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ABSTRACT 

Sound management of water-resource problems has four major 

requisites: 1) precise definition of the problem; 2) consideration 

of all potential alternative solutions; 3) appropriate objectives 

and criteria for choosing among alternatives; and 4) ability to 

analyze the alternatives with respect to the choice criteria. 

This report contributes to these objectives in ways that will 

be of practical use in water-resource planning in the New Hampshire 

portion of the Merrimack River Basin and in New England. It does 

this by separately considering the hydrologic and economic aspects. 

These two components can be combined into a single framework. 

The hydrologic analysis examines the nature of supply and demand 

in the context of water resources. Additionally, a quantitative 

planning-level framework for identifying the existence and nature 

of water-resource problems is developed. This framework allows 

evaluation of the degree to which any proposed management strategy 

will contribute to the solution of such problems. This model consti

tutes a simulation model that can accommodate any combination of 

alternatives, including those that affect demand as well as those 

that increase supply. 

The economic aspect of this study emphasizes a mixed-integer 

multiperiod progrannning model that utilizes hydrologic and economic 

data for identifying the discounted least cost of water supply, 

distribution, and scheduling for three communities. Preliminary 

sample data were used. This model can identify present water-supply 

sources that are economically feasible for the future, as well as 

new reservoirs, based upon projected water demands. 
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INTRODUCTION 

Figure 1 shows the Merrimack River Basin, which includes 3810 

mi
2 

of New Hampshire's total area of 9304 mi
2

. All or parts of 129 

towns and cities and 57.8% of the state's population are within this 

area. Plate I (see Appendix I) shows the communities within the basin. 

This population has grown at an annual compound rate of 1.87% (see Figure 2) 

over the period 1950-1975, and manufacturing employment at an annual 

compound rate of 1.34%. As a result, severe stresses have been placed 

on the quantity and quality of the region's water resources. The 

following extract from the Summary Report on Severe Resource Problems 

and Recommendations for Their Solution, prepared by the New England 

River Basins Commission (NERBC, 1977) succinctly characterizes the 

basin's water problems: 

An overriding problem facing the Merrimack River 
is the conflicting demands being placed upon it to 
provide municipal water supplies for the urbanized 
areas of both eastern Massachusetts and southeastern 
New Hampshire. Potential competition for supplies 
may occur between water users if the present inves
tigation into the feasibility of diverting Merrimack 
waters to Boston Metropolitan District Commission 
and/or coastal New Hampshire is implemented. The 
situation is aggravated by poor quality water and 
by increasing industrial demands. 

Ground water supplies are also insufficient to 
meet 1990 maximum daily demands in many of the 
surburban towns. Increased development causes con
tamination of ground water supplies from septic 
system leachates. Naturally high levels of iron and 
manganese also limit the supply of ground water 
in the Merrimack Basin. Without careful planning 
and conservation of both surface and ground water 
supplies, serious shortages will develop. 

Degradation of water quality is a problem in 
the Merrimack and most of its tributaries. The 
Merrimack River and estuary are being polluted by 
raw municipal sewage, combined sewer overflows, and 
industrial discharges including paper products wastes, 
textile wastes, and silver plating chemicals. Because 
the entire river is currently of U (nuisance) water 
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quality, use of the water for drinking requires 
expensive treatment and filtration, and swimming, 
boating and fishing are limited .... Portions of 
the :Merrimack will not meet Massachusetts' and 
New Hampshire's Class B standards by 1983. 

Fifty-two of the 129 municipalities in the basin are served in 

part by public water supplies (NERBC, 1978, Map 13), of which 23 have 

surface-water sources, 13 have ground-water sources, and 16 have both 

surface and ground water. Fifty-one of the 129 communities are pro

jected to have water-supply deficiencies by 2020 (New England Division, 

Corps of Engineers, 1977, Plate 9). In addition, the Merrimack Basin 

is adjacent to two major areas with projected serious water shortages 

New Hampshire's coastal region and the Boston Metropolitan District -

and has been suggested as a source of water for out-of-basin transfer 

to both those areas (NERBC, 1978). 

Although the facts and studies cited above leave little doubt that 

the New Hampshire portion of the Merrimack Basin faces severe water

quantity and -quality problems, they tell very little about the true 

nature of these problems and of the possible solutions to them. The 

fact that the existing "safe yield" of the water supply of a given 

community is less than the demand projected for a future date may 

simply mean that further investment is required to build a reservoir, 

drill a well, or expand treatment or distribution facilities. The 

solution to such a problem is largely a matter of engineering, economics, 

and finance. While such problems are far from trivial, there is also 

the question of the extent to which the projected increasing demands 

approach the supply (and quality) limits set by the hydrologic cycle 

in the region. Most of the conventional assessments of water-resource 

problems provide very little information on this more fundamental 

question. 

Traditionally, water-resource planning is carried out in a non

integrated, static fashion that may seriously distort and/or limit the 

rational assessment of problems and solutions. This lack of integration 

is commonly manifested in the following ways: (1) quantity and quality 

problems are considered separately; (2) portions of drainage basins--

in many instances, individual towns--are considered separately; 



(3) ground-water and surf ace-water sources are considered without 

regard for the connections between them; (4) the available water 

resource is commonly assumed to equal the average runoff rate; (5) 

the range of alternative solutions considered is often unnecessarily 

constrained and the evaluation of these alternatives is distorted with 

respect to the explicit tradeoffs associated with each option; (6) the 

planning process is typically a "one-shot" operation, without pro

vision for readily up-dating demand projections and re-evaluating 

alternatives as new information becomes available; and (7) current 

water problems are generally analyzed statically, overlooking any 

recursive components in which previous time period's supply and 

quantity parameters affect future periods. 

One noteworthy attempt to look at water-resources problems in 

a more comprehensive, hydrologically-based way was the study of 

Wollman and Bonem (1971). In this, the United States was divided into 

22 water-resource regions, whose boundaries largely coincided with 

hydrologic divides. All "supply", "demand", and quality considerations 

within each region were aggregated, and "demands" were projected to 

2020. "Supply" was defined as the aggregate river flow rate that 

is exceeded a specified percentage of the time (90, 95, and 98% were 

used), and (in the absence of water importation) is determined by the 

hydrology of the region and the amount of reservoir storage provided. 

"Demands" were defined as the sum of the required flow for water

quality maintenance plus the consumptive losses plus the discharge 

of fresh water into the ocean. The integration of ground water with 

surface water was implicit in their assumption that ground-water flows 

into rivers and will eventually become river flow. The quantity

quality interactions were specifically considered by modeling the 

effects of various degrees of waste-water treatment and river flow 

rates on instream concentrations of dissolved oxygen, nitrates, and 

phosphates. 

Figure 3 summarizes Wollman's and Bonem's analysis for the New England 

region. This diagram is read as two diagrams combined. The first is 

a curve of flow available 95% of the time (left-hand vertical axis) vs. 

storage (bottom horizontal axis), with the existing storage and existing 

·--
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available flow indicated. Superimposed on this is a graph showing 

water requirements (left-hand vertical axis) vs. year of projection 

(top horizontal axis), with separate projections depending on the 

degree of treatment ("50/70" indicates 50% BOD removal for industrial 

wastes and 70% for municipal wastes; the other figures assume the same 

percentage reduction for both types of wastes). Together, the two 

graphs indicate that the existing flows in New England are sufficient 

until 2020 if treatment is 80% or more, but that a "deficit" (i.e., 

a reduction in water-quality below 4 mg/l dissolved oxygen) will 

occur between 1990 and 2000 at the 70/50 treatment level. This "deficit" 

can be averted by building higher levels of treatment, or more storage, 

or a combination of both strategies. If only consumptive uses are 

considered, the region appears amply endowed for a long time. 

Figure 4 shows the results of applying Wollman's and Bonem's 

(1971) method to the Merrimack River Basin (Ryder, 1977). The picture 

for the Merrimack is worse than for the region as a whole, and indicates 

that even with a treatment level of 80%, a deficit will occur between 

1990 and 2000. At the 50/70 treatment level, it appears that there 

is not sufficient flow in the basin to satisfy the assumed water-quality 

standards. However, if only consumptive uses are considered, or if 

a high degree of treatment is used, the Merrimack, like New England 

as a whole, has abundant water for a long time. 

This last conclusion appears to contradict the statements of the 

various planning studies cited earlier, which indicated widespread 

water-supply problems as well as water-quality problems. This apparent 

contradiction reflects some of the difficulties one faces in charac

terizing water-resource problems. In general, the results of analyses 

of these problems depend on the precise definition of "supply" and 

"demand", the degree of aggregation, and the "demand" projections 

used. 

It is our contention that sound management of water-resource 

problems has four major requisites, which ideally should be satisfied 

at the political level which has the responsibility for decision-making 

and implementation: (1) precise definition of the problem; (2) consi

deration of all potential alternative solutions; (3) appropriate 
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objectives and criteria for choosing among alternatives, and (4) ability 

to analyze the alternatives with respect to the choice criteria. 

This report attempts to contribute to these objectives in ways 

that will be of practical use in water-resource planning in the New 

Hampshire portion of the Merrimack River Basin and in New England 

and the humid Northeast generally. It does this by separately con

sidering the hydrologic and economic aspects. The potential for 

merging of these aspects into a single framework, or model, for water

resource planning is clearly indicated, but for the most part could 

not be accomplished herein because of the limited resources available 

for this study. 

The hydrologic portion of the report first examines the nature 

of supply and demand in the context of water resources. Water quality 

and other in-stream flow requirements are integrated in the definitions. 

Following this, a quantitative planning-level framework for identifying 

the existence and nature of water-resource problems is developed. Most 

important, this framework allows evaluation of the degree to which 

any proposed management strategy will contribute to the solution of 

such problems. This framework constitutes a simulation model that 

can accommodate any combination of alternatives, including those that 

affect demand as well as those that increase supply. 

The economic portion of this study emphasizes a mixed-integer 

multiperiod prograrrnning model that utilizes hydrologic and economic 

data for identifying the discounted least-cost scheduling of water 

reservoirs for three communities. Preliminary sample data were used. 

This model can identify present water-supply sources that are economi

cally feasible for the future, as well as new reservoirs, based upon 

projected water demands. 

0 



PROJECT OBJECTIVES 

The overall objective of this project is to contribute to the 

fulfillment of the requirements enumerated above. The specific 

objectives are: 

1) Establish basic hydrologic relations for water-availability 

computations with respect to surface storage, joint management 

of ground water and surface water, and watershed management; and 

2) Develop economic relationships with respect to costs, supply, 

and demand associated with various alternatives and to incor

porate both economic and hydrologic relations into a dynamic 

mixed integer programming model. 

As will be documented in detail below, these objectives have been 

largely accomplished. Planning-level hydrologic relations for quan

titatively estimating the effects of surf ace storage on water avail

ability and on certain aspects of water quality have been developed. 

However, there was not sufficient time available to develop quantitative 

relations for the other two supply alternatives mentioned in Objective 

1, and only generalized considerations are possible for these. 

Major steps have been made towards accomplishing the second 

objective. A mixed-integer multi-period programming model that utilizes 

hydrologic and economic data for identifying the least-present-cost 

scheduling of water-supply reservoirs for a community has been developed 

and run with sample data. We have also formulated a quantitative model 

of water-quantity and -quality relations at a series of water-use sites 

along a river network. 

In addition, our research has led to the development of a hydro

logic and economic decision-making framework for identifying and eval

uating water-resource problems and solutions in the Merrimack River 

Basin and similar areas. 



RESULTS OF HYDROLOGIC ANALYSIS 

Definition of "Supply" and "Demand" 

Overview 

In economics, "supply" and "demand" have specific definitions: 

both are dependent on price, and the operation of market forces tends 

to make supply equal to demand. In water resources, by contrast, we 

are usually concerned with the capacity of a water-supply system, 

which is essentially a fixed value at any time, as compared to the 

rate at which water is or will be required. In general, the two values 

are not equal, and the manager is concerned with maintaining a capacity 

that exceeds the use requirements that are projected for some period 

into the future. Typically, these requirements are also considered 

to be fixed needs determined by the population and the type and level 

of economic activity in the region of concern, and are usually considered 

to be independent of the price of the water. 

Thus, there are fundamental differences between the concepts of 

supply and demand as applied in economics as opposed to water resources. 

To avoid any confusion, we will use the terms "supply" and "demand" 

only in a very general non-economic sense, and will define under these 

headings specific terms that will help make distinctions that are critical 

to thinking about and solving water-resource problems. 

Supply 

As noted above, "supply", as used in the water-resources literature, 

generally refers to the capacity of a system to provide water. However, 

this capacity has two parts: 1) the hydrologic capacity of the source, 

which is related to the total runoff (precipitation minus evapotrans

piration, both of which are determined by climate), the timing of this 

runoff (also determined by climate), and the amount of surface and sub

surface storage available (determined by geology and human activity); 

and 2) the engineering capacity of works designed to distribute and 
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treat the water. In this report, we will be concerned only with the 

hydrologic capacity of the source, which is often referred to as "water 

yield" or simply "yield". 

Yield is measured as a flow rate or volume per unit time, typically 

in units of cubic feet per second (ft
3
/s), gallons per day (gal/d), 

or liters per second (l/s). The amount of water available from any 

source - for example a particular location on a river - is highly 

variable in time, and the definition of capacity must account for this 

variability. The definition used here is: "the rate at which a source 

can supply water on 95% of the days". Thus, if a source is said to 

have a yield of 123 3 this means of time, ft /s, that, over a long period 

flow rate of that source averages 
3 

on 95% of the the 123 ft /s or more 

days. On 5% of the days, the flow rate will average less than 123 

ft 3 /s. This definition of yield is used as a basis for planning because 

it is assumed that a water-supply system should not be inadequate (i.e., 

flow rate less than desired use rate) more than 5% of the time. The 

symbol 11 Y95
11 is used for yield in this report. 

The above definition of yield does not explicitly provide information 

about the duration of any shortages, which might also be important for 

planning purposes. One measure of streamflow that includes information 

about duration is designated 11

7Q10
11

• This designates the seven-day 

average flow rate which has a 90% (i.e., 100-10%) chance of being exceeded 

in each year. For example, if the 
7
q

10 
at a location on a stream is 

86 ft 3/s, there is a 10% chance in any year that there will be a period 

of seven consecutive days for which the average flow rate is less than 

86 ft 3/s. Figure 1 of Appendix A shows that, with one anomaly, there is 

a very close relationship between Y95 and 7q10 for streams in the New 

Hampshire portion of the Merrimack Basin. The empirical equations 

describing this relationship are: 

for streams with Y9
5 

< .12: 

Q* = -.0099 + .651 Y* 7 10 95 (3-la) 

(r
2 = . 996) 



for streams with Y§5 ~ .12: 

O* = -.0263 + .843 Y* 7 ·10 95 (3-lb) 

(r
2 = .934) 

Y
95

/Q, and Q is the long-term mean flow rate. 

Because of the closeness of these relationships, use of 1
95 

as a measure 

of yield conveys implicit information about duration of shortages. 

It should be noted that design flows are not additive in a down

stream direction. For example, referring to Figure 5, the Y
95 

at 

point C is not the sum of the Y
95 

values at points A and B. 

Demand 

The major classes of water use are: 1) withdrawal uses (domestic 

and municipal supply, industrial supply, and irrigation); and 2) instream 

uses (waste transport and treatment, hydropower, navigation, fish and 

wildlife habitat, esthetic amelioration, and recreation). Withdrawal 

uses are usually further classified as consumptive (water that, in the 

process of being used, is lost by evaporation, incorporated into products, 

transferred out of the drainage basin, or otherwise made unavailable 

for further use within the basin) and non-consumptive (water that, 

after being used, is discharged in liquid form in the basin such that 

it is available for further use, with appropriate treatment). 

As noted earlier, "demand" in the context of water resources 

usually is interpreted as fixed requirements. Subsequently, we will 

show that requirements are not fixed by population and economic activity, 

but can be modified by policies such as water and waste-water treatment 

and pricing. Thus, we use the term "use rates", which like supply are 

measured as volume flow rates (discharges), rather than "demands" or 

"requirements". 

Figure 6 is a schematic diagram of some water-using activity 

(municipality, industry, farm) which uses the adjacent stream as a 

water source. Define Ql as the design streamflow just upstream from 

the withdrawal intake, W as the rate of withdrawal, and C as the rate 

of consumptive use by the activity. Then, assuming Q
1 

> W, the flow 



c 

Figure 5. The Y95 at C is not equal to the sums of the Y95 
values at A and B. 
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Figure 6. Conceptual diagram of a water-using activity obtaining 
water from and discharging to a stream. 
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in between the intake and the discharge, Q2 , is 

Q = Q - w 2 1 

and the flow downstream of the discharge, Q
3

, is 

.... 

