof of (60).

Part 2: for all fff ∈ Rn,

inf
ggg∈C^

‖fff − ggg‖∞ ≤ max
1≤i<j<k≤n

(
fj −

xk − xj

xk − xi
fi −

xj − xi

xk − xi
fk

)
+

,(61)

where for x ∈ R, (x)+ = x111x>0 denotes the positive part of x.

Proof of Part 2 Let us define ggg∗ ∈ C^ as follows: g∗1 = f1 and for i = 1, ..., n− 1,

g∗i+1 = g∗i + inf
{

fk − g∗i
xk − xi

, k > i

}
(xi+1 − xi).

In words, if Flin denotes the piecewise linear function on [x1, xn] taking the value
fi at xi, then ggg∗ is the vector (G∗

lin(x1), ..., G∗
lin(xn))′ where G∗

lin is the largest
convex function satisfying for all u ∈ [x1, xn] G∗

lin(u) ≤ Flin(u). Note that the
function G∗

lin is also piecewise linear and satisfies that for all j ∈ {1, ..., n} such
that Flin(xj)−G∗

lin(xj) > 0, there exist 1 ≤ i < j < k ≤ n such that

Flin(xj)−G∗
lin(xj) = fj −

xk − xj

xk − xi
fi −

xj − xi

xk − xi
fk.

Consequently,

‖fff − ggg∗‖∞ = max
j=1,...,n

(Flin(xj)−G∗
lin(xj))

≤ max
1≤i<j<k≤n

(
fj −

xk − xj

xk − xi
fi −

xj − xi

xk − xi
fk

)
+

Part 3 Let κ′ = κ/4. We set,

`(n) = 1 +

[(
6L

κ′ρn

)1/s
]

.

If there exist 1 ≤ i < j < k ≤ n such that

fj −
xk − xj

xk − xi
fi −

xj − xi

xk − xi
fk ≥ κ′ρn

then there exist I = J
`(n)
i∗ , J = J

`(n)
j∗ and K = J

`(n)
k∗ with i∗ < j∗ < k∗, such that

f̄J −
x̄K − x̄J

x̄K − x̄I
f̄I −

x̄J − x̄I

x̄K − x̄I
f̄K ≥ κ′ρn/4.(62)
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Proof of part 3 Note that

`(n) ≥
(

6L

κ′ρn

)1/s

(63)

and that for n large enough `(n) ∈ {1, ..., `n}.
In the sequel, we shall use the following inequalities

∀E ∈ {I, J,K}, max
l,l′∈E

|xl − xl′ | ≤
1

`(n)
and max

l∈E
|xl − x̄E | ≤

1
2`(n)

(64)

and the following notations

λ =
xk − xj

xk − xi
, λ̄ =

x̄K − x̄J

x̄K − x̄I
and ∆ = f̄J − λ̄f̄I − (1− λ̄)f̄K .

We bound ∆ from below as follows:

∆ = fj − λfi − (1− λ)fk

+f̄J − fj + λfi − λ̄f̄I + (1− λ)fk − (1− λ̄)f̄K

≥ κρn + f̄J − fj + (λ− λ̄)fi − λ̄(f̄I − fi) + (λ̄− λ)fk − (1− λ̄)(f̄K − fk)

≥ κρn − 2 max
{∣∣f̄I − fi

∣∣ , ∣∣f̄J − fj

∣∣ , ∣∣f̄K − fk

∣∣}− ∣∣λ− λ̄
∣∣ |fi − fk| .

