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Abstract

Agriculture seeks for a reduction of costs and environmental impact, bet-
ter sustainability and to increase crop yield and quality. It is necessary
to deliver useful applications for farmers and industries, to help for greater
efficiency and sustainability. To achieve this in digital viticulture, useful in-
formation about the vineyard is necessary so better decisions can be taken.
Advances in non-invasive sensing technologies allow the acquisition of high
amounts of data from the vineyard, but these data alone are not enough to
be used when decisions need to be made, it needs to be transformed into in-
formation. Artificial intelligence is a revolution at different social, work and
industrial levels to deal with data. Within artificial intelligence, machine
learning has evolved greatly during the last decades providing tools to make
computers learn, and these algorithms are used in many different fields due
to their high versatility for many data-related tasks, generating knowledge
and information, and improving the decision-making process. Therefore, the
combination of non-invasive sensors and artificial intelligence needs to be
explored to meet the requirements needed to apply digital agriculture, the
data-driven agriculture.

The main objective of this PhD Thesis is the combination of machine
learning and non-invasive sensing technologies for the assessment of relevant
agronomical, physiological and qualitative traits in digital agriculture and
viticulture. Specifically, the following objectives have been pursued: i) to
make use of different machine learning algorithms on data from spectroscopy
for in-field grapevine phenotyping and monitoring; ii) the application of en-
semble data analysis techniques for vineyard water status assessment with
thermal imaging; and iii) to deploy hyperspectral imaging in the field, sup-
ported by intensive machine learning combinations, for the monitoring of
different crop traits.

The first objective, covered in Chapter 3, was the combination of machine
learning algorithms and near-infrared spectroscopy for vineyard monitoring
and phenotyping. A handheld spectrometer was used for two goals: the
classification of grapevine varieties, from several vineyard plots and vintages;
and water status assessment, using the same spectral signal. Accurate models
were developed for both goals. The results allow to open new ways in digital
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viticulture for the quick grapevine phenotyping under field conditions, an
useful tool for several actors in the wine industry.

The application of ensemble machine learning algorithms to in-field ther-
mal images acquired on-the-go for vineyard water status monitoring, the
second objective, is addressed in Chapter 4. A thermal camera was mounted
on an all-terrain vehicle for continuous acquisition. A combination of rota-
tion forests and decision trees was used for the training of prediction models.
The outcomes provided by the machine learning algorithms support the use
of thermal imaging for fast, reliable estimation of a vineyard water status,
even suppressing the necessity of supervised acquisition of reference temper-
atures. The new developed on-the-go method can be very useful in the grape
and wine industry for assessing and mapping vineyard water status.

The last objective was the use of on-the-go hyperspectral imaging under
field conditions, modelled with machine learning techniques, and it is dis-
cussed in Chapter 5. Hyperspectral imaging is a powerful technology, but
it has been classically used under laboratory conditions. Very few attempts
on in-field hyperspectral imaging have been reported in the literature, due
to the difficulties, like natural, irregular illumination or unknown a priori
sample positioning in the recorded scene, that it is necessary to face. For
this reason, a considerable amount of the work developed in this PhD The-
sis has been focused on surpassing the challenges that come from deploying
a hyperspectral camera in the field for the on-the-go vineyard monitoring.
Also, as hyperspectral imaging involves the management of a high amount
of data, advanced machine learning algorithms become appealing to be ap-
plied in this scenario. Three different applications were developed: varietal
classification, grape composition assessment and yield estimation. In all of
them, it was designed a mechanism for the automated identification of the
different grapevine organs. Potent models were obtained for the monitoring
of different key viticulture and agriculture parameters. The results suggest
that machine learning and hyperspectral imaging can be used to accurately
estimate several traits in vineyards and other crops, becoming a powerful
and accurate tool in the decision making process.

The results from the research work carried out in this PhD Thesis, also
published in several scientific articles, demonstrated that artificial intelli-
gence techniques are able to exploit the potential of data acquired using
non-invasive sensing technologies for the monitoring and phenotyping of key
crop traits. This can be of utmost importance in digital agriculture and
viticulture as new solutions can be developed as decision support tools.



Resumen

En la agricultura se busca una reducción de costes y de impacto ambien-
tal, mejor sostenibilidad y un incremento de la calidad y el rendimiento del
cultivo. Es necesario desarrollar aplicaciones útiles para agricultores que
ayuden en esta mejora de eficiencia y sostenibilidad. Para lograr este obje-
tivo en el ámbito de la viticultura, se necesita información sobre el viñedo
que puede utilizarse para tomar mejores decisiones. Los nuevos avances en
tecnologías de sensórica no invasiva permiten la adquisición de grandes can-
tidades de datos del viñedo. Sin embargo, los datos por sí solos no sirven
cuando se tienen que tomar decisiones, ya que tienen que ser convertidos
en información. La inteligencia artificial supone una revolución a distintos
niveles sociales, de trabajo e industriales. Dentro de la inteligencia artificial,
el aprendizaje automático ha evolucionado ampliamente durante las últimas
décadas para proveer de herramientas que permitan a los ordenadores apren-
der. Por su gran versatilidad, estos algoritmos se utilizan en muchos campos
distintos donde es necesario trabajar con datos, generando conocimiento e in-
formación, y mejorando el proceso de toma de decisiones. Por estos motivos,
se debe explorar la combinación de sensores no invasivos con inteligencia
artificial para alcanzar los requisitos exigidos en agricultura digital.

El objetivo principal de esta tesis doctoral es lograr la combinación de
aprendizaje automático y tecnologías de sensórica no invasiva para la es-
timación de importantes características agronómicas, fisiológicas y cuanti-
tativas en agricultura y viticultura digital. En concreto, se plantearon los
siguientes objetivos específicos: i) utilizar diferentes algoritmos de apren-
dizaje automático sobre datos espectrales para la monitorización y fenoti-
pado en campo de la vid; ii) la aplicación de métodos combinados de análisis
de datos para la estimación del estado hídrico del viñedo con termografía;
y iii) utilizar imagen hiperespectral en condiciones de campo, junto con la
aplicación intensiva de aprendizaje automático, para la monitorización de
distintos aspectos del cultivo.

El primer objetivo, cubierto en el Capítulo 3, fue la combinación de
algoritmos de aprendizaje automático y espectroscopia de infrarrojo cercano
para la monitorización y fenotipado de la vid. Se usó un espectrómetro
portátil con dos fines: la clasificación de variedades de vid, con datos de
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distintos viñedos y campañas; y la estimación del estado hídrico, utilizando
la misma señal espectral. Se desarrollaron modelos con gran precisión para
ambos objetivos. Los resultados abren nuevas vías en viticultura digital para
el fenotipado rápido de la vid bajo condiciones de campo, una herramienta
muy útil para varios actores en la industria vitivinícola.

El segundo objetivo fue la aplicación de métodos combinados de apren-
dizaje automático sobre imágenes térmicas adquiridas bajo condiciones de
campo para la monitorización en continuo del estado hídrico del viñedo, que
se trata en el Capítulo 4. Se instaló una cámara térmica en un quad para
realizar captura de datos en continuo. El entrenamiento de los modelos de
predicción se llevó a cabo mediante una combinación de rotation forests y
árboles de decisión. Los resultados evidencian el uso de termografía para la
estimación rápida y fiable del estado hídrico de un viñedo, incluso prescindi-
endo de la necesidad de medir temperaturas de referencia. El nuevo método
desarrollado en continuo puede ser muy útil en la industria vitivinícola para
medir el estado hídrico de un viñedo y generar mapas de variabilidad espa-
cial.

El último objetivo, discutido en el Capítulo 5, fue el uso de imagen hipere-
spectral en continuo en condiciones de campo y modelada con técnicas de
aprendizaje automático. Se pueden encontrar muy pocos trabajos que traten
sobre el uso de imagen hiperespectral en campo, debido a las dificultades que
esta configuración puede presentar, como una iluminación natural e irregu-
lar, o la localización a priori desconocida de las muestras en la escena. Por
esta razón, gran parte de los esfuerzos dedicados en el período de investi-
gación y desarrollo de esta tesis se han dedicado superar el reto de llevar
una cámara hiperespectral a campo para la medición en continuo del viñedo,
superando los inconvenientes a los que hay que enfrentarse en el nuevo esce-
nario y diseñando aplicaciones útiles para viticultura digital. Se desarrollaron
tres aplicaciones distintas: la clasificación de variedades, la evaluación de la
composición de los frutos y la estimación del rendimiento. Se obtuvieron
modelos precisos para la estimación de estas características del cultivo. Es-
tos resultados sugieren que la imagen hiperespectral puede emplearse para
estimar distintos aspectos del viñedo y otros frutales, convirtiéndose en una
herramienta potente y precisa para la toma de decisiones.

Los resultados del trabajo de investigación llevado a cabo en esta tesis
doctoral, publicados en varios artículos científicos, demuestran que las técni-
cas de inteligencia artificial pueden sacar provecho de datos vegetativos cap-
turados a través de tecnologías de sensórica no invasiva, para caracterizar
parámetros clave del cultivo. Estos resultados pueden ser de gran impor-
tancia en agricultura y viticultura digital, dado que permiten el desarrollo
de nuevas soluciones y herramientas de apoyo a decisiones en la industria
agrícola.
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Chapter 1

Introduction

1.1 Digital agriculture

The majority of the decisions taken by today’s farmers are based on a com-
bination of own experience, visual inspection and recommendations. Nev-
ertheless, a higher efficiency in agricultural outcomes is not achievable via
those current practices, in a sustainable and consistent manner (Bergerman
et al., 2016). In the last years, the fast development and adoption of new
technologies has disrupted the way that people interact with the reality at
many levels: in social relationships, work environments or entertainment.
Nowadays, almost every person has a small device in his pocket that, within
seconds, allows to connect with any other, seek for an answer to any ques-
tion on the Internet through voice, or even use a camera to identify an
object or translate a sign. All this is based on the amalgamation of differ-
ent input/output technologies (wireless connections, cameras, microphones,
visual interfaces), worldwide communication (mobile Internet connections,
access to private servers, cloud solutions) and, what truly entailed the cur-
rent revolution, new intelligent and deep data analysis (voice and image
recognition, information indexing and retrieval, prediction and recommenda-
tion systems). Therefore, this amalgamation opens new windows in today’s
agriculture, in which more efficiency and sustainability is required. This is
especially important as, because world population will reach nine billion in
2050, food production should increase approximately 25% – 70% (Hunter et
al., 2017). Current trends in agriculture demand for the precise management
to obtain benefits not only in the economical sense, but also in environment,
logistic and security. It is necessary to deliver useful applications for farmers
and industries, to increase efficiency and sustainability.

New digital technologies have indeed been adopted in current agricul-
tural practices. A recent report from the European Commission’s science
and knowledge service (Barnes et al., 2019) studied the determinants of the
uptake of new technologies in agriculture within a European cross-country

1
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setting. The results showed that, although some barriers are still found
in adoption, younger farmers are significantly more prone to use new tech-
nologies, potentially linked to the knowledge required to correctly operate
information intensive technologies. Given the appearance of new digital de-
vices and more intelligent data analysis tools year by year, it is thus clear
that the development of technological advances applied to agriculture—the
Digital Agriculture—needs to keep growing in favour of providing a broader
collection of solutions to gain in efficiency and sustainability.

Digital agriculture address the use of sensing technologies for the acqui-
sition of high resolution crop data and their transformation into information
useful to the farmer in the decision-making process using trending Artificial
Intelligence (AI) advances. The fact that spatial and temporal variability of
soil and plant factors is present in virtually every crop is undeniable, and
has been reported in the last decades (Zhang et al., 2002). Although farm
management has been traditionally performed homogeneously, due to small,
manageable sizes, the enlargement of crop fields made the conventional oper-
ation an outdated solution if efficiency is sought. Crop necessities can largely
vary within the same field, and, for example, fertiliser treatments applied to
the plants in a certain zone could be insufficient or excessive in a different
area from the same crop field. This is how current practices could take ad-
vantages of digital technology to address this. Technology currently allows
to scan large areas of a crop (from static ground sensors, air platforms or
mobile ground vehicles), acquiring physiological data from the plants or the
soil and providing useful information from it about plant nutritional status,
water management, fruit ripening, etc. Digital Agriculture (DA), defined as
the management of spatial and temporal variations in the fields (Pedersen,
2003; Fountas et al., 2005; Zarco-Tejada et al., 2014), put in numbers the
status of a crop field to apply individual solutions to each zone.

Applying digital technologies in agriculture has advantages for farmers
in terms of crop production and cost reduction, as it implies giving only
the necessary resources (e.g., water, chemical treatments, etc.) that each
plant requires, leading to better decision making (Zarco-Tejada et al., 2014).
Additionally, a precise measurement of specific plant parameters, such as
yield and ripening assessment or fruit composition monitoring, could help to
take better decisions about when and where to harvest. A report from the
Departments of Agricultural Economics and Agronomy, Purdue University
(Erickson et al., 2017) showed that, in 2017, compared to previous years,
there has been an increasing rate of adoption of precision, digital technologies
in digital agriculture in the United States of America, with a positive growing
trend in the last years (Figure 1.1).

Still, the benefits of applying digital technologies to agriculture are not
limited only to the farmer, but also positive to the environment. A scientific
foresight study from the European Parliamentary Research Service (Schrijver
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Figure 1.1: Use over time of precision digital technology in agriculture in the
United States of America. Source: Erickson et al. (2017).

et al., 2016) asserted that applying techniques for a precision management
in agriculture will have a positive impact in the environment in terms of soil
erosion and fuel consumption, due to automated machine guidance; reduc-
tion of chemical in soil and water, due the control of pesticide sprayers, etc
(Zarco-Tejada et al., 2014).

1.2 Digital viticulture

Digital viticulture is a branch of DA that applies the methodologies from
the latter to vineyard management. Although grapegrowers have well ac-
knowledged the variability that exists within a vineyard, operations have
been typically carried out on them homogeneously (Bramley, 2010). Nev-
ertheless, this approach does not help to obtain higher quality from grapes
and increases management costs (Proffitt et al., 2006). DV pursues taking
decisions about vineyard management based on the precise characterisation
of the vines (using the advantages of new technology), with results at three
different levels.

Grapevine is a very important crop in the world. In the European
Union, 80% of the grapes are produced for quality wine making from a
total of around 3 million hectares (Eurostat, 2017). Grape berry attributes—
including relative proportions of skin, seed and flesh, and chemical composition—
are altered by weather, being their main source of variation. Therefore, wine
quality, derived from these attributes, is strongly affected by the weather on
each season (Gladstones, 1992; Soar et al., 2008). Climate change is bringing
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an increasing rate of irregular precipitations and higher temperatures. This
may have positive or negative impacts on practices in viticulture, but it is un-
deniable the necessity of adapting the vineyard management strategies in this
changing climate to preserve wine quality while maintaining good resource
control (van Leeuwen and Darriet, 2016). Perpetual changes in climate con-
ditions may drive the decision of where to start a new vineyard plantation
to save production costs, moving to more favourable zones or using more
resistant grapevine rootstock or varieties (Webb et al., 2008). Still, this is
a decision only available to new plantations, and changes in the vineyard
layout or plant material is virtually unfeasible once it has been established.
For this reason, advances on digital technologies should drive the develop-
ment of new tools for the precise monitoring of vineyards, allowing to detect
necessities, assess costs and manage resources that are more demanded but,
at the same time, more scarce if all demands are to be fulfilled.

It is of particular interest to both grapegrowers and winemakers the pos-
sibility that DV provides of identifying parcels of fruit with the same quality,
so they can be taken to wineries in batches as uniform as possible (Bram-
ley and Hamilton, 2004). This “selective harvesting” takes advantage of the
observed variability in the vineyard monitored by sensing technologies, and
allows to achieve the desired specifications in winemaking for the intended
end product (Bramley and Proffitt, 1999; Bramley et al., 2003). The second
level involves cost reductions in vineyard management. The application of
new technologies for the precise monitoring in viticulture aims at the reduc-
tion of costs compared to traditional management, an increase in profitability
from better quality in grape harvesting, or—ideally—both outcomes (Schri-
jver et al., 2016). Finally, the last level refers to environmental sustainability
and optimisation. DV can be used as a tool, for example, to help to decide
how much chemical products have to be used or the precise amount of water
that needs to be applied depending on plant status on each area (Matese
and Di Gennaro, 2015). This helps reducing chemical waste, water misuse
and other environmental hazards.

The adoption of DV is a three-step cyclical process (Bramley, 2001) that
starts with data acquisition from the vineyard, continues with the analysis
and evaluation of the information inferred from the data, and ends with the
development and implementation of a targeted management plan based on
the previous analysis (Figure 1.2) The first step should involve the acquisition
of large amounts of data from the vineyard that gathers all the components
of interest (Figure 1.2a).

As spatial variability needs to be characterised, it is mandatory to apply
some kind of georeferencing via global navigation satellite systems (Proffitt
et al., 2006). The second step involves the transformation of the acquired
data into understandable information (Figure 1.2b). Many sensors are avail-
able for vineyard monitoring capable of making measurements of several
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Figure 1.2: The three-step cyclical process in the adoption of DV. (a) Data
acquisition from the vineyard; (b) information extraction from the acquired
data; (c) development and implementation of a targeted management plan
based on the previous analysis.

physiological elements in the canopy, but raw data alone are rarely useful
for the determination of key traits in the plants. For example, information
about grape ripeness could be present in the reflectance spectrum of the skin.
Nonetheless, the raw data acquired by a spectrometer cannot be directly used
for ripeness assessment. To overcome this, statistical approaches have tradi-
tionally been applied, but new advances on AI and Machine Learning (ML)
have led to versatile, powerful algorithms for the training of prediction mod-
els for classification (estimation, given an input, of a categorical value) or
regression (estimation of a numerical value). Further information about ML
algorithms is presented in Section 1.6. In this step, the aforementioned data
georeferencing lets, within the vineyard plot, for the delimitation of zones
to apply ad-hoc management approaches (Bramley, 2010). The third step
should involve the analysis, from a experienced manager, of the variabil-
ity read in the vineyard, and taking the necessary decisions and strategies
for the different plot sub-areas depending on their status (Figure 1.2c). It
was said that these steps are part of a cyclical process. It is here where
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the iteration restarts, evaluating the response by new measurements and
new variability characterisation. Also, the cyclical procedure, if performed
over several years, helps in the building of a background that can contribute
in the decision-making process at the manager’s end (Proffitt et al., 2006;
Arnó Satorra et al., 2009).

Combining digital technologies, ML and adequate methodologies will al-
low winegrowers to implement DV solutions to improve and optimise pro-
duction systems (Tisseyre et al., 2007). But, the question arises, how can
we make use of ML in a DV application? Figure 1.3 displays an scheme for
ML modelling (Section 1.6) from non-invasive sensing technologies (Section
1.3) in an agricultural application.

Figure 1.3: Machine learning in digital agriculture: It starts with data ac-
quisition using sensing technologies (a). After data gathering and processing
(b), the next step is the proper model training using ML algorithms (c). The
knowledge acquired by the models can thus be used to perform in-field pre-
dictions (d) that would help in plot management (e). New data acquired in
(d) could potentially be used to restart the process for model improvement.

The process starts with the acquisition of data for the development of
prediction models (Figure 1.3a), and followed by data processing, in which all
acquisitions are gathered, cleaned and sorted into datasets (Figure 1.3). The
next step is the training of the models (Figure 1.3c). This step should also
include the computation of validation results for performance assessment.
Once a full model is trained, it can be used for in-field predictions (Figure
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1.3d) to aid in the management of the plot (Figure 1.3e). The data collected
in the in-field predictions step can be used for restart the process (going back
to Figure 1.3a) and improve the models with new data. Further on this is
discussed in Section 1.6.

The next sections discuss some available options in sensing technolo-
gies, monitoring platforms and ML techniques for their application in DV,
examining characteristics and exposing examples already published in the
literature.

1.3 Non-invasive sensing technologies

The accurate knowledge about different statuses of plants in the field would
be very valuable for the characterisation of a vineyard plot. Some relevant
plant traits are: the nutritional status, disease incidence, plant water status,
ripening monitoring or yield estimation. The most adequate approach to as-
sess the plant status is making measurements directly from the individual, as
the plant physiology becomes the best target to tell its status. Sensing tech-
nology has been rapidly developed in the last years, and its use has allowed
the development of many different solutions in digital agriculture and viticul-
ture (Lee et al., 2010). Although this technology has been mainly developed
for other industries, agro-food has taken advantage of it for agricultural and
food-related implementations. While classical plant status monitoring has
been carried out by destructive methods, like chemical or physical analysis,
sensing technologies applied to agriculture focused on plant data acquisition
in a faster, non-destructive way.

Different kinds of sensors are available to be used.

• Electromechanical. These sensors register physical measurements
into digital values. Some examples are dendrometers, sap flow meters,
etc.

• Electrochemical. Sensors that gather data about the chemical com-
position of the target. Some soil devices use electrodes for detecting
specific ions and give readings about soil pH or nutrient levels.

• Optical. Optical sensors make use of the electromagnetic spectrum
to read data from the targets. Some examples are common cameras,
thermal imaging or spectral devices. These are probably among the
most suitable kind of sensors that can be used for non-invasive mon-
itoring, very necessary in DA, as data acquisition can be performed
without even touching the samples.

In theory, applying DV solutions using different kinds of sensors is not
a difficult task, but an actual implementation for industrial use is far from
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Figure 1.4: Examples of different kinds of sensors: (a) dendrometer (elec-
tromechanical sensor); (b) soil moisture detector (electrochemical sensor); (c)
infra-red radiometer (optical sensor); (d) infra-red thermal camera (optical
sensor) mounted on an moving ground vehicle. Copyright: ICT International
and University of La Rioja.

direct and easy. There must be a procedure to bring together both plant
and sensor, and this has evolved in the last years. As in destructive method-
ologies, like chemical analysis, the target has been taken usually indoor,
in where the equipment lies. Here, tests are carried out under controlled
conditions of light, temperature, humidity, etc. This approach brings some
limitations, mainly that sampling is still necessary. This is not a problem
if the sensing system is installed on a production line, for example at the
winery, in which targets are automatically scanned in-line. In a vineyard,
nonetheless, if samples need to be picked, it is infeasible to select all indi-
viduals in a plot for measurements, thus the characterisation of large areas
(high-resolution monitoring) is jeopardised.

The non-destructive nature of sensing technologies should still be put into
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context. For example, optical sensing devices do not need to spoil the sample
for data acquisition, as they only gather the light that has bounced on the
surface. However, if complex systems designed for indoor set-ups are used
(e.g., Hyperspectral Imaging, more in Section 1.3.3), the non-destructive
trait is completely discarded when samples like leaves or branches need to
be taken from the field to the system. This consequence, along with the pre-
viously mentioned low sampling capability, has been addressed from research
and development in remote sensing (more in Section 1.4).

The following subsections provide further details on non-invasive sensing
technologies (spectroscopy, multispectral imaging, thermal sensing, hyper-
spectral imaging and chlorophyll fluorescence) that can be found applied in
viticulture.

1.3.1 Spectroscopy

Spectroscopy is the study of physical systems by the electromagnetic radi-
ation with which they interact or that they produce (Herrmann and Onke-
linx, 1986). In any medium that contains matter, propagation of radiation
is slowed, and it is caused by the interaction between the electromagnetic
field of the radiation and the bounds of the atoms in the matter (Skoog et
al., 2017). This light-matter interaction can be used in favour if the light
reflected by a target is captured by a detector in a certain spectral range.
The analysis of this reflected light would allow the characterisation of phys-
ical properties of the target, thus inferring further information about the
trait of interest. The typical spectrometric laboratory equipment comprises
five elements (Skoog et al., 2017): a stable source of light (Figure 1.5a), a
container for holding the sample (Figure 1.5b), a mechanism for the isola-
tion of specific ranges of the spectrum of the light (usually involving a mono
or polychromator, Figure 1.5c), a radiation detector for the translation of
the radiation into electrical signal (Figure 1.5d), and an electronic signal
processor (Figure 1.5e). The usual output of a spectral signal measurement
given by spectrometers is a digitalised response of radiance (acquired light)
in a sequential data of n bands at regular intervals. These bands lie within
a defined range of wavelengths in the electromagnetic spectrum. Typically,
the ranges cover the visible range (from 300 to 700 nm, approximately) or
the NIR range (starting from 700 nm to higher values, depending on the de-
vice). Molecules absorb light of specific wavelengths, based on their chemical
bonds (Ninfa et al., 2010), hence different spectral ranges can be useful for
the determination of different compounds (molecules).

Traditional spectral analysis has been performed under laboratory condi-
tions, using fixed equipment—also called “laboratory analysers”—controlled
by trained personnel. These have been widely used in quality or process con-
trol as well as research and development in food and agriculture. Laboratory
analysers share many of the advantages of spectroscopy: they are simple to
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Figure 1.5: Five elements of a typical spectrometric laboratory equipment
(Skoog et al., 2017): (a) source of light; (b) container for holding the sample;
(c) mechanism for the isolation of specific ranges of the spectrum of the
light; (d) radiation detector for the translation of the radiation into electrical
signal; (e) electronic signal processor.

use, quick in analysis and require little or no sample preparation Sun (2009).
Still, as they are heavy, voluminous and designed to be installed in fixed
scenarios, it is a requirement for samples to be carried to the laboratory, so
non-invasive analysis is not possible. Additionally, for example in agricul-
tural applications, sampling is also necessary because it is not possible to
pick all samples from the field (fruits, leaves, etc.), therefore the capability
of detail characterisation of large zones is limited.

In the last years, electronic miniaturisation has allowed the design of
similar spectrometer configurations in handheld devices. Nevertheless, the
installation of a light source is not always present. Portable spectral sen-
sors can be divided, among other criteria, in spectrometers with (active) or
without (passive) source of light. In both cases, the sensor acquires light
reflected off the surface of the target, splitting the beam into specific wave-
lengths and converting the signal electronically into a spectrum. The only
difference is that some sensors can have an assembled light source, so the
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acquired signal is calibrated to that light (Figure 1.6a), while others need of
an external light source, requiring of a signal correction depending on the
external light’s intensity (Figure 1.6b). Portable spectrometers have critical
differences compared to laboratory analysers. Handheld devices allow for
a quicker, non-destructive monitoring of the crop, thus increasing the ca-
pability of obtaining a more accurate reading of plants’ status. Also, they
are usually easier to handle than laboratory spectrometers. However, the
usage of these devices still demands a certain level of sampling, as each
measurement is manually performed, and covering large areas would take
considerable amounts of time to complete.

Figure 1.6: Handheld spectrometers with (a) and without light source (b).
Source: Televitis research group, University of La Rioja and Malvern Pana-
lytical.

Handheld spectral devices have been previously used in food and agri-
culture applications. In Sánchez et al. (2012), the authors used a portable
spectrometer with an embedded light source for the non-destructive quality
control of strawberries (physical and chemical analysis measuring firmness,
skin colour, sugar, acidity, etc.), using Partial Least Squares (PLS) and Par-
tial Least Squares Discriminant Analysis (PLS-DA) for the development of
regression and classification models. The results demonstrated the useful-
ness of portable spectroscopy for quality control in strawberries, also capable
of performing varietal classification on the fruit. A similar instrument was
used for the estimation of physical-chemical quality parameters in plums
(Pérez-Marín et al., 2010). The experiments were design to estimate the
fruit’s firmness and soluble solid content. The device showed a decent per-
formance for the prediction of soluble solid content. Another example can
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be found in Toledo-Martín et al. (2016), in which peppers were analysed
for the successful determination of internal (sugar, pH, etc.) and external
(colour, thickness, etc.) quality variables. Portable spectrometers without
light source have been used for the outdoor monitoring of sugar beets in Lau-
dien et al. (2003). Spectral signals from leaves were acquired by the device
attached to a pole at a high of 2 m. The experiments resulted in significant
differences between healthy and diseased plants for two different spectral in-
dices. These devices have also demonstrated to be useful for the selection
of spectral narrow bands and bandwidths for plant and soil assessment in
different crops, like rice, maize or wheat (Ray et al., 2010).

Handheld spectral sensors have been proven to be useful for several ob-
jectives in agriculture. Still, new spectral solutions exist for industrial appli-
cations that can be used for on-the-go monitoring of the vineyard. Recently,
a new kind of spectrometers has been released. These are designed for the
non-contact monitoring at approximately 30-50 cm from the target. These
devices comprise a processing unit embedded in a housing box, and a sensor
head, in which light is emitted to the target and captured from the reflection
(Figure 1.7). Both parts are connected by optical fibre. The spectrometer
allows for acquisitions up to 120 Hz, and this, together with the possibility
of proximal, non-invasive monitoring, makes it easier testing the effective-
ness of mounting the devices on a mobile ground platform. The continuous
spectral acquisition brings clear advantages for crop monitoring. For exam-
ple, whole agricultural plots can be monitored if the system is mounted on
a moving vehicle, due to the high data-acquisition rate. Additionally, as
spectral measurement is not manual, but automated, these devices are very
prone to be installed on autonomous monitoring platforms, like agricultural
robots. This configuration has been proven successful for the in-field, on-
the-go assessment of grapevine water status, mounting a spectrometer on a
moving vehicle (Fernández-Novales et al., 2018; Diago et al., 2018).

