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RHO-ESTIMATORS FOR SHAPE RESTRICTED DENSITY

ESTIMATION

Y. BARAUD AND L. BIRGÉ

Abstract. The purpose of this paper is to pursue our study of ρ-estimators built from
i.i.d. observations that we defined in Baraud et al. (2014). For a ρ-estimator based on

some model S (which means that the estimator belongs to S) and a true distribution of the

observations that also belongs to S, the risk (with squared Hellinger loss) is bounded by a
quantity which can be viewed as a dimension function of the model and is often related to
the “metric dimension” of this model, as defined in Birgé (2006). This is a minimax point
of view and it is well-known that it is pessimistic. Typically, the bound is accurate for
most points in the model but may be very pessimistic when the true distribution belongs
to some specific part of it. This is the situation that we want to investigate here. For
some models, like the set of decreasing densities on [0, 1], there exist specific points in the
model that we shall call extremal and for which the risk is substantially smaller than the
typical risk. Moreover, the risk at a non-extremal point of the model can be bounded by
the sum of the risk bound at a well-chosen extremal point plus the square of its distance
to this point. This implies that if the true density is close enough to an extremal point,
the risk at this point may be smaller than the minimax risk on the model and this actually
remains true even if the true density does not belong to the model. The result is based
on some refined bounds on the suprema of empirical processes that are established in
Baraud (2016).

1. Introduction

The present paper pursues the study of ρ-estimation, introduced in Baraud et al. (2014),
as a versatile estimation strategy based on models. We want here to explain some specific
property of these estimators that we shall call superminimaxity, a study which was moti-
vated by a conference that Adityanand Guntuboyina gave in Cambridge in June 2014. His
talk was about Gaussian regression but we shall deal here with density estimation. Given
n i.i.d. observations X1, . . . ,Xn with an unknown density s with respect to some reference
measure µ and an estimator ŝ(X1, . . . ,Xn) of s, we measure its performance using the loss
function h2(s, ŝ) where h is the Hellinger distance. We shall focus here on ρ-estimators and
some of their properties that lead to superminimaxity.

The first of these properties is robustness. There exist various notions of robustness:
robustness to model contamination, robustness to possible outliers, etc. — see Huber (1981)
for some illustrations —. In some of these cases, the problem can be formulated in the
following way. If we know the performance of an estimator when the true density s = s
belongs to a model S, how does it deteriorate when s is actually of the form (1 − ε)s + εt
for some small ε ∈ (0, 1) and an arbitrary density t 6= s, that is, when a proportion ε of
the data actually corresponds to a sample of density t and not s. Since for such a density
s one can check that h2(s, s) ≤ ε, it is natural to wonder what happens to the risk of the
estimator not only when s is a mixture of the form (1 − ε)s + εt as before but also, more
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generally, when it belongs to a small Hellinger ball around s, which leads to the notion of
robustness with respect to Hellinger deviations that we shall use here.

To illustrate the problem of contamination, assume that we choose as our statistical
model S for the unknown density s the set of uniform densities on [0, θ] with 0 < θ ≤ 10, in
which case the MLE (maximum likelihood estimator) is the uniform density ŝ on

[
0,X(n)

]
,

where X(n) is the largest observation, with a risk Es

[
h2(s, ŝ)

]
bounded by C/n when s

belongs to S, Et denoting the expectation when the true density is t. But what if the true
density s does not belong to S? Unfortunately, the situation may become quite different.
If s is the mixture s0 = (1− 1/n)1l[0,1] + (1/n)(1l[9,10]) for some n larger than 100, it is easy

to check that, with probability of order 1− e−1 ≈ 0.63, at least one of the Xi will be larger
than 9 and the MLE will be the uniform distribution on

[
0,X(n)

]
with X(n) > 9, which

is a terrible estimator of s = s0, although the model S is quite good since the Hellinger
distance between s and S is not larger than 1/

√
n.

The previous example shows that the MLE is definitely not robust in our sense since it
may be very sensitive to small deviations from the model on the contrary to ρ-estimators.
To be more precise, let us consider some model of densities S and a ρ-estimator ŝ based on
S with a risk function on S bounded by R(s, n), that is,

(1) Es

[
h2(s, ŝ)

]
≤ R(s, n) for all s ∈ S.

The robustness of ρ-estimators can be expressed by the following property, proven in Ba-
raud et al. (2014): whatever the density s,

(2) Es

[
h2(s, ŝ)

]
≤ C0

[
R(s, n) + h2(s, s)

]
for all s ∈ S,

where C0 is a universal positive constant. This is a fondamental property of ρ-estimators
for the following reasons: if s is quite close to a simple density s in S which can be estimated
with a small risk bound R(s, n), the ρ-estimator will essentially behave as if the true density
were s and the risk bound at s will be that at s plus a small additional term that can be
viewed as a squared bias. Intuitively, a ρ-estimator based on a sample with density s and a
ρ-estimator based on a sample with density s will remain close. In our parametric example
based on uniform distributions, everything happens as if the ρ-estimator only considered
the data with values in [0, 1] and ignored the others. Consequently, its risk remains of order
1/n even when s = s0 instead of s = s = 1[0,1]. This notion of robustness is quite flexible
and shows that the risk of the estimator does not deteriorate much in a small Hellinger
neighbourhood of any point s of the model.

For many well-chosen models S, the risk can be uniformly bounded on S:

(3) sup
s∈S

R(s, n) ≤ R(S, n),

which corresponds to the minimax point of view, so that (3) leads to

(4) Es

[
h2(s, ŝ)

]
≤ C0

[
R(S, n) + h2(s, S)

]
whatever the density s.

It turns out that for some models S, there exists a subset V of S such that the risk bounds
R(s, n) are substantially smaller than R(S, n) for all s ∈ V . This is what we call su-
perminimaxity. Although there exists some analogy in the denomination, the notion is
quite different from the one of superefficiency as described in the famous counterexample of
Hodges and the Theorem of Le Cam about points of superefficiency, apart from the fact that
it deals with the property that estimation is faster at some points. However superefficiency

2



is an asymptotic property at a point, while superminimaxity on V is definitely nonasymp-
totic and defined for a given value of the number n of observations. For a detailed study
of superefficiency, one could look at the paper by Brown, Low, and Zhao (1997). More-
over, superminimaxity on V together with the robustness of ρ-estimators has the following
consequence: if s is either in V or close enough to it, the risk bound at s,

Es

[
h2(s, ŝ)

]
≤ C0 inf

s∈V

[
R(s, n) + h2(s, s)

]
,

may be substantially smaller than the typical risk bound (4) leading to superminimaxity at
s. It is actually the combination of the robustness of ρ-estimators and the existence of local
risk bounds of the form (1) that lead to this phenomenon as also described, in a different
framework, by Chatterjee et al. (2015), a paper that strongly influenced our research in
this direction.

Showing that the risk Es

[
h2(s, ŝ)

]
at some particular points s can be bounded from

above by some quantity R(s, n) which is of smaller order than the global minimax risk over
S requires some specific probabilistic tools that have been established in Baraud (2016).
These tools allow to bound the expectation of the supremum of an empirical process over
the neighbourhood of an element s ∈ S by some quantity which is of smaller order than
that one could get by using the global entropy of the class S as, for example, in van de
Geer (1993).

The existence of points in the model on which the estimator is superminimax was already
noticed for the Grenander estimator of a non-increasing density — see Grenander (1981)
and Groeneboom (1985) — on an interval [a,+∞) with a known value of a. It is shown
in Birgé (1989) that the L1-risk of the Grenander estimator of a non-increasing piecewise

constant density based on at most D intervals is bounded by c
√
D/n, for some positive

universal constant c, and can therefore be of smaller order than the typical risk for non-
increasing densities which is of order n−1/3. We shall see below that, for the same estimation
problem, the ρ-estimator will perform similarly (up to possible logarithmic factors) with the
same superminimaxity property on piecewise constant densities. Moreover, the ρ-estimator
does not need to know a and is robust with respect to the Hellinger distance.

The case of monotone densities on [a,+∞) is far from unique. There are many other
examples of families S of densities for which one can find a subset V of S on which the
rates of convergence of the ρ-estimator are faster than the rate at a “typical” point of S.
Moreover, it happens that the set V often possesses good approximation properties with
respect to the much larger space S. These approximation properties combined with the
robustness of ρ-estimators as expressed by (2) allow to derive non-asymptotic minimax risk
bounds over large subsets of S. Such sets are possibly non-compact and therefore neither
possess a finite metric dimension nor a finite entropy.

