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There is a difficulty in defining the positions of the D-branes when the scalar fields on them are
non-Abelian. We show that we can use tachyon condensation to determine the position or the
shape of D0-branes uniquely as a commutative region in spacetime together with a non-trivial
gauge flux on it, even if the scalar fields are non-Abelian. We use the idea of the so-called
coherent state method developed in the field of matrix models in the context of the tachyon
condensation. We investigate configurations of non-commutative D2-brane made out of D0-
branes as examples. In particular, we examine a Moyal plane and a fuzzy sphere in detail,
and show that whose shapes are commutative R

2 and S2, respectively, equipped with uniform
magnetic flux on them. We study the physical meaning of this commutative geometry made out
of matrices, and propose an interpretation in terms of K-homology.
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subject Index B23, B26, B82, B83

1. Introduction

D-branes in superstring theory are dynamical hypersurfaces in spacetime on which gauge fields
and transverse scalar fields live. On a single D-brane, the transverse scalar fields represent the
displacement of the worldvolume in spacetime. However, this interpretation cannot be applied naively
for a stack of N D-branes, since the scalar fields take values in N × N Hermitian matrices, which
are not mutually diagonalizable in general. Soon after the discovery of D-branes, the idea that such
non-commuting scalar fields represent non-commutative (NC) geometry [1,2] came out. It is most
readily seen by the matrix quantum mechanics for multiple D0-branes [3] or the matrix model [4],
which is (at least formally) seen as a model for D-instantons. According to this matrix geometry
picture, various NC configurations of scalar fields, representing NC spaces such as the Moyal plane
[5] and the fuzzy sphere [6] are considered. In these examples, the non-Abelian scalar fields on lower-
dimensional D-branes make the system couple to the Ramond–Ramond (RR) 3-form potential due
to the Myers term and the effective theories on them become NC gauge theories. Here there appears a
puzzle: Such an NC worldvolume lives in the usual commutative spacetime while an NC space cannot
be embedded into commutative spacetime in the usual sense in general. Therefore, the position or
the shape of an NC D-brane in the commutative spacetime is far from obvious in particular.
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This problem has been discussed from various viewpoints. In Ref. [7], the position of NC D-brane
systems is estimated as the distribution of D-brane charges by using the D-brane charge density
formula given in Refs. [8,9]. The original charge density formula is improved by assuming that fuzzy
sphere configurations have single spherical shell structures, which gives a consistent improvement
of the formula. This suggests that the worldvolume of the NC D-brane system has a definite shape
in the spacetime.

The way to determine the shape of the D-brane system is not unique. The original interpretation
that the diagonal elements of the scalar fields express the position of the worldvolume in spacetime
has been generalized in Ref. [10], where the authors discuss the concept that the position of the
worldvolume should be identified by taking the “almost diagonal gauge” [11] of the scalar fields.

In Ref. [12], another interesting method of defining the shape of NC D-branes was proposed.
In this method, in addition to NC D-branes, one introduces a probe D0-brane and considers open
strings connecting the probe brane and the NC D-branes. The point is that the lowest energy of an
open string is always proportional to the length of the string. Then, moving the position of the probe
brane, one can find massless modes of an open string only when the probe brane hits the NC branes
so that the length of one of the open strings becomes zero. Thus, the set of all possible positions
of the probe brane such that the open strings have massless modes can be interpreted as the shape
of the NC branes. The energy of the open string can be measured by using a Dirac operator on
the open strings and thus the shape of the NC branes is defined as the loci of zeros of the Dirac
operator. See Refs. [13,16] for analysis of this method. See also Refs. [14,15] for NC spheres in the
Berenstein-Maldacena-Nastase (BMN) matrix model.

The relation between NC and commutative geometries has been further developed as a mathemat-
ical correspondence between commutative geometry and matrices. In Ref. [17], a systematic way
to extract a commutative space from a given configuration of matrices has been developed. In this
approach, a Hamiltonian operator plays an important role, which is assumed to include matrices
accompanied by coordinates of a Euclidean space R

n as parameters. The commutative manifold
living in R

n is identified as the loci of zero eigenstates of the Hamiltonian, and some geometrical
quantities such as Poisson structures and Riemannian metrics can also be extracted by the coherent
states [17] (see also Ref. [18]). Although the large-N limit of the matrices has been considered in
Ref. [17], it has been pointed out in Ref. [19] that this idea works even at finite N with the use of
quasi-coherent states, and it has been discussed that a Dirac-like operator can play the same role as
the Hamiltonian. Interestingly enough, the obtained formulation is deeply related to that developed
in the context of the superstring theory discussed in Ref. [12]. We thus refer to the method developed
in Refs. [12,17,19] collectively as the “coherent state method" hereafter. See also Ref. [20] for the
connection between coherent states and the fuzzy sphere.

In this paper, we point out that the coherent state method also plays important roles in the context
of tachyon condensation in superstring theory [21,22]. The basic idea is to identify the Dirac-like
operator in the coherent state method with a tachyon profile on a system of unstable D-branes. With
this identification, the coherent state method can be interpreted as the tachyon condensation, and the
resultant commutative manifolds can be regarded as D-branes living in the commutative spacetime.
The advantage of this interpretation is twofold: First, the parameter space R

n in the coherent state
method can be interpreted as a worldvolume of these unstable D-branes. Second, it gives a clear
reason why the ground state should be chosen to extract the commutative worldvolume.

Technically our analysis in this paper is an application of the technique developed so far
[23]. This method has been applied to realize the Nahm construction of monopoles and the
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Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction of instantons [24,25] and/or to realize a spher-
ical D-brane [26]. In the latter case, a system of 2 non-BPS D3-branes is considered, where a tachyon
profile T representing a D0-brane is deformed by a constant shift. By diagonalizing the tachyon T ,
the system is shown to condensate to a spherical D2-brane with a gauge flux of the unit monopole
charge. Since the diagonalization is just a change of basis, the original deformed D0-brane and the
spherical D2-brane with flux are unitarily equivalent. This construction is similar but different from
the well-known Myers dielectric D2-brane. In the former case, a D2-brane is made out of a single
D0-brane and its worldvolume is a commutative S2, while in the latter case a D2-brane is made
out of multiple D0-branes and its worldvolume is a fuzzy sphere. In this paper, we apply tachyon
condensation to the latter case and show that the fuzzy sphere has an equivalent expression to a
system on a commutative sphere. For the latest result in the related topic, see Ref. [27], which has
some overlap with the present paper and appeared on arXiv at the same time as the present paper.

The organization of this paper is as follows. In Sect. 2, we consider the system of k D0-branes
with matrix-valued scalar fields on them, in terms of a tachyon field of 2k non-BPS D3-branes. By
using the idea of the coherent state method in this setting, we claim that the shape of D0-branes is a
commutative region M of spacetime, and is determined uniquely by the zeros of the tachyon field. We
also explain a general mechanism of producing a gauge flux on M . In Sect. 3, we apply the method
to NC D2-branes on the Moyal plane and the fuzzy sphere, which are made of D0-branes with the
Myers term. We identify the shapes of these systems as commutative R

2 and S2, respectively. In
Sect. 4, we discuss the meaning of the shapes in more detail and propose an interpretation in terms
of K-homology. Section 5 is devoted to the conclusion and discussion.

2. Geometry from matrices by tachyon condensation
2.1. Multiple D0-branes in non-BPS D-branes

Consider a system of N non-BPS D3-branes whose worldvolume is R × R
3 in 10D Minkowski

spacetime. The effective action is a U (N ) gauge theory coupled with 6 transverse scalar fields and a
tachyon field. In this paper, we focus on static configurations of the tachyon field only. We also restrict
the gauge connection to be trivial. In this setting, D3-branes are rigid and their spatial worldvolume
is identified with part of the spacetime. We set the spatial coordinates x = (x1, x2, x3). Moreover, the
Chan–Paton bundle, a complex vector bundle over R

3 with the fiber C
N , is trivial R

3 × C
N because

of the lack of gauge field. The tachyon field T (x) is a Hermitian N × N -matrix-valued scalar field.
Our argument below does not rely on the explicit form of the action, but for definiteness, we

assume the that tachyon potential has the form V (T ) = e−T 2
(i.e., we assume boundary string field

theory (BSFT) type theory [28,29]). Because it is unstable around the (false) vacuum T = 0, tachyon
condensation occurs. At the true vacuum T = u1N (u → ∞), non-BPS D3-branes disappear. In
addition, lower-dimensional D-branes can be realized as solitonic configurations [21,22].

Among them, let us consider k D0-brane configuration with fluctuations. We take N = 2k and set
the tachyon profile as

T (x) = uσ · (x −�) = u

(
x3 −�3 z̄ − �̄

z −� −x3 +�3

)
, (2.1)

where σ = (σ 1, σ 2, σ 3) is a set of Pauli matrices and� = (�1,�2,�3) is a collection of transverse
scalar fields on k D0-branes that are k × k Hermitian matrices. In the second expression, we used
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complex notation with z = x1 + ix2 and� = �1 + i�2. Note that xi should be understood as xi ⊗1k

more precisely.
The tachyon profile (2.1) without fluctuation, � = 0, indeed represents k D0-branes sitting at the

origin x = 0 in the limit u → ∞, which is known as the Atiyah–Bott–Shapiro (ABS) construction
[30,31]. This is essentially seen by the tachyon potential

V (T ) = e−T 2 = e−u2|x|2 ⊗ 12k , (2.2)

which is proportional to the delta function δ(x) in the u → ∞ limit. Thus, under tachyon condensa-
tion, the spatial worldvolume R

3 reduces to the origin, leaving a point-like defect. This fact is most
rigorously shown by using boundary states (see, e.g., Ref. [32]): The boundary state for non-BPS
D3-branes with this tachyon profile added on as a boundary interaction reduces to the boundary
state for k D0-branes in the limit u → ∞, with the correct tension and the RR-charge. Even adding
fluctuations, the profile (2.1) reduces to k D0-branes with transverse scalars, where scalar fields
appear as a boundary interaction. The resulting effective action SD0[�] for k D0-branes is given by
the Dirac–Born–Infeld (DBI) action and the Chern–Simons term, which in particular includes the
Myers term [6]. In the opposite way, a matrix model SD0[�] can be embedded into the theory of
non-BPS D3-branes. This explains why the tachyon field appears when considering the shape of
D-branes with non-commuting scalar fields.

Note that, in this treatment, the condensation itself is obtained without matrix scalar fields �,
and � are turned on afterwards as perturbation. An equivalent but more direct way is to consider
the condensation of the profile (2.1) with �. The resulting defect should be the deformation of the
point-like defect by matrices�. Indeed, as shown in Ref. [26], a deformation of the single D0-brane
(k = 1) profile drastically changes the condensation defect to a spherical D2-brane1. Our claim in
this paper is that the position or the shape of D-branes is determined by diagonalizing the tachyon
field T , not the scalar fields Î¦ themselves. The point is that diagonalizing a tachyon profile is always
possible for any matrix-valued scalar fields�. As a result, the shape is irrespective of whether or not
the system is a classical solution of the effective theory of D0-branes and/or supergravity.

In the following, we will consider such configurations of matrix scalar fields � that represent
non-commutative D2-branes as typical examples. In particular, we investigate an NC plane and
a fuzzy sphere in detail. By embedding D0-branes into non-BPS D3-branes, we will see that the
spatial worldvolume R

3 shrinks to a commutative 2D space after tachyon condensation. Moreover,
this process inevitably induces a non-trivial gauge field, whose field strength carries the D0-brane
charge k .

2.2. Tachyon condensation and gauge flux production

Before treating explicit examples, we describe the schematic structure of the tachyon condensation for
the configuration (2.1). Technically, the analysis is the same as the coherent state method mentioned
in the introduction. We also explain how a non-trivial U (1) gauge flux is induced from the tachyon
condensation. In order to consider the case of not only finite but also infinite N , we formulate the
problem in terms of Hilbert spaces and projective modules.

