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Factors explaining the yearly 
changes in minimum bottom 
dissolved oxygen concentrations in 
Lake Biwa, a warm monomictic lake
Takehiko Fukushima1,2, Tomohiro Inomata1, Eiji Komatsu3 & Bunkei Matsushita1

Vertical profiles of dissolved oxygen (DO) and water temperature (WT) measured bi-monthly for 
36 years (1980–2015) near the deepest part of a warm monomictic lake were analyzed with special 
reference to yearly minimum DO at bottom (DOmin). DOmin changed yearly (3.0 ± 1.2 mg l−1) and 
significant differences in DOmin were not observed between Period I (1980–1993; cooler and worse 
in water quality) and Period II (1994–2015; warmer and better in water quality). This unclear trend in 
DOmin was probably due to the offsetting influences between warming induced by global warming 
and oligotrophication attempted by local governments etc. for the study period. DOmin was positively 
correlated with disturbance time (timing of last cold water intrusion observed from Mar to Aug), which 
could be related to the start of DO depletion at bottom. Thus, the linear model using this parameter 
could predict yearly DOmin fairly well for the entire study period (r2 = 0.60). In addition, DOmin and 
time of disturbance were correlated negatively with water density at bottom in Jan and positively with 
water density equilibrated to air temperature (AT) in Mar. Higher lake water density after full depth 
mixing advances the disturbance time. In contrast, lower AT in Mar and/or higher density of influent 
water after Mar delays the time likely due to the larger amount of snowfall in the watershed. Further, 
DOmin was positively correlated with maximum wind velocity in Sep which probably induced the 
recovery of DO. Multiple-regression models to predict DOmin using these meteorological and water 
quality parameters were developed (r2 ≥ 0.38, worse performances than the model using disturbance 
time) to forecast future trends of DOmin through global warming and/or climate change. Significant 
influences of water or sediment oxygen demands on DOmin were not detected. We also discuss the 
applicability of the proposed models.

The dynamics of dissolved oxygen (DO) distribution in inland waters are fundamental to the development of an 
understanding of the distribution, behavior, and growth of aquatic organisms1. The DO state reflects the health of 
the lake environment. Recently, there have been concerns about the effects of global warming on the state of lake 
DOs, particularly bottom DO, through physical, chemical and biological processes2. As a result, the Japanese gov-
ernment has started to use bottom DO conditions as an environmental standard in lake and coastal water bodies3.

In European and North American lakes, particularly warm monomictic or dimictic lakes, depletion of DO 
in the hypolimnia during stratification has been observed and analyzed for more than 100 years4,5. The degree of 
such hypolimnetic DO depletion can be affected by the duration of the stratification period and the DO depletion 
rate5. In general, the DO deficit is expected to grow owing to eutrophication and warming1. Similarly, hypolim-
netic waters have been reported to become anoxic in deep tropical lakes6. In response to these changes, a number 
of diverse approaches have been adopted to investigate the temporal dynamics and spatial patterns of hypoxia in 
European lakes and coastal regions2.

In Lake Biwa (Fig. 1), the largest lake and most important freshwater resource in Japan, much scientific and 
social attention has been paid to bottom DO problems in recent decades. The north basin of Lake Biwa is itself a 
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warm monomictic lake. Using limnological observation data up to 1971, Naka7 showed that the amount of DO 
in deep water before the season of full-depth mixing has been decreasing due to a progressing eutrophication. 
Sohrin et al.8 analyzed long-term changes in bottom water, and showed that, since 1999, yearly minimum DO 
concentrations <50 μmol kg−1 have started to occur frequently at around a depth of 90 m. Although they consid-
ered that these changes were most likely the result of global warming (S-Fig. 1) and local eutrophication, they did 
not specifically analyze the cause(s).

Fushimi9 suggested that a trend of decreasing snowfall in the catchment might be contributing to the decrease 
of DO in the deep layer. Based on an analysis of the vertical profiles of DO and influential factors, Tsujimura et 
al.10 and Jiao et al.11 reported that the DO conditions in the hypolimnion during the stratification period were 

Figure 2.  Examples of temporal changes in the vertical profiles of water temperature (WT) and dissolved 
oxygen (DO) in (1) 1990 and (2) 2008. An arrow indicates the time of the disturbance event (see text).

