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CHAPTER l 

INTRODUCTION 

Surface waters commonly serve as a community's water supply. One characte

ristic of such waters is the presence of sediment and small suspended particles, 

as well as natural organic materials called humic substances. A more critical 

characteristic, as far as the treatment of such waters is concerned, is the dynamic 

quality of their concentrations. Figures l and 2 depict the nature of the time 

dependence of color and turbidity. One major portion of this research work is to 

describe the development of a control strategy for treatment of waters with dynamic 

characteristics such as displayed here. The other major portion describes the 

characteristics for obtaining maximum color and turbidity removal from water. The 

effects of chemical dose, pH, temperature, and mixing were investigated. 

The treatment process of coagulation-flocculation, sedimentation, and 

filtration are relied upon for removal of both particulate material and humic sub

stances. Coagulation-flocculation refers to the destabilization of individual 

particles and subsequent aggregation to a degree whereupon gravitational settling 

may occur. Filtration serves as a final polishing step. 

The occurrence of natural color in surface waters is prevalent throughout 

New England. When these surface waters, mostly lakes and impounded reservoirs, are 

used as water supplies, coagulation of color and turbidity becomes a concern to the 

treatment plant operator. This system was chosen as a topic for research for 

several reasons: the operational complexity associated with treatment of waters 

containing color should be better understood, there is a need for a simple cost 

effective control strategy for treating surface waters, and there is a widespread 

regional relevance of this problem to New England because there are many small 

New England communities that operate facilities that treat surface water displaying 

the temporal variations as shown in Figures l and 2. 
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Figure l. Record of apparent color readings in the Oyster River 
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Coagulation is utilized for the removal of both inorganic particulate material 

as well as humic substances. However, the physical-chemical mechanisms by which 

these contaminants are removed by coagulation and subsequent processes are quite 

different. The work reported herein considered the removal of natural mixtures 

of humic substances and turbidity with aluminum sulfate or alum, Al 2(S04)3·18H2o, 

used as a coagulant chemical. In addition, time series analysis is used to 

identify the mathematicalmodel that describes the temporal behavior of the data. 

This model will be incorporated into a control strategy for achieving maximum 

color and turbidity. The effectiveness of the dynamic control strategy is reported 

in terms of cost of treatment and the likelihood the method will improperly forecast 

the proper chemical dose for effective particulant and color removal, or in other 

words the risk of underdosing. 

A case study of the Oyster River in Durham, New Hampshire was undertaken. 

The dynamic characteristics and water quality of this river is typical of the 

surface waters serving many communities in New England. The water from the Oyster 

River is treated at Arthur Rollins Treatment plant, which serves the population 

of approximately 8000 permanent residents and a student population of 10,500 who 

attend the University of New Hampshire. The methods and procedures described in 

this report, however, are applicable to other areas using surface water as a 

water supply. 
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CHAPTER 2 

RESEARCH OBJECTIVES 

The purpose of this research is two fold: to improve the operation of the 

coagulation process in water treatment and to reduce the chemical costs associated 

with this process while assuring safe drinking water is supplied to the public. 

The primary reason for conducting this research is economic. It has recently 

been demonstrated that close operational control of the coagulation process results 

in cost savings because of more efficient use of chemicals (Manning, 1977). The 

practice of overdosing of coagulants to insure finished water quality is all to 

often a result of a lack of operator training and good operational procedures and 

practices. The major objective is to provide a basis for closer operational 

control. The features of simplicity for the operator and the assurance that 

finished water quality control is being delivered at all times are inherit in the 

dynamic control strategy presented herein. 

The present method of control of the coagulation process is based upon the 

use of the jar test in which varying amounts of treatment chemicals are added to 

samples of raw water. The resultant settling action and treatment efficiency are 

noted and serve as a starting point for adjustment of actual plant dosages. The 

jar test is a laboratory model for the coagulation, flocculation, and sedimentation 

processes and its limitations are well recognized (Litwin, 1974). The hydraulic 

conditions occurring within the plant and those in the jar test are usually very 

dissimilar. This can easily explain the often poor prediction of plant treatment 

performance by jar tests. 

The method of control of coagulation proposed herein is intended to 

drastically reduce the need for reliance on jar tests for operational control. 
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Instead, routine water quality tests, pH, alkalinity, color, turbidity, and 

temperature become the basis for operational control. Our experimental results 

show that raw water color is the leading indicator for the dynamic control strategy. 

The time required for analytical work necessary for operational control is reduced 

and simplified, and the operator need not understand either the intricacies of the 

coagulation process or the statistical techniques upon which the control strategy 

is based. 

The frequency at which water quality tests and chemical dosage is adjusted 

will have bearing upon the risk of underdosing and economics. The potential for 

adaptation to automatic control is immediately obvious and should not be over

looked. However, our work is directed at smaller treatment plants, where 

funds for automatic control equipment are assumed to be unavailable. The training 

and abilities of water treatment plant operators is often seriously lacking. The 

Community Water Supply Survey (U.S. Public Health Service, 1970) noted that two 

thirds of all operators had no formal training. This research would not increase 

the training of operators but would significantly simplify the operational control of 

the coagulation process especially in smaller plants. The majority of communities 

in New England rely on smaller water utilities for their water. In New Hampshire, 

there are a total of 107 water treatment plants with 53 plants treating surface 

waters. Of the surface water treatment plants, 42 serve communities with less 

than 10,000 people and only two have populations greater than 60,000. It can be 

seen that most of the systems are very small and operation in these plants may be 

intermittent and probably substandard. Similar situations certainly exist through

out many sections of New England. 

Humic substances derive from the natural degradation of lignins and other 

organic material and include a broad class of chemical compounds, many of which 

have yet to be identified. Fulvic acid is a generic term for the low molecular 
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weight, acid soluble fraction of humic substances and has been shown to be the 

major fraction of humic substances in water. These compounds give rise to the 

yellow brown color of many natural waters. Aesthetics and public health regulations 

require the effective removal of color and turbidity. There is no evidence to 

suggest that either color or turbidity alone cause a health hazard; however, 

bacteria and viruses are a health hazard and may be protected from the disinfection 

process when caught in the interstices of turbid material. 

The research does have a related health impact in that application of 

chlorine to waters containing particulate or soluble organic matter, especially 

fulvic acid, which results in the formation of a class of compounds called 

trihalomethanes, mostly chloroform. These compounds are suspected human carcinogens 

whose health effects are currently being assessed by health and regulatory agencies. 

The optimization of the coagulation process under all conditions is a key in

gredient in the strategy for control of the formation of these compounds (Stevens, 

et al, 1976). The most practical means of reducing these hazards is to remove 

as much color and turbidity from the water as possible prior to chlorination or 

disinfection. 
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CHAPTER 3 

AN OVERVIEW 

A schematic diagram of a typical water treatment plant is presented in 

Figure 3. Chemicals for coagulation are usually added in a rapid mix tank and 

the water continuously flows through the remaining treatment tanks. The typical 

operation of the coagulation process involves the addition of a chemical coagulant, 

usually aluminum and ferric salts. Aluminum sulfate or alum, Al 2(so4)·18H2o, is 

used in our studies. The plant is assumed to utilize surface water as its raw water 

supply and to employ the treatment processes of coagulation, sedimentation, and 

filtration for color and turbidity removal. The raw water from the Oyster River 

entering the Arthur Rollins Treatment plant was monitored for a three year period 

at twelve hour intervals. These data are typical of the low turbidity surface 

waters found in New England. See Figure l and 2. The watershed is a rural area 

with a small population containing fields for apple farming and woods for recreation. 