Let us now bound from above the quantities

|fi − fk| , max
{∣∣f̄I − fi

∣∣ , ∣∣f̄J − fj

∣∣ , ∣∣f̄K − fk

∣∣} ,
∣∣λ− λ̄

∣∣ .
Since F ∈ Hs(L), we have that

|fi − fk| = |F (xi)− F (xk)| ≤ L|xk − xi|s(65)

and by using (64) that

max
{∣∣f̄I − fi

∣∣ , ∣∣f̄J − fj

∣∣ , ∣∣f̄K − fk

∣∣} ≤ L`(n)−s.(66)

For each (l, E) ∈ {(i, I), (j, J), (k,K)}, let

hl = x̄E − xl,

we have

λ̄ =
xk − xj + hk − hj

xk − xi + hk − hi
= λ

(
1 + (hk − hj)/(xk − xj)
1 + (hk − hi)/(xk − xi)

)
= λ

(
1 +

(hk − hj)/(xk − xj)− (hk − hi)/(xk − xi)
1 + (hk − hi)/(xk − xi)

)
and as from (64) max {|hk − hj | , |hk − hi|} ≤ `(n)−1, we deduce that∣∣λ̄− λ

∣∣ = |λ|
∣∣∣∣ (hk − hj)/(xk − xi)− (hk − hi)/(xk − xi)

1 + (hk − hi)/(xk − xi)

∣∣∣∣
≤ 2δ

|1− δ|
,(67)
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where

δ =
1

`(n) |xk − xi|
.(68)

In order to bound δ from above, note that since F ∈ Hs(L),

κ′ρn ≤ fj − λfi − (1− λ)fk

= λ (F (xj)− F (xi)) + (1− λ) (F (xj)− F (xk))

≤ Lmax {|xj − xi|s , |xk − xj |s}

and therefore

|xk − xi| ≥ max {|xj − xi| , |xk − xj |}

= {max {|xj − xi|s , |xk − xj |s}}
1/s

≥
(

κ′ρn

L

)1/s

.

Thus, we deduce by (63) and the fact that s ∈]0, 1] that

δ ≤ L1/s

(κ′ρn)1/s`(n)
≤ 1

6
.(69)

By gathering (65), (66), (67), we get

∆ ≥ κ′ρn − 2L`(n)−s − 2L
δ

1− δ
|xk − xi|s.

By using (68), (69) and (63) we finally get

∆ = κ′ρn − 2L`(n)−s − 2L`(n)−s δ1−s

1− δ

≥ κ′ρn

{
1− 1

3

(
1 +

1
1− 1/6

)}
≥ κ′ρn/4.

Let us now conclude the proof of step 6. Under the assumption that

inf
ggg∈C^

‖fff − ggg‖∞ ≥ κ′ρn

we know from (61) that there exists i < j < k such that

fj −
xk − xj

xk − xi
fi −

xj − xi

xk − xi
fk ≥ κ′ρn,

and from (62) that there exists I = J
`(n)
i∗ , J = J

`(n)
j∗ and K = J

`(n)
k∗ with i∗ < j∗ <

k∗ such that

< fff,eee
`(n)
i∗j∗k∗ >= N

`(n)
i∗j∗k∗

(
f̄J − λ

`(n)
i∗j∗k∗ f̄I − (1− λ

`(n)
i∗j∗k∗)f̄K

)
≥

N
`(n)
i∗j∗k∗κ

′ρn

4
.
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Noting that for all E ∈ {I, J,K}

|E| ≥ 2
[

`n

`(n)

]
≥ `n

`(n)
≥ n

4`(n)
,

and that ‖eee`(n)
i∗j∗k∗‖2 ≤ 1/|I|+ 1/|J |+ 1/|K|, we have that

N
`(n)
i∗j∗k∗ ≥

√
1

|I|−1 + |J |−1 + |K|−1
≥
√

n

12`(n)
.

As `(n) ≤ 2(12L/(κ′ρn))1/s at least for n large enough, we deduce that

N
`(n)
i∗j∗k∗ ≥

√
n(κ′ρn)1/s

8(12L)1/s
.

Consequently, we get

< fff,eee
`(n)
i∗j∗k∗ > ≥

√
(κ′ρn)(1+2s)/s

n

121/s128L1/s

≥ κ∗
√

log(n)σ,

for κ′ suitably chosen. It remains to take ttt∗ = eee
`(n)
i∗j∗k∗ ∈ Tn,3 to complete the proof.