Figure 1.  Lake Biwa, water-quality measuring stations (solid circles; St. 1: this study [LBERI]; St. 2: Sohrin et 
al.8 [Shiga Prefectural Fisheries Experiment Station]) and stations for measuring meteorological factors (open 
triangles; Imazu, Hikone). Reproduced with permission from Sohrin et al.8. This figure is not covered by the CC 
BY licence. [Credits to the Japanese Society of Limnology]. All rights reserved, used with permission.
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affected by the occurrence of violent lake-water mixing (possibly due to meteorological events, e.g., typhoons), 
the species and amount of phytoplankton in the epilimnion in summer, and water temperature and DO con-
centration in spring. They also investigated the impact of a low DO condition on benthic organisms. Okamoto12 
described the changes in bottom DO concentrations near the deepest part of the lake during specific years in great 
detail, and discussed the influencing factors. These analyses all considered that the yearly minimum DO might be 
related to the beginning of stratification, time of overturn, and rate of decrease of DO (DO decrease rate) under 
the stratification conditions. However, no report has quantitatively explained and/or predicted the yearly mini-
mum DO in bottom water in recent decades.

The purpose of the present study was therefore to elucidate the factors affecting yearly minimum DO concen-
trations in bottom water using bi-monthly data from the last 36 years on the vertical distribution of water tem-
perature and DO at the center of Lake Biwa. Much attention was paid to meteorological factors, since it is widely 
anticipated that such factors will reveal the influences of global warming and/or climate variation on lake DO 
conditions. Such information would be useful not only for building a detailed simulation model describing the 
water cycle, and physical, chemical and biological processes in the watershed and lake, but also when considering 
countermeasures for low DO problems.

Results
Seasonal and yearly change in DO and WT.  The observed changes in DO and water temperature (WT) 
at the lake bottom are shown in S-Fig. 2. Seasonal cycles in DO are clearly indicated, and gradually increasing 
oscillations of several-year periods overlapping on seasonal cycles were observed in WT. Similar oscillations in 
WT were also observed at St. 28. Examples of seasonal changes in vertical profiles of DO and WT for specific years 
are shown in Fig. 2 and S-Fig. 3. Generally, DO at bottom decreased monotonously from the start to the end of 
the DO depletion period, but occasional small disturbances (recoveries of DO) were also observed, e.g., Jul 2008 
in Fig. 2 (2). This disturbance was possibly caused by a horizontal movement of bottom waters, but the details are 
unknown.

As can be seen in Fig. 2 and S-Fig. 3, DO at bottom decreased substantially in 1987, 2002 and 2008, while the 
decreases in 1983, 1990 and 2014 were smaller. The starting times of DO decrease occurred earlier in the former 
years compared to the latter. WT changes appeared roughly similar in all six of these years, but the minimum 
WT at bottom (indicated by arrows in the figures) was observed sooner in the former years than in the latter. 
This timing of minimum WT at bottom seemed to influence the DO decrease at bottom. Thus, we call this the 
disturbance time, and analyze it below. Changes in the yearly minimum DO at bottom (3.0 ± 1.2 mg l−1: Fig. 3), 
the DO minimum date (S-Fig. 4), the WT of the disturbed water, and the date of disturbance did not show clear 
trends or cyclic oscillations (Table 1).

Relations between the yearly minimum DO and influencing factors.  Results of the correlation 
analysis between yearly minimum DO concentrations and yearly values of the factors possibly influencing it were 
as follows (*P < 0.05, **P < 0.01). At first, the yearly minimum DO (DOmin) was not significantly correlated 
with specific WT or DO values, e.g., minimum WT at bottom, WT at bottom when the minimum WT at the 
surface was observed, DO when the minimum WT at the surface was observed, and WT when the minimum DO 
was observed. DOmin showed non-significant correlations with the dates of the unusual WT or DO values, e.g., 
the dates when minimum WT at the surface, minimum WT at bottom, and DOmin were observed. In addition, 
non-significant correlations were found between DOmin and the periods indicating DO depletion duration, e.g., 
the periods from the time of minimum WT at the surface or bottom to the time when DOmin was detected (the 
time of DOmin).