The coagulation process is quite complex and not easily amendable to theore

tical formulation. For instance, researchers have found that the control of pH 

is important in the color removal process. In a typical plant however, operators 

do not usually control pH carefully. The time variant properties of raw water, 

as depicted in Figures l and 2, make close control difficult. Jar tests are normally 

used to determine chemical dosages at most treatment plants. They are time consuming 

and require the presence of an operator. As a result, many believe that overdosing 

of treatment chemicals occurs for substantial periods of plant operation. The 

practice of overdosing results in greater operating costs. Obviously, overdosing 

is a costly practice; however, it does avoid the risk of possibly underdosing. 

However it may not assure the delivery of water of good quality. Recent research 

8 
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links high levels of aluminum to several medical disorders, including osteomalacia, 

a mineral deposit in the joints causing severe pain, dialysis encephalopathy 

syndrome (DES), a neuropathological syndrome which can lead to death, Alzheimer's 

disease, a form of premature senility, and renal failure (Sung, et al, 1983). It is 

our policy to avoid these risks by minimizing the amount of alum and other chemicals 

used in the treatment process. 

The Development of the Dynamic Control Strategy 

By use of control theory, the dynamic nature of water treatment can be better 

understood and strategies for reducing chemical costs can be implemented. It is 

proposed in this research to more closely regulate pH and coagulant dosages in a 

treatment plant. Extensive investigation has shown the importance of pH for 

effective utilization of chemicals. Since alum is an acid, a base may be needed 

to maintain proper pH for effective coagulation. Sodium hydroxide and sulfuric 

acid will be the base and acid compounds for controlling pH. The alkalinity of 

the water will determine the dosage to maintain the desired pH upon addition of a 

given amount of coagulant. Thus, the major objective of this research is to 

optimally control the dosages of alum, sodium hydroxide, and sulfuric acid for 

conditions changing over time. 

Jar tests of over 100 samples of natural and stock water samples of mixtures 

of color (humic substances) and turbidity (kaolinite) were observed. These 

tests reveal that the initial color is the controlling factor in establishing the 

critical coagulant dose of alum, Al 2(s04)3·18H2o. This is a significant finding 

because it greatly reduces the complexity of the treatment strategy. Only color 

will be required to determine the optimum dosage of alum. This funding will be 

discussed in greater detail in this report. 
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The following steps were used in this development of the dynamic control 

strategy. 

1. determine a predictive equation for alum dose as a function of raw 

water color, 

2. determine the effects of temperature and mixing conditions on the color 

and turbidity removal processes, 

3. determine the dynamic relationship among color with the use of time 

series analysis methods, 

4. combine the results from 1, 2, and 3 to develop a strategy to be easily 

implemented by plant operators at surface water treatment facilities, and 

5. evaluate the dynamic control strategy for the risk of underdosing 

and cost. 

Literature Review 

There are a considerable number of articles on the coagulation of color 

compounds and on the coagulation of turbidity; however, few articles appear on 

the treatment of natural waters, water consisting of both color compounds and 

turbidity. The information that exists is insufficient to establish a quantitiable 

relationship between raw water quality and the dosage to achieve efficient removal 

of these materials from natural water. This relationship is necessary in order to 

achieve optimum water treatment plant operation. In this report the 11 critical 11 

coagulant dose is defined to be the minimum coagulant dose of aluminum sulfate 

to achieve maximum color and turbidity removal. 

Since the removal of color compounds and turbidity occur by different 

mechanisms, the contol of pH and the concentration of aluminum salts are critical 

variables in determining the efficiency of the coagulation process. It has been 

found that optimum turbidity removal occurs in the sweep coagulation and 
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adsorption-destabilization zones. See Figure 4. In the restabilization zone, 

coagulation efficiency of dilute colloidal solutions is improved. Most raw waters 

used as drinking waters meet this criterion at a dilute colloidal solution. 

Intense rapid mixing has been found to improve turbidity removal efficiency in 

the restabilization zone (Amirtharajah and Mills, 1982). The most efficient re

moval of color compounds is characterized by treatment with pH and alum con

centrations that lie within the restabilization zone. Restabilization has been 

observed in studies of the removal organic color with ferric chloride (Hall and 

Packham, 1965). These observations stimulated our interests in determining if 

mixing conditions in the rapid mix and flocculation stages of treatment affect 

the removal efficiency of color and turbidity of natural waters. The factors that 

may achieve optimum water treatment performance are reported. 

Color: Color, found in most surface waters, is obtained from the extraction 

of decomposed vegetation by-products. Natural waters containing color are assumed 

to be obtained by aqueous extraction of living woody substances, decaying wood, 

and soil organic matter. The extent of color extraction is a function of pH, 

temperature, contact period, and type and quantity of material available (Christman, 

et al., 1966). The mixture of these extracted products are called humic sub

stances. 

The overall chemical and physical properties of humic substances help to 

explain its removal from water by coagulation and aluminum chemistry. It is known 

that the molecular weight of the humic substances range from less than 800 to 

greater than 50,000 atomic mass units (Cohen and Hannah, 1971). The lower 

molecular weight substances exhibit properties of a true solution while those of 

the higher molecular weights exhibit properties similar to colloidal particles. 

12 
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Cohen and Hannah's study (1971) report that 90% of the color particles were 

greater than 3.5nm in size and about 10% were greater than lOnm. Midwood & Felbeck 

(1968) observed that some color particles are as large as clay particles which 

are of the order of lu in size. 

The humic substances may be classified by its proportion of fulvic, 

hymatomelanic, and humic acid. Fulvic acid is the most predominate form of humic 

substance in water (Black and Christman, 1961; Wilson, 1959) because it is the 

most soluble of the three acids in water. On a unit weight basis, fulvic acid 

produces the most color followed by hymatomelanic acid and humic acid (Black and 

Christman, 1963). In one of our studies of the removal of color and turbidity of 

natural waters, fulvic acid is used as an independent variable to predict 

coagulant dose. 

There has been much discussion regarding the chemical groups which comprise 

the color molecules. The color molecules have been shown to be dibasic polyhydroxy 

aliphatic acids (Shapiro, 1957). It has also been shown that the humic and fulvic 

acid fractions are aliphatic unsaturated polyhydroxy dicarboxylic acids (Shapiro, 

1964). It has been found that the fulvic acid fraction of the color molecule is an 

aromatic polyhydroxy methoxy carboxylic acid (Black and Christman, 1963; Christman 

and Ghassemi, 1966). Other investigators have suggested that the humic substances 

are formed in the soil by a polymerization of polyphenolic units derived from 

either bacterial synthesis or the breakdown if lignin residues. Alcholic OH , 

phenolic OH, carboxyl, methoxyl, and quinoid groupings have been found in addition 

to variable proportions of nitrogenous compounds such as amino acids and poly

peptides (Hall and Packham, 1965). Christman and Ghassemi (1964) were able to 

find the following phenolic compounds in natural water: vanillin, vanillic acid, 

syringic acid, catechol, resorcinol, protocatechuic acid, and 3,5 dihydroxybenzoic 
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acid. Since these color compounds have a net negative charge in waters of neutral 

pH, the control of pH is considered an important factor for maximum color removal 

and is carefully controlled in our studies to a pH of 5.7. The range of pH reported 

for maximum color removal is reported as follows: 

TABLE 1 

Reported pH ranges for maximum color removal 

Range 

5.2-5.7 

5.5-6.0 

5.5-6.5 

5.4-6.0 

Source 

Black and Willems (1961) 

Gaunlet and Packham (1973) 

Moore (1979) 

Hall and Packham (1965) 

The chemistry of aluminum sulfate may be used to explain why the pH of 5.7 is 

chosen for our determination of a prediction equation. Aluminum sulfate releases 

aluminum ions upon dissolution in water. The aluminum ions then enter into hydrolysis 

reactions. The major hydrolysis products are: Al 3+ AlOH2+ Al (OH)4+ and Al(OH)
4
-. 