1 It is a deformation of Eq. (2.1) with � = 0 by a constant shift and thus different from � here.
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2.2.1. Tachyon condensation
The Chan–Paton bundle for N non-BPS D3-branes in our setting is a trivial complex vector bundle
E = R

3 × C
N over R

3, whose typical fiber C
N is a Hilbert space. Then, the space of sections of

the Chan–Paton bundle is a free module AN of rank N , with A = C∞(R3). Denote an orthonormal
basis (ONB) for C

N as | a 〉 (a = 0, 1, 2, . . . , N − 1). Then, a generic section is written as

|ψ(x) 〉 =
N−1∑
a=0

ψa(x) | a 〉, ψa(x) = 〈 a |ψ(x) 〉 ∈ A. (2.3)

The tachyon field T (x) is an operator-valued function on R
3. It is an element of the endomorphism

End(E) and is written as T (x) = ∑
a,b | a 〉 T a

b (x) 〈 b |. According to Eq. (2.1), we assume that each
matrix element T a

b is at order u, and the limit u → ∞ will be taken. Note that in this profile (2.1),
the matrices � act at each x (not only at the origin).

In order to extract the condensation defect, we need to diagonalize the potential V (T ) = e−T 2
or

the tachyon field T (x) itself at each point x on R
3. Any Hermitian matrix can be diagonalized by a

unitary matrix. In an infinite-dimensional Hilbert space and operators acting on it, the corresponding
notion is the spectral decomposition. Assuming spectral decomposition at each point x,

T (x) = U (x)T0(x)U (x)
†, T0(x) =

∑
a

| a 〉 ta(x) 〈 a |, (2.4)

we find the eigenstates for the tachyon field as

T (x) |ψa(x) 〉 = ta(x) |ψa(x) 〉, |ψa(x) 〉 = U (x) | a 〉. (2.5)

Here an eigenstate |ψa(x) 〉, which is a section of the Chan–Paton bundle, and the unitary operator
U (x) are position-dependent. In more familiar terms, Eq. (2.4) is a gauge transformation of the
tachyon field. In general, eigenfunctions ta(x) are u-dependent but U (x) is u-independent (see the
examples below).

Then, the tachyon potential is written as

e−T 2 = U (x)e−T0(x)2U (x)† =
∑

a

U (x) | a 〉 e−ta(x)2 〈 a | U (x)†. (2.6)

This shows that, at each x, the component with ta(x) 	= 0 tends to 0 in the limit u → ∞. That is, the
tachyon potential picks up tachyon zero modes at each point. For example2, if only one component
is the zero mode t0(x) = 0 for any x, then

e−T 2 → P(x) = U (x) | 0 〉 〈 0 | U (x)†. (2.7)

In this case, all the excited states | a 〉 (a 	= 0) are annihilated under the tachyon condensation. Note
that P0 = | 0 〉 〈 0 | is a rank-1 projection operator acting on the typical fiber, and the P(x) is unitarily
equivalent to P0. This means that the tachyon condensation picks up a 1D subspace U (x) | 0 〉 from
the N -dimensional fiber at each point x. More generally, it may happen that t0(x) = 0 for some
region M ⊂ R

3, but t0(x) 	= 0 otherwise. In this case, the tachyon potential also projects out from
the region M . Schematically,

e−T 2 → δ(M )P(x) = δ(M )U (x) | 0 〉 〈 0 | U (x)†, (2.8)

2 This is just a working assumption. More general situations are discussed in Sect. 5.
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where δ(M ) denotes a delta function distribution with its support on M . The original information on
the choice of matrices � in Eq. (2.1) is transferred to two kinds of information, δ(M ) and P(x).

Note that this procedure is completely point-wise, and in general the unitary operator U (x) is
not globally defined as a smooth function on the whole R

3. For such cases, we may apply the
procedure by considering it as patch-wise. That is, choose an open covering {UI } of R

3, such that
the corresponding set of unitary operators {UI (x)} are defined smoothly on each UI . For a point
in the overlap UI ∩ UJ , there are two diagonalizations but they give the same defect because the
eigenfunction t0(x) is gauge-independent. Then, the region M is also given patch-wise by the union
M = ∪I MI . Our examples below are of the type (2.8) with M = R

2 and M = S2. In the latter case,
patch-wise condensation is needed. In these cases, a defect after the condensation is interpreted as a
D2-brane on M . What kind of M appears depends of course on the choice of the matrices �.

In summary, the tachyon condensation just picks up the zeros of the eigenfunction and as a result a
defect remains on a region M . This is technically the same as the coherent state method mentioned in
the introduction. In fact, the tachyon profile T (2.1) is exactly the same as the Dirac-like operator in
the literature [12,13,16,19] and T 2 corresponds to the Hamiltonian in Refs. [17,18]. Our claim in this
paper is that the tachyon condensation gives a new physical interpretation of this prescription, based
on the dynamics of the non-BPS D-branes. Although we are working with static configurations,
the condensation is essentially a dynamical process and the zero modes survive as a result of the
dynamics. This is in contrast with the previously proposed interpretations in Refs. [12,17,19] of the
coherent state method, which are based on statics.

2.2.2. Gauge flux production
A tachyon potential of the form (2.7) or (2.8) induces a U (1)-flux. We here briefly describe the
mechanism of this effect. For more details we refer the reader to Ref. [26].

On the Chan–Paton bundle, the tachyon potential (2.7) plays the role of a projection operator P(x),
which picks up a subspace U (x) | 0 〉 at each fiber. This defines a projective module PAN , which is
identified as the space of sections of a line bundle on R

3. Since U (x) is a unitary operator, U (x) | a 〉
forms an orthonormal basis at each fiber. We may then write a generic element of the free module
AN in this new basis as

|ψ(x) 〉 =
∑

a

ψa(x)U (x) | a 〉. (2.9)

An element of the projective module PAN is then given by

P(x) |ψ(x) 〉 = ψ0(x)U (x) | 0 〉. (2.10)

Since P(x) depends on x, the exterior derivative d does not preserve the module PAN in general.
This leads to the notion of connections. A natural connection on PAN , called the Grassmannian
connection, is defined by ∇ = P ◦ d, which acts as

Pd(P |ψ 〉) = Pd(ψ0U | 0 〉)
= P(dψ0U | 0 〉 + ψ0dU | 0 〉)
= dψ0U | 0 〉 + ψ0U | 0 〉 〈 0 | U †dU | 0 〉
= (

dψ0 + iAψ0)U | 0 〉, (2.11)
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where

iA(x) = 〈 0 | U (x)†dU (x) | 0 〉. (2.12)

In components, we obtain ψ0 → dψ0 + iAψ0 as the covariant exterior derivative on the line bundle
with a U (1) gauge potential A. In the case that the tachyon potential has the form (2.8), this gauge
field is also confined to the region M ⊂ R

3 because of the delta function distribution. In this case,
Eq. (2.12) has components only along M (for the proof, see Ref. [26]). If U (x) is not globally defined
and there are two different diagonalizations {UI (x)} at a point, then two gauge potentials of the form
(2.12) are related by the U (1) transition function.

This gauge potential should possess a non-trivial U (1)-flux

iF(x) = idA(x) = 〈 0 | dU (x)†dU (x) | 0 〉 (2.13)

in our setting. Note that the D0-brane charge k for the original k D0-brane system described by �
should be maintained as a magnetic flux of charge k in the D2-brane on M . We will see this explicitly
in the next section.

Note that the induced gauge potential A in Eq. (2.12) can also be seen as a Berry connection, if we
regard the base space R

3 as a parameter space of the single Chan–Paton space C
N . This viewpoint

appears in Refs. [24,25] in the context of tachyon condensation, and in Ref. [17] in the coherent state
method.

3. Examples for NC D2-branes

The k D0-brane solution with fluctuation is given by Eq. (2.1):

T (x) = uσ · (x −�) = u

(
x3 −�3 z̄ − �̄

z −� −x3 +�3

)
, (3.1)

where z = x1 + ix2 and� = �1 + i�2. Note that xi should be understood as xi ⊗ 1k more precisely.
�i (i = 1, 2, 3) are transverse scalar fields on k D0-branes and are k × k Hermitian matrices. In this
section, we consider examples in which matrices�i represent NC D2-branes, on a Moyal plane and
a fuzzy sphere. The shapes of these branes are commutative R

2 and S2, respectively.

3.1. Moyal plane

An NC D2-brane on the Moyal plane can be made out of k D0-branes, if the scalar field has the
profile

�1 = x̂1, �2 = x̂2, �3 = 0, (3.2)

where x̂1 and x̂2 are coordinates on a Moyal plane satisfying [x̂1, x̂2] = iθ . By defining the
creation/annihilation operators by

â = 1√
2θ
(x̂1 + ix̂2), â† = 1√

2θ
(x̂1 − ix̂2), (3.3)

the scalar fields (3.2) are rewritten in complex notation as

� = �1 + i�2 = √
2θ â, �3 = 0. (3.4)
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In order to realize them, it is necessary to take k → ∞ and replace matrices�i with operators acting
on the Hilbert space �2(N).

By inserting Eq. (3.2) into Eq. (3.1), the tachyon profile becomes

T (x) = uσ · (x −�) = u

(
x3 z̄ − √

2θ â†

z − √
2θ â −x3

)
. (3.5)

It acts on the Chan–Paton bundle with typical fiber to be the Hilbert space H = �2(N) ⊗ C
2. Let

{| n, ε 〉 |n = 0, 1, 2, . . . , ε = ±} be its ONB, where n and ε denote the eigenstate for the number
operator N̂ = â†â and the eigenvalues of the Pauli matrix σ3, respectively. That is, two component
vectors

| n, + 〉 =
(

| n 〉
0

)
, | n, − 〉 =

(
0

| n 〉

)
(3.6)

give the basis of H, where | n 〉 is the ONB of �2(N).

3.1.1. Condensation
We will now study the tachyon condensation of this profile (3.5). To this end, we use the displacement
operator for α ∈ C,

D(α) = eαâ†−ᾱâ = e−|α|2/2eαâ†
e−ᾱâ, (3.7)

which is a unitary operator and defines a coherent state |α 〉 = D(α) | 0 〉 [33]. The basic properties
are

D(α)âD(α)† = â − α, D(α)â†D(α)† = â† − ᾱ. (3.8)

By using these properties, the z-dependence in Eq. (3.5) is extracted as

T (x) = uU (z)

(
x3 −√

2θ â†

−√
2θ â −x3

)
U †(z), (3.9)

where the unitary operator U (z) is given by

U (z) =
(

D(α) 0
0 D(α)

)
, α = z√

2θ
. (3.10)

Under the tachyon condensation u → ∞, the surviving mode under the condensation is zero
eigenstates of T 2(x):

T 2(x) = u2U (z)

(
(x3)2 + 2θN̂ 0

0 (x3)2 + 2θ(N̂ + 1)

)
U (z)†. (3.11)

It exists only for x3 = 0. Since N̂ has the spectrum {n = 0, 1, 2, . . .}, T 2(x) has a zero mode of the
form

U (z) | 0, + 〉 =
(

D(α) | 0 〉
0

)
(3.12)
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Fig. 1. The large plane represents the base space M = R
2. After tachyon condensation, at each point on the

base space, we have D(α) | 0 〉 as the fiber of the line bundle on M . The wave packets of D(α) | 0 〉, which have
area 2πθ , are schematically drawn as colored blobs on the smaller planes.

at each point with arbitrary z = x1 + ix2 and x3 = 0. The tachyon potential reduces to the projection
operator onto this zero mode:

e−T 2 u→∞−−−→ u√
π
δ(x3)P(z), P(z) = U (z)

(
| 0 〉 〈 0 | 0

0 0

)
U (z)†. (3.13)

Here we have used the fact e−u2(x3)2 → u√
π
δ(x3) in the limit u → ∞.

