Determining Alternator Reactances from Load Test Data

Rohit K. Jani

Follow this and additional works at: https:// openprairie.sdstate.edu/etd

Recommended Citation

Jani, Rohit K., "Determining Alternator Reactances from Load Test Data" (1968). Electronic Theses and Dissertations. 3446.
https:/ / openprairie.sdstate.edu/etd/3446

FROM LOAD TEST DATA

BY
ROHIT K. JANI

A thesis submitted
in partial fulfillment of the requirements for the degree Master of Science, Major in Electrical Engineering, South Dakota

State University

DETERMINING ALTERNATOR REACTANCES

FROM LOAD TEST DATA

This thesis is approved as a creditable and independent investigation by a candidate for the degree, Master of Science, and is acceptable as meeting the thesis requirements for this degree, but without implying that the conclusions reached by the candidate are necessarily the conclusions ρf the major department.

$$
\text { Thesis Advisor } \nearrow \text { Date }
$$

Kead, Electrical Engineering
Department Date

ACKNOWLEDGMENTS

The author wishes to express his appreciation and gratitude to Dr. J. O. Storry whose guidance and advice made this investigation possible, and to the Commonwealth Edison Company for the test data report.
R.K.J.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
Background Synchronous Machine Theory 1
Aim of the Thesis 3
II. REACTANCES: DEFINITION AND DETERMINATION. 4
III. VECTOR REPRESENTATION. 10
IV. CALCULATIONS 15
v. CONCLUSIONS. 30
REFERENCES 31
APPENDIX 1 32
APPENDIX 2 34
APPENDIX 3 37
APPENDIX 4 40
APPENDIX 5 43

LIST OF FIGURES

Figure Page

1. Open Circuit and Short Circuit Characteristics of Synchronous Generator. 6
2. No-load and Full-load Zero Power-Factor
Characteristics of Synchronous Generator. 9
3. Vector Diagram of Unsaturated Cylindrical- Rotor Machine 11
4. Vector Diagram of Unsaturated Salient-pole Machine 13
5. Vector Diagram of Cylindrical-Rotor Machine With Saturation Included by Adding E_{S} 16
6. Vector Diagram of Cylindrical-Rotor Machine With Saturation Included and $X_{d}=X_{q}$. 17

CHAPTER I

INTRODUCTION

Background Synchronous Machine Theory

It is known that the induction motor requires a definite slip in order to produce the necessary rotor current for a given torque. However, if the rotor current necessary to produce the torque is supplied by a suitable external source, as in a polyphase comutator machine, then the desired torque can be produced with a slip of zero or even a negative value. In the first case, when the slip is zero, the rotor travels synchronously with the rotating field, and the rotor current supplied by the commutator machine must be a direct current, for it is only then that the stator and rotor mmfs can be stationary relative to one another; this condition must be fulfilled at all times.

Thus the synchronous machine represents a special case of the asynchronous machine; the rotor of the synchronous machine is supplied from a separate source of direct current. For this reason the synchronous machine has to operate at synchronous speed; in contrast with the induction machine, any other speed of operation is impossible for the synchronous machine.

In the treatment of the synchronous machine a distinction must be made between the SALIENT-POLE and the NONSALIENT-POLE CYI,INDRICAL-ROTOR machine. In the salient-pole machine the d-c fjeld winding consists of a number of concentrated coils while the
field winding of the nonsalient-pole machine is set in slots in a cylindrical rotor. For the same reason as in the single-phase winding the winding of the non-salient-pole machine is distributed over about $2 / 3$ of the pole pitch of the rotor. While the non-salientpole machine has nearly constant magnetic reluctance along the whole armature surface, the reluctance of the salient-pole machine is variable because the salient poles are separated from each other by interpolar air spaces, which have a very high reluctance. ${ }^{1}$

Before the growth of the public utilities into their present enormous proportions with large generating stations and connecting tie lines, machine performance was largely judged in terms of the steady-state characteristics. The emergence of the stability problem gave rise to the analysis of the transient characteristics of machines and was largely responsible for our present knowledge of machine theory. A further contributing factor was the need for more accurate determination of short-circuit currents for the application of relays and circuit breakers.

The variable character of the air gap of the conventional salient-pole synchronous generator, motor, and condenser requires that the analysis follow a different line from that for machines such as induction machines, which have a uniform air gap and distributed windings. Blondel originally attacked this problem by resolving the armature mfis and fluxes into two components, one in line with the axis of the poles and the other in quadrature thereto. ${ }^{2}$

Moreover, in the analysis of system stability, and in the calculation of the effect of short-circuits, the factors of interest to operating engineers are those which relate to the behavior of the machine as viewed from the armature terminals. The most significant of these factors are the armature reactances of machines to normal frequency current having any distribution between phases, any powerfactor, and whether transient or sustained; also, in connection with transient components of current, their rates of decay, or decrements.

Aim of the Thesis
It is the purpose of this paper to establish equations, with some assumptions, for calculating the reactances of a synchronous generator, using load test data, and to analyze the results.

For this purpose a report on power angle measurements on Unit No. 8, at Station 16, (Waukegan) of The Commonwealth Edison Company, Chicago, Illinois, was used.

CHAPTER II

REACTANCES: DEFINITION AND DETERMINATION

Synchronous machine reactances can be considered in terms of:
(1). The distribution of current between phases.

Any distribution of armature current may be expressed as the superposed sum of three symmetrical components.
a. Balanced three-phase currents of normal phase rotation, or POSITIVE PHASE-SEQUENCE,
b. Balanced three-phase currents of reverse phase rotation, or NEGATIVE PHASE-SEQUENCE, and
c. Balanced three-phase currents of equal time phase, or ZERO-PHASE SERUENCE.
(2). Method of application in time of positive phasesequence currents.
a. Steadily applied, or sustained currents,
b. Suddenly applied, or transient currents.
(3). Position of the rotor with respect to axis of magnetization of positive phase-sequence currents.

When the rotor is moving synchronously, the positive phasesequence current can be resolved into two components, one of which magnetizes along the axis of the poles, and the other in the interpolar space. Accordingly, these components are referred to as

DIRECT-AXIS and QUADRATURE-AXIS components, and the corresponding reactances are:
a. Direct axis reactance, and
b. Quadrature axis reactance. ${ }^{3}$

DIRECT-AXIS SYNCHRONOUS REACTANCE X_{d} :

The standard I.E.E.E. definition is, in effect, as follows: Synchronous impedance is the ratio of field current required to circulate rated current on sustained three-phase short circuit to the field current which would produce rated voltage at no load if there were no saturation; referring to Fig. $1, X_{d}=O A / O B$.

