
Spectre and Cloud : An evaluation of threats in shared computation environments

Mundhenke, Moritz
Mannheim University of Applied Sciences

Department of Computer Science
Paul-Wittsack-Str. 10, 68163 Mannheim

Abstract—The processor flaws used in the Spectre and
Meltdown attacks have had uncharacteristically large media
impact, even gaining coverage in main-stream media. This is
despite the fact that this type of exploit has not been used in
any real world attacks and is unlikely to target consumers, as
simpler attack vectors still remain highly effective. However,
because Spectre affects any processor which uses speculative
execution, with little hope for a “silver bullet” in the near
future, Spectre seems to be here to stay.
While Spectre might not be very relevant to the con-
sumer market, it is quite relevant where safety is usually
paramount: the cloud.
It promises cost reduction and safety through offloading
maintenance and updating tasks to gigantic providers like
Amazon’s AWS. But how secure can the most up-to-date
platform be, if the used hardware is inherently flawed to the
core?
This paper provides a high level explanation of the Spectre
attack, shows potential Spectre attack vectors in a shared
cloud environment and discusses some defensive measures.

Contents

1 Introduction 1

2 Modern computation hardware and infras-
tructure 1

2.1 Memory management 1
2.2 Processor pipelines and speculative

execution 2
2.3 Virtual and shared memory 2
2.4 Docker 2
2.5 Cloud 3

3 Spectre 3
3.1 Side-channels 3
3.2 Exploiting speculative execution . . 3

4 Spectre in shared cloud infrastructure 4
4.1 Shared hypervisor 4
4.2 Shared Docker host 4
4.3 FaaS – Function as a Service 4

5 Prevention and detection 5
5.1 Hardware, Software and Compiler . 5
5.2 In-memory encryption 5
5.3 Heuristic detection 5

6 Conclusion 5

Abbreviations 6

Literature 6

1. Introduction

Cloud computing can offer enormous cost savings
by reducing administrative effort for the customer and
making use of hardware more efficiently by maximizing
utilization. To achieve this increased utilization, hardware
has to be shared in some form between multiple customers
[30]. In combination with the hardware flaws uncovered
by the Spectre attacks and the potential for anyone to buy
cloud resources, this creates an entirely new threat model
for cloud applications.
To investigate this problem we first discuss the technolo-
gies used in today’s computation environment that play a
part in Spectre attacks. Afterwards compute cloud offer-
ings are differentiated and potential attack vectors shown.
This is done through a combination of reviewing past
attacks on cloud infrastructure and potential application
of Spectre exploits in these scenarios to determine the
associated risks. These risks remain entirely theoretical as
experimental proof of such attacks is outside of the scope
of this work.
Finally mitigation options are discussed and some recom-
mendations based on the findings of this work are given.

2. Modern computation hardware and in-
frastructure

2.1. Memory management

Since around 1980 memory performance has not
been able to keep up with the ever increasing processor
speeds. [23, p. 73] Because of this accessing the main
memory has become a very time consuming task.
Modern processors therefore try to circumvent RAM
access through the use of multiple cache layers (see
Figure 1). These caches have a rather limited capacity
especially the very fast L1 cache (Skylake i7-6700 L1
cache 2x32KB per core, L3 cache 8MB total) [3].
To optimize the usage of the available caches, various
techniques are used. When code accesses a memory
address, such as an array or string, it is very likely that
addresses nearby will also be accessed (spatial locality).
Because of this, memory is loaded into the caches in
blocks to reduce cache misses in these cases. [23, p. 74].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS-HSMA - Hochschulschriftenserver der Hochschule Mannheim

https://core.ac.uk/display/227192153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1. The Intel Skylake cache hierarchy and access latencies [21].
Timings are calculated assuming a clock speed of 4 GHz for an Intel
i7-6700 processor using DDR4-2400 RAM [3].