1.3.2 Multispectral imaging

In agriculture, specific compounds or plant-related physiological parameters
are related to some wavelengths in the electromagnetic spectrum. There-
fore, these bands are more relevant than other for the prediction of certain
features of interest. Normalised Difference Vegetation Index (NDVI), for ex-
ample, is an index used for the quality and quantity estimation of vegetation
development (Tucker, 1979; Goward et al., 1991), based on the ratio be-
tween energy emission spectral regions (reflectance) around the red and the
NIR bands. For this reason, devices for spectral acquisition of specific wave-
lengths have been developed and used in agricultural applications, not only
for NDVI computation, but for many other vegetation indices (Rodríguez-
Pérez et al., 2007). While most spectral devices acquire a full spectrum
(typically hundreds of bands) from a reduced spot or reduced region, Multi-
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Figure 1.7: A non-contact NIR spectrometer mounted on an ATV, the
“Televitis mobile lab” used by this research group. The device comprises
a processing unit, and, connected with an optical fiber cable, a sensor head
with a light source in it, and it is able to work under uncontrolled illumina-
tion conditions. Source: Televitis research group, University of La Rioja.

spectral Imaging (MSI) is based on the opposite principle: acquiring image
data of wider areas but in a reduced number of bands (typically from three
to no more than 10), as displayed in Figure 1.8.

Figure 1.8: In multispectral imaging, images from a same scene are captured
at different wavelengths within the electromagnetic spectrum.

MSI is often performed using multispectral cameras, that are designed
to acquire a small number of bands and to provide one image for each one of
them. Actually, standard cameras (like a reflex one or the cameras embed-
ded in smartphones) are but multispectral cameras that capture the light in
the red, green and blue colour wavelengths (approximately around 650, 530
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and 460 nm, respectively). These are commonly known as RGB cameras.
Multispectral cameras have the advantage of adding a new dimension to the
acquired data (the spatial dimension), that could help when extracting infor-
mation from data acquisition. Also, they do not need to be manually oper-
ated and this, along with their light construction, allow them to be installed
on moving and automated platforms. The main feature of this technology
is that the number of channels is definitely limited, so the modelling of the
traits of interest is simpler than when the full spectrum is available.

MSI from satellites or aircraft has been employed in viticulture for several
plant status monitoring applications (Hall et al., 2002). In the last years,
the combination of miniaturisation—allowing the building of very light, low-
consuming multispectral cameras—and evolution in the use and decrease of
cost of Remotely Piloted Aerial Systems (RPAS) (Section 1.4.1) has also led
to the publication of several on vineyard monitoring using MSI from these
kinds of aerial platforms (Rey-Caramés et al., 2015).

1.3.3 Hyperspectral imaging

Hyperspectral Imaging (HSI) combines the potential of spectroscopy and
the additional information that a two-dimensional space provides, like an
image. With HSI, a whole image is provided and, in each pixel, instead of
colour or multispectral information, a whole spectrum in a specific electro-
magnetic range is provided (hundreds of wavelengths). In previous sections,
spectroscopy and MSI have been presented. As discussed, the differences
between both technologies lie in that spectrometers provide high spectral
resolution (hundreds of bands) in a relatively reduced spatial area, while
multispectral cameras capture high resolution images but only in a reduced
number of wavelengths (typically less than 10). HSI gathers the best features
from spectroscopy and MSI.

It has been demonstrated that HSI is a very powerful tool for agricultural
and food applications, and that the combination of high-resolution spatial
and spectral dimensions provides a monitoring alternative that should be
exploited in the field. But this brings a big burden, and this is the massive
amount of data that HSI is able to generate. Extracting useful information
from hyperspectral images is a very suitable task for ML, for the training
of prediction models. Still, further work is necessary if automated systems
need to be developed for the fast, in-field monitoring of plants. The design
of automated hyperspectral images pre-processing steps (like segmentation,
target identification, sample classification, etc.) is a requirement for that
goal.

HSI is a complex technology, hence its high cost, and different hyper-
spectral cameras exist depending on its image acquisition mechanism and
spectral range. There are four different modes of hyperspectral image ac-
quisition (Wu and Sun, 2013): whiskbroom, pushbroom, area scanning and
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snapshot (Figure1.9). In the whiskbroom (also known as point scanning),
the detector acquires only the full spectrum of a single point, and either
the sample or the detector should be moved along two spatial dimensions
if a image wants to be acquired, making this methodology time-consuming
alternative. The pushbroom scanning (or line scanning) is the most com-
mon option found on commercial hardware. It records all the spectra in a
whole line in one spatial dimension. To obtain an image, either the sample
or the camera needs to be moved along the other spatial dimension. Image
composition needs to be done with caution, as irregular acquisition speeds
result in warped images. For this reason, this method is very suitable for
monitoring in conveyor belt systems. Another option could be, if both target
and camera need to be fixed, the use of a rotating mirror in the scanning.
The third mechanism, area scanning (also known as wavelength scanning),
is just the opposite than the point whiskbroom one: a full image is capture
for a single wavelength, and this is repeated for all the bands covered in
the range of the camera. This has the advantage that, as the detector only
acquires one wavelength at a time, it is possible to set a suitable exposure
time for that wavelength. The main disadvantage of this method is that the
target needs to be completely still during data acquisition. Finally, technol-
ogy has brought in the last years devices with the capability of acquiring
hyperspectral in a snapshot mode, i.e., all pixels and spectra are captured
from a single shot (Hagen and Kudenov, 2013). Nevertheless, this hardware
does not offer high spatial resolutions yet, but opens a promising future in
the usage of HSI in many fields.

With the exception of satellite imagery, HSI has been traditionally de-
ployed in indoor configurations. In Figure 1.10, a typical HSI acquisition
procedure is displayed. A hyperspectral camera is set up and focused to
a target that is manually presented with controlled artificial illumination,
needed to maximise the signal-to-noise ratio.

Many studies exist using HSI for DA and food control under labora-
tory conditions. This technology has been used for the determination of
fruit composition parameters like soluble solid content—in apples (Ma et al.,
2018; Tian et al., 2018), bananitos (Pu et al., 2018), peaches (Li and Chen,
2017), tomatoes (Rahman et al., 2017) or mangoes (Rungpichayapichet et
al., 2017)—or anthocyanin content—in raspberries (Rodríguez-Pulido et al.,
2017) or mulberries (Huang et al., 2017). Fruit physicochemical properties
have also been modelled from hyperspectral data (Zhu et al., 2017; Sun et
al., 2017a,b). Plant disease detection has been a topic in which HSI is in-
tensively used (Thomas et al., 2018b; Lowe et al., 2017). In Moghadam et
al. (2017), the authors trained machine learning models for disease detection
testing three sources: the full spectrum, spectral indices and features gener-
ated ad-hoc. A HSI automated phenotyping platform in a greenhouse was
set up for plant disease monitoring in Thomas et al. (2018a). State-of-the-art
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Figure 1.9: Different types of hyperspectral image acquisition mechanisms.
Whiskbroom, pushbroom and area scanning (a) captures the data from the
target in sequential steps (single pixel, one spatial dimension or one spectral
dimension, respectively), while the snapshot method (b) records all the data
from a single shot. The letters x and y refer to spatial dimensions, while λ is
the spectral dimension (wavelenghts). Source: Hagen and Kudenov (2013).

portable hyperspectral cameras have also been tested for this goal in a recent
study (Behmann et al., 2018). In DV, hyperspectral cameras have been used
for grapevine varietal and clone classification (Diago et al., 2013; Fernandes
et al., 2015), assessment of grape (SSC!) (Gomes et al., 2017; Piazzolla et
al., 2017) or anthocyanin content (Diago et al., 2016a; Martínez-Sandoval et
al., 2016; Zhang et al., 2017). These are but a small collection of examples
of HSI potential in agriculture.

The translation of hyperspectral imagers from the laboratory to the field
is a very significant step in DA, but it also carries very serious challenges that
need to be taken into account. First, it is not assured for light conditions
to be either optimal or stable, and this can profoundly affect to spectral ac-
quisitions that, like in-field HSI, require of an external light source. Second,
the composition of the hyperspectral image, is also affected by the platform
the camera is mounted on, how it manages terrain irregularities, geometrical
corrections depending on the position of the camera, etc. Third, in a con-
trolled scenario like in-lab HSI, the position of the sample is both constant
and known, and the segmentation and extraction of sample spectra makes
it very easy to automatically process a great set of images. Nevertheless,
in-field HSI acquisitions are complex, and many other targets (like sky, soil,
non-plant elements, etc.) are capture by the sensor, and should be ignored
in the processing. A very recent thesis has evidenced the complexity of HSI
acquired on-the-go under field conditions (Wendel, 2018), leading to publi-
cations about illumination compensation (Wendel and Underwood, 2017b)
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Figure 1.10: A typical configuration for hyperspectral measurements in lab-
oratory. A hyperspectral camera is placed for image acquisition of a sample
at a constant distance and using artificial and controlled light conditions.
Source: Televitis research group, University of La Rioja.

and extrinsic parameter calibration (Wendel and Underwood, 2017a).
Although reports on HSI under field conditions in agriculture are nu-

merous, few works exist testing hyperspectral cameras in the field. In the
last years, manual, in-field HSI has been reported in Williams et al. (2017).
In that paper, the authors performed hyperspectral acquisition for the seg-
mentation of raspberry plants, using a portable platform, along with a scene
background, manually operated. Advances in the research and development
of mobile phenotyping vehicles—like buggies (Williams et al., 2017)—or au-
tonomous platforms—such as agricultural robots (Underwood et al., 2017)—
have driven new attempts on testing with hyperspectral sensors in the field.
Nevertheless, deeper research on specific applications of in-field HSI is nec-
essary, given the richness of this technology.
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1.3.4 Thermal sensing

Non-contact thermal measurement is based on sensing thermal radiation.
Matter, by the fact that has a temperature above absolute zero, emits a
electromagnetic radiation generated by the thermal motion of the particles
(Lloyd, 2013). If, from a target, the infrared energy emitted is known, as well
as its emissivity (an object’s ability to emit infrared energy), the temperature
of the target can be derived with high precision by detecting radiation in the
long-infrared range (from 9 to 14 µm), operating in narrow bands of the
electromagnetic spectrum to avoid contamination in measurements due to
water vapour, carbon dioxide, etc.

IR radiometers have been widely employed in several industrial and do-
mestic applications. Using these sensors, the surface temperature of an ob-
ject can be measured contactless. In order to minimise distortion caused
by air between the target and the sensor, or temperatures from surrounding
elements, the device should be relatively close to the object. There are sev-
eral types of IR radiometers, from sensing guns (Figure 1.11a), that demand
manual measurements, to passive sensors (Figure 1.11b), capable of a con-
tinuous thermal monitoring. IR radiometers have many advantages, as they
are cheap, fast to use and process, and able to provide non-destructive mea-
surements that have great importance in agriculture, like plant temperature.
Nevertheless, they are not completely suitable when the different elements in
a scene need to be individually analysed, as all the readings in the measured
area are averaged to a single value.

More sophisticated technology, like IR thermography, has risen in the
last decades for applications in agriculture (Ishimwe et al., 2014), specially
considering the fact that the prices have lowered year by year. Thermal
cameras acquire digital images (or videos), in where each pixel represents a
temperature of the scene, in a fast way (Kruse, 2001). Figure 1.12 shows an
example of a thermal image of a grapevine in a vertical trellis system. The
scale bar indicates which colour in the image represents the temperatures in
the scene (each pixel). Thermal cameras can be portable, for manual read-
ings (Figure 1.11c), or compact, for the automated imaging (Figure 1.11d).
Thermal cameras, due to their capability of providing two-dimensional im-
ages, have the advantage of allowing for deeper analyses of the scene, like
object detection, temperature gradient inspection or segmentation. On the
other hand, thermal imaging requires of complex processing, so its analysis
is not as trivial as using IR radiometers.

Handheld thermal imaging devices are applied in agriculture for the as-
sessment of plant water status. In particular, for DV, thermal imaging so-
lutions, due to their capability of measuring the canopy surface, have been
studied for the monitoring of grapevine water status. Leaves interact with
their environment by processes involving energy-exchanges. When leaf tran-
spires, water is lost through stomata, and leaf temperature decreases. How-
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Figure 1.11: Different examples of devices for IR thermal sensing. (a) A
thermal IR gun that requires manual operation. (b) A IR radiometer, ca-
pable of carry out automatic, continuous temperature monitoring. (c) A
handheld thermal camera. (d) A compact thermal camera for automated
imaging. Source: FLIR Systems and Televitis research group, University of
La Rioja.

ever, if transpiration stops, leaf temperature increases as no heat dissipation
is occurring. For this reason, thermal monitoring of plant canopies could
help to infer water deficit or stress in grapevines (Costa et al., 2010; Jones
and Vaughan, 2010).

In a recent study, a handheld thermal camera was employed to charac-
terise the spatial and temporal variability of water status in three different
vineyard plots (Grant et al., 2016). Temperature acquisitions were carried
out on both sides of the canopies during three different dates on September
2010 at different times each day. The researchers also made acquisitions
of minimum and maximum reference surface temperatures from artificial
leaves—named Twet and Tdry–for the computation of two thermal indices:
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Figure 1.12: Example of a thermal image of a grapevine canopy acquired on-
the-go from a moving vehicle under field conditions. The scale bar indicates
which colour in the image represent the temperatures the scene (each pixel).

Crop Water Stress Index (CWSI) and Conductance Index (Ig). These indices
are calculated, accordingly to Idso (1982) and Jones (1992), respectively, as:

CWSI =
Tcanopy − Twet

Tdry − Twet
(1.1)

Ig =
Tdry − Tcanopy

Tcanopy − Twet
, (1.2)

where Tcanopy is the temperature of the canopy. Stress indices have been
developed in order to mitigate the impact of environmental fluctuations,
that have a direct effect on the canopy thermal response. Good correlations
were found between indices and reference parameters. Another study also
explored the validation of thermal indices for water status identification in
grapevine (Pou et al., 2014). A manual thermal camera was also used for
the computation of CWSI and Ig thermal indices. The authors reported
significant correlations between the indices and the physiological parameters.

Thermal systems have also benefited from electronic miniaturisation, and
lighter, low-cost thermal cameras are available for agricultural applications.
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Furthermore, airborne thermal imagery has been studied for the monitoring
of grapevine water status. In one of the first articles published on this topic
(Baluja et al., 2012), the authors reported the use of thermal imaging from
an Unmanned Aerial Vehicle (UAV). The experiments resulted in high corre-
lations corresponding to one measurement date, and to a direct correlation
between thermal indices and reference method (no modelling performed).
These features still carry some limitations, as no actual model can be used
for prediction, and intra-season variability is not considered. Although UAVs
and thermal imaging have been proven to be useful for the fast water status
monitoring in a whole vineyard plot, it is still limited by the spatial pixel res-
olution of the camera. A recent study indicated that, in grapevine, because
of the narrow canopy width, it is necessary to obtain high resolution thermal
imagery having at least 0.30 m pixel size (Bellvert et al., 2014). This sug-
gests that ground-based, on-the-go thermography could bring improvements
in DV, mainly for water status assessment.

1.3.5 Chlorophyll fluorescence

Chlorophyll fluorescence refers to the emission of fluorescence produced when
the chlorophyll molecule is excited by light. Sensors based on this mechanism
have been developed, as chlorophyll fluorescence is one of the most commonly
employed indicators of plant status (Bilger et al., 1997; Cerovic et al., 2002;
Agati et al., 2005; Cerovic et al., 2012). In viticulture, handheld fluorescence
sensors have been used for several application (Figure 1.13).

Figure 1.13: Two handheld fluorescence-based sensors used for the monitor-
ing of plant status. Source: Force A.

In Rey-Caramés et al. (2016), the authors designed an experiment through-
out the 2011 season for the quantification of the spatio-temporal variation
of leaf chlorophyll and nitrogen in a commercial vineyard. They used a
handheld fluorescence sensor (Figure 1.13b), demonstrating its suitability
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for vineyard monitoring during a season. The same sensor was employed
for the assessment of the spatial variability of grape composition during
the 2010 campaign in a commercial vineyard. These kind of sensors have
also been mounted on a ground vehicle for the on-the-go monitoring of the
vineyard. In Diago et al. (2016b) the authors reported a study of how to cal-
ibrate fluorescence-based sensors from moving platforms for the assessment
of grapevine vegetative status.

1.4 Sensing platforms

The different kind of sensors described in Section 1.3 can be installed on
several platforms, and depending on them, the data collected from the same
target can be very different. In this chapter, some of the most common
monitoring platforms used in agriculture are described, divided depending
on their utility for remote or proximal sensing.

Remote sensing is defined as a technique that allows the acquisition of
images from earth surface from high altitude, while proximal sensing is per-
formed by maintaining low distances between the sensor and the target that
is measured (Fussell et al., 1986).

1.4.1 Remote sensing platforms

Until the 1960s, aerial images were the main development in remote sensing,
but it was in 1960 when the first satellites were used for image acquisition
of surfaces (Chuvieco Salinero, 2006). Nowadays, there have been many
launches of sensing satellites for different purposes, like the Landsat program
(United States Geological Survey, 2019) (Figure 1.14a) or the Sentinel family
(European Space Agency, 2019). Imaging from manned airborne platforms
at high altitude (Figure 1.14b) is also common for the monitoring of large
areas in a few runs. Remote sensing is extensively used for geology and
mineralogy, due to its ability of acquiring large areas in a short period of
time, and this is also a trait that agriculture can benefit from. The latest
developments on unmanned aerial vehicles (UAVs) and RPAS, commonly
known as drones (Figure 1.14c), have positively influenced the application
of local airborne sensing in agriculture in the last years.

In spite of the advantages of remote sensing, applied to crops that cover
large areas, coarse image acquisition from satellites or very high airborne
platforms lacks of a proper resolution for the detailed analysis of grapevines
(Matese et al., 2015). Also, as launching ad-hoc satellites is virtually impos-
sible for most actors in the indutry, the only way to obtain satellite data is
by accessing to services provided by external organisations. Airborne plat-
forms have the advantage that can be hired as a service, and they are able
to record data at higher resolutions. Still, it is a very expensive alternative
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Figure 1.14: Examples of remote sensing platforms. (a) Satellite imagery,
(b) airborne imagery, (c) remotely piloted aerial systems. Source: NERC
Airborne Research Facility and Landsat.

and not within everyone’s reach. RPAS have addressed the low-resolution
and high-cost features. Because of their lower flight altitude, delivering high-
resolution images, and their low-cost tendency in the last years, they have
become a popular solution for remote sensing. Still, it should not be for-
gotten that the worldwide trend in industrial viticulture is to use a vertical
trellising. This means that, from an aerial point of view, the width of the
canopy is rarely larger than 40 cm, and many interest elements like mid-low
leaves, branches or grapes are not visible. The fact that only the upper
leaves in the canopy are scanned is also meaningful, as these have different
behaviours for photosynthesis and transpiration (Escalona et al., 2015), and
it is also not possible to sense the fruit (so no yield or fruit composition
monitoring is possible). Even when top leaves are the ones of interest, there
may exist some level of noise in the background in the image (Taylor et al.,
2005), mainly caused by soil or grass (Tisseyre et al., 2008). Additionally,
sensing from airborne platforms is affected by weather, and data acquisition
can suffer from lower quality due to atmospheric disturbances.

Given all these reasons, the development of sensors for ground-based
platforms (proximal sensing) has become a key factor for better DV solutions.
The vast majority of the studies in viticulture make use of optical devices—
RGB and spectral sensing—as some of them can be implemented in ground
vehicles for on-the-go measurements (Matese and Di Gennaro, 2015).

1.4.2 Proximal sensing platforms

Proximal sensing, unlike remote sensing, is performed using sensors near the
surface of the earth (Fussell et al., 1986). While many manual, portable
sensors exist in the market (Section 1.3), current trends move toward sens-
ing technologies mounted on moving ground vehicles. As previously dis-
cussed, grapevines are crops mostly planted in a vertical trellis system, hence
monitoring from a lateral point of view allow for the high-resolution data
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acquisition—e.g., a vehicle moving between vineyard rows—would ideally
offer high-resolution data collection.

One of the most basic set ups that can be deployed in the field is at-
taching the sensor directly on working agricultural vehicles. This has the
advantage that monitoring can be performed at the same time that the ve-
hicle is working on another task, or even this task can be determined by the
information that the sensor is providing. The main drawback that this set
up has is that, in some cases, the driver needs to be trained for the appli-
cation of the technology, and plant monitoring is virtually limited to those
moments in where the agricultural vehicle is working out in the field.

Another possibility is to install sensors in manned ground vehicles specif-
ically designed for in-field monitoring. In this sense, vehicles like buggies or
ATVs take a special role, as they can be adapted to very different environ-
ments and focused on the monitoring of a whole plot. A review article (Deery
et al., 2014) has underlined the suitability of ground-based vehicles for crop
phenotyping. During the development of this PhD Thesis, the majority of
the work carried out in the field during four consecutive seasons has involved
the use of an ATV (Figure 1.15). This vehicle has been conceived as a “mo-
bile laboratory” in which many different kinds of sensing technologies have
been installed for the on-the-go monitoring of several traits of grapevines.

The advantage of buggies or ATVs is that they can be specialised in plant
data acquisition, without the need of adapting an already deployed agricul-
tural vehicle for this end. This allows for the monitoring to be performed as
many times as needed and in a faster way. The use of a specific vehicle for
plant monitoring has the disadvantage that it not only adds the cost of the
sensors, but the vehicle itself, and it also needs a person to, at least, drive
the vehicle, if not for controlling the devices. Advances in the last years have
driven to the development of different autonomous robotic platforms for the
vineyard and other crops.

Robots are the future in agriculture, as they can act autonomously per-
forming a wide range of applications in the field, and VineRobot and Vi-
neScout are good examples for this (Figures 1.16a and b, respectively). They
are prototypes from different research projects that are fitted with differ-
ent kinds of sensors for both automated manoeuvring and plant sensing:
Light Detection and Ranging (LIDAR), for obstacle detection; fluorescence
sensors, for grapevine status assessment; thermal cameras, for water status
determination; etc. Robots have many advantages, such as their complete
autonomy—allowing for a faster unsupervised plot monitoring, without the
need of specialised personnel or training—or the ability of processing and
delivering the information in real time. Nonetheless, we are in a stage in
which robots are still expensive, in both purchasing and maintenance, and
its availability is yet limited and far from full commercial deployment. With
the continuous research and development, the hope is that robots become a
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Figure 1.15: The “Televitis mobile lab”, an ATV for vineyard monitoring
designed by Televitis research group so that different sensors can be installed.
Sensors are mounted on the frame structure of the vehicle, connected to an
industrial computer (that acts as a hub) and controlled wireless by the driver
using a tablet. Measurements can be georeferenced by attaching GPS signals.
Source: Televitis research group, University of La Rioja.

settled down factor in modern agriculture.

1.5 Artificial intelligence

The ideal objective of AI has been to design machines capable of doing all
that a human being can do. Nonetheless, there are huge and evident differ-
ences between a human’s cognitive system and the machines we can build.
Even so, AI is driving the world of today, and the trend is that year by
year, AI will keep growing to improve our lives (Stajic et al., 2015). What
is then driving this revolution in our society? The complex combination of
mathematics, computing and massive data could be an accurate explanation
of today’s relentless advance of AI, as we have developed methods to let ma-
chines to learn. In mathematics we can find the unquestionable foundations
of the vast majority of the concepts that machines are based on, and the
latest developments on hardware and computing are the implementation of
those concepts within the reach of everyone. Still, mathematics and com-
puting are but tools that need to be fed with a third element, an already
precious resource: data. We live in a data driven world, and data has become
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Figure 1.16: The (a) VineRobot, (b) VineScout, (c) Shrimp and (d) Lady-
bird robots. Prototypes from European and Australian projects. Source:
Televitis research group, University of La Rioja and Australian Centre for
Field Robotics, The University of Sydney.

a very powerful currency in many technological businesses. With the growth
of worldwide communications and easiness of instant access to the Internet,
it became possible to gather real-time tracking about one’s online behaviour.
Nearly every person in nowadays society has a device equipped with differ-
ent sensors that gather data in form of voice, images or location, and can be
instantly sent to social networks. Also, many kinds of transactions are also
available through an smartphone connected to the Internet, like shopping,
bank access, etc. We are definitely surrounded by data. Therefore, if math-
ematics and computing provide the AI tools to make a machine to learn, the
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today’s vast amount of data drives machines on what knowledge should they
acquire (Sejnowski, 2018).

We are surrounded by the advances of AI at many levels. It is not in-
accurate to name nowadays society as the Information Society, and AI has
helped providing techniques and applications of natural language processing
to manage huge amounts of information (Hirschberg and Manning, 2015). In
economics, for example, AI is applied at many scales, as economics’ decision
models directly connect choices and values in a mathematically precise man-
ner (Parkes and Wellman, 2015). Medicine has also benefited from learning
machines (Buch et al., 2018), in applications like classifying suspicious skin
lesions (Esteva et al., 2017) or identifying pulmonary tuberculosis on chest
radiographs (Lakhani and Sundaram, 2017). Machines are able to drive
cars autonomously on urban environments (Bojarski et al., 2016), and even
science too has taken much advantage of AI (Appenzeller, 2017).

In agriculture, AI can be of much help with by transforming crop data
into information useful to the farmer in the decision-making process. It is
here where AI can be of much help (Jayaraman et al., 2015), to reduce en-
vironmental impact and increase sustainability. The combination of new
digital technologies with AI create an opportunity to revitalise agriculture,
increase the efficiency in farm operations and reduce environmental impact
(Asseng and Asche, 2019). Digital technologies and AI have also help in
agriculture with tools for data interoperability among storage systems (Hu
et al., 2010), fertiliser management (Yuan et al., 2013) or for crop monitoring
with the aid of computer vision (Patrício and Rieder, 2018). Still, further re-
search is necessary for crop monitoring, as the increasing development trend
in non-invasive sensing technologies (Section 1.3) open new opportunities to
gather large and precise amounts of new data from crops and extract useful
information.

The next section will go deeper into the tools AI have to give machines
an useful knowledge to be of support in a digital agriculture application.

1.6 Machine learning

ML, in the core of AI, helps in the task of providing tools and methodologies
to provide computers with learning capabilities so they can transform this
huge amount of data into useful information (Jordan and Mitchell, 2015).
ML frameworks are specific tools that AI has to develop mathematical mod-
els that acquire knowledge without explicit program, but by exposure of ex-
amples. In Section 1.3, many different kinds of sensors available to be used
in agriculture have been presented, hence the current easiness of acquiring
large quantities of data from crops. While digital agriculture is based on
putting crop status in numbers, this data acquisition step should not be an
end, but a mean to provide mechanisms and methodologies to transform the
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numbers into information that is useful to take decisions. In the last decades,
research and development in ML techniques has allowed to implement many
data management and processing strategies (Government of Spain, 2019),
and the present data-trending age is a perfect scenario to keep the research
on new solutions in digital agriculture and transfer them to the industry.

ML can be defined as the field that studies techniques and methodologies
to let computers solve specific tasks without the need of providing an explicit
algorithm1 (Samuel, 1959; Bishop, 2006). The term “learning” is extremely
important in the concept, as learning has the implicit particularity that pre-
vious examples exist, and the process is carried out through exposition to
and analysis of the examples (i.e., acquiring experience). That is why ML
needs to learn knowledge based on input samples. ML methods have the
advantage that they are very flexible, hence their suitability to applications
where knowledge is underlying and little is known about the domain (Domin-
gos, 2002). When using ML methodologies, it should not be a goal to deeply
identify the underlying rules that may exist in the data, but to construct a
good and useful approximation that, although may not explain everything,
would have enough discovered knowledge to apply it for other applications
(Alpaydin, 2009).

According to García et al. (2015), the steps involving knowledge discov-
ering using ML are:

1. Problem Specification: It involves gathering information about the
application domain and the goals that need to be accomplished.

2. Problem Understanding: Including the comprehension of the se-
lected data. It greatly relies on the previous knowledge about the
domain that the experts have.

3. Data processing: Important step that may involve data cleaning,
integration or reduction. Data processing is one of the most important
steps, as much of the success or failure of a ML modelling may depend
on how good the input data is processed.

4. Machine Learning: The core methodology to obtain models for the
extraction of patterns from an input data. This step involves the selec-
tion of the most suitable ML task, the selection of a specific algorithm
and the training and validation of the models.

5. Evaluation: Analysing the discovered patterns and interpreting their
meaning.

1Attending to the Cambridge Dictionary’s definition of the word: “a set of mathematical
instructions or rules that, especially if given to a computer, will help to calculate an answer
to a problem”
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6. Exploitation: The implementation of the tuned and trained ML
model for the incorporation of its knowledge in another system for
further processing.