Another way of defining X_{d} which results in a clearer conception of the meaning of X_{d}, is: With a sustained three-phase short circuit, and the field current at any arbitrary value, X_{d} is the air-gap line voltage corresponding to this field current divided by the sustained short-circuit current. Thus, from Fig. 1, $x_{d}=0 C / O \cdot D .{ }^{4}$

Both the direct-axis synchronous reactance X_{d} and the quadrature-axis synchronous reactance X_{q} may be determined from a SLIP-TEST. Twenty to twenty-five per cent of the normal voltage is impressed on the armature winding producing a rotating mmf. The field winding is open and there is no damper winding. The rotor is driven by a motor in the direction of the rotating field at a speed differing but slightly from the speed of the rotating field. The field poles then will slip gradually through the rotating mmf

Fig. 1. Open Circuit and Short Circuit Characteristics of Synchronous Generator.
produced by the armature current and the reluctance of the armature will change at the slip frequency. When the center line of the pole, the direct axis, is aligned with the axis of the rotating mmf of the armature, the reluctance of the magnetic path is a minimum; when the center line of the interpolar space, the quadrature axis, is aligned with the axis of the rotating mmf of the armature, the reluctance is a maximum. Since the flux in the air gap is determined by the voltage impressed on the armature winding and is very nearly constant, the armature current, which is a magnetizing current, will change its value with the change in reluctance. The current will be a minimum when the reluctance is a minimum, and it will be a maximum when the reluctance is a maximum; i.e., the current will be a minimum when the direct axis is aligned with the axis of the rotating mnf wave, and it will be a maximum when the quadrature axis is aligned with the axis of the rotating mmf wave.

The ratio of the impressed voltage to the effective value of the minimum armature current yields the synchronous reactance in the direct axis; the ratio of the impressed voltage to the effective value of the maximum current is the synchronous reactance in the quadrature axis. The rezctances thus obtained are unsaturated reactances. ${ }^{1}$

QUADRATURE-AXIS SYNCHRONOUS REACTANCE X_{q} :

The unsaturated value is obtained from the slip test at the same time that X_{d} is measured, as described previously. With the
rotor magnetized in the quadrature axis, as evidenced by positive or negative peak voltage across the field, X_{q} is the ratio of applied voltage to line current. 4

In a cylindrical rotor machine, the direct-axis path is very nearly the same as the quadrature-axis path. Hence X_{d} is very nearly equal to X_{q}.

POTIER REACTANCE X_{p} :
As seen in Fig. 2, $D F=I_{a} X_{\ell}$. This X_{ℓ} is called LEAKAGE OR POTIER REACTANCE X_{p}.

$$
X_{p}=\frac{\text { Voltage drop } D F \text { per phase }}{\text { Zero power-factor armature current } I_{a} \text { per phase }}
$$

The geometrical construction for finding the triangle BCD is as follows: Take any terminal voltage such as OE. Select a point B on the zero-power-factor characteristic above the knee of the curve. Draw the horizontal line $B C$ equal in length to the field current $O A$ on short circuit. Through point C draw the straight line $C D$ parallel to the air-gap line, intersecting the open-circuit characteristic at D. Draw the vertical line DF. The triangle $B C D$ is commonly called the POTIER TRIANGLE after its inventor. The voltage represented by the length DF is known as the POTIER-REACTANCE voltage drop. 5,6

Fig. 2. No Load and Full Load Zero Power-Factor Characteristics of Synchronous Generator.

VECTOR REPRESENTATION

The vector diagram of Fig. 3 is the well-known diagram of a cylindrical-rotor machine. The vectors V_{t} and I represent the terminal voltage to neutral and armature current, respectively. Upon adding the armature resistance drop, RI, and armature leakage reactance drop, $X_{l} I$, to V_{t}, the vector E_{l} is obtained, which represents the voltage developed by the air-gap flux \varnothing, which leads \mathbb{E}_{l} by 90°. This flux represents the net flux in the air-gap. To produce this flux a field current I_{t}, is required. The current I_{t} can be taken from the no-load saturation curve of Fig. 2, as being the current required to produce E_{Q}. But, the armature current produces an $m m f$ by its so-called armature reaction, which is in time phase with it and in terms of the field can be expressed as AI. To produce the net mmf represented by the current, I_{t}, the field current must be of such magnitude and the field structure must adjust itself to such position as to equal I_{f}. In other words, I_{f} has now such position and magnitude that adding I_{f} and AI in a vectorial sense equals I_{t}. The triangle $O A B$, formed by drawing $A B$ perpendicular to I or $A I$ and $O B$ perpendicular to $O C$, is similar to the triangle $O D C$; $O B$ has the same proportionality to $O C$ and $A B$ to $A I$ as Ef has to I_{t}. Neglecting saturation, $O B$, designated as E_{d}, is thus the open-circuit voltage corresponding to the field current I_{f}; it is the voltage taken from the ajr-gap line of the no-load saturation curve for the

Fig. 3. Vector Diagram of Unsaturated CylindricalRotor Machine.
abscissa corresponding to I_{f}. The side $A B$ of the triangle, since it is proportional to AI and consequently proportional to the armature current, can be viewed as a fictitious reactance drop. It is called the drop of armature reaction and is designated $X_{a} I$. The drops $X_{2} I$ and $X_{a} I$ can be combined into a single term called the synchronous reactance drop and there results $X_{d}=X_{\ell}+X_{a}$. It follows from the foregoing that the internal voltage, E_{d}, is equal to the vector sum of $V_{t}, R I$ and $j X_{d} I$.

Given the proper constants, the performance of an unsaturated salient-pole machine at zero power-factor is the same as for a uniform air-gap machine. For other power-factor, conditions are different. A vector diagram for such machine, (salient-pole machine) is shown in Fig. 4.

The vectors V_{t} and I are the terminal voltage to neutral and the armature current, respectively, and E_{l} is the "voltage behind the leakage reactance drop." The flux \varnothing is required to produce E_{Q}. This flux can be resolved into two components ϕ_{d} and \varnothing_{q}. The flux \varnothing_{d} is produced by I_{f} and $A I_{d}$, the direct-axis component of AI, and \varnothing_{q} is produced by $A I_{\mathrm{q}}$, the quadrature-axis component of AI. Here the similarity ceases. Because of the saliency effect, the proportionality between the mmf's and their resultant fluxes are not the same in the two axes. When saturation effects are neglected, ϕ_{d} can be regarded being comprised of a component due to I_{f} acting alone and a component produced by $A I_{d}$. The component produced by I_{f} can be regarded as producing the internal voltage E_{d}. The mmf produced by

Fig. 4. Vector Diagram of Unsaturated Salient-Pole Machine.
$A I_{d}$ has a general sinusoidal distribution in the direct axis. The resultant flux because of the variable reluctance of the air-gap has the distorted shape. It is the sinusoidal component of this flux that is effective in producing the $X_{a d} I_{d} d r o p$. In the quadrature axis, the component of mmf is likewise sinusoidal in nature, and gives rise to the distorted flux form. The effect of this component is reflected in the $X_{a q} I_{q}$ drop of Fig. 4. In general, of course, $X_{a q}$ is much smaller than $X_{a d}$.

The armature resistance and leakage reactance drops can also be resolved into two components in the two axes. When this is done the internal voltage E_{d} can be obtained by merely adding $R I_{d}$ and $R I_{q}$ and then $j X_{q} I_{q}$ and $j X_{d} I_{d}$ to the terminal voltage V_{t}.

