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Hot and Salty: Assessing ecological stress in New Hampshire streams at  
community, population, and molecular levels 

 
Problem  

New Hampshire’s climate is expected to resemble that of the US Mid-Atlantic by 2100 
(USGCRP 2009). With this shift comes increased air temperatures, less snow pack, more ice 
storms, and more rain on snow events. From a freshwater ecology perspective, much of central 
and northern New Hampshire’s streams are currently populated by coldwater species (e.g., 
Brook trout; Neils 2009). As a result of increasing air temperatures, stream temperature will 
likely increase; however, the increase will vary among streams (Kelleher et al. 2011). For many 
species, this thermal shift may be within their fundamental tolerance range (e.g., 21°C thermal 
maxima for Brook Trout), barring additional physiological stress.  However, growth in 
development (e.g., roads, housing) and energy production (mining, fracking) in northeastern 
states is causing additional stress on freshwater biota (Van Meter et al. 2011, Kelting et al. 2012). 
Among emerging concerns are the short-term and cumulative impacts of thermal and salinity 
stress on freshwater resources and biota (Findlay and Kelley 2011, Cuffney et al. 2010, Van 
Meter et al. 2011, Dalinsky et al. 2014, Stitt et al. 2014).  

Road deicers are an emerging concern in NH where a ‘bare pavement’ policy has been 
adopted (TRB, 1991). Applied salts are flushed from roadways in early spring and during mid-
winter thaw events. Some are immediately incorporated into surface waters while others 
infiltrating into subsurface flow and groundwater before reaching streams (Daley et al. 2009). 
The movement of sodium chloride into soil and groundwater systems delays the emergence of 
salts in streams, resulting in elevated Cl concentrations into summer months (Williams et al. 
2000, Findlay et al. 2011, Kelting et al. 2012), a sensitive time for growth, development, and 
reproduction of freshwater biota. The impacts of thermal variability and salt loading on 
freshwater biota have garnered attention and study in northern states, but it remains unclear how 
the synergy of salt and thermal stressors impact biota across the community, population and 
molecular levels.  

Traditionally, biotic response to water quality degradation is measured using broad-based 
community metrics (e.g., Simpson’s Index of Diversity) and/or assessing populations of select 
bio-indicators (e.g., EPT= the macroinvertebrate orders of Ephemeroptera, Plecoptera, and 
Tricoptera). More recently, researchers look to family and genus level abundance as indicators of 
water quality (Carlisle et al. 2008). However, both approaches are largely reliant on the loss of 
individuals and/or species, which could have cascading effects on biodiversity and the ecological 
function of streams. In order to avoid the potentially negative effects of osmo-thermal stress on 
NH stream biota, we need studies that investigate subtle biotic responses along a gradient of salt 
and thermal stress. Collectively, this means monitoring the overall composition of the benthic 
macroinvertebrate community as well as stress at the individual level via biomarkers.  

Biomarkers are parameters serving as objective and quantifiable characteristics of 
biological processes. These can include indications of unintended environmental exposure 
(Strimbu & Tavel, 2010). A good biomarker is one that can be used to model dose-effect 
relationships for clinical diagnoses and monitoring purposes (Van Der Oost et al. 2003). We 
sought a biomarker capable of representing the sublethal stress response to NaCl. Harmful 
effects of chemical introduction into the environment may not be readily apparent; some 
deleterious effects at the organismal level will only be visible after a series of molecular events. 
Morales et al. (2011) suggested that using subcellular biomarkers of stress is advantageous due 
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to their high sensitivity and fast response to stressors as compared to higher levels of 
organization (Morales et al. 2011). Sublethal cellular responses to stress can include rapid 
changes to metabolism, nutrient uptake, cell cycle growth, and the survival time of cells 
(Kroemer et al. 2010). Several methods have been suggested for quantifying sublethal stress, 
include the monitoring of reproductive habits and growth rates (Yousef & Courtney, 2003; Petes 
et al. 2008). Promise also resides in the form of stress protein quantification (Martin, 2000; Petes 
et al. 2008). Heat shock proteins (HSPs) are a class of molecular chaperones which aid in the 
protection/refolding of denaturing and aggregating proteins. HSPs are induced from a variety of 
stresses, including increased salinity, though they were initially discovered in the cells of 
organisms exposed to high temperatures. (Hochachka & Somero, 1984; Hill et al. 2012). During 
instances of biotic and abiotic cellular stress HSPs are rapidly upregulated, allowing them to 
serve as molecular indicators of stress (Lund et al. 2003; Lencioni et al. 2009; Hochachka & 
Somero, 1984; Zhao & Jones, 2012).   