Combining digital technologies, ML and adequate methodologies will al-
low winegrowers to implement DV solutions to improve and optimise pro-
duction systems (Tisseyre et al., 2007). But, the question arises, how can
we make use of ML in a DV application? Figure 1.3 displays an scheme for
ML modelling (Section 1.6) from non-invasive sensing technologies (Section
1.3) in an agricultural application.

Now that all elements in a DA application have been deeply discussed
in previous sections, further detail on the use of ML is presented, making
references again to Figure 1.3 in Section 1.2.

The first step is data acquisition (Figure 1.3a). The objective is to record
data from a sensor (X) and, if necessary, link them with some kind of pa-
rameter of interest or reference data (y). Reference data is used to train
prediction models that analyse underlying patters that could exists between
X and y. Therefore, every sample in the data X should have a correspond-
ing value in the data y to be used as input to for a ML algorithm. It is
important to highlight that when acquiring reference data, it should cover
a wide range of variability so that the ML algorithms will be able to learn
from samples with different features.

Once the data are gathered, the next step is processing them (Figure
1.3b). Processing usually involves pre-processing of the raw data depending
on the source sensor (e.g., spectral treatments when using an spectrometer;
temperature extraction when using a thermal camera; etc.) and then data
processing common in all ML applications (e.g., normalisation, discretisa-
tion, etc.) (García et al., 2015, 2016). At the end, the processed data should
be converted into a set of examples (also known as samples) that represent
the individuals from which data was gathered. Each sample is a collection
of features, also defined as attribute or variables, that can be nominal or
numeric.

The next step is the training of prediction models with ML algorithms
(Figure 1.3c). After the samples have been defined, the question is, how
can they be used for the training of the model that will better predict new
unknown incoming samples (e.g., examples whose y values are unknown).
The training process of ML is arguably the most complex, and the one that
mostly need of the experience of the user. First, a good knowledge of different
ML algorithms and how they work is necessary. And second, consistent
validation methods should be designed and applied as measurements of how
good a trained model is.

The kind of prediction that ML algorithms can perform is called differ-
ently depending on the kind of variable that is predicted. When the target
to predict is nominal (one category in a finite set), the prediction task is
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called “classification”. On the other hand, when the variable to predict is
a number, it is called “regression”. There are diverse kinds of algorithms
for classification and regression, and each one of them can be more or less
useful depending on the nature of the problem. Selecting an algorithm does
not just imply using it, but effectively tuning its configuration parameters
to maximise its performance.

The validation of a model is an indispensable process needed to a) moni-
tor the behaviour of the training process and b) to obtain a statistical value
of how precise the trained final model is (Wolpert, 1992). Having a dataset
with N samples, when a model is trained with all of them, how can we be
sure that it has a good generalisation capability for future predictions? One
option would be to predict samples with known label, and see if the model
was correct. Nevertheless, computing accuracy scores by predicting again
the samples from the training dataset (samples with known labels) would be
an error, as the model could be overfitted. Overfitting occurs when a model,
after being trained, predicts the train data with very high accuracy, but fails
in the prediction of new samples not present in the training process. One
of the most used mechanisms to decrease and control overfitting is Cross
Validation (CV). Cross Validation (CV) is a technique that is used to assess
the performance of a ML algorithm when trained using a specific dataset.
CV itself does not provide a trained model. On the contrary, it is used as
a performance measurement, hence it should be used to prevent overfitting
and select the optimum model configuration. As CV is an iterative process,
it consists on the partitioning of the a dataset, the training of models and
prediction of unknown samples, and the averaging of the performance statis-
tics. This is called k-fold CV (Kohavi et al., 1995). In a k-fold CV, the
dataset is equally and randomly split in k subsets, and k training-prediction
iterations are performed. In each iteration, one of the k subsets is marked
to be predicted, and a model is trained with the remaining subsets. Once
trained, the marked subset is predicted and, as labels are known, an accu-
racy score is computed. This process is repeated over the remaining subsets,
rotating the subset to be predicted, and finally the average computation is
computed. CV is very useful when the dataset size is small. If there are
enough samples in the dataset, it can be split in two subsets, for example in
a 80%-20% ratio, and used them for training and testing, respectively. With
the train subset, k-fold CV is performed to obtain a CV score, and then
all the samples in it are used to train a model. That model is used for the
prediction of the samples in the testing subset, and the test accuracy score
is computed.

Once the best ML algorithm has been selected, and the best values for
their parameters validated, a new model with the same configuration and
all the samples in the dataset can be trained and used for its exploitation
in another application (Figure 1.3d). In a DA application that make use
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of non-invasive sensing technologies, this would mean the amalgamation of
a sensor and a system with the trained model embedded. The latter may
receive continuous data from the sensor, and give prediction outputs. In fact,
this step is also a data gathering process. It is possible to take advantage of
this and use the new gathered data to repeat the process in Figure 1.3 and
retrain models to improve their performance.

Finally, as the goal of the process is to take decisions, the generated
outputs are considered in the decision-making process, so the information
obtained could drive plot management (Figure 1.3e).

The next sections describe in detail some ML algorithms.

1.6.1 Support vector machines

Support Vector Machines (SVMs) are kernel-based algorithms originally de-
signed for binary classification, but currently are capable of performing multi-
label classification (Herrera et al., 2016). They are defined as kernel-based
algorithms because they make use of a kernel to transform the input into a
higher dimensional space to lineally separate the samples. The base of SVMs
were initially formulated by Vapnik and Chervonenkis (1964), but they were
fully developed in the mid 1990s (Cortes and Vapnik, 1995). SVMs, that are
considered among the most powerful learning algorithms for classification
(Rosales-Pérez et al., 2017), have had great importance during the devel-
opment and application of ML. These algorithms, unlike other approaches
like Artificial Neural Networks (ANNs) (that require reinforcing training to
get an optimal model, Section 1.6.2), are capable of train models on a de-
terministic way, i.e., always delivering the best separation among the input
labels. SVMs have demonstrated during the last decades their usefulness,
extensively applied in many data-related solutions.

SVMs train models for the classification of a set of samples (Figure 1.17a)
into two categories by finding the best decision boundary between them
(Cristianini et al., 2000). A decision boundary is but a line (or a plane) in
the attribute space of the samples that separate them. The classification of
a new sample only requires to check in which side of the boundary the new
sample lies. Nevertheless, the separation of the samples in two classes are
not done directly on the attribute space, but on higher dimensional spaces
after transformation using kernel functions (Figure 1.17b). Afterwards, the
best decision boundary is calculated by maximising the distance between the
boundary hyperplane and the closest samples from each class (the support
vectors, Figure 1.17c).

The translation from the original attribute space to higher spaces is the
key feature of SVMs. There are different kind of kernel methods to achieve
this (for example: linear polynomial, or radial basis function kernels), and
each one make very different transformations on the data. Choosing the best
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Figure 1.17: A Support Vector Machine transforms the original dataset (a)
to a higher dimension space (b; for illustration purposes, the new space is
represented also in two dimensions), and then generating a hyperplane—the
black line—that maximises the distance to the support vectors—the samples
with the red squares—in the new space (c).

one depends on the nature of the problem and the experience of the user.
The selection of the hyperplane is also controlled by other several variables
that need to be tuned.

Although SVMs were originally designed for binary classification, they
can be used for regression (Drucker et al., 1997) and multi-label classification
(Hsu and Lin, 2002). Still, in the majority of the cases, for multi-label
classification, the SVM is not modified to admit more than two classes. On
the contrary, binary classification is still performed. One-vs-one and one-
vs-all approaches are followed. In the first case, having m classes, m(m−1)

2
binary classifiers are trained, each using only the samples of two classes;
then, the prediction of an unknown sample is carried out by a voting scheme
in which all the classifiers are used, and the most frequently predicted class
is returned. On the other hand, in a one-vs-all, m classifiers are trained,
one per class, using each all the samples from the class and the remaining
samples as another unified class.

SVMs have been used for several applications in DV using spectral de-
vices. In Al-Saddik et al. (2018), these classifiers were used for grapevine
disease detection. Binary and multi-label classification models were trained
per variety for the detection of healthy and infested leaves from spectral data.
Results demonstrated that SVMs performed better than discriminant anal-
ysis classification, and that the ML approach was more able to successfully
model the data after spectral pre-processing.

Yield estimation in vineyards has benefited from SVMs in several ways.
Grape bunch detection has been performed on RGB images using computer
vision and SVMs (Liu and Whitty, 2015). The authors demonstrated the
good fitness of this technique over other ones like K-nearest neighbour (Reis
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et al., 2012). There also are recent examples on data analysis supported by
SVMs for berry number estimation (Aquino et al., 2017) or bud detection
(Pérez et al., 2017; Díaz et al., 2018), demonstrating the usefulness of this
ML approach in object detection.

1.6.2 Artificial neural networks

ANNs are a very popular ML approach used for both classification and re-
gression. They are recognised as one of the most known benchmarks in ML,
and these algorithms play a leading role in the field of AI (Muñoz-Ordóñez
et al., 2018). The potential of ANNs have been proven for a very broad
collection of applications: trajectory prediction (Zissis et al., 2015), cancer
diagnosis (Ganesan et al., 2010; Bottaci et al., 1997), automatic game playing
(Silver et al., 2016) or for solving problems in quantum mechanics (Carleo
and Troyer, 2017).

The concept and design of ANNs are based on the behaviour of biological
a neural network and, although a real simulation of brain neural networks
is not sought, the main design of a layout and interconnection of neurons
is implemented. The first mathematical concept about the functioning of
ANNs was published by (McCulloch and Pitts, 1943), and taking that as a
base, Rosenblatt (1958) proposed the idea of perceptron (Figure 1.18a).

The neuron or processing element, based on Rosenblatt’s perceptrons, is
the basic unit of an ANN. It receives n input signals, and these are modified
(multiplied) by n different specific weights. Afterwards, the results are sum
and used as input for an activation function, whose output is the output of
the neuron. An ANN is therefore built when several neurons are connected
in a layered pattern. The layout of an ANN is defined by the number of lay-
ers that it is composed of. One of the most common kind of ANNs used are
Multilayer Perceptrons (MLPs). MLPs are a kind of neural networks that
comprise at least three layers of neurons (Figure 1.18b) and use backprop-
agation in the training process (Hornik et al., 1989). In a fully connected
ANN, the output of all the neurons in a layer are forwarded to (as the input
of) all the neurons in the next layer. ANNs can be used for both classification
or regression, depending on the structure in the last layer, the output one. If
the output layer only contains one neuron, it can be used for the prediction
of a real value (regression) or binary classification. If it is sought to train a
classification model for more than two classes, the last layer should contain
the same number of classes.

Backpropagation was a innovative concept introduced and developed in
the 1970s and 80s (Werbos, 1974; Rumelhart et al., 1986). The training
process of an ANN consists in the iterative exposure of the neurons to the
samples in the training dataset, computing the prediction performance at
each iteration, and adjusting the weights by backpropagation, from the last
layer to the first one, to improve the output. This is repeated a certain
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Figure 1.18: (a) Example of a processing element or neuron in an Artifi-
cial Neural Network. (b) A fully connected Multilayer Perceptron with two
hidden layers.

number of times, and at each iteration, as the weights in the network are
updated, the network improves its response for the prediction of the training
data. The number of cycles the ANN is trained through is a very important
aspect of the training process, as too much iterations could lead to high levels
of overfitting in the model.

ANNs have been used, and currently still are, for different applications
in viticulture. Mancuso et al. (1998) developed one of the first applications
of neural networks for the classification of grapevine varieties from several
ampelographic parameters. Recent research on varietal classification has
also considered leaf features and NIR spectroscopy as input for ANNs in the
classification of several grapevine cultivars (Fuentes et al., 2018), with high
accuracy levels from the learning algorithms.

Grapevine water status estimation has been recently evaluated using
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thermal readings and ANNs by King and Shellie (2016). Leaf tempera-
ture was predicted from several climatic parameters, with ANN models that
were useful for the calculation of thermal indices for water status assessment
(Section 1.3.4). Another combination of digital technologies and ML has
been recently reported by Romero et al. (2018). In this work, the authors
used MSI from RPAS for the monitoring of water stress spatial distribu-
tion in vineyards. ANNs modelling aided in the management of irrigation
scheduling.

1.6.3 Convolutional neural networks

Deep Learning is a branch of ML that promotes the re-use of features and,
progressively and using deeper layer architectures, obtains more abstract
features at higher layers of representations (Bengio et al., 2013). Convo-
lutional Neural Networks (CNNs) are the most common implementation of
deep learning (LeCun et al., 2015), being extensively used in the last years
in many scientific and industrial fields. Technically, any neural network with
two or more hidden layers can be considered as a deep neural network, but
CNNs have lately emerged as very effective tools in computer vision, like ob-
ject detection or image classification. The concept on which CNNs are based
on is not new (LeCun et al., 1990), but new developments in hardware, like
parallel computing, have carry them to better levels.

A CNN is similar to a classical neural network, but with different kind
of layers between the input (an image) and the output that are not fully
connected. The hidden layers in CNNs are composed of several combinations
of convolutional layers and pooling layers. After these group of layers, one
or several fully connected layers are attached and connected to the output
layer (Figure 1.19).

Figure 1.19: A CNN with two convolutional layers and two pooling layers
used for features extraction from the input image. The last layer, a fully
connected layer, perform the classification of the abstract features from the
convolutional and pooling layers.

A convolutional layer contains a certain number of filters (kernel or con-
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volutional matrix, used in digital image processing) that are connected to
local zones in the image. The filters in the convolutional layers are responsi-
ble of automatically extracting features from the input image, whose size are
reduced by the pooling layer. By adding more layers, the network is capable
of extracting more information of the features, decomposing the image in
smaller connected parts (features) that maximises the information for better
classification rate. By iteration and backpropagation, the structure of the
filters is modified to maximise the performance of the network.

In classical neural networks, the weights at each node are randomly ini-
tialised, and then adjusted by training. Nevertheless, this is not a common
practice when using CNNs, where the filter values are not randomly gener-
ated at the beginning. It is usual to use a network that has been previously
trained for image classification or object detection, being only necessary to
make fine adjustments for the problem that needs to be solved (Yosinski et
al., 2014). These pre-trained networks may have been built for the classifi-
cation of common objects, like the ImageNet (Deng et al., 2009), AlexNet
(Krizhevsky et al., 2012) or ZF Net (Zeiler and Fergus, 2014).

In agriculture, CNNs have recently been used for many applications. The
huge potential of this kind of neural networks in computer vision has been
employed for yield estimation in many crops. Sa et al. (2016) developed
full fruit detection system based on RGB and NIR data and CNNs. The
neural networks allowed for the retraining of the system to new fruits in an
easy way by labelling new samples (images). Apple yield estimation was
also possible from multi-geometry RGB images from an agricultural robot
(Bargoti and Underwood, 2017). Results demonstrated that the improved
segmentation performance with CNNs also translated to more accurate fruit
detection when compared to other algorithms. Disease detection is an im-
portant application for which the use of CNNs is researched. Convolutional
networks were used for visual pattern identification of different disease in
leaf images (Mohanty et al., 2016), and were able to correctly classify 993
out of a thousand samples from 38 different classes. A similar approach was
followed by Amara et al. (2017), that used thousands of RGB images for
disease identification in banana leaves. Models were trained using CNNs,
and they exhibit enough accuracy to consider them as a decision support
tool to help farmers to identify the disease in their plants.

As exposed, CNNs have been massively used for image processing and
computer vision, but the concept is not limited to this kind of input data.
While the filters in the convolutional layers classically used are two-dimensional
matrices, they can be adjusted to other dimensions in order to fit with dif-
ferent inputs. A recent PhD Thesis has studied how CNNs can be adapted
to hyperspectral images (Windrim, 2018). The basic idea behind the pro-
posed network is to, instead of convolving over the spatial dimension of the
hyperspectral image, to perform the convolution over the spectral dimen-
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sion (one image pixel, coded as a vector containing the reflectance values at
each wavelength in the range). Therefore it is possible to take advantage of
the potential of CNNs to extract all possible underlying relations from the
spectra in an image.

1.6.4 Genetic algorithms

Genetic Algorithms (GAs) are metaheuristics methodologies that are based
on natural selection of individuals depending on their adaptation (fitness)
to the environment (Herrera et al., 1998). With the evolution in computing
development, the first approximations of genetic algorithms were proposed
by Fraser et al. (1970) and Crosby (1973), and several different strategies
have been developed since. GAs are used in many applications in which
parameter optimisation is required.

The basic concept of GAs is that a problem is coded so that each so-
lution, a set of parameters (genes) that affects the result, is represented as
an individual (a chromosome). A large set of individuals is defined and,
through successive breeding and mutations in a iterative process, the best
individuals are selected and passed to next generations. A GA requires for
the problem to be defined as a function that, given a certain parameter set,
returns a fitness value indicating how good that parameter set is for that
problem. The fitness function should be deterministic, i.e., it should always
return the same value any time it is called with a specific set of input values.
In general, a GA implements the following operators:

• Initialisation: A set of individuals (a generation) is generated and
their parameters are randomly initialised.

• Selection: At each generation, several pair of individuals are selected
for breeding. There are several kinds of selection methods, from ran-
dom, to elitist selection (those individuals with the highest fitness val-
ues). There also are tournament methods in which the best individual
from a reduced randomly subset is picked.

• Mating or crossover: Performed between two individuals from the
selection step (the parents), it is used to generate one or more individ-
uals that have genetic material (parameter values) randomly chosen
from both parents. Selection and crossover is repeated a certain num-
ber of times at each generation to produce a sufficiently large offspring.
There are also several types of crossing techniques (single-point, two-
point, uniform crossover, etc.).

• Mutation: For each individual in the new offspring, one or many
random parameters are selected for a mutation (a small change in the
parameter) given a certain probability.
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After a fixed number of generations (or any other stopping criterion), the
best individual is selected from the last iteration, and it is considered as the
best solution from the optimisation process.

GAs are very effective optimisation alternatives for those problems that
cannot be coded into continuous, differentiable functions, for which other
methodologies are more mathematically efficient, like gradient based ap-
proaches (Robbins and Monro, 1985). It should be noted that, because GAs
are non-deterministic, stochastic methods, it is not assured that the best so-
lution is found. They can get stuck in local maxima without improvements
for many generations. For this reason, the tuning of the hyperparameters
of the GA selected based on user’s experience is a key aspect to achieve
good results. A proper GA configuration should ideally reach high levels
of both exploration—wide search in very different parameter spaces—and
exploitation—deep search on a reduced parameter space to find the best
solution in it.

In viticulture, GAs have been used for the optimisation of an neural net-
work in grape bunch detection from RGB imaging (Behroozi-Khazaei and
Maleki, 2017). Image segmentation was performed using colour features,
selecting the best ANNs parameters with GAs. This work is a good exam-
ple of the synergy that can exist between different AI techniques. Other
agricultural applications make use of GAs. These were used by Arkeman et
al. (2017) on satellite imagery for maximising economic factor and decrease
environmental impact in agricultural practices. GAs also provided a key con-
tribution for efficient irrigation management in Greece (Udias et al., 2018).
The authors developed a decision support tool for soil and water assessment
based on GA optimisation.



Chapter 2

Objectives

The main objective of this PhD Thesis is the development of innovative ap-
proaches through the combination of new artificial intelligence techniques
and non-invasive sensing technologies for the assessment of relevant agro-
nomical, physiological and qualitative traits in digital agriculture and viti-
culture].

The specific objectives achieved in this research work are:

• To make use of different machine learning algorithms on data from
spectroscopy for in-field grapevine phenotyping and monitoring.

• The application of ensemble data analysis techniques for vineyard wa-
ter status assessment with thermal imaging.

• To deploy hyperspectral imaging in the field, supported by intensive
machine learning combinations, for the monitoring of different crop
traits.
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Chapter 3

Combining machine learning
and spectroscopy for in-field
grapevine monitoring

In this chapter, two published papers are presented on the use of spectroscopy
for the in-field vineyard monitoring.

3.1 Machine learning for in-field grapevine varietal
classification using a handheld spectrometer

Grapevine varietal classification demands slow, manual techniques like am-
pelography, that also relies on expert personnel. Although there are more
recent methods for grapevine varietal classification, by using isoenzimes or
genetic analysis,they are virtually impossible to be used under field condi-
tions. With the advances and development in NIR spectroscopy and elec-
tronic miniaturisation, there are different industrial solutions for the spectral
acquisition with portable devices. Along with sensor miniaturisation, the po-
tential of ML algorithms, like ANNs and SVMs, opens new possibilities for
the development of prediction models of a large number of grapevine vari-
eties. The objective of the following paper was the use of a handheld NIR
spectrometer for the in-field classification of 20 different grapevine varieties
from three vineyards located at different regions and using data from two
vintages. Additionally, the efficiency of ANNs and SVMs has been tested and
compared for the classification task from leaf spectra. The results demon-
strate that it is possible to develop accurate classification models for a high
number of varieties with plants from a same zone and classification models
for six varieties from three different vineyards. These outcomes open new
paths in DV for the fast varietal identification under field conditions, an
useful tool to several actors in viticulture and wine industry.
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Overcome challenges

• To classify a high number of grapevine varieties using SVMs and ANNs.

• To use handheld spectroscopy under field conditions for phenotyping.

• To develop several classification models for a same zone (many vari-
eties) or three different zones (at two vintages and phenological stages).

Paper information

• Title of the publication: Support Vector Machine and Artificial
Neural Network Models for the Classification of Grapevine Varieties
Using a Portable NIR Spectrophotometer

• Authors: Salvador Gutiérrez, Javier Tardáguila, Juan Fernández-
Novales, María P. Diago

• Published in: PLOS ONE 10(11), e0143197

• DOI: 10.1371/journal.pone.0143197

Contributions of the PhD Thesis’ author: The contribution of Sal-
vador Gutiérrez was key at data analysis, machine learning modelling and
statistical tests. Additionally, he wrote the full text at all stages in the review
process.
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Abstract
The identification of different grapevine varieties, currently attended using visual ampelome-

try, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions,

is an issue of great importance in the wine industry. This work presents support vector

machine and artificial neural network’s modelling for grapevine varietal classification from

in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global

scale. Spectral measurements were obtained on the near-infrared (NIR) spectral range

between 1600 to 2400 nm under field conditions in a non-destructive way using a portable

spectrophotometer. For the site specific approach, spectra were collected from the adaxial

side of 400 individual leaves of 20 grapevine (Vitis vinifera L.) varieties one week after verai-

son. For the global model, two additional sets of spectra were collected one week before

harvest from two different vineyards in another vintage, each one consisting on 48 measure-

ment from individual leaves of six varieties. Several combinations of spectra scatter correc-

tion and smoothing filtering were studied. For the training of the models, support vector

machines and artificial neural networks were employed using the pre-processed spectra as

input and the varieties as the classes of the models. The results from the pre-processing

study showed that there was no influence whether using scatter correction or not. Also, a

second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the high-

est outcomes. For the site-specific model, with 20 classes, the best results from the classifi-

ers thrown an overall score of 87.25% of correctly classified samples. These results were

compared under the same conditions with a model trained using partial least squares dis-

criminant analysis, which showed a worse performance in every case. For the global model,

a 6-class dataset involving samples from three different vineyards, two years and leaves

monitored at post-veraison and harvest was also built up, reaching a 77.08% of correctly

classified samples. The outcomes obtained demonstrate the capability of using a reliable

method for fast, in-field, non-destructive grapevine varietal classification that could be very

useful in viticulture and wine industry, either global or site-specific.
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Introduction
The development of a fast and automatic procedure for grapevine varietal classification would
bring a new valuable way in viticulture and wine industry due to the high economical and
social impact of these businesses, offering new trends on vineyard monitoring and grape qual-
ity control.

Althought classic ampelometry [1] has been widely used for grapevine varietal identification
by taking morphological differences between varieties into consideration, the necessity of
human expert intervention makes virtually impossible its widespread utilization. Also, wet
chemistry techniques based on isoenzymes [2] or DNA analysis [3–5] have been carried out.
Still, these methods are labour and time-consuming, and not able to be performed under field
conditions.

Near-infrared reflectance spectroscopy (NIRs) is a non-invasive technique, highly-suited
analytical method for several agricultural applications due to its rapid data acquisition time,
the capability of determining more than one parameter using the same measurement, and its
easy fast usage and little sample preparation.

Spectroscopy has been previously applied for fruit composition assessment [6, 7]. Also,
plant varietal discrimination has been accomplished using spectroscopy in crops such as wheat
[8], bayberry [9], pear [10], tomato [11] and strawberry [12], using different organs. Recent
studies have explored the use of leaf spectroscopy for grapevine varietal and clone identification
using hyperspectral imaging under laboratory conditions throughout destructive methods [13,
14]. Also, these works used partial least squares discriminant analysis (PLS-DA) for the train-
ing of the models.

Machine learning techniques for the development of classification models are extensively
applied in countless fields. Methods such as support vector machines (SVM) or artificial neural
networks (ANN) have demonstrated their high reliability in the training of non-linear regres-
sion and classification models.

SVMs have arisen as very solid machine learning methods for supervised classification
issues [15]. SVMs are kernel-based algorithms that transform data into a high-dimensional
space and construct an hyperplane that maximizes the distance to the nearest data point of any
of the input classes. Although SVM are originally designed to train binary classifiers, an exten-
sion for multiple classes is possible by reducing the multiclass problem into several binary clas-
sification ones, using one-versus-all or one-versus-one approaches. SVMmodels have been
used for NIR varietal classification under laboratory conditions on sesame oil [16], waxy corn
seed [17] or rice seed varieties [18].

ANN are machine learning models inspired on biological neural networks present in animal
brains. The first approaches of the ANN concept was exposed by [19], and afterwards resur-
faced with the introduction of the error backpropagation concept [20, 21]. ANN are formed by
units named processing elements (PE) having similar behaviors than a biological neuron. Differ-
ent functions—as data input, output, storage or forwarding—are distributed among all the PEs.
The layout of a ANN is composed of a number of layers (one-layer or multi-layer designs) and
a number of PE per layer. NIR varietal classification have been carried out using ANNmodels
in tea plants [22] or herbal medicine [23].

Most studies have developed PLS-DA based models under laboratory conditions from NIR
spectroscopy obtained through destructive methods. Also, these models were constructed
using only a few number of varieties as classes. The importance of fast, in-field grapevine vari-
ety discrimination using a portable device could be crucial for viticulture and wine industry.
Specially in viticulture—for nurseries, appellation boards or commercial vineyards—grapevine
varietal classification is a matter of great interest, e.g., discrimination of unknown vines in
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older vineyards, where it is usual the plantation of more than a single cultivar, or the recogni-
tion of not-allowed varieties in particular appellation regions.

The objective of this work was the classification of grapevine varieties using SVM and ANN
models from in-field, portable and non-desctructive leaf NIR spectroscopy. Particularly, two
approaches have been followed: the developing of a site-specific classification model for 20
grapevine varieties, comparing its performance vs a PLS-DA one; and the use of a dataset with
samples from different vineyards, vintages and phenological stages for developing a global
model that would cover samples from several sources.

Materials and Methods

Layout and experimental design
Site-specific model. The study was carried out on 12 August 2012 (one week after verai-

son) at a 1.43 ha commercial vineyard located in Vergalijo (Lat. 42⍛ 27’ 45.96”, Long. 1⍛ 48’
13.42”, Alt. 325 m), Navarra, Spain, under permission of the owner of the vineyard plot. 20
grapevine (Vitis vinifera L.) varieties (Albariño, Cabernet Franc, Cabernet Sauvignon, Caladoc,
Carmenere, Godello, Grenache, Malvasia, Marselan, Pedro Ximénez, Pinot Noir, Syrah, Tem-
pranillo, Touriga Nacional, Treixadura, Verdejo, Viognier, Viura, White Grenache, White Tem-
pranillo) were used in this study. Grapevines were trained to a vertically shoot-positioned trellis
system, with North-South row orientation at 2 × 1 meters inter and intra row distances. Varie-
ties were grafted on Richter 110 rootstock. Full irrigation was uniformly applied across the sea-
son for all varieties and these were well watered. The Relative Water Content (RWC) of leaves,
measured following the method in [24], was maintained between 80% and 90% for all varieties.

Global model. Two additional sets of spectral measurements were acquired one week
before harvest from two different vineyards, under permission of the manager and owner,
located at the Rioja Regional Goverment’s Experimental Vineyard (Logroño, Spain, Lat. 42⍛

26’ 4.7”, Long. 2⍛ 30’ 49.0”, Alt. 480 m) on 23 September 2015 and Provedo Nurseries (Viana,
Spain, Lat. 42⍛ 27’ 52.0”, Long. 2⍛ 23’ 36.0”, Alt. 371 m) on 1st October 2015 in order to test
the behaviour and applicability of the model using samples from separated sites, vintages
(samples for site-specific dataset were taken in 2012) and different stages of leaf development
(August—after veraison—vs late September and October—harvest). For this model, six dif-
ferent varieties, grown in the three vineyard sites, were selected—Albariño, Grenache, Syrah,
Tempranillo, Treixadura and Viura. At Rioja Government’s Vineyard, grapevines were
trained to a vertically shoot-positioned trellis system, with Northwest-Southeast row orienta-
tion at 3 × 1.2 meters inter and intra row distances. Varieties were grafted on Richter 110
rootstock. At Provedo Nurseries, grapevines were trained to a vertically shoot-positioned
trellis system, with East-West row orientation at 3 × 1 meters inter and intra row distances.
Varieties were grafted on Richter 110 rootstock. Full irrigation was uniformly applied across
the season for all vineyard plots and grapevines were well watered.

