

KAMUS ALJABAR

DEPARTEMEN PENDIDIKAN DAN KEBUDAYAAN

KAMUS ALJABAR

KAMUS ALJABAR

Djati Kerami
Kiki Aryanti
Sri Mardiyati
Cormentyna Sitanggang

Pusat Pembinaan dan Pengembangan Bahasa
Departemen Pendidikan dan Kebudayaan
Jakarta

KAMUS ALJABAR

Penyusun

Dr. Jati Kerami
Dra. Kiki Aryanti, M.Sc.
Dra. Sri Mardiyati
Dra. Cormentyna Sitanggang

Porpustakaan Pusat Pembinaan dan PengembasganBahasa

Pembina Proyek

Dr. Hasan Alwi
Pemimpin Proyek
Drs. Abdul Murad
Penyunting
Dra. Hartini Supadi

Pewajah Kulit Drs. Sukasdi

Pembantu Teknis
Radiyo
Sunarko

ISBN 979-459-578-0
Pusat Pembinaan dan Pengembangan Bahasa
Jalan Daksinapati Barat IV
Rawamangun
Jakarta 13220
Hak cipta dilindungi undang-undang.
Sebagian atau seluruh isi buku ini dilarang diperbanyak
dalam bentuk apa pun tanpa izin tertulis
dari penerbit, kecuali dalam hal pengutipan
untuk keperluan penulisan artikel atau karangan ilmiah.

KATA PENGANTAR KEPALA PUSAT PEMBINAAN DAN PENGEMBANGAN BAHASA

Bagian Proyek Pembinaan Bahasa dan Sastra Indonesia-Jakarta yang bernaung di bawah Pusat Pembinaan dan Pengembangan Bahasa, Departemen Pendidikan dan Kebudayaan, sejak tahun 1974 mempunyai tugas pokok melaksanakan kegiatan kebahasaan dan kesastraan yang bertujuan meningkatkan mutu pemakaian bahasa Indonesia yang baik dan benar, menyempurnakan sandi (kode) bahasa Indonesia, mendorong pertumbuhan sastra Indonesia, dan meningkatkan apresiasi sastra Indonesia. Dalam rangka penyediaan sarana kerja dan buku acuan bagi mahasiswa, guru, dosen, dan tenaga peneliti, tenaga ahli, dan masyarakat umum, naskah hasil penelitian dan penyusunan para ahli diterbitkan dengan biaya proyek ini.

Kamus istilah yang diterbitkan mencakupi empat bidang ilmu, yaitu matematika, fisika, kimia, dan biologi. Terbitan ini, Kamus Aljabar merupakan salah satu seri itu yang naskahnya berhasil disusun berkat bantuan tenaga dan pikiran Dr. Djati Kerami, Drs. Kiki Aryanti, M.Sc., Dra. Sri Mardiyati, dan Dra. Cormentyna Sitanggang. Untuk itu, kepada keempat pakar ini saya sampaikan terima kasih dan penghargaan yang setinggi-tingginya.

Ucapan terima kasih juga ingin saya sampaikan kepada Drs. Abdul Murad (Pemimpin Proyek 1994/1995), Drs. Sukasdi (Sekretaris Proyek), Drs. Suhadi (Bendaharawan Proyek), Sdr. Sartiman, Sdr. Radiyo, dan Sdr. Sunarko (Staf proyek) yang telah mengelola penerbitan buku ini.

PRAKATA

Dalam menyusun Kamus Aljabar ini ada dua keinginan kami. Yang pertama ialah memasyarakatkan istilah Aljabar dalam bahasa Indonesia dengan harapan terbakukannya istilah Aljabar yang seragam dalam bahasa Indonesia; yang kedua ialah mencoba memberikan pengertian yang benar mengenai konsep-konsep Aljabar yang diajarkan di sekolah-sekolah.

Dalam penyusunan kamusAljabar, Pusat Pembinaan dan Pengembangan Bahasa sengaja tidak memaksakan diri untuk mencari kata-kata Indonesia lama, tetapi lebih banyak mengindonesiakan istilah asing sesuai dengan Pedoman Umum Pembentukan Istilah. Hal ini bukan berarti tidak mengembangkan bahasa Indonesia, melainkan pengembangan bahasa Indonesialah yang dituju. Kemudahan mempelajari Aljabar, Ilmu yang relatif baru dan belum berakar kokoh dalam kebudayaan Indonesia, senantiasa merupakan salah satu pertimbangan. Kemampuan memahami aljabar dalam bahasa asing tanpa menguasai benar bahasa tersebut akan sangat tertolong dengan adanya keserupaan istilah.

Dalam menjelaskan pengertian istilah, kami terutama berpegang pada James and James, Mathematics Dictionary, edisi ke-4, terbitan Van Nostrand Reinhold Company (1976).

Kamus ini diusahakan mencakupi peristilahan Aljabar tingkat sekolah menengah dan perguruan tinggi tahun pertama karena di sinilah pelajar diharapkan mulai memahami dengan sadar pengertian-pengertian Aljabar.

Kata entri disusun menurut abjad berdasarkan kata dasar istilah. Jadi, pembagian (division) misalnya, tercantum di bawah kata dasar -bagi, dan pembilang (dominator) di bawah -bilang. Demikian pula halnya dengan kata entri yang terdiri atas gabungan kata yang kata pertamanya merupakan bentuk berimbuhan atau mendapat prefiks. Istilah seperti itu tercantum di bawah kata dasar kata pertama gabungan kata itu, misalnya perkalian matriks (product of matrices) terdapat di bawah kata dasar -kali, dan kata entri perluasan medan akar (extension root of field) di bawah -luas.

Definisi istilah dicantumkan langsung di bawah entri Indonesianya. Pemakai yang bermodal istilah dalam bahasa Inggris dapat mencari padanan Indonesia istilah itu terlebih dahulu dalam Pedoman Kata Inggris-Indonesia di bagian belakang kamus ini.

Kami menyampaikan terima kasih yang sebesar-besarnya kepada Pusat Pembinaan dan Pengembangan Bahasa atau pengertian dan kesabaran yang diberikan pada upaya penyusunan kamus ini.

ALJABAR I, II \& III

A

adjoint pemetaan linear

pemetaan linear T^{*} dengan sifat $\langle\mathrm{T}(\mathrm{u}), \mathrm{v}\rangle=\left\langle\mathrm{u}, \mathrm{T}^{*}(\mathrm{v})\right\rangle$ untuk setiap unsur u dan v dalam ranah pemetaan linear $T,<,>$ adalah darab dalam di v
(adjoint of linear map)
-akar
akar ganda
akar persamaan yang berulang dua kali; persamaan
(double root)
akar karakteristik
(characteristic root)
akar kuadrat lihat: vektor karakteristik
akar kuadrat
bilangan real s yang bersifat $\mathrm{s}^{2}=\mathrm{n}$ dan biasanya disimbolkan dengan
Vn^{-}; bilangan s disebut akar kuadrat dari n (square root)
akar kubik (akar pangkat tiga)
bilangan real b sehingga $b^{3}=a$ untuk suatu bilangan real a, bilangan b ini disebut akar kubik dari a (cubic root)

akar persamaan

bilangan atau unsur a yang memenuhi $f(a)=0$ dengan $f(x)=0$ adalah persamaan yang diberikan; contoh :2 adalah akar persamaan $x^{2}-x+2=0$
(root of an equation)
akar satuan
bilangan kompleks z yang memenuhi sifat $z^{n}=1$ untuk suatu bilangan bulan positif n; mempunyai bentuk umum $\cos \left(k \cdot 360^{\circ}\right)+$ $1 \sin \left(\mathrm{k} .360^{\circ}\right)$ untuk $\mathrm{k}=0,1,2, \ldots$
(root of unity)
akar sederhana
akar persamaan yang tidak berulang (simple root)

algoritma pembagian

teorema bilangan bulan yang menyatakan bahwa untuk setiap bilangan bulat m dan bilangan bulat positif n selalu terdapat bilangan bulat tunggal q dan r sehingga $m=n q+r, 0<r<n$
(division algorithm)

alih ragam

(transformation)
lihat: transformasi

anihilator

kelas fungsi yang memetakan suatu himpunan S ke unsur 0 (annihilator)
anisatropik
ruang vektor metrik dengan sifat setiap kuadrat vektor tak-nol-nya tidak sama dengan nol atau $\mathrm{A}^{2}=0$ untuk setiap vektor tak-nol A (anisotropic)

automorfisme

isomorfisme dari suatu himpunan ke dirinya sendiri
(automorphism)
automorfisme dalam
automorfisme grup yang memetakan unsur x ke $\mathrm{x}^{*}=\mathrm{t}^{-1} \mathrm{xt}$ untuk suatu unsur t dalam grup
(inner automorphism)
automorfisma grup
isomorfisme dari suatu grup ke dirinya sendiri
(automorphism of a grup)

B

-bagi

pembagi

bilangan bulat a disebut pembagi dari bilangan bulat b bila terdapat bilangan bulat x sehingga $\mathrm{b}=\mathrm{ax}$; pengertian ini sering disimbolkan dengan a / b dan disebut dengan a membagi b (divisor)

pembagian

1. mencari hasil bagi dan sisa pada logaritma pembagian;
2. operasi balikan dari perkalian; hasil dari pembagian suatu bilangan (yang dibagi) dengan bilangan lain (pembagi) disebut hasil bagi; hasil bagi a / b dari dua bilangan a dan b adalah bilangan c sehingga b. $c=a$, asalkan c ada dan hanya mempunyai sebuah nilai yang mungkin (jika $b=0$, maka ctidak ada jika $a=0$ dari titik tunggal jika $\mathrm{a}=0$; yaitu $\mathrm{a} / 0$ tak ada artinya untuk semua a dan pembagian dengan 0 tidak mempunyai arti); hasil bagi a/b juga dapat didefinisikan sebagai hasil kali a dengan balikan b; misalnya $6 / 3=2$ sebab $3.2=6 ;(3+i) /(2-i)=(1+i)$ sebab $(3+i)=(2-i)(1+i)$; pembagian suatu pecahan dengan bilangan bulat dapat diselesaikan dengan membagi pembilangnya (atau mengalikan penyebutnya) dengan bilangan bulat tersebut ($4 / 5: 2=2 / 5$ atau $4 / 10$); pembagian dengan suatu pecahan dapat diselesaikan dengan membalikkan pecahan itu dan mengalikannya dengan dibagi, atau dengan menulis hasil bagi sebagai pecahan kompleks dan menyederhanakannya

pembagian bilangan-bilangan campuran dapat diselesaikan dengan mengubah bilangan campuran menjadi pecahan dan kemudian melakukan pembagian $\left(1 \frac{2}{3}: 3 \frac{1}{2}\right) \frac{1}{3}: \frac{7}{2}=\frac{5}{3} \times \frac{2}{7}=\frac{10}{21}$ (division)
pembagi nol
unsur taknol dalam medan yang bersifat apabila dioperasikan dengan unsur lain menghasilkan unsur nol. Jadi, unsur y dalam medan L disebut pembagi nol apabila y bukan unsur 0 dan terdapat unsur x di medan L sehingga $x y=0,0$ adalah unsur satuan untuk operasi penambahan.
(zero divisor)
pembagi persekutuan
bilangan bulat yang merupakan faktor dari dua bilangan bulat yang diberikan
(common divisor)
pembagi persekutuan terbesar
pembagi persekutuan yang terbesar dari dua bilangan bulat yang diberikan
(greatest common divisor)
-balik
balikan matriks
matriks A^{-1} yang bersifat sebagai matriks balikan dari matriks bujur sangkar A dan $A^{-1 . A}=A \cdot A .{ }^{-1}=I$; lihat juga matriks balikan (invers of matrix)

-bangkit

pembangkit grup

(1) unsur a dalam grup sehingga setiap unsur lain \mathbf{x} dalam grup tersebut dapat dibangun dari a dengan $x=a^{n}$ untuk suatu bilangan
bulat n ; (2) himpunan bagian dari grup sehingga unsur-unsur dalam grup dapat dibangun oleh anggota himpunan tersebut
($x \in x=x$)

-baris

barisan bilangan

fungsi dari himpunan bilangan asli ke himpunan bilangan real
(sequence of number)
baris matriks
lajur horizontal pada matriks
($x x x$)
-basis
basis grup Abel
himpunan bagian X dari grup Abel F yang mempunyai sifat F $=\langle X\rangle$ dan untuk setiap $x_{1}, x_{2}, \ldots, x_{k}$, unsur di X yang berbeda dan n_{i} unsur di Z dan $n_{1} x_{1}+\ldots+n_{k} x_{k}=0$ maka ni $=0$ untuk setiap i
(basic of an Abelian group)
basis ortogonal
basis (dari ruang vektor) yang vektor-vektornya saling ortogonal; lihat juga ortogonal
(orthogonal basic)
basis ortonormal
basis ortogonal yang vektor-vektornya mempunyai norma (panjang) satu
(orthonormal basic)
basis ruang vektor
himpunan vektor dalam ruang vektor V yang bebas linear dan membangun V ; suatu himpunan vektor $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ disebut membangun ruang vektor V apabila setiap vektor v di V dapat dituliskan sebagai kombinasi linear dari $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{n}}\right\}$;
(basic of vector space)
basis terurut
basis ruang vektor yang diurutkan berdasarkan aturan tertentu (ordered basic)
bebas linear
sifat dari himpunan $S=\left\{x_{1}, \ldots, x_{n}\right\}$ yaitu apabila pernyataan $\sum_{i=1}^{n} a_{i} x_{i}=0$ mengakibatkan harga setiap skalar ai sama dengan nol; bila himpunan