(3-2) 

Since W ~ C, the flow Q
2 

is the smallest. In general, we would require 

q+2 = Q . (3-4) min 

where q+2 is the minimum allowable value of Q
2 

and Q . is a minimum
min 

flow requirement for all instream uses except waste dilution and 

treatment. Downstream of the discharge pipe, we require 

q+
3 

:: max ( Q . , Q ) 
min q 

(3-5) 

where Q! is the minimum allowable value of Q
3 

and Qq is the flow required 

to maintain a specified water-quality standard (usually specified as 

maximum allowable concentrations of pollutants or minimum allowable 

concentration of dissolved oxygen. Appendix B is a discussion of 

standards that might be appropriate in the Merrimack Basin.). 

Upstream of the intake, the requirement Qi is simply 

q+ = w 
1 

(3-6) 

The possible relations among the magnitudes of the required flows are 

case a: (Qmin + W) > Qmin > Qq 

case b : ( Q . + W) > Q > Q min q min 

case c: 

In case~. requirements Q!, Q!, and Q! are satisfied if 

(3-7a) 

In case .Q_, there are two possibilities. 

the requirements are also satisfied if 

If (Q . + W - C) > Q , then 
min q 

Ql > Q . + w - min 

but if (0 . + W - C) < Q , the requirement becomes 
'min q 

Ql > Q + c - q 

Hi 

( 3-7bl) 

( 3-7b2) 



Finally, in case c, the requirement is again 

(3-7c) 

If we consider a stream reach not supplying water to a use-point, 

W = O and case b cannot occur. The instream requirements are then 

given by the following variations of Equations 3-7a and 3-7b: 

ifQ. >Q: 
min g (3-Sa) 

Ql .:_ Qmin 

if Q . < Qq min _ 
( 3-Sc) 

Ql .:.. Qq 

In their study, Wollman and Bonem (1971) defined water use as 

Q + C, as in Equations 3-7b2 and 3-7c. This definition arose from 
q 

considering Q . = 0, i.e., flows sufficient to satisfy the water
min 

quality requirement (Q ) were considered to satisfy other minimum-
q 

flow requirements. However, their definition appears to ignore case 

3-7bl, in which (W - C) > Qq, and the required flow is W rather than 

Q + C. However, Figures 2 and 3 do suggest that the main water 
q 

requirements in New England and the Merrimack basin are for water 

quality, so that case c may be most common. In such cases, water 

requirements are given by Equations 3-7c. 

Fallacy of Adding Water Requirements or Deficits 

The above development of equations for computing water needs makes 

it clear that one cannot estimate the water requirements of a drainage 

basin by adding the requirements for individual stream reaches or use 

points. This can readily be seen by considering the simple case of 

two use-points on a stream (Figure 7). Suppose the water requirements 

are given by Equation 3-7a for both locations, and assume the following 

values: 

17 
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STREAM 

Figure 7. Two water-using activities on a stream. As explained 
in the text, the requirements at the two locations 
are not additive. 
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Upstream Location Downstream Location 

w 100 units w 80 units 

Qmin 20 units Qmin 25 units 

Requirement 120 units Requirement = 105 units 

Suppose the existing Y
95 

at the upstream location is 80 units and at 

the downstream location it is 85 units. The deficits at the two 

locations are then 

Upstream deficit: 120 

Downstream deficit: 105 

80 

85 

40 units 

20 units 

The sum of these deficits is thus 60 units. However, suppose a reservoir 

is constructed upstream of both cities, and Y
95 

at the upstream location 

is thereby increased to the required 120 units. This will also cause 

Y
95 

to increase at the downstream location; however, as will be shown 

later, this increase will be less than the increase further upstream. 

Assume Y
95 

at the downstream location is increased to 100 units. There 

is no longer a deficit upstream, and the downstream deficit has been 

reduced from 20 to 5. Erasing both deficits might require, say, building 

additional upstream reservoirs to obtain a Y
95 

of 105 at the downstream 

location. Such an increase might result in an increase of Y
95 

at the 

upstream location to 135. Thus, solving the downstream problem in 

this way would result in a surplus at the upstream location. 

Although this situation is fictitious, it illustrates that the 

sum of the two deficits is irrelevant to the magnitude of the solution 

to both problems. It also illustrates that adding the required water 

supplies is incorrect in assessing possible means for eliminating 

deficits. In short, the preceding analysis and definitions show that 

water requirements must be computed individually for each stream reach, 

and that an increase in supply (yield) implemented to alleviate a 

deficit at one location will affect, in a complicated manner, the supply 

at all locations downstream of where the increase in supply is imple

mented. Any framework for solving basin water problems must account 

for these facts. 
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Alternative Solutions to Water-Resource Problems 

In the preceding discussion, the symbol Q
1 

was used to designate 

any design flow entering a stream reach. To be consistent with earlier 

discussion, the design flow we have chosen is the specific value Y
95

, 

so this symbol will be used henceforth. We have also shown that there 

are two definitions of water requirement, depending on the relative 

values of quantities in equations 3-7a - 3-7c. In order to further 

streamline the discussion, we will use the symbol QR for requirements, 

defined as Qmin + W or Qq + C, as appropriate. 

Thus, we can now state that a water-resource problem exists at 

a stream reach or use point if it is predicted that QR > Y
95 

at some 

time within the planning horizon. As shown in Table 3-1, there are 

several possible steps that might be taken to prevent the deficit 

from occurring, some of which increase Y
95 

and some of which decrease 

the predicted QR. A comprehensive framework for water-resources 

planning should permit the evaluation of all these types of solutions. 

The following section formulates such a framework. 

Comprehensive Framework for Evaluation of Alternatives 

Figure 8 is a schematic diagram of a use location adjacent to 

a river. This is essentially the same as the situation in Figure 6, 

except that provision has been made for recycling water within the 

use site and for treating the water before and after use. We now must 

define several additional terms, all of which are expressed as average 

(steady-state) discharge rates [L3 /T]: 

u - rate of use of water 

J - rate at which waste-water is treated 

R - rate of recycling 

D - rate of discharge to stream 

Then the following relations are true 



Table 3-1. Alternatives for Solving Water-Resource Problems 

To Increase Yield (Supply) 

reservoir construction 

ground-water extraction 

conjunctive use of ground
water and surf ace water 

water importation 

desalination 

watershed management 

weather modification 

To Decrease Requirements (Demand) 

waste-water treatment 

recirculation 

water pricing 

water-use regulation/conservation 

growth control 

:z 1 
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Figure 8. Definitions of water-quantity terms for framework 
equations. Symbols represent rates of water flow 
[i3/T]. 



u 
J 

D 

D 

W + R 

u 

J 

w 

c 

R 

c 

Now we define the following demensionless factors: 

k 
c 

k 
r 

kd 

-

-

c 
u 
R -u 
D 
-

u 

"consumptive-use factor" 

' 
"recirculation factor" 

' 
"discharge factor" 

Appropriate combinations of the above relationships will show 

that 

w (1 - k )U 
r 

and 

For municipal supply, water use is expressed as 

U = a P 
p p 

where U is rate of municipal 
p 3 

rate of water use [L /T 

3 
use [L /T] , a is the per-capita 

p 
· person], and Pis the population served 

( 3-9) 

( 3-10) 

( 3-11) 

(3-12) 

(3-13) 

(3-14) 

(3-15) 

(3-16) 

(3-17) 

(3-18) 

by the municipal system [persons]. The industrial use rate, u
1

, is 

where a1i is a process factor expressed as the volume of water 

required to produce a unit of product i [13 /unit], I. is the rate 
1. 

at which product i is produced [units/T], and the summation is carried 

out over all water-using industries. Agriculture can be considered 

as an industry in this context. The factors a and a
1

. are inversely 
p 1. 

related to the price which the user must pay for water. The exact 

form of the relation must be determined by empirical data, which is 

not examined in detail herein. 

At any time within the planning horizon, U =Up+ u
1

, and is 

determined by the projected population, the projected types and levels 



of industrial activity, and the price of water to the users. Thus, 

U is considered to be determined by projections of population and 

economic activity for each point in time. The factor k is also c 
fixed by the type of water-using activity - for example, in the 

domestic use of water, about 25% is consumptively used (Wollman and 

Bonem, 1971), so k = .25. Various industries have appropriate loss 
c 

factors, for which estimates can also be obtained from Wollman and 

Bonem (1971). In the following, k is an appropriate weighted value 
c 

for the use point at the time of interest. 

With U and k determined by projected conditions and by a decision 
c 

variable (the price of water), there remains one more decision variable 

that must be fixed: the recirculation factor, k . It might be of 
r 

interest to point out the relation between the value of k and the 
r 

number of times water is used, n : 
r 

n 
r 

k 
1 + __ r_ 

1 - k 
r 

which is the same as the "rate of recirculation", defined by 

(3-20) 

Wollman and Bonem (1971) as U/W. Kuiper and Wecksler (1974) defined 

a "re-use factor", which is equal to k / (1 - k ) or n - 1. Table 
r r r 

3-2 shows the corresponding values of n and k over the range of values 
r r 

assumed possible by Wollman and Bonem (1971). 

In the framework of Figure 8, when U, k , and k are fixed, Equations 
c r 

3-9 to 3-17 determine the values of all the other values. In particular, 

we note that the required withdrawal rate, W, is determined by Equation 

3-16 and the discharge rate, D, by Equation 3-12 or Equations 3-15 and 

3-17. 

If we were concerned only about water supply, and not about in

stream uses and quality, a deficit would exist if W > Y
95

. In this case, 

all types of solutions in Table 3-1 except increased treatment could 

theoretically contribute to erasing the deficits. We would need 

hydrologic and related information to estimate how much increase in 

Y
95 

could be obtained from the supply-side alternatives. On the demand 

side, economic studies would suggest how much W could be reduced by 

24 



Table 3-2. Relation Between Measures of Water Re-Use 

k 0 .1 . 2 . 3 .4 . 5 . 6 . 7 . 8 . 9 .986 
r 

n 1 l. ll 1. 25 1. 43 1. 67 2 2.5 3. 3315 10 70 
r 



increasing price (thus reducing a and/or a1 .). Trying different 
p l 

values of k in Equation 3-16 would show how much W could be reduced. 
r 

Political and social information would be required to estimate the 

possibilities of regulation and reduction of projected population or 

industrial growth rates. To select the appropriate alternatives to 

implement, we would, of course, need estimates of the economic costs 

and environmental and social impacts of each. 

We now proceed to introduce water-quality considerations into the 

framework. In Figure 9, each of the flows is multiplied by a concen

tration [M/L3] of some critical dissolved constituent designated by 

a small "c" and a subscript. As discussed in Appendix B, the 

critical constituents in New Hampshire are generally phosphorus and 

oxygen. Figure 9 and the following development are for an undesire

able constituent added during use and removed by treatment, such as 

phosphorus. If oxygen, a desirable constituent that is removed by 

use and added by treatment, were used the arrows and signs designating 

the rate of removal in water treatment, F [M/T], the rate of addition 

in use, A [M/T], and the rate of removal in wastewater treatment, 

G [M/T], would be reversed. 

In Figure 9, c
1 

is fixed by upstream conditions, which must be 

specified or computed, as will be discussed later. From the water

supply model, U and C are determined by projections and prices, R 

(or k ) is a decision variable, and all other quantities are deter-
r 

mined by Equations 3-9 to 3-17 as described above. In considering 

water quality, an additional quantity, the rate of addition of pollutant 

A, is fixed by population and economic projections: 

A= A + AI (3-21) 
p 

A b p (3-22) 
p p 

A. l:bI. I (3-23) 
l 1 l 

where b is the per-capita rate of pollutant addition [M/T person] 
p 

and bii is the unit rate of addition for industrial process i [M/unit]. 

There are two additional decision variables for water quality: 

the degree of water treatment tf and the degree of waste-water treatment 
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Figure 9. Definitions of water-quality terms for framework 
equations. Capital letters represent rates of water 
flow [i3/T]; small letters represent concentrations 
of pollutants in flows [m/L3]. 



t g' where 

F 
tf -

c
1

W + cdR 
(J-24) 

and 

G 
t - c,J g 

J 

(3-25) 

Both tf and tg are dimensionless ratios. The remaining unknowns can 

be computed from the following system of equations, based on simple 

mass-balance considerations: 

c
1

W + cdR c 
(3-26) 

t u 

ctU - F 
c (3-27) 

u u 

c u + A 
c. u (3-28) 

J J 

G 
c = c. -d J J 

(3-29) 

combining these, one can solve for c. in terms of known quantities 
J 

as 

(3-30) 
c. 

J 

Then Equation 3-25 can be solved for G, Equation 3-29 for cd' Equation 

3-24 for F, Equation 3-26 for c , and Equation 3-27 for c . 
t u 

Of particular interest in light of the previous discussion of 

water requirements is the value of cd' because the concentration of 

pollutant in the stream below the discharge, c
3

, when the upstream 

flow is Y 
95 

is 

c1 (Y95 - W) + cdD 

c3 y95 - C 

If this concentration is greater than the acceptable standard, 

water-quality problem exists. 

28 
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Equation 3-31 indicates that there are several ways in which c
3 

can be reduced (assuming U and C fixed): 1) reduce c
1 

by treatment, 

land-use practices, or other actions upstream; 2) reduce W and 

therefore D by increasing recycling or other actions; 3) reduce cd 

by increasing treatment (tg); 4) increase Y
95 

by building reservoirs 

or other actions (see Table 3-1). If this latter alternative is selected, 

the required flow to meet the water-quality standard, Q , can be cal-
q 

culated as 

Q = 
q + 

c - cl 

+ c > c 
1 

(3-32) 

Appendix A is an application of these framework equations to a 

representative situation in the Merrimack Basin, while Appendix B 

is a discussion of water-quality criteria appropriate for New Hampshire. 

Evaluating Alternative Solutions to Water-Resource Problems -

Hydrologic Aspects 

Introduction 

Table 3-1 listed a number of alternative actions that are at 

least theoretically available to a water-resource manager faced with 

a projected water deficit. Some of these alternatives increase the 

yield (Y
95

) available to the system, and others operate to reduce the 

water requirements as defined in previous sections. Although certain 

aspects of the hydrologic evaluation of some of these alternatives 

have been alluded to earlier, we now examine each in more detail. 

Build Reservoirs 

Reservoirs can be used to augment the Y
95 

available at a given 

use point in one of two ways: 1) the reservoir can be connected by 

an aqueduct directly to the use point; or 2) the reservoir can be used 

to regulate flows in a stream reach. 

In the first instance (Figure 10), the water is normally provided 

29 



I 

I 
I 
I 

l 
l 
I 
I 
I 
it 

--~# 
B 

A 

AQUEDUCT 

RESERVOIR 

USE POINT 

Figure 10. Alternative uses of reservoir for water supply: 
A - direct aqueduct connection utilizing safe
yield of reservoir; B - withdrawal of water from 
stream whose flow is regulated by reservoir. 
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for withdrawal uses. However, the Y
95 

is also increased in stream 

reaches downstream of the discharge point. As detailed in Appendix 

C, the yield (Y
95

) provided by a reservoir-aqueduct system in the 

Merrimack basin can be estimated using the following relations: 

Y* 1 74.1 - 78.0 + S* 95 
(3-33) 

Y* 
95 - y95 (3-34) 

Qr es 

S* 
s 

- u (3-35) 

Qr es 

where S* is the storage ratio of the reservoir expressed in days, 

Qres is the long-term mean flow at the reservoir site, S is the active 

storage volume of the reservoir, and u is a unit-conversion factor. 

If there is no other source of water to the use point, the Y
95 

value computed via Equations 3-33 to 3-35 would be the value of W in 

the framework equations. If there is another source of water used 

at a given location, the computation of W becomes more difficult, as 

one cannot simply add the Y
95 

values for two or more sources to get 

a combined Y
95

. 

