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ABSTRACT 

Stomata! resistance, xylem potential, soil-water potential, stem 

diameter, net radiation, air·temperature, humidity and wind were measured 

through a summer in a northern hardwood forest and on sunny and shady 

edges of clearings. Rainfall was about normal, and stomata! closure due 

to water stress occurred only as an ephemeral midday phenomenon. Yellow 

birch had lower diffusion resistance (2.5 sec/cm) than beech and sugar 

maple (3.0 and 3.4), implying possible transpirational differences. 

Diffusion resistance varied by species during leafout; it remained low 

in autumn until leaves turned color. Several trees were artificially 

stressed by preventing rain from reaching their roots; after two weeks 

stomata began to close early in the day, presumably limiting transpiration 

and growth. The single-leaf energy balance was found to work on leaves 

in the canopy within the limits of measuring accuracy. Transpiration of 

trees on the edges of forest openings is probably greater than if there 

were no opening due to increased radiation and clothesline advection. A 

single large clearcut will reduce evapotranspiration more and provide 

greater water yield increase than cutting the same forest area in a number 

of smaller blocks. 
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OBJECTIVES 

Forty-five percent of the northeastern United States is covered 

by hardwood forests. These forests are a major source of water and the 

demand for this water is increasing very rapidly. About half of the 

annual precipitation on these forests is evaporated and does not become 

streamflow. Most of this evaporation loss is transpiration from the 

trees. In order to manage the water resource in the northeast, we must 

know more about forest evapotranspiration and how it is altered oy land 

management practices. 

This project was established to study in the field the factors 

that affect transpiration from hardwood trees, and to determine how 

these factors change following a strip-cutting of the forest. The 

objectives were given as follows in the project proposal: 

(1) To study the microclimate of a stripcut forested site, 

particularly in relation to differences in water stress 

across the stripcut, and the resultant influence on water 

yield. 

(2) To study partial and complete daytime stomatal closure in 

a hardwood forest and evaluate this in terms of actual vs. 

potential evapotranspiration. 

(3) To test the theory of the single leaf energy balance under 

field conditions for hardwood leaves. 

These objectives have been reached for the most part. We discuss 

our results in the following sections: Water Stress and Stomatal Behavior; 

Phenology and Transpiration; Single-Leaf Energy Balance; and Strip~ 

Cutting, Microclimate and Streamflow. 
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FIELD SITES 

The major field location for this project was a set of three 

micro-meteorological towers located in the strip-cut watershed 4 on the 

Hubbard Brook Experimental Forest in central New Hampshire. The cut 

strips were 25 m wide, with 50 m of forest between them. The long axis 

of the strips ran parallel with the contour in a NE-SW direction. The 

watershed has a SE aspect. The three towers were placed in one uncut 

strip, one each on the sunny, southeast edge, in the middle, and on the 

shady northwest edge. Micro-climatic data was obtained from instruments 

at two or three levels on each tower. A centrally located shed housed 

data-logging equipment for all three towers. For some techniques, such 

as sampling for a pressure chamber and diffusion porometer measurements, 

the towers had to be climbed for access to the leaves. Field data were 

obtained in the summers of 1971 and 1972. 

Several experiments were conducted in greenhouse and growth 

chamber facilities at the University of New Hampshire. A field study 

of diffusion resistance in spring was carried out in the vicinity of 

Durham, New Hampshire. 



Diffusion porometer measurement and instruments on the sunny-edge 
tower. 
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WATER STRESS AND STOMATAL BEHAVIOR 

A diffusion porometer measures the resistance to diffusion of 

water vapor out of a leaf. This resistance is low wh.en stomata are 

fully open and high when they are closed. This instrument is still 

being developed as a research tool and we spent considerable time mod

ifying the calibration and operation procedures. 

4 

Stomata! opening changes as a function of light, temperature and 

water potential. In adequate light and normal temperatures the water 

relations of the plant control stomata! behavior. Thus diffusion resis

tance is an indicator of water stress in these conditions. When stomata 

are partially closed due to water stress, both transpiration and photosyn

thesis are reduced. Stomata! behavior varies among species of plants. 