9. Proof of Proposition 3 . The proof of Proposition 3 is divided into two
parts. In Section 9.1 we show that if (24) or (25) hold, then PF,σ (Tα > 0) ≥ 1− β.
The second part of the proposition is shown in Section 9.2.

9.1. Proof of the first part of Proposition 3. We only prove the result under
Condition (24), the proof under Condition (25) being almost the same. By combin-
ing (43) and (44) we obtain that if F is such that RF is r-th times differentiable,
then for all J ⊂ {1, ..., n} there exists a sequence

{
ciii, iii ∈ Ir ∩ Jr+1

}
verifying both

ciii ∈]minj∈J xj ,maxj∈J xj [ and

− < fff, ttt∗J >= N−1
J

∑
iii∈Ir∩Jr+1

Λ(F )(ciii)
r!

φ2
iii (xxx

r),(70)

where NJ = Gram(111J ,xxxJ , ...,xxxr−1
J )γJ . Let i∗ ∈ J such that

inf
i∈J

Λ(F )(xi) = Λ(F )(xi∗).

We have for all c ∈]x−J , x+
J [,

Λ(F )(c) ≤ Λ(F )(xi∗) + ω(hJ).

Besides, by taking fff = (xr
1/R(x1), ..., xr

n/R(xn))′ in (44) we get that

1
NJ

∑
iii∈Ir∩Jr+1

φ2
iii (xxx

r) =
‖xxxr

J −ΠXJ
xxxr

J‖2

γJ
.
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Now, by using (70) and (24) we deduce that

< fff, ttt∗J >

≥ −Λ(F )(xi∗) + ω(hJ)
r!

 1
NJ

∑
iii∈Ir∩Jr+1

φ2
iii (xxx

r)


= − (Λ(F )(xi∗) + ω(hJ))

‖xxxr
J −ΠXJ

xxxr
J‖2

γJr!

≥ vttt∗J
(fff, β),

and we conclude thanks to Theorem 1.

9.2. Proof of the second part of Proposition 3. In order to prove this second
part, we apply the first part of the proposition.

Evaluation of vttt∗J
(fff, β). Let us prove that for all J ∈ ∪`n

`=1J (`),

vttt∗J
(fff, β) ≤ κ∗

√
log(n)σ

where κ∗ depends on α, β, s, r only. We use Steps 1 to 5 in the proof of Proposition 1.
For Steps 1,2 and 5 the proof is similar as in the proof of Proposition 1.

Step 3. For all fff = (F (x1), ..., F (xn))′ with F (r) ∈ Hs(L),

‖fff −ΠVn
fff‖2

n
≤ C(s, r)L2n−2(s+r).(71)

Proof of step 3 We recall that Vn is the linear space generated by{
111J ,xxxJ , ...,xxxr

J , J ∈ J `n
}

.

Note that the vector

f̃ff =
`n∑

k=1

(
F (x̄Jk

)111Jk
+

r∑
l=1

F (l)(x̄Jk
)

l!
(xxxJk

− x̄Jk
111Jk

)l

)
belongs to Vn. Hence, using that F (r) ∈ Hs(L),

‖fff −ΠVn
fff‖2

≤ ‖fff − f̃ff‖2

=
`n∑

k=1

∑
i∈Jk

(∫ xi

u1=x̄Jk

∫ u1

u2=x̄Jk

. . .

∫ ur−1

ur=x̄Jk

(
F (r)(ur)− F (r)(x̄Jk

)
)

dur . . . du1

)2

≤
`n∑

k=1

∑
i∈Jk

L2`−2(r+s)
n

≤ C(s, r)L2n1−2(r+s)

since `n ≥ n/(4(r + 1)) using that [x] ≥ x/2 for x ≥ 1.
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Step 4. Assuming that n ≥ (L/σ)1/(r+s), there exists some constant C depending
on s, r and β only such that

χ̄−1
n−dn,‖fff−ΠVnfff‖2/σ2(β/2)

n− dn
≤ C.(72)

The proof is similar to the proof of Step 4 in Proposition 1 by using (71).