Spectral measurement in the field
For the spectral acquisition, an integrated portable Near-infrared (NIR) spectral analyzer
(microPHAZIR™, Thermo Fisher Scientific Inc., Waltham, MA, USA), working in reflectance
mode (log1/R) in the range of 1600–2400 nm with an interval of 8.7 nm was used. Sensor inte-
gration time was 600 ms.

Spectral measurements were performed directly upon the adaxial surfaces of the leaves. For
each leaf, five spectra were taken from different spots of the leaf blade. The mean of this five mea-
surements was then considered as the average spectrum of the leaf. In every acquisition, the opti-
cal window of the NIR device was placed in direct contact with the surface of the leaf, making

Grapevine Varietal Classification Using NIR and Machine Learning

PLOS ONE | DOI:10.1371/journal.pone.0143197 November 24, 2015 3 / 15

3.1. Machine learning for in-field grapevine varietal classification using a
handheld spectrometer 45



sure that the sensor window was completely covered. To avoid the contamination of the adaxial
surfaces with external pollutants, vinyl gloves were used at all times when handling the leaves.

For each one of the 20 varieties for the site-specific model, 10 vines and two adult leaves per
vine of the mid-upper part of the shoot (nodes 6 to 12), a total of 20 leaves per variety, were
selected and labeled with its variety name in order to be measured with a portable spectrometer
device. Spectra were acquired under field conditions directly on the vine in a non-destructive
way. A total of 400 leaves were measured.

For each one of the six varieties for the global model, four vines and two adult leaves per
vine of the mid-upper part of the shoot (nodes 6 to 12), a total of eight leaves per variety,
were selected and labeled with its variety name in each of the three vineyard plots sample.
Spectra were acquired under field conditions directly on the vine in a non-destructive way. A
total of 144 leaves (three places, six varieties per place, four vines per variety, two leaves per
vine) were measured.

Spectral pre-processing and algorithms for modelling
The following pre-processing techniques and algorithms were used:

Scatter correction. Standard normal variate (SNV) followed by de-trending [25] [26] has
been commonly used to remove the multiplicative interferences of scatter in the spectral signal.
In SNV, average and standard deviation of all the data points are calculated individually for
each spectrum. Then, the average value is substracted from the absorbance (zero-mean or cen-
tering) and the result is divided by the calculated standard deviation. De-trending subtracts
from the data points a second degree least-squares fit polynomial calculated from the original
data. Sometimes, no scatter correction is performed upon the raw spectra, hence two options for
scatter correction were tested in this work: the application of SNV + De-trending (SNV+D) on
the spectra before any other filtering, and the total omission of scatter correction (NoSNV+D).

Fig 1 plots, from the 400 samples, the average raw spectrum and the result of SNV + De-
trending scatter correction.

Smoothing filtering. A lowpass smoothing filter that makes use of local least-squares
polynomial approximation was developed in [27]. This method is able to preserve the shape,

Fig 1. Average raw and pre-processed spectra with SNV+de-trending from the whole set of samples.
Solid line: SNV+de-trending. Dashed line: Raw.

doi:10.1371/journal.pone.0143197.g001
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height and width of waveform peaks. Savitzky-Golay filtering is usually followed by a first- or
second-degree derivative. The smoothing is performed by using a moving window along the
whole spectral signal. Typical values for this are in the range from 5 to 11, both included. In
this work, the combination of two different derivative degrees (first-degree and second-degree)
and two window sizes (5 and 11) were tested. So, four final parameter sets were defined for
Savitzky-Golay filtering: first-degree derivative, window size 5 (D1W5); first-degree derivative,
window size 11 (D1W11); second-degree derivative, window size 5 (D2W5); second-degree
derivative, window size 11 (D2W11).

Classification algorithms. Two different machine learning classification algorithms (sup-
port vector machines and artificial neural networks) have been tested and compared with par-
tial least squares discriminant analysis, widely used in spectroscopy. Sequential minimal
optimization algorithm [28] working with a polynomial kernel was used in this study to train a
SVM for varietal classification. Also, a multilayer perceptron was utilized as ANN classification
method [29]. Partial least squares discriminant analysis (PLS-DA) has been extensively applied
for classification problems, such as strawberry varieties [12], cooked ham quality [30], detec-
tion of expired vacuum-packed smoked salmon [31], Alpaca wool samples [32] or olive varietal
identification [33]. PLS-DA expects to find a proper correlation of spectral variations and a set
of defined classes. This is done by maximizing the covariance value between different class var-
iables and rejecting variance within a class. In this study, PLS-DA models were trained with a
maximum number of six latent variables and a uncertainty factor of 2.326.

For every one of the algorithms, the inputs were provided as the data points of the spectra
(absorbance values of wavelengths 1600 nm to 2400 nm, with a step of 8.7 nm) and the classes
were the identity labels of each variety.

One-way ANOVA was performed when comparing means for testing the influence of: (i)
the application of a scatter correction method; (ii) the four Savitzky-Golay parameter values;
(iii) the three classification algorithms and the interaction of the two previous factors. Tukey’s
range test was used as mean comparison method at a significance level p = 0.05.

Spectra pre-processing was done using the language and software environment R, version
3.1.3, and the additional packages prospectr [34] and pracma [35]. Java Language Program-
ming, version 1.7, along withWeka, version 3.6, [36] were used for machine learning algo-
rithms executions. PLS-DA models were developed usingWinISI software package, version 1.5
(Infrasoft International, Port Matilda, PA, USA). Finally, statistical test were performed with
InfoStat software (Córdoba, Argentina), version 2015.

Model training
A site-specific model for the classification of 20 varieties from the same vineyard plot was
developed. In order to test the influence of the dataset population size in classifiers’ behavior,
two datasets were used for training and evaluating the machine learning models: 20 varieties
(N = 20 varieties and n = 400 leaves) and a randomly selected subset of five varieties (N = 5
varieties and n = 100 leaves). An execution was performed for each one of the combination of
datasets, with (SNV+D) and without (NoSNV+D) scatter correction, Savitzky-Golay filtering
pretreatments (D1W5, D1W11, D2W5 and D2W11), algorithms (SVM and ANN) and their
parameter sets (12 sets per algorithm), making a total of 384 executions. Due to the high num-
ber of samples (leaves), a k-fold with k = 5 was selected as Cross Validation method instead of
the classic number of k = 10.

A global dataset with six varieties—24 leaves per variety—was built up using samples from
the three vineyard plots all the measurements of this work were taken (Vergalijo 2012, Logroño
and Viana 2015). The total number of samples was 144 (three places, six varieties per place,
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eight leaves per variety). The same pre-processing algorithm and parameter set combinations
were used as those employed for the site-specific model training, using again a 5-fold Cross
Validation.

As previously mentioned, 12 parameter sets per machine learning algorithm have been used
in order to test their influence in the classification results. These parameters are:

For SVM:

C: The trade-off between complexity of decision rule and frequency of error [15].

Exponent: The polynomial kernel exponent.

For ANN:

Hidden layer layout: The number of PEs present in the hidden layer of the network. 0: no PEs
(so, no hidden layer. Input PEs are directly connected to output PEs. No hidden layer layout
can cast good results if the data is linearly separable). a: the number of PEs is the half of the
sum of the number of attributes (inputs) and classes (outputs). i: the number of PEs is equal
to the number of attributes. o: the number of PEs is equal to the number of classes.

Learning rate: It affects the speed that the minimum solution is reached by the ANN. Its value
should be in the range [0, 1].

Momentum: It regulates the ANN capability of reaching a local minimum. The lower momen-
tum value is set, the less likely the ANN converges to a local minimum (but more computa-
tional time will require). Its value must be in the range [0, 1].

The values used in this study for the above parameters are shown in Table 1.
A source code written in Java was developed for the automatic running of these combina-

tions, taking a computation time of 5 hours and 45 minutes with the following hardware speci-
fications: Intel Core i3, 2.93 GHz processor; 12.0 GB of RAM.

Table 1. Parameter sets for SVM and ANN algorithms.

SVM ANN

C Exponent Hidden Layer ‡ Learning Rate Momentum

Parameter set 1 3.5 1 0 0.3 0.1

Parameter set 2 0.1 1 0 0.3 0.9

Parameter set 3 1 1 0 0.7 0.1

Parameter set 4 10 1 a 0.3 0.1

Parameter set 5 3.5 2 a 0.3 0.9

Parameter set 6 0.1 2 a 0.7 0.1

Parameter set 7 1 2 i 0.3 0.1

Parameter set 8 10 2 i 0.3 0.9

Parameter set 9 3.5 3 i 0.7 0.1

Parameter set 10 0.1 3 o 0.3 0.1

Parameter set 11 1 3 o 0.3 0.9

Parameter set 12 10 3 o 0.7 0.1

‡0: no processing elements (PEs) in hidden layer; a: PEs = (#attributes + #classes)/2; i: PEs = #attributes; o: PEs = #classes.

SVM: Support Vector Machine; ANN: Artificial Neural Network.

doi:10.1371/journal.pone.0143197.t001
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Results
The influence of scatter correction, algorithms, and smoothing filtering was statistically tested
with the dataset acquired for the site-specific mode.

Influence of scatter correction
Table 2 shows the mean comparison of the percentage of correctly classified grapevine leaves
according to their variety for each algorithm when the scatter correction pre-processing was
applied or omitted. For almost every case, the use of scatter correction had no statistical influ-
ence in the correctly classified percentage obtained, regardless of the algorithm. Only in the
reduced dataset (N = 5), the application of SNV + De-trending performed significantly better
when the SVM was used as classifier.

Influence of algorithms and Savitzky-Golay filters
Table 3 shows the comparison of means of correctly classified percentages attending to the
algorithms and Savitzky-Golay pre-processing. Although there was a common and logical

Table 2. Comparison of means of percentage of correctly classified leaves for signal scatter correction attending to the algorithm used for N = 20
and N = 5 datasets.

Number of varieties Scatter correction PLS-DA SVM ANN

N = 20 SNV+D 44.8 75.8 78.4

NoSNV+D 47.2 75.1 77.9

significance n.s. n.s. n.s.

N = 5 SNV+D 76.5 87.9 a 87.1

NoSNV+D 75.8 85.1 b 86.7

significance n.s. * * n.s.

n.s.: not significant (p � 0.05); * *: p < 0.01; (Tukey’s range test at a significance level p = 0.05). SNV+D: Standard Normal Variate followed by De-

trending; PLS-DA: Partial Least Squares Discriminant Analysis; SVM: Support Vector Machine; ANN: Artificial Neural Network.

doi:10.1371/journal.pone.0143197.t002

Table 3. Correctly classified percentages of grapevine leaves for each Savitzky-Golay filter and algorithm combination for N = 20 and N = 5 number
of varieties.

Number of varieties Savitzky-Golay filter PLS-DA SVM ANN significance

N = 20 D1W5 45.3 B 77.5 A a 81.2 A b * * *

D1W11 44.4 B 69.7 A b 67.3 A c * * *

D2W5 51.0 B 78.0 A a 84.3 A a * * *

D2W11 43.2 B 76.7 A a 79.8 A b * * *

significance n.s. * * * * *

N = 5 D1W5 81.5 a 87.8 b 88.0 b n.s.

D1W11 72.5 B b 79.3 A c 81.0 A c *

D2W5 84.5 B a 91.2 A a 91.6 A a * * *

D2W11 66.0 B c 87.8 A b 86.9 A b * * *

significance * * * * * * * *

The values shown are the varieties correctly classified percentage. Each value is, in turn, the average of the results obtained using and not using scatter

correction and, for SVM and ANN, the 12 parameter sets.

PLS-DA: Partial Least Squares Discriminant Analysis; SVM: Support Vector Machine; ANN: Artificial Neural Network.

Uppercase and italic lowercase letters attend respectively to row-wise (comparison among algorithms) and column-wise (comparison among Savitzky-

Golay filters) values comparison. n.s.: not significant (p � 0.05); *: p < 0.05; * *: p < 0.01; * * *: p < 0.001.

doi:10.1371/journal.pone.0143197.t003
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widespread worse response from the algorithms when the number of varieties to be classified is
noticeably large, the SVM and ANN classifiers still achieved very good results for N = 20.
When—for these two algorithms—the correctly classified percentages reached excellent num-
bers with N = 5 (values moving between 79.3% and 91.6%), this remarkable behaviour
remained with a slight degradation when the number of classes was four times greater (cor-
rectly classified percentage values between 67.3% and 84.3%).

As it can be seen, both ANN and SVM algorithms performed widely better than PLS-DA.
Though this classifier obtained notable results in the reduced dataset, the increase of the num-
ber of varieties heavily degraded the output of the algorithm, barely reaching the 50% correctly
classified mark (Table 3).

The results in Table 3 show that the best behaviour was generally yielded by ANN, achieving
up to an average of 84.3% correctly classified instances for N = 20 and 91.6% for N = 5. Statisti-
cal tests displayed that in every case, the use of ANN or SVM casts significantly better outputs
than PLS-DA, demonstrating the high suitability and surpassing response from the two
machine learning classifiers vs PLS-DA. The interaction of the algorithm and the Savitzky-
Golay configuration was calculated for both N = 20 and N = 5 through statistical tests. For the
first dataset, the test showed that the interaction of both factor was significant at p< 0.05. For
N = 5 dataset the interaction was significant at p< 0.01. If the ANOVA was performed only
for SVM and ANN (ignoring the PLS-DA results), a p-value of 0.024 for N = 20 and 0.649 for
N = 5 (not shown in the table) was obtained. Thus, while in the first case the use of ANN was
significantly better (�) with regard to SVM, for N = 5 there was no significantly difference (n.s.)
in using any algorithm.

Regarding the four different Savitzky-Golay configurations, statistical tests showed that the
parameter values selection for this pre-processing filter was significantly influential in the final
output, except for PLS-DA algorithm having N = 20. Also, Table 3 displays that, in every one
of the cases, the Savitzky-Golay configuration with higher correctly classified percentage was a
second-degree derivative with a window size of 5 (D2W5). It is likewise consistent that the sec-
ond best configuration fell upon a first-derivative and window size 5 Saviztky-Golay filtering
(D1W5). Using a window size of 11 returned the worst outcomes for every algorithm, so it was
an avoidable choice for this study (Table 3).

Site-specific grapevine variety classification
From the 192 executions for N = 20, the best result (the one with the highest correctly classified
percentage) was obtained with the following configuration: ANN, SNV+D, D2W5, parameter
set 10 (Fig 2 shows, for the 400 leaf samples, the average raw and processed spectra using the
pre-processing from this combination). The overall correctly classified percentage was 87.25
(349 out of 400 samples properly classified) and the confusion matrix of this configuration is
shown in Table 4.

Three varieties (Cabernet Franc, Cabernet Sauvignon and Touriga Nacional) achieved a
perfect score, while six ones reached excellent results (percentage of correct classification
greater than 90%): Albariño, Treixadura, Viognier, Grenache, Carmenere and Caladoc. Seven
varieties obtained good results in their classification (greater or equal than 75% and less or
equal than 90%): Viura, Godello, White Grenache, White Tempranillo, Pedro Ximénez, Syrah,
Tempranillo and Pinot Noir. Finally, the three varieties with worst result (less than 75%) were
Verdejo, Malvasia and Marselan. The classification of the Verdejo leaves resulted in a moderate
output, with a 50% of correctly classified samples. From these 10 misclassified instances, three
were predicted as Viura and two as Tempranillo. For Malvasia, the majority of the misclassified
samples were also assigned to the Viura class.
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Global variety classification
From the 6-class global dataset model involving samples from different vineyards, vintages and
phenological stages, the outcome with the highest correctly classified percentage was achieved
with the following combination: ANN, NoSNV+D, D2W5, parameter set 6; reaching an overall
result of 77.08% of correctly classified samples (111 out of 144). Table 5 shows the confusion
matrix of this model.

Individually, the best classification results were obtained for Tempranillo and Grenache
varieties, with a 91.7% and 87.5% correctly classified score respectively. Nonetheless, two varie-
ties—Viura and Syrah—obtained a more modest score of correctly classified percentage, below
the 70% mark in both cases.

Fig 2. Average raw (A) and processed spectra (B) with SNV+de-trending+Savitzky-Golay filter
(second-degree derivative, window size 5) from all samples.

doi:10.1371/journal.pone.0143197.g002
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Discussion
The present work has shown the possibility of grapevine varietal classification using a portable
NIR spectrophotometer in the field along with SVM and ANNmodels. 20 different grapevine
varieties were classified with an overall correct classification percentage of 87.25% in a site-spe-
cific approach. Similar recent studies such as [13] or [14] also reached high percentages in vari-
etal (93.53%) and clone (98.8%) discrimination. Nevertheless, in [13], hyperspectral imaging
was conducted with a camera operating between 380 nm and 1028 nm under laboratory condi-
tions on leaf discs. The PLS-DA models obtained in [13] were trained for the discrimination of
three grapevine varieties and resulted, for every one of then, in correctly classification percent-
ages over 92%. Although a lower overall percentage was obtained in the present work
(87.25%), it is important to highlight the fact that this result was achieved from training a
model with 20 classes under field conditions. Only less than five points were lost when using a
classifier that had more than six times the number of classes in [13]. Additionally, attention
must be drawn to the fact that the present study achieved the grapevine classification goal
using NIR measurements acquired under field conditions with a portable device, while in [13]

Table 4. Confusion matrix from the execution with the best score (ANN, SNV+D, D2W5 and parameter set 10) with an overall correctly classified
value of 87.25% (20 leaves per variety).

Classified as

Ve M V A T G WG WT PX Vi CF Gr CS C S Te PN Ca Ma TN %

Ve 10 1 3 0 0 1 1 1 0 0 1 0 0 0 0 2 0 0 0 0 50

M 0 14 5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 70

V 1 3 15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75

A 0 0 0 19 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 95

T 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 95

G 0 0 0 0 0 18 1 0 0 0 0 0 0 0 0 0 1 0 0 0 90

WG 0 0 0 0 0 0 16 0 0 1 0 2 0 0 0 0 0 0 0 1 80

WT 0 0 0 0 0 1 0 17 0 0 0 0 0 1 0 0 0 0 0 1 85

PX 0 0 1 0 0 0 0 0 18 1 0 0 0 0 0 0 0 0 0 0 90

Vi 0 0 0 0 0 0 0 0 0 19 0 0 0 0 1 0 0 0 0 0 95

CF 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 100

Gr 0 0 0 0 0 0 0 0 0 0 1 19 0 0 0 0 0 0 0 0 95

CS 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 100

C 0 0 0 1 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 95

S 0 0 0 0 0 0 0 0 0 0 1 0 1 0 18 0 0 0 0 0 90

Te 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 17 1 0 0 0 85

PN 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 1 0 90

Ca 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 19 0 0 95

Ma 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 2 0 14 0 70

TN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 100

Each row represents the actual variety and in which one was classified. Bolded values (diagonal of the matrix) are the number of samples properly

classified. The last column shows the correctly classified percentage for each variety.

ANN: Artificial Neural Network; SNV+D: Standard Normal Variate followed by De-trending; D2W5: Second-degree derivative and window size 5 Savitzky-

Golay filter.

Ve: Verdejo; M: Malvasia; V: Viura; A: Albariño; T: Treixadura; G: Godello; WG: White Grenache; WT: White Tempranillo; PX: Pedro Ximénez; Vi:

Viognier; CF: Cabernet Franc; Gr: Grenache; CS: Cabernet Sauvignon; C: Carmenere; S: Syrah; Te: Tempranillo; PN: Pinot Noir; Ca: Caladoc; Ma:

Marselan; TN: Touriga Nacional.

doi:10.1371/journal.pone.0143197.t004
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hyperspectral imaging was performed using a camera under laboratory conditions and having
full control of illumination status.

The discrimination and classification of grapevine varieties using in-field NIR spectroscopy
can be feasible as ated in this work. The variation in spectral properties in relation to leaf bio-
chemical composition and structure, which depends on many factors like the plant species, the
developmental or microclimate position of the leaf on the plant [37], have been outlined as
potent factors causing this spectra differentiation. Still, the leaf water content can be an influ-
ence due to the fact that the absorption band of water can be found at 1940 nm. However, in
this work the differences in water content have not driven the discrimination of leaves accord-
ing to their variety, as special care was paid to measure only leaves with RWCmarks between
80% and 90%.

In regard to spectra pretreatments (scatter correction and smoothing filtering), [38]
remarked that selection of suitable spectral pre-treatment is not easy, due to the strong likeli-
hood of several different mathematical transformation being used. The selection of the best
pre-treatment for spectra analysis must be based on the combination of statistical testing and
the modeller’s judgement [39]. Several factors can affect the results of applying different spec-
tral pre-processing methods, ranging from sample nature to light conditions or spectra acquisi-
tion device’s status, etc, so the fact that SNV followed by de-trending and a second-degree
derivative, window size 5 Savitzky-Golay filter cast the best classification marks would not
assure this behaviour will maintain in other plant varietal discrimination problems.

In every case, SVM and ANN outperformed PLS-DA, whether five or 20 classes were used
in the training. PLS-DA extracts the principal components from the whole set of wavelengths,
by linear combinations of them, and ranking them depending on the more explained variance.
The fact that SVMs and ANNs develop non-linear models and the complete set of wavelength
values are used may be the cause of this better performance (e.g., the training process of an arti-
ficial neural network already penalizes those input variables less useful in the discrimination
goal); this was more clear when comparing the N = 20 models. Although ANN performed bet-
ter than SVM in almost every case, the lack of statistical significance between their scores
allows to affirm that both of them could be used for this type of varietal discrimination
purposes.

Table 5. Confusion matrix from the global dataset execution with the best score (ANN, NoSNV+D,
D2W5 and parameter set 6) with an overall correctly classified value of 77.08% (24 leaves per variety).

Classified as

V Gr T Te S A %

V 15 1 3 0 1 4 62.5

Gr 0 21 0 2 1 0 87.5

T 0 0 22 1 0 1 91.7

Te 1 3 1 17 2 0 70.8

S 1 0 0 6 16 1 66.7

A 0 0 1 0 3 20 83.3

Each row represents the actual variety and in which one was classified. Bolded values (diagonal of the

matrix) are the number of samples properly classified. The last column shows the correctly classified

percentage for each variety.

ANN: Artificial Neural Network; NoSNV+D: No application of Standard Normal Variate followed by De-

trending; D2W5: Second-degree derivative and window size 5 Savitzky-Golay filter.

V: Viura; Gr: Grenache; T: Treixadura; Te: Tempranillo; S: Syrah; A: Albariño.

doi:10.1371/journal.pone.0143197.t005
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The outcomes the global method have thrown support the applicability of ANN for a multi-
vineyard, vintage and phenological stage grapevine varietal discrimination. Despite the lower
score obtained from the global vineyard dataset, 77.08%, versus the one achieved by the site-
specific dataset, 87.25%, these results accomplished the classification goal with a high level of
satisfaction, specially when taking into account that the model contemplated samples from dif-
ferent vineyards, seasons and leaf age, according to different phenological stages. Divergences
were found regarding the pre-processing and parameter set combination with the best scores
for site-specific and global datasets. While the algorithm (ANN) and smoothing filtering
(D2W5) remained the same for both, not applying SNV and de-trending worked better in the
global dataset, unlike the original one, where this scatter correction method gave a better
response. This behavior could be a consequence of the differences in phenological stages and
vineyards’ places at which the spectral measurements were acquired, given that leaf’s maturity
is influenced by the time of year, and phenotype is affected by the physiology and field environ-
ment of the grapevine [40–42]. A scatter correction step might hide the spectral representation
of these phenomena. Still, as previously discussed, the use of SNV and de-trending showed no
statistical influence in the results, so the divergence related to the employment of this scatter
correction procedure brought no big issue. The same applies for the ANN parameter set, where
the original dataset responded better with a different one (parameter set 10) than the global
dataset (parameter set 6). The minor particularities of the Multilayer Perceptron ANN imple-
mentation (such as the concrete values of the configuration parameters) are always very influ-
enced by the input data and experimenter criteria, and could not be generalized.

The high marks obtained in the present work by both studied datasets, attending specially
to the large number of classes for the site-specific model and the significant heterogeneity for
the global one, opens several ways of direct application for viticulture and wine industry,
including precision viticulture, if spectral data are georeferenced. In addition to the novelty of
the spectral range and the high number of classes discriminated, it is worth highlighting that
the spectra used in this study were acquired in the field, where illumination conditions are far
from being stable. ANNs have demonstrated a notable accuracy for both potential applications
of: a vineyard-specialized varietal classification, e.g., given vineyard plots sharing environmen-
tal, climatic and seasonal features (as evidenced by the 20-class model); and the global and gen-
eralized classification of vineyards from heterogeneous sources (different sites, vintages and
phenological stages), such as those found in a whole region or territory. But this reliability is
not the only valuable feature of this method: the easy usage because of its fast, portable and
non-destructive nature makes the present grapevine varietal discrimination approach prone
for direct in-field applicability by commercial vineyards, nurseries, appellation boards, among
others. The remarkable performance of the developed model under field conditions paves the
way for the use of this type of portable NIR analyses as powerful phenotyping tools in viticul-
ture and other crops.

Conclusions
The present study proposes a new classification method for the classification of grapevine vari-
eties from in-field leaf NIR spectroscopy acquired through non-destructive methods. Model-
ling was approached in two ways: training the classifier with leaves from 20 varieties—building
a site-specific model—and leaves from different vineyards, vintages and stages of development
—building a global model. Support Vector Machines and Artificial Neural Networks showed a
high reliability in the creation of grapevine leaf varietal classification models from in-field NIR
spectroscopy using non-destructive data acquisition. The accuracy showed by both site-specific
models, specially when the number of classes was high, along with the ability of properly train
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the model from heterogeneous sources, allows to consider this NIR range suitable for in-field
grapevine varietal discrimination.

The classification results cast by the trained models open a new window in viticulture and
wine industry, specially due to its portable and non-destructive nature, allowing the fast and
in-field discrimination of a high number of grapevine varieties.
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3.2 Machine learning for grapevine phenotyping un-
der field conditions from a handheld spectrom-
eter

Demonstrated the effectiveness of handheld NIR spectroscopy, the next pub-
lished work was focused on its use for the non-destructive, fast grapevine
phenotyping by ML techniques, specifically, for varietal classification or vine-
yard water status assessment from a single spectral signal. Plant water status
monitoring has been always carried out using time-consuming, destructive
methods, that carry limitations. The combination of NIR spectroscopy with
different ML techniques was the goal of the experiments published in the fol-
lowing article. Classification results showed precise validation values, while
water status regression models also yielded accurate predictions. These re-
sults show the great strength of portable NIR spectroscopy for the phenotyp-
ing of two important vineyard features from the same spectral measurement,
for a fast, in-field vineyard monitoring.

Overcome challenges

• The in-field use of portable spectroscopy for two different grapevine
phenotyping tasks.

• To predict the plant water status in the vineyard using NIR spec-
troscopy.

• To develop complex ML models using ensemble algorithms.
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Abstract: Plant phenotyping is a very important topic in agriculture. In this context, data mining
strategies may be applied to agricultural data retrieved with new non-invasive devices, with the
aim of yielding useful, reliable and objective information. This work presents some applications of
machine learning algorithms along with in-field acquired NIR spectral data for plant phenotyping in
viticulture, specifically for grapevine variety discrimination and assessment of plant water status.
Support vector machine (SVM), rotation forests and M5 trees models were built using NIR spectra
acquired in the field directly on the adaxial side of grapevine leaves, with a non-invasive portable
spectrophotometer working in the spectral range between 1600 and 2400 nm. The ν-SVM algorithm
was used for the training of a model for varietal classification. The classifiers’ performance for the
10 varieties reached, for cross- and external validations, the 88.7% and 92.5% marks, respectively.
For water stress assessment, the models developed using the absorbance spectra of six varieties
yielded the same determination coefficient for both cross- and external validations (R2 = 0.84; RMSEs
of 0.164 and 0.165 MPa, respectively). Furthermore, a variety-specific model trained only with
samples of Tempranillo from two different vintages yielded R2 = 0.76 and RMSE of 0.16 MPa for
cross-validation and R2 = 0.79, RMSE of 0.17 MPa for external validation. These results show the
power of the combined use of data mining and non-invasive NIR sensing for in-field grapevine
phenotyping and their usefulness for the wine industry and precision viticulture implementations.