Stidak memenuhi kriteria di atas, himpunan S disebut bergantung linear (linear independent)

bentuk bilinear selang-seling

bentuk bilinear f yang bersifat $f(v, v)=0$ untuk setiap unsur v dalam ruang v
(alternating bilinear form)

bentuk bilinear simetrik

bentuk bilinear f pada ruang vektor v yang bersifat $f(u, v)=f(v, u)$ untuk
setiap u dan v di ruang v
(symetric bilinear form)
bentuk bilinear takmerosot
bentuk bilinear f pada ruang vektor v dengan rang $(f)=\operatorname{dim} \cdot v$, dengan rang (f) adalah rang dari matriks yang mewakili f; apabila rang (f) < dim V , f disebut merosot
(non-degenerate bilinear form)
bentuk eselon baris matriks
matriks yang barisnya mempunyai sifat: 1) baris taknol mempunyai'satu sebagai entri taknol pertama yang disebut satu utama; 2) baris nol terletak di bagian paling bawah matriks; 3) jika ada dua baris taknol maka satu utama baris yang terletak di sebelah bawah ada di sebelah kanan dari satu utama baris yang terletak lebih di atas,
contoh: $\left[\begin{array}{lllll}1 & 0 & 2 & 4 & 0 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
(row achelon kolom matriks)
bentuk eselon kolom matriks
matriks yang kolomnya mempunyai sifat sebagai berikut 1) kolom yang taknol mempunyai satu sebagai entri taknol pertama yang disebut "satu utama'; 2) kolom nol terletak di bagian paling kanan dari matriks; 3) jika ada dua kolom taknol yang bersebelahan maka kolom yang terletak lebih ke kanan mempunyai satu utama yang terletak di bawah kolom yang terletak di sebelah kirinya,
contoh:
(column achelon form of a matrix)

bentuk kanonis

bentuk matriks yang sederhana dan mudah digunakan; contoh: matriks diagonal, matriks segitiga, dan matriks Jordan
(canonical form)

bentuk kanonis Jordan

bentuk kanonik yang berupa matriks
$\left|\begin{array}{cccc}\mathrm{J}_{1} & 0 & \ldots . . & 0 \\ 0 & \mathrm{~J}_{2} & \ldots . . & 0 \\ \ldots & \\ 0 & 0 & \ldots & \mathrm{J}_{\mathrm{s}}\end{array}\right|$
dengan Ji merupakan blok matriks yang berbentuk
$\left|\begin{array}{llllll}a_{i} & 1 & 0 & 0 & \ldots & 0 \\ 0 & a_{i} & 1 & 0 & \ldots & 0 \\ \ldots . \ldots & & & \\ 0 & 0 & 0 & 0 & \ldots . & a_{i}\end{array}\right|$
a1 adalah nilai karakteristik matriks asal; bentuk ini juga disebut bentuk normal Jordan
(Jordan canonical form)

bentuk kuadratik

polinomial yang berderajat dua
(quadratic form)
bentuk normal Jordan
(Jordan normal form)
lihat: bentuk kanonis Jordan
bija homomorfisme
(kernel of homomorphism)
lihat: kernel homomorfisme
-bilang
bilangan aljabar
bilangan real yang merupakan akar dari suatu polinomial dengan
koefisien rasional
(algebraic number)
bilangan asli
bilangan yang biasanya digunakan untuk menghitung sehari-hari,
yaitu $1,2,3,4,5, \ldots$.
(natural number)

bilangan bulat

bilangan-bilangan $1,2,3,4,5, \ldots$ dan $0-1,-2,-3, \ldots$.
(whole number)

bilangan bulat Gauss

bilangan kompleks $\mathrm{a}+\mathrm{bi}$ dengan a dan b bilangan bulat, $\mathrm{i}=-1$
(Gaussian integers)

bilangan khayal

bilangan yang bernilai -1 , dan disimbolkan sebagai " i "
(imaginer number)

bilangan kompleks

setiap bilangan, real atau imaginer, yang berbentuk sebagai a + bi dengan a dan b bilangan real dan $i^{2}=-1$; dinamakan bilangan imaginer bila $\mathrm{b} \neq \mathrm{o}$ dan imaginer murni bila $\mathrm{a}=\mathrm{O}$ dan $\mathrm{O} \neq \mathrm{O} ; \mathrm{O}$, bilangan kompleks didefinisikan sama jika dan hanya jika keduanya identik; artinya $\mathrm{a}+\mathrm{bi}=\mathrm{c}+$ di berarti $\mathrm{a}=\mathrm{c}$ dan $\mathrm{b}=\mathrm{d}$; bilangan kompleks $\mathrm{x}+\mathrm{yl}$ dapat digambarkan pada bidang sebagai vektor berkomponen x dan y , atau sebagai titik (x, y);

jadi, dua buah bilangan kompleks sama jika dan hanyajika keduanya digambarkan sebagai vektor yang sama atau titik yang sama; dalam koordinat kutub, $x=r \cos 0$ dan $y=r \sin 0$, jadi $x+y i=r(\cos 0+i$ $\sin 0$) yang merupakan bentuk kutub dari $x+y i$; jumlah bilangan komple 4 ks diperoleh dengan menjumlahkan secara terpisah bagian real dan koefisien dari i; contoh: $(2-3 i)+(1+5 i)=3+2 i$; secara
geometri, ini sama dengan perjumlahan vektor pada bidang $\mathrm{OP}_{1}+$ $\mathrm{OP}_{2}=\mathrm{OP}_{3}\left(\mathrm{OP}_{2}=\mathrm{P}_{1} \mathrm{P}_{3}\right)$

produk (hasil-kali) bilangan kompleks dihitung dengan memperlakukan bilangan-bilangan sebagai suku banyak (polinomial) dalam i dengan sifat khusus

$$
\begin{aligned}
& \mathrm{i}^{2}=-1 ; \text { jadi } \\
& \begin{aligned}
(\mathrm{a}+\mathrm{bi})(\mathrm{c}+\mathrm{di}) & =\mathrm{ac}+(\mathrm{ad}+\mathrm{bc}) \mathrm{i}+\mathrm{bdi}^{2} \\
& =\mathrm{ac}-\mathrm{bd}+(\mathrm{ad}+\mathrm{bc}) \mathrm{i}
\end{aligned}
\end{aligned}
$$

jika bilangan kompleks situ berbentuk $r_{1}(\cos A+i \sin A)$, dan $r_{2}(\cos$ $B+i \sin B)$ hasil-kalinya adalah
$r_{1} r_{2}[\cos (A+B)+i \sin (A+B)]$, yaitu untuk mengalikan dua bilangan kompleks, kalikan modulusnya dan jumlahkan argumennya; dengan cara yang sama hasil-bagi dua bilangan kompleks adalah suatu bilangan kompleks dengan modulus, yang merupakan hasil-bagi modulus yang dibagi dengan pembagi dan yang argumennya adalah selisih argumen yang dibagi dan pembagi, yaitu:
$r_{1}\left(\cos 0_{1}+i \sin 0_{1}\right): r_{2}\left(\cos 0_{2}+i \sin 0_{2}\right)=$
$r_{1} / r_{2}\left[\cos \left(0_{1}-0_{2}\right)+i \sin \left(0_{1-0} 2\right)\right]$
bila bilangan itubukan dalam bentuk kutub, pembagiannya diperoleh dengan mengalihkan pembilang dan penyebut dengan kawan penyebut, misalnya

$$
\frac{2+i}{1+i}=\frac{(2+i)(1-i)}{(1+i)(1-i)}=\frac{3-1}{2}
$$

(definisi) sistem bilangan kompleks adalah himpunan pasangan terurut bilangan real (a, b) dengan dua pasangan sama jika dan hanya jika keduanya identik $[(\mathrm{a}, \mathrm{b})=(\mathrm{s}, \mathrm{d})$ jika dan hanya jika $\mathrm{a}=\mathrm{c}$ dan b
$=\mathrm{d}]$, serta perjumlahan dan perkalian didefinisikan sebagai:

$$
\begin{aligned}
& (a, b)+(c, d)=(a+c, b+d) \\
& (a, b)(c, d)=(a c-b d, a d+b c) ;
\end{aligned}
$$

sistem ini memenuhi kebanyakan hukum aljabar yang paling fundamental, seperti hukum asosiatif dan kumulatif untuk perjumlahan dan perkalian; sistem ini merupakan suatu medan, tetapi bukan medan yang terurut; akibat yang perlu dicatat dari definisi ini adalah:

$$
\begin{array}{ll}
(0,1)(0,1) & =(-1,0) ; \\
(0,-1)(0,-1) & =(-1,0) ;
\end{array}
$$

artinya bilangan $(-1,0)$ atau -1 mempunyai dua akar $(0,1)$ dan $(0,-1)$
(complex number).

bilangan majemuk

bilangan bulat yang dapat dinyatakan dalam perkalian dua bilangan bulat lainnya
(composite number)

bilangan negatif

bilangan real yang lebih kecil dari 0
(negative number)

bilangan nyata

(real number)
lihat: bilangan real

bilangan positif

bilangan yang lebih besar dari 0
(positive number)

bilangan prima

bilangan bulat lebih besar dari satu yang faktornya adalah satu atau dirinya sendiri; contoh: $2,3,5,6,7,11,13$
(prime number)

bilangan rasional

bilangan real yang dapat dituliskan dalam bentuk p / q dengan p dan q adalah bilangan bulat; bilangan real yang tidak memenuhi ketentuan di atas disebut bilangan takrasional (rational number)

bilangan real

bagian bilangan kompleks yang bukan bilangan khayal; untuk bilangan kempleks $x+i y$, maka x-dan y adalah bilangan real
(real number)
bilangan takrasional
(irrational number)
lihat: bilangan rasional
pembilang
suku N dalam pecahan N/D
(nominator)

C

-cepat

percepatan
laju perubahan kecepatan terhadap waktu; apabila $v(t)$ kecepatan pada saat t, maka percepatan pada saat t adalah $a(t)=d v / d t$, yang disebut dengan percepatan sesaat (accelaration)

D

daerah definisi transformal linear

(domain of linear transformation)
lihat: ranah transformasi linera
daerah integral
(integral domain)
lihat: ranah integral
darab dalam
fungsi yang memetakan pasangan terurut (x, y) dalam ruang VxV ke skalar kompleks $\langle\mathrm{x}, \mathrm{y}\rangle$ dengan sifat:
(1) $\langle x, y\rangle 0$ dan $x, y\rangle=0$ jika dan hanya jika $x=0$;
(2) $\langle x, y\rangle=\langle y, x\rangle$ dengan $\langle y, x\rangle$ merupakan sekawanan kompleks dari $\langle\mathbf{y}, \mathrm{x}\rangle$;
(3) $\langle\mathrm{kx}, \mathrm{y}\rangle=\mathrm{k}\langle\mathrm{x}, \mathrm{y}\rangle$ dengan k suatu skalar;
(4) $\langle\mathrm{x}+\mathrm{y}, \mathrm{z}\rangle=\langle\mathrm{x}, \mathrm{y}\rangle$; karena nilai $\langle\mathrm{x}, \mathrm{y}\rangle$ adalah skalar, maka darab-dalam sering juga disebut darab skalar
(inner product)
darab dalam baku
darab skalar yang mempunyai bentuk $\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}$ untuk unsur x dan y di ruang R^{n}
(standard inner product on R^{n})
darab skalar
(scalar product)
lihat: darab dalam

dasar sistem bilangan

dasar untuk melakukan perhitungan, setiap bilangan selalu dapat dituliskan dalam bentuk $c_{n} b^{n}+c_{n-1} b^{n-1}+\ldots+c_{1} b^{1}+c_{0} b^{0} ; b$ disebut dasar sistem bilangandan c merupakan bilangan bulat positif yang lebih kecil dari b (base of number system)

dasar sistem logaritma

bilangan a yang merupakan dasar dari fungsi logaritma dari suatu bilangan positif; jika suatu logaritma mempunyai basis q, maka ${ }^{a} \log M$ $=\mathrm{x}$ bila $\mathrm{a}^{\mathrm{x}}=\mathrm{M}$ (base of a logarithmic system)

derajat polinomial

pangkat tertinggi dari peubah polinomial; polinomial $\mathrm{a}_{0} \mathrm{X}_{\mathrm{n}}+\mathrm{a}_{1} \mathrm{x}_{\mathrm{n}-1}+\ldots+$ a_{n} mempunyai derajat n
(degree of polynomial)
determinan
fungsi yang memetakan matriks ke suatu bilangan real atau bilangan kompleks dengan nilai yang dinyatakan sebagai jumlah dari perkalian khusus antara entri matriksnya

$$
\begin{aligned}
& \left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c \\
& \left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=a_{1} b_{2} c_{3}+a_{1} b_{3} c_{2}+a_{2} b_{1} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}+a_{3} b_{2} c_{1}
\end{aligned}
$$