2.2. Processor pipelines and speculative execution

Since the turn of the millennium, clock speeds of high
performance CPUs have stagnated because the increased
energy consumption and resulting heat generation got too
high [21]. Multi-core architectures became common, how-
ever even today many, if not most, workloads rely heavily
on single thread performance. Therefore, to increase the
speed of single thread execution, without increasing the
clock speed, more instructions have to be executed in a
single cycle. To achieve this goal many techniques like
instruction splitting, fusion, and simultaneous instruction
execution are used [21]. These optimizations require more
complex processing of the instruction stream which is
handled by the processors instruction pipeline. This has
resulted in higher pipeline memory requirements as well
as a longer pipeline in terms of clock cycles required
for an instruction to complete execution. However, since
programs use conditional branches and loops these long
pipeline can become invalid because the CPU cannot
know the destination of a conditional jump without first
evaluating the condition. This results in a pipeline flush
that wastes valuable execution time while the pipeline
has to be refilled. To mitigate the impact of this issue
the processor can store previous outcomes of branches
and use this to predict future executions of the branch.
With branch prediction only a miss-prediction will result
in a pipeline flush. The CPU runs the instruction of the
predicted branch and either commits the results if the
prediction was correct or discards them if it was not. This
process is called speculative execution [28].

2.3. Virtual and shared memory

Running multiple programs in parallel is a operating
system “feature” that has been the standard for around
30 years. Before that some operating systems would run
only one program at a time or completely swap out
the main memory when switching to a different running

Figure 2. Mapping of virtual memory to physical memory [37].

process [37]. This method is obviously not very efficient at
handling many processes at once. Today, virtual memory
is the primary way of managing memory. When using
virtual memory every process has it own separate address
space. This means two processes can store different data
at the same virtual address without being able to affect
each other. [23, p. 620]
The virtual address space of each process is divided into
memory blocks called pages (currently on x86 computers
page size is 4kB). When a process accesses an address,
the virtual page address is translated by the memory
management unit (MMU) to a physical frame address or,
when the page is not loaded into memory, gets loaded into
memory by the OS.
While virtual memory allows reuse of the same virtual
address by multiple processes, it also allows sharing of
physical memory between processes. This can be used for
inter process communication and also as an optimization
to share identical code between programs. Shared libraries
are loaded once and can be reused by any program that
uses the same library version [37]. To prevent programs
from changing the library code for other programs, a copy
on write mechanism is used. When a process attempts to
write to a shared library page, it is copied in physical
memory and the virtual address gets remapped to the
copied version. [12, p. 295]

2.4. Docker

Containerization concept. Docker allows the isolation
of programs in containers. These containers hide other
processes running on the host and provide the process
with its own virtual filesystem and network. This means
containers only share the hosts kernel which stands in
contrast with classical VMs which have to run a separate
OS for each virtual machine [10].
To create a container an image is used. The image contains
all required files and serves as a “blueprint” for the
container [10]. Due to the lightweight nature of containers

2

it is possible and best practice to isolate every application
in its own container [11]. For example a classic PHP
and MySQL application, also called LAMP stack (Linux,
Apache, MySQL and PHP), would use a MySQL and an
Apache container. This has multiple benefits: Developers
can build and test container images on their own machine
which will behave identical when run on a production
server. Docker also allows easy horizontal scaling of
applications. The LAMP stack mentioned above could
be extended by creating an additional Apache container
and an nginx container to load balance between the two
Apache servers.

File-system layers. To reduce redundancy docker images
are divided into layers [11]. For example an Apache
PHP application would consist of 3 major layers. The
first contains a minimal debian image providing basic
libraries and tools. The second layer contains Apache and
its dependencies. The final layer would then have a copy
of the applications PHP source files.
When a container is started from this image, the layers
are stacked on top of each other using a union filesystem
like OverlayFS [33]. Whenever the application attempts
to read a file, the kernel checks each layer from top to
bottom returning the first result. This allows overriding of
files on lower layers.
Because of this multiple different PHP images can share
the first two layers and a MySQL image sharing the base
Debian image. Docker also adds a final non-persistent
layer to the container which the application running inside
uses to write files, which is discarded when the container
is shut down.