Figure 3.  Yearly changes in minimum DO concentrations at bottom (DOmin: black line) and their 
predicted values using eq. (1) (green line; r2 = 0.59, adjusted r2 = 0.58, RMSE = 0.74 mg l−1), eq. (2) (red line; 
r2 = 0.38, adjusted r2 = 0.30, RMSE = 0.92 mg l−1) and eqs (3) and (4) (blue line; r2 = 0.44, adjusted r2 = 0.30, 
RMSE = 0.87 mg l−1).
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With regard to meteorological factors in the spring, each of the following showed a higher correlation with 
DOmin in a spring month compared to other months: air temperature (AT) in Mar, precipitation (PR) in Apr, 
and sunshine hours (SH) in Apr at Imazu. However, none of these correlations were statistically significant. The 
snowfall amount (SA) at Imazu during winter showed a positive correlation with DOmin, but this relation was 
also not significant. As to the values in fall, the correlation coefficients with AT in Sep and monthly maximum 
wind velocity averaged for 10 minutes (max WV) at Hikone in Sep (r = 0.34*; r: correlation coefficient) were high. 
The number of cold days did not have a significant influence on DOmin. Regarding WT at bottom, this parameter 
was significantly correlated with DOmin at the Jan 1st survey (r = 0.43**) and Jan 2nd survey (r = 0.33*), but the 
correlations with WT in the fall, e.g., WT at the surface at the Oct 1st survey were non-significant. In addition, 
a significant correlation was found between DOmin and the DO decrease rate from Apr 1st to Sep 2nd survey 
(r = −0.49**).

Because the density of water (ρ) (a function of water temperature as shown in the Methods) has a more direct 
influence on the mixing process in lakes than temperature, we analyzed the correlation between DOmin and 
water density. Compared to temperature, higher correlations were found between DOmin and ρ as a function of 
WT at the Jan 1st survey (r = −0.43**), and DOmin and ρ of water equilibrated to AT in Mar. As suggested in the 

I: 1980–1993 II: 1994–2015

BOD (mg l−1)*1 0.72 ± 0.08 0.54 ± 0.08 P < 0.001

Chlorophyll a (μg l−1)*1 4.46 ± 0.92 3.50 ± 0.63 P < 0.001

TP (μg l−1)*1 9.4 ± 0.7 8.1 ± 0.7 P < 0.001

TN (mg l−1)*1 0.284 ± 0.025 0.280 ± 0.034

NO3-N (mg l−1)*1 0.102 ± 0.016 0.112 ± 0.024

DOmin (mg l−1)*2 2.81 ± 1.03 3.07 ± 1.29

Date of DOmin (Julian date)*2 310 ± 31 316 ± 38

Bottom WT at DOmin (°C)*2 7.3 ± 0.9 7.5 ± 0.4

Av. of Surface WT from Aug to Oct (°C)*2 24.3 ± 0.9 25.3 ± 0.8 P < 0.01

Av. of bottom WT from Aug to Sep (°C)*2 7.1 ± 0.9 7.3 ± 0.4 P < 0.001

Yearly minimum bottom WT (°C)*2 6.2 ± 1.0 6.9 ± 0.4 P < 0.01

WT of disturbance water (°C)*2 6.5 ± 1.1 7.3 ± 0.4 P < 0.001

DO of disturbance water (mg l-1)*2 9.1 ± 0.7 8.9 ± 0.8

Date of disturbance (Julian date)*2 167 ± 35 163 ± 34

DO decrease rate from Apr to Sep (mg l−1 d−1)*2 0.034 ± 0.009 0.037 ± 0.007

AT in Mar (°C)*3 5.9 ± 1.3 6.2 ± 1.0

Av. of AT from Mar to Oct (°C)*3 17.5 ± 0.6 18.4 ± 0.5 P < 0.001

Num. of cold days from Oct 1 to Nov 15 (see text)*3 14.0 ± 3.5 8.3 ± 4.2 P < 0.001

SA (mm) from Nov to Apr*3 296 ± 161 277 ± 153

Max WV (m s−1)*4 9.4 ± 3.2 9.8 ± 2.8

Table 1.  Means and standard deviations of related water quality and meteorological parameters in the two 
study periods and significance of differences. *1Annual (from Apr to Mar) average for the surface water samples 
(0.5 m) at 28 stations in the North Basin of Lake Biwa, *2: St. 1, *3: Imazu, *4: Hikone. Abbreviations are 
explained in the text. P indicates statistical significance.

Figure 4.  Relation between time of disturbance and DOmin.
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previous section, the disturbance time could affect DOmin. In fact, the relationship between disturbance time and 
DOmin showed the highest correlation in this study (Fig. 4; r = 0.77**). Because both low water density in winter 
(Jan 1st survey) and high water density in early spring (Mar) (r = −0.34*) (i.e., low AT in Mar [r = 0.36*]) delay 
the disturbance time, the difference between them might be a good estimator of the disturbance time (S-Fig. 5; 
r = −0.40*) and thereby the DOmin (Fig. 5; r = −0.49**).