Evaluation of γJ . Let us prove that there exists some constant C depending on
r only such that, for J such that |J | ≥ r + 1 ,

γ2
J ≥ C

|J |2r+1

n2r
.

Since for all i, xi = i/n, by translation

γ2
J = ‖xxxr

J −ΠXJ
xxxr

J‖2

=
1

n2r
min

a0,...,ar−1

|J|∑
i=1

(
ir − a0 − a1i− . . .− ar−1i

r−1
)2

.

By setting for all j ∈ {0, . . . , r − 1} aj = bj |J |r−j , we have

min
a0,...,ar−1

|J|∑
i=1

(
ir − a0 − a1i− . . .− ar−1i

r−1
)2

= |J |2r+1 min
b0,...,br−1

1
|J |

|J|∑
i=1

((
i

|J |

)r

− b0 − . . .− br−1

(
i

|J |

)r−1
)2

.

Since

min
b0,...,br−1

1
|J |

|J|∑
i=1

((
i

|J |

)r

− b0 − . . .− br−1

(
i

|J |

)r−1
)2

converges as |J | → ∞ towards

min
b0,...,br−1

∫ 1

0

(
xr − b0 − . . .− br−1x

r−1
)2

dx,

which is positive, we obtain that there exists some constant C > 0 such that for |J |
large enough,

γ2
J ≥ C

|J |2r+1

n2r
.

Moreover, since for |J | ≥ r + 1, γ2
J > 0, the above inequality holds for |J | ≥ r + 1,

possibly enlarging C.
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Evaluation of ω(hJ). Let J ∈ J (`). Since F (r) ∈ Hs(L), and since hJ defined in
Theorem 3 satisfies 0 < hJ ≤ 1/`,

ω(hJ) = sup
|x−y|≤hJ

|F (r)(x)− F (r)(y)|

≤ L`−s.

Conclusion. Let us prove in conclusion that if

inf
x∈[0,1]

F (r)(x) ≤ −ρn,r(73)

then (24) holds for some J ∈ ∪`n

`=1J (`).

Since, F (r) ∈ Hs(L) under (73), there exists j ∈ {1, . . . , n} such that

F (r)(xj) ≤ −ρn,r + Ln−s ≤ −ρn,r/2

for n large enough.
Let

`(n) =

[(
L2n

σ2 log(n)

)1/(1+2r+2s)
]

.

For n large enough, `(n) ∈ {1, . . . , `n}. Let J be the element of J (`(n)) containing
j. Note that |J | ≥ n/(2`(n)) at least for n large enough. This implies that, for n
large enough,

γ2
J ≥ C

|J |1+2r

n2r
≥ C(r)n (`(n))−1−2r

.

It follows that

vttt∗J
(fff, β)

r!
γJ

+ ω(hJ) ≤ κ∗r!√
C(r)

σ
√

log(n)
(`(n))r+1/2

√
n

+ L(`(n))−s

≤ κL
1+2r

1+2r+2s

(
σ2 log(n)

n

) s
1+2s+2r

for some constant κ depending on α, β, s, r. This concludes the proof of the propo-
sition.

10. Appendix

10.1. Proof of Lemma 2.
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Proof of (42). Clearly, on has C̃r,R ⊂ Cr,R. We prove Cr,R ⊂ C̃r,R by using repeat-
edly the following claim.

Claim 1. Let 0 ≤ u1 < u2 < ... < ur+1 < ur+2 ≤ 1 be an increasing sequence
of r + 2 points of [0, 1]. Let v1, ..., vr+2 be real numbers verifying that

D1(1, ur+2, ..., u
r−1
r+2, vr+2) = det


1 u2 · · · ur−1

2 v2

1 u3 · · · ur−1
3 v3

...
...

...
...