From the delta function, we see that the remnant of this condensation is the real 2D surface
M = R

2 = C, which is considered as a spatial worldvolume of a D2-brane. We emphasize that the
obtained worldvolume parameterized by z and z̄ is commutative, although we start with a Moyal
plane configuration. On the other hand, the projection operator P(z) of the Chan–Paton bundle picks
up a coherent state D(α) | 0 〉 at each point z on M . Because it is 1D subspace at each fiber, the
Chan–Paton bundle reduces to a line bundle on M . This means a single D2-brane with the gauge
group U (1). Moreover, because the fiber D(α) | 0 〉 smoothly depends on the base space (recall Eq.
(3.10)), this line bundle is non-trivial. This information is encoded in the unitary operator U (z), and
we see a further consequence on the gauge flux in the following.

It is worth emphasizing that this result is completely different from the perturbative picture of
multiple D0-branes, where a D0-brane is sitting at the origin but fluctuates around the origin in the
“directions” of the non-commuting scalar fields�, i.e., a single Moyal plane. In our picture, matrices
� originally give a family of Moyal planes on R

3 as a Chan–Paton bundle of the non-BPS D3-branes,
which, however, reduces to a line bundle on M = R

2 by the tachyon condensation. A schematic
picture is given in Fig. 1.

3.1.2. Eigenstates
For completeness, we here diagonalize Eq. (3.5). We give the solution for the eigenvalue problem

T (x)
∣∣ψn,ε(x)

〉 = tn,ε(x)
∣∣ψn,ε(x)

〉
. (3.14)
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Note that states of the form D(α) | n, ε 〉 give an ONB, since the displacement operator is a unitary
operator. Acting T on these states, it is easy to recognize that D(α) | 0, + 〉 is already an eigenstate
TD(α) | 0, + 〉 = ux3D(α) | 0, + 〉. Thus we write it as

∣∣ψ0,+
〉 = D(α) | 0, + 〉 with t0,+(x) = ux3.

Next, for a fixed n (n ≥ 1), two states D(α) | n, + 〉 and D(α) | n − 1, + 〉 form a doublet under T ,
since

T (x)D(α) | n, + 〉 = uD(α)
(

x3 | n, + 〉 − √
2θn | n − 1, − 〉

)
,

T (x)D(α) | n − 1, − 〉 = uD(α)
(
−x3 | n − 1, − 〉 − √

2θn | n, + 〉
)

. (3.15)

On this doublet, T is effectively a matrix for each n,

T (n) =
(

x3 −√
2θn

−√
2θn −x3

)
= x3σ3 − √

2θnσ1, (3.16)

which is easily diagonalized by the unitary matrix

W (n) = 1√
2|T (n)|(|T (n)| + x3)

(
|T (n)| + x3

√
2θn

−√
2θn |T (n)| + x3

)
, (3.17)

where |T (n)| = √
(x3)2 + 2θn. The eigenvalues are tn,ε(x) = uε|T (n)| and the corresponding

eigenstates are ∣∣ψn,+
〉 = W (n)

++D(α) | n, + 〉 + W (n)
+−D(α) | n − 1, − 〉,∣∣ψn,−

〉 = W (n)
−+D(α) | n, + 〉 + W (n)

−−D(α) | n − 1, − 〉. (3.18)

We can express all the eigenstates as
∣∣ψn,ε

〉 = WD(α) | n, ε 〉, by defining W as 1 on | 0, + 〉 and W (n)

on the doublet at n as above. These states are orthonormal
〈
ψn,ε |ψn′,ε′

〉 = δnn′δεε′ , since W †W = 1.
In summary, the set of eigenstates consists of a ground state (singlet)

∣∣ψ0,+
〉 = D(α) | 0, + 〉

with its eigenvalue t0,+(x) = ux3, and the family of doublets
∣∣ψn,ε

〉
(n ≥ 1) with eigenvalues

tn,ε(x) = uε
√
(x3)2 + 2θn. Under the tachyon condensation, all the doublets are annihilated, because

tn,ε(x) 	= 0 for all x, while the singlet survives on the plane x3 = 0 as states in Eq. (3.12). Note that
the mixing between states | n 〉 and | ± 〉 is inevitable. This structure cannot be seen by the part | n 〉
only (i.e., Chan–Paton space for D0-branes).

3.1.3. Gauge flux
The tachyon potential (3.13) defines the projective module or equivalently a complex line bundle
over M = R

2. The corresponding U (1) gauge connection is given by the Grassmannian connection
according to Eq. (2.12). In the present case, the U (1) gauge field on M = R

2 is given by

iA(z, z̄) = 〈 0, + | U †(z)dU (z) | 0, + 〉 = 〈 0 | D†(α)dD(α) | 0 〉. (3.19)

After some calculations, we find

A = − i

4θ
(z̄dz − zdz̄) = 1

2θ
(x1dx2 − x2dx1) (3.20)

(see Appendix A.1 for the derivation). The corresponding field strength on M is given by

F = dA = i

2θ
dz ∧ dz̄ = 1

θ
dx1 ∧ dx2. (3.21)

10/35

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article-abstract/2018/6/063B04/5041969 by U

niversity of Library and Inform
ation Science user on 29 August 2019



PTEP 2018, 063B04 T. Asakawa et al.

A uniform magnetic flux on a D2-brane is interpreted as the D0-brane charge density, and its presence
indicates that the resulting system is a bound state of D2 and D0-branes, where D0-branes are
dissolved into a D2-brane. In fact, in the Chern–Simons term for a D2-brane, the coupling to the RR
1-form is

1

2π

∫
R2

F = Vol(R2)

2πθ
. (3.22)

This says that there is a dissolved D0-brane per unit volume 2πθ . Therefore, the original information
on a Moyal plane is converted to a commutative plane with a uniform magnetic flux.

This equivalence between commutative and non-commutative descriptions of the D2–D0 bound
states is first shown in Refs. [34,35], in terms of boundary states. We here reproduce the same result
within the effective theory on non-BPS D3-branes, but the equivalence is realized in a more direct
way. That is, once the D2–D0 bound states are represented in the tachyon profile, the equivalence is
realized by the unitary transformation that diagonalizes the tachyon profile.

3.2. Fuzzy sphere

An NC D2-brane on a fuzzy sphere can be made out of k D0-branes, if the scalar field has the profile

�i = ρLi, [Li, Lj] = iεij
kLk , (3.23)

where ρ is a real parameter and Li (i = 1, 2, 3) are su(2) generators in the spin-� irreducible
representation [36]. Thus it is possible for k ≥ 2. We denote corresponding k = 2�+1 states as | m 〉
(m = −�, −� + 1, . . . , � − 1, �). Because �2 = ρ2L2 = ρ2�(� + 1)1k = ρ2 k2−1

4 1k , a naive guess

of the radius of this fuzzy sphere is ρ
√

k2−1
4 . We will compare it with the radius of S2 obtained from

the tachyon condensation below.
By inserting Eq. (3.23) into Eq. (3.1), the tachyon profile becomes

T (x) = uσ · (x − ρL), (3.24)

and its square leads to

T 2(x) = u2 (|x|2 + ρ2L2 − 2ρ(x · L)− ρ2(σ · L)
)
. (3.25)

Here, the ONB of the Chan–Paton Hilbert space H = C
k ⊗ C

2 is given by {| m, ε 〉 |m =
−�, . . . , �, ε = ±}.

3.2.1. Condensation
Here we study the tachyon condensation by diagonalizing T in Eq. (3.24). To this end, we examine
the two terms in Eq. (3.24) separately in detail.

a) The term σ · x in Eq. (3.24) is independent of the choice of �, and it can be diagonalized only
patch-wise [26].
First at the origin x = 0 in R

3, this term does not contribute to T and is already diagonal. We
then divide R

3 except x = 0 into two regions:

UN = {x ∈ R
3 | |x| + x3 	= 0} = {(r, θ ,ϕ) ∈ R

3 | r 	= 0, θ 	= π},
US = {x ∈ R

3 | |x| − x3 	= 0} = {(r, θ ,ϕ) ∈ R
3 | r 	= 0, θ 	= 0}, (3.26)
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where x = (x1, x2, x3) and in the second expression the standard polar coordinates are used. Thus,
UN is R

3 except for the negative x3-axis, while US is R
3 except for the positive x3-axis. In each

region UN and US , σ · x is diagonalized as

R†
N/S(�)(σ · x)RN/S(�) = |x|σ3 (3.27)

by the corresponding unitary matrix-valued function on R
3:

RN (�) = 1√
2|x|(|x| + x3)

(
|x| + x3 −z̄

z |x| + x3

)
,

RS(�) = 1√
2|x|(|x| − x3)

(
z̄ −|x| + x3

|x| − x3 z

)
. (3.28)

They depend only on the angular coordinates � = (θ ,ϕ) and are written in polar coordinates as

RN (�) =
(

cos θ2 − sin θ
2 e−iϕ

sin θ
2 eiϕ cos θ2

)
, RS(�) =

(
cos θ2 e−iϕ − sin θ

2
sin θ

2 cos θ2 eiϕ

)
. (3.29)

The expression RN in Eq. (3.29) is familiar in quantum mechanics with the diagonalization of a
spin with respect to the direction x̂ = x

|x| , if Si = σi
2 is considered as the spin-1

2 representation.

But note that the diagonalization by RN is ill defined at the south pole θ = π .3 In order to cover
all directions, we need another open set US .

b) The term σ · L in Eq. (3.24) or, more properly, the term S · L, is similar to the spin–orbit
interaction in quantum mechanics. Thus, under the total spin J = L + S, the tensor product
representation [�]⊗ [1

2 ] decomposes into two irreducible representations [�+ 1
2 ]⊕ [�− 1

2 ]. Since
J 2 = L2 + S2 + 2(S · L), the operator σ · L has the eigenvalue � in all states in [�+ 1

2 ], and the
eigenvalue −(�+ 1) in all states in [�− 1

2 ]. This shows that two kinds of states should be mixed
in order to diagonalize σ · L. The ONB (2�+ 2 states) of [�+ 1

2 ] is given by eigenstates of J3 as∣∣m + 1
2

〉
�+ 1

2
= αm | m, + 〉 + βm | m + 1, − 〉, (3.30)

where m = −�− 1, −�, . . . , �, and

αm =
√
�+ m + 1

2�+ 1
, βm =

√
�− m

2�+ 1
. (3.31)

Note that two particular states,∣∣ �+ 1
2

〉
�+ 1

2
= | �, + 〉 ,

∣∣−�− 1
2

〉
�+ 1

2
= | −�, − 〉, (3.32)

exist in this representation. On the other hand, the ONB (2� states) of [�− 1
2 ] is∣∣m + 1

2

〉
�− 1

2
= βm | m, + 〉 − αm | m + 1, − 〉, (3.33)

where m = −�, −�+ 1, . . . , �− 1.

In order to diagonalize T in Eq. (3.24), we have to consider both aspects of a) and b) simultaneously;
i.e., we have to consider the total spin b) in a patch-wise way a).

3 It is obvious in Eq. (3.28) if |x| + x3 = 0, and in Eq. (3.29) it is ill defined because ϕ is undefined at
θ = π .

12/35

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article-abstract/2018/6/063B04/5041969 by U

niversity of Library and Inform
ation Science user on 29 August 2019



PTEP 2018, 063B04 T. Asakawa et al.

