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Abstract

Oxidative stress and mitochondrial dysfunction are associated with the aging

process. However, the role of nuclear factor erythroid 2 -related factor 2

(Nrf2) in skeletal muscle during aging remains to be clarified. In the current

study, we assessed whether the lack of Nrf2, which is known as a master regu-

lator of redox homeostasis, promotes age-related mitochondrial dysfunction

and muscle atrophy in skeletal muscle. Here, we demonstrated that mitochon-

drial 4-hydroxynonenal and protein carbonyls, markers of oxidative stress,

were robustly elevated in aged Nrf2 knockout (KO) mice because of the

decreased expression of Nrf2-target antioxidant genes. Mitochondrial respira-

tion declined with aging; however, there was no difference between Nrf2 KO

and age-matched WT mice. Similarly, cytochrome c oxidase activity was lower

in aged WT and Nrf2 KO mice compared with young WT mice. The expres-

sion of Mfn1 and Mfn2 mRNA was lower in aged Nrf2 KO muscle. Mito-

chondrial reactive oxygen species production per oxygen consumed was

elevated in aged Nrf2 KO mice. There was no effect of Nrf2 KO on muscle

mass normalized to body weight. These results suggest that Nrf2 deficiency

exacerbates age-related mitochondrial oxidative stress but does not affect the

decline of respiratory function in skeletal muscle.

Introduction

Aging is characterized by loss of skeletal muscle mass and

function, a phenomenon known as sarcopenia. This loss of

muscle function leads to increased risks of physical frailty

and mortality (Cruz-Jentoft et al. 2010). Therefore, under-

standing the mechanism of muscle atrophy with aging is

important for identifying therapeutic targets and promoting

health span. The aging process has considered to be driven

by oxidative stress, originally proposed by Harman 1956 as

the free radical theory. Given that the mitochondrial electron

transport chain is a major source of reactive oxygen species

(ROS), mitochondria are thought to play a crucial role in

sarcopenia. In agreement with this hypothesis, many studies

have shown increases in ROS production in aged skeletal

muscle, associated with mitochondrial dysfunction and

increased mitochondrial apoptotic susceptibility (Chabi

et al. 2008; Dai et al. 2014). However, whether elevated ROS

production is causally related to muscle atrophy with aging

remains to be clarified.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a

transcription factor that has been regarded as the key
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regulator of antioxidant genes (Motohashi and Yamamoto

2004). In response to oxidative stress, Nrf2 translocates

into the nucleus and binds to the antioxidant response

element of its target antioxidant genes. We previously

reported that Nrf2 deficiency aggravates denervation-

induced oxidative stress in skeletal muscle of young mice,

while it has little effect on the loss of muscle mass

(Kitaoka et al. 2016). However, effect of Nrf2 deficiency

on antioxidant enzymes was reported to be greater in

aged skeletal muscle than in the muscle of young animals

(Miller et al. 2012). Intriguingly, ablation of Nrf2 results

in impaired muscle regeneration in an age-associated

oxidative stress condition (Narasimhan et al. 2014). To

explore the possible involvement of Nrf2 signaling in

aging process, we assessed whether the lack of Nrf2 pro-

motes age-related mitochondrial oxidative stress and mus-

cle atrophy in skeletal muscle.

Methods

Animals and experimental design

Nrf2 knockout (KO) mice were obtained from Jackson

Laboratory (Bar Harbor, ME). Mice were genotyped by

PCR analysis of tail DNA as previously reported (Kitaoka

et al. 2016). Animals were group-housed (3–4 per cage)

in an air-conditioned room on a 12:12-h light–dark cycle

with standard chow and water given ad libitum. Aged

male (22 months old) Nrf2 KO mice and young

(4 months old) and age-matched (22 months old) male

wild-type C57BL/6J (WT) mice were used (n = 6–7 each

group). Animals were euthanized by cervical dislocation,

and muscles were quickly removed, snap-frozen, and

stored at �80°C. All experiments were approved by the

Animal Experimental Committee of The University of

Tokyo.