2.5. Cloud

National Institute of Standards and Technology (NIST)
defines cloud computing as “[. . .] a model for enabling
ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal
management effort or service provider interaction.” [30].
Further more 5 essential characteristics are defined: On-
demand self-service, broad network access, resource pool-
ing, rapid elasticity and measured service. Resource pool-
ing is of special interest in the context of this work.
Cloud resources are shared by multiple costumers in
a multi-tenant model [30]. Concretely this means that
tenants (customers) of a cloud platform share a server
provided by the platform. This might be in form of quite
direct sharing of a server by running virtual machines
owned by different tenants on it. However, more abstract
offerings like Software as a Service (SaaS) databases,
which give the customer no direct control over an op-
erating system, will have some form of resource sharing.
This results in customers having to trust not only the
confidentiality of the provider itself, but also trust the
isolation that separates them from potentially malicious
third parties.

3. Spectre

3.1. Side-channels

Computer programs can, on an abstract level, be de-
scribed with the input-process-output (IPO) model. An
input will produce an output defined by the algorithms of
the program. This output is deterministic, meaning input
a will always result in output b.
However in real life systems, processes can produce addi-
tional outputs which are not intended by its programmer.
For example a program which calculates the factorial of a
number takes longer proportional to the input number. An
attacker could therefore, infer the input number from the
execution time without knowing the result. More complex
timing-attacks have been used to extract private keys or
other secrets of various cryptographic algorithms [9][26].
Similarly even a system’s power consumption can be used
as a side-channel to retrieve secret data [27].
While these two side-channels can add unintended output
to a process they are within the programmers control.
Execution time can be increased arbitrarily through idling
or sleeping and the system’s power consumption can be
increased by running pointless code. Other side-channels
however, are completely outside of the control of the
programmer. For example a program has very limited or
no direct control over the systems cache state or which
arithmetic logic unit (ALU) will compute a calculation
[28].

3.2. Exploiting speculative execution

To execute a Spectre exploit the attacker first has
to find a vulnerable instruction sequence in the victim
program. The sequence will leak secret data into
the chosen side-channel during speculative execution.
Therefore, Spectre-style attacks can be differentiated
from each other by the how speculative execution is
achieved and what side-channel is used [28].

if (x < array1_size)

y = array2[array1[x] * 4096];

Listing 1. Spectre Variant 1 example [28]

Variant 1 of the original Spectre attack uses conditional
branches to achieve speculative execution and leaks data
through the processors cache state. The conditional branch
is an array bounds check if (x < array1_size). The branch
prediction can be miss-trained by repeatedly calling the
victim function with an in-bounds x, causing it to predict
the branch as true in the future. Then the attacker flushes
array1_size from the processors cache and calls the victim
function again. This causes the branch to be execute
speculatively until array1_size is retrieved from memory.
To leak the victims secret the attacker chooses an x that is
out of bounds. The victim now reads from array1 using the
malicious, out-of-bounds address. To successfully execute
the attack sequence the victim also has to use the result to
access a second array. This causes the processor to load
a memory address into the cache which is based of the
previous out-of-bounds access of array[x].
While the direct results of the speculative execution are

3

discarded, the attacker can now measure their own access
time of the possible memory addresses of array2, reveal-
ing which address can be read fastest and was therefore
retrieved by the victims speculative execution, revealing
the (secret) value of array[x].

4. Spectre in shared cloud infrastructure

Figure 3. Tenant isolation in a cloud environment using a hypervisor and
using Docker container isolation.