(determinant)

determinan Vandermonde

determinan matriks yang baris pertama berisi entri 1 semua, baris kedua bebas (tidak ditentukan) dan entri baris ke-i adalah ($\mathrm{a}_{2 \mathrm{j}} \mathrm{J}^{\mathrm{j}-1}$ untuk $\mathrm{j}=$ 1,2,...,n; contoh
$\left|\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 4 & 16 \\ 0 & 8 & 64\end{array}\right|$
(Vandermonde determinant)

diagonal matriks

entri-entri matriks yang terletak pada garis diagonal segi empat matriks
tersebut
(diagonal of a matrix)
diagonal utama matriks
diagonàl matriks yang dibentuk dari entri paling kiri atas ke entri paling
kanan bawah
(main diagonal of a matric)
diagram komutatif
diagram morfisme

yang bersifat apabila setiap komposisi dua morfisme dalam diagram yang bermula dan berakhir di tempat yang sama, akan menyatakan morfisme yang sama. Jadi, $\mathrm{hf}=\mathrm{fg}$
(commutative diagram)
dimensi ruang vektor
banyaknya vektor basis dari ruang vektor yang bersangkutan (tersebut) (dimension of vector space)

diskriminan

ekspresi berbentuk $b^{2}-4 a c$ untuk persamaan kuadrat $a x^{2}+b x+c$; ekspresi berbentuk $4 a c f-b^{2} f-a e^{2}-c^{2}+$ bde untuk persamaan kuadrat $a x^{2}+2 b x y$ $+\mathrm{cy}^{2}+\mathrm{dx}+e \mathrm{e}+\mathrm{f}=0$
(discriminant)

E

ekspansi determinan atas baris

cara mencari nilai determinan suatu matriks bujur sangkar a dengan berpatokan pada salah satu baris matriks \mathbf{A}
(expansion of a determinant about a row)

ekspansi determinan atas kolom

cara mencari nilai determinan suatu matriks bujur sangkar a dengan berpatokan pada satu kolom tertentu; contoh,

$$
\text { misalkan } A=\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 2 \\
3 & 6 & 4
\end{array}\right|
$$

maka det(A) apabila dihitung berdasarkan ekspansi kolom kedua adalah:

$$
\begin{aligned}
& (-1)^{i}+2.1 . \operatorname{det}\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|+(-1)^{2}+2.0 \cdot \operatorname{det}\left|\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right|+ \\
& (-1)^{3}+2.6 \cdot \operatorname{det} \\
&
\end{aligned}
$$

(expansion of a determinant about a column)
eliminasi
proses menurunkan sistem persamaan lain dari sistem persamaan semula, yang tidak lagi mengandung bilangan anu yang dieliminasikan, dan dipenuhi oleh nilai bilangan anu yang tersisa, yang memenuhi persamaan semula; hal ini dapat dilakukan dengan berbagai cara;
eliminasi dengan penjumlahan atau pengurangan adalah proses menuliskan sistem persamaan dalam bentuk yang demikian rupa sehingga bila sepasang-sepasang dijumlahkan atau dikurangkan, satu atau lebih peubahnya akan hilang; selanjutnya penjumlahan atau pengurangan mungkin mensyaratkan untuk mempertahankan sistem agar memuat sedikitnya satu peubah lebih sedikit; contoh: (a) diketahui $2 x+3 y+4$ $=\mathbf{O}$ dan $\mathrm{x}+\mathrm{y}-1=\mathbf{O}, \mathrm{x}$ dapat dieliminasikan dengan mengalikan persamaan terakhir dengan z dan mengurangkan hasilnya ini dari persamaan pertama, dan diperoleh $y+6=0$; (b) diketahui
(1) $4 x+6 y-z-9=0$
(2) $x-3 y+z+1+0$
(3) $x+2 y+z-4+0$
y dapat dieliminasikan dengan mengalihkan persamaan (2) dengan 2 dan menjumlahkan hasilnya dengan persamaan (1), atau dengan mengalikan persamaan (3) dengan -3 dan menjumlahkan hasilnya dengan persamaan (1); hasilnya adalah $6 x+z-7=0$ dan $x-4 z+3=0$; eliminasi dengan perbandingan adalah proses mengambil dua persamaan dalam bentuk demikian rupa sehingga ruas kiri (atau ruas kanan) identik dan ruas yang lain tidak memuat salah satu peubah; kemudian kedua ruas kanan (atau kiri) disamakan; contoh: $x+y=1$ dan $2 x+y=$ 5 dapat ditulis sebagai $x+y+1$ dan $x+y=5-x$; jadi $5-x=1$; eliminasi dengan substitusi adalah proses menyelesaikan satu dari sistem persamaan itu terhadap satu peubahnya (dinyatakan dalam peubah lain); kemudian peubah ini disubstitusi ke dalam persamaan-persamaan yang lain; contoh: dalam menyelesaikan $x-y=2$ dan $x+3 y=4$, kita dapat menyelesaikan persamaan pertama terhadap x dan diperoleh $x=y+z$, dan kemudian mensubsitusi hasil ini pada persamaan yang kedua dan diperoleh $y+2+3 y=4$ atau $y=1 / 2$ (elimination)
endomorfisme
homomorfisme dari ruang A ke dirinya sendiri
(endomorphism)

endomorfisme grup

hoomomoarfisme antargrup G dengan dirinya sendiri (endmorphism of group)
endomorfisme modul homomorfisme modul dari suatu modul M ke dirinya sendiri (endomorphism of module)

entri matriks

(entry of matrix)

epimorfisme

homomorfisme pada (homomorfisme $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ disebut "pada", apabila $\mathrm{f}(\mathrm{A})=\mathrm{B})$ (epimorphism)

F

faktor

besaran (objek) yang membagi besaran (objek) yang diberikan (factor)
faktor bilangan bulat
bilangan bulat yang menjadi faktor dari satu atau lebih bilangan bulat yang diberikan. Contoh: faktor dari 36 adalah $1,2,3,4,6,9,12,18$ dani 36 (factor of an integar)
faktor polinomial
polinomial yang menjadi faktor dari satu atau lebih polinom yang diberikan; lihat juga faktor dan polinomial (factor of polynomial)
faktor prima
faktor bilangan bulat yang merupakan bilangan prima
(prime factor)
fungsi
pengaitan antara suatu unsur di himpunan A dengan satu dan hanya satu unsur saja di himpunan B, disimbolkan dengan $f: A \rightarrow B$
(function)
fungsi pada
fungsi $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ yang daerah nilainya sama dengan kesarannya atau $\mathrm{f}(\mathrm{A})$
= B
(onto function)
fungsi satu-satu
fungsi yang memenuhi padanan satu-satu
(one to one function)

G

-gantung

bergantung linear
(linear dependent)
lihat: bebas linear
gelanggang.
himpunan R dengan 2 operasi penambahan (+) dan perkalian (.) yang memenuhi sifat: (1) R adalah grup komutatif terhadap operasi penambahan; (2) operasi perkalian memenuhi hukum asosiatif; (3) operasi perkalian dan penambahan memenuhi hukum distributif; gelanggang dilambangkan dengan ($\mathbf{R},+$, .) (ring)
gelanggang Boole
gelanggang R yang bersifat $a^{2}=a$ untuk setiap unsur a di gelanggang R (Booling ring)
gelanggang hasil-bagi
gelanggang yang unsur-unsurnya merupakan koset-koset dari ideal I, dengan I ideal dari suatu gelanggang R, gelanggang hasil bagi dilambangkan dengan r / I danjuga sering disebut sebagai gelanggang kuosien (quotient ring)
gelanggang komutatif
gelanggang yang operasi keduanya memenuhi hukum komutatif (commutative ring)

gelanggang kuosien

(quotient ring)
lihat: gelanggang hasil-bagi

gelanggang Noetherian

gelanggang yang mempunyai sifat bahwa setiap himpunan takkosong dari ideal kanan atau ideal kiri mempunyai unsur maksimal; lihat juga ideal kanan dan ideal kiri
(Noetherian ring)

gelanggang pembagian

gelanggang ($\mathrm{R},+,$.) yang mempunyai unsur satuan e terhadap operasi kedua dan setiap unsurnya mempunyai balikan; jadi, untuk setiap x di R terdapat x^{-1} sehingga $x^{-1}=x^{-1} x=e$
(division ring)
grup
himpunan G dengan suatu operasi biner * yang memenuhi sifat-sifat berikut: (1) operasi * asosiatif (atau a*b)* ${ }^{*}=a^{*}\left(b^{*} c\right)$; (2) terdapat unsur e di G dengan sifat $x^{*} e=e^{*} x=x$ untuk setiap unsur x di G; unsur e disebut unsur satuan dalam grup G; (3) untuk setiap unsur x di G terdapat unsur x^{-1} di G sehingga $x^{-1 * x}=x^{*} x^{-1}=e$; unsur x^{-1} disebut balikan dari unsur \mathbf{x}.
(group)

grup Abel

grup yang operasinya bersifat komutatif, karena itu grup ini juga sering disebut grup komutatif; operasi * disebut bersifat komutatif bila a*b= b^{*} a untuk setiap unsur a dan b
(Abelian group)
grup aditif
grup dengan operasi penambahan; sering disebut grup jumlah atau grup penambahan
(additive group)

grup bebas

grup yang mempunyai himpunan pembangkit dengan sifat tidak ada pembangkit dan balikan pembangkit yang sama dengan unsur satuan, kecuali pembangkit tersebut dapat dituliskan dalam bentuk a. a^{-1} (free group)
grup faktor
(factor group)
lihat: grup hasil-bagi

grup ganti

(alternating group)
lihat: grup selang-seling
grup hasil-bagi
grup yang unsur-unsurnya berupa koset kanan atau koset kiri dari H dengan H adalah subgrup yang invarian dari grup G; grup ini juga sering disebut grup faktor dan dilambangkan dengan G / H; disebut juga grup faktor atau grup kuosien
(quotient group)
grup hingga
grup yang mempunyai unsur dengan jumlah berhingga
(finite group)
grup jumlah
(additive group)
lihat: grupaditif
grup karakter
himpunan semua karakter dari suatu grup
(character group)
grup komutatif
(commutative group)
lihat: grup Abel
grup kuosien
(quotient group)
lihat: grup hasil bagi
grup linear penuh
grup yang unsurnya berupa matriks kompleks berordo n yang taksingu-
lar dengan operasi perkalian matriks
(full linear group)

grup linear umum

grup dengan operasi perkalian matriks dan mempunyai unsur berupa
matriks taksingular (determinan matriksnya tidak sama dengan 0)
berordo m atas medan K ; disimbolkan dengan $\mathrm{GL}(\mathrm{m}, \mathrm{K})$
(general linear group)
grup modular
grup yang unsurnya merupakan transformasi berbentuk $z=\frac{a z+b}{c z+d}$
dengan $\mathrm{ad}-\mathrm{bc}=1$ dan $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ adalah bilangan bulat
(modular group)

grup multiplikatif

(multiplicative group)
lihat: grup perkalian

grup penambahan

(additive group)
lihat: grup aditif
grup penambahan gelanggang
grup yang dibentuk oleh himpunan gelanggang R dengan operasi
penambahan (operasi pertama dalam gelanggang R); lihat juga gelanggang
(additive group of ring)

grup perkalian

grup dengan operasi perkalian; grup ini juga disebut grup multiplikatif
(multiplicative group)

grup permutasi

grup yang berunsur permutasi
(permutation group)
grup selang-seling
grup yang unsurnya merupakan permutasi genap dari n objek
(alternating group)

grup siklik

grup yang setiap unsurnya mempunyai bentuk a^{n} untuk suatu unsur a dalam grup tersebut, dengan n merupakan bilangan bulat; unsur a disebut sebagai pembangkit grup
(cyclic group)
grup simetrik
grup semua permutasi dari n obyek
(symmetric group)

grup transformasi afin

grup yang mempunyai unsur berupa transformasi $\mathrm{a}: \mathrm{V} \rightarrow \mathrm{V}$ dengan $\mathrm{a}(\mathrm{x})$ $=g(x)+x_{0}, g$ unsur dari grup linear umum (GL(V) dan x, x_{0} unsur di V; operasi dalam grup ini berupa komposisi pemetaan dan disimbolkan dengan Aff(V)
(affine group of transformation)

H

homomorfisme

(homomorphism)

homomorfisme antargrup

pemetaan antara grup G dengan grup G^{*} yang mempertahankan hasil operasi pada setiap grup; jika G grup dengan operasi * dan \mathbf{G}^{*} grup dengan operasi \# maka pemetaan $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{*}$ disebut homomorfisme apabila $f\left(a^{*} b\right)=f(a) \# f(b)$ untuk setiap unsur a, b dari G (homomorphism between group)
homomorfisme gelanggang
pemetaan f dari gelanggang $(R,+x)$ ke gelanggang $\left(\mathrm{R}^{*},{ }^{*},{ }^{*}\right)$ dengan sifat $f(a+b)=f(a) \# f(b) \operatorname{dan} f(a x b)=f(a) * f(b)$ untuk setiap unsur $a, b \operatorname{di} R$ (homomorphism of ring)
homomorfisme grup
(homomorphism of group)
lihat: homomorfisme antargrup
homorfisme modul
pemetaan dari suatu modul ke modul lain yang mempertahankan hasil operasi dalam modul pertama; lihat juga homomorfisma gelanggang (homomorphism of module)
hukum asosiatif
hukum yang mengatur hasil dua operasi ${ }^{*}$, yaitu $\mathrm{a}^{*}(\mathrm{~b} 8 \mathrm{c})=\left(\mathrm{a}^{*} \mathrm{~b}\right)^{*} \mathrm{c}$, berlaku untuk setiap unsur a,b dan c c di dalam himpunan yang operasi