3.2.2. Condensation in UN

First, we consider points in the open set UN . As stated, RN in a) appears in the spin along the axis
through x. In general, for an angular momentum operator J , the term x ·J determines the new “north
pole” direction through x. Then eigenvalues of J ′

3 = x̂ · J can also be used to label the ONB. Here
Ji and J ′

3 are related by an SO(3) rotation�i
j that sends the unit vector through the point� = (θ ,ϕ)

on the unit sphere to that pointing to the north pole x = (0, 0, 1). This rotation is generated by the
unitary operator,

RN (�) = e−iϕJ3e−iθJ2eiϕJ3

= e− 1
2 θ(e

−iϕJ+−eiϕJ−), (3.34)

which satisfies

R†
N (�)JiRN (�) = �

j
iJj, (3.35)

with

� =
⎛
⎜⎝cosϕ − sin ϕ 0

sin ϕ cosϕ 0
0 0 1

⎞
⎟⎠
⎛
⎜⎝ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞
⎟⎠
⎛
⎜⎝ cosϕ sin ϕ 0

− sin ϕ cosϕ 0
0 0 1

⎞
⎟⎠ (3.36)

(see Appendix A.2 for a proof). The previous RN in Eq. (3.29) is the spin-1/2 case of Eq. (3.34).
This implies the spin-j analogue of Eq. (3.27):

R†
N (�)(x · J )RN (�) = |x|J3. (3.37)

In particular, the transformed state RN (�) | j 〉 of the highest weight state | j 〉 is called the Bloch
(spin) coherent state [33].

In our case, consider Eq. (3.34) for the total spin J = L + S. We can then split it as RN (�) =
R(L)N (�)R(S)N (�), with Eq. (3.34) for S and L, respectively. For the tachyon profile (3.24), it is obvious
that this operator still diagonalizes x ·σ = 2x ·S. On the other hand, it keeps σ ·L = 2S ·L invariant,
since it is an SO(3) scalar operator. Therefore, the tachyon profile is written as

T (x) = uRN (�)(|x|σ3 − ρσ · L)R†
N (�). (3.38)

Note that the�=(θ ,ϕ)-dependence is absorbed into RN (�). It is then reasonable to use the orthonor-
mal basis of the form RN (�) | m, ε 〉 to find the eigenstates of T .According to b), the second term σ ·L
in Eq. (3.38) is diagonalized by the states of the form RN (�)

∣∣m + 1
2

〉
�± 1

2
, but we should also take

into account the first term. It turns out that two particular states RN (�) | �, + 〉 and RN (�) | −�, − 〉
are already the eigenstates of T . By using

σ · L = σ3L3 + 1
2(σ+L− + σ−L+), (3.39)

we obtain

TRN (�) | �, + 〉 = uRN (�)
{
(|x| − ρL3)σ3 − ρ

2 (σ+L− + σ−L+)
} | �, + 〉

= u(|x| − ρ�)RN (�) | �, + 〉, (3.40)
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which is zero at a point in UN with |x| = ρ�. Thus, a sphere with radius ρ� survives under the
tachyon condensation. Similarly, we have

TRN (�) | −�, − 〉 = uRN (�)
{
(|x| − ρL3)σ3 − ρ

2 (σ+L− + σ−L+)
} | −�, − 〉

= −u(|x| + ρ�)RN (�) | −�, − 〉, (3.41)

which is always negative (no zero locus); thus, this state is completely annihilated under the tachyon
condensation.

For the remaining eigenstates, consider a 2D subspace of the form

RN (�) {am | m, + 〉 + bm | m + 1, − 〉} ↔
(

am

bm

)
(3.42)

for a fixed m with m = −�, −�+ 1, . . . , �− 1 and with arbitrary coefficients am(x) and bm(x). The
point is that T (x) is closed within this subspace:

TRN (�) | m, + 〉 = uRN (�)
{
(|x| − ρL3)σ3 − ρ

2 (σ+L− + σ−L+)
} | m, + 〉

= uRN (�)
{
(|x| − ρm) | m, + 〉 − ρ

√
(�− m)(�+ m + 1) | m + 1, − 〉

}
,

TRN (�) | m + 1, − 〉 = uRN (�)
{
(|x| − ρL3)σ3 − ρ

2 (σ+L− + σ−L+)
} | m + 1, − 〉

= uRN (�)
{
−(|x|−ρ(m + 1)) | m + 1, − 〉 −ρ√(�+m+1)(�−m) | m, + 〉

}
.

(3.43)

This implies T (x) is effectively represented as a 2 × 2 matrix-valued function T (m)(|x|) for each m:

T (m)
(

am

bm

)
= u

(
|x| − ρm −ρ√

(�− m)(�+ m + 1)
−ρ√

(�− m)(�+ m + 1) −|x| + ρ(m + 1)

)(
am

bm

)
. (3.44)

This matrix is diagonalized in a standard way (seeAppendixA.3 for more details) and the eigenvalues
at each point (i.e., functions) are found to be

λ
(m)
± (|x|) = u

[
ρ
2 ± ∣∣M (m)

∣∣] , (3.45)

with

∣∣∣M (m)
∣∣∣ ≡

√
ρ2(�− m)(�+ m + 1)

(|x| − ρ(m + 1
2)
)2

. (3.46)

For all m = −�, −� + 1, . . . , � − 1, |M (m)|2 satisfies |M (m)|2 ≥ 2ρ2�, and thus |M (m)| > ρ/2 for
all spin � ≥ 1/2. This implies that for any � and m, two eigenvalues λ(m)± are always non-zero at any
point x ∈ UN . Therefore, the tachyon condensation annihilates the corresponding eigenstates.

In summary, the eigenvalues of T (x) and the corresponding eigenstates are given by

|x| − ρ� : RN (�) | �, + 〉,
−(|x| + ρ�) : RN (�) | −�, − 〉,
λ
(m)
+ (|x|) : RN (�)

{
W (m)

11 | m, + 〉 + W (m)
21 | m + 1, − 〉

}
,

λ
(m)
− (|x|) : RN (�)

{
W (m)

12 | m, + 〉 + W (m)
22 | m + 1, − 〉

}
, (3.47)
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where the explicit form of the matrix W (m)(|x|) is given in Appendix A.3. The first state becomes
a zero mode at a point x ∈ UN with the radius |x| = ρ�. The other states always vanish under the
tachyon condensation.

3.2.3. Condensation in US

In US , the eigenvalues of the tachyon profile are the same as in Eq. (3.47) in UN , but another unitary
operator RS is needed to diagonalize T and a different state survives under the tachyon condensation.
To see this, consider a point on the negative x3-axis, x = (0, 0, −|x|). Because of σ · x = −|x|σ3

and by using Eq. (3.39), we find

T (x) | −�, − 〉 = u (|x| − ρ�) | −�, − 〉,
T (x) | �, + 〉 = u (−|x| − ρ�) | �, + 〉. (3.48)

This shows that the surviving state is the lowest weight state | −�, − 〉 around the south pole, if
|x| = ρ�. This is extended to any point x = (|x|, θ ,ϕ) ∈ US (θ 	= 0) by sending it to the south pole
generated by the unitary operator:

R̃S(�) = e−iϕJ3ei(π−θ)ϕJ2eiϕJ3

= e− 1
2 (π−θ)(e−iϕJ+−eiϕJ−). (3.49)

Then, the Bloch coherent state R̃S(�) | −�, − 〉 with respect to the south pole is shown to be an
eigenstate of T (x):

T (x)R̃S(�) | −�, − 〉 = uR̃S(�) (−|x|σ3 − ρσ · L) | −�, − 〉
= u (|x| − ρ�) R̃S(�) | −�, − 〉, (3.50)

which is the zero mode if |x| = ρ�. Finding the other eigenstates uses a similar procedure.
Although this treatment is sufficient when we are interested only in US , it should actually be

consistent with the result in UN in the overlapping region UNS = UN ∩ US . The remaining 1D fibers
of both constructions should be identified with each other; i.e., the difference should be at most a
U (1) phase. To this end, we insert an extra rotation � = e−iπJ2 on the state in US to diagonalize
T (x). For J = S, it is the Wigner time reversal operator,

�(S) = e−iπ σ2
2 = −iσ2 =

(
0 −1
1 0

)
, (3.51)

which flips | + 〉 and | − 〉. In general, due to the relations

�†J1,3� = −J1,3, �†J2� = J2, (3.52)

the state � | m, ε 〉 is the eigenstate with an alternating sign:

J3� | m, ε 〉 = −�J3 | m, ε 〉 = −(m + ε)� | m, ε 〉. (3.53)

By the same relations, we also have

�†(σ · L)� = σ · L,

�†(−|x|σ3)� = +|x|σ3. (3.54)
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We now define4

RS(�) = R̃S(�)�. (3.55)

Then the tachyon profile in US is written as

T (x) = uRS(�) (|x|σ3 − ρσ · L)R†
S(�). (3.56)

Since the term inside the brackets is the same as in UN , it clearly shows that the eigenvalues of T are
the same as UN as required, and the corresponding eigenstates are given by

|x| − ρ� : RS(�) | �, + 〉,
−(|x| + ρ�) : RS(�) | −�, − 〉,
λ
(m)
+ (|x|) : RS(�)

{
W (m)

11 | m, + 〉 + W (m)
21 | m + 1, − 〉

}
,

λ
(m)
− (|x|) : RS(�)

{
W (m)

12 | m, + 〉 + W (m)
22 | m + 1, − 〉

}
. (3.57)

The first state becomes a zero mode at any point x ∈ US with the radius |x| = ρ�. The other states
always vanish under the tachyon condensation.

3.2.4. Gluing in the overlap UNS

The zero modes in UN and US are now written respectively as RN (�) | �, + 〉 and RS(�) | �, + 〉. In the
overlapping region UNS , they are identified up to a U (1) gauge transformation (transition function,
more properly).

To see this, it is worth rewriting RS(�) in Eq. (3.55) as (valid for θ 	= 0,π )

RS(�) = R̃S(�)�

= e−iϕJ3ei(π−θ)J2eiϕJ3e−iπJ2

= (e−iϕJ3e−iθJ2eiϕJ3)e−2iϕJ3

= RN (�)e
−2iϕJ3 . (3.58)

By acting this on the state | m, ε 〉, it implies

RS(�) | m, ε 〉 = e−2iϕ(m+ ε
2 )RN (�) | m, ε 〉. (3.59)

This shows that two states RS(�) | m, ε 〉 and RN (�) | m, ε 〉 are related by a U (1) phase for fixed
(m, ε). Hence, the transition function is U (1)2k -valued:

R†
N (�)RS(�) = e−2iϕJ3 . (3.60)

In particular, we obtain

RS(�) | �, + 〉 = e−ikϕRN (�) | �, + 〉, (3.61)

since 2(�+ 1
2) = k . This is nothing but the U (1) transition function for the Wu–Yang k-monopole.

4 There is an constant phase ambiguity in defining �. It can be shown that the spin-1/2 part R(S)S coincides
with RS in Eq. (3.28) so that our choice of � is to be consistent with Ref. [26].
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3.2.5. Structure of the tachyon potential
Having found the eigenvalues of T (x), it is easy to write the tachyon potential in the spectral
decomposition. Then, it has the form (2.8) as

e−T 2 u→∞−−−→ u√
π
δ(|x| − ρ�)PN/S(�),

PN (�) = RN (�) | �, + 〉 〈 �, + | R†
N (�),

PS(�) = RS(�) | �, + 〉 〈 �, + | R†
S(�). (3.62)

Here we have used the fact e−u2(|x|−ρ�)2 → u√
π
δ(|x| − ρ�) in the limit u → ∞ on the radial delta

function [26].
Matrices � originally give a family of fuzzy spheres on R

3 as a Chan–Paton bundle of non-BPS
D3-branes. This potential controls the reduction of both the worldvolume and the Chan–Paton space.
The worldvolume R

3 of the non-BPS D3-branes reduces to the sphere M = S2 defined by |x| = ρ�,
which is considered as a spherical D2-brane. This sphere is commutative and embedded in R

3 (thus in
the spacetime as well). At each point on the sphere specified by� = (θ ,ϕ), the original Chan–Paton
space reduces to a 1D subspace RN (�) | �, + 〉 on UN or RS(�) | �, + 〉 on US , which are related by
a U (1) transition function on UNS . It is essentially the Bloch coherent state. A schematic picture
is given in Fig. 2. The projection operators PN (�) and PS(�) also define an induced U (1)-gauge
connection, as we will see.