HSP70 has been demonstrated as inducible in the cells of insect larvae, making it a prime 
choice for our sublethal stress assessment protocol. De Jong et al. (2006) showed that chloride 
cells in the abdomen and gills of mayfly larvae expressed high levels of HSP70 in individuals 
impacted by road salt runoff. Stress protein expression across specific tissues and organs varies 
among species, individuals, and within different tissues of the body; also, the level of observed 
expression may be dependent on exposure time to a stressor or the time of year (Krebs & Feder, 
1997; Singh & Lakhotia, 2000; Hyne & Maher, 2001). By establishing if/where HSP70 
expression is concentrated, researchers may be able to interpret how osmotic stress is introduced 
and amplified in aquatic nymphs, such as by feeding, osmoregulation, or oxygen intake.  

After choosing the mechanism by which stress would be assessed, we selected an 
organism capable of serving as a bioindicator. Bioindicators are organisms or environmental 
traits capable of serving as reliable indicators of environmental health (Stocker, 1980). Due to 
their importance in freshwater ecosystems, we chose to use macroinvertebrates. These animals 
are important to the structure and function of freshwater ecosystems, and their minimization or 
loss will potentially affect other trophic levels (Benbow & Merritt, 2004). Of the various 
macroinvertebrate groups, stoneflies (order: Plecoptera) are a favorable choice. This is because 
of their availability in streams during all seasons, the ease of collecting them, and their large size, 
which allows for examination of stress at the individual level (Gaufin & Tarzwell, 1952; Kohler 
et al. 1992). 
 
Objectives 

The goal of this project was to enhance biomonitoring efforts and early detection of 
thermal and salt stress on stream biodiversity in New Hampshire and to develop techniques that 
will provide an early-warning signal of ecosystems in jeopardy. Our project objectives were to:  

1) Evaluate differences in stream macroinvertebrate communities along a salt stress 
gradient. This objective was met by evaluating macroinvertebrate community composition 
within ten 1st to 4th order wadeable streams across NH that varied along a salt gradient 
classified using snapshot water chemistry data from 2013, 2014, and 2016 as well as 
continuous monitoring of stream conductivity between 2013 and 2016.  

2) Evaluate differences in stream macroinvertebrate communities along a thermal 
gradient. This objective was met by evaluating macroinvertebrate community composition 
within ten 1st to 4th order wadeable streams across NH that varied along a thermal gradient 
classified using 2016 snapshot and continuous monitoring of stream temperature.  
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3) Evaluate sub-lethal osmotic stress in stonefly larvae by quantifying heat shock protein 
(HSP70) expression in stoneflies (genus Acuernaria) using immunoblotting. This objective 
will be met by first conducting in-lab salt exposure trials using nymphal stoneflied to evaluate 
HSP expression in response to salt (NaCl) and thermal treatments.  

4) Compare and evaluate benthic macroinvertebrate sampling techniques and 
potential indicator taxa for salt stress. The NH Department of Environmental Services 
(NHDES)– Biomonitoring program has adopted a rock basket approach for assessing water 
quality using indicator taxa and community metrics. We set out to compare the rock basket 
approach to kicknetting over the months of July –September/October to evaluate their ability 
to detect small changes in community composition that may be attributed to elevated salt or 
temperature.  

 
This project had five main field and components: 1) field sampling of macroinvertebrates to 
provide community and population (family-level) metrics of ecological response, 2) laboratory 
based stress experiments to determine HSP induction thresholds for thermal-salt stress in two 
mayfly species, 3) field sampling and HSP expression assays of mayfly nymphs from streams 
that span a thermal and salt gradient to determine the utility of HSPs as biomarkers of stress in 
wild populations of mayflies, 4) continuous monitoring of conductivity, water level, temperature 
(stream and air), and 5) snapshot water chemistry (anion and cation) sampling to coincide with 
macroinvertebrate sampling.  