CHAPTER IV

CALCULATIONS

Another form of the vector diagram of the machine is presented in Fig. 5, which shows much better the relation between those quantities that are most useful for calculation purposes. If from A the line $A B$ of length $I X_{p}$ is drawn perpendicular to I, then $O B$ is the voltage, E_{p}, the Potier internal voltage or the voltage behind the Potier reactance drop. To include the effect of saturation, a length $B C$ equal to the increment in field current for this voltage in excess of that required for no saturation, is aded in phase with E_{p}, giving $O C, E_{p s} . T o E_{p s}$ is added $I\left(X_{q}-X_{p}\right)$, perpendicular to I, resulting in $E_{i} . \quad I\left(X_{q}-X_{p}\right)$ is lengthened by a length $I\left(X_{d}-X_{q}\right)$; a perpendicular is dropped to E_{i} giving $\mathrm{E}_{\mathrm{d}}{ }^{2}$.

Assuming $X_{d}=X_{q}$ for more simplification, Fig. 5, takes the form of Fig. 6. The angle δ is known as the power angle.

To get all of the parameters of this vector diagram of Fig. 6 into one equation, one can start from,

$$
M N=E_{d} \sin (\phi+\delta),
$$

it is also true that

$$
M N=I\left(X_{q}-X_{p}\right)+K M ;
$$

therefore,

$$
\begin{equation*}
E_{d} \sin (\phi+\delta)=I\left(X_{q}-X_{p}\right)+K M \tag{1}
\end{equation*}
$$

Fig. 5. Vector Diagram of Cylindrical-Rotor Machine with Saturation Included by Adding E_{S}.

Fig. 6. Vector Diagram of Cylindrical-Rotor
Machine with Saturation Included and
$X_{d}=X_{q}$.

Comparison of triangles ABC and AKM gives,

$$
\begin{align*}
& \frac{A M}{A C}=\frac{K M}{B C} \\
& K M=\frac{A M}{A C}(B C) \\
& K M=\frac{E d}{} \frac{\cos (\emptyset+\delta)}{V_{t} \cos \emptyset}\left(V_{t} \sin \emptyset+I X_{p}\right) \tag{2}
\end{align*}
$$

Substituting the value of $K M$ from equation (2) into equation (1) gives,

$$
\begin{aligned}
& E_{d} \sin (\phi+\delta)=I\left(X_{q}-X_{p}\right) \\
& \quad+\frac{E_{d} \cos (\phi+\delta)}{V_{t} \cos \varnothing}\left(V_{t} \sin \phi+I X_{p}\right) \\
& I\left(X_{q}-X_{p}\right)=E_{d} \sin (\varnothing+\delta)-E_{d} \cos (\varnothing+\delta) \tan \phi \\
& \\
& -\frac{E_{d} \cos (\varnothing+\delta)}{V_{t} \cos \varnothing}\left(I X_{p}\right),
\end{aligned}
$$

and

$$
E_{d}=\frac{I_{f}}{I_{f b}}
$$

where

$$
\begin{aligned}
& I_{f}=\text { Field current in Amps. } \\
& I_{f b}=\text { Base Field current in Amps. }
\end{aligned}
$$

$$
\begin{aligned}
I\left(X_{q}-X_{p}\right) & =\frac{I_{f}}{I_{f b}}[\sin (\varnothing+\delta)-\cos (\varnothing+\delta) \tan \phi \\
& \left.-\frac{I X_{p} \cos (\phi+\delta)}{V_{t} \cos \varnothing}\right] \\
I_{f b} I\left(X_{q}-X_{p}\right) & =I_{f} \sin (\phi+\delta)-I_{f} \cos (\phi+\delta) \tan \varnothing \\
& -\frac{I_{f} I X_{p} \cos (\varnothing+\delta)}{V_{t} \cos \varnothing}
\end{aligned}
$$

Let

$$
a=I_{f} \sin (\phi+\delta)
$$

$$
\mathrm{b}=\mathrm{I}_{\mathrm{f}} \cos (\phi+\delta) \tan \phi
$$

and

$$
c=\frac{I I_{f} \cos (\varnothing+\delta)}{V_{t} \cos \phi}
$$

Then,

$$
\begin{equation*}
I_{f b} I\left(X_{q}-X_{p}\right)=a-b-c X_{p} \tag{3}
\end{equation*}
$$

This equation includes all parameters of the synchronous generator. Test data of Waukegan Unit No. 8 (H.P.) of The Commonwealth Edison Company, which is given in Appendix l, was used to ascertain if a system of equations of the form of equation (3) could be used to determine machine reactances.

The simultaneous solution of two equations is developed below. Reading No. 4:

$$
\frac{K V}{17.2} \quad \frac{I_{\mathrm{a}}}{3300} \quad \frac{\mathrm{MW}}{89} \quad \frac{\text { MVAR }}{16} \quad \frac{\Phi_{f}}{156} \quad \frac{I_{f}}{1080} \quad \frac{\delta}{29^{\circ}}
$$

$$
\begin{array}{ll}
P=89 \mathrm{MW}=\sqrt{3}(17.2 \mathrm{KV}) I \cos \varnothing \\
Q=16 \mathrm{MVAR}=\sqrt{3}(17.2 \mathrm{KV}) I \sin \varnothing & V_{t}=\frac{17.2}{18}=0.956 \mathrm{pu} . \\
\tan \emptyset=\frac{16}{89}=0.1799 & I=I_{a}=\frac{3300}{6400}=0.497 \mathrm{pu} \\
\emptyset=9.09^{\circ} &
\end{array}
$$

From equation (3),

$$
\begin{aligned}
& \mathrm{a}=I_{f} \sin (\varnothing+\delta)=1080 \sin (9.09+29) \\
&=1080 \sin (38.09) \\
&=667 \\
& \mathrm{~b}=I_{f} \cos (\varnothing+\delta) \tan \phi=1080 \cos (38.09) \tan (9.09) \\
&=1080(0.787)(0.1799) \\
&=152.8 \\
& \mathrm{c}=\frac{I I_{f} \cos (\varnothing+\delta)}{V_{t} \cos \phi}=\frac{(0.497)(1080) \cos (38.09)}{(0.956) \cos (9.09)} \\
&=\frac{(0.497)(1080)(0.787)}{(0.956)(0.987)} \\
&=448
\end{aligned}
$$

$$
\begin{equation*}
I_{f b}(0.497)\left(x_{q}-x_{p}\right)=667-152.8-448 x_{p} \tag{4}
\end{equation*}
$$

