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The importance of genome sequence
quality to microbial comparative genomics
Theo H. M. Smits

Abstract

The quality of microbial genome sequences has been a concern ever since the emergence of genome sequencing.
The quality of the genome assemblies is dependent on the sequencing technology used and the aims for which
the sequence was generated. Novel sequencing and bioinformatics technologies are not intrinsically better than
the older technologies, although they are generally more efficient. In this correspondence, the importance for
comparative genomics of additional manual assembly efforts over autoassembly and careful annotation is emphasized.
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Main article
In my recent research, I have on several occasions dealt
with bacterial genome sequences that were of low quality
(here defined as “genome sequence assemblies that contain
many contigs, and eventually with obvious misassemblies
and unresolved plasmid sequences). A major problem is
that the quality of these genome sequences is not indicated
in the relevant databanks or in the associated literature,
even though basic methods for genome quality assessment
are available [1–3]. As some of the low-quality genomes
can be of potential interest, we may invest considerable
time to finally conclude that these genomes are not of
much use for us. It is my opinion that this loss of time can
be avoided by simple means.
New technologies are always taken skeptically. Already

when I was working with 454 sequencing technology,
homopolymers were a major concern [4]. The same
problem was observed later with reads from IonTorrent
systems [5, 6]. Assembly of short reads from technolo-
gies such as Illumina often yielded assemblies with a
large number of contigs. Genome assemblies with long
reads from PacBio SMRT sequencing or more recently
Oxford NanoPore MinION sequencing are often super-
ior in assembly due to the low number of resulting con-
tigs (often complete bacterial genomes) but there are
still concerns regarding the high error frequencies and

reliability [7–9]. Many of these problems can be resolved
by some time with an assembly specialist, improving the
assembly quality remarkably.
The large number of contigs after assembly is one of

the major problems that were observed when using
short-read sequencing technologies. A recent publication
on the intraspecies taxonomy of the plant pathogen
Pseudomonas syringae included genomes with up to 5099
contigs [10]. The quality of these genome sequences may
be fine for taxonomical analysis where most parameters
like average nucleotide identities (ANI) [11] or genome-
to-genome distance calculation (GGDC) [12] are not
dependent on the integrity of annotations. However, for
comparative genomics searching for individual gene se-
quences, these fragmented genomes are not applicable.
Just do the back-of-the-envelope calculation: having a
mean genome size of around 6Mb per genome [10], this
would indicate that the size of an average contig in a gen-
ome sequence with 5000 contigs would be around 1.2 kb.
Having an average coding density of 85% and an average
gene size of 1 kb for bacteria, this would indicate that
there is maximally one full gene per contig, but it more
often happens that you find two fragmented genes on the
contig boundaries. This certainly limits the use of such an
assembly.
It should be stated that often a large number of contig

gaps cannot be resolved, but this is dependent on the
genome. We recently sequenced two genomes of P. syr-
ingae using 2 × 300 base paired-end Illumina sequencing,
and obtained a large number of contigs (214 and 246
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contigs, respectively) [13]. In these genomes, many of
the contig breaks are caused by the presence of insertion
sequence (IS) elements. As IS elements are typically
around 1.2–1.5 kb, a shotgun library with 500 bp inserts
is not suitable for positioning the IS elements, present in
multiple copies in the same genome. For this reason, our
research group now prefers to use PacBio sequencing
with a high coverage to improve the quality of genome
assemblies from species that harbor a large number of IS
elements [14, 15]. Still, manual inspection after sequen-
cing was required to solve some sequence problems.
On the other hand, it should also be stated that most ge-

nomes sequenced with Illumina technology can easily be
improved in their quality by some additional steps of as-
sembly (Fig. 1). Within our research group, we commonly
spend up to one week per genome to reduce the number
of contigs from an Illumina assembly. After autoassembly,
we first perform a read mapping against the FastA file of
the de novo assembly using SeqMan NGen (DNASTAR,
Madison, WI, USA). This program has a special workflow,
which allows the mapping of reads over the border of the

contigs, which, when using 2 × 300 base reads, often gives
more than 200 bp additionally on the left and right side of
the contig. Manually checking the mapped reads in Seq-
Man Pro (DNASTAR) will uncover assembly errors based
on false joints as these repeats will have a higher coverage
on part of contigs than the average coverage. Such contig
may be split before the next step.
The second step is to perform an assembly of all con-

tigs from the resulting FastA file in SeqMan against each
other. Here, several contigs may already be joined based
on the additional sequence information, as overlaps are
generated. Additionally, this process will eliminate many
of the small contigs, which may be included inside other
contigs. These will be checked if validly included. When
a reference genome of the same species is available, this
sequence can also be used to map reads against,
followed by combining mapped and de novo contigs in
SeqMan. However, this may introduce other problems
due to misassembled regions.
Afterwards, the overlaps need to be checked carefully, as

in case of contig forks, contigs may be joined erroneously.