Similarly, if the river at the use location is the source, or one 

wishes to compute the effects of discharges on Y
95 

values downstream, 

one cannot simply add. In this case, one can apply a slight modification 

of the method developed in Appendix C for computing downstream effects 

on Y
95

, as follows. First, estimate the mean flow at the reservoir 

site. Then compute the regulation of the reservoir, R, as: 

* R R Qr es res res 
where 

R* 1 
res 

1 + (913/S*)" 625 

Then compute the effective regulation at the reach of interest, 

R h' as re 

~1 

(3-36) 

(3-37) 



R rch 

R 
res 

-· 

(3-38) 

where Q is the long-tenn mean flow in the reach. Then Figure 6 of 
rch 

Appendix C is used to estimate ~*95 and the new value of Y
95 

in the 

reach, Y95 , is 

(3-39) 

The second type of use of reservoirs is for downstream flow 

augmentation, either for withdrawal or instream uses. The effect of 

upstream reservoirs on Y
95 

in a given downstream reach is computed 

via the method described in Appendix C. Again, this involves compu

tation of R at all upstream 
res 

3-37. Then one computes 

reservoirs 1/ via Equations 3-36 and 

1 
L:R. 

l 
(3-40) 

* where R. is the R value for each reservoir, 6
95 

is found for the 
i res 

reach from Figure 6 of Appendix C, and the new Y
95 

is found from 

Equation 3-39. 

Plate II (see Appendix I) is a map showing the location of potential 

reservoir sites identified in the Merrimack River basin by the u .. S, Soil 

Conservation Service. 

Ground-Water Extraction 

In New Hampshire, ground water occurs in both surficial (glacial) 

deposits and bedrock. The water in surficial deposits is continually 

moving toward surface-water bodies, and is the source of most of the 

region's streamflow. Thus, ground water extracted from such deposits 

is water that would eventually become streamflow, and its extraction 

is conceptually no different from withdrawal from the stream. In fact, 

1/ If two or more reservoirs are linked in series, only the downstream
most reservoir is used, 
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the yield of an aquifer hydraulically connected to a stream and without 

significant additional sources of recharge is ultimately the same as 

the yield from the stream reach affected by the withdrawal. For 

example, if one attempts to pump continuously at a rate of Y95 from 

such an aquifer, the water being pumped is being recharged from the 

stream and the rate of streamflow depletion will eventually reach Y95 
(Jenkins, 1968; Jenkins and Taylor, 1974). This means that on 5% 

of the days, there will not be sufficient streamflow to support this 

rate of continuous pumping. Thus, although the timing of "shortages" 

may be different, the ultimate yield is the same for both the stream 

and the aquifer connected to it. 

For surficial aquifers that are not connected to streams that 

provide significant recharge, the yield is more difficult to determine. 

Hall (1979) estimates that recharge to such aquifers in southeastern 

New Hampshire occurs at the average rate of 30 cm/yr, which is equi

valent to 0.87 ft 3/s mi
2 

or 9.5 £/s km
2

. No studies of the statistical 

variations of yields of such aquifers have been done, but Hall (1979) 

does report sustained pumping rates in the range 10 to 50 £/s (0.40 
3 

to 1.5 ft /s). 

A preliminary discussion of computations of yields from isolated 

aquifers is given in Appendix D and concludes that, for planning 

purposes, the Y
95 

is equal to the long-term average rate of recharge. 

Using the above figures, a value of 9.5 £/s km2 
of aquifer could, 

therefore, be used. As shown in Appendix C, an average value of Y9
5 

for New Hampshire streams with no surface storage is 0.05. If the 

long-term average streamflow is 17 £/s km2
, this amounts to about 

2 
0.85 £/s km , or less than 10% of the yield of an isolated aquifer on 

a per-unit-area basis. 

Plate III (see Appendix I) shows the location of potentially productive 

aquifers identified by the U.S. Geological Survey. Hany of New Hampshire'· s 

significant aquifers are adjacent to streams and would receive recharge 

from both the stream and as percolation from above. The total yield of 

the aquifer could be estimated as the sum of the yields available 

from each source. 
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Conjunctive Use of Surface and Ground-Water 

Aron et al. (1974) have made the only detailed study of effective 

strategies for integrated use of ground and surface water in humid 

regions such as the Merrimack Basin. Their simulation study suggested 

that there would be considerable economic advantage to supplementing 

reservoir supplies with ground-water pumping. Figure 11, taken from 

their study, is an example of the effects of various levels of emergency 

ground-water pumping in increasing the yield of reservoirs of various 

sizes. For small storages such emergency use effectively increases 

the yield, but very large well-field pumping capacities are required 

to bring about significant yield increases for larger reservoirs. In 

these cases, Aron et al. (1974) recommended a program of "preventive 

pumping" in anticipation of seasonal streamflow deficits. In the New 

Hampshire section of the Merrimack Basin, 16 of the 52 communities 

with public water supplies have both surface- and ground-water 

sources. It is not known to what degree the two sources in these 

communities are conjunctively managed to take most efficient advantage 

of the characteristics of each type. However, integrated ground- and 

surface-water use has great potential as a water-supply strategy in 

New England, and deserves considerable further detailed study. Here 

we explore the hydrologic aspects of joint use of a river and an 

aquifer hydraulically connected to it as a water supply. 

Figure 12 shows the effect of pumping water for a finite period 

of time from an aquifer that is hydraulically connected to a stream. 

Such pumping decreases the streamflow, but the effect is attenuated 

and drawn out in time. Jenkins and Taylor (1974) have shown that the 

magnitudes of the delay and attenuation are determined by a "streamflow

depletion factor", f : 
q 

f 
q 

2 
a s 

T 

where a is the distance from well to the stream, s is the specific 

yield of the aquifer, and T is the transmissivity of the aquifer. The 

larger the value of f , the higher the delay and attenuation. Figure 13 
q 

illustrates how the delay in stream response can be exploited for a 

city which gets its primary water supply from a river, and whose water 

34 



-

28.0 r-1--1---i 

26.0 WELLFIELD CAPACITIES, in ac-ft/month------------. ,... 
C1l 2000 
Q) --0 
>, 24.0 -..i 1600 4-1 ___.-o 
I 0--u 22.0 Ill 1200 
o· 800 0 40 0 
,....; I<.._ 0 

c:: 
~ 

0 
....:i 
1::.1 
H 
>< 
0 
1::.1 14. z 
H 
c:i 
l:: 
0 
u 
....:i 
< :::> z z 
< 8. 

STREAM B 
LIMITING SHORTAGE INDEX = 0.05 

6. LOW FLOW REQUIREMENT = 3 cfs 

(Without Preventive Pumping) 
4. 

2. 

10 20 30 40 50 60 

RESERVOIR CAPACITY, in 1000 ac-ft 

Figure 11. Effects of combining emergency pumping of ground water 
with reservoir for an example modeled by Aron, et al. (1974). 
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stream. Data for Peterborough, New Hampshire (Appendix E). 



requirement, QR is detennined by QR= W + Q . . The calculations are 
min 

made for the Contoocook River at Peterborough, New Hampshire (see 

Appendix E). The effect on streamflow of continuing to withdraw at 

the rate W in the absence of ground-water extraction is that the minimum

flow requirement is violated for an extended period. However, pumping 

from an aquifer connected to the stream reduces the impact on stream-

f low at any time during the pumping period, and reduces the time the 

minimum-flow requirement is violated. The degree to which one can 

avoid violating such a requirement depends, of course, on the exact 

magnitudes of f and of all the relevant flow requirements and the 
q 

streamflow. This suggests that this mode of conjunctive use might be 

an effective strategy in the Basin. 

Water Importation 

Water importation is usually defined as the transfer of water into 

a drainage basin from a source located in another basin. By this 

definition, almost every connection of a reservoir to a use point 

constitutes importation, since the use point is seldom in the drainage 

basin that contributes water to the reservoir. Many ground-water 

sources also qualify as importation by this definition. Thus, the 

water available from an importation scheme is evaluated by applying 

the methods discussed earlier for reservoirs or ground-water sources. 

It is important to re-emphasize that any withdrawal use of water, 

whether or not importation is involved, results in streamflow depletion 

between the withdrawal and discharge sites, and in general also causes 

a change in streamflow timing below the discharge site. Such changes 

may have significant effects on water quality and other instream uses 

such as fish and wildlife habitat, navigation, and hydropower. The 

importance of the changes can be estimated for planning purposes on 

the basis of the relative magnitudes and timings of the withdrawals 

as compared to the flows required for the other uses. If it appears 

that effects will be significant, more detailed simulation-model 

studies of the situation should be carried out. 
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Desalination 

Desalination is the general term for several processes that 

separate dissolved solids in order to increase water quality to the 

extent that the water becomes suitable for some withdrawal use. There 

are two potential sources to which desalination could be applied: 

1) water from a saline or brackish source, such as the ocean or estuary; 

and 2) water being discharged from a conventional waste-water treatment 

plant (recirculation). 

Use of desalinated ocean water as a water source has traditionally 

been regarded as uneconomic in New England. However, in some coastal 

areas in southern New Hampshire where population pressure is high, 

suitable reservoir sites are scarce or committed to other uses, and 

ground-water sources are small and subject to salt-water intrusion, 

desalination of ocean water may be a viable alternative. Here, of 

course, the critical factors are economic (high energy costs) and 

environmental (brine disposal) rather than hydrologic. 

As water is recirculated in a system its content of dissolved 

solids increases, and if the recirculation factor, k , is large, the 
r 

water may have to be treated by desalination processes. The subsequent 

discussion of recirculation discusses this situation more fully in the 

context of the framework equations. 

Watershed Management 

This term covers a number of land-use alterations implemented 

with the goal of increasing water yield. Most commonly, the alterations 

involve replacing the existing vegetative cover with another that will 

result in lower evapotranspiration. In general, the annual evapo

transpiration under a given climatic regime decreases in the following 

order: 

conifer forest + hardwood forest + grass/shrubs + no vegetation 

Thus, replacement of a vegetative cover with another lying to the right 

on the above scale results in an increase in the mean annual runoff, 

~Q, that can be computed as 



-

6E (3-41) 

where 6E is the change in mean annual evapotranspiration. 

A large number of experiments have been done to determine the 

magnitude of 6E under various conditions. For New England, the most 

pertinent of these studies are the deforestation experiments carried 

out at the U.S. Forest Service's Hubbard Brook Experimental Forest, 

which is in the Merrimack Basin in West Thornton, New Hampshire. These 

experiments have shown that for a watershed converted from a mixed 

hardwood forest to essentially no vegetation (maintained by application 

of herbicides), 6Q amounts to 24 to 34 cm/yr (7.6 to 10.8 £/s km2). 

Four years after herbicide application ceased, 6Q decreased to about 
2 

2 cm/yr (0.6 £/s km) as regrowth occurred (Hornbeck and Federer, 1975). 

While there is no doubt that increases in average runoff can be 

produced on managed watersheds, studies that demonstrate the viability 

of watershed management as an effective strategy for increasing yield, 

in New England and elsewhere, are largely lacking. A literature research 

has located only three studies that provide information on the increases 

in Y
95 

due to land-management practices, and the results of these are 

summarized in Table 3-3. Although the increases shown are substantial, 

it must be remembered that the periods of record are short, the effects 

decrease with time if regrowth is allowed to occur, and the watersheds 

are small. 

A crude preliminary evaluation of the hydrologic potential of 

watershed management can be made by assuming that the increase of Y
95 

due to cutting (6Y
95

) is linearly related to the percent of watershed 

maintained in clearcut condition. (The effect is almost certainly 

non-linear, but in the absence of detailed studies the assumption of 

linearity can be made for approximate computations.) Assuming that 

the Pierce, ~ al. (1970) data apply to average conditions in the 

Merrimack Basin, we have 

6Y95 = 6.5 Ac/Aa 

where 6Y
95 

is the increase in yield in £/s km2 , Ac is the area of 

watershed maintained in clearcut, and Ad is total watershed area. 

(J-42) 



Table 3-3. Results of Studies on Increase in Y
95 

Due 
to Watershed Management Practices 

Watershed Years of Increase in Y95 
Location Area, km2 Practice Record cm/yr £/s km2 Source 

W. Thornton, NH 0.16 clearcut, 1 20 6.5 Pierce et al. 
herbicides (1970) 

I-'- Fernow, WV 0.23 clearcut, 1 12 3.8 Patric 
herbicides (1973) 

Central PA 0.43 2/3 clearcut 6 3.5 1.1 Lynch et al. 
in two phases (1975) 



Equation 3-42 can then be used to construct Figure 14, which relates 

percentage of clearcut area on watersheds of various sizes to increase 

in water yield. (Average per capita water use is about .048 £/s). 

It is also possible to modify Equation 3-42 to 

6Y§5 = .37 Au/Ad (3-43) 

2 
by taking an average value of mean flow, Q, of 17.6 £/s km . Equation 

3-43 permits a direct comparison of the increases in yield possible 

from watershed management with those due to reservoir construction. 

By reference to Appendix C, 

Y 95 
74.1 

A * -0 95 - . - 78 + S* (3-44) 

where S* is reservoir storage divided by mean flow and expressed in 

days, and the natural Y
95 

is assumed to equal .05 times the mean flow. 

Figure 15 shows the relation between S* and Ac/Ad given by the equations 

3-43 and 3-44: 

I 2 ( 74.1 ) 
Ac Ad= .7 .95 - 78 + S* (3-45) 

This shows that the maximum possible proportion of clearcutting is 

equivalent to providing reservoir storage sufficient to hold 50 days 

of streamflow at the outlet of the treated watershed. 

Both the absolute and relative effects of watershed management 

decrease downstream from the managed watershed. However, data do not 

exist to evaluate this effect beyond the linear assumption made in 

developing Equation 3-42. 

Complete evaluation of watershed management as a strategy for 

increasing supplies will require using deterministic hydrologic models 

developed for the region, such as that of Federer and Lash (1978). 

These models should be run with input data representing at least 

several decades in order to develop an accurate picture of effects 

on yields. 

Watershed-management practices will be most effective when reservoirs 

exist that can be used to increase 6Y
95 

over that obtainable from land

use alterations alone. The only study of this combined effect is that 

of Hawkins (1969), who used fictitious data. Application of his approach 
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to New England, using model data as described above, would be most 

valuable. 

It should be noted that the economic, environmental, and social 

impacts of watershed management are likely to be large, and assessment 

of these costs is essential for complete evaluation of watershed 

management as a strategy. 

Weather Modification 

Under some circumstances, it may be possible to increase the mean 

precipitation in a region by 10 to 14% (New England Division, 1977). 

A simulation study (Sopper and Hiemstra, 1970) analyzed the effects 

of precipitation increases of 10 to 30% in small watersheds in Penn

sylvania, and concluded that significant increases in streamflow could 

result, particularly during the low-flow season. 

However, there is still a large degree of uncertainty concerning 

the efficiency of rain-making in New England. A study in 1968 (Hoeh, 

1968) indicated that New England water managers considered artificial 

enhancement of precipitation to be a strategy of last resort. This 

same attitude is reflected in recent considerations of this alternative 

for New England (New England Division, 1977). The feasibility of inducing 

significant increases in precipitation given New England's climatic 

situation, and the very formidable economic and social (especially 

legal) consequences militate against serious consideration of rain-

making as a water-supply strategy at this time. 

Further studies of this topic should include simulations of the 

type done by Sopper and Hiemstra (1970) using a model such as that of 

Federer and Lash (1978). As with watershed management, these studies 

should also be designed to evaluate the use of reservoirs to store the 

increased flow due to rain making. And, since the legal and environmental 

consequences of this strategy appear to be monumental, studies of 

these aspects are at least as important as the hydrologic questions. 

Waste Treatment 

Waste treatment is a potential management alternative when the 



water requirement for a stream downstream from a use point is given 

by Qq + C (see Equations 3-7b2 and 3-7c). The effect of this alternative 

is computed by Equation 3-31, which is repeated here: 

(3-31) 

As noted earlier, cd is found by solutions of Equations 3-30, 3-25, 

and 3-29. Differentiating Equation 3-31 shows that the rate of change 

of c
3 

with cd is 

D 
(3-46) 

that is, it depends on the ratio of the rate of discharge from the use 

point to the river flow rate at the discharge point. 

The computations in Appendix A (Table A-1) provide an example of how 

the flow rate required to meet a fixed water-quality standard changes 

as a function of treatment level; the data are plotted in Figure 16. 