 
Methods 
 
Site selection 
Field sites were selected in 2016 by using GIS to overlay the LoVoTECS network of stream 
monitoring sites with fish sample sites between 2009 and 2015. From this subset of NH streams, 
we selected sites based on median chloride concentrations derived from snapshot water 
chemistry data collected in May and July 2013 and July, Sept, Oct 2014. Our ten sites ranged 
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Figure 1:Ten streams sampled for benthic macroinvertebrate and chloride between June and October 2017. 

 
from 4.35-52.6 mg/L of Chloride during this period. The ten sites represent a range of human 
impact; some sites have roads and development, and some sites have little to no human impact. 
Two of our original sites, Mad River in Waterville Valley and Douglas Brook near the 
Kancamangus Highway, are located in the White Mountain National Forest. We noticed a strong 
correlation between chloride levels at these two sites as well as benthic macroinvertebrate 
communities. Therefore, we replaced the Douglas Brook site with a new stream reach on the 
Cockermouth River (Groton, NH) in 2017. The other stream sites are located near minor and 
major road systems, with minimal to moderate influence from road salts and other anthropogenic 
influences. The ten sites include: Halfway Brook and Shannon Brook in Moultonborough, Mad 
River in Waterville Valley, Beaver Brook in Keene, Wednesday Hill Brook in Lee, 
Pemigewasset River in Woodstock, Clay Brook in Plymouth, Cockermounth River in Groton, 
Otter Brook in Peterborough, and Sucker Brook in Franklin.  

Our research team adopted NAWQA and EPA Rapid Biological Assessment 
macroinvertebrate sampling protocols for multi-habitat kicknet sampling. We sampled each 
study stream once every month beginning in late-May to September/October, 2017. At each site, 
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we selected a 100-meter reach that was largely representative of the stream habitat. This 100-m 
reach was established in close proximity to continuously logging specific conductance, water 
temperature, and water level sensors; most sites consisted of sample reaches that were 50-meters 
upstream and 50-meters downstream, or, where that was not feasible, 25-meters and 75-meters.  
We sampled 10 kicks using a 500 µm net over the 100-meter stream reach, sampling different 
habitats in approximate proportion to their representation of the total surface area of the reach. 
We determined this by assigning a percentage of each habitat type (cobble, sand, or large woody 
debris) totaling 100%. In cobble substrate/habitat, we chose to kick in riffles or runs. In sand 
substrate and habitat, we mainly kicked in runs and slow moving water since that is the main 
stream morphology for this type of habitat. We placed all macroinvertebrates in labeled 
containers with 70% ethanol for preservation. If there were any predator macroinvertebrates, 
such as the family Corydalidae, then we used an additional container to store the predators.  

In addition to kicknetting, we adopted the NHDES biomonitoring program rock basket 
approach for macroinvertebrate sampling. At each site, we deployed 3 rock baskets side-by-side 
in a cobble and riffle habitat in close proximity to the continuously logging sensors during the 
July sampling period. We collected rock baskets roughly after eight weeks in mid to late 
September to later compare results with NH DES Biomonitoring Program’s annual assessments. 
Our rock basket collection was similar to the NHDES sampling protocol, which included four, 5-
gallon buckets, 3 of which will hold the rock baskets themselves, and one bucket to rinse and 
store the rocks that have been examined. We filled three buckets with stream water a quarter full 
and facing upstream with the opening facing towards the rock basket. One person lifted each 
basket into the bucket, making sure to catch any debris that comes loose from the basket.  The 
research team thoroughly examined every rock in each basket, and the water in the bucket was 
filtered through a 500 µm sieve. We placed all macroinvertebrates in rock basket labeled 
containers separately to the kick net samples, and stored in 70% ethanol to be preserved. We 
labeled containers with the correct site name and date sampled. Samples were transported back 
to Plymouth State University for identification and enumeration. 
 
Macroinvertebrate Identification  

Preserved field samples were identified to family using NAWQA and EPA protocol for 
macroinvertebrate sorting and identification. We used Voshell (2002) A Guide to Common 
Freshwater Invertebrates of North America, Merritt et al. (2008) An Introduction to the Aquatic 
Insects of North America 4th Edition, and Peckarsky et al. (1990) Freshwater 
Macroinvertebrates of Northeastern North America to aid in the identification of benthic 
macroinvertebrate families.  
 
Community data analysis 

We assessed community composition using two approaches, a) the traditional 
biomonitoring rapid assessment approach focusing on composition at the order level (e.g. percent 
EPT) and b) relative abundance of one tolerant and intolerant three families based on NHDES 
and Carlisle et al. (2008) tolerance values. We graphed site-level family richness and relative 
abundance for each site over the three sampling periods. We then evaluated the relationship 
between order and family-level metrics and a suite of potential explanatory variables using 
multiple linear regression. The lack of a clear and consistent relationship between chloride and 
the community metrics in 2016 prompted us to take a multiple linear regression approach to 
better understand the influencers of the observed macroinvertebrate communities (Mazzone 
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2018). We took a stepwise parameter selection approach that included the following explanatory 
variables: discharge, stream area, as well as snapshot measures of water temperature (snapshot), 
pH, dissolved oxygen, chloride, and sodium. Sample month was also included because there is 
uncertainty in the timing of emergence for all families observed. We included data from the 2016 
season to provide a multi-year assessment. The metrics and explanatory variables found in the 
best fit models of each are summarized in Table 1. In addition, we graphed a comparison of 
cumulative measures of family level richness (within and across orders) and relative abundance 
of indicator families observed in rock baskets retrieved during September/October sampling and 
kicknet samples from the same sampling period. 