In retrospect, it seems that the most important objective and result of 

this study has been the compiling of the first available data on stomata! 

behavior for mature northern hardwood trees, and the first data on any 

stressed hardwoods. 

We concentrated our efforts on the three dominant species of the 

northern hardwood forest, yellow birch (Betula alleghaniensis), beech 

(Fagus grandifolia) and sugar maple (Acer saccharum). These species 

have stomata only on the underside of the leaves, so resistances were 

measured only on that side. 
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The surruner of 1971 was rather wet, and we did not see any obvious 

evidence of stomatal closure due to water stress. The surruner of 1972 was 

even wetter, but we had fortunately decided to artificially stress several 

trees. We did this by digging a more or 1es5 circular trench around the 

base of several trees and then covering the soil surface with polyethylene 

taped around the tree trunks. This effectively prevented rain from enter

ing the soil block, allowed the soil to dry, and produced obvious stomata! 

closure in about two weeks 

Results of our investigations of stomatal behavior on both the 

artifically stressed trees and normal ("unstressed") trees have been 

discussed in a manuscript titled "Diffusion Resistance and Xylem Potential 

in Stressed and Unstressed Northern Hardwood Trees". This manuscript is 

being submitted to Ecology. We will only summarize our findings here. 

In unstressed trees, resistance was high at night when stomata 

were closed, from 20 to more than 50 sec/cm. As light increased, resis

tance decreased rapidly as the stomata opened in all three species until 

the light level reached 1.5 µE cm-2 min-1,* which is about one tenth of 

full sunlight. In our trees resistance was virtually independent of light 

above this level. 

* In discussing light and photosynthetic processes, it is the 

flux of photons rather than the energy flux or luminous flux that is 

important. An Einstein (E) of photosynthetically active radiation is 

defined as 6.02 x 1023 photons in the wavelength band from 400 to 700 

nm. 
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Diffusion resistance has been found to depend on temperature by 

other workers, but evidence is conflicting on the amount and even the 

direction of this dependence. We could not find any evidence of a temp

erature effect on resistance of unstressed trees in the range from 

15 to 30° C. 

In sufficient light for full opening, there was a substantial 

difference in mean diffusion resistance among species. Mean values 

were 2.4 sec/cm for yellow birch, 3.0 for beech and 3.4 for sugar maple. 

Although the range of values we measured was about 2 sec/cm for each 

species, yellow birch had lower resistances than beech and maple in 86 

out of 87 direct comparisons made at the same time on adjacent trees. 

Evidently real differences in diffusion resistance exist among hardwood 

species; these differences may imply differences in transpiration rates 

from pure stands of these species. 

Leaves of beech and sugar maple are all of the same age, but 

yellow birch has two types of leaves of different ages. In yellow birch 

early leaves expand simultaneously during the initial leafout period, 

but late leaves are produced on each shoot at intervals of several days 

into July. We could not find any difference in resistance between fully 

expanded early and late leaves. 

Xylem potential, which we measured with a pressure chamber, is 

closely related to the water potential in the leaf, which in turn can 

affect stomata! aperture. The evaporative demand of the atmosphere is 

controlled primarily by radiation load, but also by temperature, humidity 

and wind. As the evaporative demand increases, water evaporates from the 

leaf, drying it and decreasing its water potential. 
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The xylem potential in the twig decreases correspondingly, and the result

ing potential gradient between the soil and the leaf causes water to move-

the transpiration stream. If either the potential gradient is too small or 

resistance to flow in the soil-xylem system is too high, the supply of 

water to the leaf may not be able to keep up with the evaporative demand. 

The leaf then dries further and this loss of turgor causes the stomata to 

begin to close. The stomata become closed as much as is necessary to 

reduce the evaporation loss to equal the water supply rate and prevent 

further leaf drying. We tried to get some initial insight into the relations 

of evaporative demand, xylem potential, soil-water potential and stomatal 

behavior for mature hardwoods. 