' ' 8 20' 
These species may be in equilibrium with the solid Al(OH) 3(s)(Rubin and Kovac, 1974). 

The concentration of the major species of aluminum in water is a function of pH. A 

pAl - pH diagram, without ionic strength considerations and for 25°C, is presented in 

Figure 4, a modified version of figures taken from Amiritharajah and Mills (1982). 

The settleable zone boundary differs because our calculations show *K4 = l0- 13 · 35 

instead of lo- 12 · 35 and the Al 3+ line is shown to be part of the boundary of the 

settleable zone. From this figure it can be seen that at a pH below about 6.0 the 

major species in equilibrium with the Al(OH)3(s) precipitate are the positively 

charged aqueous aluminum species and above a pH of about 6.0 the major species in 

equilibrium with Al(OH) 3(s) is the negatively charged aqueous aluminum species. 

It has been suggested by Hall and Packham (1965) that the color molecule reacts 
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with an aluminum species of empirical formula Al (OH) 2 5 to form an insoluble x . x 
aluminum-hydroxy-humic precipitate. Al 8(0H)~~ fits this model. Since the color 

molecule has a net negative change, humic substances may be removed by enmeshment 

within the Al(OH) 3(s) and/or reacting with the positively charged aqueous aluminum 

species to form an aluminum-hydroxy-humic precipitate. 

Turbidity: Colloidal particles are generally characterized as having a high 

surface area to mass ratio and usually possess a negative electrical charge in 

waters of neutral pH. Colloidal particles do not readily settle of out suspension 

because of Brownian motion and the electrostatic repulsion of charged particles. 

To remove turbidity, the stable dispersion of particles may be destabilized by 

adding coagulant chemicals so that the colloidal particles agglomerate and settle 

out of suspension by gravitational means. Rubin and Kovac (1973) report pH 

control is a primary factor in alum coagulation. With the use of experimental data 

for the removal of colloid species from water and equilibrium chemistry considerations, 

they have developed a pAl-pH diagram similar to the one shown in Figure 4. They 

also indicate that in addition to pH that alum concentration is important in 

efficient coagulation. At low pH and alum concentrations, restabilization and 

inefficient turbidity removal was observed for certain colloids (Rubin and Kovac, 

1974). Thus, special attention was given to the treatment of natural waters and 

stock solutions of color-turbidity mixtures that fall within the restabilization 

region. 

Color-Turbidity Mixtures: Natural surface water contain various mixtures of 

color compounds and turbidity and not all color molecules have the same chemical 

structure. Furthermore, the chemical composition of the color in the natural 

16 



water tends to be similar to the humic substances in the surrounding soil and the 

plant life surrounding the water source. Owing to the variability of the pro

portions of color compounds and turbidity it might appear that the goal of 

achieving a prediction equation of alum coagulant dose as a function of raw water 

quality as impractical. However, Hall and Packham (1965) performed coagulation 

studies using aluminum and ferric salts as a coagulant agent on water containing 

a mixture of humic and fulvic acids and colloidal particles of kaolinite. They 

found that suspensions of kaolinite had no effect humic and fulvic acid removal. 

The coagulant dose for the coagulation of turbidity and humic substances is 

independent of initial concentration of turbidity and dependent upon the initial 

concentration of fulvic and humic acids. Water mixtures of kaolinite and fulvic 

acid, using aluminum sulfate as a coagulant, that kaolinite is removed con

currently with fulvic acid (Moore, 1979). Van Breeman et. al., (1979) report that 

a stochiometric or empirical relationship exists between the initial fulvic 

acid concentration and alum dose to achieve maximum color removal in their 

coagulation studies using aluminum slats. Narkis and Rebhun (1977) report a non-

1 inear relationship between initial concentration of humic acid and alum and 

report a linear relationship when a cationic polyelectrolyte is used as a coagulant. 

Time Series Forecasting 

The major objective of utilizing the control strategy is to determine the 

chemical dosages necessary to maximize the removal of color and turbidity as the 

raw water entering the plant changes over time. At any given instant of time, 

the quality of water entering the plant can be monitored. Unfortunately, continuous 

monitoring is not economically feasible for this study and for most water treatment 
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plant operations. Water samples were drawn twice daily from the Oyster River from 

September 1978 to September 1981. Color, turbidity and temperature were recorded. 

High frequency variations were observed for both color and turbidity. See Figures 

l and 2. Since turbidity is effectively removed with color, investigation of the 

temporal properties of color was only undertaken. Our jar tests show that 

turbidity is effectively removed when the maximum amount of color is removed. 

Through monitoring, the finished water quality and the present level of chemical 

dosages, are known at this instant of time. Since there is a lag time between 

treatment at the rapid mix stage and outlet of plant, forecasts must be made to 

determine the future water quality. These forecasts will be used in controlling 

the present level of treatment. 

Since the raw water quality is measured as the water enters the plant and 

this information is used to forecast finished water quality, they are called 

leading indicators. Obviously, the use of leading indicators are important to the 

overall success of the control strategy and must be selected carefully. Raw 

water color and temperature are believed to be important leading indicators. 

Owing to low cycle variation in temperature, temperature can be tracked. The 

temperature effect can be easily incorporated in the dynamic control strategy. 

In the work that follows, the majority of the discussion deals with the development 

of prediction equation for alum dose as a function of raw water color and the 

development of the dynamic control strategy with time series analysis. Temperature 

is an important factor in the establishment of an effective control strategy. 

A prediction for raw water color - alum dose was developed for 20°C. Treatment 

of raw water below 20°C was undertaken and methods to incorporate into the 

dynamic control strategy are presented. The effects of the settling behavior were 

studied in detail. The effect of mixing in the rapid mix and flocculation stages 

of treatment were also investigated. 
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CHAPTER 4 

THE 11 CRITICAL 11 COAGULANT DOSE 

The results of Hall and Packham (1965), Moore (1979) and Van Breeman et al. 

(1979) were used as a premise that natural surface waters will exhibit the same 

characteristics if treated under similar conditions. Consequently, the 11 critical 11 

coagulant dose d* is assumed to be dependent upon initial fulvic concentration, 

a surrogate measure of initial raw water color, and independent of raw water 

turbidity. A empirical relationship to forecast d* as a function of initial apparent 

fulvic acid concentration x~ and, in a separate analysis, initial apparent color 

x
0 

is sought. Since natural surface samples were used, the results of those experi

ments will give an indication of the sensitivity to treatment of various proportions 

of color and turbidity mixtures and the practicality of using these assumptions is 

actual practice. 