Table 1: 

 
 
HSP70 expression:  

To test the utility of HSP70 in Acroneuria (Plecoptera, Perlidae) nymphs as a sub-lethal 
indicator of salt stress, our research sought to determine whether different combinations of NaCl 
dosage, temperature and time would cause differences in HSP70 expression. To answer this 
question, we conducted exposure experiments, exposing Perlidae nymphs to various levels of 
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NaCl and higher temperatures, then quantified the HSP70 response using Western blotting. 
Western blotting allows for the quantification of gene expression by measuring protein 
abundance from a given tissue. We predicted that HSP70 expression would show a marked 
increase with higher dosages of NaCl, independent of trial temperature, with higher levels 
attained over longer exposure times. Additionally, we predicted that interactions of higher 
temperature and NaCl dosages would result in the greatest expression of HSP70. The result of 
this approach was a measure of HSP70 related to experimental treatments and exposure time that 
could be assessed statistically.  

Our local stream site for Perlidae collection was Clay Brook, Plymouth, NH (see Figure 
9). This site was chosen for the high abundance of perlid stoneflies observed in previous seasons. 
Being a short drive from the laboratory, it also provided short transport times for live nymphs, 
reducing the chance of HSP70 induction through handling. Sampling of stream ion 
concentrations showed a low level of Cl- (4.03 and 4.83mg/L, July and September 2017), 
suggesting little present influence of NaCl. 
  

 
Figure 2: Overview of HSP70 analysis 

 
We collected stonefly nymphs from May through July 2017 from Clay Brook using 

kicknetting, with stream temperature recorded during each visit. Nymphs were transported to the 
laboratory in a portable cooler to avoid heat stress. Stream water and leaves were collected from 
the site for micro aquaria to maintain consistent pre-treatment ionic conditions and provide a 
food source. Specimens and water were transferred to micro aquaria setups consisting of one-
liter beakers with battery powered-bubblers as tanks for collected stoneflies (Kennedy et al. 
2004; Echols et al. 2013). Screen netting was fitted into each tank to provide an attachment 
substrate. We exposed stonefly nymphs to various levels of NaCl and temperature (see Table 2). 
We acclimated nymphs for 72 hours at 4 and 21ºC prior to trials to rule out HSP70 expression 
due to handling/travel. Total protein was extracted from five nymphs to provide a measure of 
baseline HSP70 expression. Nymphs were exposed in a series of trials to 0 mg/L, 2500 mg/L, 
and 4000 mg/L NaCl dissolved in 50mL of diH2O. Specimens were also exposed to temperatures 
of 4, 21, and 28°C. These temperatures and NaCl dosages were chosen to elicit a stress response 
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without lethal harm to the experimental population. Following each application, nymphs were 
sacrificed at the 1, 24, 48, and 72 hour marks. Head samples were used for all blotting and 
analysis in this experiment following observed HSP70 concentration within this body region. 
Refer to Chapter 2 in Fruit (2018) for a detailed discussion of this preliminary work. 
 
 

 
Figure 3.  Location of Clay Brook, sample site for Perlidae in Plymouth, NH 

 
 
Quantification of HSP70 

Western blotting is a research technique for identifying target proteins from a mixture. 
Electrophoresis through a gel medium is used to separate extracts based on molecular 
weight/size. Proteins are then transferred to a membrane, resulting in bands of protein which can 
be identified by incubation with a primary and secondary antibody and subsequent substrate 
development (Mahmood & Yang, 2012). Blots were visualized using a BioRad ChemiDoc 
XRS+ imaging system (Bio-Rad Laboratories, Inc.), at which point images were exported as 
high resolution images. For more specific protocol, please refer to Fruit (2018). 
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Figure 4. Representative western blots of head samples extracted 1, 24, 48 and 72 hours after treatment conditions commenced (ascending order 
from top). 