RNA isolation and real-time quantitative
PCR

Gastrocnemius muscle was homogenized on ice in Trizol

reagent (Life Technologies, Gaithersburg, MD), and then

separated into organic and aqueous phases with chloro-

form. Total RNA was isolated using RNeasy Mini kit

(Qiagen) from the aqueous phase following precipitation

with ethanol. After RNA concentration was measured by

spectrophotometry (Nanodrop ND1000, Thermo Scien-

tific, Waltham, MA), first-strand cDNA synthesis was per-

formed using a high-capacity cDNA reverse transcription

kit (Applied Biosystems, Foster City, CA). The expression

of Nrf2, Nqo1 (NAD(P)H quinone oxidoreductase 1),

Cat (catalase), Gclc (glutamate-cysteine ligase catalytic

subunit), Sod1 (superoxide dismutase 1), Sod2, Fis1

(fission, mitochondrial 1), Drp1 (dynamin related protein

1), Mfn1 (mitofusin 1), Mfn2, Opa1 (optic atrophy 1)

were quantified using the Thermal Cycler Dice Real-Time

System and SYBR Premix Ex taq II (Takara Bio, Shiga,

Japan). All samples were run in duplicate. Tbp (TATA

box binding protein) was used as a control housekeeping

gene, the expression of which did not alter between

groups. Forward and reverse primers for the aforemen-

tioned genes were shown in Table 1.

Mitochondrial isolation

Mitochondrial fractions were isolated using differential

centrifugation as previously described (Tamura et al.

2015). Briefly, quadriceps femoris muscles were mildly

homogenized in mitochondrial isolation buffer (67 mm

sucrose, 50 mm Tris, 50 mm KCl, 10 mm EDTA and

0.2% (w/v) fatty acid-free bovine serum albumin, pH

7.4). The homogenate was centrifuged at 700g for 15 min

at 4°C, and the supernatant was centrifuged for 20 min at

12,000g. The pellet was washed, and re-suspended in

mitochondrial isolation buffer. After the isolation proce-

dure, the total protein content of samples was quantified

using the bicinchoninic acid (BCA) protein assay (Pierce,

Rockford, IL). Mitochondrial samples were used for anal-

yses of 4-HNE, protein carbonyl, mitochondrial respira-

tion, and ROS production. We confirmed the purity of

the mitochondrial fraction by Western blotting using

antibodies against glyceraldehyde 3-phosphate dehydroge-

nase (cytosolic marker) and cytochrome c oxidase (COX)

subunit IV (mitochondrial marker; data not shown). In

addition, the integrity of our mitochondrial isolation

method was verified by adding exogenous cytochrome c

in a separate experiment.

Whole muscle lysate

Gastrocnemius muscle was homogenized in radioim-

munoprecipitation assay (RIPA) buffer (25 mmol/L Tris-

HCl, pH 7.6, 150 mmol/L NaCl, 1% NP-40, 1% sodium

deoxycholate, and 0.1% sodium dodecyl sulfate [SDS])

supplemented with protease inhibitor mixture (Complete

Mini, ETDA-free, Roche Applied Science, Indianapolis,

IN) and phosphatase inhibitor mixture (PhosSTOP,

Roche Applied Science). The total protein content of

samples was quantified using the BCA protein assay

(Pierce).

Western blotting

Equal amounts of protein were loaded onto 10-% SDS-

PAGE gels and separated by electrophoresis. Proteins

were transferred to polyvinylidene difluoride (PVDF)
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membranes, and western blotting was carried out

using primary antibody of 4-HNE (4-hydroxynonenal;

ab48506), Total OXPHOS Rodent WB Antibody Cocktail

(ab110413), Fis1 (ab96764), Drp1 (ab56788), Mfn2 (ab

124773) from Abcam (Cambridge, Mass., USA); Opa1

(#612606) from BD Transduction Laboratories (Tokyo,

Japan). Ponceau staining was used to verify consistent

loading. Blots were scanned and quantified using C-Digit

Blot Scanner (LI-COR, Lincoln, NE).