In view of illustrating this superminimaxity phenomenon, we shall consider in the present
paper models of densities S defined by some shape constraints, namely piecewise monotone,
piecewise convex or concave and log-concave densities. There is a large amount of literature
dealing with these density models and we shall content ourselves to mention a few references
only and refer the reader to the bibliography therein. For monotone densities we refer to
the books by Groeneboom and Wellner (1992) and van de Geer (2000). For the estimation
of a convex density, we mention Groeneboom et al. (2001) and refer to the papers of Doss
and Wellner (2015), Dümbgen and Rufibach (2009), Cule and Samworth (2010) for the
estimation of a log-concave density. In the regression setting, let us mention Guntuboyina
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and Sen (2015) for estimating a convex regression function and Chatterjee et al. (2015)
for the isotonic regression. Recently, Bellec (2015) extended the results of Chatterjee et
al. (2015) about the properties of least-squares estimators over convex polyhedral cones
in the homoscedastic Gaussian regression framework, to general closed convex subsets of
R
n from which he also derived some results of superminimaxity in this specific Gaussian

framework. In these two papers the results are restricted to convex models. As opposed,
convexity does not play any special role in our presentation and the models we shall use
here are not necessarily convex which allows us to deal with more general shape constraints
like piecewise monotonicity or log-concavity.

The paper is organised as follows. The statistical setting, main notations and conventions
as well as a brief reminder of what a ρ-estimator is in the density estimation framework
can be found in Section 2. The introductory example of the model of monotone densities
in Section 3 gives a first flavour of the results we establish all along the paper. The main
result can be found in Section 4 and its applications to different density models (piecewise
constant, piecewise monotone, piecewise convex-concave and log-concave densities) are de-
tailed in Section 5. The problem of model selection is addressed in Section 6 and Section 7
is devoted to the proofs.

2. The statistical setting

Let (X ,A ) be a measurable set, µ a σ-finite measure on (X ,A ), Pµ the set of all
probabilities on (X ,A ) which are absolutely continuous with respect to µ. We shall denote
by L the set of real-valued functions from X to R and Lµ the subset of L consisting
of those functions t ≥ 0 satisfying

∫
t dµ = 1, that is the set of probability densities with

respect to µ. An element of Pµ with density t ∈ Lµ will be denoted by Pt. We turn Pµ into
a metric space via the Hellinger distance h. We recall from Le Cam (1973 or 1986) that
the Hellinger distance between two elements P and Q of Pµ is given by

h(P,Q) =

[
1

2

∫

X

(√
dP/dµ −

√
dQ/dµ

)2
dµ

]1/2
.

For Pt, Pu ∈ Pµ with t, u ∈ Lµ we shall write h(t, u) for h(Pt, Pu).

We observe n i.i.d. random variables X1, . . . ,Xn with values in (X ,A ) and distribution
Ps for some density s ∈ Lµ. Although s might not be uniquely defined in Lµ as a density
with respect to µ of the distribution of the observations, we shall refer to s as “the” density
of Ps for simplicity. To avoid trivialities, we shall always assume, in the sequel, that n ≥ 3,
so that log n > 1. The estimators ŝ that we shall consider here will be based on models for
s defined as follows.

Definition 1. A density model, or a model (for short), is a subset of Lµ for which there

exists an at most countable subset S ⊂ S such that {Pt, t ∈ S} is dense in {Pt, t ∈ S}
with respect to the Hellinger distance. We shall then say that S is dense in S and that S
is separable with respect to the Hellinger distance.

A density model S should be chosen so that the corresponding probability model {Pt, t ∈
S} approximates the true distribution Ps (with respect to the Hellinger distance). The
model S may or may not contain s. Of course a model S is good only if the distance
h
(
s, S

)
is not too large, where we set, for A ⊂ Lµ, h(t, A) = infu∈A h(t, u). Our aim in

this paper is to study the performance of a ρ-estimator ŝ of s built on S. The definition
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and properties of ρ-estimators have been described in great details in Baraud et al. (2014)
and we only give below a brief account of what a ρ-estimator is.

2.1. What is a ρ-estimator? In the context of density estimation based on i.i.d. variables,
which is the one we consider here, a ρ-estimator provides a robust (in our sense) and an
(almost) rate optimal estimator over a model S of densities in all cases we know. In order
to avoid long developments we restrict ourselves to its construction in the specific situations
we shall encounter here, namely when the observations are i.i.d.

Let ψ be the increasing function from [0,+∞] onto [−1, 1] defined by

ψ(u) =
u− 1√
1 + u2

for u ∈ [0,+∞) and ψ(+∞) = 1.

Given a model S of densities on (X ,A , µ) and a countable and dense subset S of S, a
ρ-estimator ŝ of the density s on S is defined in the following way. For densities t, t′ ∈ Lµ

we set

T(X , t, t′) =
n

2

[
h2
(
t,
t+ t′

2

)
− h2

(
t′,
t+ t′

2

)]
+

1√
2

n∑

i=1

ψ

(√
t′

t
(Xi)

)

and define ŝ as any (measurable) element of the closure of the set

(5)

{
t ∈ S

∣∣∣∣Υ(S, t) ≤ inf
t′∈S

Υ(S, t′) + 35.7

}
with Υ(S, t) = sup

t′∈S
T(X , t, t′).

In the calculation of T(X , t, t′), which involves the ratio t′/t, we use the convention 0/0 = 1
and a/0 = +∞ for a > 0. The constant 35.7 in (5) has only been chosen for convenience
in the calibration of the numerical constants in the original paper Baraud et al. (2014) and
can be replaced by any positive number. It is clear from the construction that, given a
model S, there is not a unique ρ-estimator on S. However, the risk bounds we derived in
Baraud et al. (2014) are valid for any version of these ρ-estimators.

2.2. Notations, conventions and definitions. We set log+(x) = max{log x, 1}, N∗ =
N \ {0}, a ∨ b = max(a, b), a ∧ b = min(a, b) and, for x ∈ R+, ⌈x⌉ = inf{n ∈ N, n ≥ x};
|A| denotes the cardinality of the finite set A and C,C ′, . . . numerical constants that may
vary from line to line. For a function f on R, f(x+) and f(x−) denote respectively the
right-hand and left-hand limits of f at x whenever these limits exist. We shall also use the
following conventions:

∑
∅
= 0, x/0 = +∞ if x > 0, x/0 = −∞ if x < 0 and 0/0 = 1.

Definition 2. A partition of the open interval (a, b) (−∞ ≤ a < b ≤ +∞) of size k + 1
with k ∈ N is either ∅ when k = 0 or a finite set I = {x1, . . . , xk} of real numbers with
a < x1 < x2 < · · · < xk < b if k ≥ 1. We shall call endpoints of the partition I the numbers
xj , 1 ≤ j ≤ k, and intervals of the partition the open intervals Ij = (xj , xj+1), 0 ≤ j ≤ k
with x0 = a and xk+1 = b. A partition I will also be identified to the set of its intervals
and we shall equally write I = {I0, . . . , Ik} or I = {x1, . . . , xk}.

The set of all partitions of R with k endpoints or k + 1 intervals is denoted by J (k + 1)
and the length of Ij by ℓ(Ij). If I = {x1, . . . , xk} and I ′ = {x′1, . . . , x′k′}, I ∨ I ′ =
{x1, . . . , xk} ∪ {x′1, . . . , x′k′} and I � I ′ means that {x1, . . . , xk} ⊃ {x′1, . . . , x′k′}.
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3. Monotone densities

In view of illustrating the main result of this paper to be presented in Section 4, let
us consider the example of the model S consisting of all the densities with respect to the
Lebesgue measure µ that are non-increasing on some arbitrary interval of R which is open
on its left end and vanish elsewhere. In this case (X ,A ) = (R,B(R)) and S is the set
of all densities of the form t = f1l(x,+∞) with x ∈ R and f is a non-increasing and non-
negative function on (x,+∞) (which may be unbounded in the neighbourhood of x) such

that
∫ +∞

x f(x) dx = 1. The results we get below would be similar for the set of all densities
which are non-decreasing on some interval of R and vanish elsewhere.

For D ∈ N
∗ we define V (D) to be the set of all densities of the form

∑D
j=1 aj1l(xj ,xj+1]

with I = {x1, . . . , xD+1} ∈ J (D + 2) and aj ≥ 0 for 1 ≤ j ≤ D. Note that the densities

in V (D) take the value 0 on the two unbounded extremal intervals I0 and ID+1 of the
partition I. For instance, V (1) corresponds to the family of uniform densities on intervals,
that is

V (1) =
{
t(·) = θ−1

1 1l(0,θ1](· − θ0), θ1 > 0, θ0 ∈ R
}
.

In such a situation, we can prove the following result.

Theorem 1. Any ρ-estimator ŝ on S, as defined in Section 2.1, satisfies

(6) CEs

[
h2(s, ŝ)

]
≤ inf

D≥1

[
h2
(
s, V (D) ∩ S

)
+
D

n
log3+

( n
D

)]
for all s ∈ Lµ

and some universal constant C ∈ (0, 1].