* didefinisikan
(associative law)
hukum distributif
hukum yang menghubungkan operasi penjumlahan dan perkalian, yaitu $a(b+c)=a b+a c$ dan $(a+b) c=a c+b c$ yang berlaku untuk setiap unsur a, b dalam himpunan yang operasi * didefinisikan (commutative law)
hukum pembatalan
jika $a^{*} b=a{ }^{*} c$, maka $b=c$ dan jika $b^{*} a=b * c$, maka $b=c$
(cancellation law)

ideal

(ideal)
lihat: ideal dwi-arah
ideal dwi-arah
subgelanggang yang merupakan ideal kanan sekaligus ideal kiri; ideal dua arah sering disebut juga ideal
(two sided ideal)

ideal kanan

subgelanggang I dari gelanggang R yang mempunyai sifar $\mathrm{Ir}=\mathrm{I}$ untuk setiap unsur r di R dan $x-y$ di I untuk setiap unsur x dan y di I (right ideal)
ideal kanan dalam gelanggang (right ideal in a ring)
ideal kiri
subgelanggang I dari gelanggang R yang bersifat $\mathrm{II}=\mathrm{I}$ untuk setiap unsur r di gelanggang R dan $x-y$ ada di I untuk setiap unsur x, y di I
(left ideal)
ideal kiri dalam gelanggang (left ideal in a ring) lihat: ideal kiri
ideal maksimal
ideal I dari gelanggang R yang bersifat tidak ada ideal lain N sehingga

I CN CR

(maximal ideal)

ideal polinomial

subgelanggang $\mathrm{I}(\mathrm{x})$ dari gelanggang polinomial $\mathrm{R}(\mathrm{x})$ yang bersifat $\mathrm{p}(\mathrm{x})$
$-\mathrm{q}(\mathrm{x})$ ada di $\mathrm{I}(\mathrm{x})$ untuk setiap $\mathrm{p}(\mathrm{x})$ dan $\mathrm{q}(\mathrm{x})$ di $\mathrm{I}(\mathrm{x})$ dan $\mathrm{t}(\mathrm{x}) \mathrm{I}(\mathrm{x}) \mathrm{CI}(\mathrm{x})$ untuk setiap $t(x)$ di $r(x)$
(polynomial ideal)
ideal prima
ideal P dengan sifat jika unsur ab di P maka unsur a ada di P atau unsur b ada di P ; lihat juga ideal
(prime ideal)
ideal prima terkait
ideal prima a dari gelanggang R dengan sifat $A=$ anihilator (u) untuk suatu unsur u dari modul M, A disebut ideal prima terkait terhadap Rmodul M ; lihat juga ideal prima
(associated prime ideal)
ideal satuan
ideal yang sama dengan gelanggangnya
(unit ideal)
ideal sejati
ideal I dari gelanggang R dengan sifat I tidak sama dengan R dan tidak sama dengan $\{0\}$
(proper ideal)

ideal utama

ideal dari suatu gelanggang yang semua unsurnya dapat dibangun oleh satu unsur saja; lihat juga pembangkit grup dan ideal
(principal ideal)
indeks subgrup hingga
banyaknya koset kiri atau koset kanan dari subgrup hingga tersebut; lihat juga koset kiri dan koset kanan
(index of a finite subgroup)
isometri
fungsi f dari ruang vektor metrik V ke ruang vektor metrik W yang memenuhi syarat berikut: (1) f fungsi $1-1$ pada; (2) f merupakan transformasi linear; (3) $f(A) f(B)=A B$ untuk setiap $A, B, E V$; dua buah ruang vektor metrik V dan W disebut isometris apabila terdaat isometri dari V ke W ; isometris ini disimbolkan dengan V W ; lihat juga ruang
vektor metrik, fungsi satu-satu, fungsi pada transformasi linear (isometry)
isomorfisme
padanan satu-satu dari suatu himpunan A ke himpunan b (isomorphisme)
isomorfisme antar grup
homomorfisme dari suatu grup G ke grup G^{*} yang berpadanan satusatu; lihat juga homomorfisme antara grup dan padanan satu-satu (isomorphism between group)
isomorfisme medan
homomorfisme dari suatu medan F ke medan F^{*} yang berpadanan satusatu; lihat juga homomorfisme gelanggang dan padanan satu-satu (field isomorphism)
isomorfisme medan akar
isomorfisme dari medan akar F ke medan akar F^{*}; lihat juga isomorfisme medan dan medan akar
(root field isomorphism)

J

-jangkau
jangkauan dari transformasi linear
ruang vektor yang unsurnya merupakan peta dari suatu transformasi linear, jadi jika $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ transformasi linear dari ruang V ke ruang W , jangkauan T adalah himpunan $\{\mathrm{W}$: terdapat unsur v di V sehingga $\mathrm{T}(\mathrm{v})=\mathrm{W}\}$; lihat juga transformasi linear (range of linear transformation)
jumlahan langsung
himpunan pasangan terurut (x, y) dengan x unsur di himpunan a dan y unsur di himpunan B, ditulis sebagai AxB; Operasi di dalam AxB diatur sebagai berikut $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \cdot\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\left(\mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{y}_{1} \mathrm{y}_{2}\right)$ dan $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=$ $\left(x_{1}+x_{2}, y_{1}+y_{2}\right), a\left(x_{1}, y_{1}\right)=\left(a x_{1}, a y_{1}\right)$
(direct sum)

K

-kali

pengali
bilangan yang dikalikan dengan bilangan lain, bila bilangan a dikalikan dengan b maka b disebut pengali dari a
(multiplier)
perkalian
operasi biner yang menggabungkan dua besaran a dan b menjadi besaran $c=a \times b$, perkalian terdiri atas beberapa macam, antara lain perkalian bilangan, perkalian matriks, dan perkalian polinom (multiplication)
perkalian matriks
hasil operasi antara matriks $A=\left(a_{i j}\right)$ dan $B=\left(b_{i j}\right)$ yang berupa matriks $C=(\mathrm{cij})$ dengan $\mathrm{c}_{\mathrm{rs}}=\sum_{i=1}^{n} a_{r i} b_{i s}$, matriks C ada apabila banyak kolom matriks A sama dengan banyak baris matriks B; lihat juga matriks
(product of matrices)

karakter grup

homomorfisme dari grup G ke grup bilangan kompleks yang mempunyai nilai mutlak 1
(character of group)
karakteristik logaritma
bagian dari logaritma yang menentukan posisi titik desimal bilangan;
bilangan satuan mempunyai karakteristik 0 , bilangan puluhan mempunyai karakteristik 1 , bilangan ribuan mempunyai karakteristik 2 ; lihat logaritma
(characteristic of logarithm)
kelas ekuivalen
(equivaleǹt class)
lihat: kelas setara

kelas kesetaraan

kelas yang dibangun oleh relasi setara antara unsur-unsur dalam suatu himpunan; unsur a dan b berada dalam satu kelas apabila a berelasi dengan b; lihat juga kelas setara
(equivalent class)
kelas setara
kelas dalam suatu himpunan yang dibangun oleh relasi setara antara unsur-unsur dalam himpunan tersebut; dua unsur a dan b berada dalam satu kelas apabila a mempunyai relasi setara dengan b, sedangkan relasi yang disebut setara adalah relasi yang bersifat refleksif, simetri dan transitif
(equivalent class)

kelipatan persekutuan

bilangan bulat yang merupakan kelipatan dari beberapa bilangan bulat yang lain, contoh 6 merupakan kelipatan persekutuan dari 2 dan 3 (common multiple)

kelipatan persekutuan terkecil

kelipatan persekutuan yang terkecil dari kelipatan persekutuan beberapa bilangan yang diberikan, contoh 12 merupakan kelipatan persekutuan terkecil dari 2,3,4 dan 6
(least common multiple)
kernel homomorfisme
himpunan yang berisi unsur-unsur yang mempunyai peta 0 (unsur satuan) setelah dipetakan oleh suatu homomorfisme; bilaf homomorfisme dari grup G ke grup G^{*}, maka inti dari f adalah $\left\{x\right.$ di $G: f(x)=e^{*}$ unsur satuan di $\left.\mathrm{G}^{*}\right\}$; lihat homomorfisme
(kernel of homomorphism)

kernel transformasi linear T

himpunan $\{x \mathrm{EZ}: \mathrm{T}(\mathrm{x})=\mathrm{e}, \mathrm{e}$ adalah unsur satuan di W$\}$ dengan T merupakan transformasi linear dari ruang V ke ruang W; himpunan hasil
peta melalui transformasi T adalah unsur satuan; lihat juga transformasi linear
(kernel of linear transformation)

kisaran transformasi linear

(range of linear transformation)
lihat: jangkauan transformasi linear

koefisien pertama

koefisien peubah dengan derajat tertinggi dari suatu polinomial, untuk polinomial $a 0 x_{0}+\ldots . . .+a_{n}$ maka koefisien pertamanya adalah a_{0}; lihat juga polinomial
(leading coefficient)

koefisien torsi

bilangan $r_{1}, r_{2}, \ldots, r_{n}$ yang diperoleh sebagai berikut: jika G grup komutatif dengan himpunan pembangunannya hingga, maka G adalah produk Cartesis dari grup-grup siklus takhingga $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{n}}$ dan grup-grup siklus $\mathrm{H}_{\mathrm{i}}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{n}}$; ordo dari H_{i} adalah r_{i} untuk $\mathrm{i}=1,2, \ldots, \mathrm{n}$, di sini bilangan $\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}$ disebut koefisien torsi grup G (coefficient of torsi)

kolom matriks

susunan vertikal dari entri-entri suatu matriks, contoh:
matriks $\left|\begin{array}{lll}2 & 5 & 1 \\ 1 & 1 & 5 \\ 1 & 0 & 7\end{array}\right|$ mempunyai kolom $\left|\begin{array}{l}2 \\ 1 \\ 1\end{array}\right|,\left|\begin{array}{l}5 \\ 1 \\ 0\end{array}\right|$ dan $\left|\begin{array}{l}1 \\ 5 \\ 7\end{array}\right|$

(column matrix)

kombinasi linear

pernyataan aljabar berbentuk $\sum_{1} \mathrm{a}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ dengan x_{i} adalah unsur dalam ruang vektor v dan ai merupakan skalar
(linear combination)

komutator unsur grup

unsur dalam grup yang berbentuk $\mathrm{a}^{-1} \mathrm{~b}^{-1} \mathrm{ab}$ untuk suatu unsur a dan b dalam grup; jadi unsur $\mathrm{c}=\mathrm{a}^{-1} \mathrm{~b}^{-1} \mathrm{ab}$ disebut komutator dari a dan b (commutator of elements of a group)

koordinat terhadap basis

posisi suatu vektor dalam ruang vektor V relatif terhadap suatu basis di V ; bila $\mathrm{S}=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ basis dari ruang vektor berdimensi hingga V maka setiap vektor v di ruang v dapat dituliskan sebagai $v=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}$ dan $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ disebut koordinat vektor v relatif terhadap basis S; lihat
basis ruang vektor
(coordinat with respect to a basic)

koordinat vektor

(coordinates of vectors)
lihat: koordinat terhadap basis
korespondensi satu-satu
(one to one correspondence)
lihat: padanan satu-satu
koset dalam grup
(coset in a group)
lihat: koset kiri dalam grup dan koset kanan dalam grup
koset kanan dalam grup
himpunan $\{$ ha: h unsur di himpunan bagian H \} dengan a unsur di grup
g dan H himpunan bagian dari g ; lihat grup
(right coset in a group)
koset kiri dalam grup
himpunan \{ah: h unsur di himpunan bagian H \} dengan a unsur di grup G dan H himpunan bagian dari G ; lihat grup
(left coset in a group)
kriteria ketakreduksian Eienstein
misalkan $\mathrm{f}=\mathrm{a}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}+\mathrm{a}} \mathrm{n}-1 \mathrm{x}_{\mathrm{n}-1}+\ldots+\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{0}$ dengan a_{1} adalah bilangan bulat untuk setiap i; f disebut tak tereduksi dalam lapangan rasional Q bila terdapat bilangan prima p sehingga p membagi setiap a_{i} dengan $i=$ $0,1,2, \ldots, n-1$, tetapi p tidak membagi a_{n} dan p^{2} tidak membagi a_{0}; lihat juga medan rasional, bilangan prima, dan pembagi
(criterion Eisenstein irreducibility)
-kurang
pengurang
(substractor)
lihat: pengurangan
pengurangan
operasi antara dua unsur yang merupakan kebalikan dri operasi penambahan; pengurangan b dari a disimbolkan dengan $a-b, a-b$ $=\mathrm{c}$ apabila $\mathrm{a}=\mathrm{b}+\mathrm{c}$; unsur b disebut pengurang dan unsur a disebut yang dikurangi
(substraction)

L

-lenyap

pelenyapan
(elimination)
lihat: eliminasi
logaritma
fungsi bilangan positif. ${ }^{\text {a }} \log \mathrm{M}=\mathrm{x}$ apabila $\mathrm{a}^{\mathrm{x}}=\mathrm{M}$,a disebut basis logaritma; logaritma berbasis 10 disebut sebagai logaritma Briggas atau logaritma biasa, sedangkan logaritma berbasis $e=2,71828$... disebut logaritma Napierian dan ${ }^{\text {e }} \log x$ ditulis sebagai $1 n x$ (logarithm)
-luas
perluasan medan akar
medan perluasan dari medan akar F ; lihat juga medan akar dan medan perluasan
(extension root of field)