In our experiments twenty three samples were randomly drawn from the Oyster 

River in Durham, N.H. These samples had a color range of 30 to 320 CU and a 

turbidity range of 0.5 to 5.0 NTU. In order to achieve a wide range of raw water 

conditions, some samples were spiked with fulvic acid. An independent sampling of 

raw water quality of this site taken at twelve hour intervals from August 1978 to 

December 1981 show a range of color from 20 to 220 CU. with approximately 65% 

falling between 60 and 90 CU. The average turbidity was 2.3 NTU with approximately 

65% falling between 1.0 and 4.0 NTU. Thus, the samples used in the study are 

representative of the conditions that must be treated at the plant at this location. 

19 



The Prediction Equation 

Jar Test Procedures: Prior to performing the jar tests on these samples, an 

alum stock solution containing 17.77 grams per liter of reagent grade aluminum 

sulfate with 18 waters of hydration were prepared on the day the tests were per

formed. Daily preparation was used because the solutions precipitated after two 

days storage. During these tests, the pH was adjusted with sodium hydroxide and 

hydrochloric acid solutions. The same procedure was used for each sample. A one 

liter beaker containing an 800 ml aliquot of water was placed on a magnetic jar 

stirrer. The pH of the water was adjusted to 5.7 with additions of hydrochloric acid. 

The required alum and sodium hydroxide were added simultaneously to maintain the pH 

near 5.7. Within the first minute any deviations from the desired pH were adjusted. 

After 2 minutes of rapid mixing, the beaker was transferred to a standard jar 

stirring apparatus set at 20 rpm. Following a 20 minute flocculation period, the 

samples were allowed to settle for 30 minutes. After this approximately 400 ml 

were decanted off and an aliquot of supernatent was passed through a glass fiber 

filter. The apparent color, apparent fulvic acid concentration, turbidity, and 

pH of the raw, settled, and filtered waters were measured. The apparent fulvic 

acid concentration was measured by comparing the solutions absorbance at 350 nm with 

a standard calibration curve. Apparent color is the color of the color-turbidity 

mixture measured by visually comparing the sample to a platinum-cobalt standard. 

The other parameters were determined with procedures in Standard Methods. See 

Gallot (1980) for details. 

Jar Test Results: Residual apparent color-dosage and residual turbidity-dosage 

curves were prepared for each sample. The same piece-wise linear residual color-
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dosage form was observed for each sample, whether the residual color is assigned to 

be a filtered apparent color reading or a settled color reading. The results are 

typified by the curve shown in Figure 5 for an initial water color or x
0 

= 65 CU. 

It shows that the residual fulvic acid q is a piece-wise linear function of the 

alum coagulant dose q or 

q = a
0 

+ a
1 

d (l) 

where a
0 

and a 1 are the intercept and slope terms, respectivefully. For dosages 

below d*, both terms a
0 

and a 1 were found to be nonzero values. For dosages 

above d*, the slope a 1 term is observed to be equal to zero and a
0 

equal to a 

constant and equal to the average of residual color readings above d*. 

For maximum color and turbidity removal, color is found to be the controlling 

factor in determining d*. This conclusion is drawn for all experiments performed 

on natural water samples and other studies of stock solutions of humic acid and 

kaolinite mixtures described in the following sections. Dosages below the critical 

d* are considered to be underdoses because maximum color removal is not achieved. 

A dosage above d* is considered to be an overdose and cost inefficient because these 

dosages do not improve the quality of the finished water. Thus, there is no 

advantage of overdosing. 

A stoichiometric relationship between alum dosage and apparent fulvic acid 

exists. The prediction equation where d* is the critical alum dose d* in mg/Q 

and x' is the apparent fulvic acid concentration in mg/Q is 
- 0 

d* = 13.3 + 2.2 x~ (2) 

with a correlation coefficient of 0.94 and a standard error of 6.2. Similarly, 

linear relationships between optimum alum dosed* and apparent color x
0

, measured 

in apparent color units, is 

d* = 13.9 + 0.23 X
0 

(3) 
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with a correlation coefficient of 0.94 and a standard error of 6.5. Apparent color 

is the color of a color-turbidity mixture measured by visually comparing the sample 

to a platinum-cobalt standard. 

The results observed in these studies on natural waters agree with the results 

of Beaurivage (1979); Davis and Steinhurst (1960); Moore (1979); and Van Breeman, 

et. al. (1979), who used synthetic stock solution samples. All alum doses as 

recommended by these researchers are within a 95% confidence interval. See 

Figures 6 and 7. These results give confidence that stock water samples, using 

fulvic acid, humic acid, and kaolinite, are representative of natural water samples. 

Equation (3) is used in the dynamic control strategy for raw waters of 20°C. 

The Effects of Temperature 

Since the treatment of natural water and stock solutions of humic substances 

and kaolinite exhibit the same behavior, another series of 34 jar tests of stock 

solution samples of 130 CU were performed at 4°C and 20°C. The primary purpose 

of these tests is to determine effect of temperature upon removal efficiency of 

color. 

Jar Test Procedure: 

sample dilution to a minimum. The stock solution was made daily to avoid aging. 

A 0.20N NaOH solution was used to adjust the pH to a specified value. While the 

sample was being stirred, the appropriate volume of stock alum was added, followed 

by NaOH titration until the desired pH was reached. Four beakers were used in each 

jar test. Each beaker was filled with the recalculated volume of batch water and 

put in the temperature bath. Four paddles from a Phipps and Bird gang stirrer, 

each with dimensions l in x 3 in, were placed in the beakers. The appropriate 

volumes of NaOH and stock alum were added, followed immediately by rapid mixing. 
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The rapid mix step occurred for 2 minutes at 150 rpm. Fifteen minutes of 

flocculation at 15 rpm then occurred. A 15 minute settling period was allowed 

before sampling. Two types of samples were taken from each jar after settling. 

The first one consisted of a 25 ml aliquot that was used for absorbence readings 

of the settled water sample. The second type consists of centrifuged aliquots. 

Two 50 ml centrifuge tubes were filled and centrifuged at 10,000 rpm for 10 minutes 

on a Damon/IEC Division centrifuge. A 25 ml aliquot was taken from one tube of 

each jar. This was used for absorbence reading of the centrifuged water sample. 

Three 10 ml aliquots were taken from each of the remaining tubes and used for 

residual aluminum measurements. The absorbence reading reported here were trans-

formed to color reading in color units (CU) by multiplying the absorbence reading 

taken at a wavelength of 267 nm by 127.8. 

Centrifuged Samples: The results obtained in the series of jar tests are 

summarized in Table 2. These tests were performed in the same as described. 

TABLE 2 

Optimum conditions for maximum color removal of color-turbidity mixtures 

with an initial color of 130 CU. Readings taken after centriguging 

Temperature (°C) 

5 

20 

Optimum 
alum dose 

range (mg/l) 

30-140 

30-140 

Optimum 
pH 

range 

5.5-7.4 

5.8-7.4 

Mean 
residual 

color (CU) 

9 

9 

These results validate the alum dose prediction equation, equation 3, for both 

temperatures 5°C and 20°C. For raw water samples of 130 Cu, the 11 critical 11 alum 

dose from the jar tests is found to be 30 mg/l, a value within the lower boundary 

of the 95% confidence interval shown in Figure 7. 

For temperatures of 5°C and 20°C, the optimum pH range differs from the pH 

ranges reported by other researchers for samples containing color only. Our results 

indicate that higher pH values will give better results. 
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Settled Samples: In order to achieve optimum performance in the settling tank, 

readings were taken after settling and prior to centrifuging. The results are 

summarized in Table 3. 

TABLE 3 

Optimum conditions for maximum color removal at color-turbidity mixtures 

with an initial color of 130 CU. Readings taken after settling. 