Remark. Since C ≤ 1, the left-hand side is always bounded by one so that it is useless
to consider values of D that lead to a bound which is not smaller than one, in particular
D ≥ n, and (6) is actually equivalent to

CEs

[
h2(s, ŝ)

]
≤ inf

1≤D<n

[
h2
(
s, V (D) ∩ S

)
+
D

n
log3+

( n
D

)]
.

Although we shall not repeat it systematically, the same remark will hold for all our subse-
quent results.

Bound (6) means that the risk function s 7→ Es

[
h2(s, ŝ)

]
of ŝ over Lµ can be quite small

in the neighbourhood of some specific densities t ∈ S: if s belongs to V (D)∩S with D < n
or is close enough to some density t ∈ V (D) ∩ S, the risk of ŝ is of order D/n, up to
logarithmic factors. More precisely,

sup
s∈V (D)∩S

Es

[
h2(s, ŝ)

]
≤ C ′D

n
log3+

( n
D

)
for 1 ≤ D < n.

When n becomes large andD remains fixed, the rate of convergence of ŝ towards an element
of V (D) ∩ S is therefore almost parametric.

Of particular interest are the densities t which are bounded, supported on a compact
interval [a, b] of R (for numbers a < b depending on t) and non-increasing on (a, b). Given
M ≥ 0, we introduce the set S(M ) of densities t of this form and for which

(7) (b− a)V 2
[a,b]

(√
t
)
=M(t) ≤M,

where the variation V[a,b]
(√
t
)
of the non-increasing function

√
t on [a, b] is defined in the

following way:
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Definition 3. Let the function f be defined on some interval I (with positive length) of R

and monotone on the interior I̊ of I. Its variation on I is given by

(8) VI(f) = sup
x∈I̊

f(x)− inf
x∈I̊

f(x) ∈ [0,+∞].

Note that S(0) is the set of uniform densities on intervals, so that S(0) = V (1), and that
S(M ) is not compact and contains densities that can be arbitrarily large in sup-norm. The
functionalM remains invariant by translation and scaling: if u(·) = λt

(
λ(· − τ)

)
with λ > 0

and τ ∈ R, then M(u) = M(t) which implies that S(M ) is also invariant by translation
and scaling. It turns out that the densities lying in S(M) can be well approximated by
elements of V (D). More precisely, the following approximation result holds.

Proposition 1. For all D ∈ N
∗ and t ∈ ⋃M≥0 S(M ),

h2
(
t, V (D) ∩ S

)
≤
[
M(t)/(2D)2

]
∧ 1.

Using the triangle inequality, the right-hand side of (6) can be bounded from above in
the following way: for all M ≥ 0 and t ∈ S(M),

inf
D≥1

[
h2
(
s, V (D) ∩ S

)
+
D

n
log3+

( n
D

)]

≤ 2h2(s, t) + inf
D≥1

[
2h2
(
t, V (D) ∩ S

)
+
D

n
log3+

( n
D

)]

≤ 2h2(s, t) + inf
D≥1

[
M

2D2
+
D

n
log3+

( n
D

)]
.

Finally, since t is arbitrary in S(M),

inf
D≥1

[
h2
(
s, V (D) ∩ S

)
+
D

n
log3+

( n
D

)]
≤ 2h2

(
s, S(M )

)
+ inf

D≥1

[
M

2D2
+
D

n
log3+

( n
D

)]
.

Optimizing the right-hand side with respect to D and using the facts that M is arbitrary
and log n > 1, we derive the following corollary of Theorem 1.

Corollary 1. For all probabilities Ps in Pµ, any ρ-estimator ŝ of s on S satisfies, for some
constant C ∈ (0, 1],

(9) CEs

[
h2(s, ŝ)

]
≤ inf

M≥0

[
h2
(
s, S(M )

)
+
((
M

1/3
n−2/3(log n)2

)∨(
n−1(log n)3

))]
.

In particular, if s ∈ S(M ) for some M ≥ n−1(log n)3, the risk bound of the estimator

is not larger (up to a universal constant) than M
1/3
n−2/3(log n)2 while for smaller values

of M it is bounded by n−1(log n)3. Up to logarithmic factors, this rate (with respect to

n) is optimal since it corresponds to the lower bound of order n−2/3 for the minimax risk
on the subset of S(M) consisting of the non-increasing densities supported in [0, 1] and
bounded by M . This lower bound follows from the proof of Proposition 1 of Birgé (1987).
The result was actually stated in this paper for the L1-distance but its proof shows that it
applies to the Hellinger distance as well. This property means that, although the set S(M )
is not compact because the support of the densities is unknown, the minimax risk on S(M )
is finite. We do not know any other estimator with the same performance which is also
robust with respect to Hellinger deviations.
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Note that Corollary 1 can also be used to determine the rate of estimation for decreasing
densities s with possibly unbounded support and maximum value, provided that we have
some assumption about the behaviour of the function M 7→ h

(
s, S(M )

)
when M goes to

infinity.

4. The main result

Let us start with some definitions.

Definition 4. A class C of subsets of X is said to shatter a finite subset A = {x1, . . . , xm}
of X if the class of subsets

(10) C ∩A = {C ∩A, C ∈ C }
is equal to the class of all subsets of A or, equivalently, if |C ∩ A| = 2m. A non-empty
class C of subsets of X is a VC-class with dimension d ∈ N if there exists some integer m
such that no finite subset A ⊂ X with cardinality m can be shattered by C and d+1 is the
smallest m with this property.

Definition 5. Let F be a non-empty class of functions on a set X with values in [−∞,+∞].
We shall say that F is weak VC-major with dimension d ∈ N if d is the smallest integer
k ∈ N such that, for all u ∈ R, the class

(11) Cu(F ) =
{
{x ∈ X , f(x) > u}, f ∈ F

}

is a VC-class of subsets of X with dimension not larger than k.

We may now introduce the main property to be used in this paper.

Definition 6. Let F be a class of real-valued functions on X . We shall say that an element
f ∈ F is extremal in F (or is an extremal point of F ) with degree d(f) = d ∨ 1 ∈ N

∗ if
the class of functions

(F/f ) = {f/f , f ∈ F},
is weak VC-major with dimension d.

Proposition 2. Let F be a class of nonnegative functions on X . The element f ∈ F is
extremal in F with degree not larger than 2d if for all λ ≥ 0,

C (F , f , λ) = {X } ∪
{
{x ∈ X | f(x)− λf(x) > 0}, f ∈ F

}

is a VC-class with dimension not larger than d ≥ 1.

Proof. Let us bound the VC dimension of Cu((F/f )) according to the value of u ∈ R. If
u < 0, Cu((F/f )) = {X } and is therefore VC with dimension not larger than 0 ≤ 2d. Let
us now assume that u ≥ 0 and set A = {f > 0}. Using Lemma 5 (in Section 7.1), it suffices
to prove that Cu((F/f ))∩A and Cu((F/f ))∩Ac are two VC-classes with dimensions not
larger than d. For all x ∈ A and f ∈ F

f(x)/f(x) > u is equivalent to f(x) > uf(x)

showing thus that Cu((F/f )) ∩ A ⊂ C (F , f , u) ∩ A and is therefore VC with dimension
not larger than d. Let us now turn to the case where x 6∈ A, which means that f(x) = 0 so
that f(x)/f(x) is either 1 or +∞ (with our conventions). For u ≥ 1 and all x ∈ Ac,

f(x)/f(x) > u is equivalent to f(x) > 0

8



and Cu((F/f ))∩Ac ⊂ C (F , f , 0)∩Ac and is therefore VC with dimension not larger than
d. For u ∈ [0, 1), (f/f)(x) > u for all x ∈ Ac, hence Cu((F/f )) ∩ Ac = {Ac} which is VC
with dimension 0 < d and this concludes the proof. �

Let us now state our main result.

Theorem 2. Let S be a model with a non-void set Λ of extremal points. Any ρ-estimator
ŝ on S satisfies, for some universal constant C ∈ (0, 1],

Ps

[
Ch2(s, ŝ) ≤ inf

s∈Λ

[
h2(s, s) +

d(s)

n
log3+

(
n

d(s)

)]
+
ξ

n

]
≥ 1− e−ξ for all ξ > 0,

whatever the true distribution Ps ∈ Pµ. Consequently,

CEs

[
h2(s, ŝ)

]
≤ inf

s∈Λ

[
h2(s, s) +

d(s)

n
log3+

(
n

d(s)

)]
.

Note that the boundedness of h implies that values of d(s) ≥ n lead to a trivial bound so
that the infimum could be reduced to those s such that d(s) < n. We do not know to what
extend the log3 factor is necessary. We believe that it is not optimal although a log-factor
appears to be necessary in some situations as shown by the example of Section 5.1 below.

5. Applications

Throughout this section, (X ,A ) = (R,B(R)) and µ is the Lebesgue measure on R. In
particular, we shall only consider densities with respect to the Lebesgue measure. We start
with the following useful lemma:

Lemma 1. If D is a class of subsets of R such that each element of D is the union of at
most k intervals, D is VC with dimension at most 2k.