4.1. Shared hypervisor

Infrastructure as a Service (IaaS) providers give their
customers, here referred to as tenants, the ability to rent
virtual machines. The tenant has full access to this VM
(root access). Since most applications do not require the
full capabilities of the physical server, multiple VMs are
run on a hypervisor such as VMware ESXi or Linux’s
KVM.
This results in the sharing of physical resources like
RAM and CPU cores between tenants. This isolation is
hardware enforced and hypervisor exploits are quite rare
(only 5 ESXi vulnerabilities in 2018 with a Common
Vulnerability Scoring System (CVSS) score ≥ 5) [38].
However, since speculative execution can circumvent
hardware enforced checks, some Spectre vulnerabilities
allowed an attacker to read the memory of other tenants
virtual machines and the hypervisor itself [40, 39].
While the currently known Spectre attacks have been
mitigated by hypervisor patches, speculative execution
exploits found in the future could still allow cross VM
attacks in the cloud.
In a public cloud an adversary is faced with another hurdle
besides VM isolation. Because the IaaS provider allocates
resources for the tenants based on the their requirements
through a closed-source algorithm, an attacker can not
directly force co-residency (share a hypervisor) with the
victim.
Ristenpart et al. [35] demonstrated various networking
based techniques to achieve co-residency in the early
(2009) Amazon Web Services (AWS) cloud and while
Amazon has improved security in this regard, other co-
residency detection mechanisms have been found [25].
This newer method uses information leaks on the proces-
sor level, specifically through the last level cache shared
between all CPU cores.

4.2. Shared Docker host

Running docker containers in the cloud can have
benefits for both the customer and the cloud provider.
The customer does not have to worry about maintenance
of the underlying operating system and can more easily
scale their application. The cloud provider can, in theory,
increase utilization of their hardware because of the re-
duced overhead.
However, leveraging these benefits requires faith in the
process isolation provided by Docker and the Linux ker-
nel. Because of this the Azure and AWS public cloud
are using hypervisor technology to isolate containers,
only sharing kernels between containers of the same user
defined application group [4, 8]. Due to this the potential
price advantage is lost. The smallest possible AWS Fargate
task configuration (0.25 vCPU and 0.5 GB RAM) costs
0.01234 USD per hour [5] while the EC2 t3.micro VM (2
vCPU and 1 GB RAM) only costs 0.0104 USD per hour
[19].
Other Platform as a Service (PaaS) providers like Heroku
[24], OpenShift [15] and the defunct DotCloud however,
do not use the additional isolation provided by hypervisor
virtualization [42].
These providers do refer to various “Docker hardening”
techniques, however, specifics like the usage of shared
libraries between containers are not mentioned, which can
provide attack surface area for Spectre exploits [34].

4.3. FaaS – Function as a Service

Figure 4. FaaS example for a Node.JS application.

FaaS further abstracts service infrastructure. Concep-
tually a developer writes a function, uploads it to the
FaaS service and connects events like HTTP requests or
database events as an input source.
When an event occurs the function is called with the
event’s parameters and, in the case of an HTTP request,
builds and returns a API response. The benefits are auto-
matic scaling and a payment model where the customer

4

only pays for the function’s execution time [7].
In reality a “function” is a package of code, configuration
and module/library files. Therefore, even if the service
for example only allows Node.JS execution this cannot
be considered a security feature as a node module can
contain native, compiled binary files [6].
Due to the high abstraction level, internal implementation
details are sparsely documented. AWS Lambda notes that
Lambda functions are isolated using EC2 techniques, i.e.
hypervisor isolation [6]. Google Cloud Functions (GCF)
in contrast only states that functions are run in “its own
isolated secure execution context” [14]. Wang et al. [41]
further investigates FaaS implementations.
If a FaaS would only use docker to isolate functions of
different customers, the risk of a speculative attack would
be higher compared to a Docker PaaS provider. Since
function are based on small number of available runtime
environments (e.g. GCF: Go, Python and Node.js 6,8,10)
[14] an attacker has implicit knowledge about the victims
shared library and executable files.
Therefore, an attacker could not only attempt co-residency
to gain access to a specific target’s secrets, but instead
mount a broader attack acquiring data from random other
tenants. Similar to spam phishing emails, the goal would
not be one large “heist” but instead gaining value from
many smaller thefts.