Optimum Optimum Mean 
alum dose pH residual 

Temperature (°C) range (mg/l) range color (CU) 

5 75-140 6.4-7.4 29 

20 45-140 6.0-7.4 19 

Compare these results with the results of Table 2. For 20°C the 11 critical 11 alum 

dose of 45 mg/l is greater than the one reported in Table 2 of 30 mg/l and is 

approximatley equal to d* = 44 mg/l from equation 3. The optimum pH range for 20°C 

is very similar. For the colder temperature of 5°C, the 11 critical 11 alum dose is 

found to be 75 mg/l and the optimum pH range is between 6.4 and 7.4. Thus, 

temperature has an influence upon the alum dosage and pH range. In these tests, 

the settling time for the 5°C and 20°C samples is the same 15 minutes. Improved 

color removal as measured by the mean residual color may be achieved by increasing 

the settling time. The effect of settling time was not investigated in this study. 

Figures 8 and 9 show the effect of pH and temperature upon color removal. 

These samples were both treated with an alum dose of 80 mg/l, an overdose for both 

temperatures. Recall that overdosing does not result in increased color removal, 

thus pH and temperature are considered to be the only controlling factors in this 

series of experiments. Greater variability of the residual color is observed for 

pH less and of 6.4. Whereas, the variance for values between 6.4 and 7.4 appear to 

equal, indicating pH has a significant effect upon color removal process. A method 

of least squares was used to fit a nonlinear relationship for residual color, pH 

and temperature. The lines of best fit are shown in Figures 8 and 9. See 
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Viscardi (1983) for details. Using this relationship for pH for maximum color 

removal is found to be 6.79 at 20°C and 6.86 at 4°C. Further analysis of the data 

tests shows there are no significant difference in maximum color removal for the 

ranges shown in Table 3. Thus, for optimum performance in the settling stage of 

the water treatment process, it is recommended that the pH be adjusted to within 

these ranges in order to achieve better performance in the settling tank. These 

recommended ranges of pH fall within the sweep coagulation zone shown in Figure 3. 

Since colder temperatures impair the removal process, a series of jar tests at 

temperature 5, 9, 14 and 20°C were performed. These tests were performed at pH 

levels that fall within the optimum pH range reported in Table 3. The results are 

shown in Table 4. 

TABLE 4 

Alum dose for color-turbidity mixtures with an initial color of 130 CU. 

Reading taken after settling 

Mean 
Temperature Alum dose residual 

(°C) d*,(mg/l) color (CU) 

5 80 29 

9 66 25 

14 56 28 

20 50 27 

The dosages used in these tests are slight overdoses for the 5°C and 20°C. Note 

the performance, as measured by the mean residual color at 20°C, is not as good as 

reported in the Table 3, for the same tests. Thus, one should not conclude that 

better settling performance is achieved at higher temperatures as implied in 

Table 3. 

The alum dosages at 9°C and 14°C have similar mean residual color readings 

after settling, thus giving confidence that these alum doses are effectively 

removing the color and turbidity. These results indicate that a linear relationship 

between alum dose and temperature exists. It is expected that similar results will 

occur for initial raw water colors other than 130 CU. 
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Residual Aluminum 

A series of jar tests were performed to determine the effect of temperature 

upon residual aluminum concentration. As previously mentioned, aluminum may cause 

health problems. Secondly, high residual aluminum concentrations may indicate 

overdosing, which results in higher operational costs without a substantial increase 

in color or turbidity removal. 

The studies of residual aluminum utilized a relatively new method of 

measuring aluminum with fluorescense with Morin (2 1
, 3, 4 1

, 5, 7 pentahydroxy

flauone) as the chelate agent. Details are presented in Viscardi (1983). The 

results of these tests show that a range of observations between 15 µg/Q and 

100 µg/Q. See Figures 10 and 11. These figures show a higher median and a broader 

range of residual aluminum readings at all alum dosage levels for 5°C as compared 

to 20°C. Although the National Drinking Water Standards do not yet limit the 

amount of residual aluminum leaving a plant, it is anticipated that Standard 

Methods will recommend a maximum limit of 50 µg/Q (Sung, et al. 1983). 

Mechanical Mixing Effects 

The effects of mechanical mixing, mixing intensity and mixing duration, in 

the rapid mix and flocculation stages on the color and turbidity removal process 

was investigated. In these jar test studies various combinations of mixing 

conditions were investigated, while alum coagulant dose was held constant for a 

given initial water color. 

Velocity Gradient: In water treatment facilities, a rapid mix unit is used to 

uniformly disperse the coagulant chemicals in the water; and a flocculator 

unit is used to promote particle contact and to promote the formation of larger 
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particles. Mechanical mixing is suspected to have a significant impact upon 

performance and the sand filter, which is used to remove material not removed by 

settling in the settling tank. The mixing intensities used in the rapid mix and 

flocculator units may be measured with the velocity gradient G. It is a measure 

of the total work performed at a point or on a unit volume of fluid over a unit 

time. 

(4) 

where W is the work input per unit volume, t is the mixing duration time, V is 

the volume of liquid, µ is the absolute viscosity, and P = W/t is the power per 

unit volume. Camp and Stein (1973) defined the average velocity gradient G as 

- 1/2 
G = Cf_) (5) Vµ 

where P is the average power transmitted into the liquid, V is the volume of 

the liquid andµ is absolute viscosity. Since P can be easily measured, the 

average velocity gradient G is used in our studies. The measurement of the 

velocity gradient was determined through the use of a precalibrated motor. Based 

on the measurements of motor amperage, impeller speed, volume of water, temperature 

and torque, the average velocity gradient, G, can be determined. See Gottlieb 

(1982) for details. 

It should be recognized that the configuration of the mixing basin and the 

shape of the impellers used for mixing can yield different results, even though the 

same G was used. The turbidity removal experiments conducted by Letterman, et. al. 

(1973) using cylindrical jars with baffled chambers showed that turbine impellers 

produced slightly lower residual turbidities than propeller impellers. They also 

reported that square chambers produced residual turbidities slightly lower than 

when using cylindrical chambers when either impeller type was used. 
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Jar Test Procedures: The results and conclusions presented in this portion of 

the paper are a result of the investigation of 80 jar tests of stock solutions of 

color and turbidity mixtures. For each jar test investigation the experiment was 

repeated four times for the same initial water color and turbidity concentrations 

under identical treatment conditions. Thus, a total of 320 samples were analyzed. 

Water colors of 142, 80, and 20 CU are used to represent high, medium, and low 

water colors, respectively. These colors of 142, 80, and 20 CU were produced by 

adding 11.94, 6.7, and 1.7 mg/l of Aldrich brand humic acid, respectively. For 

the mechanical mixing tests, kaolinite was added to the samples giving an 

average turbidity of 3.7 NTU and standard deviation of 1.2 NTU. 

All jar tests were performed at 25°C and at a constant pH of 5.7 in 2 liter 

Gator jars, square chambers, with 3 in x l in flat impellers. The rapid mix tests 

were performed first. The selected alum dose and 0. lN NaOH were added simultaneously 

in the rapid mix phase to maintain a pH of 5.7. Any deviations from a pH of 5.7 

were adjusted within one minute with either 0. lN NaOH or 0. lN HCl. Rapid mix 

detention times and velocity gradients were varied among jar tests. The velocity 

gradients that were investigated are G = 100, 300, and 500 sec-l Flocculation 

occurred for 20 minutes at 15 rpm or approximately G = 15 sec-l and sedimentation 

occurred for 15 minutes at which point residual turbidity, settled color, and 

residual humic acid were measured. 