...
1 ur+2 · · · ur−1

r+2 vr+2

 ≥ 0

and

Dr+2 = det


1 u1 · · · ur−1

1 v1

1 u2 · · · ur−1
2 v2

...
...

...
...

...
1 ur+1 · · · ur−1

r+1 vr+1

 ≥ 0.

Then for all j ∈ {2, ..., r + 1}

Dj(1, ur+2, ..., u
r−1
r+2, vr+2) = det



1 u1 · · · ur−1
1 v1

...
...

...
...

...
1 uj−1 · · · ur−1

j−1 vj−1

1 uj+1 · · · ur−1
j+1 vj+1

...
...

...
...

...
1 ur+2 · · · ur−1

r+2 vr+2


≥ 0.

Proof of the Claim. For real numbers t1, ..., tr we set vand(t1, ..., tr) the Vandermond
determinant

vand(t1, ..., tr) = det

1 t1 · · · tr−1
1

...
...

...
...

1 tr · · · tr−1
r


and for j = 1, ..., r + 2 we denote by uuuj the vector (1, uj , ..., u

r−1
j , vj)′. Let us fix

j ∈ {2, ..., r + 1}. By expanding the determinant

Dj(1, ur+2, ..., u
r−1
r+2, vr+2)

by its last column we get that if j ∈ {2, ..., r},

Dj(1, ur+2, ..., u
r−1
r+2, vr+2) = vr+2vand(u1, ..., uj−1, uj+1, ..., ur+1)

+ Dj(1, ur+2, ..., u
r−1
r+2, 0),

and if j = r + 1

Dr+1(1, ur+2, ..., u
r−1
r+2, vr+2) = vr+2vand(u1, ..., ur) + Dr+1(1, ur+2, ..., u

r−1
r+2, 0).
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Since the ui’s are increasing, the Vandermond determinants are positive and there-
fore Dj(1, ur+2, ..., u

r−1
r+2, vr+2) is increasing with respect to vr+2. On the other hand,

since by assumption

D1(1, ur+2, ..., u
r−1
r+2, vr+2) = vr+2vand(u2, ..., ur+1) + D1(1, ur+2, ..., u

r−1
r+2, 0) ≥ 0

we have that

vr+2 ≥ −
D1(1, ur+2, ..., u

r−1
r+2, 0)

vand(u2, ..., ur+1)
= v∗,

and deduce that

Dj(1, ur+2, ..., u
r−1
r+2, vr+2) ≥ Dj(1, ur+2, ..., u

r−1
r+2, v

∗).

It remains to show that Dj(1, ur+2, ..., u
r−1
r+2, vr+2, v

∗) ≥ 0. When vr+2 = v∗ we
have that D1(1, ur+2, ..., u

r−1
r+2, v

∗) = 0 and therefore uuu∗ = (1, ur+2, ..., u
r−1
r+2, v

∗)′ is
a linear combination of uuu2,...,uuur+1. Let us denote by λk the coordinate of uuu∗ on uuuk.
By Cramer’s formula we have that for k ∈ {3, ..., r}

λk =
vand(u2, ..., uk−1, uk+1, ..., ur+2)

vand(u2, ..., uk−1, uk+1, ..., ur+1, uk)

= (−1)r−k+1 vand(u2, ..., uk−1, uk+1, ..., ur+2)
vand(u2, ..., ur+1)

,

λ2 = (−1)r−1 vand(u3, ..., ur+2)
vand(u2, ..., ur+1)

and λr+1 =
vand(u2, ..., ur, ur+2)

vand(u2, ..., ur+1)
.

Hence, the positivity of the Vandermond determinants implies that λj is of the sign
of (−1)r−j+1. Since uuu∗ =

∑r+1
k=2 λkuuuk, by linearity of the determinant

Dj(1, ur+2, ..., u
r−1
r+2, v

∗) = λjDj(1, uj , ..., u
r−1
j , vj)

= (−1)r−j+1λjDr+1

and thus, as Dr+1 ≥ 0, Dj(1, ur+2, ..., u
r−1
r+2, v

∗) ≥ 0.
Proof of (43). For x ∈ [xi1 , xir+1 ] let us set

h(x) = det


1 x · · · xr−1 R(x)F (x)
1 xi2 · · · xr−1

i2
R(xi2)F (xi2)

...
...