Keywords: variety classification; plant water status; non-destructive; SVM; rotation forest; regression
tree; stem water potential

1. Introduction

In the context of the current worldwide industrial demand of quality and efficiency in crop
and food production, the importance of phenotyping arises every day. Plant phenotyping refers to a
quantitative description of the plant’s physiological, biochemical and morphological properties, among
others [1]. It consists of the identification of effects on the phenotype as a result of genotype differences
and the environmental conditions to which a plant has been exposed [2]. The development of new
usable technologies and its direct availability have driven the latest plant phenotyping approaches
that have emerged and have already been applied in several environments [3]. These technologies
have enabled the performance of phenotyping tasks with reduced time and monetary costs (much
sought after by the industrial actors) and remain under the focus of researchers from different currents
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of investigation, trying especially to provide realistic, applicable and suitable solutions. Proximal
sensing approaches, such as spectroscopy sensors or hyperspectral imaging, have arisen in the last
few years as fast, non-destructive resources for the gathering of crop spectral information that could
characterize concrete phenotyping traits, providing the in-field methods with a high relevance due to
their desirable capability of providing in situ results.

Viticulture has benefited from these results of recent research that have developed methods and
procedures for several vine- and wine-related problems using near-infrared (NIR) spectroscopy. NIR
spectroscopy is a potent technology widely used in several agricultural areas due to its non-destructive
nature and multi-parametric capabilities [4]. Spectroscopic sensors have been proven to be fast for
the real-time assessment of several grapevine-related traits, such as the grape composition [5], the
grapevine petiole nutrient concentration assessment [6] or the identification of grape berry sunburn
symptoms [7]. Therefore, the possibility of the use of NIR technology for grapevine phenotyping
arises as an attractive and promising tool for precision viticulture, especially when taking into
account the fact that this technique is able to characterize more than one parameter using the same
spectral measurement.

NIR devices are able to acquire large amounts of spectral data, making it necessary to manage
them in efficient and automatic ways. Data mining has become one of the most valuable research
fields in the latest few years due to its knowledge discovery power, direct applicability in several
areas and, especially, its proven effectiveness in those problems where it is applied. Data mining
through, among others, machine learning techniques have provided procedures for both descriptive
(characterizations of the properties of the data) and predictive (learning and induction of the data for
forecasting) tasks [8,9]. Some of the most widespread applications of predictive techniques are decision
trees [10], decision forests [11] and, particularly, artificial neural networks (ANNs) [12] and support
vector machines (SVMs) [13], employed in several research areas, such as medicine [14], business and
industry [15] or biology [16]. Support vector machines [13,17] are supervised learning methods used
for classification and regression through the nonlinear mapping of the input data. SVMs transform
the original dataset into a higher dimension using a kernel function and find an optimal separating
hyperplane, the best one that maximally separates the samples. Rotation forests [18] are machine
learning ensemble methods that make use of several classification trees (hence the name) to build a
meta-classifier. A rotation forest can be used both for classification or regression, depending on the
kind of tree-based algorithm used. A robust regression tree is the M5 learner [19], which, although
not as familiar as other estimation methods in spectroscopy, like partial least squares (PLS) [20], has
demonstrated robustness and efficiency in other applications, such as pan evaporation prediction [21],
low-flow forecasting modeling [22] or the water level-discharge relationship [23].

Two important grapevine phenotyping topics are varietal discrimination and water status
assessment, tasks addressed in the literature and where spectroscopy especially has played a significant
part in the last few years. Current varietal discrimination methods have some lack of aspects that are
relevant for an industrial point of view, e.g., their need for a highly trained expert or their destructive
nature [24]. Water status assessment especially suffers from this last issue, as well as its time and
labor-consuming nature, along with the lower representative capacity (limited number of samples
measured) derived from it [25]. Grapevine varietal discrimination using spectroscopic data has been
recently attempted by hyperspectral imaging under laboratory conditions [24]. Both in-lab or in-field
water status assessment via spectroscopy have also been aimed at, attending to several plant water
condition indicators, such as stem water potential [26,27], leaf water potential [26,28,29] or leaf stomatal
conductance [26]. It is worth highlighting that each and every one of the mentioned studies has one
common factor: the use of partial PLS as the model training algorithm. PLS is a widespread statistical
technique commonly used in spectroscopy for the regression of chemometric parameters. Qualitative
prediction (e.g., discrimination among discrete classes) can also be achieved using PLS (as in [30],
where a binary classification is translated into a regression of two natural numbers) or via a purest
discrete classification method, like partial least squares discriminant analysis (PLS-DA) [31]. Still,
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discrimination models built with PLS-based approaches have not yielded remarkable results when
taking into account a considerably large amount of classes. Hence, the attractive attempt to apply
less often used data mining techniques for the modeling of NIR spectra, thus making it possible to
carry fast, in-field solutions for these two grapevine phenotyping approaches into commercial and
industrial demands.

The goal of this study was to evaluate the combined use of different data mining techniques along
with a non-destructive NIR portable sensor for the in-field grapevine phenotyping of two concrete
traits: the variety classification and the estimation of the plant water status.

2. Experimental Section

2.1. Experimental Layout, Acquisition of NIR Spectra and Reference Measurements

Two experiments regarding grapevine varietal classification and plant water status were conducted.
Both experiments were carried out during late August and early September 2012 in a vineyard

located in Vergalijo, Navarra, Spain (latitude 42◦27’45.96” N, longitude 1◦48’13.42” W, altitude
325 m). Vines of different varieties were planted in 2009 and trained to a vertical shoot-positioned
trellis system at 2 × 1 m inter- and intra-row distances, with a north-south row orientation.

For both experiments, spectra acquisition was performed in the field with an integrated portable
NIR spectral analyzer (microPHAZIRTM, Thermo Fisher Scientific Inc., Waltham, MA, USA) operating
in the range of 1600 to 2400 nm with a step of 8.7 nm (a total of 100 data points per spectrum). All
spectra were returned by the device in absorbance mode and in this form were used for analysis.

For the grapevine varietal classification, 10 varieties were used: Cabernet Sauvignon, Caladoc,
Carmenere, White Grenache, Pedro Ximenez, Pinot Noir, Tempranillo, Treixadura, Viognier and Viura.
For each variety, 10 vines and two adult leaves per vine were selected from the mid-upper part of
the shoot (Nodes 6 to 12) for the measurement of its spectrum on the adaxial side, making up a total
of 20 leaves per variety. Five spectra per leaf (from different positions of the surface) were taken,
and their average was considered the final spectrum of that leaf. Therefore, a total of 200 leaves
(10 varieties, 20 leaves per variety) were used, and the name of the corresponding variety was linked
to each measurement for the training of the varietal classification model.

For the assessment of the grapevine water status, measurements were carried out in six varieties
during two days: Godello, Grenache, Pedro Ximenez (29 August 2012; vapor pressure deficit:
0.87 kPa; average temperature: 21.7 ◦C; average relative humidity: 68%), Carmenere, Marselan
and Tempranillo (5 September 2012; vapor pressure deficit: 0.89 kPa; average temperature: 19.8 ◦C;
average relative humidity: 62%). As in the varietal discrimination experiment, 10 vines and two adult
leaves per vine were selected from the mid-upper part of the shoot (Nodes 6 to 12) for each variety. A
total of 120 leaves (6 varieties, 20 leaves per variety) were measured, thus for the training of the water
status assessment model. Spectra acquisition was done on the adaxial side of the leaves. Afterwards,
the midday stem water potential ψstem (14:00, solar noon) of each leaf was measured as the reference
method of water stress [32]. Stem water potential was determined using a Scholander pressure bomb
(Model 600, PMS Instruments Co., New York, NY, USA). The selected leaves were driven into dark
adaptation by covering them with aluminum foil bags one hour before the ψstem measurement.

In order to test the robustness of the algorithms, a second model for water status assessment was
developed involving samples of a given variety (to analyze the ψstem prediction capability within one
variety) acquired at different seasons and vineyards (to test the prediction capability with samples at
different phenological stages). Thirty-six leaf spectral measurements of Tempranillo were acquired
in 12 August 2015 in a vineyard located in Tudelilla, La Rioja (42◦18’17.9208”, −2◦7’15.8376”; vapor
pressure deficit: 1.74 kPa; average temperature: 26.7 ◦C; average relative humidity: 53%) using the
same procedure as in 2012. A new variety-specific dataset for Tempranillo was built up merging these
36 samples and the 20 samples of Tempranillo taken in 2012, making up a total of 56 samples.
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For both variety discrimination and water status assessment, the optical window of the NIR
device was fully covered and vinyl gloves were used when taking the measurements in order to avoid
contamination from external light and pollutants.

2.2. Spectra Pre-Processing and Data Mining Algorithms

2.2.1. Pre-Processing

An outlier detection analysis was performed before any other spectral treatment. It consisted of
the following procedure: at measurement time, the acquired spectrum was compared by the sensor
with a previously taken grapevine leaf’s spectrum signature and labeled according to whether the
signal was from a leaf or not. All spectra that did not belong to a grapevine leaf were treated as outliers
and thus removed.

Scatter correction and spectral derivative were applied to the raw spectra, in order to diminish the
physical variability between samples because of scatter and to remove both additive and multiplicative
effects in the spectra, respectively [33]. Standard normal variate (SNV) followed by de-trending [34,35]
was used as a scatter correction method. Afterwards, a Savitzky–Golay smoothing and derivative
process [36] was applied with a window size of five and a second-degree derivative.

2.2.2. Data Mining Algorithms

Due to the different nature of the phenotyping features addressed in this work, distinct data
mining algorithms for classification and regression were applied for grapevine varietal discrimination
and water status assessment, respectively.

Varietal Discrimination

For grapevine varietal discrimination, SVMs were used. The ν-SVM algorithm [37] was used in
this study, implemented in LIBSVM [38], the post-processed spectra data points, linked with its variety
label (the class), being the input of the algorithm. A second-degree polynomial kernel and a ν value of
0.1 were set as the parameters of the algorithm.

The classifiers evaluation was performed attending not only to the confusion matrix, but also to a
deeper analysis involving the true and false positive rates, precision values and receiver operating
characteristic (ROC) curves’ area (area under the curve, AUC). The true positive rate refers to the
proportion of samples that were discriminated as a specific class among all samples, which truly
corresponded to that class (it is similar to the correctly classified percentage divided by 100). The
false positive rate is the proportion of samples that were classified as a specific class, but belonged to a
different one, among all examples that were not of that class. The precision represents the proportion
of the samples that were correctly classified in their class among all those that were classified as that
given class. The AUC is the measure of the area that lies under the ROC curve. An ROC curve is a
graphic representation of true positive versus false positive rates by varying a given threshold. ROC
curves’ AUC is a common metric for the evaluation of a classifier. A perfect classifier would achieve
an AUC of 1, while a system that classifies instances in a random way would obtain a 0.5 value.

Water Status Assessment

To address the grapevine water status assessment, regression with rotation forest and M5 trees
was applied. The spectral data points were used as the input of the algorithm and each sample’s ψstem

measurement as the value to predict. Weka software, Version 3.6, [39] was used for the development of
the regression models.

Algorithm Validation

For the assessment of the algorithms’ results, calibration, cross-validation and external testing
were carried out. For each one of the experiments, its dataset was divided into two subsets, training
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and test, comprising 80% and 20% of the original samples, respectively. The test set was never used for
the training of any of the models. In the calibration assessment, the models were developed using the
training set and validated with the same one. In the cross-validation, a k-fold method was performed
upon the training dataset with a k value of 5 (in order to maintain the 80:20 ratio, obtaining five
executions where, in each one of them, the model is trained with 80% of the samples and evaluated
testing the remaining 20%). Finally, the prediction results were obtained via an external validation,
training and testing the models with the training and test datasets, respectively. The test set was
obtained in a stratified way (e.g., the same number of samples for each grapevine variety was selected).
For the varietal classification, 160 and 40 samples were assigned to the training and test datasets,
respectively. For the water status assessment, the multi-variety models’ datasets contained 96 and
24 instances, respectively, while the Tempranillo-specific models’ datasets involved 45 samples for the
training subset and 11 samples for the test subset.

Figure 1 shows a diagram of the datasets and the different calibration and validation processes
used in both experiments.

VARIETAL
CLASSIFICATION

WATER STATUS
ASSESSMENT

Figure 1. Diagram of the datasets used in both experiments and the different calibration and
validation processes.

3. Results

3.1. Grapevine Varietal Discrimination

The spectral outlier analysis performed before the development of the models resulted in the
removal of one sample of White Grenache due to spectral mismeasurement. One hundred percent
of correctly classified samples were obtained in the calibration of the SVM classifier trained with the
training dataset, reaching perfect scores in the confusion matrix (data not shown). Table 1 presents the
confusion matrix from the 5-fold cross-validation of the SVM classifier trained with the training dataset.
One hundred forty-one samples out of 159 were successfully discriminated (88.7%). The confusion
matrix shows that the Cabernet Sauvignon variety obtained a perfect score in its discrimination, while
all other varieties were above the 80% mark, excluding the Viognier variety, which obtained a score of
75% (12 out of 16 correctly discriminated samples).
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Table 1. Confusion matrix of grapevine varietal classification using support vector machines and a
5-fold cross-validation. The diagonal of the matrix corresponds to the number of samples that were
properly classified. The last column displays, for each variety, the correctly classified percentage
(n = 159).

Predicted Variety
CS CL CR WG PX PN TE TR VO VU %

Actual variety

CS 16 0 0 0 0 0 0 0 0 0 100.0
CL 0 15 0 0 0 0 0 0 1 0 93.8
CR 1 0 15 0 0 0 0 0 0 0 93.8
WG 0 0 0 12 0 0 1 0 2 0 80.0
PX 0 1 0 0 13 0 0 0 1 1 81.3
PN 0 0 0 1 0 14 0 0 0 1 87.5
TE 0 0 0 0 0 1 15 0 0 0 93.8
TR 0 0 1 0 0 1 0 14 0 0 87.5
VO 0 1 0 0 2 0 1 0 12 0 75.0
VU 0 0 0 0 1 0 0 0 0 15 93.8

CS: Cabernet Sauvignon; CL: Caladoc; CR: Carmenere; WG: White Grenache; PX: Pedro Ximenez; PN: Pinot
Noir; TE: Tempranillo; TR: Treixadura; VO: Viognier; VU: Viura.

Table 2. Detailed accuracy by class of the grapevine varietal classification using support vector
machines and a 5-fold cross-validation (n = 159).

Class True Positive Rate False Positive Rate Precision AUC
Cabernet Sauvignon (CS) 1.000 0.007 0.941 0.997
Caladoc (CL) 0.938 0.014 0.882 0.997
Carmenere (CR) 0.938 0.007 0.938 0.998
White Grenache (WG) 0.800 0.007 0.923 0.985
Pedro Ximenez (PX) 0.813 0.021 0.813 0.980
Pinot Noir (PN) 0.875 0.014 0.875 0.976
Tempranillo (TE) 0.938 0.014 0.882 0.997
Treixadura (TR) 0.875 0.000 1.000 0.999
Viognier (VO) 0.750 0.028 0.750 0.992
Viura (VU) 0.938 0.014 0.882 0.992
Weighted average 0.887 0.013 0.888 0.991

AUC: area under the receiver operating characteristic (ROC) curve.

Table 2 shows a detailed accuracy analysis by class for the SVM classifier in the cross-validation
process. Similar to the confusion matrix’s correctly discriminated percentage (Table 1), one class
obtained the highest value for the true positive rate (Cabernet Sauvignon). Nevertheless, due to a
sample of the Carmenere class incorrectly assigned to the Cabernet Sauvignon class, the precision
value of this variety did not reach the maximum. Additionally, although the Treixadura variety did
not obtain a perfect true positive score, the fact that no other instance was classified as that variety
(Table 1) led to a perfect precision mark for this variety class. The average AUC yielded by the
cross-validation was 0.991, moving between 0.976 and 0.999 (achieved by the Treixadura variety) for
class-specific values.

Table 3 shows the confusion matrix from the external validation of the SVM classifier, where
the model was trained using 159 samples and validated with the prediction of 40 external ones. The
average correctly discriminated percentage was slightly higher than that of the 5-fold cross-validation,
reaching the 92.5% mark, where 37 out of 40 instances were properly classified. Seven varieties
obtained 100% correctly classified samples, while Pinot Noir, Tempranillo and Viognier had one
misclassified sample, dropping their percentage to 75%.
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Table 3. Confusion matrix of grapevine varietal classification using support vector machines and an
external validation of 40 samples. The diagonal of the matrix corresponds to the number of samples that
were properly classified. The last column displays, for each variety, the correctly classified percentage
(n = 40).

Predicted Variety
CS CL CR WG PX PN TE TR VO VU %

Actual variety

CS 4 0 0 0 0 0 0 0 0 0 100.0
CL 0 4 0 0 0 0 0 0 0 0 100.0
CR 0 0 4 0 0 0 0 0 0 0 100.0
WG 0 0 0 4 0 0 0 0 0 0 100.0
PX 0 0 0 0 4 0 0 0 0 0 100.0
PN 0 0 0 0 0 3 0 0 0 1 75.0
TE 0 0 0 0 0 1 3 0 0 0 75.0
TR 0 0 0 0 0 0 0 4 0 0 100.0
VO 0 0 0 1 0 0 0 0 3 0 75.0
VU 0 0 0 0 0 0 0 0 0 4 100.0

CS: Cabernet Sauvignon; CL: Caladoc; CR: Carmenere; WG: White Grenache; PX: Pedro Ximenez; PN: Pinot
Noir; TE: Tempranillo; TR: Treixadura; VO: Viognier; VU: Viura.

The detailed accuracy per class for the external validation is displayed in Table 4. Confirming the
results in the confusion matrix of Table 3, seven varieties obtained a value of one in the true positive
rate, but two of them—White Grenache and Viura—did not achieve a perfect score, because some
samples were misclassified as those varieties. It is remarkable that two classes that obtained a precision
value of one (Tempranillo and Viognier) did not reach a full true positive rate, meaning that all samples
that were classified as Tempranillo and Viognier were in effect leaves of those varieties. According to
the AUC values, eight out of 10 classes yielded the perfect score, increasing the average AUC for all of
the classes to the 0.997 mark.

Table 4. Detailed accuracy by class of the grapevine varietal classification using support vector
machines and an external validation of 40 samples (n = 40).

Class True Positive Rate False Positive rate Precision AUC
Cabernet Sauvignon (CS) 1.000 0.000 1.000 1.000
Caladoc (CL) 1.000 0.000 1.000 1.000
Carmenere (CR) 1.000 0.000 1.000 1.000
White Grenache (WG) 1.000 0.028 0.800 0.993
Pedro Ximenez (PX) 1.000 0.000 1.000 1.000
Pinot Noir (PN) 0.750 0.028 0.750 0.972
Tempranillo (TE) 0.750 0.000 1.000 1.000
Treixadura (TR) 1.000 0.000 1.000 1.000
Viognier (VO) 0.750 0.000 1.000 1.000
Viura (VU) 1.000 0.028 0.800 1.000
Weighted average 0.925 0.008 0.935 0.997

AUC: area under the receiver operating characteristic (ROC) curve.

3.2. Assessment of Grapevine Water Status

3.2.1. Multi-Variety Model

The spectral outlier analysis tagged one sample of Godello and another of Grenache as
mismeasured spectra, so both were removed before the development of the regression model. The
ranges of ψstem per variety are shown in Table 5. It can be observed that Cermenere and Tempranillo
were the most water stressed varieties, while Pedro Ximenez and Godello experienced no water
scarcity. Grenache and Marselan exhibited a similar ψstem range, indicative of an incipient moderate
water stem.
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Table 5. Stem water potential (ψstem) ranges per variety.

ψstem
Variety

Godello Pedro Ximenez Grenache Carmenere Tempranillo Marselan

Min −0.90 −0.65 −1.15 −1.45 −1.85 −1.02
Max −0.62 −0.42 −0.85 −1.10 −1.62 −0.85

Table 6 shows the statistical summary for the ψstem values of the sampled population and the
result of the calibration, cross- and external validations of the stem water potential estimation using a
rotation forest and M5 trees.

Table 6. Statistic overview and results of the ψstem (MPa) estimation using a rotation forest and
M5 trees.

Statistics

Rotation Forest and M5 Trees

Calibration
(n = 94)

5-Fold
Cross-Validation

(n = 94)

External
Validation

(n = 24)

n Min Max Mean SD R2 RMSE R2 RMSE R2 RMSE

118 −1.85 −0.42 −1.03 0.396 0.97 0.083 0.84 0.164 0.84 0.165

n: number of samples; Min: minimum; Max: maximum; SD: standard deviation; RMSE: root-mean-square error in MPa.

The determination coefficient (R2) and root-mean-square error (RMSE) of calibration were 0.97
and 0.083, respectively. For both validation processes, these values were R2 = 0.84, RMSE: 0.164, for the
cross-validation (having a training dataset with 94 samples) and R2 = 0.84, RMSE: 0.165, for external
validation (with a test dataset having 24 samples).

The regression plots for cross- and external validation models are displayed in Figure 2, along
with the prediction bands at a 95% of confidence. To perform a deeper analysis of the predicted
outcomes, a manual clustering into four groups was performed for the samples according to the
absolute error value |ε| = measured ψstem − predicted ψstem: minimal error (|ε| < 0.1). low error
(0.1 ≤ |ε| < 0.2), moderate error (0.2 ≤ |ε| < 0.4) and high error (|ε| ≥ 0.4). For the cross-validation
(Figure 2a), 40 samples obtained a minimal error (42.6% of the samples), 34 a low error (36.2%), 18 a
moderate error (19.1%) and 2 a high error (2.1%). In the external validation (Figure 2b), 16 samples
obtained a minimal error (66.7%), 5 a low error (20.8%), 2 a moderate error (8.3%) and 1 a high error
(4.2%). Two samples for the cross-validation (Figure 2a) and another one for the external validation
(Figure 2a) were present in the regression models, samples that obtained an absolute error value greater
than 0.4 MPa. In both plots, these high error samples were driven by the divergence of the regression
line from the 1:1 line. Further, the samples with the minimal and low error values did considerably fit
better to the diagonal line 1:1 than the high error samples. The prediction bands at a 95% confidence
only excluded a few samples in both cases. For the cross-validation (Figure 2a), four samples lied out
of the precision bands, meaning that 95.7% of the samples were inside both bands. For the external
validation results (Figure 2b), 95.8% of the samples lied between the 95% confidence bands, while only
one sample was kept out.
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Figure 2. Regression plot for ψstem estimation using a Rotation Forest and M5 trees with a 5-fold cross
(a) and external (b) validations. Prediction confidence bands are shown at a 95% level (dashed lines).
Solid line represents the regression line and dotted line refers to the 1:1 line. Each points’ color and
shape refers to its absolute error value |ε| (the absolute value of the difference between the actual value
and the predicted one) in MPa: green  : |ε| < 0.1, minimal error; olive �: 0.1 ≤ |ε| < 0.2, low error;
orange �: 0.2 ≤ |ε| < 0.4, moderate error; red L: |ε| ≥ 0.4, high error.

3.2.2. Variety-Specific Multi-Vineyard Model

Table 7 shows the statistical summary for the ψstem values of the sampled population from the
variety-specific model (involving samples of Tempranillo taken both in 2012 and 2015 from two
different vineyards) and the result of the calibration, cross- and external validations of the stem water
potential estimation using a rotation forest and M5 trees.

Table 7. Statistic overview and results of the ψstem (MPa) estimation for the variety-specific model
(Tempranillo) using a rotation forest and M5 trees.

Statistics

Rotation Forest and M5 Trees
Calibration

(n = 45)
5-Fold

Cross-Validation
(n = 45)

External
Validation

(n = 11)
n Min Max Mean SD R2 RMSE R2 RMSE R2 RMSE
56 −1.85 −0.8 −1.447 0.314 0.92 0.098 0.76 0.159 0.79 0.168

n: number of samples; Min: minimum; Max: maximum; SD: standard deviation; RMSE: root-mean-square error in MPa.
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The range of ψstem, in Table 7, illustrates a population of grapevines involving plants of very
different water status, from no stressed plants (ψstem = −0.8 MPa) to severely stressed plants
(ψstem = −1.85 MPa), the mean being ψstem (−1.45 MPa), indicative of high water stress.

The determination coefficient R2 and RMSE of calibration were 0.92 and 0.098, respectively,
while for both validation processes, these values were R2 = 0.76, RMSE: 0.159 (cross-validation), and
R2 = 0.79, RMSE: 0.168 (external validation).
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Figure 3. Regression plot for ψstem estimation of the variety-specific model (Tempranillo) using a
Rotation Forest and M5 trees with a 5-fold cross (a) and external (b) validations. Prediction confidence
bands are shown at a 95% level (dashed lines). Solid line represents the regression line and dotted line
refers to the 1:1 line. Each points’ color and shape refers to its absolute error value |ε| (the absolute
value of the difference between the actual value and the predicted one) in MPa: green  : |ε| < 0.1,
minimal error; olive �: 0.1 ≤ |ε| < 0.2, low error; orange �: 0.2 ≤ |ε| < 0.4, moderate error; red L:
|ε| ≥ 0.4, high error.

Figure 3 shows the regression plots for the two validation processes and their prediction bands at
a 95% of confidence. In the 5-fold cross-validation (Figure 3a), 25 samples obtained a minimal error
value, 10 a low error and 10 a moderate one. Five out of 45 samples lied out the prediction bands,
keeping 88.9% of the samples inside them. In Figure 3b (external validation), all of the samples were
inside the confidence bands, where 5 of them obtained a minimal error value, 4 a low one and 2 a
moderate error value.
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4. Discussion

In this work, the appraisal of two important phenotyping features in agriculture—grapevine
varietal discrimination and water status assessment—has been aimed at from an innovative approach
that successfully combines an in-field measurement, using a proximal and non-invasive sensor,
with different data mining processing methods. The results obtained have displayed the potential
of effectively applying data mining techniques upon the spectral information retrieved from a
non-destructive and proximal NIR sensor for grapevine plant phenotyping of two key traits.

Regarding variety classification, most of the widely-used methods for grapevine varietal
discrimination have traditionally been either destructive or time-consuming, like classic
ampelometry [40] (which is subjected to expert visual description, but still prone to a considerable
level of bias due to its human nature), DNA analysis [41] or wet chemistry techniques [42] (carried out
by trained people and through destructive methods).

In our work, the 10-class variety classification models using SVMs from non-invasively acquired
leaf spectra have yielded 88.7% and 92.5 values of correctly discriminated samples for cross- and
external validations, respectively. These high percentages allow one to be reasonably optimistic about
the suitability of SVMs for the grapevine varietal classification. These correctly-classified percentages
are also supported by the high scores of additional classification statistics, such as the average precision
(obtaining in several cases a perfect score and high mean values) and AUCs (an average of 0.991 and
0.997 for cross- and external validation, respectively).

Only very recently, grapevine varietal classification has been attempted by hyperspectral
imaging [24] and an NIR portable spectrophotometer [43]. In [24], hyperspectral imaging in the
range between 280 nm and 1028 nm was used along with PLS for the classification of 300 leaves from
three different varieties (Tempranillo, Grenache and Cabernet Sauvignon), under laboratory conditions.
The cross-validation method used (Monte Carlo) yielded more than 92% of correctly classified samples
in all cases. The outcomes reached in the present work, even when a large number of varieties was
selected for the training, highlights the accuracy shown by data mining techniques for the same
goal, particularly when the spectra were collected in the field and in a non-destructive way, different
from [24], where a hyperspectral camera was used indoors under controlled illumination conditions.
In [43], the authors used a portable NIR spectrophotometer of the same range as the one in this work
for the acquisition of leaves’ spectra. Artificial neural networks (ANNs) and sequential minimal
optimization for the training of SVMs were tested as classification algorithms for the development of
two grapevine discrimination models for two different approaches: a site-specific model for 20 varieties
(yielding 87.25% of correctly classified samples, using ANNs) and a global model using six varieties
from different vineyards and seasons (obtaining 77.08%, again with ANNs). The higher percentages
obtained in the present study could be explained by the selected SVM algorithm, ν-SVM algorithm,
versus sequential minimal optimization, as well as the reduced number of classes.

Varietal discrimination using NIR spectroscopy has also been recently performed for waxy
corn seed [44] using SVM and in strawberry [45] and plum [46] using PLS-D. From these works,
it is remarkable that a purer data mining technique, SVMs [44], behaved better than the statistical
method PLS, commonly used in spectroscopy and chemometrics, confirming the high suitability and
adaptability of machine learning approaches for any kind of problem and specifically NIR spectroscopy.
Five- and four-class varietal discrimination using PLS-DA was achieved in [45,46] obtaining 69% and
up to 96.5% values of correctly classified samples, respectively, presenting lower than and similar
accuracies as in the present grapevine varietal discrimination, but taking into account that the number
of varieties was reduced by half.

The proven flexibility, generalization capability and accuracy in so many dissimilar fields for
discrimination issues given by data mining techniques, and confirmed by the results of the grapevine
varietal classification via SVMs, demonstrates how well the numerous data mining algorithms fit in
classification problems, specifically when working with NIR spectroscopy from proximal sensors.
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Current water status assessment methods are mostly destructive, labor intensive, thus expensive,
and, in many cases, only capable of being implemented in a limited number of samples, jeopardizing
their representativeness and not suitable for characterizing the spatial variability of a vineyard’s water
status. Therefore, new non-invasive and fast approaches are needed.