Protein carbonyl content

Protein carbonyl content was measured with a commer-

cially available kit (#ROIK03; SHIMA Laboratories, Tokyo,

Japan). After mitochondrial proteins were transferred to

PVDF membrane as described above, the membrane was

reacted with dinitrophenylhydrazine (DNPH) followed by

Western blotting procedure.

Enzyme activity

Tibialis anterior muscle was homogenized in 100 (v/

w) of 100 mmol/L potassium phosphate buffer. Maxi-

mal activities of citrate synthase (CS) and COX were

measured spectrophotometrically, following established

protocols (Spinazzi et al. 2012). Catalase activity was

determined using spectrophotometric method as pre-

viously described (Hadwan 2018). Total SOD (Mn-

SOD and Cu/Zn-SOD) activity was determined using

the Superoxide Dismutase Assay Kit (706002, Cay-

man, Ann Arbor, MI) following the manufacturer’s

instructions.

Mitochondrial respiration

Freshly isolated mitochondria (60 lg) were incubated in a

reaction buffer (250 mmol/L sucrose, 10 mmol/L Tris base,

1 mmol/L MgCl2). Mitochondrial oxygen consumption

was measured using Tecan Spark multi-mode plate reader

with MitoXpress Xtra fluorescent sensor reagent (Agilent

Technology, Santa Clara, CA) to measure dissolved oxygen

level (Ex: 380 nm/Em: 670 nm). Complex II-driven state

III respiration was stimulated by adding 10 mmol/L Succi-

nate and 1 lmol/L Rotenone and 2.5 mmol/L ADP. Rela-

tive fluorescent change per minute was calculated using

operation software.

Mitochondrial reactive oxygen species
production

Freshly isolated mitochondria (20 lg) were incubated in

mitochondrial respiration buffer and 50 lmol/L 2070

dichlorofluorescin (DCF). ROS emission was measured

under state III respiratory condition through the addition

of 10 mmol/L Succinate and 1 lmol/L Rotenone, and

2.5 mmol/L ADP. Relative fluorescence change (Ex:

480 nm/ Em: 520 nm) was measured using a Tecan mul-

timode plate reader.

Statistical analysis

Data were expressed as mean � standard error of mean

(SEM). One-way analysis of variance (ANOVA) was per-

formed, followed by Bonferroni multiple-comparison test

(GraphPad Prism 6.0, La Jolla, CA). Statistical significance

was defined as P < 0.05.

Results

Skeletal muscle mass and sarcopenic index

Animal characteristics are presented in Figure 1. Aged

Nrf2 KO mice was lighter than aged WT mice (Fig. 1A).

To investigate the effects of aging and Nrf2 deficiency on

Table 1. Real-time PCR primer sequences.

Gene Forward primer (50-30) Reverse primer (50-30)

Nrf2 TTCTTTCAGCAGCATCCTCTCCAC ACAGCCTTCAATAGTCCCGTCCAG

Nqo1 TTCTCTGGCCGATTCAGAGT GGCTGCTTGGAGCAAAATAG

Cat ACATGGTCTGGGACTTCTGG CAAGTTTTTGATGCCCTGGT

Gclc CAGTCAAGGACCGGCACAAG CAAGAACATCGCCTCCATTCAG

Sod1 CCAGTGCAGGACCTCATTTT TTGTTTCTCATGGACCACCA

Sod2 CCGAGGAGAAGTACCACGAG GCTTGATAGCCTCCAGCAAC

Fis1 GCCTGGTTCGAAGCAAATAC CACGGCCAGGTAGAAGACAT

Drp1 CGGTTCCCTAAACTTCACGA GCACCATTTCATTTGTCACG

Mfn1 TTGCCACAAGCTGTGTTCGG TCTAGGGACCTGAAAGATGGGC

Mfn2 GGGGCCTACATCCAAGAGAG GCAGAACTTTGTCCCAGAGC

Opa1 GATGACACGCTCTCCAGTGAAG CTCGGGGCTAACAGTACAACC
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skeletal muscle mass, we measured the absolute mass of