5. Prevention and detection

5.1. Hardware, Software and Compiler

While meltdown could be mitigate by operating sys-
tem patches [2], the Spectre vulnerabilities have required
cooperative changes to hardware, compilers and vulnera-
ble software itself.
On the hardware side, some vulnerabilities have been
removed in newer processors, others can be circumvented
through new instructions that allow explicit prevention of
speculative execution [36].
Compilers have been adapted to reduce the generation of
code blocks that are vulnerable to some forms of Spectre
attack [1] and insert code that traps speculative execution
in an endless loop [34].
All of these changes require recompilation of programs,
libraries, operating systems and drivers. Additionally all of
these mitigation have some form of performance drawback
and are therefore not enabled by default.

5.2. In-memory encryption

To prevent a Spectre attack from accessing secret data,
the data could be encrypted in-memory. This technique
however, has two weaknesses. The first issue arises from
the fact that to make use of the encrypted data the process
has to, albeit briefly, decrypt the data. This results in
the data still being vulnerable, but reduces an attacker’s
window of opportunity to access the secret.
The second issue stems from encryption key storage.
Since the key itself has to be stored in-memory for en-
cryption/decryption it could be stolen together with the
encrypted data.
In a shared kernel environment, e.g. Docker, the key

can be hidden completely from the attacker by storing
it outside of the victims address space. This is due to
the limitation of Spectre, that an attack can only access
memory the victim has permission to [28].
Therefore, when a program uses functionality like Win-
dows’ CryptProtectMemory [16] the key is stored in a dif-
ferent processes memory or even kernel space memory.
In the case of a cross VM attack in a hypervisor environ-
ment, the attacker gains access to all VM memory. This
only raises the difficulty of the attack since the attacker
has to know the location of both the encrypted secret and
the decryption key.

5.3. Heuristic detection

By using CPU caches as a side-channel a Spectre
attack can create a distinctive cache usage pattern which
could be used to detected ongoing attacks [18]. This is due
to Spectre deliberately causing cache misses to flush the
cache or cause speculative execution by delaying memory
access. Detection in this way has the benefit of being
easy to deploy to existing system since no changes to
vulnerable software is required. [18, 13]
However since Spectre does not rely on a specific side-
channel for information access [28] detection could be
circumvented. Gruss et al. [22] even demonstrates a dif-
ferent cache side-channel that would not be detected by
monitoring process cache-misses.
Additionally by simply slowing down a Spectre attack it
could also circumvent detection [13].

6. Conclusion

Without any definite resolution of the processor inher-
ent flaws in the near future, Spectre exploits can paint a
bleak picture for the future of secure computer systems.
However, just like its folklore counterpart, Spectre seems
to have spread terror not entirely proportional to its real
threat (a CVSS score of 5.6 out of 10) [31].
Today most data breaches are still possible through simple
software flaws like SQL injections [29], passwords stored
in plain text [20] and even internet facing databases with-
out any access control [32].
But for customers for whom data security is top priority,
all possible approaches have to be considered. However,
for such applications cloud providers already offer solu-
tions where servers are not shared with other customers
[17].
On the other hand many important discussions have begun
because of the broad interest in Spectre. Processor man-
ufactures, especially Intel though arguably disproportion-
ately, lost costumer’s trust in the security of their products,
potentially opening a new market segment for slower
but more secure processors to competitors. It also raised
awareness of side-channels, changing the perspective of
secure systems.
Lastly, during the making of this work it became evident
that cloud platform should be more transparent about
their systems. Documentation should be explicit about
how tenants are isolated, i.e. through containerization with
docker or with a hypervisor, to allow customers to assert
the risk of hardware side-channel-attacks for their systems.