The turbidity was measured with a Hach model 2100 turbidimeter. The settled 

color was measured by visually comparing the water in a 100 ml Nessler tube to 

a platinum cobalt standard in the same type of tube. Humic acid was measured by 

a Bausch & Lomb Spectronic 2000 spectrophotometer at 267nm. Since the remaining 

turbidity in the sample can account for some of the absorbance, the sample was 

centrifuged for 30 minutes at 18,000g. Because centrifuging can change the pH of 

the sample, which in turn can cause a color change (Christman and Ghassemi, 1966), 

the sample was buffered with an equal volume of 0. lM K2HP04. 
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The flocculation tests were performed exactly as the rapid mix tests, except 

- -1 that the rapid mix conditions were held to a constant, G = 500 sec , and 

detention time t = 30 seconds, giving a Gt of 15,000, while the flocculation 

velocity gradients and detention times were varied among jar tests. Velcoity 

gradients of 20, 50, and 90 sec-l were investigated at different levels of mixing 

duration. 

The same alum dosages were used for the rapid mix and flocculation tests. 

Alum doses of 50mg/1, 40mg/1, and 30mg/1 were used for initial water colors of 

142, 80, and 20 CU, respectively. These doses may be considered to be slight 

overdoses. Using equation (3), the critical alum dose for these initial color 

waters are 46, 32, and 19 mg/1 of alum for these initial water colors, respectively. 

Statistical Methods: In order to determine the effects of mechanical mixing 

upon color removal, a series of experiments were performed with fixed levels of alum 

dosages at various levels of G and t, the mixing duration time is in seconds. The 

purpose of this investigation is to infer a cause-effect relationship between the 

residual color of the finish water q, G, and t for a given dosage d. A linear 

model will be used to explain this investigation. 

- -
q = ~o + ~ 1 G + ~2t + ~3Gt (6) 

The dependent variable q represents the apparent color reading of the water after 

settling or equivalent color reading after centrifuging. The coefficient, ~ 
0 

represents the intercept, ~l' ~ 2 , and ~ 3 are slope terms which represent the average 

change in response to a unit change in G, t, and Gt, respectively. The terms 

~ 1 G and ~2t are called the main factors and ~3Gt is called the interaction factor. 

The effect of interaction may be seen more clearly by rewriting the linear model as 
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(7) 

The magnitude and signs of the parameters ~0 , ~l' ~2 , and ~3 may be determined by 

the method of least squares and hypothesis testing to determine if these estimates 

are significantly different than zero (Mendenhall, 1968). 

In order to show the significance of the main and interaction factors, assume 

that experiments have been conducted, the linear models have been fitted, and 

hypothesis tests have been performed. Suppose that the interaction factor is 

shown to be statistically insignificant. The linear model reduces to 

(8) 

If ~l < 0 and ~2 < 0, increasing either G or t or both will reduce the residual 

color in the finish water. Contrast this result with the model 

G = ~o + ~3Gt (9) 

Here, the main factors are statistically insignificant. If ~3 < 0, then changing 

G and t such the product Gt is increased will reduce the residual color in the 

finish water. This result implies that there will be no difference in residual 

color for one sample treated at a G = 300 per second and t = 100 seconds and for 

a second sample treated at a G = 500 per second and t = 60 seconds because the two 

samples have the same Gt value of 30,000. If the main and interaction factors 

play no part in the color removal process, then the model is 

q = ~ 
0 

(10) 

~ may be estimated by averaging all observations of the residual color readings. 
0 

Analysis of variance, ANOVAII tests were used to determine the statistical 

significance of the main and interaction factors. All statistical testing were 

performed at 5% level of significance. In order to detect interaction relationship, 

tests were performed for a broad range of combinations of G and t. Scattergrams 

were used to investigate the variability in the data and to determine trends. 
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Rapid Mix Test Results: The same conclusions were drawn for all rapid mix 

tests performed for settled sample. ANOVAII tests indicate that Gt is statistically 

significant and that G and tare statistically insignificant. The model describing 

this behavior is 

q = ~o + ~3 Gt (11) 

The parameters of ~o and ~3 were estimated by use of the method of least 

squares and hypothesis testing for 20, 80, and 142 CU. The estimates of ~ 3 
-4 -4 -4 are l. 14 x 10 , 0.59 x 10 , and 0.66 x 10 for the respective raw water colors 

All these terms are statistically significant. Since the estimate of the slope 

parameter is small and the estimated errors; is relatively large, Tukey's method 

of multiple comparisons (Box, Hunter, and Hunter 1978) were employed. This 

statistical method helps identify the range of Gt where the average residual color 

of the finish water is statistically the same value. The mathemtical model 

describing this condition is 

q = ~ 0 

The results of the analysis are tabulated in Table 5. 

TABLE 5 

(12) 

Gt range for maximum color removal of color-turbidity mixtures 

Raw Water Color 

20 cu 
80 cu 

142 cu 

Alum dose 

30 mg/Q 

40 mg/Q 

50 mg/Q 

Settled Samples 

9000-36000 

3000-36000 

9000-30000 

Centrifuged Samples 

3000-72,000 

9000-120,000 

In other words, for 142 CU raw water there is no statistically significant difference 

among the average values of residual color in the interval of Gt between 3000 and 

36,000. Similar conclusions were observed for water samples with initial color of 

20 and 80 CU. This is in good agreement with the range of Gt for the removal of 

turbidity recommended in standard practice. 

38 



Absorbance readings of the settled finished water were taken after the samples 

were centrifuged. The analyses shows that color removal is independent of G, t 

and Gt. The model describing this finding is q = ~0 . Comparing the Gt ranges 

for settled apparent color and centrifuged absorbance samples Table 5 shows the 

expected result that a broader range of Gt for maximum color removal exists for 

the centrifuged samples. 

Flocculation Test Results: ANOVAII tests show that G and t for raw water colors 

of 40, 80, and 142 are statistically significant and the interaction term Gt is 

statistically insignificant. Thus, q residual color is assumed to be a function 

of G and t or 

(13) 

Data analysis of residual color of q and mixing time t with the data for G of 20, 

50, and 90 per second identified, shows the effect of average velocity gradient 

upon settling. The velocity gradient G is a primary factor to efficient settling 

G of 20 per second is the most effective in achieving the best results. Thus, 

attention is focused upon the relationship between q and t for G = 20 per second. 

Tukey's mean comparison tests were performed and the range of mixing times for 

maximum color removal were determined. For the data obtained in our studies, the 

optimum values of t are shown in Table 6. 

TABLE 6 

Detention time for maximum color removal of color-turbidity 

mixtures for G = 20 per second 

Raw water color 

20 cu 
80 cu 

142 cu 

Settled Samples 

900-1800 

600-1800 

600-2400 
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Centrifuged Sample 

300-1800 

600-1800 

600-2400 



For G = 50 and 90 per second, shearing forces damage the floe or deter floe 

formation. Visual observation of floes at higher G values indicate that they were 

weaker and not as dense as floes at the G value of 20 per second. Floes at G = 90 

per second were approximated to have an average diameter of 3mm (l/6 inch); whereas, 

floes at G = 20 per second had an average diameter of 6mm (1/8 inch). 

For higher G values, residual turbidity readings were also greater than for 

the lower G readings. Maximum turbidity removal is achieved at G = 20 per second. 