It is interesting that the obtained radius ρ� of S2 is different from the expected “radius” of the
fuzzy sphere ρ

√
�(�+ 1). Our result should also be compared with the radius given by the charge

density formula [7]5. The radius can be any value at this stage, because of an arbitrary constant ρ. It
would be determined by the dynamics of the D2-brane, since ρ is regarded as a constant mode of a
transverse scalar field on the spherical D2-brane, as analyzed by [6,26].

3.2.6. Induced gauge connection
The tachyon potential (3.62) defines the projective module or equivalently a complex line bundle
over M = S2. The corresponding U (1) gauge connection (2.12) is given patch-wise; i.e., the gauge
potentials AN on UN and AS on US are given respectively by

iAN (�) = 〈 �, + | R†
N (�)dRN (�) | �, + 〉,

iAS(�) = 〈 �, + | R†
S(�)dRS(�) | �, + 〉. (3.63)

After some algebra, we obtain

AN (�) = 1
2k(1 − cos θ)dϕ,

AS(�) = −1
2k(1 + cos θ)dϕ, (3.64)

where k = 2�+ 1. On the overlap UNS , they are related by the U (1) transition function e−ikϕ:

AS = eikϕAN e−ikϕ − ieikϕde−ikϕ . (3.65)

5 The original charge density is supported on the family of spherical shells at finite k , but the author of Ref.
[7] argued that the commutator corrections improve the formula to give a single sphere with a physical radius
ρ
√
�(�+ 1). Our result supports this improvement but the radii do not coincide with each other.
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Fig. 2. The large sphere represents the base space M = S2, and the small spheres are a family of fuzzy spheres.
A fuzzy sphere at the north pole is divided by ring-shaped regions, which correspond to | m, ε 〉 and its top
corresponds to the zero mode | �, + 〉. If we move on the base space M to the point �, the fuzzy sphere is
divided by regions according to the spin along �, with its top being a coherent state RN (�) | �, + 〉.

The U (1) field strength is defined patch-wise by F |UN = dAN and F |US = dAS , but in fact it is
globally defined:

F = 1
2k sin θdθ ∧ dϕ. (3.66)

This configuration is nothing but the Wu–Yang k-monopole [37]. The RR-charge originally carried
by k D0-branes is maintained by this U (1)-flux on a spherical D2-brane, where D0-branes are
dissolved into a D2-brane. In fact, in the Chern–Simons term for a D2-brane, the coupling to the RR
1-form is

1

2π

∫
S2

F = k

4π

∫
S2

sin θdθ ∧ dϕ = k . (3.67)

This result is independent of ρ.
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4. Myers term and K-homology

We are considering the problem of mutually non-commuting matrix scalar fields� on multiple D0-
branes. The system of k D0-branes with matrix scalar fields� reduces by the tachyon condensation
to the region M in the (R3 part of) spacetime, equipped with a Chan–Paton bundle E over M with k-
magnetic flux. Thus, we call the region M , or a pair (M , E), the shape of the D0-branes. In our simple
example above, both M = R

2 and M = S2 are regarded as the worldvolume of a D2-brane and the
resulting system (M , E) is identified as a D2–D0 bound state, where k D0-branes are resolved into
the D2-brane. This is consistent with the fact that the Myers term produces D2-brane charge density.
However, it is not evident if the region M can always be identified as D-branes in more general scalar
fields �. In this section, we discuss the technical result in the previous section from conceptual
grounds, and propose a possible physical interpretation of the shape of multiple D0-branes6.

The point of our notion of the shape is that it is completely independent of the coordinate inter-
pretation for� and of large N . We only use the fact that the zero locus of the tachyon profile gives a
defect made out of D0-branes. The underlying belief is that all the D-brane systems are described as
solitons by the tachyon condensation and that K-theory classifies all of them [21,22,31]. Therefore,
it is natural to understand the meaning of the shape according to this belief, instead of the coordinate
interpretation. In the following, we elaborate on the structure of solitons and then propose that the
shape fits nicely with classification by K-homology, i.e., the Poincaré dual to K-theory. This says
that the shape is classified as a D-brane system. In particular, the Myers term can be incorporated in
K-homology.

4.1. Structure of the solitons

The originalABS construction (T (x) in Eq. (2.1) with� = 0) represents a (k-tuple of) codimension-3
solitons sitting at the origin. It winds the field space SU (2) once around S2 at the asymptotic infinity
|x| → ∞ in R

3. Let us first discuss to what extent the addition of the matrix scalar fields � on
D0-branes changes the structure of the soliton from the original ABS construction of D0-branes.

One may think that adding scalar fields � in Eq. (2.1) to the tachyon profile does not change this
asymptotic structure since it is just a continuous deformation of the ABS solution. This is true for
finite u and for finite k . However, as we will soon see below, the asymptotic behavior itself can be
changed by adding proper� with k = ∞. Furthermore, even if k is finite, it may affect the structure
of the soliton in the limit of u → ∞. Note that the scalar fields � change the tachyon profile T (x)
at each point x, not just at the origin.

To see this more explicitly, we first recall the Moyal case. After the change of basis as in Eq.
(3.9), only the zero eigenfunction t0,+(x) = ux3 contributes to the remaining defect. This zero
mode has the form of a codimension-1 kink along the x3-direction. The asymptotic behavior is
t0,+(x3 = ±∞) = ±∞, which is evidently different from the ABS construction before adding �.
The kink charge is shown to be related to the D2-brane charge 1

u Vol(R)

∫
dx3∂3t0,+(x) = 1. This

drastic change of the asymptotic region is due to the k → ∞ effect.
Next we move to the fuzzy S2 case. In this case, the asymptotic region is unchanged, but the structure

at the origin is deformed. After a change of basis, as seen, e.g., in Eq. (3.47), the zero eigenfunction
is t�,+(x) = u(|x| − ρ�). This satisfies the boundary conditions t�,+(|x| = 0) = −uρ� → −∞ and
t�,+(|x| = ∞) = ∞ that relate two different vacua. The limit u → ∞ is important in this situation;

6 The discussion in this section is mainly based on our answers to S.Terashima’s questions. We thank him
for this private communication.
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it behaves as a kink along the radial direction. This is the same behavior as the spherical D2-brane
studied in Ref. [26].

In both cases, since the structure of the soliton is changed, it is no longer a system made of only
D0-branes. The appearance of a kink after the deformation is a sign that the defect is actually a
D2–D0 bound state. For more general scalar fields �, there may appear defects with all possible
codimensions 0, 1, 2, 3. Of course, if we start not with a D3-brane but with non-BPS D9-branes,
all nine transverse scalar fields can also be considered as a deformation of codimension-9 ABS
construction.

4.2. More on the shape of D0-branes

Although we have considered only two examples, the Moyal plane and the fuzzy sphere, the analysis
itself can be applied for more general cases. In general, the shape M of D0-branes is just the zero
locus of the tachyon profile for given matrices �. Here an important fact is the tachyon field can
always be diagonalized for any �. Thus, the zero locus M is always determined uniquely.

When all k × k matrices� are diagonal, then the zero locus M consists of k different points in R
3.

This is still true for k = ∞. For example, let �2 = x̂1 and �2 = x̂2 with commutative [x̂1, x̂2] = 0
(i.e., θ = 0 in the Moyal case); the shape is then given by the point set M = R

2. We know that this
M does not mean a D2-brane (Neumann boundary state along R

2) but infinitely many D0-branes
aligned on R

2 (a family of Dirichlet boundary states). Thus, M itself does not see this difference.
On the other hand, in the Moyal case, we know that the shape M = R

2 is a D2-brane worldvolume
of a D2–D0 bound state, i.e., a smooth submanifold in R

3. This is seen by noticing that a point
(z, z̄) in M = R

2 and the origin is connected by the displacement operator D(α) of coherent states.
That is, the existence of differential structure is guaranteed by the unitary operator U (z, z̄). This is
also consistent with the fact that a coordinate operator x̂1 of the Moyal plane is simultaneously a
differential operator iθ∂2 = [x̂1, ·]. Thus, it is important to include the information on the connection
into the shape (M , E), in order to distinguish these cases.

If several zero modes appear, M consists of several pieces, each of which may have a different
dimension in general. In a very particular case, if there are n zero modes that are degenerate on
the same region M , then E becomes a U (n) bundle over M . This is in contrast to the conventional
description of D-branes. The difference is apparent when considering fluctuations �′ = � + δ�

further. In the conventional description, δ� is identified as a matrix scalar field on M but, in our
treatment, we seek a zero locus again, and obtain another shape (M ′, E′). In this sense, M is always
commutative and no matrix scalar fields appear on M .

Before going to K-homology, we make a brief comment on the boundary state description of
D-branes. A system of coincident D-branes is most rigorously defined by a boundary state equipped
with a boundary interaction representing fields on D-branes. In this description, D-branes have a
definite position defined by a Dirichlet boundary condition, and matrix scalar fields are treated as
boundary perturbations. A bound state of n D2-branes and k D0-branes can be described by either
(1) the D2-brane picture: a D2-brane boundary state with a U (n) gauge field A carrying k D0-brane
charge, or (2) the D0-brane picture: a D0-brane boundary state with U (k) scalar fields� carrying n
D2-brane charge. Schematically, the equivalence of the two pictures is given by

e−Sb[A] | D2 〉 = e−Sb[�] | D0 〉. (4.1)

In the Moyal case, the equivalence of the two pictures is shown in Refs. [34,35]. Both pictures
represent the same mixed boundary condition from different viewpoints: Picture (1) represents it as
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a deformation of the Neumann boundary state by a boundary interaction (constant U (1) gauge flux);
(2) represents it as that of the Dirichlet boundary state. In terms of tachyon condensation, the system
can also be realized by the boundary state of non-BPS D3-branes

e−Sb[T ] | D3 〉 (4.2)

with a tachyon field T . The advantage of this realization is that both pictures are two different choices
of basis for the tachyon profile and thus they are manifestly unitarily equivalent. The D0-brane picture
(2) corresponds to the basis that diagonalizes the ABS construction, and the D2-brane picture (1)
corresponds to the basis that diagonalizes the full tachyon profile including �.7 We stress here,
however, that the concept of the shape is independent of the choice of pictures (1) and (2). Although
the shape in the Moyal case happens to be well described in picture (1), this is just by chance. For
generic�, although the boundary state (4.2) can be still defined and we can read off the shape and/or
the boundary condition from this expression, there is no guarantee that the obtained shape is always
well described in a specific picture like (1).

4.3. K-homology

The shape of D0-branes described so far fits nicely with the classification of D-branes by the K-
homology group, as noted. In particular, we emphasize that the Myers term can be incorporated in
this classification.

Let us recall the definition of the K-homology [38]. A K-cycle for a topological space X is a triple
(M , E,φ), where M is a compact spinc manifold without boundary, E → M is a complex vector
bundle, and φ : M → X is a continuous map. The (topological or geometric) K-homology group
is defined by K∗(X ) = {(M , E,φ)}/ ∼, where the equivalence relation is generated by (a) bordism,
(b) direct sum, and (c) vector bundle modification defined by the relation that will be shown in Eq.
(4.3). Here ∗ = 0 (1) corresponds to M with even (odd) dimension, respectively.