5

Abbreviations

ALU arithmetic logic unit
AWS Amazon Web Services
CVSS Common Vulnerability Scoring System
FaaS Function as a Service
GCF Google Cloud Functions
IaaS Infrastructure as a Service
IPO input-process-output
MMU memory management unit
NIST National Institute of Standards and Technology
PaaS Platform as a Service
SaaS Software as a Service

References

[1] /Qspectre — Microsoft Docs. 2018. URL: https:/ /
docs . microsoft . com / en - us / cpp / build / reference /
qspectre?view=vs-2019.

[2] 15. Page Table Isolation (PTI) — The Linux Kernel
documentation. 2019. URL: https://www.kernel.org/
doc/html/latest/x86/pti.html.

[3] 7-Zip LZMA Benchmark — Intel Skylake. 2019.
URL: https://www.7-cpu.com/cpu/Skylake.html.

[4] AWS Fargate on Amazon ECS - Amazon Elastic
Container Service. 2019. URL: https : / /docs .aws .
amazon . com / AmazonECS / latest / developerguide /
AWS Fargate.html.

[5] AWS Fargate Pricing - Run containers without hav-
ing to manage servers or clusters. 2019. URL: https:
//aws.amazon.com/fargate/pricing/.

[6] AWS Lambda – FAQs. 2019. URL: https : / / aws .
amazon.com/lambda/faqs/.

[7] AWS Lambda – Product Features. 2019. URL: https:
//aws.amazon.com/lambda/features/.

[8] Azure Container Instances — Microsoft Azure.
2019. URL: https : / / azure . microsoft . com / en - us /
services/container-instances/.

[9] Daniel J Bernstein. “Cache-timing attacks on AES”.
In: (2005).

[10] David Bernstein. “Containers and cloud: From lxc
to docker to kubernetes”. In: IEEE Cloud Comput-
ing 1.3 (2014), pp. 81–84.

[11] Best practices for writing Dockerfiles — Docker
Documentation. 2019. URL: https : / / docs . docker.
com / develop / develop - images / dockerfile best -
practices.

[12] Daniel P Bovet and Marco Cesati. Understanding
the Linux Kernel: from I/O ports to process man-
agement. ” O’Reilly Media, Inc.”, 2005.

[13] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz.
“Real time detection of cache-based side-channel
attacks using hardware performance counters”. In:
Applied Soft Computing 49 (2016), pp. 1162–1174.

[14] Cloud Functions Execution Environment. 2019.
URL: https : / / cloud . google . com / functions / docs /
concepts/exec.

[15] Container Hosts and Multi-tenancy — Container
Security Guide — OpenShift Container Platform
3.5. 2019. URL: https : / / docs . openshift . com /
container-platform/3.5/security/hosts multitenancy.
html.

[16] CryptProtectMemory function (dpapi.h) — Mi-
crosoft Docs. 2019. URL: https : / /docs .microsoft .
com/en-us/windows/desktop/api/dpapi/nf-dpapi-
cryptprotectmemory.

[17] Dedicated Instances - Amazon Elastic Compute
Cloud. 2019. URL: https://docs.aws.amazon.com/
AWSEC2 / latest / UserGuide / dedicated - instance .
html.

[18] Jonas Depoix and Philipp Altmeyer. Detect-
ing Spectre Attacks by identifying Cache Side-
ChannelAttacks using Machine Learning. 2018.
URL: https://www.betriebssysteme.org/wp-content/
uploads/2018/10/WAMOS 2018 paper 12.pdf.

[19] EC2 Instance Pricing – Amazon Web Services
(AWS). 2019. URL: https://aws.amazon.com/ec2/
pricing/on-demand/.

[20] Facebook Stored Millions of Passwords in Plain-
text—Change Yours Now. 2019. URL: https://www.
wired . com / story / facebook - passwords - plaintext -
change-yours/.