Proof. Let x1 < x2 < . . . < x2k+1 be 2k + 1 points of R. It is easy to check that elements
of the form J1 ∪ · · · ∪ Jl ∈ D , where the Jj are disjointed intervals and l ≤ k, cannot pick

up the subset of points
⋃k

i=0{x2i+1}. �

5.1. Piecewise constant densities. Let us now consider the model V (D) of Section 3
to build a ρ-estimator. If f and f belong to V (D), for all λ ≥ 0, f − λf is of the form∑k

j=1 aj1l(xj ,xj+1] with k < 2(D + 1) so that {x ∈ X | f(x) − λf(x) > 0} is the union
of at most D + 1 disjointed intervals. Applying Lemma 1 and Proposition 2 to the sets
D = C (V (D), f , λ) with λ ≥ 0, we obtain that all the elements of V (D) are extremal in
V (D) and their degrees are not larger than 4(D+1). We therefore deduce from Theorem 2
that

(12) sup
s∈V (D)

Es

[
h2(s, ŝ)

]
≤ C

D

n
log3+

( n
D

)
,

which, up to the logarithmic factor, corresponds to a parametric rate (with respect to n)
although the partition that defines s can be arbitrary in J (D + 2) and the support of s
is unknown. It follows from Birgé and Massart (1998), Proposition 2, that a lower bound
for the minimax risk on V (D) is of the form C ′(D/n) log+(n/D), which shows that some
power of log+(n/D) is necessary in (12). We suspect that the power three for the logarithm
is not optimal.
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5.2. Piecewise monotone densities. Let us now see how Theorem 2 can be applied in
the simple situation of piecewise monotone densities.

Definition 7. Given k ∈ N
∗ and a partition I = {I0, . . . , Ik−1} ∈ J (k), a real-valued

function f on R will be called piecewise monotone (with k pieces) based on I if f is monotone
on each open interval Ij , 0 ≤ j ≤ k − 1. The set of all such functions will be denoted by
Gk. For k ≥ 2 (since no density is monotone on R), Fk is the set of densities (with respect
to the Lebesgue measure) that belong to Gk.

Clearly, Gk ⊂ Gl and Fk ⊂ Fl for all l > k.

Proposition 3. For D ≥ 1 and k ≥ 2, any element f of Fk ∩ V (D) is extremal in Fk

with degree not larger than 3(k +D + 1).

Proof. Let f be a piecewise monotone density on R based on a partition I0 ∈ J (k), therefore
with k−1 endpoints. Let f ∈ V (D)∩Fk be a piecewise constant density based on a partition
I1 ∈ J (D + 2) (with D + 1 endpoints) and let I2 = I1 ∨ I0. It is a partition of R with at
most k+D endpoints, therefore at most k+D+1 intervals and on each such interval f is
monotone and f is constant which implies that f − λf belongs to Gk+D+1 for all λ ≥ 0. It
then follows from Lemma 2 below that the sets {x ∈ X | f(x)−λf(x) > 0} are unions of at
most (3/2)(k +D + 1) intervals. The conclusion follows from Lemma 1 and Proposition 2
applied to D = C (Fk, f , λ) with λ ≥ 0. �

Lemma 2. If f ∈ Gk, whatever a ∈ R the set {x ∈ X | f(x) > a} can be written as a
union of at most k + ⌈(k − 1)/2⌉ ≤ 3k/2 intervals and the set {x ∈ X | f(x) ≤ a} as well.

Proof. Let f ∈ Gk, I be the partition of R with k open intervals associated to f and
x1, . . . , xk−1 the k − 1 endpoints of this partition. For Ij ∈ I, {x ∈ X | f(x) > a} ∩ Ij is
either ∅ or a non-void interval and

(13) {x ∈ X | f(x) > a} =




k⋃

j=1

[{f > a} ∩ Ij ]



⋃



k−1⋃

j=1

[{xj} ∩ {f > a}]


 .

This decomposition shows that {x ∈ X | f(x) > a} is the union of at most 2k−1 disjointed
intervals. Nevertheless, this bound can be refined as follows. If f(xj) ≤ a, {xj} ∩ {f >
a} = ∅ and the only situation we need to consider is when f(xj) > a in which case
{xj} ∩ {f > a} = {xj}. If xj belongs to the closure of one of the intervals of the form
{f > a} ∩ Ij′ , the set

[
{f > a} ∩ Ij′

]
∪ {xj} only counts for one interval in (13). The only

situation for which {xj} adds an extra interval occurs when f(xj−1+) > a, f(xj−) ≤ a,
f(xj) > a, f(xj+) ≤ a and f(xj+1−) > a. The number of such points xj is not larger
than ⌈(k − 1)/2⌉ and {x ∈ X | f(x) > a} is therefore the union of at most k + ⌈(k − 1)/2⌉
intervals. The proof for {x | f(x) ≤ a} is the same. �

An application of Theorem 2 with Λ = Fk
⋂[⋃

D≥1 V (D)
]
, the elements of which are

extremal in Fk by Proposition 3, leads to the following result.

Corollary 2. For all k ≥ 2, any ρ-estimator on Fk satisfies, for all distributions Ps ∈ Pµ,

CEs

[
h2(s, ŝ)

]
≤ inf

D≥1

[
inf

s∈Fk

⋂
V (D)

h2(s, s) +
k +D

n
log3+

(
n

k +D

)]

where C ∈ (0, 1] is a universal constant.
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Note that the bound is trivial for k ≥ n− 1 and that using D with k+D ≥ n also leads
to a trivial bound so that we should restrict ourselves to D < n− k when k < n− 1.

Since, for t ∈ Fk,

inf
s∈Fk

⋂
V (D)

h(s, s) ≤ inf
t∈Fk

[
h(s, t) + inf

s∈Fk

⋂
V (D)

h(t, s)

]
,

to go further with our analysis it will be necessary to evaluate infs∈Fk

⋂
V (D) h(t, s) for

t ∈ Fk. In order to do this we shall use an approximation result based on the following
functional Mk.

Definition 8. Let t ∈ Fk for k ≥ 2 and I = {I0, . . . , Ik−1} ∈ J (k) a partition on which t
is based. Using the convention (+∞)× 0 = 0, we define

(14) Mk(t,I) =



k−1∑

j=0

[
ℓ(Ij)V

2
Ij

(√
t
)]1/3



3

≤ +∞,

where VIj
(√
t
)
is the variation of

√
t on Ij given by (8). The functional Mk is defined on

Fk as

Mk(t) = inf
I
Mk(t,I) for all t ∈ Fk,

where the infimum runs among all partitions I ∈ J (k) on which t is based. For 0 ≤ M <
+∞ and k ∈ N

∗, we denote by Fk+2(M) the subset of Fk+2 of those densities t such that
Mk+2(t) ≤M .

Note that with our convention, ifMk(t,I) < +∞, t is equal to zero on I0∪Ik−1, in which
case the summation in (14) can be restricted to 1 ≤ j ≤ k − 2, which requires that k > 2,
and that Fk+2(0) is equal to V (k) (in the L1 sense). The functional Mk is translation and
scale invariant which means that it takes the same value at t and λ−1t((· − τ)/λ) whatever
λ > 0 and τ ∈ R. Besides, it possesses the following property.

Lemma 3. For all l > k and t ∈ Fk ⊂ Fl, Ml(t) ≤Mk(t).

Proof. Let I ∈ J (k) on which t is based. For all partitions I ′ ∈ J (l) satisfying I ′ � I, t
can be viewed as an element of Fl based on I ′ and consequently it suffices to show that
Ml(t,I ′) ≤ Mk(t,I). In fact, it suffices to show that, when we simply divide an interval J
of length L of I into m intervals J1, . . . , Jm of respective lengths L1, . . . , Lm,

m∑

j=1

[
LjV

2
Jj

(√
t
)]1/3

≤ LV 2
J

(√
t
)

when

m∑

j=1

Lj = L and

m∑

j=1

VJj

(√
t
)
≤ VJ

(√
t
)
.

Setting Lj = αjL and VJj
(√
t
)
= βjVJ

(√
t
)
, this amounts to show that

∑m
j=1 α

1/3
j β

2/3
j ≤ 1

which follows from Hölder’s Inequality. �

The approximation of elements of Fk+2(M ) by elements of V (D) is controlled in the
following way.

Proposition 4. Let k ≥ 1 and t ∈ Fk+2 with Mk+2(t) < +∞. Then, for all D ≥ 1,

h2
(
t, V (D + k) ∩ Fk+2

)
≤ (2D)−2Mk+2(t).
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Applying Corollary 2 leads to the following bound which is valid for all t ∈ Fk+2 with
Mk+2(t) < +∞ and whatever the distribution Ps of the observations:

(15) CEs

[
h2(s, ŝ)

]
≤ h2(s, t) + inf

D≥1

[
Mk+2(t)

D2
+
k +D

n
log3+

(
n

k +D

)]
.