Reading No. 12:
$\frac{\mathrm{KV}}{18} \quad \frac{I_{\mathrm{a}}}{6780} \quad \frac{\text { MW }}{192} \quad \frac{\text { MVAR }}{80} \quad \frac{E_{f}}{291} \quad \frac{I_{f}}{1950} \quad \frac{\delta}{35^{\circ}}$

$$
\begin{aligned}
& P=192 \mathrm{MW}=\sqrt{3}(18 \mathrm{KV}) I \cos \emptyset \\
& Q=80 \mathrm{MVAR}=\sqrt{3}(18 \mathrm{KV}) I \sin \emptyset \quad \nabla_{t}=\frac{18}{18}=1.0 \mathrm{pu} . \\
& \tan \emptyset=\frac{80}{192}=0.417 \quad I=I_{a}=\frac{6780}{6640}=1.02 \mathrm{pu} . \\
& \emptyset=22.62^{\circ}
\end{aligned}
$$

From equation (3),

$$
\begin{align*}
& \begin{aligned}
a=I_{f} \sin (\varnothing+\delta) & =1950 \sin (22.62+35) \\
& =1950 \sin (57.62) \\
& =1646
\end{aligned} \\
& \begin{aligned}
b=I_{f} \cos (\varnothing+\delta) \tan \varnothing & =1950 \cos (22.62+35) \tan (22.62) \\
& =(1950)(0.535)(0.417) \\
& =435 \\
c=\frac{I I_{f} \cos (\varnothing+\delta)}{V_{t} \cos \emptyset} & =\frac{(1.02)(1950) \cos (57.62)}{(1.0) \cos (22.62)} \\
& =\frac{(1.02)(1950)(0.535)}{(1.0)(0.9225)} \\
& =1137.5 \\
I_{f b}(1.02)\left(X_{q}-X_{p}\right) & =1646-435-1137.5 X_{p} \\
0.497 & I_{f b}\left(X_{q}-X_{p}\right)+448 X_{p}=514.2
\end{aligned} \\
& 1.02 I_{f b}\left(X_{q}-X_{p}\right)+1137.5 X_{p}=1211
\end{align*}
$$

Multiplication of equation (5) by 0.497 and equation (4) by 1.02 gives,

$$
\begin{equation*}
(0.497)\left(1.02 I_{f b}\left(X_{q}-X_{p}\right)\right)+(0.497)\left(1137.5 X_{p}\right)=(0.497)(1211) \tag{5}
\end{equation*}
$$

$(1.02)\left(0.497 I_{f b}\left(X_{q}-X_{p}\right)\right)+(1.02)\left(448 X_{p}\right)=(1.02)(514.2)$
Subtraction gives,

$$
\begin{aligned}
565 x_{p} & =604 \\
-457 x_{p} & =-524.5 \\
\hline 108 x_{p} & =79.5 \\
x_{p} & =\frac{79.5}{108}=0.736
\end{aligned}
$$

Substitution of value of $X_{p}=0.736$ in equation (5) gives,

$$
\begin{aligned}
& 1.02 I_{f b}\left(X_{q}-x_{p}\right)+1137.5 x_{p}=1211 \\
& (1.02)(751)\left(x_{q}-0.736\right)+(1137.5)(0.736)=1211 \\
& 765 X_{q}-563+836=1211 \\
& 765 x_{q}=938 \\
& X_{q}=1.225
\end{aligned}
$$

These values of X_{p} and X_{q} do not agree with the manufacturer's values of $X_{p}=0.277$ and $X_{q}=1.55$. It appears that some of the values used for equation (3) have not been read with sufficient accuracy.

However, at the same time one might question the two particular sets of readings used, so to get all possible values of X_{p} and X_{q} from all of the thirteen sets of readings, a computer program was written as shown in Appendix 2. Computed values are shown in Appendix 3, and differ greatly from the manufacturer's values.

When one looks at the computer program and computed values, a question arises about the mathematical problem. The equations for X_{p} and X_{q} are,

Now the values of $C A(I)$ and $C A(J)$, and $C B(I)$ and $C B(J)$ are so nearly equal in most cases, that subtraction gives very small numbers. Again division of such small numbers makes a big difference in results. Taking this problem in consideration, the computer program was re-written with double precision, which means that the computer carries twice as many significant figures. Results are as shown in Appendix 4.

Comparison of the results from Appendix 3 and Appendix 4 shows that there are no big differences in the values of X_{p}, but there are differences in the values of X_{q}. But still these values do not agree with the manufacturer's values. One question arises. Are the
values of X_{p} and X_{q} computed in this manner extremely sensitive to small errors in various pieces of data? To try to answer this question, partial derivatives of X_{p} and X_{q} respect to E_{d}, V_{t}, I, \varnothing and δ have been computed. The results are

Equation (aa):
$\mathrm{E}_{\mathrm{d}} \sin (\phi+\delta)=I\left(\mathrm{X}_{\mathrm{q}}-\mathrm{X}_{\mathrm{p}}\right)+\frac{\mathrm{E}_{\mathrm{d}} \cos (\phi+\delta)}{\mathrm{V}_{\mathrm{t}} \cos \phi}\left(\mathrm{V}_{\mathrm{t}} \sin \phi+I X_{\mathrm{p}}\right)$
$\operatorname{IX}_{\mathrm{p}}\left[I-\frac{\mathrm{E}_{\mathrm{d}} \cos (\phi+\delta)}{\mathrm{V}_{\mathrm{t}} \cos \phi}\right]=\operatorname{IX}_{\mathrm{q}}-\mathrm{E}_{\mathrm{d}}[\sin (\phi+\delta)-\cos (\phi+\delta) \tan \phi]$
$X_{p}=\frac{V_{t} \cos \phi}{I}\left[\begin{array}{c}I X_{q}-\left[E_{d}[\cdot \sin (\phi+\delta)-\cos (\phi+\delta) \tan \phi]\right] \\ V_{\mathrm{t}} \cos \phi-E_{\mathrm{d}} \cos (\phi+\delta)\end{array}\right]$
$\begin{aligned} \frac{\partial X_{p}}{\partial E_{d}} & =\frac{V_{t} \cos \phi}{I}\left[\frac{(\cos (\phi+\delta) \tan \phi-\sin (\phi+\delta))\left(V_{t} \cos \phi-E_{d} \cos (\phi+\delta)\right)}{\left(V_{t} \cos \phi-E_{d} \cos (\phi+\delta)\right)^{2}}\right. \\ & \left.-\frac{(-\cos (\phi+\delta))\left(I X_{q}+E_{d}(\cos (\phi+\delta) \tan \phi-\sin (\phi+\delta))\right)}{\left(V_{t} \cos \phi-E_{d} \cos (\phi+\delta)\right)^{2}}\right] \\ \frac{\partial X_{p}}{\partial V_{t}} & =\left[\frac{\left(V_{t} \cos \phi-E_{d} \cos (\phi+\delta)\right)\left(\cos \phi X_{q}-\frac{\cos \phi E_{d}}{I}(\sin (\phi+\delta)-\cos (\phi+\delta)\right.}{\left(V_{t} \cos \phi-E_{d} \cos (\phi+\delta)\right)^{2}}\right.\end{aligned}$
$\tan \phi)]-\left[\frac{\left(\left(V_{t} \cos \phi \mathrm{X}_{\mathrm{q}}\right)-\frac{V_{t} \cos \phi \mathrm{E}_{\mathrm{d}}}{I}(\sin (\phi+\delta)-\cos (\phi+\delta) \tan \phi)(\cos \phi)\right)}{\left(V_{t} \cos \phi-\mathrm{E}_{\mathrm{d}} \cos (\phi+\delta)\right)^{2}}\right]$