Recirculation 

When the water requirement at a use point is determined by 

Qmin + W (Equations 3-7a and 3-7bl), the effectiveness of recirculation 

as a policy can be determined directly from Equation 3-9: 

W = U -R (3-47) 

or 

W = U(l - k ) 
r 

(3-48) 

Earlier discussion and Table 3-2 indicated that values of kr as 

high as .986 might be possible. The principal physical limiting 

factor for k is the build-up of dissolved solids that occurs as water 
r 

is re-used, and the framework equations can be used to evaluate this 

effect for selected dissolved constituents. The critical consideration 

is the concentration of pollutant in the water being used, c , and this 
u 

can be computed by solving the framework equations in the following 

order: find cj from Equation 3-30, G from Equation 3-25, cd from 
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Equation 3-29, F from Equation 3-24, ct from Equation 3-26, and 

finally c from Equation 3-27. 
u 

If we consider a pollutant that is not reworked by normal water 

or wastewater treatment (e.g., chloride or nitrate), so that t and 
g 

tf = 0, the framework equations reduce to 

and 

c. 
J 

A + c 1 (1 - kr) U 

U(l - k - k ) 
c r 

(3-49) 

c = c
1

(1 - k ) + c.k (3-50) 
u r J r 

Equation 3-48 shows that k must be limited by the value of k for a 
r c 

particular use, such that 

k < 1 - k ( 3-51) 
r c 

Table 3-4 summarizes data from Wollman and Bonem (1971) on values of k 
c 

and hence maximum values of k for various withdrawal uses. 
r 

Within the limits dictated by Table 3-4, values of k are further 
r 

restricted by the maximum allowable values of c for critical dissolved 
u 

pollutants. Appendix F shows a sample computation for chloride, using 

data applicable to municipal use in Bow, New Hampshire, and the results 

are shown in Figure 17. It is assumed that neither water nor waste

water treatment processes remove chloride (this assumption would also 

be true for certain other critical pollutants, such as nitrate.) 

Assuming the U.S. Public Health Service limit of 250 mg/t concentration 

of chloride in water for municipal use, Figure 17 indicates that the 

maximum permissible value of k for this case is about 0.48. 
r 

If treatment removes some fraction of a critical dissolved pollutant, 

the maximum permissible value of k can be raised. This is illustrated 
r 

for phosphorus in the Bow, New Hampshire situation in Figure 18. For 

an assumed upper limit for c of 1 mg/£, for example, the maximum k u r 
is .1, .125, and .15 for no, primary, and secondary treatment, respectively. 

With tertiary treatment, the upper limit of k is again controlled by k . r c 
Interestingly, recirculation can also contribute to solution of 

water-resource problems when the water requirement is given by Q + C. 
q 

Again, using the data for the Bow, New Hampshire situation, the 

I() 



Table 3-4. Average Values of k and Limiting Values of k for 
c r 

Various Withdrawal Uses (from Wollman and Bonem, 1971) 

Use k Maximum k 
c r 

Municipal .25 . 75 

Manufacturing-food .10 .90 

Manufacturing-pulp & paper .06 .94 

Manufacturing-chemicals .09 .91 

Manufacturing-petroleum & coal .11 .89 

Manufacturing-primary metals .06 .94 

Steam-electric power .01 .99 
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of re-use, kr, using example of chloride at Bow, New 
Hampshire (Appendix F). 

sn 



JOO 

tg = . I 0 

tg = .35 

JO 

.I 
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of re-use, kr, using example of phosphorus at Bow, New 
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concentration of phosphorus in the Merrimack River downstream from the 

discharge, c
3

, can be computed as a function of treatment level and kr 

via the framework equations. The results are shown in Figure 19, and 

indicate that, though the effects are relatively small, instream water 

quality is improved by recycling, particularly at primary and secondary 

treatment levels. 

Water Pricing 

Many articles have been written on the effects of water pricing 

on water use. Sharpe (1978) summarized some recent studies and concluded 

that pricing is not generally very effective in controlling water use, 

as domestic water use rates in particular are relatively unresponsive 

to changing prices (i.e., water use is price inelastic). However, large 

water-using industries may reduce water usage if water costs are signi

ficant, and pricing structures that charge more for a unit of water as 

usage increases may help induce such a response. 

In the context of the framework equations, any effects of price 

on usage would enter through effects on the per-capita rate of water 

use, ap, and the industrial process factors a1i (see Equations 3-18 

and 3-19). Considering only a as an example, it might be possible 
p 

to relate that factor and price by an equation of the form 

-s a = a.$ 
p 

where $ is the price per unit of water and a and S are empirical 

constants. Then from Equation 3-18, 

where P is population. Tne definition of demand elasticity, E, is 

From Equation 3-53, 

_ dU 
E = d$ 

dU 
d$ 

i 
u 

and substituting Equations 3-53 and 3-55 into 3-54 gives 

52 

(3-52) 

(3-53) 

( 3-54) 

(3-55) 
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E -6 (3-56) 

Thus, if Equation 3-52 is valid, the exponent in that relation is the 

demand elasticity for water. 

Water-Use Regulation/Conservation 

This term is used herein to include both official restrict~ons on 

water use and "conservation", which is defined as any voluntary actions 

taken to reduce usage while maintaining a given population or level 

of industrial activity. 

Usually water-use regulation is considered as a strategy when the 

water requirements are determined by Q . + W, and the goal is to reduce 
min 

W. In these cases, as with pricing, any effects enter the framework 

equations via the per-capita water-use factor a or one or more indus-
p 

trial process factors aii (Equations 3-18 and 3-19). To evaluate this 

strategy, then, one would simply apply appropriately reduced values of 

ap and/or aii' which would result in proportional reductions in W. 

In situations where water requirements are given by Q + C, which 
q 

is probably the case for most communities in the Merrimack Basin, water-

use regulation/conservation is not an appropriate strategy. 

Growth Control 

The framework equations are designed for planning use, in which 

projections of population and industrial activity are made for future 

planning horizons. Then W, Q , C, and Q . are computed as a basis for 
q min 

estimating water requirements by Equations 3-7a - 3-7c, as appropriate. 

All these terms except Q . depend on the level of population and indus-min 
trial activity used in the computations, through Equations 3-18, 3-19, 

3-22, and 3-23. Thus, a possible strategy for reducing future water 

requirements is to enact policies such as zoning regulations which 

would limit future population or industrial growth. 
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RESULTS OF ECONOMIC ANALYSIS 

Introduction 

Water resource planning usually involves a decision-making 

authority faced with a situation of how to select a water project 

from a set of alternatives with known costs and capacities and to 

implement this project at a point in time based upon a predetermined 

objective. For a defined planning period, the problem becomes a 

dynamic one in which the first project selected is dependent upon 

the other decisions remaining over time. Butcher, et al (1969), 

Morin (1973), Morin and Esogbue (1974), and Haimes and Nainis (1974) 

illustrate this type of problem. 

The above discussed problem in general terms can be classified 

as either a sequencing or scheduling problem. According to Knudsen 

and Rosbjerg (1977), if future water demand is assumed to be deter

ministic, operation and maintenance costs are considered a negligible 

component of total costs and/or all the projects under consideration 

have roughly equivalent per unit variable costs, and the aggregate 

capacity for all proposed projects equals demand at the end of the 

planning period, then a sequencing problem exists. This is because 

all proposed projects must be constructed with the basic problem 

being the optimal order of implementation. When the assumption of 

aggregate supply for all proposed projects equated to final time 

period demand is relaxed, the situation then becomes a scheduling 

problem. The optimizing framework conceptually becomes one of both 

selecting and sequencing a required number of projects. This implies 

that it does not necessarily follow that all proposed water projects 

must be selected, as was the case under the sequencing problem. 

For our purposes, the Merrimack River Basin water planning 

model is classified as a scheduling problem. The first two previously 

discussed assumptions--deterministic future water demands and operation 

and maintenance costs are deemed to be a small percent of total costs-

are satisfied within the developed framework. 
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A model was developed for three towns in the Merrimack River 

Basin with consideration given to four future time periods for 

water planning purposes based upon projected water demand require

ments for each of the time intervals. The objective of the model 

is the selection of a plan which will minimize total discounted 

cost over the planning horizon of the construction and operation 

of the water system, subject to various constraints (water demands, 

water system yields, ... ).l/ Seven potential reservoir sites 

were evaluated and will be discussed in a later section. A mixed 

integer programming algorithm was utilized for computational purposes 

and a general overview is presented below. 

Mixed Integer Programming 

Mathematical programming is generally based upon the simplest 

of all programming activities linear programming (LP); where, its 

principles are expounded in Dantzig (1963) and Hadley (1962) with 

practical applications contained in Vajda (1961), Beale (1959) and 

Heady~ al (1967). LP basically relates to a problem consisting 

of maximizing (or minimizing) a linear objective function subject 

to linear constraints. The optimal solution will generally consist 

of noninteger values. Notationally, the LP problem is expressed as 

follows: 

(1) Maximize (minimize) Z C'X 

< > 
AX = B X - 0 

> ' 

1_/ A recent trend in project or public investment evaluation has been 
the development of decision-making frameworks which consider more 
than one objective function. This developing field, as reviewed 
by Cohon and Harks (1975) and Loucks (1975), is commonly referred 
to as vector optimization or simply, multiobjective programming. 
This technique makes it possible to incorporate and evaluate 
the explicit tradeoffs among noncommensurable objectives. For 
our present purposes, emphasis is upon a single objective opti
mization problem with future possibility resting with the adoption 
of an appropriate multiobjective framework. 



where, A is am x n matrix of technical coefficients, C is an x 

1 vector of prices or other weights for the objective function, X is 

an x 1 vector of activities, B is am x 1 vector of resource or 

other restraints, and C'X = Z is the objective function. 

A special case of linear programming is mixed integer programming 

(MIP). As was the case under the LP framework, the objective function 

and constraints are linear, but this particular mathematical programming 

variant allows for the optimal solution to contain integer values as 

well as noninteger values. Constraints are designated which force 

some variables to take on either zero or one values and allow for 

these variables to be introduced only once, if at all. This aspect 

is entered into the MIP framework because lack of this feature would 

cause the variables representing decisions on whether to introduce 

particular investments to take inadmissable fractional values. Such 

results would have no real world interpretation. For example, it 

makes no sense to derive a solution that builds six-tenths of a 

reservoir in period one and three-tenths in period two, and so forth. 

Notationally, the MIP problem is as follows: 

(2) Maximize (minimize) Z = C'X subject to 

< > 
AX. ~ B, X - 0 

x. is an integer 
J 

x. is a noninteger 
J._ 

0 or 1 

where, x are elements in the X vector of activities and the inter

pretation of notation that applied under the LP framework also holds 

for the MIP general model. 

Prior to 1958 no computational procedure existed that would result 

in integer solutions to mathematical programming problems. In 1958 

Gomory (1958) developed the "cutting-plane" method for solving integer 

programming problems. In contrast to the efficient simplex method 

used in solving LP problems, this method yields an optimum integer 

solution in a finite number of steps and raises concerns about computational 



ff . . 2 / e_ iciency.- Researchers are working on alternative methods of 

solving MIP problems with the objective of improving computational 

efficiency. For example, some noteworthy contributions to the 

literature on integer programming are Dantzig (1960), Glover (1966), 

Gomory and Baumol (1960), Markowitz and Mame (195 7), and Gomory 

(1960). 

In contrast to the "cutting-plane" method, the "branch-and-

b d" d h b 1 used .1/ Th b . MIP bl oun proce ure as een common y e asic pro em 

is first solved as if a LP problem exists. Next, a subset problem 

is generated which forces one of the possible integer variables to 

have a value of zero and another subset problem which forces this 

same variable to be one. Since two branches are formed for compara

tive purposes, the program chooses for a minimization problem the 

cheaper branch and allows the other branch for additional comparisons. 

Two additional subset problems are organized to investigate compari

sons with another variable and the process is repeated. 

For our purposes, the MIPZl mixed integer programming package 

developed by Bravo, ~al (1970) was utilized. The algorithm used 

in this program is basically a modification of the Additive Algorithm 

of Balas (1965). The major modifications include a reordered enumer

ation tree and the addition of the mixed integer option. McCarl, 

et al (1973) present an indepth discussion of each modification. 

Studv Area 

The New Hampshire towns of Hudson, Merrimack, and Nashua 

contained in the Merrimack River Basin were selected as the unit of 

analysis for application of the previously mentioned model. 

2/ In general, computational efficiency is related to the number of 
computational steps required to reach an optimum solution. Balinski 
(1965) intensively discusses this concept. 

3/ This method is often considered to be more efficient than the former 
method based on feasible solutions being designated sub-optimal early 
in the procedure. 
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In 1970, these towns had average daily water demands in million gallons 

of .50, .74, and 9.55, respectively; and it is anticipated that by 

1990 these demands will reach 2.80, 4.00, and 10.00, respectively 

(Merrimack River Basin Water Supply Study, 1977). It was felt that the 

demand levels are indicative of communities that can be classified as 

low, medium, and high water users and therefore represent a study area 

with variation accrued to use. It is also projected that by the year 

2000 Hudson, Merrimack, and Nashua will have populations per square 

mile at levels of 771, 1103, and 3116, respectively (Nashua Regional 

Planning Committee, 1977). These figures reflect varying population 

density which again points to a heterogeneous study area. 

Presently, Hudson is supplied with water by the Hudson Water 

Company, which is a privately owned firm. The water source is four 

gravel packed wells and has an estimated present sustainable yield 

of 1. 75 m.g.d. For 1977, the number of parties (homes and firms) 

served was about 2300 with about 86 percent metered (NHWSPC, 1977). 

Merrimack is supplied water by the Merrimack Village District which 

is classified as a municipal district. Five gravel packed wells 

serve as the present source with estimated safe yield to be 5.18 m.g.d. 

The District provides water for domestic, mercantile, commercial, 

industrial, and fire protection uses. For 1977, the number of units 

served was approximately 3500 with 100 percent metered (NHWSPC, 1977). 

Since 1852, Nashua has been supplied with water by Pennichuck 

Water Works, an investor owned company. The sources of supply include 

both ground and surface water sources for an estimated present 

sustainable yield of 13.70 m.g.d. For 1977, about 14,400 parties 

were served with 99 percent metered (NHWSPC, 1977). 

Consideration was given to seven potential reservoir sites for 

possible water supply augmentation for each of the three towns for 

future time periods. Of the seven sites, three are located each in 

Hudson and Nashua with the remaining proposed reservoir in Merrimack. 

Table 4-1 contains data pertinent to each site. All considered sites 

are located within the defined study area. This was done because it 

was unrealistic in the initial stages of model development to evaluate 

sites outside the study area based upon political jurisdictional 



Table 4-1. Data Overview of Proposed Reservoir Sites. 

Reservoir Construction Costs Y (m.g.d.) Q95 (m.g.d.) Y-Q95 (m.g.d.) 
(1980) 

Hudson 1 $1,626,947 17.1 1. 87 15.3 

2 319,474 0.52 0.06 0.46 

3 773 '230 2.52 0.19 2.33 

Merrimack 4 426,813 1. 29 0.06 1. 23 

)"\ 

::> 
Nashua 5 229,870 0.45 0 0.45 

6 587,580 0. 78 0.06 0. 72 

7 366,324 1.03 0.06 0.97 

y : reservoir yield 

Q95 : natural yield without reservoir 

Y-Q
95

: net reservoir yield 

Surf ace Area 
(acres) 

405 

96 

190 

115 

49 

350 

135 

t 
t 



considerations. Future refinement of the model could possibly 

evaluate sites external to the boundaries of the three towns. These 

seven proposed water supply areas were selected not only because of 

location, but also based upon the variability that exists among costs, 

surface area, and Y-Q. It was felt that such a set of alternatives 

would make for a less constraining situation for the decision-making 

process. Further development of the potential sites could include 

some of the previously discussed alternatives contained in the 

hydrologic section of this report. Lack of data precluded enclosure 

at this time. 

Conceptual Model 

As was previously discussed, a mixed integer programming model 

was developed for the three towns of Hudson, Merrimack, and Nashua, 

New Hampshire in the Merrimack River Basin with consideration given 

to the time periods 1981-1990, 1991-2000, 2001-2010, and 2011-2020 

for water supply augmentation purposes based upon projected water 

demand requirements for each of these time spans. Appendix G 

contains a discussion of the method used to derive "water use over 

time" values for each of the three towns. The objective of the 

model is the selection of a scenario that will minimize total 

discounted cost over the four time periods for the three towns 

of the construction and operation and maintenance (0 & M) of new 

reservoirs, construction and 0 & M of new pipeline systems, 0 & M 

of existing wells, and 0 & M of currently existing pipelines. 

Notationally, the developed model is presented below with an 

explanation following the objective function and each constraint 

set. Economic data utilized in this model are in Appendix H. 