A final optimization with respect to D leads to

CEs

[
h2(s, ŝ)

]
≤ h2(s, t) + [Mk+2(t)]

1/3 n−2/3(log n)2 + kn−1(log n)3.

Since this result is valid for all densities t ∈ Fk+2, we can again optimize it with respect
to t which finally leads to:

Theorem 3. Any ρ-estimator ŝ based on the model Fk+2 for some k ≥ 1 satisfies

CEs

[
h2(s, ŝ)

]
≤ inf

M>0

[
h2
(
s,Fk+2(M )

)
+ (log n)2

((
Mn−2

)1/3∨(
kn−1 log n

))]
,

for all distributions Ps ∈ Pµ. In particular

sup
s∈Fk+2(M)

Es

[
h2(s, ŝ)

]
≤ C(log n)2

[(
Mn−2

)1/3∨(
kn−1 log n

)]
.

If we want to estimate a bounded unimodal density s with support of finite length L, we
may build a ρ-estimator on F4. In such a case,M4(s) can be bounded by 4L‖s‖∞ ≥ 4 (since
s is a density, L‖s‖∞ ≥ 1) and the performance of the ρ-estimator for such a unimodal
density s will be given by

Es

[
h2(s, ŝ)

]
≤ C

(
L‖s‖∞n−2

)1/3
(log n)2.

5.3. Piecewise concave-convex densities. In the previous sections we considered den-
sities t which were piecewise monotone or constant which implied the same properties for√
t but it follows from Proposition 4 that it is actually the approximation properties of√
t that matter. This derives from the fact that the Hellinger distance is an L2-distance

between the square roots of the densities. When going to more sophisticated properties
than monotonicity, it is no more the same to state them for t or for

√
t which accounts for

the slightly more complicated structure of this section.

Definition 9. Let I ∈ J (k) be a partition with k intervals. A function f is piecewise
convex-concave based on I if it is either convex or concave on each (open) interval Ij of the
partition. The set of all such functions when I varies in J (k) will be denoted by G 1

k . For

D ∈ N
∗ we denote by W 1(D) the set of all functions γ of the form γ =

∑D
j=1 γj1l(xj ,xj+1]

with x1 < x2 < · · · < xD+1 where γj is an affine function for all j. The sets F 1
k and V 1(D)

are the sets of those densities t such that
√
t belongs to G 1

k and W 1(D) respectively.

We recall that if f is either concave or convex on some open interval I, it is continuous
on I and admits on I a right-hand derivative f ′ which is monotone.

The following result will prove useful to find extremal points of F 1
k .

Lemma 4. For all k ∈ N
∗, G 1

k ⊂ G2k.

Proof. Since f ∈ G 1
k there exists I ∈ J (k) such that f is either convex or concave on each

open interval Ij of I. The right-hand derivative f ′ of f on Ij being monotone, the sets
{x ∈ Ij, f

′ ≤ 0} and {x ∈ Ij , f
′
j > 0} are two disjointed subintervals of Ij on which f is

monotone. �
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Proposition 5. For all D, k ∈ N
∗, the elements f ∈ F 1

k ∩ V 1(D) are extremal in F 1
k with

degrees not larger than 12(D + k + 1).

Proof. Let us consider g ∈ G 1
k and g ∈ G 1

k ∩W 1(D). There exists a partition I0 with k− 1
endpoints such that g is either convex or concave on each interval of I0 and a partition I1
with D + 1 endpoints such that g is affine on each interval of I1. The partition I0 ∨ I1
contains at most k +D + 1 intervals and on each of these intervals g − λg is either convex
or concave for all λ ∈ R+. Hence, the function g − λg belongs to G 1

k+D+1 which is a
subset of G2(k+D+1) by Lemma 4. It then follows from Lemma 2 that {g − λg > 0} is
the union of at most 3(k +D + 1) intervals. Since λ is arbitrary in R+ we conclude with
Lemma 1 that C (G 1

k , g) is VC with dimension not larger than 6(D+k+1), which shows by

Proposition 2 that the elements g ∈ G 1
k ∩W 1(D) are extremal in G 1

k with degrees not larger
than 12(D + k+1). The conclusion follows from an application of Lemma 5 of Section 7.1
with α = 1/2. �

We may now apply Theorem 2 with Λ = F 1
k

⋂[⋃
D≥1 V 1(D)

]
which consists of extremal

points of F 1
k and deduce the following risk bound from Proposition 5:

Corollary 3. For all k ≥ 2, any ρ-estimator on F 1
k satisfies for all distributions Ps ∈ Pµ,

CEs

[
h2(s, ŝ)

]
≤ inf

D≥1

[
inf

s∈V 1(D)∩F1
k

h2(s, s) +
k +D

n
log3+

(
n

k +D

)]

where C ∈ (0, 1] is a universal constant.

The control of the approximation term infs∈V 1(D)∩F1
k
h(s, s) is analogue to the one we

derived in the previous section for infs∈Fk

⋂
V (D) h(t, s) but is based on a new functional:

Definition 10. Let t ∈ F 1
k and I = {I0, . . . , Ik−1} ∈ J (k) a partition on which t is based,

that is,
√
t is either convex or concave with monotone right-hand derivative

(√
t
)′

on each
Ij . Using the convention (+∞)× 0 = 0, we define

Mk,1(t,I) =



k−1∑

j=0

[
[ℓ(Ij)]

3V 2
Ij

((√
t
)′)]1/5



5

≤ +∞,

where VIj

((√
t
)′)

is the variation of
(√
t
)′

on Ij . The functional Mk,1 is defined on F 1
k as

Mk,1(t) = inf
I
Mk,1(t,I) for all t ∈ F

1
k ,

where the infimum runs among all partitions I ∈ J (k) on which t is based. For 0 ≤ M <
+∞ and k ∈ N

∗, we denote by F 1
k+2(M) the subset of F 1

k+2 of those densities t such that

Mk+2,1(t) ≤M .

Note that if Mk,1(t,I) is finite, the density t is necessarily zero on the two extremal
(unbounded) intervals of the partition I and therefore k ≥ 3. An analogue of Lemma 3
holds for the functionalMk,1(t) with a similar proof, saying that if l > k and t ∈ F 1

k ⊂ F 1
l ,

then Ml,1(t) ≤Mk,1(t). We omit the details.
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Proposition 6. Let k ≥ 1 and t ∈ F 1
k+2 with Mk+2,1(t) < +∞. Then, for D ≥ 1,

h2
(
t, V 1

(
2(D + k)

)
∩ F

1
k+2

)
≤ (D/2)−4Mk+2,1(t).

Now arguing as we did in the previous section we derive from Corollary 3 and Proposi-
tion 6 our concluding result.

Theorem 4. Any ρ-estimator ŝ based on the model F 1
k+2 with k ≥ 1 satisfies, for all

Ps ∈ Pµ,

CEs

[
h2(s, ŝ)

]
≤ inf

M>0

[
h2
(
s,F 1

k+2(M)
)
+
((
Mn−4

)1/5
(log n)12/5

)∨(
kn−1(log n)3

)]
.

If, in particular, s ∈ F 1
k+2(M), then

Es

[
h2(s, ŝ)

]
≤ C

[((
Mn−4

)1/5
(log n)12/5

)∨(
kn−1(log n)3

)]
.

5.4. Log-concave densities. We now want to investigate a situation which is close to
the previous one, the case of log-concave densities on the line. These are densities of the
form 1lI exp(g) for some open interval I of R, possibly of infinite length, and some concave

function g on I. Let us denote by F ′ the set of all such densities and by V
′
(D) the subset

of F ′ of those densities for which g is piecewise affine on I with D pieces. For instance,

the exponential density belongs to V
′
(1) while the Laplace density belongs to V

′
(2). Also

note that if 1lI exp(g) is log-concave, the same holds for its square root 1lI exp(g/2).

Proposition 7. For all D ∈ N
∗, the elements of V

′
(D) are extremal in F ′ with degrees

not larger than 12(D + 2) + 4.

Proof. Let us consider 1lI exp(g) ∈ F ′ and 1lJ exp(g) ∈ V
′
(D). Then the set on which

1lI exp(g) > λ1lJ exp(g), with λ ≥ 0 is the subset of I on which

g > log λ+ log 1lJ + g,

with the convention that log 0 = −∞. If λ = 0 it is the set I itself. Otherwise it is equal
to the union of I ∩ Jc and I ∩ J ∩ {g − g > log λ}. Since on the interval I ∩ J , g is concave
and g piecewise affine with at most D pieces, the function h = (g − g)1lI∩J + (log λ)1l(I∩J)c

is piecewise concave on R with at most D + 2 pieces. Hence h belongs to G 1
D+2 and by

Lemma 4 it also belongs to G2(D+2) and it follows from Lemma 2 that I ∩ J ∩ {g − g >
log λ} = {h > log λ} is the union of at most 3(D + 2) intervals. Consequently, the set
{1lI exp(g) > λ1lJ exp(g)} is the union of at most 3(D+2)+ 1 intervals and we derive from
Lemma 1 that the VC-dimension of C (F ′, 1lJ exp(g)) is not larger than 6(D+ 2) + 2. The
conclusion then follows from Proposition 2. �

We may now apply Theorem 2 with Λ =
⋃

D≥1 V
′
(D) and use Proposition 7 to derive

the following risk bound.