$$
\begin{aligned}
\frac{\partial X_{p}}{\partial I}= & V_{t} \cos \phi\left[\frac{\left(I V_{t} \cos \varnothing-I E_{d} \cos (\varnothing+\delta)\right)\left(X_{q}\right)}{I^{2}\left(V_{t} \cos \varnothing-E_{d} \cos (\varnothing+\delta)\right)^{2}}-\frac{\left(I X_{q}-E_{d}(\sin (\varnothing+\delta)\right.}{}\right. \\
& \left.\frac{-\cos (\varnothing+\delta) \tan \phi))\left(V_{t} \cos \varnothing-E_{d} \cos (\phi+\delta)\right)}{\left(I^{2}\left(V_{t} \cos \varnothing-E_{d} \cos (\varnothing+\delta)\right)^{2}\right.}\right]
\end{aligned}
$$

Rewriting (aa) gives,

$$
\begin{aligned}
& X_{p}=\frac{V_{t} I \cos \phi X_{q}-V_{t} \cos \phi E_{d} \sin (\phi+\delta)+V_{t} \cos \phi E_{d} \cos (\phi+\delta) \tan \phi}{V_{t} I \cos \varnothing-I E_{d} \cos (\varnothing+\delta)} \\
& X_{p}=\frac{V_{t} I \cos \varnothing X_{g}-V_{t} \cos \varnothing E_{d} \sin (\varnothing+\delta)+\nabla_{t} E_{d} \cos (\varnothing+\delta) \sin \varnothing}{V_{t} I \cos \varnothing-I E_{d} \cos (\varnothing+\delta)} \\
& \frac{\partial X_{p}}{\partial \emptyset}=\frac{\left[(V _ { t } I \operatorname { c o s } \varnothing - I E _ { d } \operatorname { c o s } (\varnothing + \delta)) \left(-V_{t} I \sin \phi X_{q}+V_{t} E_{d} \sin \phi \sin (\phi+\delta)\right.\right.}{\left(V_{t} I \cos \phi-I E_{d} \cos (\phi+\delta)\right)^{2}} \\
& \left.\underline{\left.-V_{\mathrm{t}} \cos \phi \mathrm{E}_{\mathrm{d}} \cos (\phi+\delta)+\mathrm{V}_{\mathrm{t}} \cos \phi \mathrm{E}_{\mathrm{d}} \cos (\phi+\delta)-\mathrm{V}_{\mathrm{t}} \mathrm{E}_{\mathrm{d}} \sin (\phi+\delta) \sin \phi\right)}\right] \\
& -\left[\frac{\left(V_{t} I \cos \phi X_{q}-V_{t} \cos \phi E_{d} \sin (\phi+\delta)+V_{t} \sin \phi E_{d} \cos (\phi+\delta)\right)\left(-V_{t} I \sin \phi\right.}{\left(V_{t} I \cos \phi-I E_{d} \cos (\phi+\delta)\right)^{2}}\right. \\
& \left.\underline{\left.+I E_{d} \sin (\phi+\delta)\right)}\right]
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial x_{p}}{\partial \delta}= & {\left[\frac{\left(V_{t} I \cos \phi-I E_{d} \cos (\phi+\delta)\left(-V_{t} \cos \phi E_{d} \cos (\phi+\delta)-V_{t} \sin \phi E_{d}\right.\right.}{\left(V_{t} I \cos \phi-I E_{d} \cos (\phi+\delta)\right)^{2}}\right.} \\
& \left.\frac{\sin (\phi+\delta))}{}\right]-\left[\frac{\left(V_{t} I \cos \phi x_{q}-V_{t} \cos \phi E_{d} \sin (\phi+\delta)+V_{t} \sin \phi\right.}{\left(V_{t} I \cos \phi-I E_{d} \cos (\phi+\delta)\right)^{2}}\right. \\
& \left.\underline{\left.E_{d} \cos (\phi+\delta)\right)\left(I E_{d} \sin (\phi+\delta)\right)}\right]
\end{aligned}
$$

Equation (2a)

$$
E_{d} \sin (\phi+\delta)=I\left(X_{q}-X_{p}\right)+\frac{E d \cos (\phi+\delta)}{V_{t} \cos \phi}\left(V_{t} \sin \phi+I X_{p}\right)
$$

$$
I X_{q}=I X_{p}+E_{d} \sin (\phi+\delta)-\frac{E_{d} \cos (\phi+\delta)}{V_{t} \cos \phi}\left(V_{t} \sin \phi+I X_{p}\right)
$$

$$
X_{q}=X_{p}+\frac{E_{d} \sin (\varnothing+\delta)}{I}-\frac{E_{d} \cos (\phi+\delta)}{I V_{t} \cos \phi}\left(V_{t} \sin \phi+I X_{p}\right)
$$

$$
\frac{\partial X_{g}}{\partial E_{d}}=\frac{\sin (\phi+\delta)}{I}-\frac{\cos (\phi+\delta)}{I V_{t} \cos \phi}\left(V_{t} \sin \phi+I X_{p}\right)
$$

$$
\frac{\partial x_{q}}{\partial v_{t}}=-\left[-\frac{E_{d} \cos (\phi+\delta) x_{p}}{v_{t}^{2} \cos \phi}\right]
$$

$$
\frac{\partial X_{q}}{\partial I}=-\frac{E_{d} \sin (\phi+\delta)}{I^{2}}+\frac{E_{d} \cos (\phi+\delta) \tan \phi}{I^{2}}
$$

Rewriting equation (aa),

$$
\begin{aligned}
& X_{q}=X_{p}+\frac{E_{d} \sin (\phi+\delta)}{I}-\frac{E_{d} \cos (\phi+\delta) \tan \phi}{I}-\frac{\mathbb{E}_{d} \cos (\phi+\delta) x_{p}}{V_{t} \cos \phi} \\
& \begin{aligned}
\frac{\partial X_{q}}{\partial \phi} & =\frac{E_{d} \cos (\phi+\delta)}{I}+\frac{E_{d} \sin (\phi+\delta) \tan \phi}{I}-\frac{E_{d} \cos (\phi+\delta) \sec ^{2} \phi}{I} \\
& -X_{p}\left[\frac{\left(V_{t} \cos \phi\right)\left(-E_{d} \sin (\phi+\delta)-\left(E_{d} \cos (\phi+\delta)\left(-V_{t} \sin \phi\right)\right)\right.}{\left(V_{t} \cos \phi\right)^{2}}\right] \\
\frac{\partial x_{q}}{\partial \delta} & =\frac{E_{d} \cos (\phi+\delta)}{I}+\frac{E_{d} \sin (\phi+\delta) \tan \phi}{I}+\frac{E_{d} \sin (\phi+\delta) X_{p}}{V_{t} \cos \phi}
\end{aligned}
\end{aligned}
$$