6] 



T I 
-t -t 

Minimize s I I [ C. (l+r) y. + b . ( 1 +r) W . ] + 
i=l 

l lt l lt 
t=o 

(4-1) 

T I J -t -t 
I I I [ d . . ( 1 +r) v . . t + e .. (l+r) w .. ] + 

t=o i=l j=l l] l] l] l] t 

T z T J z 
-t -t 

I I [ g (l+r) Q J + I i:: i:: [m . (l+r) x . z zt j=l z=l ZJ Zt] + 
t=o z=l t=o 

T J z 
-t -t 

k . (l+r) u . ] + I I I [ 1 . ( 1 +r) q . t J 
ZJ ZJ t t=o j=l z=l ZJ ZJ 

The above represents the objective function of minimized total 

discounted cost over four time periods for three towns of the con

struction and operation and maintenance (O+M) of new reservoirs, 

construction and O+M of new pipeline systems, o+M of existing wells, 

and O+M of currently existing pipelines. 

Constraints 

R.l: y. - Wi.t l lt 
> 0 Vi=l, ... , I. 

t=o 

Current yield from reservoir i in time period t if 
implemented must be equal to or less than the capacity 
of the ith proposed reservoir. 

T 

I yit < 1 ; Vi 
t=o 

Th . 11 h .th d . b is a ows t e i propose reservoir to e con-
structed only once over four time periods. 

< P ; Vz=l, ... , Z ; t=l, ... , T 
z 

(4-2) 

(4 -3) 

(4-4) 

This allows for the current yield from an existing well 
z in time period t to be equal to or less than the capacity 
of the zth existing well. 

J 

W. - I w O l it . l . . = ; \Ii = , ... , I 
J= l] t 

t=l, ... , T 
(4-5) 

Current yield from reservoir i in time period t must 



equal the volume of water flowing from proposed reservoir 
i to all town j's in time period t. 

J 
i:: 

j=l 
[q. + u.] = o; v z=l, ... ,z 

ZJ t ZJ t 
t=l, ... , T 

Current yield from existing well z in time period t 
must equal the volume of water flowing from existing well 
z to all town j's through existing and new pipelines in 
time period t. 

I z 

(4-6) 

j < i:: w.. + i:: [u . + q . J ; V j, t 
st i=l lJt z=l ZJt z]t 

(4-7) 

The volume of water flowing from existing sources and 
new reservoirs for period t is at least equal to the water 
demand requirements for each town in period t. 

T 

i:: v. •t 
t=o lJ 

< l; Vi,j (4-8) 

Once a pipeline is constructed between a new reservoir 
and town during any of the four time periods, it cannot be 
constructed again. 

T 
i:: 

t=o 
x . 

ZJ t 
< l; Vz,j,j# (4 -9) 

Once a pipeline is constructed between an existing well 
and town during any of the four time periods, it cannot be 
constructed again. 

T 
P i:: X - u > O; Vz,j,j~z Z ZJ. t ZJ. t 

t=o 
(4-10) 

The volume of water flowing from existing well z to town 
j through new pipeline in time t cannot exceed the capacity of 
well z. 

T 
R. Z V .. 

lt=o lJt 
> 0; Vi,j (4-11) 

The capacity of the ith proposed reservoir must be greater 
than or equal to the volume of water flowing from proposed 
reservoir i to town j in time period t. 

Contained below is an explanation of all of the above notation. 



Notation 

c. 
i 

r 

b. 
1 

w. 
it 

d .. 
1] 

v .. 
1] t 

e .. 
1] 

w .. 
1] t 

m . 
ZJ 

x. 
ZJ t 

k . 
ZJ 

u . 
ZJ t 

1 . 
ZJ 

. 1 f h .th d . capita cost o t e i propose reservoir 

discount rate 

value of 1 or 0 for the ith reservoir in time t 

unit operation and maintenance cost of proposed 
reservoir i 

current yield from reservoir i in time period t 

capital cost of the pipeline constructed from 
proposed reservoir i to town j 

value of 1 or 0 for proposed pipeline from 
proposed reservoir i to town j in time t 

unit operation and maintenance cost of the 
proposed pipeline from proposed reservoir i to 
town j 

volume of water flowing from proposed reservoir i 
to town j in time period t 

operation and maintenance cost per unit of current 
yield from existing well z 

current yield from existing well z in time period t 

capital cost of proposed pipeline from existing 
well z to town j 

value of 1 or 0 for proposed pipeline from existing 
well z to town j in time t 

unit operation and maintenance cost for proposed 
pipeline from existing well z to town j 

volume of water flowing from existing well z to 
town j through proposed pipeline in time t, where z~j 

unit operation and maintenance cost for existing 
pipeline from existing well z to town j 

volume of water flowing from existing well z to 
town j through existing pipeline in time t, where 
z=j 

- -



R. 
l 

p 
z 

s 

. f .th d capacity o i propose reservoir 

th 
capacity of z existing well 

water demand requirement for town j in time t 

discounted total cost representing objective 
function value 

i refers to proposed reservoirs 

t refers to a time period with t=O denoting the 
years 1981-1990, t=l designating the years 1991-2000, 
t-2 depicting 2001-2010, and t-3 designating the 
period 2011-2020 

j indexes towns with j=l, j=2, and j=3 representing 
Hudson, Merrimack, and Nashua, respectively 

z indexes wells with z=l, z=2, and z=3 depicting 
existing wells in Hudson, Merrimack, and Nashua, 
respectively 

Empirical Results 

Table 4-2 contains an overview of the initial optimal solution for 

four time periods. The minimum discounted total cost representing 

the objective function value is given. The projected water demand 

requirements for the individual towns for each time period are stated, 

along with the current yield from the existing individual wells for 

each period t. Special note is made when a new reservoir i is con

structed and the designated period initially utilized. Also included 

is the current yield of reservoir i for time span t as well as any 

new pipelines that must be built. 

The objective function value is $3,545,089. 70 which represents 

the minimum discounted total cost of carrying out a distinct water 

planning strategy which satisfies all of the necessary constraints 

designated in equations 4-2 through 4-11. Interestingly, the existing 

well in Hudson does not enter the solution and thus suggests that 

it should not be utilized over the entire four time periods. In 
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Table 4-2. Optimal Solution for Merrimack River Basin Model1~ 
(million gallons) 

Period _!2_81-1990, _t=O 

DemRnd requirement (s~) 
for town j 

1 6012. 8 -0 

2 
90.59. 80 -

3 
80 - 32357. 

Current yield (Q ) 
zt 

from well z 

QlO • 0 

Q20 - 9059. 

Q30 - 38369. 

New reeervoir (yit) 

constructed 

none 

New pipeline (xzjt) constructed 

from existing well z to town j 

x310 

Period ig91 .. 2o_QQ, _ _!::_l, 

Demand requirement (s~) 
for town j 

1 
81 - 10355. 

ai • t5392. 

si • 36588. 

Current yield (Qzt) 

from well z 

Qll - 0 

Q21 - 0 

Q31 - 36588. 

New reeervoir (ylt) 

co'lstructed 

Yu 

Cui-rent yield (wit) from 

reservoir i 

wll - 25747. 

New pipeline (vijt) from 

reservoir i to town j 

_vlll 

v121 

*Objective Function Value: $3,545,089.70 

Period 2001-2010, t=2 Per.~~011-2020~ 

Demand requirement (s~) Demand requirement (s~) 
for tmm j for town j 

·~ - 17845. 
1 

93 - 30744. 

2 
92 - 26156. 

2 s
3 

a 44439. 

3 
82 - 41373. s; • ~6i82. 

Current yield (Qzt) Current yield (Q ) 
zt 

frol'I well z from well z 

Ql2 - 0 Ql3 - 0 

Q22 - 0 Q23 - 16 l.15. 

Q32 - 41373. Q33 - 50005. 

New reservoir (yit) New reservoir (yit) 

constructed constructed 

none none 

Current yield (wit) from Current yield (wit) from 

reservoir i reservoir i 

w12 - 44001. w13 • 55845. 

' 



time period 0, new pipeline is constructed from the existing well 

in Nashua and provides water from Nashua to Hudson. In time period 

1, a new reservoir is utilized and located in the town of Hudson. 

For this period, new pipelines link this reservoir to water trans

mission to Hudson and Merrimack and the existing well in Merrimack 

is not used. For time period 2, no additional reservoirs are 

required. In the final period 3, Merrimack is again drawing water 

from its own well, but also with water provided by the Hudson 

reservoir. Hudson is relying upon Nashua and its own reservoir for 

water provision and Nashua is provided water by its existing well. 

Table 4-3 provides additional information inherent in the 

optimal solution. The volumes of water transmitted through various 

sources (qZJ.t' u . , and w .. values) are given with the inter-
ZJt lJt 

action network between the three towns summarized for each of the 

time periods. It can be readily seen that Hudson has water trans

mitted from Nashua's well in period 0, from its own newly constructed 

reservoir for periods 1 and 2, and from both Nashua's well and the 

reservoir for the final period. Merrimack utilizes its own well in 

period 0, Hudson's reservoir during t=l and t=2, and for t=3 its 

own well as well as the reservoir. Nashua is self-sufficient over 

all four periods relying exclusively on its own well. Of seven 

alternative reservoir sites, only one is actually constructed. 

Because the objective function can only change in discrete 

jumps with respect to changes in the integer variable, penalties 

associated with integer variables should be interpreted carefully. 

These jumps or steps are not necessarily the same interval at 

different values of the variable. As a result, shadow prices 

cannot be given the usual interpretation. Therefore, computed shadow 

prices attached to our model are left out. 

The model consists of 296 variables and 235 constraints. The 

number of integer variables is 136 with continuous variables 

equal to 160. The matrix density is 1. 725 percent which means that 

of a matrix 296 by 235, 1.725 percent of the elements are nonzero. 
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Table 4-3. Volume of Water Transmitted from Town i to Town j 

Through Various Sources for Designated Time Periods (million gallons) 

i 

Hudson (i=l) 
well, z=l 

Merrimack (i=2) 
well, z=2 

Nashua (i=3) 
well, z=3 

Hudson (i=l) 
well, z=l 

Merrimack (i=2) 
well, z=2 

Nashua (i=3) 
well, z=3 

Reservoir 1 (Y
1

) 
(located in 
Hudson) 

j 

Hudson (j=l) 

0 
(quo> 

0 
(u210) 

6012. 
(u310) 

j 

Hudson (j=l) 

1981 - 1990, t=O 

Merrimack (j=2) Nashua (j=3) 

0 0 
(ul20) Cu130> 

9059. 0 
(q220) (u230) 

0 32357. 
(u320) (q330) 

1991 - 2000, t=l 

Merrimack (j=2) Nashua (j=3) 



---

Table 4-3 (cont'd.) 

i 

Hudson (i=l) 
well, z=l 

Merrimack (i=2) 
well, z=2 

Nashua (i=3) 
well, z=3 

Reservoir 1 (Y
1

) 
(located in 
Hudson) 

Hudson (i=l) 
well, z=l 

Merrimack (i=2) 
well, z=2 

Nashua (i=3) 
well, z=3 

i 

Reservoir 1 (Y
1

) 
(located in 
Hudson) 

j 

j 

Hudson (j=l) 

0 
(qll2) 

0 
(u212) 

0 
(u312) 

17845. 
(wll2) 

Hudson (j=l) 

2001 - 2010, t=2 

Merrimack (j=2) 

0 
(ul22) 

0 
(q222) 

0 
(u322) 

26156. 
(wl22) 

2011 - 2020, t=3 

Merrimack (j=2) 

69 

Nashua (j=3) 

0 
(ul32) 

0 
(u232) 

41373. 
(q332) 

0 
(wl32) 

Nashua (j=3) 

46782. 

(q333) 



CONCLUSIONS 

Water-resource managers attempt to forecast future supply

demand imbalances by projecting levels of population and industrial 

activity, relating those levels to demands for water supply and 

quality, and comparing the projected demands with the capacity 

of the existing supply system. If demands exceed the capacity 

a deficit is forecast, and the manager is faced with selecting the 

appropriate strategy for eliminating this deficit. 

The results of the hydrologic and economic analyses of this 

report can be integrated to provide a framework for this process 

of water-resource planning that meets the four requisites discussed 

in the Introduction: 

1. Precise definition of the problem - Water-requirements, 

or demands, at a future period are determined by the 

relative magnitudes of a) the flow rates required 

for withdrawal (W); b) the flow rates required for 

instream uses such as recreation, habitat, navigation, 

and hydropower (Q . ); c) the rate at which withdrawn 
min 

water is consumed (C); and d) the flow rate required 

to maintain water quality at acceptable levels (Q ). 
q 

When these relative magnitudes are determined, the 

water requirement is precisely defined (see eqns. 3-7). 

2. Consideration of all potential alternative solutions -

Table 3-1 provides a list of all potential strategies 

that might be considered as solutions to a forecast 

deficit. Some strategies increase the available 

supply, while others act to reduce demands. Given 

the precise nature of a deficit as determined in step 

1, various alternatives can be identified as appro

priate or inappropriate. For example, increasing 

treatment reduces Q , but has no effect on W, C, or 
q 

Qmin; desalination may satisfy a forecast withdrawal 

rate, W, but may have little effect on Q ; a flow-
q 

augmentation reservoir can provide water for withdrawal 
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and/or satisfy water-quality needs. Preliminary planning

level estimates of the quantitative effects of the 

alternatives of Table 3-1 on water quantity and quality 

can be made based on the material presented in Section 

3 and Appendixes A-F. 

3. Appropriate objectives and criteria - Choice of 

alternative strategies for alleviating a forecast 

water deficit is made by evaluating each alternative 

against specific criteria, which measure the extent 

to which the alternatives meet selected objectives. 

Benefits and costs represent positive and negative 

measures relative to criteria. If benefits and costs 

are measured in more than one way (e.g., dollars and 

one or more measures of environmental effect), the 

problem is multi-objective; if only one measure is 

used, with other effects considered as constraints, 

the problem is single objective. One common way of 

approaching water-resource problems is as a single

obj ective scheduling problem, as described in Section 

4. This particular objective is to find an optimal 

solution for choosing and implementing the available 

water-supply alternatives that has the least present 

value of costs while satisfying the projected require

ments. 

4. Ability to analyze alternatives with request to criteria -

To evaluate the benefits of a water-resource strategy, 

one must know the degree to which that strategy will 

alleviate the problem - i.e., how much water the 

alternative will provide. (This may be converted to 

dollars of benefits if the price of the water is known.) 

The discussions of Section 3 provide information for 

planning-level estimates of the effects on water 

quantity and quality of a large number of alternatives. 

This information is required for any evaluation scheme, 

and was specifically incorporated into the MIP model 

described in Section 4. 
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The hydrologic and economic objectives were mainly accomplished 

through the development of simulation and optimization models, 

respectively. Introduction of the latter's results into the former 

model provided for an integrated assessment of water-management 

strategy for a sub-basin area over a future planning horizon. 

Each model on its own provides useful information for a particular 

aspect of river basin management; but in combination, linkages 

are formulated which allow for a clearer, more realistic evaluation 

and overview. 
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GENERAL 

APPENDIX A 

Application of Water Supply-Demand Framework 
to a Merrimack Basin Conununity 

The town of Bow, New Hampshire, is located on the Merrimack River 

just south of Concord. Its 1980 population is about 3,990 and its 

projected year-2000 population is 5,790. The town presently has 

neither a public water supply nor a sewage-treatment plant. We will 

compute water requirements for the Merrimack River at Bow for the 

year 2,000 population, using the framework equations developed earlier 

and the following values, largely taken from various planning studies 

(principally New Hampshire Water Supply and Pollution Control Commission, 

1978). Computations are most conveniently done with flow rates in 

liters per second £/s). Phosphorus is the only water-quality consti

tuent considered (see Appendix B). 

Parameter Values 

p 

+ c 

a 
p 

b 
p 

k 
c 

5,790 persons 

28,800 £/s (1017 ft
3

/s) 

.010 mg/£ (present values are about 0.03 mg/£, but 
we assume they will be improved by 2000). 

.015 mg/£ 

.0048 £/s person (110 gal/day person) 

(phosphorus) = .OS mg/s person (.009 lb/day person) 

.25 

Water Supply Requirements 

U = a P = 27.8 £/s (.98 ft
3
/s; 0.63 million gal/day) 

p 

Assume no recycling (k = 0) 
r 

The required withdrawal is 
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w = (1 - k ) U = 27.8 £/s 
r 

Since Wis only 1/1000 of Y
95

, the Merrimack River would provide an 

ample quantity of water. 