The correlation between DOmin and yearly averaged water quality—e.g., biochemical oxygen demand (BOD), 
chlorophyll a, total phosphorus (TP)—was not significant. The rate of decrease in DO from the Apr 1st to Sep 2nd 
survey was significantly correlated with the rates of decrease for other long periods (i.e., periods of more than 3 
months), but not with the rates of decrease for short periods (less than 2 months). The DO decrease rate from 
the Apr 1st to Sep 2nd survey showed positive correlations with ATs, but those correlations were not significant.

Water quality and air temperature trends during the survey period.  In the north basin of Lake 
Biwa, an oligotrophication trend was observed for the period 1980–2015, as shown in S-Fig. 6 13. In addition, the 
shift analysis indicated clear changes between 1993 and 1994 for BOD and TP and between 1999 and 2000 for 
chlorophyll a. Thus, we divided the whole period into two parts: Period I from 1980–1993 and Period II from 
1994–2015. There were significant differences between the two periods in the concentrations of BOD, chlorophyll 
a, and TP, averaged surface WT from Aug–Oct., yearly minimum bottom WT, average of bottom WT from Aug–
Sep, WT of the disturbed water, average of AT from Mar to Oct, and number of cold days from Oct 1 to Nov 15 
(Table 1). In Period II, the concentrations of all the parameters related to water quality (BOD, chlorophyll a, TP) 
were lower except the nitrogen level. WTs except WT at DOmin and ATs were higher in this period. In general, 
lake water quality was better and the lake environment was warmer in Period II than in Period I.

Annual averaged air temperature increased at a rate of 0.039 °C y−1 (the regression coefficient in the linear 
model with year) during the period from 1980–2015. The increase rates were different month-to-month (S-Fig. 2 
(2)). Significantly larger increases were observed from May–Oct, while smaller, non-significant increases were 
observed in other months.

Prediction of DO minimum in the bottom layer.  First, models were constructed using the variable (i.e., 
the disturbance time) that had the highest correlation coefficient with DOmin in this study. Its linear, quadratic 
and cubic equations were compared based on the adjusted r2 values and then the following linear one was selected 
(n = 36, r2 = 0.60**, adjusted r2 = 0.58, RMSE = 0.74 mg l−1):

= . × − .DOmin 0 027 Tdisturbance 1 484 (1)

where Tdisturbance is disturbance time (Julian date). The characteristics of yearly changes were well described, 
but the amplitudes of the changes were somewhat smaller than the observed values due to the theoretical charac-
teristics of regression model (Fig. 3).

Next, the multiple regression models to predict DOmin were examined using meteorological and water qual-
ity parameters. Based on the correlation analysis shown above, we compared the models with combinations of 
the following parameters as independent variables: WTs equilibrated with AT at Imazu in Feb and Mar, water 
densities of these WTs, bottom WTs during the first and second periods of Jan, bottom WTs during the first and 
second periods of Feb, water densities of these WTs, total sunshine hours at Imazu in Mar and Apr, precipitation 
at Imazu in Apr, monthly max WV averaged for 10 minutes in Sep at Hikone, and ATs at Imazu in Jul, Aug, Sep 
and Oct. Then, the following model was chosen to give the highest adjusted r2 for all data (1980–2015) (n = 36, 
r2 = 0.38**, adjusted r2 = 0.30, RMSE = 0.92 mg l−1: Figs 3 and 6):

Figure 5.  Water-density difference between bottom water at the Jan 1st survey (see text) and water with the 
same temperature as the air in Mar vs. DOmin.
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= − . × ρ′ + . × ρ′
− . × + . × + .

DOmin 6 826 (WTJ1) 16 733 (WT(AT3))
0 011 SH4 0 124 W9 3 54 (2)

where DOmin is mg l−1, ρ′: (ρ − 1) × 103, ρ is the water density corresponding to the water temperature (g cm−3), 
WTJ1 is the bottom WT during the first period of Jan, WT(AT3) is the WT equilibrated with AT at Imazu in Mar, 
SH4 is the total sunshine hours at Imazu in Apr (hr), and W9 is the monthly max WV averaged for 10 minutes in 
Sep at Hikone (m s−1).