Reading No. 3, has been used to get numerical values of these partial derivatives.

$$
\begin{aligned}
& \frac{\mathrm{KV}}{18.1} \frac{I_{\mathrm{a}}}{5980} \frac{\mathrm{MW}}{180} \frac{\mathrm{MVAR}}{28} \frac{\mathrm{E}_{\mathrm{f}}}{235} \frac{I_{\mathrm{f}}}{1600} \frac{\delta}{38^{\circ}} \\
& \mathrm{P}=180 \mathrm{MW}=\sqrt{3}(18.1 \mathrm{KV}) \mathrm{I} \cos \varnothing \\
& \mathrm{Q}=28 \mathrm{MVAR}=\sqrt{3}(18.1 \mathrm{KV}) \mathrm{I} \sin \varnothing \\
& \tan \phi=\frac{\mathrm{Q}}{\mathrm{P}}=\frac{28}{180}=0.1555 \\
& \varnothing=8.83^{\circ} \\
& \cos \phi=0.988 \quad V_{t}=\frac{18.1}{18}=1.005 \mathrm{pu} .
\end{aligned}
$$

$$
\begin{array}{ll}
\tan \phi=0.1555 & X_{q}=1.55 \\
\cos (\phi+\delta)=\cos (46.83)=0.684 & X_{p}=0.277 \\
\sin (\phi+\delta)=0.729 & E_{d}=\frac{I_{f}}{I_{f b}}=\frac{1600}{751}=2.13
\end{array}
$$

$$
\frac{\partial x_{p}}{\partial E_{d}}=2.515
$$

$$
\frac{\partial x_{p}}{\partial v_{t}}=0.377
$$

$$
\frac{\partial X_{p}}{\partial I}=-3.0
$$

$$
\frac{\partial x_{p}}{\partial \varnothing}=-1.738
$$

$$
\frac{\partial x_{p}}{\partial \delta}=3.89
$$

$$
\frac{\partial X_{q}}{\partial E_{d}}=-0.1849
$$

$$
\frac{\partial x_{q}}{\partial v_{t}}=0.404
$$

$$
\frac{\partial x_{q}}{\partial I}=0.1733
$$

$\frac{\partial x_{q}}{\partial \varnothing}=2.62$
$\frac{\partial X_{a}}{\partial \delta}=2.374$

The values of the partial derivatives themselves give a clear idea about how sensitive X_{p} and X_{q} are to small error in data. In the case of X_{q} the partial derivatives are not as effective as for x_{p}. One which is very large is $\frac{\partial X_{p}}{\partial \delta}$. The $\frac{\partial X_{q}}{\partial \varnothing}$ is large, but not as large as $\frac{\partial x_{p}}{\delta} \frac{1}{\delta}$.

The angle δ is an angle between terminal voltage and internal voltage of synchronous generator. It is called "Load Angle" as well as "Displacement Angle." This angle is measured by some convenient method, on the rotor shaft outside of the synchronous generator, and is difficult to measure δ accurately.

CHAPTER V

CONCLUSIONS

It has been shown that partial derivatives of X_{p} and X_{q} taken with respect to all parameters are not extremely large, but at the same time, partial derivatives of X_{p} and X_{q} with respect to δ are bigger than any others, which shows that a little inaccuracy in reading of δ causes a big effect on the values of X_{p} and X_{q}. Unfortunately, the angle δ is the most difficult to read.

It also appears that the accuracy of ordinary switchboard instruments is not high enough to utilize the method described herein for computing X_{p} and X_{q}.

This work also depicts that it is not possible to get good values of reactances by just using readings from several load tests of synchronous generator. Higher accuracy instrumentation and an accurate method of determining the load angle δ would be absolutely necessary.

REFERENCES

1. Michael Liwschitz-Garik, and Clyde C. Whipple, Electric Machinery, D. Van Nostrand Co., Inc., 1956, pp. 300-301, pp. 327-329.
2. C. F. Wagner, "Machine Characteristics," Electrical Transmission and Distribution Reference Book of Westinghouse, 1950, pp. 145-149.
3. R. H. Park, and B. L. Robertson, "The Reactances of Synchronous Machine," Transactions of the A.I.E.E., Vol. 47, 1928, p. 514.
4. Sherwin H. Wright, "Determination of Synchronous Machine Constants By Test," Transactions of the A.I.E.E., Vol. 50, 1931, p. 1334, p. 1337.
5. A. E. Fitzgerald, and Charles Kingsley, Jr., Electric Machinery, McGraw-Hill Book Co., Inc., 1961, p. 441.
6. A.I.E.E. Test Code for Synchronous Machines. A.I.E.E. Publication No. 503, June 1945.

APPENDIX 1

WAUKEGAN UNIT NO. 8 POWER ANGLE
MEASUREMENTS OF HIGH PRESSURE GENERATOR

ELECTRICAL CHARACTERISTICS OF SYNCHRONOUS GENERATOR

Manufacturer: Westinghouse
Narne Plate Rating:
KVA: 207,000

$$
\text { PDF.: } \underline{0.85}
$$

Serial No.: _1563T350

RPM: 3600

Unset.

Direct-axis Synchronous Reactance	$X_{d}=1.573$
Quadrature-axis Synchronous Reactance	$X_{\mathrm{q}}=1.550$

Potier Reactance $X_{p}=0.277$

Field Current Requirements:

I_{f} pu at Rated $V_{t} \underline{751}$ (air-gap) 825 (Sat.)

APPENDIX 2

THE COMPUTER FRGGRAM USED FOR THE SOLUTION OF FOUATION (3),

FOR ALL OF THE THIRTEEN SETS OF READINGS

```
    DIMENSION CA(50),CB(50)
C
C READ MACHINE RATINGS
C
    READ (11,100) RV,RKVA,BFI
    RAI = RKVA/(1.732*RV)
C
C
C
    WRITE (12,101)
    WRITE (12,102) RV,RKVA,RAI,BFI
    READ NUMBER OF SETS OF DATA*
    READ (11,103) NT
    READ TEST DATA
    WRITE (12,105)
    DO 15 I = 1,NT
    READ (ll,104) N,AV,AI,P,Q,FI,DELD
    PHI = ATAN(Q/P)
    PHID = PHI*57.3
    V = AV/RV
    A = AI/RAI
    ED = FI/BFI
    DEL=DELD/57.3
    WRITE (12,106) N,PHID,V,A,ED
    ANG = PHI + DEL
    CA(N)=ED*(SIN(ANG)-COS(ANG)}\becauseSIN(PHI)/COS(PHI))/A
    CB(N)=ED`%COS(ANG)/(V*}\operatorname{COS}(PHI)
l5 CONTINUE
CALCULATE AND PRINT VALUES FOR XP
    WRITE (12,127)
    NM = NT - l
    DO 25 I = 1,NM
    NN = I+1
    DO 25 J = NN,NT
    XP = (CA(I)-CA(J))/(CB(I)-CB(J))
    XQ = (CA(I)-CA(J)+(CA(J)*CB(I))-(CA(I)*CB(J)))/(CB(I)-CB(J))
    WRITE (12,128) I,J,XP,CA(I),CA(J),CB(I),CB(J),XQ
```