Minimum Flow for Aesthetics and Habitat, etc. 

A common rule-of-thumb to compute flows required for support of 

fisheries in New England is 0.2 ft 3/s per square mile of drainage area. 

The drainage area of the Merrimack above Bow is about 2,500 mi2 , so 

Q - 500 ft 3/s = 14,200 £/s. min - The present Y
95 

is about twice this 

value, so assuming there are no higher minimum flows needed for other 

purposes, this requirement is also satisfied. 

Water-Quality Requirements 

The rate of phosphorus contribution to the assumed municipal 

supply is 

A= b P = 289.5 mg/s (55.1 lb/day) 
p 

For initial computations, we assume that the water treatment process 

does not remove phosphorus, so tf = 0. We now compute cj, cd, c
3

, 

and Q using the appropriate equations and parameter values for four 
q 

levels of treatment: t = 0, 0.10, 0.35, 0.98, corresponding to no, 
g 

primary, secondary, and tertiary treatment. 

c. 
J [Cl - kc) - Cl+ tg + tf -

G t c.(l - k )U 
g J c 

c. G 
J (1.- k )U 

c 

t tf)k JU g r 

c1 (Y 95 - W) + cd(l - kr - kc)U 

y95 - kcU 

+ 
[kcc - c1 (1 - kr) + cd(l - kr - kc)]U 

+ c 

The results are summarized in Table A-1. 
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Table A-1 

t 0 .10 .35 .98 
g 

c. (mg/'l) 13.9 13.9 13.9 13.9 
J 

G (mg/ s) 0 29.0 101. 4 284.0 

Cd (mg/'l) 13.9 12.5 9.0 0.3 

c3 (mg/'l) .020 .019 .017 .010 

Qq (£Is) 57,900 52'100 37,500 1,200 

Total Requirements 

The data in Table A-1 show that for all levels of treatment less than 

tertiary, 

Qq > (Q . + W) > Qmin min 

so the flow requirement is Q + c. With tertiary treatment, 
q 

(Q . + W) min > Qmin > Qq 

so the required flow is Q . + W. These results are summarized in 
min 

Table A-2. 

Table A-2 

t 0 .10 .35 .98 g 

W (£/s) 27.8 27.8 27.8 27.8 

Q . (£/s) min 14,200 14,200 14,200 14,200 

Q + W(£/s) m 
14,200 14,200 14,200 14,200 

Qq (£/s) 57,900 52,100 37,500 1,200 

Required Q 
(£/s) 5 7 '900 52,100 3 7 '500 14,200 

y95 (£/s) 28,800 28,800 28,800 28,800 

Deficit 
(£/s) 29,100 23,300 8,700 
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Table A-2 shows that with any level of treatment less than tertiary, 

there will be a water deficit in the Merrimack River at Bow (under the 

conditions assumed here) - i.e., the phosphorus concentration will exceed 

the water quality standard of .015 mg/£. There are essentially four 

options for avoiding the deficit: 

1. Build upstream storage reservoirs to increase Y
95 

to 

57,900 £/s; 

2. Build a primary treatment plant and upstream reservoirs 

to increase Y
95 

to 52,100 £/s; 

3. Build a secondary treatment plant and upstream reservoirs 

to increase Y
95 

to 37,500 £/s; 

4. Build a tertiary treatment plant. 

Each of these alternatives would have associated costs, including 

probably significant environmental and social costs for the reservoirs, 

which would have to be considered by decision-makers. It is very 

likely that the fourth alternative would turn out to be most attractive 

from the viewpoint of Bow alone. However, if sites are available, 

reservoirs would increase Y
95 

at all points downstream from where they 

were constructed, and therefore would help to alleviate water deficits 

in many stream reaches, so their costs might be spread out over many 

towns. The effects of reservoirs on downstream Y
95 

values is addressed 

Appendix C. 
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The objective of this project is to provide the necessary information 
to assess the present and future water qunntity and quality problems within 
the New Hampshire portion of the Merrimack River basin, and evaluate the al
ternative solutions of the encountered problems. Evaluation of the solutions 
will include a "least-cost" determination of the most effective method for 
solving the forecasted problems. 

Within the operating model of this study, the basis of which is derived 
from the model developed by Wollman and Bonem (1970), one decision point 
will involve water quality. The water-quality decision will be predicated 
on the sub-basins water's compliance with the water-quality criteria estab
lished for the study. 

The purpose of this working paper is to establish these water-quality 
criteria for use in making the water-quality decisions within the model. 
The criteria established will function within the operating model at the 
water-quality decision point, and should offer a reasonable evaluation of 
the water-quality problems within the Merrimack River Basin (M.R.B.). 

Traditionally water-quality criteria are established according to the 
proposed use of the resource. The National Water Quality Standards Program 
initiated by the Water Quality Act of 1965 has recommended that water-quality 
standards be comprised of use designations for each water body, and water
quality criteria to support the designated use (EPA 1973). 

Generally stated, the use classifications are; public water supply: 
industrial, municipal, agricultural, recreational, and protection and 
propagation of fish and wildlife. These use classifications coincide with 
the multiple uses of the water resources in the M.R.B. 

According to the nationally established water-quality standards, recre
ation, and the protection and propagation of fish and wildlife require the 
highest quality waters (EPA 1973). The water-quality criteria to be used 
within the operating model of this study will follow the established criter
ia of several parameters within these use classifications. 

The list of physical and chemical parameters incorporated into the 
criteria for recreational and the protection of fish and wildlife use 
classes is extensive. Inclusion of all these parameters into the working 
model is highly impractical. Wollman and Bonem in The Outlook for Water 
(1970) initially hoped to include several water-quality parameters into 
their model. As a result of the complexity generated by the number of fac
tors initially studied, their study was finally restricted to dissolved 
oxygen as the only water-quality parameter. In the conclusion of their 
study Wollman and ?.onem state (1970, p. 7), "Even the limited number of 
factors explored in this study presented a large array of possible solutions." 
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Wollman and Bonem's study had a national scope, consequently, detailing 
of their approach would have required large amounts of data and time. The 
M.R.B. is the object of the present study, thus, the water-quality criteria 
will focus on the water-quality problems within this river basin. 

In an overview of the M.R.B., the New England River Basin Commission 
(Turner 1978) has identified industrial and municipal waste water and com
bined storm and sanitary sewers as the most significant sources of water
quality degradation within the basin. The estimated point-source discharges 
within the river basin are: 7.0 mg/l industrial effluent and 38.3 mg/l 
municipal waste water (Turner 1978). Combined storm and sanitary sewers 
are the cause of water-quality degradation in the towns of Pittsfield, Con
cord, Manchester and Nashua, New Hampshire. (N. H. Water Supply Pollution 
Control Com., 1978) 

Nonpoint source pollution (NPS), i.e., pollution from diffuse, non
specific sources, within the M.R.B. has been ''masked'' by the aforementioned 
point sources. However, the N. H. Water Supply Pollution Control Commission 
and Ns.v England River Basin Commission both feel that NPS is suspect in the 
eutrophication of some lakes and ponds within the M.R.B. (N. H. WSPCC 1978, 
Turner 1978). These agencies along with EPA feel that as point sources of 
pollution are being corrected, i.e., improved industrial effluent treatment, 
construction and operation of municipal wash-water treatment plants, and 
separation or treatment of combined sewer overflows, NPS pollution will be
come evident as a source of water-quality degradation nationally and within 
the M.R.B (Mayo 1975). 

The effluent content from some of the point sources can be summarized 
as follows: 

Raw Sewage 

Primary and 
Secondary 
Treatment 

Tertiary 
Treatment 

Industrial Effluent Content for Apparel, Food 
and Materials Industry (Ciaccio 1971) 

x BOD 

x COD 

100 -5,000 mg/l 

80 -10,000 mg/l 

Municipal Waste Water National Mean Concentrations 
mg/l (Ciaccio 1971) 

BOD COD TS SS TP ~ 

147 288 453 145 6.6 

15-20 50-70 15-30 10-15 

<10 <40 <10 

Q? 



TS 

Combined Sewer Overflows, Range of Results 
from Nine Cities in U.S. in mg/l (Kothandaraman 1972) 

BOD 
COD 
SS 
TP 

31-700 mg/l 
59-2000 mg/l 
30-2500 mg/l 
0.8-34.0 mg/l 

Storm Water Runoff Ranges of Results from 5 Cities in 
U.S. (Kothandaraman 1972) 

BOD 
COD 
SS 
TP 

Total Solids, SS 

1-283 mg/l 
20-1514 mg/l 
5-ll,280 mg/l 
0.0-9.4 mg/l 

Suspended Solids, TP Total Phosphorus 

The effects of NPS pollution cannot be easily identified due to the 
nature of their diffuse sources. The New England River Basin Commission 
cites the 208 and 303(3) planning programs as having identified NPS pollu
tion sources within the M.B.R. as subsurface disposal systems, landfill 
leachate, soil erosion from construction sites, and road salting (Turner 
1978). These sources of NPS pollution and additional sources were dis-
cussed in a survey conducted by N. H. Water Supply Pollution Control Com
mission (Elkind 1977). The survey sample included conservation commissioners, 
planning agencies, town planning boards and developers throughout New Hamp
shire. A list of the NPS pollution sources cited in the survey, the fre
quency of Citing, and the pollutants expected to be present from these 
sources are listed below: 

Perceived NPS Pollution in N. H. (Elkind 1977) 

Contributing Frequency of Pollutants from 
Source Mention Source 

* Dumps and MOD-High Nutrients (N & P) chloride, 
Landfills Metals, BOD, COD 

* Septic (tank-sludge) MOD-High Nutrients (N & P) 
Disposal 

Site Development MOD-High Suspended Sediment 
Nutrients (P) 

Subsurface 
Sewer Disposal MOD-High Nutrients (N) 

* N refers to nigrogen, p refers to phosphorus 



- -

Perceived NPS Pollution in N. H. (Elkind 1977) continued 

Contributing 
Source 

Highway Salting 

Boat Discharge 

Filling & Dredg
ing of wetlands 

Highway Construc
tion 

Silviculture 

Frequency of 
Mention 

MOD-High 

MOD 

LOW-MOD 

LOW-MOD 

LOW-MOD 

Pollutants from 
Source 

Chloride, Metals? 

Raw Waste, Oil and Gas 

Nutrients (P) 
Metals 

Suspended Sediment 
Nutrients (P), Metals 

Suspended Sediment, 
Nutrients 

The water-quality criteria to be established for use in this study must 
function to 1) assure a water-quality level that will allow the intended uses; 
2) adequately assess the present and future water-quality problems; and 3) 
remain applicable in light of the parsimony required in a Wollman and Bonem 
type model. 

To best meet these ends, the water-qu3lity parameters to be considered 
for use in the operating model will include dissolved oxygen, dissolved 
inorganic phosphorus, and sediment as sediment yield per sub-basin. 

Dissolved Oxygen -

In order to sustain a healthy aquatic biota dissolved oxygen (DO) require
ments will be established at 5 mg/l for all environmental extremes,i.e., low 
flow, and seasonal temperatures. A DO concentration of 5 mg/l is the lower 
limit acceptable in order to support the desirable fisheries. EPA recom
mends that in very extreme environmental situations that DO levels should not 
dip below 4 mg/l for a period longer than 24 hours (EPA 1973). Sustained DO 
levels below 4 mg/l will incur subacute and chronic damage to most fisheries 
and reduce their productivity (Durodoroff 1970). 

DO concentrations of 5 mg/l may not be adequate to support some of the 
fisheries that have been mentioned for future production such as Atlantic 
salmon (Turner 1973). A DO concentration of 6.4 mg/lat 36VC is recommended 
to sustain spawning salmonid fishes (EPA 1973). The N. H. Water Supply 
Pollution Control Commission recommends a DO concentration of 6 mg/l or 75% 
of saturation for their high quality waters. These recommended DO concen
trations seem unrealistic within the M.R.B. due to the present DO stresses 
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and the cost intensity that would be required to meet these goals. A DO 
concentration of 5 mg/l is a good compromise given the desired and required 
resource uses. However, model runs will be made using both 5 mg/l and 6 mg/l 
dissolved oxygen, in order to most accurately respond to the situation within 
the M.R.B. in New Hampshire. 

Phosphorus -

The excessive enrichment and resultant eutrophication of surface waters 
within the M.R.B. must be addressed as a cause of water-quality degradation. 
Advanced eutrophication will greatly reduce the utilization of the water 
resources within the M.R.B. 

Phosphorus in the dissolved inorganic state (P04) will 
the operating model as one of the water-quality parameters. 
tion of dissolved inorganic phosphorus will function as the 
enrichment within the river basin. 

be included in 
The concentra

index of 

It is generally felt that phosphorus is the key element required by 
fresh-water algae, and the cause of eutrophication. Phosphorus is general
ly present in the least amount relative to need by fresh-water algae, 
therefore, an increase in phosphorus allows use of nitrogen and carbon, 
already present (nitrogen and carbon are available from the atmosphere) , 
for algae growth (Shapiro 1970). It has been observed by Vollenweider 
(1975) that nitrogen may replace phosphorus as the limiting nutrient only 
in highly eutrophied lakes. 

EPA has established dissolved inorganic phosphorus concentrations not 
to exceed 0.10 mg/l for flowing waters and 0.05 mg/l for flowing waters 
entering lakes and ponds (EPA 1972). 

Lee(l970), while conducting a review of the literature, cites papers by 
Sayer and Vollenweider which state that phosphorus concentrations in lakes 
and ponds should not exceed 0.01 mg/l or nuisance algae blooms may occur. 

This study is concerned with both flowing and standing waters of the 
M.R.B. The enrichment of standing waters is far more serious a problem than 
that of flowing waters, due to the aging and possible "death" of these 
waters from eutrophication. In flowing waters the level of enrichment has 
less long-lasting impact. Enrichment of flowing waters must be continuous 
and of higher concentrations to cause serious eutrophication problens (Hynes 
1969). 

In light of these varying critical concentrations for surface waters, 
the phosphorus parameters for this study will include dissolved inorganic 
phosphorus concentrations, 0.10 mg/l for flowing waters and 0.01 mg/l for 
lakes and ponds. 

Sediment -

Sedimentation degrades the water quality by muddying the water and 



depositing sediment in large quantities such as sand bars. Sediment also 
disturbs the transmission of light through the water column thereby reducing 
the ability of aquatic plant life to produce oxygen. This consequent reduc
tion in photosynthesis causes a decrease in the dissolved oxygen concentra
tion within the water (Tuthill 1967). Increases in suspended solids also 
cause a marked decrease in the rnacroinvertebrate density and the standing 
crop of fish (Gammon,1970). 

Sediment reaches receiving waters from industrial and municipal waste 
water, particles flushed in urban runoff, and erosion from the land sur
face. Sediment and sediment transport have been identified by several 
researchers as the major NPS pollutant from the land surface and as car
riers of other pollutants. (Office of Air & Water Programs EPA 1973, 
Donigian 1976, McElroy 1976~ 

A study of sediment erosion from varying land-use types, conducted in 
Maryland by Yorke et al (1978), revealed cropland, urban areas, and con
struction sites such as site development, as sources of excessive sediment 
loading to receiving waters. 

Levels of suspended sediment in surface waters vary extremely with 
flow. The highest level of suspended sediment concentration occurs 
at times of greatest runoff. Sediment flow has been characterized as ex
hibiting extreme degrees of unsteady, non-uniform flow (Linsley et al 1958). 
As a result of the variability in sediment concentrations due to flow, it 
is not presently feasible to include in-stream suspended sediment concentra
tion as a water-quality parameter within a steady state model. 

A potential alternative to in-stream suspended sediment concentration 
is intra-basin erosion potential. A modified form of the "Universal Soil 
Loss Equation" such as that developed by McElroy et al (1976) could possibly 
serve these ends. The functions developed by McElroy et al, enable a non
flow related calculation of sediment loading from surface erosion in tons 
per year. These functions and others will be the subject of further study 
in order to determine their applicability within the scope of the project 
model. 

Summary -

The present water-quality problems in the M.R.B. have been identified 
as industrial and municipal waste water and the outfal~ of combined storm 
and sanitary sewers. The predicted water-quality problem, given improved 
industrial and municipal waste~water management and separation of combined 
sewers, is the probable impact of NPS pollution. 