 We used ImageJ software to quantify pixel counts of HSP70 bands. Our method was 
similar to that of Taylor & Posch (2014), using a control sample loaded onto every blot to 
standardize between all samples. Background noise from the target protein of each sample was 
subtracted in ImageJ, and the resulting output was multiplied by a ratio of the loading control for 
each sample and the inter-blot control. This normalized value is referred to as the normalized 
density to the loading control (NDL). The NDL of each experimental sample was then divided 
by the NDL of each inter-blot control, yielding a fold difference (FD) value from the amount of 
control expression (Taylor et al. 2013; Taylor & Posch, 2014). We used a sample of Drosophila 
protein in this study as the inter-blot control and our positive control. For the loading control of 
each experimental and the inter-blot sample, we used total protein of each lane stained by 
Ponceau-S. Hereafter, FD values of experimental samples will be referred to as HSP70 
expression. 
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Table 2 - Total Salt Trial Subjects. Including trial time, temperature and NaCl dosage and number of individuals per treatment. 

 
Data analysis 
 We had 61 samples in total, for multiple combinations of 5 different trial times, 3 
different NaCl dosages and 3 different trial temperatures. Observed HSP70 expression ranged 
from FD values of -0.0592 (compared to observed control) to 0.589, nearly a ten-fold difference 
across treatments (see Appendix C). We graphed box-plots to illustrate differences in HSP70 
across trials representing unique combinations of NaCl dose, temperature and exposure time. To 
best visualize all treatment groups, trial temperature and NaCl treatments were concatenated and 
used as one factor alongside trial time (see Figure 11). We created ANOVA interaction plots 
visualizing model effects and mean distributions of HSP70 expression indicating interactions of 
combinations of explanatory variables.  We then graphed boxplots of HSP70 expression in 
relation to time and either NaCl or temperature to visualize which factors, if any, corresponded 
(Figure 5). To verify observed effects, we ran non-parametric ANOVA (Kruskall-Wallis) tests to 
test for statistical differences in observed HSP70 expression explained by NaCl dose, 
temperature and exposure time in isolation. Each experimental variable was run independently, 
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with other variables collapsed. To address the possibility of factors interacting to influence 
variation of HSP70 expression, two-way ANOVA was used to examine variation with respect to 
combinations of NaCl dosage, trial temperature and exposure time. Finally, multiple-linear 
regression was used to corroborate ANOVA results for the observed relationship of these factors 
on variation in HSP70 expression.  
. 

 
Principal Findings & Significance 
 
Chloride concentrations 

Monthly snapshot water chemistry samples confirmed the initial classification of streams 
(based on snapshot sampling in 2013 and 2014) and were similar to those reported from 2016, 
with the exception of consistently lower concentrations at the Beaver Brook site (BBU) in 
Keene, NH. The new site for 2017 turned out to be another low concentration site, despite 
extremely close proximity to road. As also seen in 2016, Wednesday Hill Brook (WHB) had the 
highest Cl concentrations across our study sites and over time. Even this, our highest observed 
chloride concentration, was substantially below the EPA’s chronic toxicity concentration of 230 
mg/L. Chloride concentrations increased at most sites between July and September/October, 
which we believe is attributed to lower water levels of which groundwater likely comprises a 
larger portion of stream water. These findings support the findings of Daily et al. (2009).  
 

 
Figure 5: Snapshot sampling of chloride in 10 sample streams between June and September/October 2017. 
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Community Composition  
We found that chloride rarely explained a significant portion of the observed variation in 

the aforementioned community metrics in summers 2016 & 2017 (Table 1). Of the four metrics 
that were significantly related to chloride, only % Diptera was negatively related to chloride, 
which was opposite the expectation. Among the unexpected, yet significant relationships with 
chloride were positive observed relationships with the percent Plecoptera (Figure 6). Further 
analysis indicated that this pattern, also observed in 2017, was largely driven by the relative 
abundance of Leuctridae, a plecopteran family previously categorized as intolerant to poor water 
quality (Figure 7). Interestingly, few other Plecoptera families were present when chloride 
concentrations exceeded 30 mg/L and this was evident with the negative trend observed between 
chloride and Plecoptera richness (Figure 8). We had adopted Leutridae as an intolerant indicator 
family based on published tolerance scores. Our observations don’t support the perceived 
sensitivity of this family. This may be driven by unknowingly sampling a single genus or species 
that is more tolerant than others in the family. Alternatively, it could suggest that Leutrids are 
less sensitive to ionic concentrations than other sources of water quality stress, which would 
imply that they are a poor bioindicator choice for monitoring the effects of salinization.     