Similar to eq. (1), this model gave somewhat smaller variations compared with the observed ones due to 
the rather small regression coefficient, and the discrepancies were larger in the latter period compared with the 
former. To clarify the differences between the periods, we applied multiple regression analysis separately for 
Periods I and II. The models obtained for the highest adjusted r2 were eq. (3) (1980–1993) (n = 14, r2 = 0.61**, 
adjusted r2 = 0.44, RMSE = 0.61 mg l−1) and eq. (4) (1994–2015) (n = 22, r2 = 0.37**, adjusted r2 = 0.22, 
RMSE = 1.01 mg l−1) for Periods I and II, respectively.

= − . × ρ′ + . × ρ′
− . × + . × + .

DOmin 6 109 (WTJ1) 9 760 (WT(AT3))
0 015 SH4 0 109 W9 4 14 (3)

= . × ρ′ + . × ρ′
− . × + . × + .

DOmin 12 757 (WTJ1) 16 993 (WT(AT3))
0 387 AT7 0 120 W9 10 67 (4)

In eq. (3), the same parameters were chosen as in eq. (2). In eq. (4), a new parameter AT7 (air temperature in 
Jul) (°C) was used instead of SH4. The correlation between the predicted and observed DOmin (S-Fig. 9; com-
bined eqs (3) and (4); r2 = 0.44**, adjusted r2 = 0.30, RMSE = 0.87 mg l−1) was better than the correlation shown 
in Fig. 6, and higher amplitudes of change were obtained. Particularly in Period I, better agreement was achieved.

Discussion
Characteristics of long-term trends in the DO minimum in bottom water.  Sohrin et al.8 reported 
that the bottom DO at St. 2 has been decreasing since 1959. They considered that the increases in bottom WT and 
nutrient concentrations (NO3-N, PO4-P, and Si(OH)4) were responsible for the decrease in DO. The relationships 
between yearly minimum DO concentrations at St. 1 and St. 2 appeared to be rather scattered, but were signifi-
cantly correlated (S-Fig. 7).

In this study, we could not identify a clear trend in the bottom DO concentration (Fig. 3; Table 1). The differ-
ence in the periods investigated likely affected the difference in bottom DO trends and main factors influencing 
the DOmin. We therefore statistically analyzed the data from Sohrin et al.8 by separating the whole period from 
1963 to 2012 into three periods—(A) 1963–1979, (B) 1980–1993, and (C) 1994–2012—and compared the data 
from Periods (A), (B) and (C) with those from our present Periods I & II. In Period (A), organic pollution and 
eutrophication progressed year by year through postwar economic development. The local government (Shiga 
Prefecture) enacted the Ordinance for Prevention of Eutrophication of Lake Biwa with the enthusiastic cooper-
ation of the residents in 1979, e.g., construction of sewerage facilities and enactment of nutrient regulations of 
factories, commercial facilities, and household detergents14. Due to such attempts, many parameters of water 
quality began to improve after the late 1990s13,14. There were gradual increases in WT and NO3-N concentrations 
after the late 1990s, but the changes in bottom DO after 1980 were not significant (S-Table 1). In addition, there 

Figure 6.  Relation between observed DOmin and predicted DOmin using eq. (2).
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were significant correlations between DOmin and minimum bottom WT (r = −0.31*), and between DOmin 
and yearly averaged NO3-N (r = −0.55**) for data between 1963 to 2012, but the correlations between DOmin 
and minimum bottom WT and between DOmin and yearly averaged NO3-N were not significant for the period 
between 1980 and 2012.

In short, the study period (1980–2015) exhibited overall trends of gradual oligotrophication and warming, as 
discussed in the previous section and shown in Table 1. The unclear trend in yearly DOmin is probably attributa-
ble to the offset between suppression of DO deficit by oligotrophication and its intensification by warming during 
our study period.

Mechanism underlying the DO minimum in bottom water.  Theoretically, DOmin concentrations 
at the bottom of warm monomictic and dimictic lakes are determined by the duration of the stratified period, 
i.e., from its start to its end, and the DO depletion rate (e.g., Walker5). However, significant correlations between 
DOmin and DO depletion periods were not obtained in this study. The rates of decrease of DO over long periods 
(more than three months) were significantly negatively correlated with DOmin. However, this correlation was 
merely due to different characteristics of the same phenomena, because these DO decrease rates were calculated 
as the amount of decrease in DO (closely related to DOmin in the case of long period) divided by the duration 
of the period.