Since the K-homology group is a Poincaré dual to the K-theory group, it is natural to conjecture
that the K-homology classifies D-branes. This was first described in concrete form in Ref. [39] (see
also previous discussions [40,41] and subsequent developments [42–44]). A K-cycle is conjectured
to be a D-brane itself, where M is a worldvolume of a BPS Dp-brane8, E is a Chan–Paton bundle
on M , and φ is an embedding of M to the spacetime X . The equivalence relations have also been
interpreted as physical equivalences: (a) is a continuous deformation of a D-brane, (b) is a gauge
symmetry enhancement of coincident D-branes, and (c) is a dielectric effect [39,42,43]. In the
following, however, we discuss the idea that we should modify the physical interpretation of the
equivalence relation (c).

We start by pointing out that there are several subtleties in the above interpretation. First, since φ is
not necessarily an embedding but just a continuous map, there can be such an M whose dimension is
larger than that of X in principle. Therefore, precisely speaking, the physical interpretation described
above can be applied only when we implicitly regard φ as an embedding [45]. Next, there is no room
for matrix-valued scalar fields in K-cycles, since only a single scalar field (U (1) part) is implicitly
assumed when we consider φ to be the embedding. As a result, we cannot incorporate the Myers
term in this interpretation in particular. The Myers term Trei�i�C in the RR-coupling (Chern–Simons
term) for D0-branes is originally obtained by applying T-duality to the RR-coupling for D9-branes,

7 They are analogous to the interaction and the Heisenberg picture, respectively, in quantum mechanics.
8 More precisely, each connected component of M corresponds to a worldvolume.
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which includes the Chern character C ∧ TreF . In the latter case, a non-trivial gauge flux F 	= 0
is topologically distinct from F = 0, indicating RR-coupling to higher-rank RR-potentials, known
as branes within branes [46]. This information is already incorporated as the Chern character for
a K-cycle [38] as shown in Ref. [39]. Similarly, since non-commuting scalar fields � produce an
RR-coupling to higher-rank RR-potentials through the Myers term, T-duality requires that such
a configuration is distinguished from a commuting one. If the K-homology classifies all possible
D-branes, it should be able to take into account the matrix scalar fields.

Now, let us turn to the situation in this paper. In the coherent state method, the shape of k D0-branes
is a region M in the spatial part X = R

3 of the spacetime, which can naturally be identified with
φ(M ) in the K-cycle, with the canonical inclusion map φ. There is also a U (1) Chan–Paton bundle
with k-magnetic charge. As stated, if the zero loci are degenerate, it is extended to a non-Abelian
Chan–Paton bundle φ∗E. Therefore, our shape naturally corresponds to a K-cycle (M , E,φ), even if
the matrix scalar fields� are non-commuting. In particular, the Myers term is implicitly incorporated
in this new interpretation.

To see the effect of the Myers term more explicitly, we recall the equivalence (c), the vector bundle
modification [38]:

(M , E,φ) ∼ (M̂ , Ĥ ⊗ π∗E,φ ◦ π). (4.3)

The r.h.s. is obtained from the l.h.s. through the clutching construction: π : M̂ → M is a sphere
bundle over M whose fiber is an even-dimensional sphere S2n. Ĥ → M̂ is a complex vector bundle
over M̂ whose fiber is a Bott generator on S2n. Because of the appearance of the sphere, M̂ has been
interpreted as the worldvolume of a spherical D-brane [39,42,43]. However, as seen by following Ref.
[38] carefully, we should rather interpret M̂ as a worldvolume of the DD̄-system and Ĥ as an ABS
construction representing M as a codimension-2n soliton in R

2n (whose one-point compactification
is S2n above). In other words, the equivalence (4.3) should be just a physical equivalence between a
D-brane and the same D-brane constructed by the tachyon condensation. This is consistent with the
fact that the image of both maps φ(M ) = φ ◦ π(M̂ ) represents the same region in X and the fiber
S2n is not seen in X .

In our situation, the K-cycle (M0, E0,φ0) on the l.h.s. of Eq. (4.3) corresponds to k D0-branes
without scalar fields;� = 0. That is, M0 is a point, φ0(M0) = 0 in X = R

3 and E0 = C
k is a Chan–

Paton space. It is equivalent to the r.h.s. of Eq. (4.3), where M̂0 = S4 (the one-point compactification
of R

4) and Ĥ0 is an ABS construction of the codimension-4 soliton on the D4D̄4-system. Note that
our non-BPS D3-branes are considered as part of this system given by a kink solution along the
x4-direction. Thus, Ĥ0 here is essentially given by Eq. (2.1) with � = 0.

Let us turn to the case of adding matrix scalar fields �. Under the present interpretation, the
deformation of (M0, E0,φ0) by� (with a non-zero Myers term) is naturally realized as the deforma-
tion of the r.h.s. with the tachyon profile (2.1) with �. The obtained K-cycle can be non-equivalent
to the point-like K-cycle from the above argument. In that case, it should rather be equivalent to
another K-cycle that is given by the shape of D0-branes with �. In our examples, we obtain a triple
(M1, E1,φ1), where M1 = S2 (in the Moyal case, one-point compactification of R

2), E1 is a U (1)
Chan–Paton bundle with magnetic flux k , and φ1 : S2 → X . Although the non-equivalence between
(M0, E0,φ0) and (M1, E1,φ1) should be proven mathematically, it should be consistent with the
structure of solitons and the RR-coupling described above.
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In summary, we propose that the shape of D0-branes with scalar fields corresponds to a K-cycle.
We claim that the Myers term (non-commuting scalar fields) is incorporated as a non-equivalent
deformation of K-cycles rather than the vector bundle modification.

5. Conclusion and discussion

We considered D-brane systems with non-commuting scalar fields � via tachyon condensation
and gave a novel prescription to read off the shape of the non-commutative D-brane system as a
commutative region in spacetime, by rearranging the idea of the method proposed in Refs. [12,17,19]
(the coherent state method) as tachyon condensation. In this interpretation, the shape of the D-brane
is defined as a set of zeros of the tachyon field together with a gauge flux on it. We also argued that
the shapes fit well with the classification of D-branes by the K-homology group. This shows that the
D-branes made through the Myers term are incorporated in this classification.

As typical examples, we closely investigated the Moyal plane and the fuzzy sphere but general-
ization to other systems is straightforward. The point is that we can always diagonalize a tachyon
profile for any matrix-valued scalar fields � that do not need to satisfy the equation of motion of
the effective theory on D0-branes and/or the superstring theory. Although we focus in this paper
on the universality of our method, by which we can define the shape for arbitrary configuration of
�, it would be an interesting problem to characterize the shapes that are also classical solutions of
superstring theory.

Since we focused mainly on the topological aspects of the shape M corresponding to the K-
homology, there are several issues that we did not touch upon. In this section, we briefly discuss two
other aspects of the shape.

5.1. Metric on the shape

From the point of view of the coherent state method, it is natural to define a metric of the shape only
from the matrices � [17,18]. In the present context, it is suitable to be defined on the zero mode of
the Chan–Paton bundle. There are several notions of metrics defined on a family of Hilbert spaces,
such as the quantum Fisher metric, the Fubini–Study metric, and the fidelity susceptibility. Here we
adopt the definition of Refs. [47,48].

Let |ψ(q) 〉 be a state depending on external parameters denoted by qi. In the information theoretic
geometry, the metric on the parameter space is defined by

gij = Re(Cij − AiAj), (5.1)

where the quantities Cij and Ai are

Cij(q)dqidqj = |ψ(q + dq)− ψ(q)|2 = 〈
∂iψ(q) | ∂jψ(q)

〉
dqidqj,

Ai(q) = −i 〈ψ(q) | ∂iψ(q) 〉. (5.2)

In our case, a tachyon zero mode has the form |ψ0(x) 〉 = U (x) | 0 〉, where x ∈ R
3 are considered

to be parameters and U (x) is determined by �. Then, the above quantities are written as

Cij(x) = 〈 0 | ∂iU (x)
†∂jU (x) | 0 〉, Ai(x) = −i 〈 0 | U (x)†∂iU (x) | 0 〉. (5.3)

The latter is nothing but the induced gauge potential (2.12). This metric gives a length between
zero mode states |ψ0(x) 〉 and |ψ0(x + dx) 〉 at two nearby points9 essentially through the overlap

9 Of course, they should belong to the same open set in M .
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〈ψ0(x + dx) |ψ0(x) 〉. In other words, this length is defined along the fiber direction of the Chan–
Paton bundle.

Applying this to the Moyal case, we obtain (see Appendix A.1 for a proof)

Cij(z, z̄) = 〈 0, + | ∂iU (z)
†∂jU (z) | 0, + 〉 = 〈 0 | ∂iD(α)

†∂jD(α) | 0 〉, (5.4)

Ai(z, z̄) = −i 〈 0, + | U (z)†∂iU (z) | 0, + 〉 = −i 〈 0 | D(α)†∂iD(α) | 0 〉, (5.5)

and the metric becomes

ds2 = dαdᾱ = 1

2θ
dzdz̄. (5.6)

This is a flat metric on R
2 but different from the induced metric of the flat Euclidean background by

a Weyl factor.
For the fuzzy sphere case, the quantities in Eq. (5.3) should be evaluated patch-wise with respect

to the state RN (�) | �, + 〉 on UN and RS(�) | �, + 〉 on US , respectively. It turns out, however, that
the line element is the same in both UN and US (see Appendix A.4):

ds2 = 1

2

(
�+ 1

2

) (
dθ2 + sin2 θdϕ2) = k

4
d2�. (5.7)

This is the round metric on S2 with a Weyl factor. This metric should be compared with two alternative
metrics: the induced metric of the sphere with radius |x| = ρ�, ds2 = ρ2�2d2�, and the metric of
the fuzzy sphere with radius ρ

√
�(�+ 1), ds2 = ρ2�(�+1)d2�. Again, the information metric (5.7)

is different from both of them by a Weyl factor.
Although the difference between the information metric and the induced metric of the flat target

space is only the Weyl factors in these examples, this is not the case in general. This can be most
easily checked by adding perturbations to� in both examples. This difference can also be intuitively
understood as follows. In the above examples, the Weyl factors are given by the inverse of the non-
commutative parameters, which are also related to the densities of the D0-branes. The induced metric
just depends on the shape in the target space, while the information metric picks up information on the
density distribution of D0-branes. At least in the large-N limit, there exist two configurations of D0-
branes such that they have a common shape in the target space but have different density distributions.
Such two configurations will share the same induced metric but have different information metrics.
This implies the inequivalence of the two metrics.

The appearance of the non-commutative parameters in the information metric also suggests that
the information metric is the Kähler metric associated with the symplectic structure given by the
gauge flux. In the above examples, the information metrics are indeed the Kähler metrics. In Ref.
[18], it is also shown for a wide class of matrix configurations that the information metric is indeed
reduced to the Kähler metric in the large-N limit.

5.2. Effective theory on the shape

We close this paper with a rather speculative discussion. We come back to the example of the fuzzy
sphere. The shape (M , E) in this case is given by M = S2 and E is a complex line bundle over
M equipped with the k-monopole connection. This connection comes from displacements of the
Bloch coherent states and this suggests that a smooth structure is guaranteed to exist. However, the
situation is different from the Moyal case, because the fuzzy sphere is made of finite matrices. This
is easily seen by considering algebra of functions on a fuzzy sphere and a commutative sphere.
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The algebra of functions on a fuzzy sphere is called fuzzy spherical harmonics, which corresponds
to ordinary spherical harmonics with a restriction in the maximal angular momentum in order to
match the degrees of freedom10. In order to close the latter algebra by restricted harmonics, it is
necessary to deform the product to a non-commutative one (∗-product). Although our shape S2 is a
commutative region in spacetime, when considering functions on it, this suggests that it behaves as
a non-commutative space.