...
...

...
1 xir+1 · · · xr−1

ir+1
R(xir+1)F (xir+1)



−λdet


1 x · · · xr−1 xr

1 xi2 · · · xr−1
i2

xr
i2

...
...

...
...

...
1 xir+1 · · · xr−1

ir+1
xr

ir+1

 ,
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where λ is such that h(x1) = 0. Since h is r-times differentiable and satisfies h(xi1) =
h(xi2) = · · · = h(xir+1) = 0, there exists some ciii ∈]xi1 , xir+1 [ such that

0 = h(r)(ciii) = det


0 0 · · · 0 Λ(F )(ciii)
1 xi2 · · · xr−1

i2
R(xi2)F (xi2)

...
...

...
...

...
1 xir+1 · · · xr−1

ir+1
R(xir+1)F (xir+1)



−λdet


0 0 · · · 0 r!
1 xi2 · · · xr−1

i2
xr

i2
...

...
...

...
...

1 xir+1 · · · xr−1
ir+1

xr
ir+1

 ,

leading to λ = Λ(F )(ciii)/r!. We get the result by substituting the expression of λ
in the equality h(x1) = 0.
Proof of (44). We start with the following claim.

Claim 2. Let W be a linear subspace of Rk of dimension q ∈ {1, ..., k − 1} and
{www1, ...,wwwq} a basis of W. Then for all uuu,vvv in Rk

Gram(www1, ...,wwwq) < uuu, (I −ΠW)vvv >

=
∑

iii∈Iq+1

det

 w1
i1

· · · wq
i1

ui1
...

...
...

...
w1

iq+1
· · · wq

iq+1
uiq+1

det

 w1
i1

· · · wq
i1

vi1
...

...
...

...
w1

iq+1
· · · wq

iq+1
viq+1


(74)

where

Gram(www1, ...,wwwq) = det (G) with G = (< wwwi,wwwj >)1≤i,j≤q.

We conclude thanks to the claim by taking uuu = R ? fff , vvv = xxxr
J − ΠXJ

xxxr
J , W = XJ

and k = |J |.

Proof of the Claim. For zzz ∈ Rk, let B(zzz) the k × (q + 1) matrix

B(zzz) =

w1
1 · · · w

q
1 z1

...
...

...
...

w1
k · · · w

q
k zk

 .

We obtain the result by computing

det (B(uuu)′B(vvv)) = det


< www1,www1 > · · · < www1,wwwq > < www1, vvv >

...
...

...
...

< wwwq,www1 > · · · < wwwq,wwwq > < wwwq, vvv >
< uuu,www1 > · · · < uuu,wwwq > < uuu,vvv >
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by two different ways. The first way is direct: since ΠWvvv is a linear combination of
the wwwj ’s we have

det (B(uuu)′B(vvv))

= det


< www1,www1 > · · · < www1,wwwq > < www1, (I −ΠW )vvv >

...
...

...
...

< wwwq,www1 > · · · < wwwq,wwwq > < wwwq, (I −ΠW )vvv >
< uuu,www1 > · · · < uuu,wwwq > < uuu, (I −ΠW )vvv >



= det


< www1,www1 > · · · < www1,wwwq > 0

...
...

...
...

< wwwq,www1 > · · · < wwwq,wwwq > 0
< uuu,www1 > · · · < uuu,wwwq > < uuu, (I −ΠW )vvv >


= Gram(www1, ...,wwwq) < uuu, (I −ΠW )vvv > .

The other way is to use the Cauchy-Binet formula (see Horn and Johnson (1991)):
we calculate det (B(uuu)′B(vvv)) as a function of the (q + 1) × (q + 1) minors of the
matrix B(uuu) and B(vvv) which leads to the right-hand side of (74) and concludes the
proof.

