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Abstract 25 

This article reviews the structures and biological activities of several classes of uridine-containing 26 

nucleoside antibiotics (tunicamycins, mureidomycins/pacidamycins/sansanmycins, 27 

liposidomycins/caprazamycins, muraymycins, capuramycins) that target translocase MraY on the 28 

peptidoglycan biosynthetic pathway. In particular, recent advances in structure-function studies, and 29 

recent X-ray crystal structures of translocase MraY complexed with muraymycin D2 and tunicamycin 30 

are described. The inhibition of other phospho-nucleotide transferase enzymes related to MraY by 31 

nucleoside antibiotics and analogues is also reviewed. 32 

 33 

Dedication. This article is part of a Special Issue commemorating Dr Kiyoshi Isono and his important 34 

contributions to the study of nucleoside antibiotics. Dr. Isono led the discovery of the liposidomycin 35 



 2 

natural products in 1985, one of the first studies in this field, which established that nucleoside 1 

antibiotics could be selective antibacterial agents. 2 

 3 

The discovery of the liposidomycin nucleoside antibiotics by Dr. Kiyoshi Isono and co-workers 4 

in 1985 [1], and the nucleoside antibiotic tunicamycin by Tamura and co-workers [2], has led to the 5 

identification and study of a related collection of uridine-containing nucleoside antibiotics with potent 6 

antibacterial activity, targetting the enzyme phospho-MurNAc-pentapeptide translocase (MraY) on the 7 

peptidoglycan cell wall biosynthetic pathway. The structures of each family have been reviewed in 8 

detail in reviews in 2003 [3] and 2010 [4]. This review will discuss recent structure-activity studies on 9 

each group of nucleoside antibiotics, and the mechanism of inhibition of translocase MraY, in 10 

particular, the recent crystal structures of nucleoside antibiotics bound to MraY. 11 

 12 

 13 

1. Antibacterial nucleoside antibiotics targetting bacterial peptidoglycan 14 

biosynthesis 15 

 16 

1.1 The tunicamycin group of GlcNAc-tunicamine nucleoside antibiotics (tunicamycins, 17 

streptovirudins, corynetoxins) 18 

The tunicamycin group of nucleoside antibiotics were isolated in 1971 from Streptomyces 19 

lysosuperficus by Tamara and co-workers [2]. They contain a uracil base attached to a C11 20 

tunicamine sugar, glycosylated at C11 by a GlcNAc sugar and N-acylated at C10 by a C12-C15 fatty 21 

acid (see Figure 1). They showed antibacterial activity against a range of Gram-positive bacteria, 22 

especially those in the Bacillus genus (MIC 0.1-20 µg/ml) [2], but also showed toxicity towards 23 

eukaryotic cells, due to inhibition of eukaryotic N-linked glycoprotein biosynthesis [5]. The 24 

streptovirudins and corynetoxins contain the same uracil-tunicamine skeleton, but are acylated by 25 

different fatty acids [3]. The biosynthetic gene cluster for the tunicamycin antibiotics has been 26 

identified in Streptomyces chartreusis [6], and the biosynthetic pathway has been shown to involve 27 

an unusual radical SAM enzyme TunM in the assembly of the tunicamine sugar [7].  28 

 29 
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Figure 1. Structures of tunicamycins  1 

 2 

A total synthesis of tunicamycin V was reported in 2017 by Ichikawa and co-workers [8], 3 

which has enabled the synthesis of tunicamycin analogues for structure-activity study [9]. A lipid-4 

truncated analogue and an analogue lacking the GlcNAc sugar both lost 1000-fold in MraY 5 

inhibition activity but retained some enzyme inhibition, while an analogue lacking the nucleoside 6 

base was completely inactive [9]. The preseence of the uracil base has been shown to be required in 7 

other nucleoside antibiotic families [3,4], which can be rationalised by the MraY structural studies 8 

described in Section 2.2. 9 

 10 

1.2  The mureidomycin group of ureidyl-peptide nucleoside antibiotics (mureidomycins, 11 

pacidamycins, napsamycins, sansanmycins) 12 

 Mureidomycins A-D were isolated from Streptomyces flavidoviridens SANK 60486, and 13 

first reported in 1989 [10]. They showed potent antimicrobial activity against a range of 14 