At night xylem potential was -4 to -6 bars in our trees. Since 

soil-water potential was always between zero and -0.2 bars for our unstressed 

trees, this implies either that water was moving into the trees throughout 

the night or that there are osmotic potential differences that are not 

understood. We found that stem diameter, which has decreased during the 

day, does not. recover overnight either. A moderate to heavy rain may be 

necessary to restore a tree to a fully wet condition after a day or more 

of drying. 

After sunrise, stomata opened rapidly, reducing diffusion resist

ance, and xylem potential dropped rapidly, both reaching values that we 

now associate with daytime operation. The diffusion resistance has been 

discussed above. The xylem potential tended to level off after the net 

radiation reached about 0.6 ly/min, with values averaging -17 bars for 

yellow birch, -23 bars for sugar maple 1 and -24 bars for beech. 

During a clear or partly cloudy day with quite wet soil, we 

found that diffusion resistance varied by 1 or 2 sec/cm and xylem potential 
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by several bars through the day. These changes are much smaller than we 

thought our instruments could detect. We did not realize until we eval

uated the field data that we should have taken pressure bomb samples at 

the same time as we took porometer measurements at each location on each 

tree. Nevertheless, data for August 1 and 2, 1972, clearly show a slight 

midday closure of stomata and associated change in xylem potential. The 

changes occur within an hour or two and analysis is complicated by rap

idly changing net radiation on these partly cloudy days. However, from 

this and from more limited data from other days, we believe that high 

evaporative demand caused reduced xylem potential and temporary partial 

stomata! closure in hardwood trees at our site even when the soil was 

well watered. 

When rewetting by rain was eliminated in our stressed plot, the 

soil dried and after two weeks stomata! closure was severe. Soil dried 

more rapidly near the surface, so a single value of water potential could 

not be applied to the whole soil mass. However, once most of the soil 

had dried to -0.5 to -1 bar, which took about two weeks, stomata failed 

to open fully in the morning and closed gradually through the day to 

diffusion resistances of 10 sec/cm or more. However, surprisingly, xylem 

potentials did not differ by more than 1 bar between stressed trees with 

closed stomata and unstressed trees. This implies that the relation 

between xylem potential and diffusion resistance is not a simple one. 

After allowing drying through July, 1972, we chose to rewet the 

plot and duplicate the experiment. Behavior in the second drying period 

in August was similar to behavior in July. Premature senescence occurred 

in September in the stressed trees. Once the stomata have closed and can 

no longer limit further (cuticular) transpiration, xylem potential must 
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decline as the plant desiccates. However, in our study the soil did not 

dry enough to cause this behavior. 

For several reasons our data were insufficient to define the 

relationship between soil-water potential, leaf-water potential, evaporative 

demand and stomatal behavior in the range when stomata are closing. First, 

there is still no simple way to specify the appropriate depth -- integrated 

value of soil-water potential. Second, we have not determined the relation 

of pressure bomb reading to total leaf-water potential, osmotic potential 

and turgor potential. However, we do believe that such relations must be 

determined in situ on stressed, mature trees rather than on seedlings or 

on cut twigs allowed to desiccate. Third, most of our data were taken 

during partly cloudy conditions with varying evaporative demand. This 

made our diffusion resistance and xylem potential data difficult to 

interpret. 
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PHENOLOGY AND TRANSPIRATION 

In spring and autunm stomatal behavior and thus transpiration 

are affected by morphological and physiological changes in the leaves. 

Prior to our studies, little was known about these effects. In the 

autumn of 1971 we measured daytime diffusion resistance and chlorophyll 

content of leaves at our main study site throughout the color change 

period. The results of this study have been published in Water Resources 

Research as "Stomatal Resistance During Senescence of Hardwood Leaves." 

In the spring of 1973 we conducted a study in the Durham area of diffusion 

resistance during leaf development in the spring. 

In the early autunm, green leaves had resistances measured in 

summer. However, as chlorophyll was destroyed sufficiently so that the 

leaves became yellow-green, their resistances were frequently quite high 

and covered a range from 3 to more than 35 sec/cm. With complete chloro

phyll destruction and yellow or brown leaves, resistances were always more 

than 10 sec/cm and averaged about 30 sec/cm. This is equivalent to night

time values and indicates either closed stomata or lack of water supply 

to the leaf, or both. We conclude.' that in autumn transpiration continues 

unabated in green leaves, but declines to small values when leaves turn 

color. 