We observed was significant inter-annual and intra-annual variability with generally 
higher metric values in 2017 and lower values as the season progressed from June to 
Sept/October. Ephemeroptera richness, percent Ephemeroptera, and percent Diptera were 
negatively related to observed water temperatures, whereas percent Tricoptera and EPT Richness 
were positively related to observed water temperatures. This suggests that Ephemeroptera 
composition may serve as a strong bioindicator of water temperature stress, even at the relatively 
low temperatures observed during our study. We did not find significant relationships between 
chloride or temperature and the majority of our pre-identified indicator families, with the 
exception of Leuctridae.  

Overall, our observed communities seem to be shaped more by natural site-level 
variability in elevation, latitude, reach area, and time than by ionic concentrations or 
temperature, suggesting that chloride concentrations are not negatively affecting the streams in 
this study. 

 

 
Figure 6: Relative abundance (%) of Plecoptera individuals 
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Figure 7: Relative abundance (%) of Leuctridae individuals (order: Plecoptera) 

 

 

 
Figure 8: Plecoptera richess (i.e.number of Plecoptera families) 

 
Rock baskets vs. Kicknet sampling 

We compared communities observed using kick netting and rock basket methods to 
assess whether important metrics were equally represented. Our results suggest that kick netting 
with 10 sets over 100m yielded higher total abundance of macroinvertebrates and higher richness 
of all families, EPT families collectively and by order at most sites (Figures 9-14). The 
difference in richness measures is clear evidence that the rock baskets do not reflect the full 
diversity within a defined reach. While this is not completely necessary, depending on the 
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objective of the assessment, it could be problematic if the method is biased away from potential 
indicators of chloride stress. For example, individuals in the Philopotamidae and Simuliidae 
families were rarely found in a rock basket sample (Figures 13 & 14). The lack of taxanomic 
representation in rock baskets will also influence the relative abundance of those groups present. 
For example, percent Chironomidae (was consistently much higher in rock basket than kick net 
samples at our sites (Figure 15). We also noticed that difference between the rock basket and 
kick net samples was among the greatest at Wednesday Hill Brook (WHB), the site with 
consistently higher chloride concentrations. In pursuit of a reliable bioindicator taxa, we must 
also consider the best method for sampling.   

 

 

 
Figure 9: Total family richness measured using kicknet and rock basket sampling methods. 

 

 
Figure 10: EPT family richness measured using kick net and rock basket sampling methods. 
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Figure 11: Plecoptera richness measured using kick net and rock basket sampling methods. 

 
Figure 12: Tricoptera richness measured using kick net and rock basket sampling methods. 
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Figure 13: Relative abundance of Philopotamidae measured using kick net and rock basket sampling methods. 

 
Figure 14: Relative abundance of Simuliidae measured using kick net and rock basket sampling methods. 
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Figure 15: Relative abundance (%) of Chironomidae measured using kick net and rock basket sampling methods. 

 

HSP Analysis 

Alone, NaCl and temperature variables did not explain the observed variation in HSP70 
expression (N = 61, p-value = 0.9548 and N = 61, p-value = 0.3508); however, there was an 
observed and disproportionate uptick in HSP expression at for samples held at 21 and 28° C  
(Figure 16). 

 
Figure 16: Interaction plot illustrating the observed relationships between exposure time and temperature. 

0

5

10

15

20

25

%
 C

hi
ro

no
m

id
ae

Site

% Chironomidae

Kicknet

Rockbasket



18 
 
 

Exposure time was a significant treatment factor (N = 61, p-value = 0.0194). This was supported 
by observed levels of HSP70 expression after 48 hours (Figure 16 and 17). Likewise, the two-
way ANOVA analysis also suggested exposure time partially explained the increase in HSP70 
expression (N = 59, p-value ≅ 0.0044). The results from our various ANOVA analysis were 
corroborated by running a multiple linear regression of NaCl dosage, trial temperature and 
exposure time as a categorical variable in which 48 hours of exposure time was found to have 
significantly higher HSP70 expression (N = 60, p-value ≅ 0.005). 
 

 
Figure 17 - Kruskal-Wallis ANOVA results showing significant differences between 48hr extractions and other time periods. 
  

Neither NaCl or temperature explained the variation observed in HSP70 expression at the 
treatment levels tested; however, our results do indicate that exposure time explained a 
significant portion of observed variability in the HSP70 expression in stonefly nymphs. 
Expression noticeably increased in specimens exposed to 21 or 28°C, peaking between 24 to 48 
hours or 48-72 hours and returning to baseline levels by 72 hours (backed by Kruskal-Wallis 
ANOVA, Two-Way ANOVA and Multiple-Linear Regression). 