In the assessment of these problems, the operating model of this study 
will include the following water-quality parameters: 

Dissolved Oxygen - To be not less than 5 mg/l for all environmental 
extremes. 
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Dissolved Inorganic 
Phosphorus 

Sediment 

In flowing waters not more than 0.10 mg/l. 
In lakes, ponds and impoundments not more than 

0.01 mg/l. 

- Sediment will be the subject of further invest
igation. A model-compatible method for 
determining the extent of areal erosion and 
its impact on water-quality will be developed. 
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APPENDIX C 

l'LANNlNC-J.EVEL FSTTMATES OF Till' VALUE OF 
SU!ffACE-STORJ\CE TN NEW HAHl'SllTRE 

hy 

S. L;iwrence D
. l) 
ingman 

June 1980 

The c1nssic water-resource prohJem is thnt facing a political 
entity for which pro_i ected water-use exceeds the snfc yield of the 
existing supply svstem. The entity must choose am0ng several 
0ltern:1tivcs for increasing s,1fe yield. Before thnt choice c<ln 
he m<tde, however, :mother decis.i on is required: what basis should 
he used for choosing among the alternatives? The standard approach 
of theoretical economics is to cast the prohlem <ts a choice among 
the possjbJc scqu0nces j n which the al ternati vos cnn he implemented, 
:ind to select thC' s0quence with the least present value of cost [l]. 
However, there <JH' re<isons for believing th:it minjmiz:ition of present 
value of cost is not ·the criterion that would be used hy a real 
w:lter-resource m;-rnagcr. A man:lger is aware of uncert:iinties about the 
future - demand projections will not be fulfiJJed, new sources ma.y 
become npp;:ircnt, n] cl sources may become un:iv:Ji 1 able, or the economics 
of the altcrnativcs m:1v change. Just ;is tnd:ly's m:in:iger js not bound 
hY sequcnch1g d('" is ions m:Hlc in the p;1st, we c:innot C'XpPct the 
future to be hound by tocbv' s decjsinns about how it should invest 
its money. 

Thus, it is worthwhile to consider what an actual rnan;:iger might 
use as choice cdteda. As imp]ied ;-ihove, T believe (s)he would 
not make a sequencing decisin_n, hut only i1 decision about which of 
the alternatives to implement now. I suggest that this choice 
would he made largely on the basis of four consider:itions, and is 
thus a multi-ohjcctive, not a single objective, problem. One major 
factor would he total cost, and the objective would, of course, 
he to minimize this. It's <Jlso likeJy th:it one would wnnt to 
minimize some mc:isure of unit cost. The cost per vo] 11me of stor<tge 
is often used fnr this mc:1s11rC', in pnrtiruL1r in the' MC'rrim:lck 
TUver B;:isin or New Jl;Jmpshire nnd M:1ss;wl111sctts [JO]. llowcver, it 
appears much more reasonnb le to use cost per unit of yield increase 
:is a criterion or choice. Tn addition, the m:rnager would probably 
want the new system to exceed the projected use for at lea.st some 
minimal period of time. On the other hand, (s)he might not wish 

l)Associnte Professor, Jnstit11te of Nntural and Environmental 
ResourcPs, University of New Hampshire, Durham, New Hampshire 
03824 
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to invest mnnPy to provide for thC' r11t11re hC'yoncl some pC'riod of yenrs, 
Lirgely hcc;HtSC' r1I the imccrtninti<"-; 111entin11C'd ;ibnvr. TltC' fin:1l 
objective would hf' to minimize :idvl•rsc cnvirnnmcntnl ;incl socL11 
impacts. 

Thus, the v:1l11e nl n wnter-supp]v reservoir, V, could he ex
pressed ns .1 vector, V, where 

V = V(C,C/AY,T,I) (1) 

and C is its total cost, AY is the incrense in yield it provides, 
Tis the period ol time 11nt.il the next yield increment is projected 
to hP rcquirccl, ;incl J represents the Pnvirnnmcnt:il ;ind socinl 
impacts (itself n vector). Jn thP nctunl decision-making process, 
one might wish to rcc;ist the 1 ast two ohj ectivcs ns constraints. 
Note tliz1t the c0nstr~1int: lnr T wn11lcl lw expressed :is Tmin < T < T

111
,1x, 

where T111 in and Tmnx arc selected by the decision-maker. Then all 
alternative sites that satisfy those constraints could he plotted 
cin a gr.:iph of C vs C/ AY so tlwt non-inferior zil tern;1tives could he 

.identified and trnde-offs between those two objectives evaluated. 

Given the nllllti-ohjectivc fromework described :ibove, t11e m2jor 
question 2ddressed herein is the estimate of the incrE'<lse in yield, 
/\Y, that con he provi dcd hy surfoce-wnter rcservoi rs in the New 
Hampshire portion of the Merrinwck River J\;1sin. Th:is question hns 
two parts: 1) the yield thnt cnn he provided nt the reservoir site, 
i.e. when the reservoir is connected to the use point vin :in oqueduct; 
ond 2) the vield that can be provided nt downstremn loczitions due to 
the regulotory effect of reservoirs. The second of these questions 
is of criticnl importonce for evaluating reservoirs with regard to 
instream uses of water, as well :is downstreo.m withdrawal uses. 

Definition of Yield 

For purposes of this paper, yield is defined as the mean daily 
streamflow that is exceeded on 95% of the days in a stream reach of 
interest, and is designated as Y95. (By this definition, any 
limitations in availability of water imposed by the capacity of a 
system for distributing or treating withdrawn water are not consider
ed.) Although this definition does not explicitly include <my 
considerations of duration of shortage, Fig. 1 shows that with one 
anomaly, there is a very close relotionship between 7\!fo and Y§s 
for both regulnted and unregulated streams in the Merrimack Bnsin, 
where 7Q 10 is the ten-year, seven-day low flow and the asterisk here 
and subsequent]y indicates division by the long-term mean flow. 

Effects of Storoge on Yield 

Relations at Reservoir Sites - A point on an unreguJnted streom 
is characterized by its natural Q95. In New Hampshire, this can be 
well estim2ted if the basin oren ond meon basin elevotion above the 
point are known f2,ll. Thus, in the ;ihst:'nce of regul;ition, Y95 = q95 . 

At tile rest•rvoir ,;itc·, Y9) is clc•Lcrmim'tl lrom the :ippropri;1t0 
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storage-yield curve. T..-ib]e 1 sumrna1·izes methods thnt have been 
11scd tn develop thl•sc c11rvcs in or 1w:1r the Mcrrim;ick T\;isin. As 
~;Jio\.Jll i11 Fii~. 2, tl1c·~~c· plot· s11fficic11tly elm;<' togl•thc•r t[) JH'rmit 
development of ;1 (·ompocdte> rcL1tion Ll1..-it c:m ho 11sed for pl;mning 
purposes: 

where 
days . 
. OS. 

Y'" 95 
7 !1.] 1 - ·-~----
78 + s,·, (2) 

S ls storage volllmc· of the reservoir ~mcl S 0': is expressed in 

Note that the avero.ge value of Q~S for the Merrimack Basin is 

Evaluation of ;i rc•servoir in terms of the inc:re:ise in yield 
that could he transmitted vi;i aqueduct to ;i use site invo]ves 
estimation of Y 9'i 0111 y, as tld s is the i ncrense in Slipp] y m;icle 
:1vailab]e to 11sc1·s. f(l1· pl:lllning \'llrposcs, this cnn lw csti111:1t·c·d 
directly by eqn. 2. However, :1s discussed in the next section, an 
.1<lcHtinn:1l stl'p is rcq11ir('d when eval11:1ti11g the downstream effects 
of reservol r regulaU on. 

Downstream Effects of Storage - Regulation is defined as the 
long-term avor:1gc r:1Lc of re]ense from iJ. reservoir. lt is also 
represented hy the :ireo. between the natural flow-duration curve 
for the site o.nd the rcguJ .1ted curve, measured on one or the other 
side of the pojnt of intersection of the two curves (Fig. 3). 
Fig. 3 a]so ill11stratcs the rclo.tion hetwecn regulation and t:i 9s, 
which is clef ined o.s 

( 3) 

Langhein [ 4] mnde .1n empirical study of the relaticm between 
regulation nnd sto1·;1gc for rescrvojrs throughout the United States. 
lie found th;1t this rel:1tiPn cou]cl be well approximntccl hv 

R'" 
1 

(4) 
1 +. (913/S*) ·

62S 

where R"' is regulation determined from observations of fJ uctuations of 
reservoir contents. U.S. Geological Survey rocords permit determin
ation of R* for 10 non-flood-control reservoirs in New Hampshire, 
o [ which six Clre in the Merri mo.ck b:is·i n. TI1ese appear to con form 
quite well to Langbein's curve. Thus we will henceforth assume 
that R* can be estimated by eqn. 4. 

Assuming reasonably consistent operating policies, one would 
expect a consistent relation between A~s and R* :it a reservoir site. 
11 • • t l \ 1 1 • A >'< V '" () >'< [ 11 11s expectatum was tcs cc YY c:i cu :it.Lng "<JS = 1 gs - ,gs or 
non-flood control reservoirs in tlH' Merrimack Basin. Y5s was cal

cu]o.ted from eqn. 2, with Q and Qgs estimated by the method of 
Dingman f21 and S t;iken from U.S. Geological Survey published 
records. TI1e upper and lower extremes of the relation are determined 
hy rt'nsnn i 11)', th:1l /\i)r; ,- () 1vlt('1.1 1\'" ~ () :md, s irn·c· t:l_H· 11:1t 111·;11 (:ijr; 
;JVl'l"<lgl'~; ;1\im1L .0.'1 Ill Lil<• l"l'gl1lll, 1·11111pll'Ll' l"l')',1ll:lll!lll (I\>'<= l) 
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Table 1. Basis of Storage-Yield Relations for New England 

(Sl'l' Fig. 2) 

Curve Safe-Yield Definition 

NEWWA (1945) [6] 

Lof and Harison (1966) [ 5] 

U.S. Armv Corps of 
Engineers (1972) [9] 

Riggs and Hardison 
(1973) [ 7] 

,r 

.2 

0 

" -
0 

,..._ 

• /< 

0 
p 

0 

• Regulated 

o Unregulated 

,?' 

~ 
c,? 

?'/ 

Not specified; however, based on 
1911-1918 drought and approximately 
equal to 97% assurance (Russell et 
al., 1970). Curve shown is for 
water area = 0% of basin area. 
Based largely on Massachusetts. 

Curve is for 95% assurance, using 
aggregate stream-flow statistics 
for New England. 

Cnrve based on composite synthetic 
stream flows at New Hampshire 
streams, with shortage index= .01 
(see definition of index in 
report). 

Curve is for 95% assurance and is 
a composite of individual curves 
developed by this method applied 
to streams in New Hampshire portion 
of the Merrimack River Basin. 

~ 

/ 
/ 

/ 
.593 

2 .3 4 

• 
Y95 

Fig. 1. Relationship between 7Q!o and Y§s for regulated 

and unregulated streams in the Merrimack Basin, 
New Hampshire 
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Fig. 2. 
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w'..~ul_d .:ichicve /'.~~S = .95. Fig. 4 slnws the "r,enerol" curve re]ating 

!1i)'r1 nnd lU', when' fl<'J"rl is ass11mc'cl C'<f11;1] to 't"" Or 't''" . l l"tC 1 • <) ') • l , t_J ') L S C il C ti ., ' C 

hy cqn. 2, and 1\"' j s en l c11l ;1tcd by cqn. 4. The Merri mack rcservoi rs 
fit the "theorcticnl" rel.:itionship quite well. 

The simp]ost hypothesis for re]Ating L1 95 to upstream reservoir 
stor.:ige is th:1t 

l\95 = f(rn) (5) 

where /,!\ represents the s11rn of the regulation contrihuted by A11 
11pstre;1m reservoirs tlicit are not .i.n series with ;:inother resorvoi.r. 
vn1ere there aro rcscrvci:i rs in series, /:R includes only the regul.:ition 
from the downstrenm-most reservoir. 

This hypotl1esi.s can he examined using d<Jtci for the reservoirs 
and g;iging stations shown in Fig. 5. Table 2 shows the computations. 
Fig. Fi is o plot tif t19 5 vs. (l:R)'", which <ire the <ictun] /\95 <ind l:R 
v;:ilues divided hy the mean f]ow at the g;iging st;ition. Although 
one might be tempted to fit the data with <i str<1ight-1ine regression, 
I have shown in Fig. Fi the re1<itionship cleveJopecl earlier between 
R''' nnd Ag~ ;it rc>sf'rvoir sites (Fig. 4). 1ntorcstinglv, the cl.1tn for 

I . _) 

(l:R)" and A§ 5 at downstre;1m sites appear to he rel<itocl in the 
s;Jllle w;iy. Since there is conceptua] <1s we] 1 <is empiric<1J support 
for this relati onsltip, I suggest its use in estim.-iting the downstream 
effects of non-flood cnntroJ stor<igo on streamflows in the New 
Hampshire portion of the Merrimack Basin. 

The SC.'.lttcr ()f po:ints rrom tho "tltcorcticnl" relationship 
in Fig. 6 is clue to unccrt.iinties in cstim.1Ung the unrcgul<itocl 0

95 
at the gage sites <incl to clevi<itinns from eqns. 2 and 4 due to v<irying 
operating policies ;rnd 1 ocal hydrologic conditions. It is unfortunrite 
tlwt more data are not avcii) ob le to provide greater confidence in 
the re] ;:it ion betwpen regulation and downstream flows. llncert<iinty 
is particulnr.1y high at small values of (IR)*, and this is where 
many practical cases fall. 

Summary and Conclusions 

In the multi-oh·jcctive context described e;irlier, eqn. 2 c<in 
be used to esUmat<.' /\Y for computing the unit costs (C/Y 95 ) <ind 
pl<inni.ng ftori?.nn ('f') or rcsC'rvciir sites thnt ;1rc to ho C'Onnocted 
t:n .-i11 aq1wd11ct. \~l1crc rC'sorvoi rs <ire' con temp I :Jt:l'cl t<' i ncrcnsC' 
supplies for downstream witlH.lrawaJ or instro;1111 ptir]ll)scs, the 
appropriate measurE' of unit cost is C/ 6 95 rather than C/Y95. 695 

is computed by first estimating R for all 11pstream reservoirs via 
eqn. 4, <idding these v;ilues to find IR, dividing IR by the mean 
flow at the clownstre<im rc;1ch to find (L.R)*, ;ind then using the curve 
or Fig. 6 tn l'st:im:1t:e Af)s. Mu]tipliC':1t:inn hy Q for thl' ro<ich then 
gives the cstim;1lc of /\95· 

/\ 1 though tltcrl' nrC' cons f dornh 1 C' 11nccrt.1 i nt.i e.s, the motl10cls 
devc] oped here ;ipp(';ir to provide :i r;1t inn;1l ;incl t'mpi ric.-il 1 y-supportcd 
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0 GoqinQ s1ot1on, 

O Reservoirs 

[1 F"l?od control re5ervo1r5 

Fig. 5. Schematic diagram showing relations between reservoirs 
and gaging stations in the Merrimack Basin, New 
Hampshire 
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Fig. 6. "Tlworcticnl" (curvC') and actual (dots) relationship 
hct1vt'('J1 ·"0s :111d (':tn"' :it g:1gl11g st:1t:ions Ln tht> M0n·i-

111:1ck B~1sins, New Hampshire. Numbers refer to stations 
shown in Fig. 5. 
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Table 2. C:omput;1tions C\f l~cl:itions hct1,·c·cn :t, and (l:R)*, ~IC'rrimac1' River Basin, N. II. 
Sec text for 5rnhol dcfinit ion-;. :;~·'in days, 1111qarred vari;tbJcs in ft3/s. 
Refer to Fig. for locatiC\ns of gaging stations and reservoirs. 

Strenm-Gn~inr St:itinns I RPscrvoirs 
-------~------- --- -----------,----

Res. 
No. Q Y 95 Q'lS ,\95 695 I No. s• R* Q R rn (l:R). 