In contrast, the decrease rates for shorter periods (less than two months) did not show a clear influence on 
DOmin, indicating the scattering of the DO decrease rates during the stratification period. Tsujimura et al.10 
reported a significant correlation between the average volumes of phytoplankton cells from Mar to Sep and 
DOmin (r = −0.57*). In this study, we did not include such a parameter explicitly due to the imperfect availabil-
ity of data over the whole study period. In eq. (4), AT in Jul was selected as one of the independent variables for 
the prediction of DOmin in Period II, suggesting that this parameter is related to the DO decrease rate.

Further, the sediment oxygen demand (SOD) might contribute to the determination of the value of DOmin4. 
There has been no report on SOD in the north basin of Lake Biwa. Gelda et al.15 built a sediment diagenesis model 
expressing carbon and oxygen dynamics in water and sediment and then predicted the change in SOD over a 
30-year period in Onondaga Lake. However, yearly estimation of SOD is quite difficult without deliberate obser-
vation or a dynamic model. Rucinski et al.16 expressed SOD as a function of TP and then predicted the hypoxia 
in Lake Erie. Adopting their approach, we added TP to eqs (1)–(4) as an independent variable, but this yield no 
improvement in the adjusted r2. In addition, regression equations similar to eq. (1) were obtained separately for 
Periods I and II. There was no significant difference between these equations, indicating that the difference in 
SOD between the periods was not explicitly expressed in these equations. This may have been because there was 
an insignificant difference in SOD between the two periods, or because SOD did not have a significant influence 
on DO change during the isolation period of bottom water after the last intrusion of cold water. In any case, in 
order to accurately forecast the future hypolimnetic DO conditions in this lake, it would be necessary to track and 
predict the long-term change in oxygen consumption rates in water and sediment.

In Lake Biwa, the behavior of the hypolimnetic DO has been discussed from the perspective of the timing of 
complete oxygenation of the bottom water, the WT at that time, SA in the basin, events such as strong winds (e.g., 
typhoon), cold days in autumn, and phytoplankton species and their amounts in summer9–12,17. In this study, we 
analyzed the relations between DOmin and these influencing factors, and found that a limited number of factors 
(WT at the Jan 1st survey, WT at the Jan 2nd survey, max WV in Sep, water density as a function of AT in Mar), 
were significantly influential, but not predominant expressed by the relatively low regression coefficients in eqs 
(2)–(4).

However, the quite high correlation (Fig. 4: r = 0.77**) with the disturbance time, which determines the start 
of DO depletion at bottom, seemed likely to have affected the DOmin at bottom. In this sense, the timing of the 
last intrusion of cold water, when DO is plentiful (DO of the disturbed water: 9.0 ± 0.8 mg l−1), would be the start 
of DO depletion at bottom. The rather small variations in DO of the disturbed water indicated that the DO state 
was relatively constant at the start. Yoshiyama et al.17 suggested the importance of gravity currents, as well as the 
contribution of convective mixing to the delivery of oxygen to the profundal zone of the north basin of Lake Biwa. 
Because a high correlation was observed between AT in Mar and SA at Imazu (r = −0.61**), low AT in Mar (i.e., 
high water density equilibrated to AT in Mar) could delay the disturbance time by melting the snow in the water-
shed more slowly and increasing the density of the influent water after Mar. It would be reasonable to consider 
that both the water density state in lakes after full-depth mixing and the water density of influent water after Mar 
affects the disturbance time, and therefore, the density difference between them could be a good predictor of 
disturbance time (S-Fig. 5 and Fig. 5) and DOmin (r = 0.49**). This density difference was a better predictor of 
the DOmin than the difference of AT (r = 0.39*). Importantly, higher lake water density after full-depth mixing 
advances this disturbance time, and vice versa. In contrast, higher density of influent water after Mar due to lower 
AT in Mar delays the time and vice versa.

Surprisingly, there was a positive, albeit non-significant, correlation between DOmin and its timing (i.e., the 
end of DO depletion). This result appears to indicate that, with respect to DOmin, the starting time of DO deple-
tion is more important than the time of ending time. Because dissolved and particulate organic matter decom-
pose logarithmically in lakes18,19, the initial processes (e.g., supply of organic matter to the bottom water) were 
suggested to have a great influence on the decrease compared with the subsequent processes. Only max WV at 
Hikone in Sep significantly raised the DOmin. Jiao et al.11 showed that the wind impact index (defined as the 
square of wind velocity divided by Schmidt’s Stability Index) affected the recovery of DO depletion. Okamoto12 
found that a typhoon passing near the lake accompanied by strong winds in autumn affected DO conditions at 
the bottom. In addition, wind velocity at Imazu had a positive, although non-significant, correlation with DOmin, 
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suggesting that the wind in flat areas more strongly affects the mixing in the lake compared with the winds in 
mountainous areas.