Response to NaCl 
The lack of a statistically significant treatment effect could be explained by several 

factors, one of which is the particular chemical composition to which specimens were exposed. 
Molecular grade NaCl was used as a proxy for road salt; however, this lacks many of the 
additives used for road deicing (such as abrasives) which may have synergistic effects harmful to 
aquatic macroinvertebrates. Additionally, NaCl (or free Cl- ions, for that matter) may not be as 
acutely toxic to aquatic macroinvertebrates as previously thought. Instead, the toxicity may be 
attributed to other free ions released from soil sediments by the constituents of road salts. NaCl 
has been shown to mobilize metals within soils, both through complexing with Cl- ions and 
cation exchange with Na+ ions (Benjamin, 2002; Norrstrom and Jacks, 1998; Backstrom et al. 
2004). A third potential explanation might be that aeration from the bubbler in the micro aquaria 
reduced exposure to toxicants as compared to stagnant/stiller water (Sanders & Cope, 1968.) 
This was unavoidable in our experiment, as we sought to recreate stream conditions as closely as 
possible. A final potential explanation was the small sample size of each specific combination of 
trial factors preventing a proper analysis of NaCl-related stress. This was due to the various 
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temperatures and exposure times, meaning only one to four specimens per NaCl dosage; ideally, 
each NaCl dosage would have at least 20 representative specimens. 
 
Response to temperature 

The temperature component of these trials is also interesting and unexpected. Our results 
indicate that specimens exposed to 21°C reached the highest levels of HSP70 expression at 48 
hours, while those exposed to temperatures of 28°C achieved lower levels of HSP70 expression 
at 48 hours and fell to lower levels than both 4 & 21°C specimens after 72 hours. This was based 
entirely off data visualization and means observed in interaction plots, as statistical tests 
discounted temperature as significantly influencing variation in HSP70. At times, organisms 
exposed to the high levels of harmful contaminants in an experiment have lower levels of HSP70 
expression than those exposed to lower levels (Pyza et al. 1997 & Kohler et al. 1992). Similarly, 
Pyza et al. (1997) found the greatest mean HSP70 levels in heat-treated centipedes to be at 15°C, 
and not at 5 or 25°C. The HSP70 response to temperature is well-known, but still subject to 
variability. Threshold temperatures for the activation of HSP genes is known to vary over the 
lifetime of an individual and is subject to thermal acclimation to an environment (Buckley et al. 
2001). Brook Trout, for example, express high levels of HSP70 at the same average temperature 
across two different years of study (Chadwick Jr. et al. 2015). This could suggest that past 
exposure to temperature stress had hardened nymphs against physiological stress from heat. 
More specifically, it may be that expression of HSP70 in stonefly nymphs under these 
experimental conditions was exhausted by temperatures of 28°C after an attempted spike to 
achieve homeostasis by 48 hours, and subsequently crashed by 72 hours. The observation that 
those specimens’ HSP70 expression exposed to 21°C rose higher at 48 hours and finished higher 
at 72 hours could suggest that this temperature exposure was not severe enough to exhaust the 
HSP70 response.  
 
Alternative Influences 

The importance of the exposure history of individuals should not be overlooked in a 
study using HSPs. While we attempted to minimize any stressors influencing the expression of 
HSP70, it is difficult to completely account for past influences. Hochachka & Somero (1984) 
point out that there is significant adaptive variation of the heat shock response from recent 
thermal history and selective forces. Moreover, the threshold of HSP induction varies due to 
thermal acclimation, and can vary over the lifetime of a single individual. HSP70 can build up 
within cells following repeated gradual warming events (Buckley et al. 2001).  

A related problem lies with the possibility of individual variation of the heat shock 
response among organisms collected in the same environment. This is because past exposures to 
stressful conditions are capable of acting as evolutionary forces upon populations (Sørensen et al. 
2003). Feder & Hofmann (1999) point out that while variation in HSPs can be due to seasonal 
variation or acclimation to stressors, natural variation will also be present from genetic 
differences of individuals. In addition, variation in the tolerance to ionic changes may manifest at 
the species level, rather than the genus level at which we worked.  
 