Corollary 4. Any ρ-estimator on F ′ satisfies, for all distributions Ps ∈ Pµ,

CEs

[
h2(s, ŝ)

]
≤ inf

D≥1

[
inf

s∈V
′

(D)
h2(s, s) +

D

n
log3+

( n
D

)]

where C ∈ (0, 1] is a universal constant.
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In particular, if s ∈ V ′
(D),

Es

[
h2(s, ŝ)

]
≤ C

D

n
log3+

( n
D

)
,

which means that the elements of V
′
(D) can be estimated by the ρ-estimator at a parametric

rate, up to some (log n)3 factor. This is the case for all uniform densities, for exponential
densities and their translates and for the Laplace density among many others.

Remark. For simplicity we have restricted our study to log-concave densities but we could
as well handle the case of piecewise log-concave densities with several pieces, that is densities

of the form
∑k

j=1 1lIj exp(gj) for concave functions gj . The extension would be similar to
that which leads from monotone to piecewise monotone and is straightforward.

6. Model selection

All results of Sections 5.1 to 5.3 were based on the use of a single model: V (D) in
Section 5.1, Fk+2 in Section 5.2 and F 1

k in Section 5.3, which implies that our risk bounds
depend on D in the first case and on k in the other cases. In order to get the best possible
value of either D or k for the unknown distribution Ps, we may use a selection procedure.
There are different ways to do this but we shall explain how to do it using Theorem 9 of
Birgé (2006, Section 9). To simplify the presentation, we assume that the number n of
observations is even with n = 2p and we split the sample X = (X1, . . . ,Xn) into two parts
of size p, X1 and X2. We also consider all the models Fj+2, j ≥ 1, and F 1

k+2, k ≥ 1,
simultaneously. For each of these models we fix a weight ∆(j) = j and ∆(k) = k. It follows
that

(16)
∑

j≥1

exp[−∆(j)] +
∑

k≥1

exp[−∆(k)] =
2

e− 1
.

We may now use each of our models to build a ρ-estimator based on the sample X1.
This results in a family of estimators ŝj(X1), j ≥ 1, and ŝk(X1), k ≥ 1. The risks of
these estimators are bounded according to Theorems 3 and 4. In the second step, we
consider these preliminary estimators based on sample X1 as a set of points in Lµ. We
may apply to them the selection procedure described in Section 9.1 of Birgé (2006) via a
T-estimator based on the second sample X2. Then Theorem 9 of that paper applies with
the parameters Σ = 2/(e − 1), λ = 1, q = 2, d = h, κ = 4 and a = p/4. It follows that the
selection procedure results in an estimator ŝ which satisfies

CEs

[
h2(s, ŝ) |X1

]
≤ min

{
inf
j≥1

[
h2(s, ŝj(X1)) + (j/p)

]
, inf
k≥1

[
h2(s, ŝk(X1)) + (k/p)

]}
.

We may then take the expectation with respect to X1 and get

CEs

[
h2(s, ŝ)

]
≤ min

{
inf
j≥1

[
Es

[
h2(s, ŝj(X1))

]
+ (j/p)

]
, inf
k≥1

[
Es

[
h2(s, ŝk(X1))

]
+ (k/p)

]}
.

Now applying Theorems 3 and 4 in order to bound Es

[
h2(s, ŝj(X1))

]
and Es

[
h2(s, ŝk(X1))

]

respectively we derive that the two following bounds hold simultaneously:

CEs

[
h2(s, ŝ)

]
≤ inf

j≥1,M>0

[
h2
(
s,Fj+2(M)

)
+
([(

Mn−2
)1/3

(log n)2
]∨[

jn−1(log n)3
])]
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and

CEs

[
h2(s, ŝ)

]
≤ inf

k≥1,M>0

[
h2
(
s,F 1

k+2(M)
)
+
((
Mn−4

)1/5
(log n)12/5

)∨(
kn−1(log n)3

)]
.

This is only a simple example and the same procedure could be applied to a larger family
of models and preliminary estimators but we shall not insisit on that here, the important
point being that we may easily extend the results we got for a single model to large families
of models and get a final bound corresponding to the best bound among all models involved
in the procedure.

An alternative selection procedure leading to the same result is described in Baraud (2011,
Section 6.2). It is also possible to avoid the splitting device by using all models simultane-
ously and a penalized ρ-estimator as indicated in Section 7 of Baraud et al. (2014). Again,
we would get in the end the same type of risk bounds. For simplicity, we shall not insist
on this other approach here.

7. Proofs

7.1. Preliminaries. In the sequel, we shall use the following elementary properties.

Lemma 5.

1) If C is a VC-class of subsets of X with dimension not larger than d and A ⊂ X ,
then the same holds for the class C ∩A defined by (10).

2) Let G be a class of real-valued functions on a set X , g an extremal point of G with
degree d(g) and φ(x) = xα for some positive α. Let F be a class of non-negative functions
on X such that

i) φ(F ) = {φ(f) | f ∈ F} ⊂ G ;

ii) there exists f ∈ F such that φ(f) = g.
Then f is extremal in F with degree not larger than d(g).

3) Let C be a class of subsets of X and A1, . . . , Ak be a partition of X . If for all
j ∈ {1, . . . , k}, C ∩ Aj is a VC-class with dimension not larger than dj then C is a VC-

class with dimension not larger than d =
∑k

j=1 dj .

Proof. Let B ⊂ X be a set with cardinality d+ 1. Either B ⊂ A and C ∩A ∩B = C ∩B
for all C ∈ C so that B cannot be shattered by C or B ∩Ac is not empty and cannot be of
the form C ∩A ∩B, which proves our first statement. The second statement follows from
the fact that C (F , f ) = C (φ(F ), g) ⊂ C (G , g). For the third one, we argue as follows: if
C could shatter d+1 points, there would exist some j ∈ {1, . . . , k} and dj +1 points of Aj

that could be shattered by C and hence by C ∩Aj . This would be contradictory with the
fact that C ∩Aj is a VC-class with dimension not larger than dj . �

7.2. Proof of Theorem 2. For d ∈ N
∗, let Λ(d) = {s ∈ Λ, d(s) = d}. Since S is assumed

to be separable, Λ(d) ⊂ S is also separable and we may therefore choose a countable and
dense subset Λ(d) of Λ(d) for each d ∈ N

∗. Let us now choose a countable and dense

subset S for S. Possibly changing S into
(⋃

d≥1 Λ(d)
)⋃

S, we may assume with no loss

of generality that Λ(d) ⊂ S for all d ∈ N
∗. Finally, we define our estimator as (any) ρ-

estimator ŝ of s based on S following the construction described in Section 4.2 of Baraud
et al. (2014) as well as the notations of this paper.
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For y ≥ 1 and s ∈ Λ, we set

B
S(s, s, y) =

{
t ∈ S

∣∣h2(s, t) + h2(s, s) ≤ y2/n
}
.

Note that BS(s, s, y) may be empty. We start our proof with the following lemma.

Lemma 6. For all y ≥ 1 and s ∈ Λ

F (S, s, y) =
{
ψ
(√

t/s
)
, t ∈ B

S(s, s, y)
}

is a weak VC-major class with dimension not larger than d(s).

Proof. Since (S/s) is weak VC-major with dimension not larger than d(s) and the map x 7→
ψ(

√
x) is increasing from [0,+∞] to [−1, 1], it follows from Baraud (2016, Proposition 3)

that

F
′(S, s, y) =

{
ψ
(√

t/s
)
, t ∈ S

}

is weak VC-major with dimension not larger than d(s) and so is F (S, s, y) ⊂ F ′(S, s, y). �

Let us now go on with the proof of Theorem 2. We fix y ≥ 1, s ∈ Λ and d = d(s). It

follows from Baraud (2011, Proposition 3 on page 386 with ψ/
√
2 in place of ψ) and the

definition of BS(s, s, y) that, for all t ∈ BS(s, s, y),

Es

[
ψ2

(√
t

s
(X1)

)]
≤
[
6
(
h2(s, t) + h2(s, s)

)]
∧ 1 ≤

(
6y2

n

)
∧ 1.