[21] Agner Fog. “The microarchitecture of Intel, AMD
and VIA CPUs: An optimization guide for as-
sembly programmers and compiler makers”. In:
Copenhagen University College of Engineering
(2012). URL: https : / / www. agner . org / optimize /
microarchitecture.pdf.

[22] Daniel Gruss et al. “Flush+ Flush: a fast and
stealthy cache attack”. In: International Conference
on Detection of Intrusions and Malware, and Vul-
nerability Assessment. Springer. 2016, pp. 279–299.

[23] John L Hennessy and David A Patterson. Com-
puter architecture: a quantitative approach. Else-
vier, 2011.

[24] Heroku FAQ: Isolation and security. 2019. URL:
https : / / devcenter . heroku . com / articles / dynos #
isolation-and-security.

[25] Mehmet Sinan Inci et al. “Seriously, get off my
cloud! Cross-VM RSA Key Recovery in a Pub-
lic Cloud.” In: IACR Cryptology ePrint Archive
2015.1-15 (2015).

[26] Paul C Kocher. “Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems”.
In: Annual International Cryptology Conference.
Springer. 1996, pp. 104–113.

[27] Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Dif-
ferential power analysis”. In: Annual International
Cryptology Conference. Springer. 1999, pp. 388–
397.

[28] Paul Kocher et al. “Spectre attacks: Exploit-
ing speculative execution”. In: arXiv preprint
arXiv:1801.01203 (2018).

[29] Magento 2.3.1, 2.2.8 and 2.1.17 Security Update —
Magento. 2019. URL: https://magento.com/security/
patches/magento-2.3.1-2.2.8-and-2.1.17-security-
update.

[30] Peter Mell, Tim Grance, et al. The NIST definition
of cloud computing. 2011.

[31] NVD - CVE-2017-5753 (Spectre). 2019. URL: https:
//nvd.nist.gov/vuln/detail/CVE-2017-5753.

[32] Over 12,000 MongoDB Databases Deleted by
Unistellar Attackers. 2019. URL: https : / / www .
bleepingcomputer . com / news / security / over - 12 -

6

https://docs.microsoft.com/en-us/cpp/build/reference/qspectre?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre?view=vs-2019
https://www.kernel.org/doc/html/latest/x86/pti.html
https://www.kernel.org/doc/html/latest/x86/pti.html
https://www.7-cpu.com/cpu/Skylake.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html
https://aws.amazon.com/fargate/pricing/
https://aws.amazon.com/fargate/pricing/
https://aws.amazon.com/lambda/faqs/
https://aws.amazon.com/lambda/faqs/
https://aws.amazon.com/lambda/features/
https://aws.amazon.com/lambda/features/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices
https://docs.docker.com/develop/develop-images/dockerfile_best-practices
https://docs.docker.com/develop/develop-images/dockerfile_best-practices
https://cloud.google.com/functions/docs/concepts/exec
https://cloud.google.com/functions/docs/concepts/exec
https://docs.openshift.com/container-platform/3.5/security/hosts_multitenancy.html
https://docs.openshift.com/container-platform/3.5/security/hosts_multitenancy.html
https://docs.openshift.com/container-platform/3.5/security/hosts_multitenancy.html
https://docs.microsoft.com/en-us/windows/desktop/api/dpapi/nf-dpapi-cryptprotectmemory
https://docs.microsoft.com/en-us/windows/desktop/api/dpapi/nf-dpapi-cryptprotectmemory
https://docs.microsoft.com/en-us/windows/desktop/api/dpapi/nf-dpapi-cryptprotectmemory
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://www.betriebssysteme.org/wp-content/uploads/2018/10/WAMOS_2018_paper_12.pdf
https://www.betriebssysteme.org/wp-content/uploads/2018/10/WAMOS_2018_paper_12.pdf
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://www.wired.com/story/facebook-passwords-plaintext-change-yours/
https://www.wired.com/story/facebook-passwords-plaintext-change-yours/
https://www.wired.com/story/facebook-passwords-plaintext-change-yours/
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://devcenter.heroku.com/articles/dynos#isolation-and-security
https://devcenter.heroku.com/articles/dynos#isolation-and-security
https://magento.com/security/patches/magento-2.3.1-2.2.8-and-2.1.17-security-update
https://magento.com/security/patches/magento-2.3.1-2.2.8-and-2.1.17-security-update
https://magento.com/security/patches/magento-2.3.1-2.2.8-and-2.1.17-security-update
https://nvd.nist.gov/vuln/detail/CVE-2017-5753
https://nvd.nist.gov/vuln/detail/CVE-2017-5753
https://www.bleepingcomputer.com/news/security/over-12-000-mongodb-databases-deleted-by-unistellar-attackers/
https://www.bleepingcomputer.com/news/security/over-12-000-mongodb-databases-deleted-by-unistellar-attackers/