This is not a contradiction because the function algebra is needed only if we consider an effective
field theory on the shape. Of course, we do not need to consider a fluctuation as transverse scalar
fields on the shape as stated before. When the fuzzy sphere configuration� corresponds to the shape
(M = S2, E), then adding fluctuations �′ = � + δ� gives another shape (M ′, E′). However, it
would also be convenient to find the effective theory description, as in the conventional D2-brane
picture. That is, the shape is kept as (M , E) but δ� is treated as a field on the shape.

To find a new shape caused by a small fluctuation, the standard perturbation theory in quantum
mechanics can be applied. The perturbed tachyon profile T [�′] can be considered as a Dirac-like
operator with an interaction term uσ · δ�. Then, the new zero mode of T [�′] will be given by a
linear combination of the ONB for unperturbed T [�]. For this purpose, the complete set of ONB
found in this paper can be used.

In the language of the boundary state, this procedure is understood as follows. The boundary state
of the D0-brane picture is e−Sb[�′] | D0 〉 with scalar fields �′ = � + δ�. By realizing it as the
D3-brane boundary state (4.2), it would be rewritten as the form e−Sb[δ�] | M , E 〉. Here the state
| M , E 〉 corresponds to the shape M = S2 for a fuzzy sphere. It would not be the conventional
Neumann boundary state along the S2 direction, but will be a variant of the mixed boundary state,
if the shape behaves as a non-commutative space. The field on the shape S2 is extracted by the
boundary interaction e−Sb[δ�]. It is interesting to see whether the effective theory for δ� is given
by a non-commutative field theory on M = S2 with a ∗-product. This problem is closely related to
the situation of the Seiberg–Witten map [49]. It will be interesting to study fluctuations around the
Moyal plane and the fuzzy sphere and investigate the relation to the Seiberg–Witten map. We hope
to report on this issue in the near future.
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A. Computational details
A.1. Gauge flux and metric for the Moyal case

For the displacement operator (3.7), we first show the relations

∂αD(α) = D(α)(â† + ᾱ
2 ), ∂ᾱD(α) = −D(α)(â + α

2 ), (A.1)

∂αD†(α) = −(â† + ᾱ
2 )D

†(α), ∂ᾱD†(α) = (â + α
2 )D

†(α), (A.2)

10 In our case, because a monopole exists, it is better to think about (fuzzy) monopole harmonics.
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and then calculate a gauge potential and a metric. To this end, we will use an identity

d

dt
eB(t) = eB(t)d exp−B(t)(B

′(t)), (A.3)

which is valid for any operator B(t) with a parameter t. Here B′(t) = d
dt B(t) and

d expB(C) =
∞∑

l=0

1

(l + 1)!(adB)
l(C) = eadB − id.

adB
(C). (A.4)

First we set B(α) = αâ† − ᾱâ. Then, we have ∂αB(α) = â† and

ad−B(∂αB) = [−αâ† + ᾱâ, â†] = ᾱ. (A.5)

The higher-order terms (ad−B)
l(∂αB) (l ≥ 2) vanish so that Eq. (A.4) becomes

d exp−B(∂αB) = â† + 1
2 ᾱ, (A.6)

and we obtain

∂αD(α) = D(α)(â† + 1
2 ᾱ). (A.7)

Similarly, by setting B(ᾱ) = αâ† − ᾱâ, we have ∂ᾱB = −â and

ad−B(∂ᾱB) = [−αâ† + ᾱâ, −â] = −α,

⇒ d exp−B(∂ᾱB) = −â − 1
2α,

⇒ ∂ᾱD(α) = −D(α)(â + 1
2α). (A.8)

The others in Eq. (A.2) are obtained by ∂D† = −D†∂DD†. For the gauge potential, because of
α = z/

√
2θ , we need to estimate

dD(α) = dz∂zD(α)+ dz̄∂z̄D(α)

= dα∂αD(α)+ dᾱ∂ᾱD(α). (A.9)

By using Eq. (A.1), we obtain

Aα = −i 〈 0 | D†(α)∂αD(α) | 0 〉 = −i 〈 0 | â† + ᾱ
2 | 0 〉 = −i ᾱ2 ,

Aᾱ = −i 〈 0 | D†(α)∂ᾱD(α) | 0 〉 = i 〈 0 | â + α
2 | 0 〉 = i α2 , (A.10)

and thus

A = Aαdα + Aᾱdᾱ = − i

2
(ᾱdα − αdᾱ) = − i

4θ
(z̄dz − zdz̄). (A.11)

Next we calculate the metric. In Eq. (5.3), Ai is given by Eq. (A.10) and Cij is obtained as

Cαα = 〈 0 | ∂αD†(α)∂αD(α) | 0 〉 = − 〈 0 | (â† + ᾱ
2 )

2 | 0 〉 = − ᾱ2

4 ,

Cᾱᾱ = 〈 0 | ∂ᾱD†(α)∂ᾱD(α) | 0 〉 = − 〈 0 | (â + α
2 )

2 | 0 〉 = −α2

4 ,

Cαᾱ = 〈 0 | ∂αD†(α)∂ᾱD(α) | 0 〉 = 〈 0 | (â + α
2 )(â

† + ᾱ
2 ) | 0 〉 = |α|2

4 + 1,

Cᾱα = 〈 0 | ∂ᾱD†(α)∂αD(α) | 0 〉 = 〈 0 | (â† + ᾱ
2 )(â + α

2 ) | 0 〉 = |α|2
4 . (A.12)
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By using these, the components in the metric are

gαα = − ᾱ2

4 + ᾱ2

4 = 0,

gᾱᾱ = −α2

4 + α2

4 = 0,

gαᾱ = |α|2
4 + 1 − |α|2

4 = 1,

gᾱα = |α|2
4 − |α|2

4 = 0, (A.13)

and thus the line element becomes

ds2 = dαdᾱ. (A.14)

A.2. Rotation

Let� be the rotation matrix that sends x = (x1, x2, x3) to x = (0, 0, r), and let R be the corresponding
unitary operator such that

�i
jJ

j = R†JiR. (A.15)

We have two possibilities:

(a) Rotation about an axis n = (− sin ϕ, cosϕ, 0) with an angle −θ .
(b) The sequence of (1) rotation about an axis n = (0, 0, 1) with an angle −ϕ, (2) rotation about an

axis n = (0, 1, 0) with an angle −θ , and (3) rotation about an axis n = (0, 0, 1) with an angle ϕ.

We will see (b) first. Operation (1) is generated by R1 = ei(−ϕ)J3 = e−iϕJ3 . In fact,

R†
1J1R1 = eiϕJ3J1e−iϕJ3 = cosϕJ1 − sin ϕJ2,

R†
1J2R1 = eiϕJ3J2e−iϕJ3 = cosϕJ2 + sin ϕJ1,

R†
1J3R1 = eiϕJ3J3e−iϕJ3 = J3, (A.16)

which means

�1 =
⎛
⎜⎝cosϕ − sin ϕ 0

sin ϕ cosϕ 0
0 0 1

⎞
⎟⎠. (A.17)

Operation (2) is generated by R2 = ei(−θ)J2 = e−iθJ2 . In fact,

R†
2J1R2 = eiθJ2J1e−iθJ2 = cos θJ1 + sin θJ3,

R†
2J2R2 = eiθJ2J2e−iθJ2 = J2,

R†
2J3R2 = eiθJ2J3e−iθJ2 = cos θJ3 − sin θJ1, (A.18)

which means

�2 =
⎛
⎜⎝ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞
⎟⎠. (A.19)
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Operation (3) is generated by R3 = eiϕJ3 . In fact,

R†
3J1R3 = e−iϕJ3J1eiϕJ3 = cosϕJ1 + sin ϕJ2,

R†
3J2R3 = e−iϕJ3J2eiϕJ3 = cosϕJ2 − sin ϕJ1,

R†
3J3R3 = e−iϕJ3J3eiϕJ3 = J3, (A.20)

which means

�3 =
⎛
⎜⎝ cosϕ sin ϕ 0

− sin ϕ cosϕ 0
0 0 1

⎞
⎟⎠. (A.21)

Then the sequence of (1) to (3) is generated by R = R1R2R3 and

� = �1�2�3 =
⎛
⎜⎝cosϕ − sin ϕ 0

sin ϕ cosϕ 0
0 0 1

⎞
⎟⎠
⎛
⎜⎝ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞
⎟⎠
⎛
⎜⎝ cosϕ sin ϕ 0

− sin ϕ cosϕ 0
0 0 1

⎞
⎟⎠. (A.22)

On the other hand, R is rewritten as

R = R1R2R3 = e−iϕJ3e−iθJ2eiϕJ3

= exp(−iθe−iϕJ3J2eiϕJ3) = e−iθ(cosϕJ2−sin ϕJ1) = ei(−θ)(− sin ϕJ1+cosϕJ2), (A.23)

which says that R generates (a). By using J± = J1 ± iJ2, R is also written as

R = e− 1
2 θ(e

−iϕJ+−eiϕJ−). (A.24)

A.2.1. The case of spin 1
2

The unitary operator R in this case is given by

R = e−iϕS3e−iθS2eiϕS3 = e−i ϕ2 σ3e−i θ2σ2ei ϕ2 σ3

=
(

e−i ϕ2 0

0 ei ϕ2

)(
cos θ2 − sin θ

2
sin θ

2 cos θ2

)(
ei ϕ2 0

0 e−i ϕ2

)

=
(

cos θ2 − sin θ
2 e−iϕ

sin θ
2 eiϕ cos θ2

)
. (A.25)

A.3. Details of the diagonalization

In general, a 2 × 2 matrix of the form M = M012 + Miσ
i has eigenvalues λ± = M0 ± |M |, and is

diagonalized either by

W1 = 1√
2|M |(|M | + M3)

(
|M | + M3 −M1 + iM2

M1 + iM2 |M | + M3

)
, (A.26)

if |M | + M3 	= 0, or

W2 = 1√
2|M |(|M | − M3)

(
M1 − iM2 |M | − M3

|M | − M3 −M1 − iM2

)
, (A.27)
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if |M | − M3 	= 0, where |M | = √
MiM i. That is, M is written as

M = W1,2

(
λ+ 0
0 λ−

)
W †

1,2. (A.28)

The eigenstates v± with eigenvalues λ± are given by two column vectors in W1 (and similar for W2):

v+ = 1√
2|M |(|M | + M3)

(
|M | + M3

M1 + iM2

)
, v− = 1√

2|M |(|M | + M3)

(
−M1 + iM2

|M | + M3

)
. (A.29)

In our case, T (m) in Eq. (3.44) is written in this form by

T (m) = u(M (m)
0 12 + M (m)

i σ i),

M (m)
0 = ρ

2 , M (m)
1 = −ρ√

(�− m)(�+ m + 1), M (m)
2 = 0, M (m)

3 = |x| − ρ(m + 1
2).
(A.30)

Then, the eigenvalues λ(m)± of T (m) are

λ
(m)
± (|x|) = u(M (m)

0 ± |M (m)|)

= u

[
ρ
2 ±

√
ρ2(�− m)(�+ m + 1)+ (|x| − ρ(m + 1

2)
)2
]

, (A.31)

where we have used

|M (m)|2 = M (m)
i M (m)i = ρ2(�− m)(�+ m + 1)+ (|x| − ρ(m + 1

2)
)2

. (A.32)

Note that it is also written as

M (m)
i M (m)i = |x|2 − 2ρ|x| (m + 1

2

) + ρ2 (�+ 1
2

)2
. (A.33)

Next, we will check whether W1,2 in Eqs. (A.26) and (A.27) are allowed. Because |M (m)|2 =
(M (m)

1 )2 + (M (m)
3 )2, we have

|M (m)| = M (m)
3 ⇔ |M (m)|2 = (M (m)

3 )2 and M (m)
3 > 0

⇔ (M (m)
1 )2 = 0 and M (m)

3 > 0,

|M (m)| = −M (m)
3 ⇔ |M (m)|2 = (M (m)

3 )2 and M (m)
3 < 0

⇔ (M (m)
1 )2 = 0 and M (m)