M

magnifikasi

pemetaan $M(c, r)$ dari ruang afin X ke dirinya sendiri dengan $M(c, r)(x)$ $=[r(c, x)] c, c \varepsilon X, r \varepsilon k r 0$ dan X ruang afin berdimensi $n \quad 1, r$ biasa disebut sebagai rasio magnifikasi; lihat juga sistem koordinat afin (magnification)
mantis logaritma
bagian positif suatu logaritma yang dituliskan dalam bentuk pecahan desimal; lihat juga logaritma
(mantissa of logaritm)
matriks
susunan unsur yang berbentuk segi empat, biasanya susunan tersebut ditulis di antara kurung atau kurung tegak; contoh: [2 4 5] atau [2 4 5]; unsur-unsur yang membangun $\left[\begin{array}{lll}1 & 0 & 6\end{array}\right]\left[\begin{array}{ll}1 & 0\end{array} 6\right]$ dari matriks disebut entri matriks
(matrix)
matriks adjoin
matriks bujur sangkar $\mathrm{a}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ yang diperoleh dengan menggantikan elemen a_{rs} dengan kofaktor elemen a_{sr} (adjoint matrix)

matriks asli

matriks yang entri-entrinya berupa bilangan asli
(natural matrix)

matriks balikan

matriks bujur sangkar B yang dikalikan dengan matriks bujur sangkar A menghasilkan matriks satuan, jadi $\mathrm{AB}=\mathrm{BA}=\mathrm{I}$; dalam hal ini B dilambangkan sebagai A^{-1}
(inverse matrix)
matriks baris
matriks yang hanya terdiri dari satu baris; vektor baris; lihat juga matriks (row matrix)
matriks blok
bagian matriks yang membentuk blok; lihat juga bentuk kanonis Jordan (block matrix)
matriks bujur sangkar
matriks yang jumlah baris sama dengan jumlah kolomnya, atau matriks berordo $\mathrm{n} \times \mathrm{n}$; lihat juga ordo matriks
(suqare matrix)
matriks diagonal
matriks bujur sangkar $A=\left(a_{i j}\right)$ dengan $a_{i j}=0$ untuk $i=j$
(diagonal matrix)
matriks elementer
matriks yang didapat dari matriks satuan dengan satu kali operasi baris (kolom elementer); lihat juga operasi baris (kolom elementer) (elementary matrix)
matriks Hermite
matriks $A=\left(a_{i j}\right)$ yang setiap entrì $a_{i j}$ sama dengan sekawan simetrinya atau $a_{i j}=a_{i j}$; lihat juga darab skalar
(Hermitian matrix)
matriks kolom
matriks yang hanya terdiri dari atas satu kolom; vektor kolom; lihat matriks
(column matrix)
matriks kompleks
matriks yang mempunyai entri bilangan kompleks
(complex matrix)
matriks kuadrat
(square matrix)
lihat: matriks bujur sangkar
matriks nilpoten
matriks bujur sangkar a yang bersifat $\mathrm{a}^{\mathrm{k}}=0$ untuk suatu bilangan bulat k (nilpotent matrix)
matriks nol
matriks yang semua entrinya nol
(zero matrix)
matriks ortogonal
matriks bujur sangkar A yang sama dengan balikan dari $a^{\mathbf{t}}$, jadi $\mathrm{A}=$ $\left(A^{1}\right)^{-1}$; lihat juga balikan matriks dan transpos matriks
(orthogonal matrix)
matriks peralihan
matriks yang mewakili transformasi basis ruang vektor V ke basis lain ruang tersebut; lihat juga matriks transformasi dan basis ruang vektor
(transition matrix)
matriks permutasi
matriks bujur sangkar satuan berordo n dengan entri pada kolom ke-i sama dengan 0 untuk setiap i kecuali pada baris ke-i yang sama dengan 1 ; matriks ini mewakili permutasi pada $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ yang membawa xi ke dirinya sendiri untuk setiap i
(permutation matrix)
matriks real
matriks yang entrinya berupa bilangan real
(real matrix)

matriks satuan

matriks diagonal dengan $\mathrm{a}_{\mathrm{ij}}=1$, dilambangkan dengan matriks I
(identity matrix)
matriks segitiga
(triangular matrix)
lihat: matriks segitiga bawah dan matriks segitiga atas
matriks segitiga atas
matriks $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ dengan $\mathrm{a}_{\mathrm{ij}}=0$ untuk $\mathrm{i}>\mathrm{j}$
(upper triangular matrix)
matriks segitiga bawah
matriks $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ dengan $\mathrm{a}_{\mathrm{ij}}=0$ untuk $\mathrm{i}<j$
(lower triangular matrix)

matriks serupa

dua matriks yang dapat saling ditransformasikan oleh matriks taksingular
(similar matrices)
matriks setara
dua matriks bujur sangakr A dan B disebut setara jika ada matriks taksingular P dan Q sehingga $\mathrm{A}=\mathrm{PBQ}$
(equivalent matrices)
matriks setara baris
matriks A dan B disebut setara baris apabila matriks B dapat diperoleh dari matriks A melalui serangkaian operasi baris elementer; lihat juga operasi baris elementer
(row equivalent matrices)
matriks setara kolom
matriks A dan matriks B disebut setara kolom apabila matriks B dapat diperoleh dari matriks A melalui serangkaian operasi kolom elementer; lihat juga operasi kolom elementer
(column equivalent matrices)
matriks singular
matriks bujur sangkar yang harga determinanannya sama dengan nol, sedangkan matriks bujur sangkar yang harga determinannya tidak sama dengan nol disebut sebagai matriks tak singular
(singular matrix)
matriks taksingular
(non singular matrix)
lihat: matriks singular
matriks terimbuh
matriks koefisien suatu sistem persamaan linear $\mathrm{Ax}=\mathrm{B}$ yang kolom terakhirnya ditambah vektor kolom B; lihat juga sistem persamaan linear
(augmented matrix)
matriks transformasi linear
matriks yang mewakili transformasi linear tertentu
(matrix of a linear transformation)
medan
himpunan takkosong F dengan 2 operasi yang disebut penjumlahan (+) dan perkalian (.) dengan sifat: (1) himpunan F dengan operasi penjum-
lahan membentuk grup; (2) $\mathrm{F}-\{0\}$ dengan operasi perkalian membentuk grup komutatif; (3) a. (b+c) $=(\mathrm{a} . \mathrm{b})+(\mathrm{a} . \mathrm{c})$, untuk setiap unsur $\mathrm{a}, \mathrm{b}, \mathrm{c}$ dalam F; sifat ketiga disebut sifat distributif; lihat juga grup komutatif (field)
medan akar
medan minimal F^{*} yang memuat medan F dan bersifat polinomial p (mempunyai koefisien dalam medan F) dapat difaktorkan secara linear dengan koefisien di medan f^{*}; medan Galois; lihat juga medan (root field)
medan bilangan aljabar
perluasan medan hingga dari medan bilangan rasional \mathbf{Q} dengan menambahkan suatu bilangan aljbar, contoh $\mathrm{Q}(\mathrm{I} / 2)$
(algebraic number field)
medan hasil bagi
medan F^{*} yang unsur-unsurnya merupakan koset-koset dari I dengan I adalah ideal dari medan F , medan hasil bagi F^{*} sering ditulis F / I dan disebut medan hasil bagi dari medan F dengan ideal I; lihat juga ideal kiri dan ideal kanan
(quotient field)
medan kuosien
(quotient field)
lihat: medan hasil bagi
medan kuosien
medan F^{*} yang memuat medan $\mathrm{F}, \mathrm{F}^{*}$ disebut medan perluasan dari F ;
lihat juga medan
(extension field)
medan terurut
medan yang memuat unsur positif dan bersifat: (1) jumlah dan perkalian dua unsur positif adalah positif; (2) untuk sebarang unsur x dalam lapangan berlaku hanya salah satu sifat berikut x positif atau $\mathrm{x}=0$ atau -x positif; lihat juga medan
(ordered field)
modul
perluasan dari ruang vektor dengan koefisiennya merupakan anggota suatu gelanggang; lihat juga ruang vektor
(module)

40

morfisme ekuivalen
morfisme f dari ruang topologi X ke ruang topologi Y yang mempunyai balikan morfisme g dari Y ke X ; simbol f: $\mathrm{X} \sim \mathrm{Y}$; lihat juga morfisme (equivalent morphism)

N

negatif tentu

bentuk bilinear a ${ }_{i j} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}$ yang selalu berharga negatif atau nol; lihat juga bentuk bilinear
(definite negative)
-nilai
nilai karakteristik
(eigen value)
lihat: nilai karakteristik matriks \mathbf{A}
nilai karakteristik matriks A
skalar a (real atau kompleks) yang memenuhi persamaan $A x=a x$ untuk suatu vektor taknol x ; vektor x yang memenuhi persamaan ini disebut vektor karakteristik yang berkaitan dengan nilai karakteristik a
(eigen value of a matrix)
nilai karakteristik transformasi linear
nilai karakteristik dari matriks yang mewakili transformasi linear; lihat juga nilai karakteristik matriks
(eigenvalue of linear transformation)
nilai mutlak
bilangan real yang bernilai b apabila b positif atau nol dan bernilai -b apabila b negatif, nilai mutlak dari b disimbolkan sebagai /b/ (absolute value)
-nol

kenolan

dimensi inti suatu transformasi linear; lihat juga dimensi ruang vektor dan kernel transformasi linear (nullity)
norma
besaran $/ / \mathrm{v} / /=\langle\mathrm{v}, \mathrm{v}\rangle^{1 / 2}$ dengan $\langle\mathrm{v} . \mathrm{v}\rangle$ produk skalar; lihat juga darab skalar
(norm)
norma matriks
akar dari jumlah kuadrat semua nilai mutlak entri-entri matriks tersebut
(norm of matrix)
norma vektor
(norm of a vector)
lihat: panjang vektor
nulitas
(nullity)
lihat: kenolan

0

operasi baris elementer

pertukaran baris, pengalian baris dengan suatu skalar, dan menjumlahkan suatu baris dengan hasil kali skalar baris lain; lihat juga sistem persamaan linear
(elementary row operation on a matrix)

operasi biner

fungsi yang memetakan himpunan pasangan terurut ke suatu himpunan lain
(binary operation)
operasi kolom elementer
pertukaran kolom, pengalian kolom dengan suatu skalar, dan menjumlahkan suatu kolom dengan hasil kali skala kolom lain; lihat juga sistem persamaan linear
(elementary column operation on a matrix)

operasi penambahan

operasi yang mengaitkan pasangan elemen (a, b) dengan elemen c, dengan bentuk $c=a+b$; operasi penambahan ada beberapa macam, antara lain penambahan bilangan, penambahan matriks, dan penambahan vektor
(addition operation)
operator
transformasi dari ruang vektor v ke dirinya sendiri; lihat juga transformasi
(operator)
operator adjoin
operator linear T^{*} yang bersifat $\langle\mathrm{Tx}, \mathrm{y}\rangle=\left\langle\mathrm{x}, \mathrm{T}^{*} \mathrm{y}\right\rangle, \mathrm{T}^{*}$ disebut operator adjoin dari operator T; lihat juga produk dalam
(adjoint operator)
operator adjoin diri
operator yang sama dengan operator adjoinnya; lihat juga operator adjoin
(self adjoint operator)
operator linear
transformas linear dari ruang vektor V ke dirinya sendiri; lihat juga transformasi linear
(linear operator)
operator simetrik
operator yang memenuhi sifat pemetaan linear simetrik; lihat juga pemetaan linear simetrik
(symmetric operator)
ordo grup
(order of group)
lihat: tingkat grup
ordo matriks
(order of matrix)
ortogonal
sifat antara dua vektor, vektor u dan v disebut ortogonal apabila $\langle u, v\rangle=$ 0 dengan \langle,$\rangle menyatakan lambang darab-dalam$
(orthogonal)
ortonormal
sifat vektor-vektor yang saling ortogonal dan mempunyai norma satu;
lihat juga ortogonal dan norma vektor
(orthonormal)

padanan satu-satu

padanan antara dua himpunan yang setiap anggota himpunan yang satu dapat dengan tepat dipasangkan dengan anggota himpunan lainnya; misalnya, padanan satu antara himpunan $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ dan $\{1,2,3,4\}$ ditentukan oleh pasangan $\{(2,1),(b, 2),(c, 3),(d, 4)\}$; padanan satu-satu antara himpunan A dan B ialah suatu koleksi S dari pasangan terurut (\mathbf{x}, y) yang anggota pertamanya adalah unsur A dan anggota keduanya unsur B serta bersifat $\left(x_{1}, y_{1}\right)$ dan $\left(x_{2}, y_{2}\right)$ identik jika $x_{1}=x_{2}$ atau $y_{1}=y_{2}$; sinonim bijektif, fungsi satu-ke-satu, pemetaan satu-ke-satu, transformasi satu-ke-satu (one-to-one correspondence)