10.2. Proof of Proposition 2.
Case K = K≥0. Let PF be the law of Y . under the model defined by Equation (16).
Let Φ be a test of level α of hypothesis F ∈ K≥0. Let us define the test Ψ of
hypothesis “F = 0” against “F 6= 0” which rejects the null if Φ(Y ) = 1 or if
Φ(−Y ) = 1. Since 0 ∈ K≥0 and since

P0(Φ(Y ) = 1) = P0(Φ(−Y ) = 1) ≤ α,

the test Ψ is of level 2α ≤ 3α. Let ρn(Φ,F) be the ∆-uniform separation rate of Φ
over F . It is enough to show that

ρn(Φ,F) ≥ ρn(0,F).

To do so, we show that the ‖ ‖∞-uniform separation rate of Ψ over F is not larger
than ρn(Φ,F) which means that for all F ∈ F such that ‖F‖∞ ≥ ρn(Φ,F) we have
PF (Ψ(Y ) = 1) ≥ 1− β.
Let F ∈ F . If ‖F‖∞ ≥ ρn(Φ,F) then

either ∆(F ) = sup
x∈[0,1]

(
−F (x)111F (x)>0

)
≥ ρn(Φ,F) or ∆(−F ) ≥ ρn(Φ,F).

In the first case, by definition of ρn(Φ,F) we have PF (Φ(Y ) = 1) ≥ 1 − β and
consequently PF (Ψ(Y ) = 1) ≥ 1− β. Note that in the other case the same is true
since by symmetry of the law of Y − F

PF (Φ(−Y ) = 1) = P−F (Φ(Y ) = 1) .
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CaseK = K↗. We argue similarly. Let Φ be a test of level α of hypothesis F ∈ K↗.
We also consider the test Φ′ of level α of “F = 0” against “F 6= 0” which rejects the
null when

√
n
∣∣∣∫ 1

0
dY (t)

∣∣∣ is large enough (namely, larger than the 1− α quantile of
a standard Gaussian random variable). Finally, we define the test Ψ of hypothesis
“F = 0” against “F 6= 0” which rejects the null if Φ(Y ) = 1 or Φ(−Y ) = 1 or
Φ′(Y ) = 1. Since 0 ∈ K↗, we have that the so-defined test Ψ is of level 3α.
Some easy computations shows that there exists some constant κ depending on α
and β only such that Φ′ rejects the null with probability not smaller than 1− β as
soon as

∣∣∣∫ 1

0
F (t)dt

∣∣∣ is larger than κσ/
√

n (the sum of the β and 1− α quantiles of
a standard Gaussian suits for κ). On the other hand, note that

∆(F ) =
1
2

sup
0≤s≤t≤1

(F (s)− F (t))

and thus, by definition of the ∆-separation rate, ρn(Φ,F), of Φ over F , Ψ rejects the
null with probability not smaller than 1−β under all alternatives F ∈ F satisfying

max{∆(F ),∆(−F )} =
1
2

sup
0≤t,s≤1

|F (t)− F (s)| > ρn(Φ,F).

Therefore, since

‖F‖∞ ≤ sup
t∈[0,1]

∣∣∣∣F (t)−
∫ 1

0

F (s)ds

∣∣∣∣+ ∣∣∣∣∫ 1

0

F (s)ds

∣∣∣∣
≤
∫ 1

0

sup
t∈[0,1]

|F (t)− F (s)| ds +
∣∣∣∣∫ 1

0

F (s)ds

∣∣∣∣
≤ sup

t,s∈[0,1]

|F (t)− F (s)|+
∣∣∣∣∫ 1

0

F (s)ds

∣∣∣∣
Ψ rejects the null with probability larger than 1 − β under all alternative F such
that

‖F‖∞ ≥ 2ρn(Φ,F) + κσ/
√

n,

and the result follows.
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