For the regression of ψstem conducted through rotation forests and M5 trees, the calibration R2

and RMSE reached the 0.97 and 0.083 values, respectively, while both validation results were virtually
identical (R2 = 0.84; RMSE = 0.165). A relatively large divergence between calibration and validation
results was found, where the latter’s RMSE nearly doubled that of the calibration. Still, this difference of
0.082 MPa, although, as said, being relatively wide, remains small in absolute terms, particularly when
compared to the standard deviation of the population ψstem values (0.396), that is almost five-times
larger. The high score of the determination coefficient of calibration is an aspect that could be generally
expected when using data mining and machine learning techniques. Moreover, the training of decision
trees is very sensitive to the examples used as input, having a high importance for the algorithm (that
tries to extract underlying rules and correlations between the independent and dependent variables),
so high results are likely to be obtained when testing with the same set that the algorithm was trained.
The use of the calibration results should be carefully treated when applying data mining algorithms,
and they should be contrasted with values that came from validation processes. However, the high
results obtained for both cross- and external validations concede a considerable level of confidence in
the suppression of any overfitting problem.

Additionally, the good outcomes obtained from the variety-specific model (although slightly
lower than the multi-varietal one) show the robustness of the application of data mining algorithms
for the accurate prediction of ψstem of samples from different seasons and locations when properly
training the models with both kinds of examples. This could enable affirming that support vector
machines are able to assess the grapevine water status within one variety and to discard the variety as
a driving factor in good water status prediction. Still, should the variety-specific model have a higher
number of samples and/or a wider range in the water status reference parameter (ψstem), the model’s
performance would have probably yielded higher R2 and RMSE values. It should not be omitted that
the Tempranillo dataset, compared to the multi-varietal one, contained a lower number of samples
(56 vs. 120) and a narrower ψstem range ([−1.85, −0.8] vs. [−1.85, −0.42], MPa).

Stem water potential, as an indicator of plant water stress, has been previously predicted by
NIR-based models developed using PLS regression [26–29], returning determination coefficients
between 0.71 and 0.85 (and error values around 0.1 and 0.2 MPa). The in-field multi-varietal
study performed in the current work, using rotation forests and M5 trees, returned a similar
determination coefficient for cross- and external validations, highlighting that a considerably higher
number of varieties was used. The fact that both studies ([26] and this one) clearly resulted in
high ψstem correlations from two different and scarcely overlapped NIR regions may drive one to
conclude the adequate suitability of NIR spectral measurements from non-destructive sensors in water
status prediction.

Models for the grapevine ψlea f [28] and ψstem in olive trees [27] were developed by VIS/NIR
spectroscopy. These works have in common the use of PLS as a model training method, returning
moderated values of cross-validation correlation (R2 from 0.45 to 0.74) that are noticeably surpassed
by the results from the rotation forest and M5 trees models described in this work, allowing one to
confirm the effective application of data mining techniques to NIR spectral data for the estimation
of ψstem, hence the assessment of plant water status. Additionally, it must be highlighted that the
spectral range used in this study (1600 to 2400 nm) completely covered the absorption band (O–H)
corresponding to the water vibrational band (1940 nm) [47], which could be one of the reasons for
the high sensitivity in ψstem changes; thus, a good predictive model could be obtained from this
spectral range.

To the best of our knowledge, scarce studies have made use of data mining algorithms for water
status assessment. In [48], the authors built an artificial neural network for the in-lab relative water
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content (RWC) estimation from grapevine leaf’s hyperspectral imaging working in the range from
900 nm to 1700 nm. The authors asserted that the generated models (with average absolute error below
the 3% mark) were shown to be leaf side, varietal and even clone dependent. Although no direct
comparison can be made with the present work, because RWC was used as a water status indicator
instead of ψstem, both results have displayed the accuracy of the combination of NIR spectroscopy
along with data mining and machine learning techniques for the reliable assessment of plant, grapevine
specifically, water status.

The selection of a proper estimation method for a concrete algorithm and dataset is crucial
for the evaluation of the results. In multivariate chemometrics, a classic approach of performance
evaluation has been the dataset split into calibration (or training) and test partitions [49]. Although
the use of the same dataset for the training and testing is not generally recommended, because the
obtained results are overly optimistic [9], its value could be considered as an upper limit to what
may be expected in other settings (e.g., cross- and external validation). k-fold and leave-one-out
cross-validation methods [50] have been broadly extended in data mining and chemometrics. The
selection of k = 5 for the cross-validation in the present work, maintaining the 80:20 ratio as in
the external validation, can lead to a higher consistency and reliability on the obtained results in
both experiments.

It is also remarkable the duality brought by the spectral measurements obtained with the same
NIR sensor. The capability of effectively addressing these two grapevine phenotyping traits from a
single leaf spectral measurement along with its rapid, non-destructive and in-field nature makes the
almost direct implementation of a grapevine phenotyping system on an NIR device a reasonable goal
supported by the precision obtained in the developed models and the characterization of concrete and
sufficient sets of samples for the training.

5. Conclusions

Combining non-invasive sensors and data mining algorithms may be a powerful tool that could
allow one to perform grapevine phenotyping tasks and forward the results to the user directly in the
field. The proven good behavior of different data mining techniques along with the non-invasive,
fast and responsive nature of a portable NIR sensor for the in-field grapevine varietal classification
and water status assessment opens a way for the direct application of the models in embedded
portable systems.

The two phenotyping traits addressed in this study—grapevine discrimination and water status
assessment—deserve major attention in modern viticulture, as they are key factors in breeding, grape
quality production and sustainability. Their robust prediction from non-invasively acquired data is
expected to have a positive impact in precision viticulture and, extensively, several other agricultural
areas. These are very likely to benefit from the application of the results obtained by the prediction
models due to their almost direct application of the training process via data mining to a portable
NIR device.
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Chapter 4

Machine learning and thermal
imaging for vineyard water
status monitoring

As exposed in Section 3.2, vineyard water status assessment is an extremely
important aspect, especially in the current context of climate change. Many
works have been published demonstrating the utility of thermal imaging
for plant water status assessment, due to the physiological relation between
grapevine water stress and canopy temperature. Nevertheless, almost all
works published only report correlations between thermal indices and water
status values that, although high, are hardly applicable for the prediction of
new samples. ML algorithms are ideal for the training of prediction models
from a specific set of variables, like data gathered from a thermal camera. In
the following paper, the objective was the use of ML and data captured with a
thermal camera mounted on an ATV for vineyard water status monitoring,
developing a new ML prediction model using measurements from several
phenological stages within the same campaign. Good prediction models were
obtained from the experiments, while the best statistical values were yielded
by models that did not need the measurement of reference temperatures.
Therefore, thermal indices were not needed to obtain acceptable prediction
models. The outcomes obtained with the combination of thermal images and
ML expose this methodology as a promising alternative for the on-the-go
water status monitoring of great areas under field conditions, demonstrating
its utility for many industrial applications.

Overcome challenges

• To exploit the combination of ML techniques for the development of
several water status prediction models, instead of simple correlations
between thermal indices and water stress indicators.
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• To use a thermal camera in a moving ground vehicle under field con-
ditions for plant water assessment.

• To use ML modelling with data from seven weeks to perform prediction
tasks at any time within a campaign.
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Abstract
The high impact of irrigation in crop quality and yield in grapevinemakes the development of
plant water status monitoring systems an essential issue in the context of sustainable viticul-
ture. This study presents an on-the-go approach for the estimation of vineyard water status
using thermal imaging and machine learning. The experiments were conducted during
seven different weeks from July to September in season 2016. A thermal camera was
embedded on an all-terrain vehicle moving at 5 km/h to take on-the-go thermal images of
the vineyard canopy at 1.2 m of distance and 1.0 m from the ground. The two sides of the
canopy were measured for the development of side-specific and global models. Stem water
potential was acquired and used as reference method. Additionally, reference temperatures
Tdry and Twet were determined for the calculation of two thermal indices: the crop water
stress index (CWSI) and the Jones index (Ig). Prediction models were built with and without
considering the reference temperatures as input of the training algorithms. When using the
reference temperatures, the best models casted determination coefficients R2 of 0.61 and
0.58 for cross validation and prediction (RMSE values of 0.190 MPa and 0.204 MPa),
respectively. Nevertheless, when the reference temperatures were not considered in the
training of the models, their performance statistics responded in the same way, returning R2

values up to 0.62 and 0.65 for cross validation and prediction (RMSE values of 0.190 MPa
and 0.184 MPa), respectively. The outcomes provided by the machine learning algorithms
support the use of thermal imaging for fast, reliable estimation of a vineyard water status,
even suppressing the necessity of supervised acquisition of reference temperatures. The
new developed on-the-go method can be very useful in the grape and wine industry for
assessing and mapping vineyard water status.

Introduction
Water utilization has become a critical issue in sustainable agriculture, and because of reasons
such as water scarcity and climate change, its management is increasingly required to be more
accurate. In viticulture, irrigation has a direct impact on vine yield and grape quality, so the
implementation of precision watering systems could be considered as useful tools for the
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precise application of water regimes based on water status reports of the vineyard plot [1]. Sev-
eral authors have studied different physiological parameters for the monitoring of the plant
water status [2±4], and the direct measurement of the plant has been widely put into action for
the measurement of the water status, instead of moisture measurements of the soil [5]. A key
factor in the precise water management in vineyards may lie on the development of reliable
tools for assessing the vine water status and its spatial variation directly in the field. This goal is
virtually unreachable by the classical measurement devices due to their labor demanding,
time-consuming nature and necessity of expert and trained personnel.

Infrared thermography is a technique based on the relationship between leaf stomatal clo-
sure or aperture and its surface temperature [6]. When leaf transpires, water is lost through
stomata and leaf temperature decreases. However, if transpiration stops, leaf temperature
increases as no heat dissipation is ocurring. Likewise, the temperature of the canopy has been
correlated with specific plant physiological parameters, such as the stomatal conductance (gs)
[5, 7±9]. Technological advances in thermal imaging have delivered new opportunities in the
acquisition of plant thermal responses to water status variations [8, 10±12]. In this fashion,
thermal cameras are very prone to be used as portable devices for the estimation of plant water
status and to help in the set up of irrigation schedules [10, 13, 14]. Still, further advancement
based on canopy temperature has led to the development of thermal indices, such as the crop
water stress index (CWSI) [15] and the conductance index (Ig) [6], thatÐby previously taking
reference temperaturesÐseek for the diminishing of environmental variations that could affect
the canopy temperature. As a result, several studies exploring semi-supervised irrigation
scheduling system based on thermal information have been recently published [16±18]. Never-
theless, in the majority of the cases, the computation of thermal indices relies on mandatory
acquisitions of edge temperatures, typically Twet and Tdry for minimal and maximal tempera-
tures, respectively, with the need of inducing extreme temperatures using adapted leaves or
special devices [9]. This hinders the development of fully automated thermal methods for the
estimation of plant water status. Hence, the overcome of the measurement of reference tem-
peratures would stand for a substantial improvement in this matter in order to automate this
technology in industrial applications.

In-field, non-invasive assessment of grapevine water status and its variability within the
vineyard would be a valuable tool in precision viticulture. Correlation analyses between ther-
mal indices and physiological parameters such as gs and stem water potential Cstem have been
carried out in the field using non-destructive portable sensors in commercial vineyards bring-
ing compelling correlation levels [19, 20]. The main advantages these methods brought were
the easy implementation and processing and immediate response. Nonetheless, it is needed for
the device to be constantly managed by active human resources and it is only possible to make
measurements on individual specific spots, factors that would make it difficult to expand the
measurements for the fast monitoring of a whole vineyard. This main pitfall has been partially
resolved by aerial thermal imaging [21±24], that successfully covered large extensions of vine-
yard. However, in the majority of cases the aerial point of view comes with a reduced spatial
resolution in the measurements that shrink several meters of the canopy into a few number of
pixels, losing a definite amount of information. This brings the opportunity of developing
thermal systems for the grapevine water status estimation capable of gathering detailed canopy
informationÐfrom a close lateral point of viewÐand to cover large areas for the monitoring
of a vineyard variabilityÐusing stop-and-go and on-the-go approaches, as already attempted
by other works [25, 26]. Moreover, the removal of constant human supervision would allow
the possibility of mounting automatic acquisition systems in on-work agricultural vehicles.

The demonstrated high level of performance machine learning has provided in a vast num-
ber of problems from very different nature presents it as one of the most important algorithm-
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provider research field. Regardless the area, if the problem can be properly modeled into an
adequate input, machine learning algorithms could be very suitable for the discovering of
underlying rules and latent connections between the provided information, for the categoriza-
tion into specific identities (classification) or the estimation of real numbers (regression) [27,
28]. In recent years, several viticulture-related problems have been addressed using data min-
ing and machine learning approaches [29±33]. Rotation forests [34] are prediction algorithms
based on ensemble learning methods that can perform classification or regression tasks
depending on the tree-based algorithm provided. Rotation forests build several trees after
making use of principal component analysis to the randomly split input attributes.

The goal of this study was to develop a new on-the-go system involving thermal imaging
and machine learning to assess the vineyard water status. Specifically, the objective was not
only to analyze and find high levels of correlations between thermal information and physio-
logical water status parameters, but to provide full trained, robust prediction models. These
are fed with a huge amount of data from a wide period of time that covered an entire cam-
paign, and are capable to return reliable estimations for the characterization of a whole vine-
yard plot and to be used in the irrigation decision making process.

Materials andmethods
Experimental layout
The experiment was performed throughout seven weeks from early-July to early-September,
2016, in a 5 ha commercial vineyard of Tempranillo variety (Vitis vinifera L.) under permission
of its owner. The vineyard plot was situated in Tudelilla, La Rioja, Spain (Lat. 42Ê18' 18.26º,
Long. -2Ê7' 14.15º, Alt. 515 m). Grapevines, planted in 2002, were grafted on rootstock R-110
and trained to a vertically shoot-positioned (VSP) trellis system, having a North-South row
orientation at 2.60 × 1.20 meters inter and intra row distances. To induce an extensive level of
variability in the sample units and to obtain better trained prediction models, three different
water regimes were deployed in a randomized complete block design [35] with four blocks
(Fig 1). The three water treatments were:

· T0, full irrigation: two parallel water pipelines providing 6 L/h.

· T1, moderate irrigation: one water pipeline providing 3 L/h.

· T2, no irrigation: the plants were not irrigated during the whole experiment.

Irrigation was scheduled to be applied two hours per day, five days a week.
Each treatment involved four replications, therefore 12 different combinations of treatment

and replication were present in the vineyard and located in three different parallel, equally-dis-
tanced vine rows. For each replication, comprising 25 plants (around 25 m of length), only the
15 middle ones were the ones in which the measurements were taken. The first and last groups
of five plants were discarded to avoid edge effect (Fig 2A).

Acquisition of thermal images
On-the-go thermal measurements were acquired using a thermal camera (FLIR A35, FLIR1

Systems, Inc., Bilerica, MA, USA) that was mounted in the front part of an all-terrain vehicle
at a height from the floor of 1 m (Fig 2B) and connected to an industrial computer. The indi-
vidual in this manuscript has given written informed consent (as outlined in PLOS consent
form) to publish these case details. The camera was focused to the left at a distance from the
canopy of approximately 1.2 m and with 48Ê× 39Êhorizontal and vertical field of views (FOV,

Vineyard water status assessment using on-the-go thermal imaging andmachine learning
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Fig 2A), respectively. This distance and FOVs provided images covering canopy scenes of 1.07
m horizontally and 0.85 m vertically, approximately. Acquisition of the thermal images, at 60
frames per seconds (FPS), was performed in both east and west sides of the canopy at an aver-
age speed of 5 km/h at solar noon (between 14:00 and 15:00 hours, local time).

Thermal images processing
At a recording framerate of 60 FPS, a treatment replication's length of 25 m and an average
speed of 5 km/h, the number of thermal frames captured per each replication was approximately

Fig 1. Experimental layout and water treatment replications. Each one of the four horizontal blocks comprised the
three different water regimes applied. T0: full irrigation treatment. T1: moderate irrigation treatment. T2: no irrigation
treatment.

https://doi.org/10.1371/journal.pone.0192037.g001
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1080. In order to reduce the amount of redundant information, not every frame from the
recordings was used in the processing of the imagesÐonly those frames having no overlapping
were thus used for the calculation of different thermal statistics. If a treatment block of 25 m
length is covered by 1080 frames, and each frame displayed approximately a horizontal length
of 1.07 m, one out of 46 consecutive frames would have no overlapping. Thus, each treatment
replication consisted of roughly 23 frames, and only the 14 middle ones were used since they
comprised the 15 middle plants of the replication (the plants in which the water status measure-
ments were taken).

To support the thermal images segmentation and develop different canopy temperature
indices, Twet and Tdry reference temperatures were acquired using an evaposensor (Skye
Instruments, Llandrindod Wells, UK) having two artificial leaves: a dry one (dry reference)
and another one covered with a black cotton wick and receiving continuous water absorption
for the wet reference [36]. Reference temperatures were acquired once per each measurement
day.

To remove the influence of the sky, soil and fruiting zone in the top and bottom part of the
thermal images respectively, the middle section of the thermal images was selected, named as
area of interest, and used for the calculation of the different statistics and thermal indices
(Fig 3). The area of interest had a size of 320 × 135 pixels, from a total image resolution of
320 × 256 pixels.

The average temperature (Tcanopy), the median and the standard deviation were the statis-
tics extracted from the thermal frames. Additionally, two thermal indices, the crop water stress
index (CWSI) and the conductance index (Ig) were calculated, using the reference tempera-
tures, as follows, according to [37] and [6], respectively:

CWSI ¼
Tcanopy � Twet

Tdry � Twet
ð1Þ

Ig ¼
Tdry � Tcanopy

Tcanopy � Twet
ð2Þ

Fig 2. Detail from a treatment replication and thermal system (A) and picture of the actual on-the-go system (B). The thermal camera was
connected to an industrial computer and controlled by the driver.

https://doi.org/10.1371/journal.pone.0192037.g002
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FLIR ResearchIR 4.40 (FLIR1 Systems, Inc., Billerica, MA, USA) and MATLAB 8.5.0 (The
MathWorks Inc., Natick, MA, USA) were used for the processing of the thermal images.

Measurement of grapevine water status
Plant water status measurements were also performed at solar noon (between 14:00 and 15:00
hours, local time) simultaneously to thermal image acquisition. During the whole campaign,
the air temperature, relative humidity (for vapor pressure deficit (VPD) calculation [38]) and
incoming solar irradiance were additionally recorded in the same hours from a weather station
located in the vineyard. The reference method used for the measurement of the plant water
status was the midday stem water potential Cstem. As shown in Fig 2A, a random vine was
selected from each group of five plants (of the 15 middle ones in each replication) and its
Cstem was measured upon a leaf taken from the central part of the canopy. A Scholander pres-
sure bomb (Model 600, PMS, Instruments Co., Albany, NY, USA) was used for the stem water
potential determination [39]. The selected leaves were covered with aluminum foil bags to
drive them into dark adaptation one hour before the measurements.

With 12 different replications and three selected plants per block, a total of 36 measure-
ments of the plant water status were performed per day. Therefore, since the study was

Fig 3. Canopy thermal image taken on-the-go at 5 km/h. The middle section between the green bars was defined as the area of interest. Total image
resolution was 320 × 256 pixels, while the area of interest had a size of 320 × 135 pixels. The temperature values are expressed in degrees Celsius.

https://doi.org/10.1371/journal.pone.0192037.g003
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conducted across seven different weeks, and one day per week, a total of 252 water status mea-
surements were used for the training of the prediction models.

Machine learning algorithms and model development
Two different approaches were attempted for the extraction of the statistics that trained the
prediction models: the use of Tdry and Twet reference values for segmentation of the area of
interest (the removal of all temperatures outside the Twet and Tdry range) and calculation of
thermal indices; and the extraction of the same statistics without segmentation and avoiding
the calculation of the thermal indices.

A combination of rotation forests and decision trees (reduced error pruning tree, Weka's
REPTree implementation [40]) was used for the development of the regression models. Two
kind of models were built:

· Using Tdry and Twet reference temperatures and thermal indices, with the following input
attributes: air temperature, average canopy temperature, median of the canopy temperature,
standard deviation of the canopy temperature, CWSI and Ig.

· Avoiding the use of reference temperatures and thermal indices, with the following input
attributes: air temperature, average canopy temperature, median of the canopy temperature
and standard deviation of the canopy temperature.

In both cases, the Cstem was used as the plant water status reference value to predict.
Side-specific models for east and west sides of the canopy were individually built, each one

including 252 samples. Additionally, a global dataset comprising samples from both east and
west sides of the canopy was also generated. This global set was intended to be as similarly rep-
resented as those datasets from east and west side, therefore 126 samples from the east dataset
and the same amount from the west dataset were picked to build a global set with 252 samples.
This selection was pseudorandomly performed, taking the same amount of samples per canopy
side, water regime and measurement day, in order to build a model from a well-represented
input data.

In order to provide a complete set of performance statistics, calibration, 10-fold cross-vali-
dation and external prediction were carried out. The datasets were not completely used for the
training of the regression models, but they were split in a 80-20 ratio, labeling the two origi-
nated subsets as train (80% of the original dataset) and test (the remaining 20%) sets. This divi-
sion was not totally random. Samples representing the whole range of the stem water potential
values obtained were extracted to the test set, also taking the same number of samples per mea-
surement day. The calibration and cross validation were performed using the train set, while
the prediction was achieved by training the model with the train set and predicting the test set.

Results
Vineyard status overview
A wide range of stem water potential values was covered throughout the whole experiment,
obtaining Cstem values at midday of the 252 samples from -2.05 MPaÐmeaning high level of
water stressÐto -0.40 MPaÐno stress. The mean and standard deviation Cstem values of -1.23
MPa and 0.298 MPa confirmed a high level of variability desirable for the development of rep-
resentative plant water status prediction models.

Table 1 shows an overview by days in terms of VPD, incoming solar irradiance, canopy
temperatures recorded by thermal imaging and Cstem values.

Vineyard water status assessment using on-the-go thermal imaging andmachine learning
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VPD values ranged from 1.11 kPa (July 13th) to 3.43 kPa (August 23rd) while irradiance
values were found to be above 800 W/m2 for most of the measuring dates, with the exception
of the 13th and 20th of July, and the 8th of September. The values observed in the last date can
be explained by the generalized meteorological behavior in the end of the season, as a decrease
of irradiance and temperatures is prone to be found. Canopy temperatures were generally dis-
tinguishable between treatments, presenting slightly higher values in the west side. Addition-
ally, the water status values presented an increasing trend throughout the summer as a
consequence of season progress and water treatments' effectiveness.

Statistically significant differences between the temperatures of the irrigation treatments
were not found for either east or west sides in the first three days, while they were present in
the last two ones. In July 28th, the east side of the canopy casted significant differences, while
the west side did not, but the opposite occurred in August 11th. In the case of Cstem, all the
dates presented statistically significant differences between the most extreme irrigation treat-
ments (T0 and T2) while for the last two dates all three treatments were significantly different.

Vineyard water status prediction models using Tdry and Twet reference
temperatures
The performance statistics of the prediction models trained with thermal indices are summa-
rized in Table 2 for east and west models, and additionally for the global model trained with
samples from both sides of the canopy.

For the models built with the thermal information from the east side of the canopy, deter-
mination coefficients R2 of 0.83 and 0.61 were obtained for calibration and cross validation,
casting RMSE values of 0.139 MPa and 0.190 MPa, respectively (Table 2). The performance of

Table 1. Mean values according to measurement days for vapor pressure deficit (VPD), incoming solar irradiance, canopy temperatures (by canopy side and irriga-
tion treatment) and stem water potential (Cstem) determined at solar noon, between 14:00 and 15:00.N = 12 per irrigation treatment for the statistical tests of canopy
temperatures and Cstem (MPa).

Jul, 6 Jul, 13 Jul, 20 Jul, 28 Aug, 11 Aug, 23 Sep, 8
VPD (kPa) 2.71 1.11 2.49 3.22 1.77 3.43 1.28

Irradiance (W/m2) 890.95 631.82 348.61 895.11 841.89 827.01 291.30
East temp. (ÊC) T0 20.7 15.6 24.6 23.5 A 17.2 25.4 A 19.4 A

T1 22.2 16.3 25.1 24.9 B 16.8 27.1 B 19.6 A
T2 22.1 16.4 24.8 23.2 A 16.7 27.9 B 20.5 B

n.s. n.s. n.s. �� n.s. ��� ���

West temp. (ÊC) T0 22.5 16.0 24.7 25.2 16.8 A 26.8 A 20.4 A
T1 23.8 16.9 25.2 27.0 17.4 B 28.5 B 20.5 A
T2 22.6 16.1 25.4 25.5 18.0 C 29.1 B 21.1 B

n.s. n.s. n.s. n.s. ��� ��� ��

Cstem (MPa) T0 -0.97 A -1.04 A -1.00 A -1.18 A -1.19 A -1.13 A -0.56 A
T1 -1.15 B -1.28 B -1.25 B -1.26 AB -1.47 B -1.41 B -0.96 B
T2 -1.14 B -1.22 B -1.31 B -1.31 B -1.52 B -1.65 C -1.76 C

��� ��� ��� �� ��� ��� ���

Jul: July. Aug: August. Sep: September.
Dissimilar capital case letters within columns represent statistically different means among east and west temperatures and Cstem, using Tukey's range test at a
significance level p = 0.05.
n.s.: not significant (p� 0.05);
��: p< 0.01;
���: p< 0.001.

https://doi.org/10.1371/journal.pone.0192037.t001
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the prediction stage did not lied far from that of the cross validation, producing a R2 value of
0.57 and a RMSE of 0.206 MPa.

The results given by the west side models remained fairly similar, with a calibration R2 of
0.81 (RMSE of 0.148 MPa) and a cross validation R2 of 0.57 (RMSE of 0.202 MPa), being the
latter slightly lower than that from the east side models. The prediction result was 0.58 for the
determination coefficient with a root mean square error of 0.204 MPa (Table 2).

The performance achieved by the global models was lower in all the stages: calibration,
cross validation and prediction, although in this last case the determination coefficient was
closer to the ones from east and west models, as opposed to calibration and cross validation.
Nevertheless, the RMSE values of cross validation and prediction remained very similar: 0.237
and 0.233 MPa respectively.

The regression plots for the cross validation and prediction results for east and west models
are displayed in Fig 4. In Fig 4A, a high distribution along the measured Cstem values was
achieved, and few samples fell outside the 95% prediction bands. The regression plot of the
cross validation from the west side (Fig 4C) followed the same trend as well, having a good dis-
tribution throughout the whole water potential range. Additionally, the higher spreading level
of the samples from the 1:1 line in Fig 4C drove the increased RMSE value of the west side
model presented in Table 2.

The prediction plots for both east and west sides (Fig 4) displayed a virtually identical
behavior, in terms of determination coefficient and root mean square errors. In Fig 4B, all the
samples but one were located within the 95% prediction bands, and a wide coverage through-
out the Cstem range was scored (values from -2.1 to -0.4 MPa). Regarding the prediction plot
considering the west side of the canopy, two samples lied outside the prediction bands, but a
very similar fit around the regression line was achieved by the samples, casting a coincident R2

value (Table 2).
A statistical t-test analysis of the slopes showed no significant differences between the equa-

tions of each side for both cross validation (p = 0.47) and prediction (p = 0.86).

Vineyard water status prediction models without Tdry and Twet reference
temperatures
Table 3 shows the statistics obtained by the stem water potential models that were trained
without the reference temperatures.

The determination coefficients R2 obtained for the calibration process were above the 0.80
mark (0.83 for east and 0.81 for west), with RMSEs of 0.136 and 0.142 MPa, respectively. R2

values around 0.60 were achieved in the cross validation, with very similar RMSE values
around 0.190 MPa for both canopy sides. The prediction results were slightly better than those

Table 2. Performance statistics for the stem water potential (Cstem) prediction models using Tdry and Twet reference temperatures.

N = 200 N = 50
Calibration Cross validation Prediction

Canopy side R2 RMSE R2 RMSE R2 RMSE
East 0.83 0.139 0.61 0.190 0.57 0.206
West 0.81 0.148 0.57 0.202 0.58 0.204
Global 0.73 0.182 0.39 0.237 0.52 0.233

A 10-fold cross validation was used.
N: number of samples. RMSE: root mean square error (MPa). East: dataset having all the samples from the east side of the canopy. West: dataset having all the samples
from the west side of the canopy. Global: dataset having non-repeated samples from both east and west sides of the canopy.

https://doi.org/10.1371/journal.pone.0192037.t002
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Fig 4. Regression plots for the water status prediction models with Tdry and Twet reference temperatures. Plots from east (A, B) and
west (C, D) sides of the canopy and from the global model trained with data from both sides (E, F); and for cross validation (A, C, E) and
prediction (B, D, F). The dashed lines are the prediction confidence bands at 95%. The dotted lines represent the 1:1 line with slope 1.

https://doi.org/10.1371/journal.pone.0192037.g004
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of cross validation, in terms of R2 and RMSE: 0.60, 0.191 MPa (east side) and 0.65, 0.184 MPa
(west side, Table 3). The performance statistics obtained from the global models were lower
than those from the site-specific datasets.