gastrocnemius and tibialis anterior muscles, and the sar-

copenic indices (muscle mass per body weight). The abso-

lute muscle mass was lower in aged Nrf2 KO mice

compared with aged WT mice (Fig. 1B). Aging decreased

sarcopenic index; however, there was no effect of Nrf2

deficiency (Fig. 1C).

Antioxidant gene expression and oxidative
stress

Knockout of Nrf2 was confirmed by undetectable mRNA

expression compared to WT mice. There was no effect

of aging on mRNA expression of Nrf2 and its major tar-

get genes (Nqo1, Cat, Gclc, Sod1, and Sod2). The

expression of Nrf2 target antioxidant genes was decreased

in aged Nrf2 KO muscle, except for Sod2, which was

not altered (Fig. 2). To examine mitochondrial oxidative

damage, we measured the level of 4-HNE, a marker of

lipid peroxidation, and protein carbonyl content, a mar-

ker of protein oxidation, in mitochondrial fractions.

Nrf2 KO mice demonstrated substantial increases in

4-HNE (Fig. 3A) and protein carbonyl content (Fig. 3B).

Catalase activity was lower in Nrf2 KO mice compared

with young WT mice, while total SOD activity was not

altered (Fig. 4).

Mitochondrial function and dynamics

To examine mitochondrial content, we first measured

maximal activity of CS and COX, representatives of the

TCA cycle and electron transport chain. COX activity was

lower in aged WT and Nrf2 KO mice, whereas there was

no difference in CS activity between groups (Fig. 4).

Next, we measured mitochondrial respiration and ROS

production as indicators of mitochondrial function. Mito-

chondrial respiration was decreased with age, while ROS

production was higher in aged Nrf2 KO mice (Fig. 5A

and B). To further assess mitochondrial quality, we evalu-

ated mitochondrial dynamics regulatory gene expression.

Drp1 mRNA was higher in aged muscle, while Mfn1 and

Mfn2 mRNA were lower in aged Nrf2 KO mice (Fig. 6).

At the protein level, Nrf2 KO resulted in decrease in

mitochondrial complex I and II, while III, IV, and V

remained unchanged (Fig. 7A). There was no effect of

Nrf2 deficiency on mitochondrial fusion and fission pro-

teins, although a decline in Mfn2 protein content

approached significance (P = 0.10) (Fig. 7B).

Gastrocnemius Tibialis anterior
0

1

2

3

4

5

M
us

cl
e/

bo
dy

 w
ei

gh
t (

m
g/

g)

WT-YOUNG
WT-AGED
KO-AGED

Gastrocnemius Tibialis anterior
0

50

100

150

M
us

cl
e 

w
ei

gh
t (

m
g)

WT-YOUNG
WT-AGED
KO-AGED

WT-YOUNG WT-AGED KO-AGED
0

10

20

30

40

50
B

od
y 

w
ei

gh
t (

g)

**
##
**

##
**

*# ** **

** **

A B C
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Discussion

Although mitochondria have been considered as a major

potential mediator of sarcopenia, the molecular basis of

the relationship between skeletal muscle mitochondria

and sarcopenia is still unclear. Literature postulating an

effect of aging on mitochondrial content has been con-

troversial; however, the majority of reports showed

increased ROS production with aging (Carter et al. 2015;