pangkat

bilangan yang diletakkan di sebelah kanan atas suatu simbol; contoh, $\mathbf{x}^{\text {D }}$ dibaca x pangkat n dan mempunyai arti x dioperasikan dengan dirinya sendiri sampai n kali (power)
panjang vektor
$/ / \mathbf{v} / /=\langle\mathbf{v}, \mathbf{v})^{1 / 2}$ dengan $\langle\mathbf{v}, \mathbf{v}\rangle$ produk-dalam di ruang vektor V dan v unsur di V , biasanya istilah panjang vektor digunakan untuk vektor di ruang R, R^{2} dan R^{3}, sedangkan di ruang lain disebut norma vektor; lihat juga darab-dalam
(length of a vector)
-pecah
pecahan ekspresi yang berbentuk $\frac{\text { pembilang }}{\text { penyebut }}$ pembilang dan penyebut me-
rupakan suatu besaran rupakan suatu besaran
(fraction)
permutasi
susunan terurut dari unsur-unsur himpunan berhingga yang tidak berulang, contoh permutasi dari $\{1,2,3\}$ adalah $(1,2,3),(1,3,2),(2,1,3)$, $(2,3,1),(3,1,2),(3,2,1)$, operasi yang mengubah letak unsur suatu himpunan dengan unsur lain dalam himpunan tersebut secara padanan satu-satu
(permutation)
permutasi ganjil
permutasi yang dapat dituliskan sebagai perkalian sejumlah ganjil transposisi; lihat juga transposisi dan permutasi (odd permutation)

permutasi genap

permutasi yang dapat dituliskan sebagai perkalian sejumlah genap transposisi
(even permutation)
peta transformasi linear
ruang vektor yang berisi hasil pemetaan suatu transformasi linear, jadi ruang peta dari transformasi linear $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ adalah himpunan $\{\mathrm{w} \varepsilon \mathrm{W}$ $: T(x)=w$ untuk suatu $v \varepsilon V\}$
(image of a linear transformation)
pemetaan bilinear
pemetaan $f: V x V \rightarrow K$ yang memenuhi:
$f(a u+b v, w)=a f(u, v)+b f(v, w)$ dan $f(u, a v+b w)=a f(u, v)+(b f(u, w)$ yang berlaku untuk setiap unsur a, b dari medan K dan setiap vektor $\mathrm{u}, \mathrm{v}, \mathrm{w}$ di ruang vektor V atas medan K yang berdimensi hingga; lihat juga ruang vektor dan medan
(bilinear map)
pemetaan linear
pemetaan T dari ruang V ke ruang W, yang bersifat $T(a+b)=T(a)+T(b)$ dan $T(t a)$ dengan a, b unsur dari V dan t unsur dari gelanggang pembagian k
(linear map)

pemetaan linear simetrik

pemetaan linear T pada ruang V ke ruang W , yang bersifat $\langle\mathrm{T}(\mathrm{x}), \mathrm{y}\rangle=$ $\langle\mathrm{x}, \mathrm{T}(\mathrm{y})\rangle$ untuk setiap unsur x , y dari v dan \langle,$\rangle darab-dalam di \mathrm{V}$; lihat juga pemetaan linear dan darab-dalam
(symmetric linear map)

pemetaan semi linear

pemetaan T dari ruang V ke ruang W yang bersifat $T(x+y)=T(x)+T(y)$ dan $T(t x)=g(t) T(x)$, untuk setiap unsur x, y dari v, unsur t dari k dan $g(t)$ merupakan isomorfisme dari gelanggang pembagian k ke gelanggang pembagian $\mathrm{k}^{*}, \mathrm{~T}$ disebut sebagai pemetaan semilinear terhadap g ; lihat juga isomorfisme dan gelanggang pembagian
(semilinear map)

pemetaan uniter

pemetaan f pada rv $\sim \mathrm{V}$ yang mempertahankan panjang vektor di V ;
lihat juga panjan tor
(unitary map)
peringkat matriks
dimensi ruang vektor yang dibangun oleh baris-baris (kolom-kolom) matriks; lihat juga dimensi ruang vektor
(rank of matrix)
polinomial
ekspresi aljabar yang berbentuk $a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ dengan a_{i} menyatakan bilangan kompleks dan $\mathrm{I}=0,1,2, \ldots, \mathrm{n}$
(polynomial)
polinomial karakteristik matriks A
polinomial $f(x)$ yang diperoleh dari determinan $/ \mathrm{A}-\mathrm{xI} /$, dengan A suatu matriks kuadrat, I matriks satuan berukuran sama dengan A
(characteristic polynomial of a matrix)
positif tentu
bentuk bilinear $\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}$ yang selalu berharga positif; lihat juga bentuk bilinear
(definite positif)
prima relatif
sifat dua bilangan bulat yang hanya mempunyai faktor pembagi persekutuan 1 atau -1, contoh 3 dan 8 adalah prima relatif (relatively prime)
prinsip superposisi
jika x_{1} dan x_{2} merupakan penyelesaian suatu sistem persamaan linear, $c_{1} x_{1}+c_{2} x_{2}$ juga merupakan penyelesaian sistem tersebut, c_{1} dan c_{2} merupakan sebarang konstanta
(superposition principle)
produk-dalam
(inner product)
lihat: darab-dalam
produk skalar
(scalar product)
lihat: darab-dalam
proses Gram-Schmidt
proses pengortogonalan basis $S=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ ke basis ortonormal $\mathrm{S}=$ $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{n}}\right\}$ dengan rumus:

$$
\begin{array}{ll}
v_{1}= & u_{1} \\
& u_{1} \\
& u_{2}=\left\langle u_{2}, v_{1}\right\rangle v_{1} \\
& u_{2}-\left\langle u_{2}, v_{1}\right\rangle v_{1} \\
- \\
- \\
- \\
- & u_{n}-\left\langle u_{n}, v_{n-1}\right\rangle v_{n-1}-\ldots-\left\langle u_{n}, v_{1}\right\rangle v_{1} \\
v n= & u_{n}-\left\langle u_{n}, v_{n-1}\right\rangle v^{n-1}-\ldots-\left\langle u_{n}, v_{1}\right\rangle v_{1}
\end{array}
$$

dengan $\langle\mathrm{u}, \mathrm{v}\rangle$ adalah produk-dalam; lihat juga ortonormal
(Gram-Schmidt process)
proses pengortogonalan Gram-Schmidt
cara mengubah basis $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ menjadi basis ortogonal $S=$ $\left\{\mathbf{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ menggunakan proses Gram-Schmidt; lihat juga proses
Gram-Schmidt
(Gram-Schmidt; orthogonalization process)
pusat grup
subgrup G yang berbentuk himpunan $\{z \varepsilon G: z x=x z$ untuk setiap $x \varepsilon G\}$; lihat juga subgrup
(center of group)

R

ranah transformasi linear

ruang vektor yang dipet han oleh suatu transformasi linear; jika T: $\mathrm{V} \rightarrow \mathrm{W}$ transformasi liri . . V disebut ranah dan W disebut jangkauan atau kisaran; lihat juga transformasi linear
(domain of linear transformation)
ranah integral
gelanggang komutatif dengan unsur satuan yang tak mempunyai unsur pembagi nol sejati; lihat juga gelanggang komutatif dan pembagi nol (integral domain)
ranah integral komutatif
daerah integral yang operasi perkaliannya memenuhi hưkum komutatif; lihat juga ranah integral (commutative integral domain)

rang matriks

(rank of matrix)
lihat: peringkat matriks
rerata artimatika
ekspresi yang berbentuk $\sum_{i=4}^{n}-\frac{x_{i}}{\pi}$
(arithmetic mean)
rerata geometri
ekspresi yang berbentuk $\sqrt{\mathrm{x}_{1} \mathrm{X}_{2} \ldots \mathrm{x}_{\mathrm{n}}}$ (geometric mean)
-reduksi
pereduksian Gauss Jordan
cara mereduksisuatu matriks menjadi matriks tereduksi baris(kolom) dengan bantuan operasi baris (kolom) elementer, cara ini biasanya digunakan untuk menyederhanakan bantuan matriks terimbuh dari suatu sistem persamaan linear sehingga penyelesaian sistem tersebut lebih mudah dicari; lihat juga matriks tereduksi baris (kolom), matriks terimbuh, dan penyelesaian trivial
(Gauss Jordan reduction)
rotasi
Isometri σ dari ruang vektor V ke dirinya sendiri dengan sifat determinân matriks yang mewakili σ sama dengan 1 ; lihat juga isometri, determinan, dan matriks transformasi
(rotation)
ruang

1. ruang berdimensi tiga; 2 . setiap ruang abstrak (space)
ruang bernorma
ruang vektor yang diberi norma vektor; lihat juga ruang vektor dan norma vektor
(normed space)
ruang jawab
(solution space)
lihat: ruang penyelesaian
ruang karakteristik
ruang vektor yang dibangun oleh vektor-vektor karakteristik yang berkaitan dengan nilai karakteristik tertentu; lihat juga vektor karakteristik
(eigenspace)
ruang penyelesaian
ruang yang dibangun oleh vektor-vektor penyelesaian suatu sistem persamaan linear; lihat juga sistem persamaan linear dan ruang vektor
(solution space)

ruang darab-dalam

ruang vektor dengan suatu darab-dalam; lihat juga darab-dalam (inner product space)

ruang vektor

sistem yang terdiri atas himpunan tak-kosong V dan medan K dengan dua operasi, yaitu penambahan vektor dan perkalian skalar yang didefinisikan di himpunan V dan memenuhi sifat
(a) jika u dan v unsur di v maka $u+v$ berada di V
(b) $u+v=v+u$, untuk setiap $u, v \varepsilon V$
(c) $(\mathrm{u}+\mathrm{v})+\mathrm{w}=\mathrm{u}+(\mathrm{v}+\mathrm{w})$, untuk setiap $\mathrm{u}, \mathrm{v}, \mathrm{w} \varepsilon \mathrm{V}$
(d) ada sebuah unsur 0 di V sehingga $0+u=u$, untuk setiap $u \varepsilon V$
(e) untuk setiap u di V ada unsur $-u$ di V sehingga $u+(-u)=(-u)+u=0$
(f) jika k sebarang skalar dan u unsur di V maka $\mathrm{ku} \varepsilon \mathrm{V}$
(g) $\mathrm{k}(\mathrm{u}+\mathrm{v})=\mathrm{ku}+\mathrm{kv}$, untuk setiap keK dan $\mathrm{u}, \mathrm{v} \varepsilon \mathrm{V}$
(h) $(\mathrm{k}+1) \mathrm{u}=\mathrm{ku}+\mathrm{lu}$, untuk setiap $\mathrm{k}, \mathrm{l} \varepsilon \mathrm{K}$ dan $\mathrm{u} \varepsilon \mathrm{V}$
(i) $\mathrm{k}(\mathrm{lu})=(\mathrm{kl}) \mathrm{u}$, untuk $\mathrm{k} . l \varepsilon \mathrm{~K}$ dan $u \varepsilon \mathrm{~V}$
(j) $\mathrm{lu}=\mathrm{u}$, untuk setiap $\mathrm{t}:=\mathrm{V}$;
setiap unsur dari V disebut vektor dan unsur dari K disebut skalar (vector space)

ruang vektor berdimensi n

ruang vektor yang mempunyai himpunan basis terdiri atas n vektor; lihat juga ruang vektor dan basis ruang vektor
(n-dimensional vector space)
ruang vektor Euclides
ruang vektor berdimensi n atas medan real, contoh, ruang vektor R^{2}, R^{3}
(Euclidean vector space)
ruang vektor isomorf
sifat antara dua ruang vektor V dan W , ruang vektor V dan W disebut isomorf apabila terdapat isomorfisme dari ruang V ke ruang W ; lihat juga isomorfisme dan ruang vektor
(isomorphic vector space)
ruang vektor kompleks
ruang vektor atas medan kompleks; lihat juga ruang vektor
(complex vector space)
ruang vektor metrik
ruang vektor dengan suatu metrik yang dibangun dari darab-dalam di ruang tersebut
(metric vector space)

S

-sama

kesamaan
sifat dari dua ekspresi menjadi sama, dalam arti perbedaan antara dua ekspresi tersebut 0 (equality)
persamaan
pernyataan kesamaan antara dua ekspresi; lihat juga kesamaan (equation)
persamaan kuadrat
persamaan berderajat dua yang berbentuk $a x^{2}+b x+c=0$, $a \quad 0$ (quadratic equation)
persamaan kubik (pangkat tiga)
persamaan berderajat tiga dengan bentuk $a x^{3}+b x^{2}+c x+d=0$, a 0 (cubic equation)
persamaan linear
persamaan berderajat satu dengan bentuk $a x+b=0$, a 0 (linear equation)
persamaan polinomial
polinomial satu variabel atau lebih yang sama dengan 0 , untuk polinomial berderajat n : persamaan polinomialnya berbentuk $a_{0} x^{n}$ $+a_{1} x^{n-1}+\ldots+a_{n}=0$; lihat juga polinomial (polynomial equation)

kesamaan

sifat dari dua ekspresi menjadi sama, dalam arti perbedaan antara dua ekspresi tersebut
(xxx)
ketaksamaan
pernyataan bahwa suatu besaran lebih besar atau lebih kecil dari besaran lainnya, ditulis $\mathrm{a}>\mathrm{b}$ atau $\mathrm{a}>\mathrm{b}$
(inequality)
-sebut
penyebut
suku D dalam pecahan N/D; lihat juga pecahan
(denominator)
sekawan kompleks
bilangan kompleks berbentuk a+bi $=\mathrm{a}-\mathrm{bi}$; bilangan ini merupakan sekawan kompleks dari $a+l$:
(complex conjugate)
sekawan kompleks matriks
matriks $B=\left(b_{i j}\right)$ yang didapat dari matriks $A=\left(a_{i j}\right)$ yang berukuran sama, dengan cara mengambil $\mathrm{b}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{j}}$; matriks b biasanya dilambangkan sebagai $B=A^{H}$; lihat juga sekawan kompleks dan matriks simetrik (complex conjugate of matrix)
-selesai
penyelesaian
vektor x yang memenuhi persamaan $f(x)=0$, contoh 2 merupakan penyelesaian persamaan linear $2 x-4=0$
(solution)
penyelesaian taktrivial
penyelesaian suatu persamaan linear yang bukan merupakan vektor nol; lihat juga persamaan linear
(non trivial solution)
penyelesaian trivial
vektor penyelesaian suatu persamaan linear yang berupa vektor nol;
lihat juga persamaan linear
(trivial solution)
-setara
kesetaraan matriks
sifat antara dua matriks, matriks bujur sangkar A dan B disebut
setara apabila ada matriks taksingular P dan Q sehingga $\mathrm{A}=\mathrm{PBQ}$; lihat juga matriks taksingular (equivatence of matrices)

sifat kelinearan

sifat yang mempertahankan hasil operasi penjumlahan, pengurangan, dan perkalian dengan skalar, contoh transformasi linear adalah transformasi yang memenuhi sifat kelinearan karena mempertahankan jumlah, selisih dua vektor dan perkalian skalar dengan vektor sebagai berikut