Preliminary work on leafout in the spring of 1972 showed us the 

great differences in kind and rate of leaf development among species. In 

1973 we measured diffusion resistance at about 5-day intervals on one to 

three trees each of ten species (Table 1). The spring was very rainy and 

phenologically late. 

We measured black, paper and river birches and found no important 

differences among them. Yellow birch is hard to find around Durham in the 
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exposed sites with leaves at ground level that we needed for this study. 

Generally in the birches 2 leaves are produced from each bud. These are 

the "early" leaves; the "late" leaves develop some weeks later as the 

shoot elongates, and we did not measure them in this study. The early 

leaves were green when the buds broke around April 20 and their diffusion 

resistance was low, about 5 sec/cm even when the leaves were only 4 cm 

long, the smallest leaves we could measure. Resistance declined through 

the month required for expansion and continued to decline for 10 more 

days before reaching summer values of about 3.5 sec/cm by June 5. 

Trembling aspen has four to six early leaves, which, like the 

birches, develop to full size before shoot elongation begins and late 

leaves are formed. The aspen also broke its buds about April 20 but took 

only about 20 days to reach full size. Resistance declined from 7 sec/cm 

with small leaves to summer values of about 3 sec/cm after June 1. Leaves 

became darker green through this period so the rather prolonged resistance 

decline may be related to chlorophyll buildup even after the leaves reached 

full size. 



, \ 
t , 

~ . 
! , , 

Making diffusion porometer measurements on the sunny-edge tower. 

12 



13 

Table 1. Dates of bud break, full leaf expansion, and beginning of 

minimum or sununer resistances and the associated diffusion 

resistances, by species. 

Species Budbreak Full expansion Summer resistance 
Resistance.!/ Date Date Resistance Date Resistance 

birches Apr 20 5.0 May 25 4.0 June 5 3.5 

aspen Apr 20 7.0 May 10 5.0 June 1 3.0 

cherries Apr 20 5.5Y June 5 4.5 June 15 4.0 

beech May 53) 7.5 May 25y 6.0 June 20 4.0 

sugar May 5 7.5 May 25 6.0 May 10 6.0 
maple~ May 5 14.0 May 25 5.5 June 10 4.0 

red oak May 1 13.0~ June 10 4:0 June 15 3.5 

scarlet May 5 11.0~ July 1 3.5 June 15 3.5 
oak 

l/ Resistance on leaves as soon as they were large enough to be measured. 

2/ Cherry resistances increased to 6.0 sec/cm around May 20. 

3J One tree of the three was about 10 days later. 

4/ Two individuals on first line, one individual on second line. 

5/ Resistance increases to 18 sec/cm several days later. 
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Pin cherry and black cherry buds also broke about April 20 and 

like the birches and aspen had green leaves and resistances about 5.5 

sec/cm from the time the leaves were large enough to measure. Expansion 

of the early leaves was completed by June 5, when late leaves, produced 

after flowering is completed, were expanding rapidly. Diffusion resis

tance appeared to increase to 6 sec/cm during flowering and then declined 

to sununer values of 4 sec/cm by June 15. 

Beech and sugar maple are determinate species in which all the 

leaves of the year expand simultaneously from the bud. Beech buds extend 

greatly before they open. The leaves are green and 5 cm long when they 

unfold; this occurred about May 5 on two trees and May 15 on a third. 

Resistance at these times was about 7.5 sec/cm. The beech leaves grew very 

rapidly, reaching full size in 20 days. Resistance was about 6.0 sec/cm 

at that time and continued to decline to sununer values around 4.0 by 

June 20. 