25 CONTINUE
100 FORMAT (3F10.1)
101 FORMAT ('l',10X, 'RATED KV RATED KVA RATED ARM AMPS BASE FLD A IMPS')
102 FORMAT('O', 10X, F6.1,F13.0,F14.1,F16.0)
103 FORMAT (IIO)
104 FORMAT (IIO,6F10.1)
105 FORMAT('O',10X,'TEST PHID VPU PU ARM AMPS PU FLD AMPS')
106 FORMAT (101 ,10X,13,F8.1,F7.2,F11.2,F15.2)
127 FORMAT ('I',10X,'TESTS USED XP CA(I) CA(J) CB(I)
$\left.1 \quad C B(J) \quad X Q^{1}\right)$
128 FORMAT (' ',10X,14,15,6F10.3)
END

TESTS	USED	XP	CA (I)	CA(J)	$C B(I)$	CB(J)	XQ
1	2	0.207	1.589	1.613	1.259	1.377	1.535
1	3	0.616	1.589	1.548	1.259	1.194	1.429
1	4	0.790	1.589	1.448	1.259	1.081	1.384
1	5	0.499	1.589	1.486	1.259	1.054	1.459
1	6	0.736	1.589	1.466	1.259	1.093	1.398
1	7	0.784	1.589	1.499	1.259	1.145	1.385
1	8	0.396	1.589	1.554	1.259	1.173	1.486
1	9	2.334	1.589	1.483	1.259	1.214	0.983
1	10	1.156	1.589	91013.875	1.259	78700.813	1.289
1	11	0.384	1.589	1.570	1.259	1.211	1.489
1	12	-0.657	1.589	1.457	1.259	1.460	1.759
1	13	0.407	1.589	1.545	1.259	1.151	1.483
2	3	0.353	1.613	1.548	1.377	1.194	1.480
2	4	0.558	1.613	1.448	1.377	1.081	1.403
2	5	0.393	1.613	1.486	1.377	1.054	1.465
2	6	0.517	1.613	1.466	1.377	1.093	1.418
2	7	0.491	1.613	1.499	1.377	1.145	1.428
2	8	0.287	1.613	1.554	1.377	1.173	1.505
2	9	0.796	1.613	1.483	1.377	1.214	1.313
2	10	1.156	1.613	91013.875	1.377	78700.813	1.177
2	11	0.258	1.613	1.570	1.377	1.211	1.516
2	12	-1.884	1.613	1.458	1.377	1.460	2.324
2	13	0.303	1.613	1.545	1.377	1.151	1.499
3	4	0.892	1.548	1.448	1.194	1.081	1.375
3	5	0.444	1.548	1.486	1.194	1.054	1.462
3	6	0.814	1.548	1.466	1.194	1.093	1.391
3	7	1.011	1.548	1.499	1.194	1.145	1.353
3	8	-0.293	1.548	1.554	1.194	1.173	1.605
3	9	-3.149	1.548	1.483	1.194	1.214	2.158
3	10	1.156	1.548	91013.875	1.194	78700.813	1.324
3	11	1.273	1.548	1.570	1.194	1.211	1.302
3	12	-0.343	1.548	1.457	1.194	1.460	1.615
3	13	0.086	1.548	1.545	1.194	1.151	1.532
4	5	-1.398	1.448	1.486	1.081	1.054	1.561
4	6	1.580	1.448	1.466	1.081	1.093 1.145	1.320 1.383
4	7 8	1.802 1.165	1.448 1.448	1.499 1.554	1.081	1.173	1.353
4	9	0.266	1.448	1.483	1.081	1.214	1.426

TESTS	USED	XP	CA(I)	$\mathrm{CA}(\mathrm{J})$	$\mathrm{CB}(\mathrm{I})$	CB(J)	XQ
4	10	1.156	1.448	91013.875	1.081	78700.813	1.354
4	11	0.943	1.448	1.570	1.081	1.211	1.371
4	12	0.024	1.448	1.457	1.081	1.460	1.446
4	13	1.386	1.448	1.545	1.081	1.151	1.335
5	6	-0.518	1.486	1.466	1.054	1.093	1.514
5	7	0.142	1.486	1.499	1.054	1.145	1.478
5	8	0.575	1.486	1.554	1.054	1.173	1.455
5	9	-0.017	1.486	1.483	1.054	1.214	1.487
5	10	1.156	1.486	91013.875	1.054	78700.813	1.424
5	11	0.535	1.486	1.570	1.054	1.211	1.457
5	12	-0.072	1.486	1.457	1.054	1.460	1.490
5	13	0.602	1.486	1.545	1.054	1.151	1.454
6	7	0.632	1.466	1.499	1.093	1.145	1.408
6	8	1.105	1.466	1.554	1.093	1.173	1.364
6	9	0.143	1.466	1.483	1.093	1.214	1.453
6	10	1.156	1.466	91013.875	1.093	78700.813	1.359
6	11	0.881	1.466	1.570	1.093	1.211	1.384
6	12	-0.025	1.466	1.457	1.093	1.460	1.468
6	13	1.348	1.466	1.545	1.093	1.151	1.341
7	8	2.002	1.499	1.554	1.145	1.173	1.209
7	9	-0.227	1.499	1.483	1.145	1.214	1.532
7	10	1.156	1.499	91013.875	1.145	78700.813	1.331
7	11	1.079	1.499	1.570	1.145	1.211	1.343
7	12	-0.134	1.499	1.457	1.145	1.460	1.518
7	13	7.630	1.499	1.545	1.145	1.151	0.393
8	9	-1.708	1.554	1.483	1.173	1.214	1.849
8	10	1.156	1.554	91013.875	1.173	78700.813	1.355
8	11	0.411	1.554	1.570	1.173	1.211	1.483
8	12	-0.339	1.554	1.457	1.173	1.460	1.613
8	13	0.453	1.554	1.545	1.173	1.151	1.476
9	10	1.156	1.483	91013.875	1.214	78700.813	1.236
9	11	-25.146	1.483	1.570	1.214	1.211	6.870
9	12	-0.108	1.483	1.457	1.214	1.460	1.506
9	13	-0.968	1.483	1.545	1.214	1.151	1.691
10	11	1.156	91013.875	1.570	78700.813	1.211	1.326
10	12	1.156	91013.875	1.457	78700.813	1.460	0.925
10	13	1.156	91013.875	1.545	78700.813	1.151	1.370
11	12	-0.454	1.570	1.457	1.211	1.460	1.666
11	13	0.426	1.570	1.545	1.211	1.151	1.480
12	13	-0.284	1.457	1.545	1.460	1.151	1.587

APPENDIX 4

COMPUTED VALUES OF XP AND XQ

These were obtained using the computer program of Appendix 2
modified to provide double precision.