Since S is countable and ψ bounded by 1, the family F (S, s, y) is also countable and its
elements are bounded by 1. Besides, Lemma 6 ensures that F (S, s, y) is a weak VC-
major class with dimension not larger than d ≥ 1. We may therefore apply Corollary 1 of
Baraud (2016) to the family F (S, s, y) with b = 1, σ2 = (6y2/n) ∧ 1 and get

wS(s, s, y) = Es

[
sup

f∈F (S,s,y)

∣∣∣∣∣

n∑

i=1

(
f(Xi)− Es[f(Xi)]

)
∣∣∣∣∣

]

≤
[
4

√
2nΓ(d)× σ log

( e
σ

)]
+ 16Γ(d)

≤
[
8

√
3Γ(d)× y log

(
e

(
n

6y2
∨ 1

))]
+ 16Γ(d),

with

Γ(d) = log


2

d∧n∑

j=0

(
n

j

)
 ≤ Γ̃(d) = log 2 + (d ∧ n) log

( en

d ∧ n
)
.

In particular, if y2 ≥ Γ̃(d)/6 ≥ (d ∧ n)/6 then Γ̃(d) ≤ y

√
6Γ̃(d), hence

(17) wS(s, s, y) ≤ 8y

√
3Γ̃(d)

[
log
( en

n ∧ d
)
+ 2

√
2
]

for y ≥
√

Γ̃(d)/6.

We recall that the quantity DS(s, s) is defined in Section 4.3 of Baraud et al. (2014) by

DS(s, s) = y20 ∨ 1 with y0 = sup
{
y ≥ 0

∣∣wS(s, s, y) > c0y
2
}

and c0 =

√
2− 1

2
√
2
.
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It follows from (17) that c0y
2 < wS(s, s, y) implies that either y <

√
Γ̃(d)/6 or

y ≤ (c0y)
−1wS(s, s, y) ≤ 8c−1

0

√
3Γ̃(d)

[
log
( en

n ∧ d
)
+ 2

√
2
]
= B.

Since in both cases, y2 ≤ max
{
Γ̃(d)/6;B2

}
= B2 and d = d(s), we deduce that

(18) DS(s, s) ≤ B2 ≤ κ[d(s) ∧ n] log3
(

en

d(s) ∧ n

)
≤ κd(s) log3+

(
n

d(s)

)

for all s ∈ Lµ, s ∈ S and some positive numerical constant κ. We now use Theorem 1
in Baraud et al. (2014) for which we recall that the notation h2(t, t′) defined for densities
t, t′ ∈ Lµ means nh2(t, t′). Since

⋃
d≥1Λ(d) ⊂ S, we obtain that for all ξ > 0, with

probability at least 1− e−ξ,

(19) C ′h2(s, ŝ) ≤ inf
s∈S

[
h2(s, s) +

DS(s, s)

n

]
+
ξ

n
≤ inf

d≥1

[
inf

s∈Λ(d)
h2(s, s) + κ

d

n
log3+

(n
d

)]
+
ξ

n
.

Finally, Λ(d) being dense in Λ(d),

inf
s∈Λ(d)

h2(s, s) = inf
s∈Λ(d)

h2(s, s) for all d ∈ N
∗

and the bracketed term on the right-hand side of (19) becomes

inf
d≥1

[
inf

s∈Λ(d)
h2(s, s) + κ

d

n
log3+

(n
d

)]
= inf

s∈Λ

[
h2(s, s) + κ

d(s)

n
log3+

(
n

d(s)

)]
.

Our conclusion follows.

7.3. Proof of Theorem 1. Let D ≥ 1, λ ≥ 0 and s ∈ V (D) be based on the partition
I ∈ J (D + 2). For all t = f1l(x,+∞) and I ∈ I, the positive part (t − λs)+ of t − λs is 0
on (−∞, x] ∩ I and is non-increasing on I ∩ (x,+∞). Consequently, {t − λs > 0} ∩ I =
{(t − λs)+ > 0} ∩ I ∩ (x,+∞) is a sub-interval of I (possibly empty) and C (S, s, λ) ∩ I
is therefore VC with dimension not larger than 2. By Lemma 5, C (S, s, λ) is VC with
dimension not larger than 2(D + 2) and by Proposition 2 the element s is extremal in S
with dimension not larger than 4(D + 2). Finally Theorem 1 follows from Theorem 2.

7.4. Proof of Proposition 1. It relies on a series of approximation lemmas that shall
also prove useful in the sequel.

Lemma 7. Let f be a monotone function with finite variation VI(f) on some interval I of
finite length l. Then

∫

I

[
f(x)− f

]2
dx ≤ l [VI(f)]

2

4
with f =

1

l

∫

I
f(x) dx

and the factor 1/4 is optimal.

Proof. Assuming, without loss of generality, that f is non-increasing, let us observe that
one can replace f by g with g(x) = f(x− c) − f where c is the left-hand point of I. This
amounts to assume that c = 0 = f . Let f(0+) = a, f(l−) = −b, a + b = VI(f) = R and
λ = l−1 sup{x | f(x) > 0} ∈ (0, 1). Then
∫ λl

0
f(x) dx = −

∫ l

λl
f(x) dx = Al ≤ lmin{aλ, b(1 − λ)} = lmin{(R− b)λ, b(1 − λ)}.
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A maximization with respect to b and λ shows that A ≤ R/4 and it follows that

∫ l

0
f2(x) dx =

∫ λl

0
f2(x) dx +

∫ l

λl
f2(x) dx ≤ (a+ b)Al = RAl ≤ lR2

4
.

The optimality follows by considering the case of f = (R/2)
(
1l(0,l/2] − 1l(l/2,l)

)
. �

Our next lemma involves the norm in L2(R,B(R), dx) hereafter denoted by ‖·‖.

Lemma 8. Let f be a non-increasing function on (a, b) with finite variation V(a,b)(f) < R.
For all D ≥ 1, there exists a partition I of (a, b) into at most D intervals and a function
fI which is piecewise constant on each element of the partition I and non-increasing such
that f(b−) ≤ fI ≤ f(a+),

∥∥fI1l(a,b)
∥∥ ≤

∥∥f1l(a,b)
∥∥ and

(20)

∫ b

a
fI(x) dx =

∫ b

a
f(x) dx,

∥∥(f − fI)1l(a,b)
∥∥ ≤ R

√
b− a

2D
.

Besides, there exists a partition I ′ of (a, b) into at most 2D intervals of length not larger
than (b − a)/D such that for all I ∈ I ′, VI(f) ≤ RD−1. The same results hold for non-
decreasing functions on (a, b).

Proof. Clearly, the results remain valid if we replace f by g with g = f almost everywhere
(with respect to the Lebesgue measure), g(a+) = f(a+) and g(b−) = f(b−). Since f is
non-increasing on (a, b), for all x ∈ (a, b) f(x+) exists and f admits an at most countable
number of discontinuities. We may therefore assume that f is actually defined on [a, b],
right-continuous on [a, b) and left-continuous at b.

Starting from x0 = a, define recursively for all j ≥ 1,

xj = sup
{
x ∈ [xj−1, b], f(xj−1)− f(x) ≤ RD−1

}
.

If k ≥ 1 and xk < b, f(xk−1)− f(x) > RD−1 for all x > xk hence f(xk)− f(xk−1) ≥ RD−1

since f is right-continuous. In particular for such a k, we necessarily have

R > f(a)− f(xk) =

k∑

j=1

f(xj−1)− f(xj) ≥ kRD−1,

which implies that k < D. The process therefore results in a finite number of distinct points
x0 = a < x1 < . . . < xK+1 = b with K + 1 ≤ D. It also follows from the definition of the
xj that f(xj−1)− f(xj−) ≤ RD−1 for 1 ≤ j ≤ K + 1. Let us now set

f j = (xj − xj−1)
−1

∫ xj

xj−1

f(x) dx and fI =

K+1∑

j=1

f j1l(xj−1,xj ].

Note that f(b−) ≤ fI ≤ f(a+),
∫ b
a fI(x) dx =

∫ b
a f(x) dx and that fI is non-increasing

and piecewise constant on a partition of (a, b) into K + 1 intervals. Since, for all j, 0 ≤
f(xj−1)− f(xj−) ≤ RD−1, it follows from Lemma 7 that

∥∥(f − fI)1l(a,b)
∥∥2 =

K+1∑

j=1

∫ xj

xj−1

(
f − f j

)2
dx ≤

(
R

2D

)2 K+1∑

j=1

(xj − xj−1) =

(
R

2D

)2

(b− a).
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Moreover Jensen’s Inequality implies that

∫ xj

xj−1

f2I(x) dx = (xj − xj−1)

(
1

xj − xj−1

∫ xj

xj−1

f(x) dx

)2

≤
∫ xj

xj−1

f2(x) dx,

which shows that
∥∥fI1l(a,b)

∥∥ ≤
∥∥f1l(a,b)

∥∥ and proves the first part of the lemma.