In all three sugar maple trees the expansion phase lasted from 

May 5 to May 25. But in diffusion resistance one sugar maple behaved 

quite differently from the other two. All three were saplings from 8 to 20 

feet tall and were in rather shaded and widely separated locations. One 

tree had a resistance that was 14 sec/cm after budbreak, and declined to 

5.5 sec/cm at full expansion and 4.0 sec/cm by June 10. Except for the 

high initial resistance this behavior was similar to other species and 

appears to be normal. The other two began with resistances about 7.5 sec/cm 

and maintained high and variable resistances of 5 to 9 sec/cm through the 

spring and sununer. The behavior was similar to stomatal closure observed 

on mature trees after two rainless weeks (see above) but the spring was 

very rainy and the trees were moderately shaded saplings. 
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The oaks differ greatly from the other species studied. They are 

determinate, like beech and sugar maple, but the leaves are very small 

and very low in chlorophyll after bud break. Leaf development was slow, 

taking 40 days in red oak and nearly 2 months in scarlet oak; and it 

occurred simultaneously with shoot elongation. In the other determinate 

species leaf expansion is completed before elongation begins. Diffusion 

resistance was high on the small pinkish leaves. It was around 12 sec/cm 

after bud break, and then increased a few days later to 18 sec/cm, perhaps 

due to cuticle formation. Resistance remained above 10 sec/cm until 

May 25, then dropped rapidly to 6 sec/cm and more gradually thereafter to 

3.5 sec/cm by June 15. The oaks maintained a strikingly higher resistance 

later in the spring than any other species. 

In general, the results indicate that indeterminate species that are 

also generally shade-intolerant and early succession species, open their 

buds and expand their leaves earlier than other species. They also have 

low diffusion resistance early in the spring. Both in leafout and in 

diffusion resistance they get a jump on the other species in photosynthesis, 

and coincidentally in transpiration. 

Beech and sugar maple, both shade-tolerant, late successional, deter

minate species are slower to produce their leaves and to reduce diffusion 

resistance. All of these species except the oaks are diffuse porous and 

the transpiration stream involves the several outer annual rings. Oak is 

ring porous, water conduction is mainly in the large vessels of the current 

annual ring. This ring is about half developed by the time of bud break 

in the spring. The slow leaf development and high resistance appear to be 

a mechanism to reduce water loss in spTing until the ring is developed 

sufficiently to conduct adequate water. 
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Evidently transpiration in species like the birches is limited by leaf 

area but not by diffusion resistance in spring and can reach maximum values 

by May 20. On the other hand, in oak, transpiration is limited both by 

leaf area and by high diffusion resistance until June 1 or later. We are 

planning on simulating the effect of these differences on soil-water and 

streamflow in the near future. This will tell us if the differences are 

important with respect to streamflow. The results of this field study and 

the simulation will be published together as one paper. 



v 

Sealed plot to create arti fi cial water stress and base of shady-edge 
to1,Ter. 
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SINGLE LEAF ENERGY BALANCE 

Canopy modelling, or simulation of the water, heat, and co2 fluxes in 

a canopy, has become an important tool in plant science. The simulation is 

based on the application of the energy balance to single leaves at several 

different levels in the canopy. Theory provides an equation for the energy 

balance of single leaves, but this equation had never been tested on leaves 

in their natural condition in a hardwood forest canopy. We set out to make 

such a test as part of this study, since we were already measuring the 

important variables--radiation fluxes, air temperature, humidity, wind and 

diffusion resistance. By adding measurement of incident solar radiation 

and leaf temperature for individual leaves, we were able to calculate net 

radiation, sensible heat flux, and latent heat flux for the leaf indepen

dently. The algebraic sum of the three fluxes should equal zero due to 

conservation of energy. Failure of this to occur implies either error in 

the theory and its assumptions or error in the measurements. 

Measurements were made on yellow birch and sugar maple leaves at 

four heights on the tower in the uncut strip on August 30 to September 1, 

1972, and at two heights on one artificially stressed and one unstressed 

yellow birch on September 6, 1972. All data were averaged over half

hour intervals before the calculations were made. 