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}+\mathrm{y})=\mathrm{T}(\mathrm{x})+\mathrm{T}(\mathrm{y}) \\
& \mathrm{T}(\mathrm{x}-\mathrm{y})=\mathrm{T}(\mathrm{x})-\mathrm{T}(\mathrm{y}) \\
& \mathrm{T}(\mathrm{ax})=\mathrm{aT}(\mathrm{x})
\end{aligned}
$$

T tersebut merupakan transformasi linear (linearity property)

sistem persamaan linear

sejumlah berhingga persamaan-persamaan linear yang berlaku secara simultan; sistem persamaan linear dalam n peubah dan m persamaan dapat dituliskan sebagai berikut:

$$
\begin{aligned}
& a_{i \mathrm{i}} x_{i}+a_{12} x_{2}+\ldots+a_{1 \mathrm{n}} x_{n}=b_{i} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \mathfrak{a}_{\mathrm{mi}} x_{i}+a_{m 2} x_{2}+\ldots+a_{m n} x_{\mathrm{n}}=\ddot{b}_{\mathrm{m}}
\end{aligned}
$$

sistem ini dapat dituliskan dalam bentuk matriks $\mathrm{Ax}=\mathrm{b}$ dengan $\mathrm{a}=[\mathrm{aij}]$ dan $\mathrm{b}=[\mathrm{bi}]$; penyelesaian dari sistem ini merupakan penyelesaian dari semua persamaan linear dalam sistem; lihat juga persamaan linear (system of linear equation)
sistem persamaan linear homogen
sistem persamaan linear yang berbentuk $\mathrm{Ax}=\mathbf{0}$; lihat sistem persamaan linear
(system of homogenous linear equation)
sistem persamaan linear takhomogen
sistem persamaan linear $\mathrm{Ax}=\mathrm{b}$ dengan b bukan merupakan vektor no; lihat juga sistem persamaan linear (system of inhomoenous linear equation)
sistem persamaan linear takkonsisten
sistem persamaan linear yang tidak mempunyai penyelesaian; lihat juga penyelesaian ($x x x$)
subgrup dari suatu grup
himpunan bagian dari suatu grup G yang juga merupakan grup dengan operasi yang sama pada G
(subgroup of a group)
subgrup karakteristik
subgrup dari grup automorfisme, misalnya A adalah himpunan semua automorfisme dari grup G, grup G dapat dipandang sebagai A-grup; Asubgrup dari G disebut subgrup karakteristik dari G; lihat juga subgrup dari suatu grup (characteristic subgroup)

subgrup komutator

grup dari semua unsur yang berbentuk $\mathrm{c}_{1} \mathrm{c}_{2} \ldots \mathrm{c}_{\mathrm{n}}, \mathrm{c}_{1}$ adalah komutator dari suatu pasangan unsur tertentu; lihat juga komutator unsur grup (commutator subgrup)
subgrup normal
subgrup H dari grup G yang koset kanannya juga merupakan koset kiri; lihat juga koset kanan dan koset kiri
(normal subgroup)
submodel
himpunan bagian dari suatu modul M yang juga merupakan modul dengan operasi yang sama pada M ; lihat juga modul (submodule)
subruang invarian
subruang linear tertutup L yang bersifat $T(L) c L, T$ merupakan transformasi linear; lihat juga subruang suatu ruang vektor dan transformasi linear
(invariant subspace)
subruang suatu ruang vektor
himpunan bagian dari suatu ruang vektor V yang juga merupakan ruang vektor dengan operasi yang sama seperti pada ruang vektor V; lihat juga ruang vektor (subspace of a vector space)
sudut antara vektor
sudut yang terbentuk oleh dua vektor u dan v, besar sudut yang terbentuk
 (angle between vector)
surda
jumlahan beberapa bilangan yang salah satunya atau lebih adalah akar takrasional (akar irasional adalah akar kuadrat dari bilangan takrasional); lihat juga akar kuadrat (surd)
susunan biner
sistem bilangan yang menyatakan bilangan real dalam bilangan berbasis 2, contoh: $1 \emptyset 1 \emptyset \emptyset 1$ adalah susunan bilangan biner yang menyatakan bilangan $1 \cdot 2^{0}+\emptyset \cdot 2^{1}+\emptyset \cdot 2^{2}+1 \cdot 2^{3}+\emptyset \cdot 2^{4}+1 \cdot 2^{5}=41$; lihat juga dasar sistem bilangan
(binary composition)

T

-taksama

ketaksamaan

pernyataan bahwa suatu besaran lebih besar atau lebih kecil daripada besaran lainnya, ditulis $\mathrm{a}>\mathrm{b}$ atau $\mathrm{a}<\mathrm{b}$
(inequality)
ketaksamaan Cauchy-Schwarz
ketaksamaan dalam ruang produk-dalam V yang berbentuk $/\langle x, y\rangle$ s// 〈x |/ . \| y \|
(Cauchy Schwarz inequality)
ketaksamaan segitiga
ketaksamaan yang berbentuk//x+y//s//x//+//y//dengan//x//norma vektor \mathbf{x} dan //y// norma dari vektor \mathbf{y}
(triangle inequality)
-tambah
penambahan
(addition)
lihat: operasi penambahan
penambahan matriks
operasi penambahan antara dua matriks, matriks $\mathrm{C}=\left(\mathrm{c}_{\mathrm{ij}}\right)$ merupakan hasil penambahan matriks s $A=\left(a_{i j}\right)$ dan $B=\left(b_{i j}\right)$ jika $c_{i j}=a_{i j}+b_{i j}$ untuk setiap i, j; persyaratan yang harus dipenuhi untuk melakukan operasi penambahan matriks adalah ukuran kedua matrika A dan B harus sama
(addition of matrices)

penambahan vektor

operasi penambahan untuk vektor, untuk vektor di R^{n}, hasil operasi
penambahan dua vektor $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ dan $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ adalah vektor $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ dengan $w_{i}, u_{i},+v_{i}$ untuk setiap i
(addition of vector)

teorema Cayley-Hamilton

setiap matriks merupakan akar dari persamaan karakteristiknya, jika $\mathrm{f}(\mathrm{a})=0$ merupakan persamaan karakteristik untuk matriks $\mathrm{A}, \mathrm{f}(\mathrm{A})=0$ (Cayley Hamilton theorem)

teorema pengurai

jika a suatu model dengan anihilator minimal
$V=p_{11}^{e} \ldots P_{k k}^{e}$ dengan p_{1}, \ldots, P_{k} prima dalam daerah integral utama D yang tidak berkaitan satu sama lain, maka
$\mathrm{A}=\mathrm{T}_{\mathrm{pl}}(\mathrm{A})+\ldots+\mathrm{T}_{\mathrm{pk}}(\mathrm{A})$ dengan $\mathrm{T}_{\mathrm{pi}}(\mathrm{A})$ merupakan P_{i}-submodul terbesar dari A
(decomposition theorem)

teorema sumbu utama

jika S matriks simetrik real dengan nilai karakteristik $\grave{a}_{1}>\grave{a}_{2}>\ldots>\grave{a}_{n}$, maka terdapat matriks ortogonal real R sehingga real R sehingga $R^{1} A R$ $=\mathrm{D}, \mathrm{D}$ adalah matriks diagonal dan entri diagonal utamanya merupakan nilai karakteristik S
(principal axis theorem)
-tak sama
pertaksamaan
sifat suatu ekspresi yang menyatakan ketaksamaan; contoh $2 x+7 y$ $=4 z>5$
(inequality)

transformasi

fungsi dari ruang vektor V ke ruang vektor W ; disebut juga alih ragam (transformation)

transformasi Hermite

transformasi linear yang matriks transformasinya sama dengan matriks adjoinnya
(Hermitian transformation)

transformasi linear

pemetaan T dari ruang vektor V ke ruang vektor W dengan sifat, $\mathrm{T}(\mathrm{ax}+\mathrm{by})=\mathrm{a} \mathrm{T}(\mathrm{x})+\mathrm{bT}(\mathrm{y})$, yang berlaku untuk setiap skalar a dan bserta
untuk setiap vektor x dan y di ruang V
(linear transformation)

transformasi linear balikan

transformasi yang jika dioperasikan dengan transformasi linear tertentu menghasilkan transformasi satuan; transformasi linear T^{-1} disebut balikan dari transformasi T apabila $\mathrm{T}^{-1} \mathrm{~T}=\mathrm{TT}^{-1}=\mathrm{I}$, dan I adalah transformasi linear satuan
(inverse linear transformation)
transformasi linear bersusun
transformasi linear ST: $\mathrm{V} \rightarrow \mathrm{X}$ dengan $\mathrm{ST}(\mathrm{x})=\mathrm{S}[\mathrm{T}(\mathrm{x})], \mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ dan $\mathrm{S}: \mathrm{W} \rightarrow \mathrm{X}$ merupakan transformasi linear, transformasi ST disebut transformasi linear bersusun dari T dan S
(composite linear transformation)

transformasi linear invers

(inverse linear transformation)
lihat: transformasi linear balikan

transformasi linear ortogonal

transformasi linear dengan matriks transformasi A yang bersifat ortogonal yaitu $\mathrm{AA}^{1}=\mathrm{A}^{1} \mathrm{~A}=\mathrm{I}$
(orthogonal linear transformation)
transformasi linear pada
transformasi linear T : A \rightarrow B dengan sifat setiap unsur b di B selalu mempunyai pasangan a di A sehingga $T(a)=b$, atau $T(A)=B$
(onto linear transformation)
transformasi linear satuan
transformasi linear linear I: $\mathrm{V} \rightarrow \mathrm{V}$ yang memetakan setiap unsur di v ke dirinya sendiri, jadi $\mathrm{I}(\mathrm{x})=\mathrm{x}$ untuk setiap unsur x di V
(identity of linear transformation)

transformasi linear satu-satu

transformasi linear yang mempunyai padanan satu-satu (one-one linear transformation)

transformasi linear terdiagonal

transformasi linear yang mempunyai matriks transformasi berbentuk diagonal relatif terhadap suatu basis
(diagonalize linear transformation)

transformasi matriks

transformasi linear T dengan $\mathrm{T}(\mathrm{x})=\mathrm{Ax}$ untuk suatu matriks A (transformation of matrix)
transpos operator
operator $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ dengan matriks transformasi $\mathrm{A}^{1}, \mathrm{~A}$ adalah matriks transformasi suatu operator S
(transpose of an operator)
transposisi
permutasi dua unsur (a, b)
(transposition)
teras matriks
jumlah entri diagonal utama matriks
(trace of matrix)

-ubah

perubahan basis

perubahan koordinat suatu vektor dari basis \mathbf{B} ke basis B^{\prime}; perubahan basis dalam ruang vektor berdimensi hingga dapat dinyatakan dalam suatu matriks taksingular P (yang disebut matriks penukaran basis) dengan sifat $\{v\}_{B}=P[v]_{B}$
(change of basis)
unsur balikan dalam grup
unsur x^{-1} dalam grup G yang bersifat $\mathrm{x}^{*} \mathrm{x}^{-1}=\mathrm{x}^{-1 *} \mathrm{x}=\mathrm{e}$, dan e adalah unsur satuan dalam grup G; unsur x^{-1} disebut balikan dari unsur x (invers element in a group)
unsur idempoten
unsur yang apabila dioperasikan dengan dirinya sendiri bersifat tidak berubah, jadi, x disebut unsur idempoten apabila $\mathrm{x}^{*} \mathrm{x}=\mathrm{x}$
(idempotent element)
unsur satuan grup
unsur e dalam grup $\left(G,{ }^{*}\right)$ yang bersifat $e^{*} x=x^{*} e=x$ untuk setiap unsur x di G
(unit element of group)

V

vektor
unsur dari ruang vektor; pada ruang real berdimensi dua atau tiga, yang disebut vektor adalah segmen garis berarah (vector)
vektor baris
(row vector)
lihat: matriks baris
vektor basis
(basis vector)
lihat: basis ruang vektor
vektor karakteristik
vektor taknol A yang bersifat $\sigma \mathrm{A}=\mathrm{tA}$ untuk suatu skalar t dan transformasi linear σ; skalar t disebut akar karakteristik dari σ (characteristic vector)
vektor karakteristik matriks
vektor taknol x yang bersifat $\mathrm{Ax}=\mathrm{tx}$ untuk suatu skalar t dan matriks A ; t disebut nilai karakteristik matriks a
(eigenvector of a matrix)
vektor kolom
(column vector)
lihat: matriks kolom
vektor nol
vektor yang komponennya nol semua; contoh vektor nol di R^{3} adalah (Ø,Ø,Ø)
(zero vector)