Comparing these outcomes with those from the models trained with the reference tempera-
tures, the statistics were very similar in the calibration and cross validation, but the models
without Tdry and Twet brought better R2 and RMSE values in the prediction. In the calibration,
both kind of models achieved the same R2 values (and almost identical RMSEs), while in the
cross validation the best statistics came from the west side models, being the opposite in the
models with reference temperatures (Table 2). Still, these values followed the same overall
trend.

The regression plots for the cross validation and prediction models trained without Tdry

and Twet reference temperatures (for east, west and both sides) are grouped in Fig 5.
The cross validation outcomes covered a high Cstem range, with samples along the whole

range (Fig 5A and 5C) and similar distribution around the 1:1 line. This resulted in similar
RMSE values (Table 3). Additionally, the R2 values were nor far from each other, driven by the
almost identical trend from the regression lines (as no significant differences were found
between the slopes of both sides' equations, for both cross validationÐ p = 0.93Ðand predic-
tionÐ p = 0.89).

In Fig 5B and 5D, displaying the regression plots for the prediction results, higher determi-
nation coefficients can be found comparing to those from the prediction outcomes of the mod-
els trained with the reference temperatures (Fig 4B and 4D). Nevertheless, contrary to the
latter, in this case the best results came from the west side of the canopy instead of the east
side, with a higher fit to the regression line (meaning a higher R2 value) and a lower RMSE
value (meaning a lower average distance of the samples from the 1:1 line).

Discussion
The results presented in this study highlight the actual prospect of obtaining on-the-go, fast
assessment of a vineyard's water status directly on the field using proximal thermal imaging
and machine learning algorithms. On-the-go assessment has a big advantages vs. other devel-
oped techniques for plant water status assessment or direct measurement of plant-based refer-
ence parameters [4], that are slower, manually controlled and with a lower capability of
automatically characterizing a whole vineyard plot. It has also been proven that machine learn-
ing models, trained with data from seven days along a whole campaign, were capable of yield-
ing plant water status prediction without the need of taking previous reference temperatures.
This would allow a fastest, direct usage of this solution for in-field scenarios. The outcomes
obtained using the models trained with reference temperatures demonstrated that canopy

Table 3. Performance statistics for the stem water potential (Cstem) prediction models without the use of Tdry and Twet reference temperatures.

N = 200 N = 50
Calibration Cross validation Prediction

Canopy side R2 RMSE R2 RMSE R2 RMSE
East 0.83 0.136 0.59 0.195 0.60 0.191
West 0.81 0.142 0.62 0.190 0.65 0.184
Global 0.75 0.170 0.45 0.224 0.56 0.216

A 10-fold cross validation was used.
N: number of samples. RMSE: root mean square error (MPa). East: dataset having all the samples from the east side of the canopy. West: dataset having all the samples
from the west side of the canopy. Global: dataset having non-repeated samples from both east and west sides of the canopy.

https://doi.org/10.1371/journal.pone.0192037.t003
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Fig 5. Regression plots for the water status prediction models without thermal indices. Plots from east (A, B) and west (C, D) sides of
the canopy and from the global model trained with data from both sides (E, F); and for cross validation (A, C, E) and prediction (B, D, F).
The dashed lines are the prediction confidence bands at 95%. The dotted lines represent the 1:1 line with slope 1.

https://doi.org/10.1371/journal.pone.0192037.g005
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temperatures, along with Tdry and Twet and weather parameters (such as the air temperature),
would be very suitable for the useful prediction of the vineyard water status. Furthermore, the
fact that similar results in cross validation (and even better outcomes in prediction) were
achieved by the models trained without reference temperatures, brought high robustness into
the models. This could allow to affirm that their implementation in industry and commercial
environments is greatly feasible, also removing the necessity of the reference temperature mea-
surement phaseÐand the calculation of thermal indices.

The relation between environmental status and canopy thermal response was clearly dis-
played throughout the whole experiment. Incoming solar irradiance casted high values most
of the days, positively correlating with the high temperatures of the canopy in both sides. Nev-
ertheless, two specific dates did not follow this trend, as in July 20th the canopy temperatures
were particularly high for the relatively low irradiance received, and in August 11th the tem-
peratures stayed very low regardless of the high amount of solar irradiance captured. This
behavior seemed to be in contradiction with the expected response, but it is clearly explained
by the VPD factor. As previously observed by other authors [11, 22, 41±43], VPD has a strong
relationship with stomatal conductance and canopy temperature. In the case of July 20th, in
spite of the low irradiance value, the increase of leaf temperature was mainly driven by the
increase of VPD. Likewise, when the VPD, hence the evaporative demand increases, so does
the actual rate of water vapor exchange through the leaf stomata. In this situation, the plant
regulates this water loss by closing their stomata, leading to leaf temperature increase. On
the other hand, in August 11th the low VPD value may not have led to stomata closure, hence
leaf evapotranspiration was not impaired, and let the plants to cool down their leaf surface.
Reported in other works [11, 41, 44], it exists a general correlation between VPD and water sta-
tus, as higher VPD values limit the plants' capability of a proper transpiration, although in the
case of the present study the plant water status is mainly steered by the applied water regimes
rather than the VPD. All these physiological behaviors confirm the usefulness of measuring
the canopy temperature to assess the water status of a vineyard.

A good effectiveness was accomplished in canopy side-specific models. The vineyard plot
in which the experiment was conducted had a North-South row orientation, soÐat measure-
ment time (between 14:00 and 15:00, local time)Ðthe east side was shaded but with a whole
morning of direct sunlight accumulated, while the west side started an afternoon of illumina-
tion from the sun. The row orientation does have a direct impact upon the canopy temperature
and, thus, upon the plant response and acclimation [45]. Therefore, the development of two
distinct models for each side of the canopy was a necessary step to allow the machine learning
algorithms to adapt their rule extraction ability to the specific canopy thermal information that
was present in each face. The fact that the global model provided poorer results could be
explained by an assumed confused information given to the algorithms, as the plant thermal
response would be very different for each side of the canopy. Still, the side-specific models
were able to successfully develop adequate prediction rules for the two datasets and to cast sim-
ilar performance statistics, demonstrating the possibility of a fairly acceptable water status esti-
mation of a vineyard if the thermal measurements are taken from the same side of the canopy.
In a real scenario, the development and implementation of two canopy side-specific models
could be totally feasible and their application would only depend on the side of the input data.

The use of machine learning approaches for the grapevine water status estimation proved
to be effective. It is visible the high suitability of machine learning algorithms for the solution
of specific problemsÐgrapevine water status predictionÐbut from very different kinds of
inputÐspectral information and thermal imaging. In the case of the latter, the variables used
(thermal and weather data) were selected in order to provide a decent amount of information
from a thermal image. Although small differences would be present between two of the
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attributes used, mean and median of the canopy temperature, they could be sufficient for the
algorithms to extract informative rules from them. Moreover, the use of principal component
analysis by rotation forests would deal with potential cases of collinearity. Additionally, a desir-
able behavior was obtained from the machine learning models. The fact that considerably
similar results were casted by cross validation and prediction increases the reliability of the
techniques in their appraisal ability.

The relationship between leaf temperatureÐtaken directly in the fieldÐand water status of
different kind of crops has been widely studied in diverse research works. For example, air-
borne thermal imaging has been used for the mapping of cotton water status (represented by
the leaf water potential Cleaf) [17], and the same authors attempted the estimation of water sta-
tus of the same kind of crop using ground-based thermal images [16], obtaining good results.
Although the models presented in the present study returned lower performance statistics
than those from [16, 17], the prediction capability of the machine learning algorithms was
greatly supported by the high amount of data and its wide variability. The input samples
employed in the training of the models (from very different phenological stages) were able to
develop a whole prediction model capable of making Cstem predictions in different moments
within a wide time period. In grapevine, as in the present work, CWSI along with air tempera-
ture were used for the mapping of the water status (Cleaf) of a Pinot noir vineyard [21]. The
same authors also studied the effect of different phenological stages in the evolution of the
CWSI in grapevines [22]. In [46], the vineyard water status variability was monitored using
aerial thermal and multispectral imagery. These studies, providing R2 values from 0.50 to 0.73,
along with the results presented in the current research work, confirm the strong correlation
of the canopy temperature with the grapevine water status, being possible to find underlying
rules for the appraisal of an important reference value, such as water potential. The results
reported by other authors from aerial thermal imaging of grapevines, as in [23, 24] or [46] also
opened the possibility of estimate water status using thermal information from a lateral view,
that would allow to gather a richer amount of information than that from zenith point of view.
Some comparable works based on lateral thermal imaging but in static and manual approaches
can be found in the literature. In [19] and [20], the authors used thermal imaging laterally
acquired in a commercial vineyard to correlate the thermal indices CWSI and Ig with different
plant water status reference parameters, with R2 values up to 0.78 and 0.70. The results from
the on-the-go estimation of the grapevine water status represent an improvement not only
regarding the possibility of quickly assessing and mapping a whole vineyard plot (instead of
taking isolated thermal measurements), but also presenting a robust model trained with a col-
lection of a high number of samples from different dates, and additionally removing the neces-
sity of acquiring reference temperatures, using only the data provided by the canopy and air
temperature.

The main pitfalls of other developed techniques plant water status assessment, such as the
necessity of supervised measurement or the hard adaptation for the characterization of a
whole vineyard plot makes on-the-go approaches a very suitable candidate for grapevine mon-
itoring. The on-the-go proposal detailed in this work opens a large number of new opportuni-
ties in the implementation of this technological solution for the estimation of grapevine water
status. Contrary to the developments that can be found in other related works, as in [19, 47,
48] or [49], involving manual and static measurements, the acquisition of thermal images
from a moving vehicle expandsÐin the context of precision viticultureÐthe possibility of
monitoring a whole vineyard plot in a faster and automated way. The delineation, for example,
of different zones with homogeneous irrigation regimes could be feasible, and it could save
higher amounts of water and money. Other plant water status estimation studies carried out
with thermal imaging made use of information from aerial sources ([16, 17, 20±24]). Still, the
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acquisition of canopy side-aimed data that covers a larger area may assure a higher robustness
in the given prediction. Additionally, the temporal flexibility of the approach from the present
work arises as an advantage vs. airborne solutions, due to the fact that aerial acquisitions are
very subjected to meteorological conditions and legal requirements. An on-the-go implemen-
tation of the proposal in the present work would be easily deployed directly in the field. A ther-
mal system could be installed in an agricultural vehicle (e.g. a tractor conducting different
viticulture operations), making constant measurements and giving real-time information to
the driver or the manager. This possibility of covering large areas of a vineyard also makes
available, jointly to an attached global positioning system, the creation of thermal-based maps
of the plot that could provide detailed information about the water status of the monitored
zones, making it an useful tool for irrigation scheduling in the decision-making process.

Conclusion
The present work introduced a new methodology for the on-the-go assessment of vineyard
water status using thermography and machine learning algorithms. The results obtained open
a way for the implementation of a vineyard water status appraisal system available to be set up
in a moving vehicle, given the fact that the use of data from a whole campaign for the training
of the models brought stronger reliability. Also, good prediction results has been achieved
without the need of reference temperatures, thus removing the requirement of the supervised
acquisition of these values. This advantage could clear new paths in sustainable viticulture,
making possible the deployment of solutions that could characterize in an automatic and con-
tinuous way a whole vineyard for a more accurate application of irrigation in viticulture, that
is a very needed requirement in the current context of climate change and water scarcity.
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Chapter 5

On-the-go hyperspectral
imaging and artificial
intelligence in digital
agriculture

As detailed in Section 1.3.3, HSI combines the potential of spectroscopy and
the large data aggregation capability inherent to digital image. There are
several published studies that make use of HSI for many applications in agri-
culture. Still, practically all of them have been developed under laboratory
conditions, thus limiting the strength of this technology to indoor conditions.

A considerable part of the efforts during the research and development
period from this PhD Thesis has been dedicated to overcome the challenge
of carrying a hyperspectral camera to the field for the on-the-go vineyard
monitoring, facing the new handicaps that this scenario carries, and design-
ing useful applications for DA. Additionally, advanced ML techniques have
been employed that, due to the large amount of data that hyperspectral im-
age generates, were very useful tools for the modelling of different kinds of
classifiers and regressors.

The works presented in this chapter are innovative due to the features
present in the developed experiments (design of on-the-go HSI systems),
also derived from collaboration with experts in robotics and HSI during my
internship at the Australian Centre for Field Robotics, The University of
Sydney, Australia.
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5.1 In-field classification of a large number of grapevine
varieties

As demonstrated in the published papers presented in Chapter 3, spec-
troscopy is an accurate technology for the task of grapevine varietal clas-
sification. The experiments developed in this paper went a step further than
the ones presented in Chapter 3. They were designed to develop, using
ANNs and SVMs, prediction models for 30 different international grapevine
varieties with HSI from a mobile ground vehicle. Additionally, several statis-
tical tests were conducted to compare the behaviour of each algorithm and
the influence of their parameters. The obtained results showed that both
algorithms were able to train models with a extremely high classification
ratio. In general, ANNs were significantly better than SVMs. The experi-
ments demonstrate that the powerful combination of on-the-go hyperspectral
imaging and ML allow the precise, in-field classification of a large number
of grapevine varieties, taking also into account that task monitoring can be
carried out at different phenological stages.

Overcome challenges

• To use a hyperspectral camera in a moving ground vehicle under field
conditions.

• To develop, using different ML algorithms, several classification models
from a great number of grapevine varieties.

• To design an automated system for the identification of pixels (spectra)
that belong to grapevine leaves.

• To use different parameter combinations in two ML techniques to
model the spectra information obtained from two different phenological
stages.
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Grapevine varietal classification is an important plant phenotyping issue for grape growing

and wine industry. This task has been achieved from destructive techniques like classic

ampelography and DNA analysis under laboratory conditions. This work displays a new

approach for the classification of a high number of grapevine (Vitis vinifera L.) varieties

under field conditions using on-the-go hyperspectral imaging and different machine

learning algorithms. On-the-go imaging was performed under natural illumination using a

hyperspectral camera mounted on an all-terrain vehicle at 5 km/h. Spectra were acquired

over two different leaf phenological stages on the canopy of 30 different varieties on

a commercial vineyard located in La Rioja, Spain. A total of 1,200 spectral samples

were generated. Support vector machines (SVM) and artificial neural networks (multilayer

perceptrons, MLP) were used for the development of a large number of models, testing

different algorithm parameters and spectral pre-processing techniques. Both classifiers

yielded notable performance values and were able to train models with recall F1 scores

and area under the receiver operating characteristic curve marks up to 0.99 for 5-fold

cross validation. Statistical analyses supported that the best SVM kernel was linear and

the best activation function for MLP was the hyperbolic tangent function. The prediction

performance for individual varieties of MLP ranged from 0.94 to 0.99, displaying low levels

of variability. In the case of SVM, slightly higher differences were obtained, ranging from

0.83 to 0.97 for individual varieties. These results support the possibility of deploying an

on-the-go hyperspectral imaging system in the field capable of successfully classifying

leaves from different grapevine varieties. This technology could thus be considered as a

new useful non-destructive tool for plant phenotyping under field conditions.

Keywords: MLP, plant phenotyping, discrimination, sensors, proximal sensing, remote sensing, non-invasive

sensors

1. INTRODUCTION

Plant phenotyping address the description of the plant’s anatomical, physiological and biochemical
properties (Walter et al., 2015). As grapevine growing and wine industry have a high economical
and social impact, the interest of plant phenotyping is increasing in this context. In practice,
however, phenotypes from controlled conditions rarely agree with those in f eld environments
(Nelissen et al., 2014; Poorter et al., 2016). For this reason, in f eld plant phenotyping has become
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a necessity, but it still remains as a diÿ cult task. The
development of new technologies and methodologies for the
precise phenotyping and monitoring of grapevines under f eld
conditions would def nitely improve grape quality (and, thus,
wine quality), a key factor for the industry.

Grapevine variety is a key feature of f nal product in terms
of price, cultivation, etc. (Clarke and Rand, 2015). In the
world, there exist several thousands of grapevine varieties,
and ampelography has been the classic approach for their
identif cation (Galet, 1979). Ampelography aims at extracting
morphological differences between the leaves and grape berries,
but it has always required specialized human resources. This
methodology has gradually made way to modern and more
precise identif cation approaches, such as wet chemistry (Altube
et al., 1991) or DNA analysis (Sefc et al., 2001; Borrego et al., 2002;
Pelsy et al., 2010). Nevertheless, the diÿ culty to fast and easily
apply these techniques and their destructive nature makes them
unable to be translated to a real time in-f eld application.

The advances in the research and development of applied
spectroscopy—which involves the interaction between radiation
and matter at specif c wavelengths—reveals this technology as
a serious candidate to address the varietal classif cation goal.
Likewise, many spectroscopic approaches have been developed
toward this objective in several crops, such as barley malt (Porker
et al., 2017), lotus seed (Guo et al., 2017b), pummelo (Li et al.,
2016), or strawberry (Sánchez et al., 2012). Even works on in-
f eld grapevine varietal classif cation using a near-infrared (NIR)
device can be found in the literature (Gutiérrez et al., 2015, 2016).
Hyperspectral imaging combines the potential of spectroscopy
and the additional information that a two-dimensional space
provides, and thus opens a new way to the development of
spectroscopic methodologies. Particularly, hyperspectral images
of grapevine leaves enable the development of varietal and
clone classif cation models, as demonstrated by previous works
(Diago et al., 2013; Fernandes et al., 2015). However, these
studies worked with a very limited number of classes (no
more than four), under laboratory conditions and required
sample preparation. These pitfalls raise the necessity of taking
a further step and deploying hyperspectral imaging directly in
the f eld, opening a new frontier for the on-the-go classif cation
of a large number of grapevine varieties, hence removing
the requirements of laboratory conditions and even sample
picking. This new application could be useful for commercial
vineyards, nurseries, appellation boards, etc. Some authors have
previously demonstrated the possibility of performing outdoor
hyperspectral imaging in several crops (Underwood et al., 2017;
Wendel and Underwood, 2017; Williams et al., 2017), and
this bolsters the development of new on-the-go hyperspectral
solutions for grapevine-related problems.

As exposed, hyperspectral imaging brings much richer data
in relation to quantity and quality, but this feature also carries
a big burden that needs to be handled: the huge amount of
data that hyperspectral acquisitions implies. For this reason,
eÿ cient and intelligent data analysis is an almost compelled
necessity. Machine learning provides numerous techniques for
predictive applications by learning and forecasting data (Han
et al., 2011; Witten et al., 2016), and it has been extensively used

in innumerable f elds. Two of the most reliable and adaptable
algorithms for the development of supervised classif cation
models are support vector machines (SVM) and artif cial neural
networks (ANN).

SVM are algorithms that are based on a kernel that translates
the input data into higher dimensional spaces (Capparuccia et al.,
1995). In these, SVM try to f nd hyperplanes that maximize the
distance to the nearest point (projected in the new dimensional
space) of any of the input classes. The adequate selection of a
kernel is crucial when applying SVM to a problem, as specif c
kernels can f t better than other depending on the data modeled.
SVM were originally conceived as binary classif ers, but multi-
label classif cation SVM can be developed by splitting the original
multi-class problem into several smaller binary classif cation
ones using approaches as one-versus-all (training one model
per class versus all the rest) or one-vs.-one (training one model
per class for each one of the remaining classes). Applications
based on SVM models can be widely found in plant science,
like nitrogen evaluation (Gao et al., 2017), characterization
of invasive grass distribution (Dronova et al., 2017) or seed
development genetics (Ni et al., 2016). ANN are a popular
machine learning approach extensively used for classif cation
and regression purposes. Originally suggested by McCulloch and
Pitts (1943), the modern concept of ANN was developed by
Werbos (1974). ANNs try to emulate the behavior of a biological
neural network, by deploying a net of basic interconnected
units (neurons) and arranging them into a set of discrete layers
(one-layer or multi-layer). In Rumelhart et al. (1986), error
backpropagation feature was introduced, a process that f nds
the gradients of the neurons’ weights to adjust them, from the
last layer to the f rst one. ANNs can also be found in multiple
applications for plant science, e.g., leaf area index calculation
(Yuan et al., 2017), rootstock genetics (Arab et al., 2017) or
disease detection (Pérez-Bueno et al., 2016). For this reason,
a deep analysis of how these algorithms and their multiple
parameter settings behave with hyperspectral data is desirable,
as they arise as powerful tools for the varietal classif cation
objective.

The objective of this study was to develop a new application
for the classif cation of a large number of grapevine (Vitis vinifera
L.) varieties using on-the-go hyperspectral imaging under f eld
conditions and machine learning algorithms.

2. MATERIALS AND METHODS

On-the-go hyperspectral imaging was performed in a commercial
vineyard on a moving vehicle under f eld conditions and natural
light, at two different phenological stages in a given season.
A large amount of parameter combinations for spectral pre-
processing and machine learning classif cation models were
tested and statistically analyzed to evaluate the inf uence of the
different parameters and obtain the best conf guration for the
machine learning classif ers.

2.1. Experimental Layout
The study was conducted in a 1.8 ha commercial vineyard
located in Logroño, La Rioja, Spain (Lat. 42◦ 2′′ 4.5′′′′, Long.
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-2◦ 30′′ 49.6′′′′ Alt. 484 m), during two different days with
clear weather corresponding to two different phenological stages
of season 2017: 10 August—1 week post-veraison, at stage
36 of the modif ed Eichhorn and Lorenz system (Coombe,
1995)—and 11 October—1 week post-harvest, at stage 41.
Grapevines (Vitis vinifera L.) were grafted on rootstock R-110
and trained to a vertically shoot-positioned trellis system. Plants
were planted in 2001 with a Northwest-Southeast orientation
at 3.00 × 1.20 m inter and intra row distances. Mechanical
tillage was applied for vineyard soil management. Thirty different
international grapevine varieties, uniformly irrigated across
the season, were used in this study. From these, 16 white
varieties were present: Baladí, Blanca Cayetana, Calagraño,
Catalán Blanco, Chardonnay, Chenin Blanc, Cigüente, Palomino,

FIGURE 1 | (A) On-the-go hyperspectral imaging on an all-terrain vehicle in a

vertically shoot positioned vineyard located in Logroño, La Rioja (Spain).

Spectral acquisition was performed on the sun-exposed canopy side at 5

km/h. (The authors declare that written and informed consent has been

obtained from the depicted individual in this image, for the publication of this

identifiable image). (B) Construction of a two-dimensional hyperspectral image

by push broom. The camera’s scanline, that was acquiring spectral

information from a vertical line over the vineyard canopy, was moved by the

motion of the all-terrain-vehicle. Thus, the composition of the image was

performed by this scanline dragging at constant speed.

Pardina, Parellada, Pedro Ximénez, Perruno Fino, Picapoll
Blanco, Pinot Blanc, Sauvignon, Semillón. The other 14 were
red varieties: Brancellao, Cabernet Franc, Cabernet Sauvignon,
Calop Negro, Carnelian, Centurion, Concord, Crujidera, Pinot
Noir, Rubired, Rufete, Sousón, Syrah, and Tempranillo. For each
variety, 10 plants (along 12 m) were imaged. The 30 different
varieties were randomly planted across the whole vineyard
plot.

2.2. On-The-Go Hyperspectral Imaging
The on-the-go acquisition of hyperspectral images was
performed using a Resonon Pika L VNIR hyperspectral
imaging camera (Resonon, Inc., Bozeman, MA, USA) mounted
on the front part of an all-terrain vehicle (ATV) (Trail Boss 330,
Polaris Industries, MN, USA), on a lateral point of view at 2.0 m
of distance (Figure 1A). The camera covered the spectral range
from 400 to 1,000 nm, with a spectral resolution of 2.1 nm (300
bands) and a spatial resolution of 900 pixels. Using an objective
lens with a focal length of 8 mm, the f eld of view (FOV) was
36.5◦, and casted a vertical recording line covering 1.32 m of the
northeast canopy side, only with the natural illumination from
the sun (between 10:00 and 12:00).

The camera conf guration was set up at 108 frames per
second (FPS) with integration time of 6.53 ms, to maximize
the trade-off between an acceptable image composition of the
plants and spectral quality (avoiding signal saturation). In
order to take into account the natural, variable illumination,
at the beginning of the hyperspectral recording, for each
variety, a Spectralon R© white reference was manually presented
to the camera and statically imaged. The dark current (that
corresponds to inherent electronic noise) was measured with
the camera lens covered. Afterwards, the 10 plants of that
specif c variety were measured at a constant speed of 5 km/h.
The horizontal movement from the ATV composed the whole
hyperspectral image by push broom scanning (Figure 1B). The
plants from each varietal recording comprised an average of
1,800 scanlines (columns in the hyperspectral image), 900
pixels each column. Therefore, each varietal hyperspectral
image was composed of, on average, 1,620,000 pixels (i.e.,
spectra).

All the raw information from the camera (acquired as light
intensity) was translated into ref ectance, using the following
equation:

R(d̄r , λ) =
G(d̄r , λ) − D(d̄r , λ)
W(d̄r , λ) − D(d̄r , λ)

(1)

where d̄r is a position, λ is a wavelength, G is the intensity of
the light ref ected by the target, W is the intensity of the light
coming from the white reference, and D is the dark current.
Afterwards, the absorbance (log 1/R) was calculated as the f nal
unit to be used in computation. From this absorbance spectra,
the f rst and last group of 25 bands were discarded to avoid the
noise commonly present in both spectral signal’s tails. Therefore,
each spectrum comprised a total of 250 bands.
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2.3. Building the Datasets
From the raw hyperspectral images, a semi-automatic dataset
building process programmed in Python 3.6.1 was performed
in two steps: the segmentation and f ltering of the leaf
spectra, and the generation of the samples for each grapevine
variety.

2.3.1. Segmentation and Filtering of Leaf Spectra
The following procedure was applied to each variety
hyperspectral image. From the n × m image (where m is
the number of columns and n the number of pixels in each
column), one manually selected average leaf spectrum was
extracted and used as signature spectrum (the pure reference
spectrum of a leaf of that image). Afterwards, for each column, all
the spectra corresponding to leaves were automatically selected
and averaged as described:

A Saviztky-Golay smoothing and derivative (Savitzky and
Golay, 1964) was applied to the leaf signature spectrum.
Afterwards, for each column, each one of its pixels were
picked and its spectrum in absorbance was extracted, applying
the same Savitzky-Golay smoothing and derivative. Then, the
correlation coeÿ cient between the pixel spectrum and the
signature spectrum was computed, and if the Pearson’s r
was greater than 0.90, the spectrum was therefore positively
identif ed as a leaf ’s spectrum and added into a selected
leaves set. After all the pixels in the column were tested, the
average spectrum from the selected leaves set was computed
and considered as the average spectrum from all the leaves
in that column. Figure 2 represents a visual summary of this
procedure.

After all the columns were processed,mmean spectra (one per
column) were extracted for each variety altogether. On average,
for all the varieties, the mean spectra was computed from 481
pixels (a 53.4% of the column pixels).

FIGURE 2 | Each m× n hyperspectral image was processed column by

column. For each column i, each pixel (spectrum) was compared with a

signature leaf spectrum. If a certain threshold of belonging was surpassed, the

pixel was marked as leaf pixel. Afterwards, all leaf pixels from the column i

were averaged.

2.3.2. Generation of the Dataset Samples
For each variety, the m mean leaf spectra were divided into
40 consecutive sets with a size of m/40 spectra. The average
spectra from those sets were obtained and, thus, 40 leaf spectra
per variety (four per plant) were f nally generated, following
previous methodologies by Gutiérrez et al. (2015, 2016). Having
30 varieties and two measurement days, a total of 2,400 samples
(80 per variety) were generated, each one obtained from the
averaging of approximately 21,500 spectra (86,000 leaf pixels per
plant).

2.4. Spectral Pre-processing and Machine
Learning Modeling
In the development of prediction models from spectral
information, the raw absorbance data is seldom used directly
as input. Spectral pre-processing is a common step that seeks
to remove most of the noise that is inherent to many spectral
acquisitions. As several algorithms and parameters can be
applied, and they noticeably affect the spectral shape, the
inf uence of two different pre-processing techniques were tested
in the training of the varietal classif cation models:

• Scatter correction. Sometimes, it is usual for spectral signal to
retain interferences of scatter. One of the techniques usually
applied for this correction is the combination of standard
normal variate (SNV) followed by a de-trending (Barnes et al.,
1989; Dhanoa et al., 1995). Nevertheless, there are situations in
which the application of scatter correction is not necessary, so
for this study it was tested the use of SNV + de-trending and
the complete omission of this scatter correction step.