Difficulty of measuring the average irradiance of the leaf surface 

caused balance errors as large as 0.25 ly/min for partially shaded leaves 

in the upper canopy. Balance errors for leaves in fu11 sun were less than 

0.1 ly/min. Evidently the 1/2 x 1/2 cm solar cell we used to measure 

irradiation on the leaf did not provide an adequate estimate of the average 

irradiation over the whole leaf. Often, because of nearby leaves, one part 

of a leaf is in the sun and the remainder in shade for time intervals 
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nearly as long as the half-hour everaging period. For shaded leaves during 

the day, balance error was less than 0.02 ly/min; this was caused by error 

in measuring longwave radiation. 

The measurement of leaf temperature was also difficult and led to some 

error. To measure leaf temperature properly, the sensor should be inside, 

rather than on the surface of the leaf. However, our leaves were very thin 

and we did not develop a technique for inserting a sensor. Any sensor on 

the leaf surface risks being in the boundary layer of the leaf and thus not 

having the same temperature as the leaf. We applied a layer of insulation 

over the sensor. However, we are not very satisfied with the results. 

For leaves in the sun, the ratio of sensible heat loss to latent heat 

loss (by transpiration) was usually between 1 and 3. For shade leaves the 

sensible heat loss was close to zero since the leaf temperature was close 

to air temperature, while the latent heat loss remained positive. Sugar 

maple leaves had higher stomatal resistances than yellow birch leaves and 

hence partitioned less heat into transpiration and more into sensible heat. 

In summary, our measurements showed generally that the theory is 

satisfactory. We attribute the errors we found to measurement error rather 

than to theoretical error. Repeating the experiment with better measure

ments might be desirable but would be difficult. 

This experiment is described more completely in a M.S. thesis by 

William Wenkert, "Testing an energy balance model on individual leaves in a 

hardwood canopy." A manuscript based on this thesis has been prepared but 

we have not yet decided whether to submit it for publication. 
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STRIP-ClJfTING, MICROCLIMATE AND STREAMFLOW 

We knew that the strip-cutting of watershed 4 would reduce its evap-

otranspiration and thus increase its streamflow. However, we did not know 

by how much. There was a possibility that trees on the sunny edge of the 

openings would transpire rapidly and become water stressed. We did not know 

the effect this would have on streamflow. 

The microclimate, soil-water regime and resulting evapotranspiration 

in and around a series of forest openings are very complicated. We did not 

set out to measure all this variation. We decided to measure microclimate 

at the edge and center of the uncut strips around the tree crowns, and to 

measure soil water at two locations in the cut strips and two in the uncut 

strips. A great deal of data was obtained and it has been only partially 

analyzed. Further analysis would be time-consuming and is complicated by 

some instrumentation difficulties so we do not intend to do it at this 

time. We have been able to develop some hypotheses based on the analyzed 

data. 

The changes in streamflow resulting from cutting one-third of the 

watershed in strips has been documented . .!/ Streamflow increased (and thus 

evapotranspiration was reduced) by 28nnn the first sunnner and 36 mm the 

second summer. These figures contrast with the average increase of 290 mm 

following complete devegetation of a nearby watershed. Since only one-

third of the strip-cut watershed was cut, we expected one-third of 290 mm 

1/ Hornbeck, J. W., G. E. Likens, R. S. Pierce and F. H. Bormann. 
1974.- Stripcutting as a means of protecting site and streamflow quality 
when clearcutting northern hardwoods. Proc. 4th North American Forest 
Soils Conf., Quebec. (in press) 

Hornbeck, J. W. 1973. Changes in y~eld and quality of stream
flow after stripcutting northern hardwoods. Ph.D. thesis, State Univ. of 
New York, College of Environmental Sci. and Forestry, Syracuse, N.Y., 98p. 
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or 97 mm as a first guess at the increase produced by strip-cutting. The 

measured increase in streamflow was much less than that. The mean summer 

evapotranspiration from a fully forested watershed is about 450 mm. This 

was decreased only 32 mm or 7% by the strip-cutting even though one-third 

of the trees were removed .. Before we suggest the reasons for this, let's 

look at the microclimate results. 

Transpiration is affected'by four atmospheric variables: net radiation, 

air temperature, humidity and wind. We measured each of these at two 

heights on each of the three towers, but in not more than four of the six 

possible locations at one time. The upper height was near the top of the 

tree crowns and the lower height was near the base of the crowns. 