TESTS	USED	XP	CA (I)	CA(J)	CB(I)	CB (J)	XQ
1	2	0.207	1.589	1.613	1.259	1.377	1.535
1	3	0.615	1.589	1.548	1.259	1.194	1.429
1	4	0.790	1.589	1.448	1.259	1.081	1.384
1	5	0.499	1.589	1.486	1.259	1.054	1.459
1	6	0.736	1.589	1.466	1.259	1.093	1.398
1	7	0.784	1.589	1.499	1.259	1.145	1.385
1	8	0.396	1.589	1.554	1.259	1.173	1.486
1	9	2.334	1.589	1.483	1.259	1.214	0.983
1	10	1.156	1.589	96338.426	1.259	83304.934	1.289
1	11	0.383	1.589	1.570	1.259	1.211	1.489
1	12	-0.657	1.589	1.457	1.259	1.460	1.759
1	13	0.407	1.589	1.545	1.259	1.151	1.483
2	3	0.353	1.613	1.548	1.377	1.194	1.480
2	4	0.558	1.613	1.448	1.377	1.081	1.403
2	5	0.393	1.613	1.486	1.377	1.054	1.465
2	6	0.517	1.613	1.466	1.377	1.093	1.418
2	7	0.491	1.613	1.499	1.377	1.145	1.428
2	8	0.287	1.613	1.554	1.377	1.173	1.505
2	9	0.796	1.613	1.483	1.377	1.214	1.313
2	10	1.156	1.613	96338.426	1.377	83304.934	1.177
2	11	0.258	1.613	1.570	1.377	1.211	1.516
2	12	-1.884	1.613	1.457	1.377	1.460	2.324
2	13	0.303	1.613	1.545	1.377	1.151	1.499
3	4	0.892	1.548	1.448	1.194	1.081	1.375
3	5	0.444	1.548	1.486	1.194	1.054	1.462
3	6	0.814	1.548	1.466	1.194	1.093	1.391
3	7	1.011	1.548	1.499	1.194	1.145	1.353
3	8	-0.293	1.548	1.554	1.194	1.173	1.605
3	9	-3.149	1.548	1.483	1.194	1.214	2.158
3	10	1.156	1.548	96338.426	1.194	83304.934	1.324
3	11	1.273	1.548	1.570	1.194	1.211	1.302
3	12	-0.343	1.548	1.457	1.194	1.460	1.615
3	13	0.086	1.548	1.545	1.194	1.151	1.532
4	5	-1.398	1.448	1.486	1.081	1.054	1.561
4	6	1.580	1.448	1.466	1.081	1.093	1.320

TESTS USED XP CA(I) CA(J) CB(I) CB(J) XQ

4	7	0.802	1.448	1.499	1.081	1.145	1.383
4	8	1.165	1.448	-1.554	1.081	1.173	1.353
4	9	0.266	1.448	1.483	1.081	1.214	1.426
4	10	1.156	1.448	96338.426	1.081	83304.934	1.354
4	11	0.943	1.448	1.570	1.081	1.211	1.371
4	12	0.024	1.448	1.457	1.081	1.460	1.446
4	13	1.386	1.448	1.545	1.081	1.151	1.335
5	6	-0.518	1.486	1.466	1.054	1.093	1.514
5	7	0.142	1.486	1.499	1.054	1.145	1.478
5	8	0.575	1.486	1.554	1.054	1.173	1.455
5	9	-0.017	1.486	1.483	1.054	1.214	1.487
5	10	1.156	1.486	96338.426	1.054	83304.934	1.424
5	11	0.535	1.486	1.570	1.054	1.211	1.457
5	12	-0.072	1.486	1.457	1.054	1.460	1.490
5	13	0.602	1.486	1.545	1.054	1.151	1.454
6	7	0.632	1.466	1.499	1.093	1.145	1.408
6	8	1.105	1.466	1.554	1.093	1.173	1.364
6	9	0.143	1.466	1.483	1.093	1.214	1.453
6	10	1.156	1.466	96338.426	1.093	83304.934	1.359
6	11	0.881	1.466	1.570	1.093	1.211	1.384
6	12	-0.025	1.466	1.457	1.093	1.460	1.468
6	13	1.348	1.466	1.545	1.093	1.151	1.341
7	8	2.001	1.499	1.554	1.145	1.173	1.209
7	9	-0.227	1.499	1.483	1.145	1.214	1.532
7	10	1.156	1.499	96338.426	1.145	83304.934	1.331
7	11	1.079	1.499	1.570	1.145	1.211	1.343
7	12	-0.134	1.499	1.457	1.145	1.460	1.519
7	13	7.629	1.499	1.545	1.145	1.151	0.393
8	9	-1.708	1.554	1.483	1.173	1.214	1.849
8	10	1.156	1.554	96338.426	1.173	83304.934	1.355
8	11	0.411	1.554	1.570	1.173	1.211	1.483
8	12	-0.339	1.554	1.457	1.173	1.460	1.613
8	13	0.453	1.554	1.545	1.173	1.151	1.476
9	10	1.156	1.483	96338.426	1.214	83304.934	1.236
9	11	-25.138	1.483	1.570	1.214	1.211	6.868
9	12	-0.108	1.483	1.457	1.214	1.460	1.506
9	13	-0.968	1.483	1.545	1.214	1.151	1.691
10	11	1.156	96338.426	1.570	83304.934	1.211	1.326
10	12	1.156	96338.426	1.457	83304.934	1.460	0.925
10	13	1.156	96338.426	1.545	83304.934	1.151	1.370
11	12	-0.454	1.570	1.547	1.211	1.460	1.666
11	13	0.426	1.570	1.545	1.211	1.151	1.480
12	13	-0.284	1.457	1.545	1.460	1.151	1.587

APPENDIX 5

TABLE OF SYMBOLS

$$
\begin{aligned}
E_{d}= & \text { Voltage on the air-gap line } \\
E_{p}= & \text { Voltage behind the Potier reactance drop } \\
E_{p s}= & \text { Voltage behind the Potier reactance drop with saturation } \\
& \text { effects included } \\
E_{\ell}= & \text { Voltage behind leakage reactance drop } \\
V_{t}= & \text { Terminal voltage to neutral } \\
I= & \text { Armature current } \\
I_{f}= & \text { Field current } \\
I_{t}= & \text { Field current to produce air-gap flux } \varnothing \\
I_{f b}= & \text { Field current for rated voltage on air-gap line } \\
X_{d}= & \text { Direct-axis synchrcnous reactance } \\
X_{q}= & \text { Quadrature-axis synchronous reactance } \\
X_{p}= & \text { Potier reactance } \\
X_{\ell}= & \text { Leakage reactance } \\
\emptyset= & \text { Power-factor angle } \\
\delta= & \text { Power angle }
\end{aligned}
$$