Fig. 1 Flow diagram for high quality genome assemblies as used in the author’s institution. To follow the process described in the text, the parts
involved in step 1 and step 2 are shaded, whereas all other processes belong to step 3. Black arrows: follow-up processes, blue arrows:
information flow, grey arrow: potential follow-up process
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Read mapping using SeqMan NGen followed by manual
analysis of mapped reads using SeqMan Pro can solve this
kind of issues. When a complete genome, closely enough
related as determined by ANI [11] or GGDC [12], is avail-
able, the program MAUVE [16] can be used to sort all con-
tigs against the reference genome [17]. Using the synteny
between the genomes from BLASTN analyses, several gaps
may be closed. Others, potentially erroneously joined in the
previous step, may have to be split again. The process has
to be repeated several times to yield the FastA file of a final
high quality draft genome assembly, as not all gaps can be
resolved (e.g. rRNA operons). After annotation, information
can be derived from the contigs that could lead to im-
proved contig assembly, e.g., when a contig represents a
plasmid.
The above mentioned process often yields closure of plas-

mid sequences from draft genomes [18], but also routinely
a reduction of the total number of contigs to under 50 con-
tigs per genome [19–21] with near complete removal of
small contigs. Due to a thorough quality check at every
assembly step by repeated read mapping and visual check-
ing (Fig. 1), we make sure not to aggressively reduce the
number of contigs by combining contigs that do not belong
together [22, 23]. As the raw reads are generally available
from databanks, the workflow (Fig. 1) would be possible for
submitted genome sequences as well [24], but the effort is
substantial and success is not guaranteed.
The problem with long-read technologies is not the

number of contigs, but the quality of the individual read
sequences. By using sufficiently large number of reads or
additional reads from a short-read technology for assem-
bly, the quality of the assembly can be improved signifi-
cantly. However, if a genome is only used for. Taxonomic
analysis, sequence errors based on lower coverage are not
intrinsically detected. Unfortunately, such genomes will all
the same appear in comparative studies, influencing their
quality [25]. We recently retrieved the genome sequence,
generated with MinION sequencing, of a bacterium de-
scribed as “Kluyvera intestini” GT-16 [26]. This genome
clustered closely to the genomes of two recently described
novel species in the genus Phytobacter [27]. A simple test
with ANI showed that strain GT-16 belongs to the spe-
cies Phytobacter diazotrophicus (T.H.M. Smits and F.
Rezzonico, unpublished). After the analysis of the gen-
ome sequence with the comparative genomics program
EDGAR [28, 29] together with several other genomes of
Phytobacter and related genera, we noticed that inclusion
of the GT-16 genome sequence led to a drastic drop in the
number of core genes. Reannotation using Prokka [30] did
not improve the situation, and the summary of the annota-
tion indicated a large number of pseudogenes. An examin-
ation of the annotation showed that these pseudogenes
were caused from frame shifts, presumably originating in
sequencing errors in the reads used. Interestingly enough,

the same authors had previously published a draft genome
of the same strain based on Illumina reads [31]. Combin-
ation of the data in a hybrid assembly approach would have
yielded a high-quality genome [32, 33].
In my job as section editor, but also prior to this, I have

encountered many manuscripts in which the authors
described only the sequencing and automatic assembly of
genomes, often prior to comparative genomics. I have
identified many manuscripts that are based on such work,
and I have rejected some of them due to lack of basic gen-
ome information. Investing a little time in assembly and
quality control can resolve assembly mistakes, yielding a
lower number of contigs, and can allow identification and
closure of plasmids. This little bit of extra time helps edi-
tors and reviewers to estimate the quality of genomes used
for comparative genomic study, but also the research
community to more effectively use genome sequences for
various purposes. Problems based on the quality of gen-
ome assemblies, as described in this correspondence,
would then be minimized. In the end, the benefitfrom
good quality genome assemblies in databanks [34, 35] is a
win-win situation for all researchers in genomics..
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ANI: Average nucleotide identities; GGDC: Genome-to-genome distance
calculation; IS: Insertion sequence
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