Above a closed canopy wind speed decreases as the canopy is approached 

from above. Within the canopy speed drops rapidly, and then if there is a 

stem-space, more slowly as the gDound is approached. But speeds at the 

bottom of the crowns are much less than at the tops of the crowns. In a 

strip-cutting, the clearings are great holes through the canopy that allow 

wind to penetrate the stern space from the side, so that differences in 

speed between the tops of the crowns (upper level) and the bottom (lower 

level) are less. On the edge of the clearings, the speed at the lower 

level was about 20% less than at the upper level, while in the center of 

the uncut strip the speed at the lower level was one-third to one-half 

that at the upper level. Compared with a complete cover then, the vent

ilation of the crowns in a stripcut is increased since crowns on the clearing 

edges are exposed and lower crowns in the center are affected by blow

through in the stern space. 

Wind speeds around the tree crowns are remarkably steady in summer. 

We found very few daytime periods with winds less than 0.5 rn/sec or more 
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than 2.0 m/sec. Both calm periods and strong winds were rare. Even within 

the uncut strip at night, slope-induced winds maintained speeds of greater 

than 0.3 m/sec. This implies that heat loss from the leaves in the strip

cut forest is dominated by forced convection. 

Wind direction affected the relative speeds on the opposite edges of 

the clearing (Fig. 1). With south winds, the sunny-edge wind was higher, 

and with north winds, the shady-edge wind was higher. The differences were 

on the order of 30%. 

Overall the picture is one of a well-ventilated canopy in which wind 

speed differences among locations are probably too small to be important. 

With such good ventilation and mixing, air temperature and htunidity 

should also be well-mixed and this is what we found (Fig.l). Temperature 

differences among locations were seldom more than 2°C and often were less. 

Vapor pressure differences seldom exceeded 3 mb. More detailed study of 

the differences is hampered by the necessity for more data analysis and by 

a questionable calibration of one of the four sensors. We can state that 

there are no large differences in temperature and humidity among locations. 

Even with small temperature gradients, a clothesline effect can still 

exist if wind speed is high enough as it was here. Warm air from the 

opening, with its lower evaporative rate and thus more heating of air, 

could be transferred laterally to the adjacent forest strip, and help to 

increase its transpiration rate. This is called the clothesline effect. 

The temperature differences involved need be only on the order of a degree. 

No theory exists for calculating the magnitude of this effect. However, 

we cannot doubt that it exists in this strip-cut situation. 

Differences in net radiation at the upper levels were slight when the 

radiometers were exposed to direct sun. Radiation on the lower sensors 

was generally low except in the presence of sunflecks (Fig. 1), since the 
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Figure 1.--Net radiation, air temperature, humidity and wind speed 

at 4 locations on August 13, 1971. XU--upper level on 

sunny edge of opening, XL--lower level on sunny edge, 

YU--upper level on shady edge, YL--lower level on shady 

edge. 



24 

sensors were located somewhat into the canopy from the true edge of the 

clearing. In the early morning, the upper sensor on the shady edge remained 

shaded by higher crowns until 9 a.m. EST. In the late afternoon the sun 

to the west illuminated the shady edge, which faced northwest, while the 

sunny southeast-facing edge became shaded. 

Net radiation was measured with horizontal sensors. In terms of 

radiation load on the trees on the edge of the clearing, sensors oriented 

at some angle, say 45° facing the clearing, would have been better. Then 

they would have been parallel to the outer surface of the crowns of the 

edge trees. In order to eveluate the increased absorption of solar rad

iation by the sunny edge trees, we developed a model of direct solar 

radiation on the strip-cutting. 

The model assumes an infinitely long opening of a given width with 

the long axis parallel to a slope of given angle and azimuth. The opening 

has vertical walls, the canopy top is a plane parallel to the ground slope, 

and the canopy top and sides are impenetrable to light. We wrote a com

puter program that calculates at half-hour intervals the fraction of the 

direct solar radiation reaching the canopy top, the canopy side, and the 

ground, and integrates these fractions over the day by weighting with 

potential insolation. The model works for any slope, aspect, date, crown 

height and ratio of cut to uncut strip width. 