It has been found that the higher the velocity gradient the denser the floe; 

however, if G is too high, shear forces will break up the floe (Cohen and Hannah, 

1971). Other investigators (Lagvanker and Gemmel, 1973; Tambo and Watanbe, 1979) 

have also reported as the density of the floe decreases, the floe size increases. 

Further details may be obtained in Ossenbruggen, et al. (1983). 
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CHAPTER 5 

TIME SERIES MODELLING 

Jar tests of over 100 samples of natural and stock water samples of mixtures 

of color (humic substances) and turbidity (kaolinite) were observed. These tests 

reveal that the initial color of the sample and its temperature are leading 

indicators in establishing the 11 critical 11 coagulant dose of alum. The relationship 

for determining the dosage is given in equation (3) and rewritten here as 

d = 13.9 + 0.23 X
0 

(14) 

where x
0 

is apparent color of the raw water measured in color units at 20°C. 

This equation appears to give good results for investigations of samples after 

settling and after centrifuging. As previously discussed, the critical dose for 

temperatures below 20°C require additional alum above the predicted dose of equation 

(14) if maximum color removal is to be achieved after settling. Color-turbidity 

samples of 30, 80, and 130 CU conducted at 4°C were found to require additional alum 

of 16, 24, and 30 mg/Q above the predicted value. In the quantitative results 

presented in this section, the effects of temperature are not considered. 

Time series modelling provides a method to forecast over a period of time 

called the lead time. The accuracy of the forecast depends upon many factors 

including temporal variation of the signal and the autocorrelative relationship 

among the data. By investigating an historical record of the data, causal re

lationship can be identified and incorporated into a forecast model. This process 

is known as model identification. If a high degree of autocorrelation exists, an 

autoregressive model can be developed which is extremely useful in forecasting 

events with present and past observations. The forecast may be xt+l for future 

period t+l estimated with the following model 

(15) 
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where xt, xt-l' ... xt-p are observations taken at the present time t, and at past 

time periods, t-1, ... t-p. The terms $
0

, $1, ... , $pare nonzero weights and at is 

an error term. This model and all times series models developed under the general 

heading of Box-Jenkins models (1970) are assumed to be linear filter models. These 

models are stochastic models that are dependent upon a series of successive obser-

vations of correlated values. Furthermore, these models are assumed to possess 

the property of stationary and to be generated from a series of independent 

shocks, or in other words, at has the properties of white noise. Utilizing these 

assumptions allows one to identify a model and test the model's validity with 

statistical methods. 

Model Identification 

Time series analysis were performed upon the color data shown in Figure l. 

The monitoring time interval T or time between observations is twelve hours. The 

temporal color variation is found to be represented by a linear filter model 

xt - xt-1 = at (16) 

where xt - xt-l represents the first difference between an apparent color 

observation taken at time periods t and t-1. The random variable at is assumed to 

be normally distributed with a mean equal to zero and a standard deviation of aa 

Furthermore, at, at-l' at_2, ... are assumed to be uncorrelated random variables. 

Run and chi square tests were performed to validate the assumptions for the model 

represented by equation (16). Equation (16) is a simplified version of the model 

shown in equation(l5) with p = l and$ = l. 
0 

The model may be rewritten as: 

(17) 

Utilizing this form, the observed value of xt may be interpreted as the sum of the 

observed value xt-l plus a random 11 shock 11 at. This model is sometimes called a 

random walk model. The model may be used to forecast future events. 
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xt+l = xt + at+l (18) 

where xt+l is the forecast of color for the upcoming period t+l. The lead time 

interval for forecasting is equal to the monitoring time interval T. Thus, the 

selection of the monitoring time T is an important decision in establishing an 

effective dynamic control strategy. The forecast is based upon the observation of 

color taken at present time t, xt and a 11 shock 11
, at+l· Since at+l is assumed to be 

normally distributed with zero mean, the expected value of color is simply equal to 

xt. 

E[xt+l] = xt or xt+l = xt (19) 

Let xt+l equal the expected apparent raw water quality for treatment period 

between t and t+l. 

Using xt+l' the critical alum dose from equation (19) with x
0 

= xt+l' a 

simple dynamic control strategy is established. Using expected value theory, it 

can be anticipated that the water will be underdosed approximately 50% of the time. 

An underdose is defined as the event where the xt+l or less than the observed value 

xt+l or 

xt+l<xt+l (20) 

The concepts of underdosing and overdosing are depicted in Figure 12. Clearly, this 

simple dynamic control strategy is an unsatisfactory method because of the frequent 

occurrence of underdosing. 

During an underdose, it is possible that the water will be aesthetically un

pleasing and the chances of a health hazard are also increased. If chlorine is 

used as a disinfectant, the possibility of forming trihalomethane, a suspect 

carcinogen is present. Overdosing avoids these problems; however, excessive over

dosing does not improve water quality only adds to the cost of treatment and 

possibly results high levels of residual alum in the finish water. Thus, the goal 

is to find a method that eliminates the occurrence of underdosing and at the same 

time avoids excessive overdosing. 
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The Forecast Equation 

The frequency of underdosing will be reduced if the forecast relationship, 

equation (19) of the simple control strategy, is modified to: 

(21) 

where a is a positive value called the overdose factor and sa is the estimate 

The magnitudes of a and s will determine the frequency of underdose a 

occurrences. Figure 13 shows the addition of asa to xt is sufficient to eliminate 

the underdose for the period between t and t+l shown in Figure 12. The effects of 

a and s upon the occurrence of underdosing and the cost of treatment are important a 

considerations in establishing an effective control strategy, and consequently, 

their relationship will be studied in greater detail. 

The magnitude of sa will be dependent upon the monitoring time interval T. 

Since the standard deviation is equal to the square root, of the variance, sa = (s!) 112 , 

the standard deviation s may easily be calculated from the estimate of variance a 

s2 where a 

(22) 

The effect of the sampling interval on s is shown in the following table for the a 

Oyster River data shown in Figure 1. 

TABLE 7 

Standard deviation estimates of the random shock, 

term at for various monitoring intervals 

Monitoring interval Sample size Standard deviation 
T (hours) N sa (CU) 

12 2015 10.8 

24 995 13. 3 

36 658 14.8 

48 478 14.9 

60 391 16.2 

72 319 16. 1 
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The same time series data was used to calculate each value tabulated in Table 7. 

For T=l2 hours, all observations were used. For T>l2 hours, appropriate values were 

selected to simulate that given monitoring time interval. For example for T=24, 

every other observation was used to establish a new data set. There were time 

periods where data was not recorded. The most common causes for missing data were 

a frozen water line leading from the reservoir to the sampler and pump failure. 

As a result, there are gaps in the time series which in turn is reflected in the 

sample size N and standard deviation sa shown in Table 7. 

The steps for calibrating a dynamic control strategy forecast model are: 

1. monitor the water supply source at a fixed time frame T. A record of a 

mininum of one year is recommended; and 

2. calculate sa by use of equation (22). 

Once the model is calibrated, the underdose factor a must be selected. The 

alum is determined with equations (14) and (21). Let x = x Thus, the dosage 
0 t+1 · 

for the treatment period between t and t+l is 

dt+l = 13.9 + 0.23 xt+l (23a) 

or 

dt+l = 13.9 + 0.23 (xt+asa) (23b) 

where xt is the observed color reading at time period t. It should be evident from 

this equation that the effectiveness of the dynamic control strategy will be dependent 

on how well the forecast of xt+l is made. In order to evaluate its various 

combinations of a and T were taken and the number of underdoses per year were 

counted. The results of our studies are summarized in Figures 14 through 16. 