385 .368 49.6 18. 3 

87. 7 51. 7 3.0 48.7 • SSS 18.3 .20'L_ -------------------- -
6 170 .2S9 491 J 27 

2 s:;o 205 J 8. 0 187 .353 127 . 240 ··-----------------
7 31 . 108 619 (i6. 7 

3 693 228 2~.9 205 .2% 66.7 .0% 

385 • 3(18 49.6 18. 3 

2 114 . 214 172 36.8 

7 31 . l (18 619 (1(•. 7 

4 2755 747 3?8 419 .152 122 • 044 
--·- -·------------

8 J 13 • 213 14. 3 3.0 

s 82.4 5.8 4. 2 ]. 6 . 019 3.0 .036 -------- - ------------ -----------
J 0 37 • J 19 4 8. 4 S.8 

6 99. ,, 3. 1 3. I 0 0 5.8 .058 -------------- ----------- - ---------- -~----- - ------- ---------·--------------- -------

7 627 

8 

6(1. 5 38.9 27.6 .0~4 

63.7 ~n.o 23.7 .035 

8 

JO 

11 

113 

37 

36 

.213 

• J 19 

. 117 

14. 3 

48. 4 

117 

3.0 

5.8 

13.7 

22.S .036 ---·---------- ------

Same as Station 7 

22. s .o:n ----- ---- ------------- - ------------------------ -----
Snrnr as Stntion 7 

10 l 2S4 158 70.0 88.0 .070 22.5 . 018 

14 67 . 1 (11 41. 9 6.9 

11 91. 2 3. 2 :; • 2 0 () 6.9 . 07() ------ ---- ------- --- ·---- ------ ----
Same as Station 1 l 

12 304 l 0. 9 l 0. 9 0 0 6.9 .023 

38S .368 49.6 18.3 

2 114 .214 1 7:! 36.8 

7 31 • J OS 61 9 66.7 
8 113 .213 14.3 3.0 

1 L1 37 .119 48.,, 5.8 
11 3(1 .117 117 13.7 
14 67 .164 41. 9 6.9 

l 3 s22:; 9J5 ff)(, 329 . ()(,:; 151 . 029 
----------- -- ------·--· --··- . --------------
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b.Jsis for planning-IL'Vc·l estimates ,,r the value of reservoirs in 
increasing water supp]jes for instrr>am ~mcl withdrawal uses in the 
Merrimack Basin. 
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APPENDIX D 

Preliminary Calculation of Yields of 
Isolated Aquifers in New Hampshire 

Hall (1979) estimates a long-term average recharge rate to an isolated 

surficial aquifer in southeastern New Hampshire at about 30 cm/yr. 

For an aquifer of area A (km
2
), this amounts to 9.5A £/s. The average 

a 9 a 
volume of water in storage in the aquifer is 10 sh A £, where s sat 
is specific yield, and h 

sat 
is the saturated thickness of the aquifer 

(m). The storage ratio of the aquifer, S (days), is: 
aq 

109 
s h A 

s 
aq 

sat 
(86,400)(9.5 A)= 1 •200 s hsat 

If s were assigned a typical value for sand-gravel aquifers of 0.3 

then: 

s ~ 360 h 
aq sat 

This indicates that there is about 1 year of storage for each meter 

of saturated thickness. No data are available to evaluate the relation 

between the yield available 95% of the time, Y
95

, and Saq This 

relation depends primarily on the time distribution of recharge and 

the relation between storage and outflow. However, most aquifers 

developed for water supplies would have several meters of saturated 

thickness, and therefore several years of storage. As shown in Appendix 

A, a surface reservoir with several years of storage would have Y
95

* nearly 

equal to 1. Thus, it seems reasonable to assume for planning purposes 

that a Y
95 

approximately equal to the long-term average rate of recharge 

can be obtained from an isolated aquifer. 
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APPENDIX E 

Sample Calculation of Effects on Streamflow 
of Emergency Pumping from an Aquifer Connected 

to the Stream 

For these calculations, an aquifer mapped by Cotton (1976) adjacent 

to the Contoocook River in Peterborough was selected. This aquifer 

measures about 13,000 ft by 1,600 ft and contains a well located 

about 1,200 ft from the river. The projected year-2000 population 

of Peterborough is projected to 8,880 (New Hampshire State Planning 

Office, 1977), which represents a domestic use rate of 0.98 million 

gallons/day (1.5 ft 3/s). For purposes of this example, we assume 

that all this water will be normally withdrawn from the Contoocook 

River. The drainage area above the U.S. Geological Survey gage on that 

river in Peterborough is 68.1 mi
2

; if the 0.2 ft 3 /s mi
2 

minimum-flow rule 

is applied, Q . = 13.6 ft 3 /s. Again, for purposes of this example min 
only, we assume that Q - Q + W = 15.5 ft 3 /s. Figure 13 shows r - min 
streamflows recorded at the USGS gage during a 19-day period in 1977, 

again chosen simply as an example. In the absence of any withdrawals, 

the flow would have been below Q . for 16 days and reached a minimum 
3 

min 
of 70% of Q . . If 1.5 ft /s were withdrawn to satisfy municipal 

min 
demands, the flow would be below Q . for an additional two days and 

min 
would reach a minimum of 60% of Q . . 

min 
To estimate the effects on streamflow of pumping the required 

1.5 ft 3 /s from the aquifer via the method of Jenkins and Taylor (1974), 

we first compute f for the well. As noted, a= 1,200 ft; we select 
q 2 

representative values of s = 0.25 and T = .080 ft /s and compute: 

f 
q 

2 
(1200) (.25) = 4 5 106 s 

. 080 . x 52 days 

Figure El, taken from Jenkins and Taylor (1974), can be used to estimate 

the streamflow depletion (q) over time, where the pumping rate (Q) 
3 is 1.5 ft /s. The total time of pumping (t ) for the situation shown 

p 
in Figure 13 would be 16 days, sot /f = .31. Using the curve for 

p g 
t /f = .35 in Figure El, we see that the peak streamflow depletion is 

p g 
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Figure El. Dimensionless diagrams shm·1ing streamflow depletion, q, over time, (tp + ti), 
as related to pumping rate, Q, and streamflow depletion factor, sdf. 
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q/Q = .13, occurring .27 f after pumping begins. In absolute units, 
g 3 

this amounts to a maximum streamflow depletion of .20 ft /s occurring 

16 days after pumping begins - clearly a very minor effect. 

The flow-duration curve for the Contoocook at Peterborough shows 

that the assumed Q . of 13.6 ft
3
/s is exceeded 92% of the time. Thus, 

min 
pumping would be required only 8% of the time (29 days per year on the 

average) and there would be ample time for recharge of the aquifer during 

periods of higher flow. 
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APPENDIX F 

Computations of Effect of Recycling on Chloride 
Concentration in Municipal Water 

The situation described in Appendix A for Bow, New Hamsphire, is 

used in this example: 

Population, P = 5790 persons 
Water use rate, U = 27.8 £/s 

The effect of treatment on chloride content is assumed to be negli

gible, so tg = tf = 0, and Equations 3·-48 and 3-49 apply. 

Kuiper and Wechsler (1974) state that municipal use of water 

increases chloride concentration by about 125 mg/£. Thus, 

and with a 
p 

This gives 

b 
___E_ 125 
a 

p 

0.0048 £/s person, b for chloride 
p 

0.6 mg/s person. 

A= b P = (0.6 mg/s person) (5790 persons) = 3474 mg/s. 
p 

According to Hall (1975) the average concentration of chloride 

in the Merrimack Basin is 12 mg/£, so we take c1 = 12 mg/£. With 

k = .25 (Table 3-4), Equations 3-48 and 3-49 can be solved to give 
c 

the results shown in Table F-1 and plotted in Figure 17. 

Table F-1 

k 0 .1 . 2 . 3 . 4 . 5 . 6 I . 7 . 74 
r 

c. (mg/£) 16 209 245 296 378 524 881 2571 12,810 
J 

c (mg/£) 12 32 59 97 158 268 533 1800 9,480 u 
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APPENDIX G 

"Water Use Over Time" Estimated Relationships 

For each of the three selected towns, projected water demand data 

were obtained for the years 1970, 1990, and 2020 (U.S. Army Corps of 

Engineers (1977)). Three functional forms were applied to this data 

to find which relationship yields the best statistical fit. The esti

mated forms notationally looked as follows: 

(lb) ski 

(le) 

where, (la), (lb), and (le) are linear, semi-logarithmic and logarithmic, 
th respectively; ski represents average water demand in m.g.d. for the k 

observation for the ith town and Tk. denotes the trend factor for the 
"l 

kth b . f h .th o servation or t e i town; a., 
. .tli-the estimated parameters for the i 

disturbance for the kth observation. 

b. c., d., f., and g. depict 
i, 1- 1- 1- I. 

town, and uk is the stochastic 

The best statistical fit was 

attached to equation (lb) for each of the three towns. The estimated 

(lb) relationships for Hudson, Merrimack, and Nashua are found below. 

(2) Hudson: .4227e .544T 
sl ; R2 = .937, t = 7. 75 

Merrimack: . 6596e 
.53009T 

s2 ; R2 = . 94' t 8.03 

Nashua: 6.5195e 
.12291T R2 = .947, t 8.40 s3 ; = 

Using (2), projected water demands can be made for the years 

1990, 2000, 2010 and 2020 by designating the trend factors (3, 4, 5, 

6) and calculating s. for each of the years. 
1-
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APPENDIX H 

E . D 1/ conomic ata-

For our purposes, data utilized are preliminary in nature 

and reflect approximations where necessary. Cost data that relates 

to volume and distance were calculated using mileage and costs per 

unit per mile. 

Capital Cost of the ith Proposed Reservoir: c. 
1. 

Capital Cost (1980 $) to tl t2 

cl $1,626,947 $513,877 $169,202 $53,689 

c2 319,474 102 '871 33,225 10,543 

c3 773 ,230 248,980 80,416 25,517 

c4 426 ,813 137 ,434 44,389 14,085 

cs 229,870 74 ,018 23,906 7,586 

c6 589,580 189 ,201 61,108 19,390 

c7 366,324 117,956 38,098 12,089 

1/ Based on a 12 percent discount rate. 

t3 

$17,896 

3 ,514 

8,506 

4,695 

2,529 

6,463 

4,030 



Unit Operation and Maintenance Cost of Proposed Reservoir i: b. 
l 

0 & M Costs (1980 $) t tl t2 t3 _iL 

bl $ 70/m. g. $ 22.54 $ 7.28 $ 2.31 $ . 77 

b2 320/m. g. 103.04 33.28 10.56 3.52 

b3 260/m. g. 83. 72 27.04 8.58 2.86 

b4 311/m. g. 100.27 32.39 10. 78 3.43 

b5 320/m.g. 103. 04 33.28 10.56 3.52 

b6 270/m.g. 86.94 28.08 8.91 2.97 

b7 240/m.g. 77. 28 24. 96 7. 92 2.64 
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Unit Operation and Maintenance Cost of the Proposed Pipeline 

from Proposed Reservoir i to Town j: e .. 
1-J 

0 & M Costs (1980 $) to tl t2 t3 

ell $11. 65/m. g. $ 3.75 $1. 21 $ .38 $ .13 

el2 3.51/m.g. 1.13 .37 .12 .04 

el3 5.60/m.g. 1. 80 .58 .18 .06 

e21 50.07/m.g. 16.12 5.21 1. 65 .55 

e22 17.46/m.g. 5.62 1.82 .58 .19 

e23 52.85/m.g. 17.02 5.50 1. 74 .58 

e31 20.66/m.g. 6.65 2.15 .68 .23 

e32 7.68/m.g. 2.47 . 80 . 25 .08 

e33 20.20/m.g. 6.50 2.10 .67 .22 

e41 13.58/m.g. 4.37 1. 41 .49 .15 

e42 29.71/m.g. 9.57 3.09 .98 .33 

e43 15. 84/m. g. 5.10 1. 65 .52 .17 

e51 29.16/m.g. 9.39 3.03 .96 .32 

e52 12. 61/m. g. 4.06 1. 31 .42 .14 

e53 43. 73/m.g. 14.08 4.55 1.44 .48 

e61 36.65/m.g. 11.80 3.81 1. 21 . 40 

e62 20.14/m.g. 6.49 2.09 .66 .22 

e63 55. 90/m. g. 18.00 5.81 1. 84 .61 

e71 17.24/m.g. 5.55 1. 79 .57 .19 

e72 9.32/m.g. 3.00 .97 .31 .10 

e73 27.23/m.g. 8. 77 2.83 .90 .30 



Capital Cost of the Pipeline Constructed from 

Proposed Reservoir i to Town j: d .. 
lJ 

Capital Cost (1980 $) to tl t2 t3 

dll $1,033,842 $ 332,897 $107 ,520 $ 34'117 $11,372 

dl2 3,432,353 1,105,218 356,965 113,268 37,756 

dl3 2,150,391 692,426 223,641 70' 963 23,654 

d21 994,137 304,012 98,190 31,157 10,386 

d22 2,778,715 894,746 288,986 91,698 30,566 

d23 899,299 289,574 93,527 29 '6 77 9,892 

d31 1,338,325 430,941 139,186 44,165 14' 722 

d32 3,714,728 1,196,142 386,332 122,586 40,862 

d33 1, 131, 809 364,443 117,708 37,350 12,450 

d41 1,753,760 564,711 182,391 57,874 19,291 

d42 809,623 260,699 84,201 26 '718 8,906 

d43 1,498,832 482,624 155,879 49,461 16,487 

d51 1,076,119 346 ,510 111,916 35,512 11,837 

d52 2,488,526 801,305 258,807 82,121 27,374 

d53 717,414 231,007 74,611 23,675 7,892 

d61 1,536,619 494,791 159,808 50,708 16,903 

d62 2,811,259 905,225 292,371 92' 771 30,924 

d63 896' 766 288,759 93,264 29,593 9,864 

d71 1,498,832 482,624 155,879 49,461 16,487 

d72 2,811,259 905,225 292 ,371 92' 771 30,924 

d73 851,927 274,320 88,600 28,114 9,371 
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mll 

ml2 

ml3 

m21 

m22 

m23 

m31 

m32 

m33 

.. 

Operation and Maintenance Cost per Unit of Current Yield 

from Existing Well z: g
2 

0 & M Cost (1980 $) to tl t2 t3 

Hudson g
1 $311. 41/m. g. $100.27 $32.39 $10.28 $3.43 

Merrimack g2 288.10/m.g. 73.45 23. 72 7. 53 2.51 

Nashua g
3 88.184/m.g. 28.40 9.17 2.91 .03 

Source: 

Capital Cost of Proposed Pipeline from 

Existing Well z to Town j: m. 
ZJ 

Capital Cost (1980 $) to tl t2 t3 

$ 124,390 $ 40,054 $ 12,937 $ 4,105 $ 1,368 

2,440,062 785,700 253,767 80,522 26,841 

809,623 260,699 84,201 26,718 8,906 

2,498,149 804,404 259,808 82,439 27,480 

248,781 80' 107 25,873 8,210 2,737 

2,440,062 785,700 253,766 80,522 26,841 

809,623 260,699 84,201 26' 718 8,906 

1,963,849 632,359 204,240 64,807 21,602 

381,126 122, 723 39,637 12 ,577 4,192 
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... 

Unit Operation and Maintenance Cost for Proposed Pipeline 

from Existing Well z to Town j: k . 
ZJ 

0 & M Cost (1980 $) to tl t2 t3 

kl2 $29.20/m.g. $9.40 $3.04 $.96 $.32 

kl3 12.47/m.g. 4.02 1. 30 .41 .14 

k21 29.20/m.g. 9.40 3.04 .96 . 32 

k23 11.25/m.g. 3.62 1.17 .37 .12 

k31 12.47/m.g. 4.02 1. 30 .41 .14 

k32 11.25/m.g. 3.62 1.17 .37 .12 

Unit Operation and Maintenance Cost for Existing Pipeline 

from Existing Well z to Town j: Q, 
zj 

0 & M Cost (1980 $) to tl t2 t3 

Q,11 $ 1.89/m.g. $.609 $.197 $.062 $.021 

Q,22 1.25/m.g. .403 .13 .041 .014 

Q,33 .27/m.g. .087 .028 .009 .003 

llO 



Capacity of .th Proposed Reservoir: J_ 

million gallons 

Rl 55845 

R2 1679 

R3 8504.5 

R4 4489.5 

RS 1642.5 

R6 2628 

R7 3540.5 

th Capacity of z Existing Well: 

million gallons 

6387.5 

18907 

50005 
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The following maps can be purchased from: 

The Water Resource Research Center 
108 Pettee Hall 
University of New Hampshire 
Durham, NH 03824 

Price: Overlays (8~ x 11): $1.00 ea. 



BETHLEHEM 

Plate I. Communities in the New Hampshire portion of the Merrimack 

River Basin 



Plate II 
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