3 < 0. (A.34)

Since (M (m)
1 )2 	= 0 in our case, both W1 and W2 are allowed. Note that, in our definition (A.30), u

is extracted, but Eqs. (A.26) and (A.27) are still correct and are u-independent. We choose W1, i.e.,

T (m) = W (m)

(
λ
(m)
+ 0

0 λ
(m)
−

)
W (m)†,

W (m) =
(

W (m)
11 W (m)

12

W (m)
21 W (m)

22

)
= 1√

C(m)

(
|M (m)| + M (m)

3 −M (m)
1

M (m)
1 |M (m)| + M (m)

3

)
, (A.35)
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where we define C(m) = 2|M (m)|(|M (m)| + M (m)
3 ). As an operator, W (m) is written as

W (m) =W (m)
11 | m, + 〉 〈 m, + | + W (m)

12 | m + 1, − 〉 〈 m, + |
+ W (m)

21 | m, + 〉 〈 m + 1, − | + W (m)
22 | m + 1, − 〉 〈 m + 1, − |. (A.36)

Then two eigenvalues of T and the corresponding eigenstates are given by

λ
(m)
+ : RN (�)

{
W (m)

11 | m, + 〉 + W (m)
21 | m + 1, − 〉

}
,

λ
(m)
− : RN (�)

{
W (m)

12 | m, + 〉 + W (m)
22 | m + 1, − 〉

}
. (A.37)

For later purposes, we define a unitary operator WN , which acts as W (m) on each subspace
span{| m, + 〉 , | m + 1, − 〉} for m, and 1 for | �, + 〉 and | −�, − 〉:

WN (|x|) = | �, + 〉 〈 �, + | + | −�, − 〉 〈 −�, − | +
�−1∑

m=−�
W (m). (A.38)

This depends on |x| but is independent of �. Then, the tachyon field is written as

T (x) = WN (|x|)RN (�)�(|x|)R†
N (�)W

†
N (|x|), (A.39)

where � denotes a Hermitian operator of eigenvalues:

�(|x|) = u(|x| − ρ�) | �, + 〉 〈 �, + | − u(|x| + ρ�) | −�, − 〉 〈 −�, − |

+
�−1∑

m=−�
λ
(m)
+ | m, + 〉 〈 m, + | + λ

(m)
− | m + 1, − 〉 〈 m + 1, − |. (A.40)

A.4. Gauge flux and metric for the fuzzy sphere case

A.4.1. In the open set UN

For Eq. (3.34), we first show the relations

∂θRN (�) = RN (�)
1
2(e

iϕJ− − e−iϕJ+), (A.41)

∂θR†
N (�) = −1

2(e
iϕJ− − e−iϕJ+)R†

N (�), (A.42)

∂ϕRN (�) = RN (�)
[
i(1 − cos θ)J3 + i

2 sin θ(eiϕJ− + e−iϕJ+)
]

, (A.43)

∂ϕR†
N (�) = − [

i(1 − cos θ)J3 + i
2 sin θ(eiϕJ− + e−iϕJ+)

]
R†

N (�). (A.44)

Equations (A.42) and (A.44) follow from Eqs. (A.41) and (A.43), respectively. To show Eqs. (A.41)
and (A.43), we will use the identity (A.3) again. By setting B(θ ,ϕ) = 1

2θ(e
iϕJ− − e−iϕJ+), we have

∂θB(θ ,ϕ) = 1
2(e

iϕJ− − e−iϕJ+),

∂ϕB(θ ,ϕ) = i
2θ(e

iϕJ− + e−iϕJ+). (A.45)

From the first line of Eq. (A.45), it is obvious that

ad−B(∂θB) = [−1
2θ(e

iϕJ− − e−iϕJ+), 1
2(e

iϕJ− − e−iϕJ+)] = 0, (A.46)

30/35

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article-abstract/2018/6/063B04/5041969 by U

niversity of Library and Inform
ation Science user on 29 August 2019



PTEP 2018, 063B04 T. Asakawa et al.

and that the higher-order terms vanish. Thus, we find

R†
N (�)∂θRN (�) = d exp−B(∂θB) = 1

2(e
iϕJ− − e−iϕJ+), (A.47)

which leads to Eq. (A.41). From the second line of Eq. (A.45), we find

ad−B(∂ϕB) = [−1
2θ(e

iϕJ− − e−iϕJ+), i
2θ(e

iϕJ− + e−iϕJ+)]
= − i

4θ
2[eiϕJ− − e−iϕJ+, eiϕJ− + e−iϕJ+]

= iθ2J3, (A.48)

and

(ad−B)
2(∂ϕB) = [−1

2θ(e
iϕJ− − e−iϕJ+), iθ2J3]

= − i
2θ

3[eiϕJ− − e−iϕJ+, J3]
= − i

2θ
3(eiϕJ− + e−iϕJ+)

= −θ2∂ϕB. (A.49)

Hence, the sum over even-order terms in Eq. (A.4) is∑
l:even

1

(l + 1)!(ad−B)
l(∂ϕB) = ∂ϕB

(
1 + 1

3!(−θ2)+ 1
5!θ

4 + · · · )

= i
2(e

iϕJ− + e−iϕJ+)
(
θ − 1

3!θ
3 + 1

5!θ
5 − · · · )

= i
2(e

iϕJ− + e−iϕJ+) sin θ , (A.50)

while the sum over odd-order terms in Eq. (A.4) is∑
l:odd

1

(l + 1)!(ad−B)
l(∂ϕB) = iθ2J3

( 1
2! + 1

4!(−θ2)+ 1
6!θ

4 + · · · )

= iJ3
( 1

2!θ
2 − 1

4!θ
4 + 1

6!θ
6 + · · · )

= iJ3(1 − cos θ). (A.51)

Combining them, we obtain

R†
N (�)∂ϕRN (�) = d exp−B(∂ϕB)

= i(1 − cos θ)J3 + i
2 sin θ(eiϕJ− + e−iϕJ+), (A.52)

which is the same as Eq. (A.43).
The gauge potential in UN is calculated as

iANθ = 〈 �, + | R†
N (�)∂θRN (�) | �, + 〉

= 〈 �, + | 1
2(e

iϕJ− − e−iϕJ+) | �, + 〉 = 0, (A.53)

from Eq. (A.47) and

iANϕ = 〈 �, + | R†
N (�)∂ϕRN (�) | �, + 〉

= i(1 − cos θ) 〈 �, + | J3 | �, + 〉 = i(1 − cos θ)(�+ 1
2) = i

2k(1 − cos θ), (A.54)
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from Eq. (A.52), where we have used k = 2�+ 1. Then, we find

AN = −i 〈 �, + | R†
N (�)dRN (�) | �, + 〉 = 1

2k(1 − cos θ)dϕ. (A.55)

For the metric, we need to evaluate

CNij(�) = 〈 �, + | ∂iR
†
N (�)∂jRN (�) | �, + 〉, (A.56)

in addition to the gauge potential. By using Eqs. (A.41)–(A.44), we obtain

CNθθ = 1
2(�+ 1

2),

CNϕθ = − i
2(�+ 1

2) sin θ ,

CNθϕ = i
2(�+ 1

2) sin θ ,

CNϕϕ = (�+ 1
2)

2(1 − cos θ)2 + 1
2(�+ 1

2) sin2 θ . (A.57)

These are shown as follows:

CNθθ = 〈 �, + | ∂θR†
N (�)∂θRN (�) | �, + 〉

= −1
4 〈 �, + | (eiϕJ− − e−iϕJ+

)2 | �, + 〉
= 1

4 〈 �, + | J+J− | �, + 〉
= 1

4(2�+ 1), (A.58)

where

J+J− | �, + 〉 = J+
(√

2� | �− 1, + 〉 + | �, − 〉
)

= (2�+ 1) | �, + 〉, (A.59)

has been used.

CNϕθ = 〈 �, + | ∂ϕR†
N (�)∂θRN (�) | �, + 〉

= −1
2 〈 �, + | [i(1 − cos θ)J3 + i

2 sin θ(eiϕJ− + e−iϕJ+)
] (

eiϕJ− − e−iϕJ+
) | �, + 〉

= −1
2 〈 �, + | i

2 sin θJ+J− | �, + 〉
= − i

4 sin θ(2�+ 1). (A.60)

CNθϕ = 〈 �, + | ∂θR†
N (�)∂ϕRN (�) | �, + 〉

= −1
2 〈 �, + | (eiϕJ− − e−iϕJ+

) [
i(1 − cos θ)J3 + i

2 sin θ(eiϕJ− + e−iϕJ+)
] | �, + 〉

= 1
2 〈 �, + | i

2 sin θJ+J− | �, + 〉
= i

4 sin θ(2�+ 1). (A.61)

CNϕϕ = 〈 �, + | ∂ϕR†
N (�)∂ϕRN (�) | �, + 〉

= − 〈 �, + | [i(1 − cos θ)J3 + i
2 sin θ(eiϕJ− + e−iϕJ+)

]2 | �, + 〉
= 〈 �, + | [(1 − cos θ)2(J3)

2 + 1
4 sin2 θJ+J−

] | �, + 〉
= 〈 �, + | [(1 − cos θ)2(�+ 1

2)
2 + 1

4 sin2 θ(2�+ 1)
] | �, + 〉

= (�+ 1
2)

2(1 − cos θ)2 + 1
2(�+ 1

2) sin2 θ . (A.62)
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By using these, the components in the metric gij = Re(Cij − AiAj) are found as

gθθ = 1
2(�+ 1

2),

gθϕ = gϕθ = 0,

gϕϕ = 1
2(�+ 1

2) sin2 θ . (A.63)

A.4.2. In the open set US

For the gauge potential AS in US , we use the relation RS(�) = RN (�)e−2iϕJ3 to write

R†
S(�)dRS(�) = e2iϕJ3R†

N (�)d
(
RN (�)e

−2iϕJ3
)

= e2iϕJ3
(

R†
N (�)dRN (�)

)
e−2iϕJ3 + e2iϕJ3de−2iϕJ3 . (A.64)

This expression is valid only for UNS , but once we obtain AS , it should be continued smoothly to the
south pole. Then, it is straightforward to show

AS = −i 〈 �, + | e2iϕJ3
(

R†
N (�)dRN (�)

)
e−2iϕJ3 | �, + 〉 − i 〈 �, + | (−2idϕJ3) | �, + 〉

= AN − 2 〈 �, + | J3 | �, + 〉 dϕ

= AN − 2(�+ 1
2)dϕ

= AN − kdϕ

= −1
2k(1 + cos θ)dϕ. (A.65)

For the metric, using Eq. (A.64) again, we have the relations

∂θRS(�) = (∂θRN (�))e
−2iϕJ3 , ∂ϕRS(�) = (∂ϕRN (�)− 2iRN (�)J3)e

−2iϕJ3 . (A.66)

Thus, in order to obtain CSij, it is sufficient to evaluate the difference from CNij. Apparently
CSθθ = CNθθ , and

CSθϕ = CNθϕ − 2i 〈 �, + | ∂θR†
N RN J3 | �, + 〉 = CNθϕ ,

CSϕθ = CNϕθ + 2i 〈 �, + | J3R†
N ∂θRN | �, + 〉 = CNϕθ ,

CSϕϕ = CNϕϕ + 〈 �, + |
[
2i(J3R†

N ∂ϕRN − ∂ϕR†
N RN J3)+ 4(J3)

2
]
| �, + 〉

= CNϕϕ + 4(�+ 1
2)

2 [−(1 − cos θ)+ 1] = CNϕϕ − 2kANϕ + k2. (A.67)

Combining these with ASθ = 0 and ASϕ = ANϕ − k , we obtain the same metric as in UN . In
particular, the difference in the gϕϕ component vanishes, due to the cancellation of contributions from
C and A.
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