For the second part, define I ′ as follows: for each element I ∈ I with length ℓ(I) larger
than (b− a)/D divide I into ⌈Dℓ(I)/(b− a)⌉ intervals of length not larger than (b− a)/D.
The process results in a new partition I ′ thinner than I and its cardinality is not larger
than

∑

I∈I

⌈
Dℓ(I)

b− a

⌉
≤
∑

I∈I

[
Dℓ(I)

b− a
+ 1

]
≤
[

D

b− a

∑

I∈I

ℓ(I)

]
+ |I| ≤ 2D.

Since by construction VI(f) ≤ RD−1 for all I ∈ I, this property is also true for the elements
I of the partition I ′ which is thinner than I. For non-decreasing functions, change f to
−f . �

Lemma 9. Given two probability densities t, u with respect to µ,

(21) h(t, u) ≤
∥∥∥
√
t− λ

√
u
∥∥∥ for all λ ∈ R.

In particular, if f is a non-negative element in L2(µ) such that ‖f‖ > 0 and u = (f/‖f‖)2,
h(t, u) ≤

∥∥√t− f
∥∥ for any probability density t with respect to µ.

Proof. We notice that
√
t and

√
u are two vectors of norm one in L2(µ) and their scalar

product is
∫
X

√
ut dµ = cosα for some α ∈ [0, π/2]. It implies that v = cosα

√
u is the

orthogonal projection of
√
t on the linear space generated by

√
u, hence

inf
λ∈R

∥∥∥
√
t− λ

√
u
∥∥∥ =

∥∥∥
√
t− cosα

√
u
∥∥∥ = sinα.

Inequality (21) follows from the fact that h2(t, u) = 1 − cosα ≤ sin2 α for all α ∈ [0, π/2].
The last result is obtained from (21) with λ = ‖f‖. �

To complete the proof of Proposition 1, we apply Lemma 8 with f =
√
t and R >√

t(a+)−
√
t(b−). The resulting function fI is then nonnegative, non-increasing on (a, b)

and satisfies 0 < ‖fI‖. Setting sI = f2I/ ‖fI‖
2, which is an element of V (D), we may apply

the last part of Lemma 9 with f = fI which gives h(t, sI) ≤ ‖f − fI‖ ≤ R
√
b− a/(2D).

The conclusion follows by letting R converge to V[a,b]
(√
t
)
.

7.5. Proof of Proposition 4. Let t be based on I = {I0, . . . , Ik+1}, Rj > VIj
(√
t
)
for

1 ≤ j ≤ k and let D1, . . . ,Dk be positive integers. On the intervals I0 and Ik+1, t is equal
to 0 and, for all other intervals of I, one can apply Lemma 8 to find an approximation fj of√
tj which is monotone, piecewise constant with Dj pieces on Ij and satisfies, according to

(20),
∥∥(fj −

√
t
)
1lIj
∥∥ ≤ Rj

√
ℓ(Ij)/(2Dj). Therefore, if f =

∑k
j=1 fj1lIj and u = (f/‖f‖)2,

we derive from Lemma 9 that

h2(t, u) ≤
∥∥∥f −

√
t
∥∥∥
2
=

k∑

j=1

∥∥∥
(
fj −

√
t
)
1lIj

∥∥∥
2
≤

k∑

j=1

ℓ(Ij)R
2
j

4D2
j

=M.
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Moreover, we can always assume (modifying it on a negligeable set if necessary) that u

belongs to V (D′) ∩ Fk+2 with D′ =
∑k

j=1Dj. Given D, a formal minimization with

respect to the xj > 0 of
∑k

j=1 ℓ(Ij)R
2
jx

−2
j under the condition that

∑k
j=1 xj ≤ D leads to

xj = λ
(
ℓ(Ij)R

2
j

)1/3
with

k∑

j=1

xj = D,

so that λ−1 = D−1
∑k

j=1

(
ℓ(Ij)R

2
j

)1/3
. Taking into account the fact that the Dj should

belong to N
∗, we finally set

Dj =



D




k∑

j=1

(
ℓ(Ij)R

2
j

)1/3


−1

(
ℓ(Ij)R

2
j

)1/3


,

which implies that
∑k

j=1Dj ≤ D + k and

M ≤ 1

4D2




k∑

j=1

(
ℓ(Ij)R

2
j

)1/3


2 


k∑

j=1

(
ℓ(Ij)R

2
j

)1/3

 =

1

4D2




k∑

j=1

(
ℓ(Ij)R

2
j

)1/3


3

.

The corresponding function u belongs to V (D + k) ∩ Fk+2 so that

h2
(
t, V (D + k) ∩ Fk+2

)
≤ 1

4D2




k∑

j=1

(
ℓ(Ij)R

2
j

)1/3


3

.

The conclusion follows by letting each Rj converge to VIj
(√
t
)
.

7.6. Proof of Proposition 6. It relies on the following approximation lemma.

Lemma 10. Let f be a continuous and either convex or concave function on [a, b] with
right-hand derivative f ′ on (a, b) satisfying V(a,b)(f

′) < +∞. The affine function g on [a, b]
defined by g(a) = f(a) and g(b) = f(b) satisfies

sup
a≤x≤b

|f(x)− g(x)| ≤ b− a

4
V(a,b)(f

′).

The factor 1/4 is optimal.

Proof. Changing f into −f , we may assume that f is concave on [a, b]. In particular,
h(x) = f(x) − g(x) ≥ 0 for x ∈ [a, b] and since h is continuous on [a, b] and satisfies
h(a) = h(b) = 0, there exists some c ∈ (a, b) such that

sup
a≤x≤b

h(x) = h(c) =

∫ c

a

(
f ′(u)− ℓ

)
du =

∫ b

c

(
ℓ− f ′(u)

)
du with ℓ =

f(b)− f(a)

b− a
.

The function f ′ being non-increasing on (a, b),

h(c) ≤
[
(f ′(a+)− ℓ)(c− a)

]
∧
[
(ℓ− f ′(b−))(b− c)

]
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and consequently,

h(c) ≤
[(
f ′(a+)− ℓ

)
(c− a)

b− c

b− a

]
+

[(
ℓ− f ′(b−)

)
(b− c)

c− a

b− a

]

=
(c− a)(b− c)

b− a

[
f ′(a+)− ℓ+ ℓ− f ′(b−)

]

= (b− a)

[
c− a

b− a

(
1− c− a

b− a

)] [
f ′(a+)− f ′(b−)

]
≤ b− a

4
V(a,b)(f

′).

The constant 1/4 cannot be improved since it is reached for f(x) = 1− |x| on [−1, 1]. �

Let f ′ be the function of Lemma 10 and R > V(a,b)(f
′). By Lemma 8, one can partition

(a, b) into K ≤ 2D intervals Jj , 1 ≤ j ≤ K of length not larger than D−1(b − a) with
VJj (f

′) < RD−1. Using this partition to approximate f by a piecewise affine function gK
with K pieces and applying Lemma 10, we derive that

sup
a≤x≤b

|f(x)− gK(x)| ≤ (1/4)RD−1[(b− a)/D] = (R/4)(b − a)D−2,

hence ∫ b

a
|f(x)− gK(x)|2 dx ≤ (R/4)2(b− a)3D−4.

Note that, by construction, gK is concave on [a, b] if f is and gK is convex in the opposite
case. Since

√
t satisfies the assumptions of Lemma 10 on each of the k non-extremal

intervals of the partition I that defines t and is zero on the two extremal intervals, we may
use the previous approximation method on each non-extremal interval with f =

√
t to get

an approximation v of
√
t with D′ = 2

∑k
j=1Dj pieces and such that

∥∥∥
√
t− v

∥∥∥
2
≤ 1

16

k∑

j=1

R2
j [ℓ(Ij)]

3D−4
j if Rj > VIj

((√
t
)′)

for 1 ≤ j ≤ k.

Renormalizing v as in Lemma 9, we conclude that there exists u which belongs to V 1(D
′)∩

F 1
k+2 and

h2(t, u) ≤M =
1

16

k∑

j=1

R2
j [ℓ(Ij)]

3D−4
j .

We now mimic the proof of Proposition 4 to optimize the Dj and get

Dj =



D




k∑

j=1

(
[ℓ(Ij)]

3R2
j

)1/5


−1

(
[ℓ(Ij)]

3R2
j

)1/5


,

so that finally
∑k

j=1Dj ≤ D + k and

M ≤ 1

16D4




k∑

j=1

(
[ℓ(Ij)]

3R2
j

)1/5


4 


k∑

j=1

(
[ℓ(Ij)]

3R2
j

)1/5

 =

1

16D4




k∑

j=1

(
[ℓ(Ij)]

3R2
j

)1/5


5

.
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The corresponding function u belongs to V 1

(
2(D + k)

)
∩ F 1

k+2 so that

h2
(
t, V 1

(
2(D + k) ∩ F

1
k+2

))
≤ 1

16D4




k∑

j=1

(
[ℓ(Ij)]

3R2
j

)1/5


5

.

The conclusion follows by letting Rj converge to VIj

((√
t
)′)

for each j.
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