Meanwhile, there was a close relationship between AT for Sep to Dec in the preceding year and WT in the 
Jan 1st survey (S-Fig. 8). A seasonally nonuniform increase in AT during our investigated period (e.g., a higher 
increase from Sep to Dec compared with Mar) could have resulted in a negligible delay in the start time of DO 
depletion in spite of the significant rise of annual mean AT. Thus, the seasonality of AT increase could affect the 
change in DOmin. For example, a change in WTJ1 from 7.7 °C (average for 1980–2015) to 8.7 °C would bring 
about an increase of 0.45 mg l−1 DOmin using eq. (2), assuming that other meteorological conditions were not 
varied. Future studies considering such phenomena will be necessary to understand and predict the influence of 
global warming and/or climate change on lake environments.

Differences in the model predictability between Period I and II.  The model agreement in Period I 
was better than that in Period II. Similar to eq. (1), linear models predicting DOmin were determined separately 
for Periods I and II. The RMSE (0.62 mg l−1) of the obtained model for Period I (Y = 0.0225 × −0.949 where X is 
the disturbance time and Y is the DOmin) was smaller than that (0.76 mg l−1) for Period II (Y = 0.0306 × −1.929), 
indicating a closer relationship with the disturbance time in Period I compared with Period II.

In the south basin of Lake Biwa, submerged plants hardly existed from 1960 to 1993, but they began to recover 
after the serious shortage of water in the summer of 199420. Along with this recovery, there was an improvement 
of the transparency. It would be possible, albeit unlikely, that this regime shift occurring in the south basin led 
directly to the shift of water quality observed in the north basin, because there were large differences in lake mor-
phology and water quality between the basins.

Kishimoto et al.21 reported that the average cell size of the phytoplankton community in the north basin 
decreased from 269 μm3 cell−1 in the 1980s to 56 μm3 cell−1 in the 2000s; in particular, the proportions of small 
nanoplankton (mainly Cyanophyceae) increased in summer. After the year 2000, the yearly variations in the 
summer phytoplankton composition increased. Yamada et al.22 indicated that the biodegradability of dissolved 
organic matter released from phytoplankton differed species by species based on experiments using Microcystis 
aeruginosa, Staurastrum dorsidentiferum, and Cryptomonas ovata under the water conditions existing in the 
north basin. These facts indicate that the larger yearly variability in the phytoplankton community for Period II 
compared to Period I resulted in less agreement in the DOmin prediction models. Therefore, biological informa-
tion is necessary to improve the models, particularly in Period II.

Applicability of the DOmin-predicting model and future study.  The prediction model in eq. (1) 
has a fairly simple form and shows a good performance; thus a bi-monthly monitoring of bottom WT and DO 
can provide an early warning signal of low DOmin several months before the event. However, this model cannot 
forecast the future trends of DOmin through global warming and/or climate change. In contrast, the prediction 
models in eqs (2)–(4) are less accurate, but they can roughly forecast the future trends in DOmin corresponding 
to climate change. These models could be used to evaluate more elaborate simulation models describing the water 
cycle and the physical, chemical and biological processes in watersheds and lakes. However, we should keep in 
mind that eqs (3) and (4) are essentially disadvantageous for the prediction of future lake conditions.

At any rate, additional efforts will be needed to enhance the accuracy of these prediction models. Such efforts 
would be expected to include the collection of DO measurements with higher temporal and spatial resolution, 
meteorological data at more sites, and information on DO demand by water and sediments.

Methods
Lake Biwa.  Lake Biwa, located at the center of Honshu Island, is the largest lake (area 670 km2; maximum 
depth, 104 m) in Japan (Fig. 1). One of several ancient lakes23, it contains more than 50 endemic species (benthic 
fauna and deep-living fish), any of which may be vulnerable to low oxygen concentrations in profundal habitats17. 
Lake Biwa has two basins—one to the south and one to the north. The south basin is shallow, with a mean depth 
of 4.0 m, while the north basin is deep, with a mean depth of 43 m. Judging from the trophic boundaries proposed 
by Carlson and Simpson24, the current trophic level of the north basin is between oligotrophic and mesotrophic 
in terms of total phosphorus, and mesotrophic in terms of chlorophyll a. This basin is warm monomictic; a clear 
thermocline is formed in summer and fall, and full depth mixings occur in late fall and spring.