A
Abelian group
absolute value
accelaration
addition
addition of matrices
addition of vector addition operation additive group
additive group of ring
adjoint matrix
adjoint of linear map
adjoint operator
affine group of transformation
agebraic number field
algebraic number
alternating bilinear form
alternating group
angle between vector
anisotropic
annihilator
arithmetic mean
associated prime ideal
grup Abel
nilai mutlak
percepatan
penambahan
penambahan matriks
penambahan vektor
operasi penambahan
grup aditif; grup jumlah; grup penambahan
grup penambahan dari gelanggang
matriks adjoin
adjoin pemetaan linear
operator adjoin
grup transformasi afin
medan bilangan aljabar
bilangan aljabar
bentuk bilinear selang-seling
grup selang-seling; grup ganti
sudut antara vektor
anisotropik
anihilator
rerata aritmetik
ideal prima terkait
associative law
augmented matrix automorphisme
automorphism of a group
hukum asosiatif
matriks terimbuh
automorfisme automorfisme grup

B

base of logarithm system
base of number system
basis of an Abelian group
basis of vector space
basis vector
bijective mapping
bilinear form
bilinear map
binary composition
binary operation
block matrix
Boolean ring
sistem dasar logaritma
dasar sistem bilangan
basis grup Abel
basis ruang vektor
vektor basis
pemetaan bijektif
bentuk bilinear
pempetaan bilinear
susunan biner
operasi biner
matriks blok
gelanggang Boole

C

cancellation law canonical form
Cauchy-Schwartz inequality
Cayley-Hamilton theorem
center of group
change of basis
character group
character of group
characteristic of logarithm
characteristic polynomial of a matrix
characteristic root
characteristic subgroup
characteristic vector
coefficient of torsion
colomn echelon form matrix
coloumn equivalent matrices coloumn matrix
coloumn vector
common divisor
common multiple
commutative diagram
hukum pembatalan
bentuk kanonis
ketaksamaan Cauchy-Schwartz
teorema Cayley-Hamilton
pusat grup
perubahan basis
grup karakter
karakter grup
karakteristik logaritma
polinomial karakteristik matriks
akar karakteristik
subgrup karakteristik
vektor karakteristik
koefisien torsi
bentuk eselon kolom matriks
matriks setara kolom
matriks kolom
vektor kolom
pembagi persekutuan
kelipatan persekutuan
diagram komutatif
commutative group
commutative integral domain
commutative law
commutative ring
commutator of elements of group
commutator subgroup
complex conjugate
complex conjugate of a matrix complex matrix
complex vector space
composite linear transformation
composite number
coordinate of vectors
coordinate with respect to a basis
cosets in a group
criterion Einstein iredeucibility
cubic equation
cubic root
cubic group
grup komutatif
ranah integral komutatif
hukum komutatif
gelanggang komutatif
komutator unsur grup
subgrup komutator
sekawan kompleks
sekawan kompleks matriks
matriks kompleks
ruang vektor kompleks
transformasi linear majemuk
bilangan majemuk
koordinat vektor
koordinat terhadap basis
koset dalam grup
kriteria ketakreduksian Einstein
persamaan kubik (pangkat tiga)
akar kubik; akar pangkat tiga
grup siklik

D

decomposition theorem
definitie negative
definite positif
degree of polynoomial
denominator
determinant
diagonalized linear transformation diagonal matrix
diagonal of a matrix
dimension of vector space
dirext sum
discariminant
distributive law
division
division algorithm
division ring
divisor
domain of linear transformation double root
teorema pengurai
negatif tentu
positif tentu
derajat polinomial
penyebut
determinan
transformasi linear terdiagonal
matriks diagonal
diagonal matriks dimensi ruang vektor
jumlahan langsung
diskriminan
hukum distributif
pembagian
algoritma pembagian
gelanggang pembagian
pembagi
ranah transformasi linear
akar ganda

E

eigenspace
eigenvalue
eigenvalue of matrix
eigenvalue of linear transformation
eigenvactor of matrix
elementary column operation on a matrix
elementary matrix
elementary arow operation on
a matrix
elimination
endomorphism endomorphism of group endomorphism of module entry of matrix
epimorphism
equality
equation
equivalence class
equivalent class
equivalence of matrix
ruang karakteristik; eigen-ruang nilai karakteristik; eigen-nilai
nilai karakteristik matriks
nilai karakteristik transformasi linear
vektor karakteristik matriks operasi kolom elementer matriks
matriks elementer
operasi baris elementer matriks
eliminasi; pelenyapan
endomorfisme
endomorfisme grup
endomorfisme modul
entri matriks
epimorfisme
kesamaan
persamaan
kelas kesetaraan
kelas setara, kelas ekuivalen
kesetaraan matriks
equivalent of matrices equivalent morphism
euclidean vector space
even permutation
expansion of a determinant
about a row
expansion of a determinant about a column
extension field
extension root of field
matriks setara
morfisme ekuivalen
ruang vektor Euclides
permutasi genap
ekspansi determinan atas baris
ekspansi determinan atas kolom
medan perluasan
perluasan medan akar

F

factor
factor group
factor of an integer
factor of polynomial
field
field isomorphism
finite group
fraction
free group
full linear group function
faktor
grup faktor
faktor bilangan bulat
faktor polinomial
medan
isomorfisme medan
grup hingga
pecahan
grup bebas
grup linear penuh
fungsi

G

Gauss Jordan reduction
Gaussian integers
general linear group
generators of group
geometric mean
greatest common divisor
Gram-Schmidt orthogonalization process
Gram-Schmidt process group
group
pereduksian Gauss Jordan
bilangan bulat Gauss
grup linear umum
pembangkit grup
rerata geometrik
pembagi persekutuan terbesar proses pengortogonalan

Gram-Schmidt
proses Gram-Schmidt grup grup

H

Hermitian matrix
Hermitian transformation homomorphisme homomorphisme between group homomorphisme of group homomorphisme of module homomorphisme of ring
matriks Hermite
transformasi Hermite
homomorfisme
homomorfisme antar-grup
homomorfisme grup
homomorfisme modul
homomorfisme gelạngang

I

ideal

idempotent element
identity matrix
identity of linear transformation
image of a linear transformation
imaginer number
inconsistent system of linear

equations

index of finite subgroup
inequality
inner automorphism
inner product
inner product space
integral domain
invariant subspace
invers element in a group
invers linear transformation invers matrix
invers of a matrix
irrational numbers isometry
isomorphic vector space isomorphism isomorphism between group
ideal
unsur idempoten
matriks satuan
transformasi linear satuan
peta transformasi linear
bilangan khayal
sistem persamaan linear tak-konsisten
indeks subgrup hingga
ketaksamaan; pertidaksamaan
automorfisme dalam
darab dalam; hasil-kali dalam
ruang darab dalam
ranah integral; daerah integral
subruang invarian
unsur balikan grup
transformasi linear balikan
matriks balikan
balikan matriks
bilangan takrasional
isometri
ruang vector isomorfik
isomorfisme
isomorfisme antargroup

J

Jordan canonical form Jordan normal form
bentuk kanonis Jordan bentuk normal Jordan

K

kernel of homomorphism
kernel of linear transformation

kernel homomorfisme; bija homomorfisme kernel transformasi linear; bija transformasi linear

L

leading coefficient
least common multiple
left coset in a group
left ideal
left ideal in a ring
length of a vector
linear combination
linear dependent
linear equation
linear independent
linear map
linear operator
linear transformation
linearity property
logarithm
lower triangular
koefisien pertama
kelipatan persekutuan terkecil
koset kiri dalam grup
ideal kiri
ideal kiri dalam gelanggang
panjang vektor
kombinasi linear
bergantung linear
persamaan linear
bebas linear
pemetaan linear
operator linear
transformasi linear
sifat kelinearan
logaritma
matriks segitiga bawah

M

magnification
main diagonal of a matrix
mantissa of logarithm
matrix
matrix of linear transformation
maximal ideal
metric vector space
modular group
module
multiplication
multiplicative group multiplier
magnifikasi
diagonal utama matriks
mantis logaritma
matriks
matriks transformasi linear
ideal maksimal
ruang vektor metrik
grup modular
modul
perkalian
grup perkalian, grup multiplikatif pengali

N

natural matrix
natural number
n-dimensional vector space
negative number
nilpotent matrix
Noetherian ring
nominator
non-degenerate bilinear form
non-singular matrix
non-trivial solution
norm
normal subgroup
norm of a vector
norm of a matrix
normed space
nullity
matriks asli
bilangan asli
ruang vektor berdimensi n
bilangan negatif
matriks nilpoten
gelanggang Noetherian
pembilang
bentuk bilinear takmerosot
matriks taksingular
penyelesaian taktrivial
norma
subgrup normal
norma vektor
norma matriks
ruang bernorma
kenolan, nulitas

0

odd permutation
one to one correspondence
one-one function
one-one linear transformation
onto function
onto linear transformation operator ordered basis
ordered field
order of group
order of matrix
orthogonal
orthogonal basis
orthogonal linear transformation
orthogonal matrix
orthonormal
orthonormal basis
permutasi ganjil
korespondensi satu-satu; padanan satu-satu
fungsi satu-satu
transformasi linear satu-satu fungsi pada
transformasi linear pada operator basis terurut medan terurut
tingkat grup; ordo grup
tingkat matriks, ordo matriks ortogonal
basis ortogonal
transformasi linear ortogonal
matriks ortogonal
ortonormal
basis ortonormal

P

permutation
permutation group
permutation matrix
polynomial
polynomial ideal
positive number
power
prime factor
prime ideal
prime number
principal axis theorem
principal ideal
product of matrices
proper ideal
permutasi
grup permutasi
matriks permutasi
polinomial, suku banyak
ideal polinomial
bilangan positif
pangkat
faktor prima
ideal prima
bilangan prima
teorema sumbu utama
ideal utama
perkalian matriks
ideal sejati

Q
quadratic equation
quadratic form
quotient field
quotient group
quotient ring
persamaan kuadratik
bentuk kuadratik
medan hasil-bagi
grup hasil bagi; grup kuosien gelanggang hasil bagi;
gelanggang kuosien

R

range of linear transformation.
rank of matrix
rational number
real matrix
real number
relatively prime
right coset in a group
right ideal
right ideal in a ring
ring
root of an equation
root of unity
row echelon form of a matrix
row equivalent matrices
root field
root field isomorphism
row matrix
row of matrix
row vector
rotation
kisaran transformasi linear;
jangkau transformasi linear
peringkat matriks
bilangan rasional
matriks real
bilangan real, bilangan nyata
prima relatif
koset kanan dalam grup
ideal kanan
ideal kanan dalam gelanggang
gelanggang
akar persamaan
akar satuan
bentuk eselon baris matriks
matriks setara baris
medan akar
isomorfisme medan akar
matriks baris
baris matriks
vektor baris
rotasi
scalar product
scalar product of vector
self adjoint operator
semilinear map
sequence of numbers
similar matrix
simple root
singular matrix
solution
solution space
square matrix
square root
standard inner product on R^{n}
substraction
subgroup of a group
submodule
subspace of a vector space
substractor
superposition principle

surd

symmetric bilinear form
hasil-kali skalar, darab skalar darab skalar vektor
operator adjoin diri
peta semilinear
barisan bilangan
matriks serupa
akar sederhana
matriks singular
pemecahan; penyelesaian
ruang penyelesaian
matriks bujur sangkar;
matriks kuadrat
akar kuadrat
darab dalam baku pada R^{n}
pengurangan
subgrup dari suatu grup
submodul
subruang suatu ruang vektor
pengurang
prinsip superposisi
surda
bentuk bilinear simetrik

85

symmetric group
symmetric linear map
symmetric operator system of homogenous linear equation
system of inhomogenous linear
system of linear equation
grup simetrik
peta linear simetrik
operator simetrk
sistem persamaan linear homogen
sistem persamaan linear takhomogen
sistem persamaan linear

T

trace of matrix
transformation
transformation of matrix
transition matrix
transpose of an operator
transposisi
triangle inequality triangular matrix
trivial solution
two sided ideal
teras matriks
transformasi, alih-ragam
transformasi matriks
matriks peralihan
transpos operator
transposisi
ketaksamaan segitiga
matriks segitiga
penyelesaian trivial
ideal dwiarah

U

unitary map unit element of group unit ideal
upper triangular matrix
peta uniter
unsur satuan grup
ideal satuan
matriks segitiga atas

V

Vandermonde determinant vector
vector space
determinan Vandermonde vektor
ruang vektor

W

whole number
bilangan bulat

Z

zero divisor
zero matrix
zero vector
pembagi nol matriks nol
vektor nol

DAFTAR PUSTAKA

James and James, 1976. Mathematics Dictionary. New York: Van Nostrand Reinhold Company.
Lapedes, Daniel N. 1974. Dictionary of Scientific and Technical Terms. New York: McGraw-Hill Book Company
Webster. 1983. Webster'sNinthNewColeglate Dictionary. Merriam Webster Incorporation.

\qquad rasgmos blardaiss

 nobintoquosin-
\square

$$
96-208
$$