The following observations are made: 

1. the a is the primary factor for determining the number of underdoses 

2. the monitoring interval T is a secondary factor for determining 

the number of underdoses. 

From Figures 14 through 16 an overdose factor of 3 appears to be a reasonable 

choice to minimize the number of underdoses per year. 
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Economic Considerations 

The cost of treatment is another measure of how effective the dynamic control 

strategy is. In order to evaluate it, the total amount of alum required per year 

to treat a flow of 1 million gallons per day was investigated. An analysis of the 

yearly averages of color shows that these data are normally distributed with mean, 

xt = 74.2 CU and standard deviation s = 10.5 CU. The expected annual amount of 
xt 

alum may be estimated by taking the expected value of equation (23b) and multiplying 

it by an appropriate factor (1.523) to convert the dosage from grams to tons, the 

expected annual alum in tons per year is 

z = E[l.523{13.9 + 0.23 (xt + asa)}] 

or 

z = 21.2 + 0.35 (E[xt] + asa) (24) 

In a similar manner, the standard deviation may be evaluated. It is simply equal 

= (l.523)(0.23)s = 3.7 tons. 
xt 

This shows the variation in the annual dosage 

of alum is expected to be small. The estimated annual chemical dose for a flow of 

1 million gallons per day is tabulated in Table 8. 

TABLE 8 

Number of underdoses per year and yearly alum dose estimates for a dynamic 

control strategy with overdosing. Overdose factor, a=3. 

Monitoring Interval 
T (hours) 

12 
24 
36 
48 
60 
72 

Flow, 1 million gallons per day 

Annual alum dosage 
Mean 

z (tons/yr) 

58.5 
61.1 
62.7 
62.8 
64.2 
64. 1 
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Number of underdoses 
per year 

m 

5 
7 
4 
5 

13 
8 



These results show there is a slight penalty in cost for larger monitoring intervals 

of T. The overdose factor, a=3, gives a good assurance that higher quality will be 

delivered. 

Tracking is a control strategy where continuous monitoring, T=O, is conducted. 

Since the incoming raw water is monitored at every instant, there is no need to 

overdose, a=O .. Since sophisticated equipment is required, it is deemed 

economically impractical for most communities, especially smaller ones. In order 

to evaluate the penalty cost for monitoring intervals and overdose factors other 

than zero, T=O and a=O, compare the values shown in Table 8 to 47.2, the annual 

average alum dose amount for tracking. This comparison shows a percentage increase 

of alum ranges from 23.3 to 36.0 percent for T between 12 and 60 hours. 

An investigation of overdose factors greater than three, a>3, shows that there 

is little benefit in reducing the underdose frequency. See Figures 14 through 16. 

The dynamic control strategy is unable to predict spike events. A spike event is 

defined as one that has a large increase in color over the time interval T. Our 

studies of the three year time series record indicates that spike events occur 

after snow melt, ground thaw, and heavy rains. The operator may utilize this 

monitor at a higher frequency during these periods or may elect to increase a for 

a temporary period until the critical period is considered to be past. 

Our economic study did not consider the effect of temperature. In order to 

improve settling efficiency, additional alum is required. This will add to the total 

cost of treatment. Labor, backwash, and sludge disposal costs are considered major 

cost factors in the total cost of the water treatment process. These costs are 

related to the alum dosage; unfortunately they are not simple ratios and cannot be 

simply introduced in our economic analysis. For example, the time between backwash 

and disposing of sludge will depend on the alum dosage. The higher the alum 

dosage the more frequently backwashing and sludge disposal must occur. The net 

result is a more costly plant operation. 
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It is recommended that the overdose factor be minimized in order to reduce the 

level of residual alum in the finish water. Thus, overdose factors between 1.5 and 

3.0 should be investigated. An investigation of Figure l shows that there are 

reasonably long periods, weeks and months, when the raw water color does not vary 

significantly. During these periods it might be possible to utilize a different 

overdose factor then during other parts of the year. These studies should be per

formed before they are introduced into the plant. Our recommendation is to 

utilize the dynamic control strategy with a=3 with T=l2 hours. 
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CHAPTER 6 

CONCLUSIONS 

l. A simple dynamic control strategy was developed based upon observations of 

water quality measures of color and temperature. 

a) Predictive models for specifying the 11 critical 11 alum dosage as a 

function of raw water color are developed. For centrifuged samples 

these equations are an effective forecasting tool for all temperatures 

investigated. This implies that the critical alum dose is independent of 

temperature. 

b) A dynamic control strategy model for forecasting color was derived 

from a time series record of color. This model may be calibrated by 

obtaining a one year time series record of the water entering the plant. 

The overdose factor and monitoring time interval were shown to be the 

principle factors in reducing the risk of underdosing and the cost of 

operation. 

c) For good performance, pH should be carefully controlled. The pH ranges 

for maximum color removal after settling are narrower than the 

pH range for maximum color removal after centrifuging. 

d) For temperatures below 20°C, the amount of alum required for maximum 

color and turbidity removal after settling is greater than the pre

dicted 11 critical 11 alum dose given by the prediction equation. The 

amount of this addition is dependent upon raw water color and 

water temperature. 

2. The dynamic control strategy appears to be cost effective. The major factor 

of chemical treatment cost is a function of raw water color and temperature. 

Overdosing at moderate levels to reduce the risk of underdosing is relatively 

small fraction of the overall chemical cost. 
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3. Results from jar tests indicate 

a) raw water color, not turbidity is the controlling factor for predicting 

the 11 critical 11 alum dose. Both color and turbidity are effectively 

removed at the 11 critical 11 alum dosage level. 

b) for a given alum dose, additional color removal may be achieved 

by proper adjustment of the mixing conditions in the rapid mix and 

flocuclator units. For rapid mixing, the controlling factor in 

operation is the interaction Gt and for flocculation, G and t are 

controlling factors. 

c) the amount of residual aluminum in the finish water is shown to be a 

function of temperature. 

The effectiveness of this treatment strategy has not been tested in actual 

practice. A pilot plant, 2400 gallons per day, has been constructed at the 

Arthur Rollins Treatment Plant in Durham, N.H., a 1.7 Mgal/day facility. The 

pilot plant operates in parallel with the actual plant, thus it permits direct 

comparison between treatment strategies. A few tests have been run in this 

facility. The results have been encouraging, thus giving confidence that the 

predictive equation for 11 critical 11 alum dose is a useful tool in practice. 
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t = 

T = 
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NOMENCLATURE 

random shock term, CU 

alum coagulant dose, mg/1 

"critical" alum coagulant dose, mg/l 

forecast error 

velocity gradient, second-l 

average velocity gradient, second-l 

number of observations in the time series record 

number of underdoses, number per year 

yearly annual average of color, CU 

apparent raw water color, CU 

apparent raw water fulvic acid concentration, mg/1 

color reading, CU 

annual average dosage of alum, tons/year 

residual color, CU 

estimate of cra, CU 

estimate of cre 

estimated standard deviation of annual dosage 

mixing duration time, seconds 

sampling time interval between observations xt-l and xt hours 
and the lead time interval for the forecast for the treatment 

period between t and t+l. 

standard deviation of random shock term, at, CU 

standard deviation of forecast error et, CU 
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