• Smoothing fi tering. Savitzky-Golay f ltering along with a
derivative function (Savitzky and Golay, 1964) is commonly
used in spectroscopy, as they are able to remove noise from
external sources and to emphasize certain parts from the
original spectrum. The combination of two derivative orders
(f rst and second) and three different Savitzky-Golay window
sizes (5, 9, and 15) was tested.

Regarding machine learning modeling, two different
classif cation algorithms were tested:

• Support vector machines (SVM). SVMs are algorithms
based on kernels that transform the original data into high-
dimensional feature spaces (Capparuccia et al., 1995). The
parameters tested for SVM were: the penalty parameter C
(six different values: 0.01, 0.1, 1, 10, 100, and 1,000) and
three different kernels (linear, polynomial, and radial basis
function–RBF). A total of 18 parameter combinations were
thus generated. As SVM are binary classif cation algorithms,
a one-vs.-one approach was followed in this work to perform
multi-class classif cation Bishop (2006). This approach trains
n(n − 1)/2 binary models (where n is the number of classes),
one for each one of the two-classes combinations that can be
arranged. As in this case all the classes had the same number of
samples, no bias was introduced in the models, hence avoiding
over-estimation of a majority class.

• Multilayer perceptrons (MLP). MLPs are a kind of artif cial
neural networks (ANN) that consist of at least three layers
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of neurons and make use of backpropagation in the training
process (Hornik et al., 1989). The parameters tested for MLP
were: number of neurons in the hidden layer (t: the sum of the
number of attributes and classes. a: half the amount of t; i: the
number of attributes), activation function for the hidden layer
(logistic: logistic sigmoid function; tanh: hyperbolic tangent
function; relu: rectif ed linear unit function) and using or not
a warm start (reuse or reject previous solutions in the ANN
training process). The total number of combinations were also
18.

Each developed model was evaluated using a stratif ed k-fold
cross validation, with k = 5. In a k-fold cross validation, k
models are trained with k−1 folds and tested with the remaining
fold, rotating the latter until all of them have been used. The
average performance of the k models is thus considered as the
performance of the cross validation. Five replicates of 5-fold cross
validation were also carried out, each one of them with random
fold splits. In summary, having two options for scatter correction,
six combinations for smoothing f ltering, two algorithms, 18
parameter combinations for each one and f ve cross validation
replicates, a total of 2,160 classif cation models were developed.

The performance statistics used were the recall, F1 score, def ned
as:

recall =
tp

tp+ fn
=

number of correctly classif ed samples
total number of testing samples

(2)

F1 score = 2 ×
precision × recall
precision + recall

(3)

where tp is true positives (number of samples correctly classif ed)
and fn (number of samples incorrectly classif ed) is false negatives,
and the area under the receiver operating characteristic curve
(AUC) (Bradley, 1997), computed from the SVM and ANN class
membership probability estimates. The performance statistics
used were averaged among all the classes. An experimental
modeling diagram is presented in Figure 3.

The evaluation of the models was developed using Python
3.6.1 and scikit-learn 0.18.1. The training of the MLP
was performed using on scikit-learn multilayer perceptron
implementation (Pedregosa et al., 2011). Statistical tests were

FIGURE 3 | Experimental modeling diagram summarizing the analyses performed. From the spectral dataset (input), different combinations of various pre-processing

techniques were applied, modeled using two machine learning algorithms (with many parameters) and validated by several 5-fold cross validation replicates. Finally,

three performance statistics were evaluated.
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carried out using InfoStat software (Córdoba, Argentina), version
2017, using Tukey’s range test at a signif cance level p = 0.05.

3. RESULTS

3.1. Influence of Scatter Correction and
Derivative Order
The comparison of means of classif cation recall for scatter
correction was performed for each algorithm. No statistically
signif cant differences were found between the means from
any statistic when using and omitting SNV followed by a de-
trending (data not shown). Therefore, the successive statistical
analyses were performed without splitting by scatter correction
treatments. Besides, the inf uence of the f rst and second order
derivatives was analyzed, and statistically signif cant differences
were found between them for MLP (p < 0.0001 for the
three performance statistics) and SVM (mean recall with p <

0.05 and F1 with p < 0.01) toward the second order
derivative.

3.2. Influence of Smoothing Filtering
The statistical analyses for the recall results attending to the
different Savitzky-Golay window size are gathered in Table 1.

In all cases, the classif cation outcomes from the MLP
surpassed those from the SVM models.

SVM results did not yield statistically signif cant differences
between window size for both derivative orders, with values that
ranged from 0.84 to 0.90 for recall, from 0.84 to 0.91 for F1 score
and 0.93 in all cases for AUC. The best scores came from the
second derivative smoothing with the lower window size values
(f ve and nine), and in all cases the f rst derivative casted equal or
lower recall outcomes.

MLP showed strong and consistent statistically signif cant
differences, at p < 0.001 for both derivative orders, across all

the performance statistics, supporting that the best scores were
obtained in general using the second order derivatives (regardless
the window size). In both f rst and second order derivatives, there
existed a trend in which the lower the value of the window size,
the better the recall values.

3.3. Analysis of the Algorithm Parameters
The results for the statistical analyses per parameter value are
gathered in Tables 2, 3, for SVM and MLP respectively.

The models trained with SVM presented large differences
depending on the specif c values selected (averages with high
variability, from 0.65 up to 0.99 for recall, from 0.68 to 0.99
for F1 and from 0.60 to 0.99 for AUC), especially regarding
the C parameter. In this case, a noticeable gap in terms of
average recall can be found between C values equal or greater
than one and 10 (that performed signif cantly better) and those
that lied below that (whose scores casted worst results). For
the different SVM kernel values, the three of them presented
signif cant differences in all the statistics, being the linear kernel
the one with the highest score. The polynomial kernel presented
signif cantly lower average values.

The variability of the MLP results was considerably lower
than that from SVM, with all values above the 0.95 mark and
up to 0.99, for all the performance statistics. In terms of recall
values, the number of neurons in the neural network models
(hidden layer parameter) presented signif cant differences when
selecting i or t over a (with slightly lower values for the
latter), differences that were almost similar for both F1 and
AUC. Nevertheless, the activation function responded differently
depending on their selected values with the same behavior for
the three statistics. In the f rst case, the tanh and relu functions
worked signif cantly better than the logistic one (Table 3). The
use of warm start exhibited no statistical signif cant differences in
any case.

TABLE 1 | Comparison of means of classification recall, F1 score and AUC for each Savitzky-Golay window size by algorithm and derivative order.

Window size

Algorithm Performance statistic Derivative order 5 9 15 Significance

SVM Recall First 0.8839 0.8648 0.8351 n.s.

Second 0.9024 0.8947 0.8842 n.s.

F1 score First 0.8934 0.8747 0.8450 n.s.

Second 0.9142 0.9058 0.8938 n.s.

AUC First 0.9309 0.9305 0.9297 n.s.

Second 0.9339 0.9328 0.9265 n.s.

MLP Recall First 0.9796 a 0.9678 b 0.9404 c ***

Second 0.9905 a 0.9842 b 0.9804 c ***

F1 score First 0.9796 a 0.9687 b 0.9404 c ***

Second 0.9905 a 0.9842 b 0.9804 c ***

AUC First 0.9998 a 0.9995 b 0.9986 c ***

Second 0.9999 a 0.9998 b 0.9996 c ***

The values represent the average recall.

Dissimilar lowercase letters within rows represent statistically different means among different window sizes, using Tukey’s range test at a significance level p = 0.05.

AUC, area under the receiver operating characteristic curve; SVM, support vector machine; MLP, multilayer perceptron. n.s., not significant (p ≥ 0.05); *** p < 0.001.
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TABLE 2 | Comparison of means of classification recall, F1 score and AUC for the

different parameters tested for support vector machine (SVM).

Parameter Value Average

recall

Average

F1 score

Average

AUC

Penalty

parameter (C)

1,000 0.99 a 0.99 a 0.99 a

100 0.99 a 0.99 a 0.99 a

10 0.98 a 0.98 a 0.99 a

1 0.92 b 0.94 b 0.99 a

0.1 0.73 c 0.75 c 0.98 a

0.01 0.65 d 0.68 d 0.60 b

Significance *** *** ***

Kernel Linear 0.99 a 0.99 a 0.99 a

Radial basis

function

0.90 b 0.90 b 0.95 b

Polynomial 0.74 c 0.77 c 0.84 c

Significance *** *** ***

Dissimilar lowercase letters within the different parameter values represent statistically

different means, using Tukey’s range test at a significance level p = 0.05.

***p < 0.001.

3.4. Prediction Capability per Variety
The average recall, F1 scores and AUC values, for each grapevine
variety, were computed for SVM and MLP models. Figure 4
displays bar plots of these averages for the 30 varieties. No clear
correlation between the trends of both algorithms was found
(the ranking for best classif ed classes was not the same between
algorithms). For recall values, the difference between the best and
the worst score for MLP was 0.04, presenting a low variability,
while for SVM this difference swelled to 0.11. The plot shapes
between both algorithms were similar for recall (Figures 4A,B)
and F1 score (Figures 4C,D), but the AUC values for MLP
showed a very small variability level (Figure 4E), unlike SVM
(Figure 4F).

Attending to recall values per variety, representing the
ratio of correctly classif ed samples, the varieties that showed
the best recall values for MLP were Semillón, Perruno Fino
and Blanca Cayetana, while Centurión was the one with
the lowest value. All grapevine varieties, still, reached or
surpassed the 0.94 mark. In the case of SVM, the best scores
came from Semillón and Blanca Cayetana, as in the case of
MLP, and Tempranillo, in third place, with recall values of
greater than 0.92. All the varieties were on or above the
0.83 mark.

3.5. Execution Time Estimation
In the processing of the hyperspectral images, the segmentation
and f ltering step (section 2.3.1) of the 60 images (30 varieties,
two different days per variety) took approximately 27 h to
complete on an Intel R© CoreTM i7-5820K CPU with 16 GB
of RAM (with no thread optimization). This resulted in an
average of 1.45 s per image column to be processed (i.e., the
comparison of 900 spectra with a leaf signature and the average
of the spectra marked as leaves). In the case of the prediction
of an unknown spectrum by a previously MLP or SVM trained
model, the time required was of 0.05 s. Therefore, the total

TABLE 3 | Comparison of means of classification recall, F1 score and AUC for the

different parameters tested for multilayer perceptron (MLP).

Parameter Value Average

recall

Average

F1 score

Average

AUC

Hidden layer t 0.9746 a 0.9746 ab 0.9995 ab

i 0.9757 a 0.9757 a 0.9996 a

a 0.9717 b 0.9717 b 0.9994 b

Significance ** ** **

Activation

function

tanh 0.9855 a 0.9855 a 0.9998 a

relu 0.9837 a 0.9837 a 0.9998 a

Logistic 0.9527 b 0.9527 b 0.9990 b

Sign. *** *** ***

Warm start True 0.9740 0.9739 0.9995

False 0.9739 0.9739 0.9994

Significance n.s. n.s. n.s.

Dissimilar lowercase letters within the different parameter values represent statistically

different means, using Tukey’s range test at a significance level p = 0.05.

n.s., not significant (p ≥ 0.05); **p < 0.01. ***p < 0.001.

AUC, area under the receiver operating characteristic curve. t, the number of neurons is

the sum of the number of attributes and classes. i, the number of neurons is the number

of attributes. a, the number of neurons is half the amount of t. tanh, hyperbolic tangent

function. relu, rectified linear unit function. logistic, logistic sigmoid function.

time for obtaining an average spectra from the column of a
hyperspectral image and the prediction of its variety would take
1.5 s.

4. DISCUSSION

The results from the present work reveal the actual capability
of on-the-go hyperspectral imaging and machine learning for
the classif cation of grapevine varieties growing under f eld
conditions. Two main novelties have been addressed: the
successful deployment of a hyperspectral camera in the f eld,
under uncontrolled illumination conditions, and the prediction
of a very large number of classes (30). This, supported by the
wide evaluation of different machine learning classif ers and
parameters, made possible to obtain classif cation results up to
0.99 for both SVM and MLP. The models were able to cast
notable prediction results from data acquired in two different
phenological stages, correctly classifying leaves of different degree
of development.

To the best of our knowledge, no previous studies can be
found on in-f eld plant varietal classif cation neither on-the-
go nor using ground-based hyperspectral imaging. Nevertheless,
recent works have displayed the use of in-f eld portable
NIR spectroscopy for the classif cation of grapevine varieties
(Gutiérrez et al., 2015, 2016), discriminating among 20 and 10
different varieties, respectively. The reported cross validation
classif cation results went up to 87.25 and 88.7%, remarkable
values considering the high number of classes employed in
the training of the models. The present study improved both
the number of varieties discriminated and the classif cation
response. The different spectroscopic device used (hyperspectral
imaging vs. spectral measurement of a very reduced area)

Frontiers in Plant Science | www.frontiersin.org 7 July 2018 | Volume 9 | Article 1102

104
Chapter 5. On-the-go hyperspectral imaging and artificial intelligence in

digital agriculture



Gutiérrez et al. Hyperspectral Imaging for Varietal Classification

FIGURE 4 | Average recall (A,B), F1 score (C,D) and area under the receiver operating characteristic curve, AUC, (E,F) per grapevine variety (n = 2160) for Multilayer

Perceptron (A,C,E) and Support Vector Machine (B,D,F). BA, Baladí; BL, Blanca Cayetana; BR, Brancellao; CA, Catalán Blanco; CB, Chenin Blanc; CE, Centurion;

CF, Cabernet Sauvignon; CG, Calagraño; CH, Chardonnay; CI, Cigüente; CN, Calop Negro; CO, Concord; CR, Carnelian; CS, Cabernet Franc; CU, Crujidera; PA,

Palomino; PB, Pinot Blanc; PC, Picapoll Blanco; PD, Pardina; PE, Pedro Ximénez; PI, Pinot Noir; PL, Parellada; PR, Perruno Fino; RB, Rubired; RU, Rufete; SA,

Sauvignon; SE, Semillón; SO, Sousón; SY, Syrah; TE, Tempranillo.

could be the key factor of these enhancements. A portable
spectrophotometer is only capable of acquiring spectral signals
from a reduced portion of the target (grapevine leaves, in this
case), hence a lot of information is lost if the whole canopy
is not monitored by the device. On the other hand, adding
two spatial dimensions to spectral data greatly increases the
quantity of the information acquired from the canopy, as all
the intervariability (among plants) and intra-variability (within
plants) is considered. Hence the prediction capability of the
machine learning algorithms is expected to be increased, as
they are fed with more information. Hyperspectral imaging
has been previously attempted for the varietal classif cation

of grapevine leaves and clones by Diago et al. (2013) and
Fernandes et al. (2015), respectively. In these studies, the authors
demonstrated the ability of this technology for the discrimination
of samples from three varieties and four clones. However,
these approaches, unlike the present study, needed for specif c
sample preparation. Moreover, imaging was conducted under
laboratory conditions and only at harvest time, over leaves of
different ages. Varietal classif cation by spectroscopy has been
previously achieved in several agricultural and food applications.
Maize seed discrimination attending to the variety was recently
reported by Guo et al. (2017a) and Yang et al. (2017), with
up to 14 varieties and using hyperspectral imaging and SVM.
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Artif cial neural networks and SVM have also been used for
this purpose in pummelo (Li et al., 2016), olive oil (Binetti
et al., 2017), barley malt (Porker et al., 2017), or lotus seed
(Guo et al., 2017b). All these studies had two common factors:
the use of non-portable devices and the need of laboratory
conditions. The present study tried to overcome these two major
issues, by developing a methodology for varietal classif cation
that is also able to be performed on-the-go, directly in the
f eld, under uncontrolled illumination conditions, as on-the-go
imaging brings the great advantage of covering large areas and
thus acquiring a larger and richer amount of information from
the crops.

The results obtained from the different spectral pre-processing
steps allow to draw some interesting deductions. The fact that
scatter correction had no inf uence in the results (no statistically
signif cant differences were found when using and omitting SNV
and de-trending) could suggest that the spectral information
used as input for the classif cation algorithms suffered from
no interferences of scatter. This might be explained by one
of the main advantages of hyperspectral imaging: the huge
amount of spectra that it provides. Each sample of the built
dataset came from the average of approximately 43,000 leaf
spectra, and this extreme averaging could have minimized
the scatter inf uence. When it comes to smoothing f ltering,
the different treatments showed no signif cant differences
for SVM, but they were inf uential for MLP. The second
order derivative casted the best performance statistics for
this algorithm, making these results to be in line with those
concluded by Gutiérrez et al. (2015), for the same purpose.
Although, as mentioned, smoothing treatments had no inf uence
for SVM (a fact that could be explained by the higher
variability in classif cation results from this algorithm), the
trend in terms of average values remained similar to those of
MLP.

In general, the models trained with SVM and MLP were
able to return very high statistical values of classif cation (for
specif c parameters), highlighting that hyperspectral data (and
the high amount of samples) retained enough information
for both machine learning algorithms to successfully extract
underlying classif cation rules, when providing a considerable
amount of samples. The best results were found in those models
that were trained with MLP (average performance values from
0.95 to 0.99), but SVM was also able to provide outcomes up
to 0.99. Additionally AUC values per variety were much regular
for MLP (Figure 4E) than for SVM (Figure 4F), implying that
MLP had a higher capability to precisely classify from any class.
As it can be concluded from Table 2, wider variability results
came again from SVM, displaying high differences depending
on the kernel selected and much larger gaps depending on
the value of the C parameter. The inf uence of the kernel was
statistically present, and the analyses promoted the linear kernel
as clearly the best, setting aside more complex kernels. This
enables to aÿ rm that spectral information was better exploited
when, in the case of SVM, linear approaches were applied. Other
studies have also reported good performance of hyperspectral
imaging and SVM when using linear kernels in other crops and
fruits (Baranowski et al., 2015; Schmitter et al., 2017; Siedliska

et al., 2017), and Hsu et al. (2003) also suggested the use of
linear kernels when the number of attributes is large (as in
the case of spectral information). Another consideration that
can be extracted from the obtained results is that the penalty
parameter C should be set at or above 10. C determines the
strength of regularization of the SVM (larger values imply lower
regularization, i.e., correct classif cation of training data is more
important, and vice versa), so in the present case, the best results
came when the correct classif cation of the samples from the
dataset was maximized. This situation could lead to an overf tting
scenario, in which testing samples that did not participate in
the training of the model yield bad predictions. Nevertheless,
the fact that all the models were tested by f ve replicates of
5-fold cross validation could evidence that the generalization
capability of SVM with larger C values remained present, as in
each fold 20% of the samples were not used in the training, but
correctly classif ed. Even so, a virtual performance plateau was
present at a C value of 10, as increasing it above that amount
did not improve the classif cation results. The different values
that MLP parameters could take presented a lower variability,
and not a mean lied below the 0.95 mark. In the case of the
hidden layer size, the tested values had inf uence in the results
when using larger sizes (as in i or t), implying that the artif cial
neural networks were able to infer the rules for high classif cation
reports on cross validation better with increased number of
neurons in the hidden layer. The activation function parameter
also showed statistical differences, making the rectif ed linear
unit function or hyperbolic tangent function the candidates that
best managed the input spectral data. On the other hand, the
use warm start, attending to the outcomes, has no inf uence
in the performance of the models. Regarding the classif cation
performance by variety (Figure 4), it is noteworthy to mention
that the average response of the algorithms did not exactly agree
for each variety (except for the two varieties with greater recall
values: Semillón and Blanca Cayetana). This would allow to
aÿ rm that each one of the machine learning algorithms extracted
concrete classif cation rules, and thus the specif c information
carried by each variety’s spectral data was addressed differently
by each algorithm.

Based on the exposed results, plant phenotyping under
f eld conditions using on-the-go hyperspectral imaging is an
achievable goal in precision viticulture, and has a strong potential
not only for the varietal classif cation task, but for the prediction
of many useful parameters (e.g., water status, nutritional
status, disease detection, fruit composition, etc.). The effective
monitoring of the vineyard can be performed in real time
and georeferenced, taking advantage of the integration between
sensors and computing. Some other published works support
the viability of on-the-go hyperspectral imaging (Underwood
et al., 2017; Wendel and Underwood, 2017; Williams et al.,
2017). The methodology exposed in the present work takes
into consideration the works and machinery that are employed
in the vineyard. Hyperspectral imaging was performed at 5
km/h, a speed commonly found in vineyard operations from
agricultural vehicles, so the integration of a hyperspectral camera
with a processing hardware could by translated into a vehicle
(e.g., a tractor) to acquire and compute the spectral signals
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in real time. The numbers exposed in section 3.5 that the
segmentation, averaging and machine learning prediction of a
whole hyperspectral line (column in the image) would take 1.5 s.
Considering this, a hyperspectral camera could be set up for
acquiring two spectra per plant, thus taking 30 s for each 10 plants
to provide the predictive output (that can also be considerably
reduced with hardware and software optimization). This real-
time response could be in line with the way of working in current
viticulture, as a fast, on-the-go varietal classif cation could be
an useful phenotyping tool for commercial vineyards, nurseries,
appellation boards, etc. Additionally, it would be possible for
this integration, among many other instruments, to be deployed
in agricultural robots, as demonstrated by many works found
in the literature (Ruckelshausen et al., 2009; Weiss and Biber,
2011; Cheein and Carelli, 2013; Bargoti and Underwood, 2017;
Underwood et al., 2017; Wendel and Underwood, 2017). The
deployment of the application described in this study is also
bolstered by the use of samples from different phenological
states. This brings the advantage of performing on-the-go
hyperspectral imaging for varietal classif cation at different times
of the season, due to the fact that the developed models—
trained with leaves from different ages—were able to notably
modeling the different phenological features from the measured
leaves.

As in-f eld varietal classif cation by on-the-go hyperspectral
imaging and machine learning has been successfully proven
within a vineyard, it is advisable to perform additional
research covering supplementary aspects. The involvement
of samples from the same varieties but from different
locations or seasons could contribute to a richer dataset
and a deeper understanding of the relationship between
the spectral signal and the variety of the plant. Finally,
dimensionality reduction is an interesting research topic that
could focus on the future development of cheaper multispectral
devices.

5. CONCLUSIONS

The present study displayed the actual capability of on-the-go
hyperspectral imaging under f eld conditions for the classif cation
of many grapevine varieties using machine learning. The results
from the models obtained from testing different algorithm
parameters and spectral pre-processing techniques demonstrate
that a new way is opened for the task of plant phenotyping,
as hyperspectral imaging has been usually performed under
laboratory conditions and restricted to a selected, relatively small
amount of samples. Both support vector machines and artif cial
neural networks, when selecting the proper parameters, proved
to be reliable modeling algorithms for the training of precise
classif ers. This could let for a hyperspectral imaging system to
be attached to an agricultural vehicle as a phenotyping tool for
real time, on-the-go classif cation of grapevine varieties, bringing
information very useful in the context of plant phenotyping and
precision viticulture.
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5.2 Monitoring of grape composition in a vineyard
under field conditions

Wine quality is directly related with the compounds present in grapes. The
evaluation of grape quality and ripeness is frequently done by analysis of
two important composition parameters: soluble solid content and antho-
cyanin content. Having knowledge about the spatial distribution of these
parameters in the vineyard would make easier the decision-making process
at harvest, as different strategy could be designed. Nevertheless, the as-
sessment of these parameters has always been costly and labour-demanding,
also requiring expert personnel. These features greatly limits the sampling
within a vineyard. The objective of the following published paper was to use
a hyperspectral camera for the on-the-go estimation of grape composition
in the field. The prediction of soluble solid content anthocyanin concentra-
tions were successfully modelled using ML techniques, and spatial-temporal
maps of the vineyard were also developed for both parameters. These results
are great advance for the precise monitoring of two important vineyard pa-
rameters, also presenting new methodologies that combine in-field HSI and
modelling with ML.

Overcome challenges

• The fast, on-the-go prediction of two grape composition parameters
under field conditions.

• To achieve the precise identification of pixels (spectra) belonging to
grape under natural illumination conditions.

• To train prediction models using data from different dates within the
same campaign.

Datos del artículo

• Title of the paper: On-the-go hyperspectral imaging for the in-field
estimation of grape composition

• Authors: Salvador Gutiérrez, Javier Tardáguila, Juan Fernández-
Novales, María P. Diago

• Published in: Australian Journal of Grape and Wine Research 25
(1), 127-133.

• DOI: 10.1111/ajgw.12376
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Contributions of the PhD Thesis’ author: Salvador Gutiérrez con-
tributed to the experimental design, data acquisition in the field, and lab-
oratory analyses. He also performed data pre-processing, analysis and ma-
chine learning modelling. Salvador Gutiérrez wrote the full text of the paper
during all review stages.



118
Chapter 5. On-the-go hyperspectral imaging and artificial intelligence in

digital agriculture

5.3 Extensive fruit yield prediction under field con-
ditions from an automatic platform

Yield estimation is a key element in crop management and production con-
trol in any agricultural business. Classic practices on fruit yield estimation
involve visual inspections, inaccurate and subjective, or manual sampling,
that limits the capability of representation in large areas, also being time-
consuming. A review of the literature in the last years on yield estimation,
many novelties are present making use of non-invasive sensing technologies
and deep learning, virtually all of them using computer vision based on RGB
imaging. Nevertheless, the prediction of many other important crop features
would be very useful to the farmer. Some works have demonstrated that the
prediction of these features can be achieved using promising sensors other
than RGB, like HSI. There are no works on the use of line scan hyperspectral
cameras for yield estimation so far. If it is possible to demonstrate that this
technology is capable of performing this task, HSI alone would thus be very
useful for the prediction of several parameters from a single measurement.
The objective of the following paper, result of an internship in the Australian
Centre for Field Robotics, The University of Sydney, was the evaluation of
the use of HSI and ML for the extensive mango yield estimation in hun-
dreds of trees from a whole plot. The optimisation of the parameters in
the prediction algorithm, performed using GAs, resulted in accurate yield
estimation models. The results show that, although computer vision with
RGB cameras still are a reliable technique for yield estimation, this task
can be accomplished at satisfactory levels only using a line scan camera, like
a hyperspectral one. The development of the techniques explained in this
publication entails an important novelty in DA. Moreover, its implementa-
tion in other crops like vineyards, that shares common features with mango
trees (e.g., the possibility of performing measurements from lateral points of
views), is practically direct.

Overcome challenges

• To use a line scan hyperspectral camera for yield estimation.

• The design of a methodology for parameter optimisation in a yield
prediction system.

• To validate a methodology extensively in hundred of trees from a whole
commercial plot.

Paper information

• Title of the publication: Ground based hyperspectral imaging for
extensive mango yield estimation
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• Authors: Salvador Gutiérrez, Alexander Wendel, James Underwood

• Published in: Computers and Electronics in Agriculture 157, 126-
135.

• DOI: 10.1016/j.compag.2018.12.041

Contributions of the PhD Thesis’ author: During his internship at
The University of Sydney, Salvador Gutiérrez contributed to data pre-processing,
analysis and machine learning modelling. He also wrote the full text of the
paper during all review stages.



Chapter 6

Conclusions

Main conclusion: The work that lead to this PhD Thesis established the
potential of the combination of machine learning and non-invasive sensing
technologies for the assessment of relevant agronomical, physiological and
qualitative traits in digital agriculture and viticulture.

The specific conclusions of this PhD Thesis are:

Machine learning and spectroscopy for in-field grapevine pheno-
typing and monitoring

1. Machine learning methodologies are able to model vine spectral data
for the characterisation of key grapevine traits, such as varietal classi-
fication or the plant water status assessment. This can be of utmost
importance in viticulture as new portable tools can be designed to be
easily used under field conditions.

2. The combination of artificial intelligence and handheld sensors can
be readily deployed in industrial applications in viticulture, becoming
effective tools for grapegrowers and wineries.

Machine learning and thermal imaging for vineyard water status
assessment

4. Ensemble data analysis techniques applied to thermal data acquired
from the plants are capable of developing models for the assessment of
vineyard water status during the growing season.

5. On-the-go thermal imaging permits a fast coverage of plant water sta-
tus in a vineyard plot and, with the ability of georeferencing at data
acquisition, the individual characterisation of each vine.

6. Thermal imaging, along with data analysis from machine learning, al-
low this combination to be applied in viticulture, to become a feasible
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alternative to existing solutions for vineyard water status assessments
along the season, and to drive better irrigation scheduling decisions.

In-field, on-the-go hyperspectral imaging and machine learning for
crop monitoring

7. Advanced techniques of machine learning algorithms perform with high
efficiency dealing with grapevine data from hyperspectral imaging.

8. It is possible to perform hyperspectral imaging under field conditions,
under uncontrolled light conditions, and from a moving vehicle.

9. On-the-go hyperspectral imaging, under uncontrolled light conditions,
has many applications for crop monitoring, such as varietal classifi-
cation, grape composition assessment or fruit yield estimation, either
from manned or autonomous platforms.

10. Hyperspectral imaging along with artificial intelligence makes this com-
bination a new, promising tool in digital agriculture.
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