Holloway et al. 2018). Given that mitochondria are not

only the primal source of ROS but also the target of

oxidative damage, ROS might create feedback loops,

which exacerbate mitochondrial dysfunction. Previous

studies investigated the relationship between Nrf2 and

mitochondrial function (Holmstrom et al. 2013; Coleman

et al. 2018). Loss of Nrf2 led to impaired mitochondrial

respiration in mouse embryonic fibroblasts (Holmstrom

et al. 2013) or muscle fibers of UCP1-transgenic mice

(Coleman et al. 2018); however, to the best of our

knowledge, isolated mitochondrial fractions from aged

Nrf2 KO skeletal muscle have not been examined. In this

study, we found substantially increased oxidative stress in

isolated mitochondrial fractions from aged Nrf2 KO

muscle. As observed in earlier investigations, Nrf2 defi-

ciency induced the decrease in the expression of its target

antioxidant genes (Miller et al. 2012; Kitaoka et al.

2016). Importantly, previous studies demonstrated
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increases in ROS and 4-HNE levels in whole muscle

homogenate of aged Nrf2 KO mice (Miller et al. 2012;

Narasimhan et al. 2014). The current study using isolated

mitochondrial fractions indicated that the redox balance

was altered toward accumulation of oxidative stress,

which is regarded as an index of mitochondrial toxicity.

Despite the elevated mitochondrial oxidative stress, how-

ever, there was no effect of Nrf2 deficiency on mitochon-

drial respiration and sarcopenic index in aged skeletal

muscle. Lastly, we assessed mRNA and protein expression

of genes related to mitochondrial fusion and fission,

which is an important process in the maintenance of

functional mitochondria (Yan et al. 2012). Morphologi-

cally, aging induces mitochondrial fragmentation or unu-

sual enlargement in skeletal muscle (Iqbal et al. 2013;

Leduc-Gaudet et al. 2015). We observed that mitochon-

drial fusion regulatory genes were modestly down-regu-

lated in aged Nrf2 muscle, supporting that concept that

ROS induces mitochondrial fragmentation (Fan et al.

2010; Iqbal and Hood 2014). However, at the protein

level, the decline in Mfn2 with Nrf2 KO did not reach

significance. Further study is needed to examine whether
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the mitochondria in aged Nrf2 KO muscle show aberrant

ultrastructure by electron microscopy. Taken together,

our results suggest that oxidative stress is not the proxi-

mate cause of muscle atrophy. Our data coincide with

previous observations using Nrf2 KO mice in denerva-

tion-induced muscle atrophy (Kitaoka et al. 2016) and

streptozotocin-induced diabetic atrophy model (Whitman

et al. 2013).

Evidence supporting the role of mitochondrial oxida-

tive damage in age-related muscle dysfunction has been

demonstrated using mice with genetically enhanced

mitochondrial antioxidant activity (Umanskaya et al.

2014) or mice treated with mitochondrial protective

peptide (Siegel et al. 2013). Furthermore, administration

of sulforaphane, known as an Nrf2 activator, has shown

improved muscle function in a mouse muscular dystro-

phy model (Sun et al. 2015). A limitation of this study

is that we did not measure skeletal muscle fiber size/

number and contractile function. Crilly et al. (2016)

reported that Nrf2 KO mice demonstrated higher rate of

fatigue in isolated muscle compared with WT animals.

More recently, Ahn et al. (2018) reported that force gen-

eration normalized to muscle cross sectional area is

reduced in old Nrf2 KO mice compared with age-

matched WT mice. These studies suggest that high levels

of ROS exposure due to the absence of Nrf2 may alter

muscle contractile function, not necessarily accompanied

by changes in muscle mass.

In this study, we sought to examine the effect of Nrf2

deficiency on mitochondria in aged skeletal muscle. We

demonstrated that Nrf2 deficiency enhanced mitochon-

drial ROS production in aged skeletal muscle and exacer-

bates age-related oxidative stress, but has little effect on

mitochondrial function or muscle mass.
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