000 - mongodb - databases - deleted - by - unistellar -
attackers/.

[33] Overlay Filesystem. 2019. URL: https://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
Documentation/filesystems/overlayfs.txt.

[34] Retpoline: a software construct for preventing
branch-target-injection. 2018. URL: https://support.
google.com/faqs/answer/7625886.

[35] Thomas Ristenpart et al. “Hey, you, get off of
my cloud: exploring information leakage in third-
party compute clouds”. In: Proceedings of the 16th
ACM conference on Computer and communications
security. ACM. 2009, pp. 199–212.

[36] Speculative Execution Side Channel Mitigations.
2018. URL: https : / / software . intel . com / security -
software - guidance / api - app / sites / default / files /
336996 - Speculative - Execution - Side - Channel -
Mitigations.pdf.

[37] Andrew S Tanenbaum and Albert S Woodhull.
Operating systems: design and implementation.
Vol. 68. Prentice Hall Englewood Cliffs, 1997.

[38] Vmware � Esxi : Security Vulnerabilities. URL:
https : / / www. cvedetails . com / vulnerability - list /
vendor id - 252/product id - 22134/Vmware- Esxi .
html.

[39] VMware response to ‘L1 Terminal Fault - VMM’
(L1TF - VMM) Speculative-Execution vulnerability.
2019. URL: https://kb.vmware.com/s/article/55806.

[40] VMware Response to Speculative Execution secu-
rity issues (Spectre and Meltdown). 2018. URL:
https://kb.vmware.com/s/article/52245.

[41] Liang Wang et al. “Peeking behind the curtains of
serverless platforms”. In: 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18). 2018,
pp. 133–146.

[42] Yinqian Zhang et al. “Cross-tenant side-channel
attacks in PaaS clouds”. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Com-
munications Security. ACM. 2014, pp. 990–1003.

7

https://www.bleepingcomputer.com/news/security/over-12-000-mongodb-databases-deleted-by-unistellar-attackers/
https://www.bleepingcomputer.com/news/security/over-12-000-mongodb-databases-deleted-by-unistellar-attackers/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/overlayfs.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/overlayfs.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/overlayfs.txt
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://www.cvedetails.com/vulnerability-list/vendor_id-252/product_id-22134/Vmware-Esxi.html
https://www.cvedetails.com/vulnerability-list/vendor_id-252/product_id-22134/Vmware-Esxi.html
https://www.cvedetails.com/vulnerability-list/vendor_id-252/product_id-22134/Vmware-Esxi.html
https://kb.vmware.com/s/article/55806
https://kb.vmware.com/s/article/52245

	Introduction
	Modern computation hardware and infrastructure
	Memory management
	Processor pipelines and speculative execution
	Virtual and shared memory
	Docker
	Cloud

	Spectre
	Side-channels
	Exploiting speculative execution

	Spectre in shared cloud infrastructure
	Shared hypervisor
	Shared Docker host
	FaaS – Function as a Service

	Prevention and detection
	Hardware, Software and Compiler
	In-memory encryption
	Heuristic detection

	Conclusion
	Abbreviations
	Literature