Survey and database.  A bi-monthly limnological survey (1st and 2nd surveys in the respective months) has 
been conducted at the center of Imazu-oki (St. 1 in Fig. 1: 35°23′41″N, 136°07′57″E, ~90 m depth) from Apr 1979 
to the present by LBERI (Lake Biwa Environmental Research Institute). WT and DO have been measured at 0.5, 
5, 10, 15, 20, 30, 40, 60, 80 m below the surface and at 1 m from the bottom sediment (hereafter, at bottom) using 
a Hydrolab Quanta Multi-Probe Meter (Hydrolab, Loveland, CO) calibrated by JIS k02102-32. During the period 
from 1980–2001, WT and DO 1-m above the sediment were measured after the system was laid on the sediment 
and then raised 1 m. After 2002, a system with a depth sensor was used, and values 1-m above the bottom were 
determined after data processing.

The analysis in this study used the data from 1980–2015, thus, 36 years of data were analyzed. During the 
periods when the observations were more frequent than bi-monthly, we excluded any irregularly timed observa-
tions (there were only a few such occasions over the 36-year observation period). There were also a few periods 
when the observations were less than bi-monthly, and approximately 10 occasions when no measurements were 
conducted at several depths. During these periods, we did not interpolate the values except for special analyses 
(i.e., determination of the DO decrease rates, as shown below).

As for other water quality values—e.g., BOD, chlorophyll a, TP, total nitrogen (TN), and nitrate nitrogen 
(NO3-N)—the values averaged for the Japanese fiscal year (Apr to Mar) and in the north basin were used13. 
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DO data at St. 2 (35°18′34″N, 136°07′19″E, ~80 m depth) in Fig. 1 measured by the Shiga Prefectural Fisheries 
Experiment Station were also used for comparison8.

Daily data on meteorological factors, including AT, PR, SH, SA, max WV at Imazu, and max WV at Hikone 
(Fig. 1) were used for the analysis25. The changes in monthly averaged AT at Imazu are shown in S-Fig. 1.

Water density.  Based on the database26, the following quadratic function was used to calculate the water 
density (y: g cm−3) from water temperature (x: 0 to 10 °C).

= − . + . + .y 0 0000077912 x 0 0000630498 x 0 99984452902

Indices for characterizing WT and DO changes and meteorological conditions.  The following 
indices for water quality were determined and used for further analysis: (1) the yearly minimum DO at bottom 
(sometimes including the data from Jan in the following year depending on DO seasonal change) and its date 
(all dates are Julian); (2) the DO decrease rate (several periods); (3) the WT and date (referred to as disturbance 
time) of the bottom water disturbance event (after Apr; WT at bottom layer was lower than before and after the 
event; more than 8 mg l−1, i.e., nearly DO-saturated water); (4) the yearly minimum WT at the surface and bottom 
waters and their dates. As a meteorological index, we calculated the number of days for several different periods 
during which the daily minimum AT was colder than the critical WT (number of cold days). The critical WT was 
that at the bottom when the yearly DO minimum was observed.

Statistical methods.  Statistical analyses were used to determine the correlation, the differences between the 
means (t-test) and the multiple regression for significance at the level of 0.05 (*) or 0.01 (**) (Excel-Statistics for 
2016: BellCurve Social Survey Research Information Co., Tokyo). The values of adjusted r2 were used to select the 
independent parameters in multiple regression analysis. The root mean square errors (RMSE) were also calcu-
lated to evaluate the obtained prediction models.

= − − − − −adjusted r 1 (1 r )(N 1)/(N p 1)2 2

=
∑ −= ( )

RMSE
X X

N
i 1
N

pred,i meas,i
2

Here, r2 is the square of the correlation coefficient (determination coefficient), N is the number of data, p is the 
number of independent variables, and Xpred,i and Xmeas,i are the values of predicted and measured values, 
respectively.

The sequential t-test regime shift detection software ver. 3.227 was used to determine shifts in the time series 
(significance level = 0.1; cut-off length = 10; Huber’s weight parameter = 1).
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