For the openings in watershed 4, 2/3 of the direct radiation always 

falls on the top of the uncut strips. The remaining 1/3 reaches either 

the walls of the opening or the floor. For a slope of 15 degrees and an 

aspect of S 40°E on June 21, 7.5% reaches the wall and 25.8% reaches the 

floor. On Sept. 15, 10.7% reaches the wall and 22.6% reaches the floor. 

The 7.5 to 10.7% reaching the walls can be used for additional transpir

ation from the mature trees. The sunny-edge trees thus have a greatly 



25 

increased radiation load on them after the cutting. If they can get an 

adequate water supply, they presumably have greatly increased transpir

ation rates. 

Tensiometer data obtained in 1971 show that there was consistently 

higher soil-water content in the openings. Soil-water potential was about 

-0.04 bars immediately after a heavy rain in both cut and uncut strips. 

Within 1 week potential declined to -0.12 bars in the uncut strip, but only 

to -0.07 bars in the cut strip. These are rough averages of values that 

varied with depth. The root systems of trees in a hardwood forest are 

extensively overlapping or interlocking. The roots ,of trees on the edge 

of the openings extended far out into the wetter soil in the openings. 

Also, competition for water under the remaining trees at the edges was 

reduced since roots from adjacent cut trees no longer demanded water. We 

found no evidence of any greater water stress, as indicated by either 

pressure chamber or stomatal closure, on sunny-edge trees than on forest 

trees. Evidently, even though transpiration rates on sunny-edge trees were 

undoubtedly greater, greater water supply to them prevented any greater 

water stress. 

Regeneration, composed of stump sprouts, seedlings, herbs and root 

suckers was prolific in the cut strips. By the end of the second summer a 

nearly complete green cover existed of one to six feet in height. Trans

piration from such a cover can be nearly as great as in a mature forest. 

Three reasons exist for the small decrease in evapotranspiration 

(about 30 mm for a year) following cutting one-third of a watershed in 

strips: (1) increased radiation load on trees on the sunny edges increases 

their transpiration, (2) clothesline effect increases transpiration of 

remaining trees, particularly those adjacent to the openings, and (3) 

regeneration in the cut strips transpires. As the size of cut openings 
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increases, the first two effects decrease in importance. If a given fraction 

of a watershed is to be cut, the water yield increase will be largest if the 

fraction is in a single clearcut block rather than in more, smaller openings. 
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CONCLUSIONS 

All conclusions stated here are hypotheses regarding northern hardwood 

forests in New England. These hypotheses have been developed as a result of 

our work, and need further study before they are proven for the northern 

hardwood region. 

1. In years of uniformly distributed, normal to high rainfall, stomata! 

closure due to water stress occurs only as an ephemeral midday phen

omenon under high radiation loads. 

2. When there has been little or no rain for two weeks, significant stom

ata! closure occurs early in the day, and transpiration and growth 

become limited by water stress. 

3. Yellow birch has lower diffusion resistance (average 2.5 sec/cm) than 

beech or sugar maple (3.0 and 3.4 sec/cm). This may imply differences 

in transpiration among these species. The differences ma~ be related 

to shade tolerance. 

4. In spring, some species, especially oaks, have higher diffusion resis

tance and thus presumably lower transpiration than other species. 

5. In autumn, diffusion resistance remains low and thus, presumably, 

transpiration remains high, until leaves turn color. 

6. The theory of the single-leaf energy balance applies to leaves in a 

hardwood canopy, at least within the limits of our measurement accuracy. 

7. Transpiration from trees on the edges of forest openings is probably 

greater than if there were no opening, due to increased radiation load 

and to the clothesline effect. 

8. Cutting one-third of the trees on a watershed in narrow strips de

,, creases evapotranspiration from the watershed by less than one-tenth 

due to increased transpiration from edge trees and to regeneration. 
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9. If a given fraction of a watershed area is to be cut, water yield will 

increase most if the cutting is in one large block. 
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