Conclusion 
 Evidence from our two-year study suggests that streams in central New Hampshire 
remain relatively unstressed by salt additions attributed to road salt. All streams monitored were 
under the EPA’s chronic toxicity concentration. However, our study has found that not all 
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Plecoptera taxa are “sensitive” or intolerant to salinity stress. We found a positive relationship 
between Leuctridae (family in order of Plecoptera) and chloride concentrations during both study 
seasons, despite a decrease in Plecoptera family richness. Further, the molecular level analyses 
found that Acroneuria (another genus in the family of Perlidae in order of Plecoptera) had an 
exceptionally high tolerance to NaCl in lab settings (4000 mg/L). This leads us to believe that 
sensitivity to salt stress likely varies at the family, if not genus/species, level. If so, traditional 
biomonitoring metrics that focus on the relative abundance of EPT taxa may not be fine enough 
resolution to detect stress. Finally, our comparison of benthic macroinvertebrates detected in 
rock baskets to that of kicknets suggest that rock baskets do not fully reflect the biota present and 
that they may select against families/genera with salt sensitivity by nature of the method alone. 
Further research is needed to compare rock basket taxa to kicknet and to understand which 
families are more vulnerable to salt stress in New Hampshire. To accomplish such, we suggest 
more studies in areas where chloride concentrations are higher – mainly in southern NH; 
however, it is also important to continue to monitor streams in central and northern NH to 
maintain healthy systems.   
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Notable Awards:  
Dr. Amy Villamagna was honored with the Helen Abbott Endowed Professors of 

Environmental Studies (2016-2020) for her research on the environment and engagement of 
students in research. 

Katerina Crowley was awarded the Marapesse Scholarship in 2017 for her participation in this 
research on Sucker Brook, a tributary to Webster Lake (NH). 

Katerina Crowley was awarded second place in student poster competition at the 2018 New 
England Association of Environmental Biologists in Devens, MA.  
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Salinization Using HSP70 Expression in Stonefly Nymphs’. Master of Science in 
Environmental Science & Policy. Plymouth State University. Plymouth, NH (USA) 
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Hampshire Streams’. Master of Science in Environmental Science & Policy. Plymouth State 
University. Plymouth, NH (USA) 
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2017 (2016-17 funding cycle) 
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Number of students supported: 2 MS students, K. Crowley and M. Hirschler. 4 undergraduate 
students, S. Bevier, T. Lafortune, M. Conlon, J. Burdick were affiliated with the project through 
university match and research collaboration. Not all received direct funding from NH WRRC. 
 
Number of faculty supported: Assistant professor, Amy Villamagna (Ph.D.) and Associate 
professor, Brigid O’Donnell (Ph.D.) were affiliated with the project through university match 
and research collaboration. 
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Appendix A: Within season comparison of family level abundance observed through 

kicknet sampling for benthic macroinvertebrates at all ten study sites. 
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Appendix B: R-squared values of univariate relationships between chloride and benthic macroinvertebrate metrics from 2017. 
Values with * are significant (alpha = 0.05), blue reflects a positive and green text a negative relationship with chloride 

observed. 
 

Response Variable  June-Oct           June          July Sept-Oct Rockbaskets  
Total Macroinvertebrates 0.0098 0 0.0001 0.0751 0.002  
% EPT 0.0043 0.0183 0.0214 0.026 0.003 * = significant 
% Ephemeroptera 0.2863* 0.3406 0.352 0.3053 0.3912 positive 
% Plecoptera 0.2206* 0.514* 0.4477* 0.0006 0.2876 negative 
% Tricoptera 0.0977 0.1159 0.0132 0.2753 0.0349  
% Chironomidae 0.076 0.3276 0.0695 0.0387 0.2161  
% Diptera 0.0537 0.1383 0.2483 0.0078 0.362  
Total Family Richness  0 0.0154 0.0001 0.1819 0.1514  
EPT Family Richness 0.1414* 0.0644 0.3058 0.2209 0.1475  
Ephemeroptera Richness 0.2246* 0.2942 0.2292 0.2407 0.0113  
Plecoptera Richness 0.2408* 0.1949 0.3903 0.2028 0.4617*  
Tricoptera Richness 0.0549 0.0919 0.0676 0.0164 0.0663  
Chloroperlidae Relative Abundance IT 0.0523 0.1968 0.0964 0.0213 0.1827  
Leuctridae Relative Abundance IT 0.0539 0.0005 0.6579* 0.3129 0.039  
Philopotamidae Relative Abundance IT 0.0217 0.1268 0.002 0.1003 0.0076  
Rhyacophilidae Relative Abundance IT 0.0212 0.0362 0.0008 0.1037 0.0433  
Simuliidae Relative Abundance T 0.0018 0.0175 0.0318 0.0023 0.0086  
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