Pseudomonas strains (MIC 0.1 – 3 µg/mL), and protected mice against infection by Pseudomonas 15 

aeruginosa (ED50 50 mg/kg for MrdC) [11,12]. Phospho-MurNAc-pentapeptide translocase (MraY) 16 

on the bacterial peptidoglycan biosynthetic pathway was identified as the molecular target of these 17 

compounds [11]. A closely related series of pacidamycins 1–7, isolated from Streptomyces 18 

coeruleorubidus strain AB 1183F-64, were also reported in 1989 [13-15]. The pacidamycins also 19 

showed antimicrobial activity against Pseudomonas strains (MIC’s 8 – 64 µg / mL), but they were 20 

found not to protect mice against infection by Pseudomonas aeruginosa [15].  21 

The structures of both families contain a 3’-deoxyuridine sugar attached via an 4’,5’-22 

enamide linkage to the carboxyl group of an N-methyl 2,3-diaminobutyric acid (DABA) residue, to 23 

which amino acids are attached on both nitrogen substituents (see Figure 2). To the -amino group 24 

of DABA is attached either Met (mureidomycins) or Ala (pacidamycins), which is in turn attached 25 

via a urea linkage to a C-terminal aromatic amino acid, either meta-tyrosine (mureidomycins), or 26 

Trp or Phe (pacidamycins). To the -amino group of the DABA residue is attached in most cases a 27 

meta-tyrosine residue, except in pacidamycin D, which contains Ala. Two further mureidomycins E 28 

and F were later reported, containing a bicylic derivative of meta-tyrosine at the amino-terminal 29 

position [16], also found in the closely related napsamycins, which were reported in 1994 [17]. The 30 

sansanmycins were reported in 2007, and contain the same structural sekeleton as the 31 

mureidomycins, but contain Trp at the C-terminal position, and contain either Met, Leu, or 32 

methionine sulfoxide at position 4 [18,19]. The sansanmycins showed antipseudomonal activity, 33 

but also showed activity against Mycobacterium tuberculosis (MIC 8-20 µg/ml) [19]. The structures 34 

of these classes of uridyl peptide antibiotics are shown in Figure 2. 35 
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A series of synthetic dihydropacidamycin analogues in which the 4’-5’ enamide was absent 1 

were prepared by Microcide Inc. The parent 4R-dihydropacidamycin retained antipseudomonal 2 

activity, but with somewhat reduced MIC (64 µg/ml) compared to pacidamycin D [20]. Synthetic 3 

analogues containing Phe or Leu at position 4, and Trp or Tyr at position 5, showed best 4 

antipseudomonal activity (MIC 4-16 µg/ml) [20]. An analogue containing 4-fluorophenylalanine in 5 

place of Met at position 4 showed antimicrobial activity against clinical E. coli strains (MIC 4-8 6 

µg/ml), as well as Mycobacterium tuberculosis (MIC 4-10 µg/ml) [21]. In 2011, Okamoto et al 7 

published a total synthesis of pacidamycin D [22], which they have used to synthesise further 8 

analogues varying the N-terminal dipeptide chain [23]. They have reported that meta-tyrosine in the 9 

amino-terminal position is considerably more active than L-Tyr, and that the stereochemistry of the 10 

2,3-diaminobutyric acid is important for both MraY inhibition and antimicrobial activity [23]. 11 

 12 

Figure 2. Structural features of mureidomycin, pacidamycin, napsamycin, and sansanmycin families 13 

of ureidyl peptide antibiotics. Structural variation show by blue arrows, structure-activity 14 

observations shown by red arrows. 15 

 16 



 5 

The anti-TB activity of the sansanmycin series has been developed signifcantly by Payne 1 

and co-workers, via chemical synthesis of a set of dihydrosansanmycin analogues [24]. They found 2 

that dihydrosansamycin B had significantly improved anti-TB activity (MIC50 0.3 µM) compared 3 

with sansanmycin B (MIC50 9.5 µM). Structure-activity studies revealed that analogues containing 4 

glycine at the N-terminal amino acid showed comparable activity (MIC50 0.63 µM), and that a 5 

further modification of a cyclohexyl group at position 4 led to an analogue with MIC50 80 nM that 6 

was a potent MraY inhibitor (IC50 30 nM), as shown in Figure 3 [24]. 7 

 8 

Figure 3. Antimicrobial activity of synthetic dihydrosansanmycin analogues modified at positions 2 9 

and 4 against Mycobacterium tuberculosis H37Rv. 10 

 11 

The biosynthetic gene cluster for the pacidamycin antibiotics, containing a number of non-12 

ribosomal peptide synthetase genes, was identified in Streptomyces coeruleorubidus in 2010 by the 13 

groups of Goss [25] and Walsh [26]. The unusual ureidopeptide moiety at the carboxyl terminus of 14 

the peptide chain is assembled via carboxyl activation of Ala by PacN, followed by carboxylation, 15 

and then peptide bond formation catalysed by ligase PacL [27]. The diamino acid DABA is 16 

biosynthesised from L-threonine by a pyridoxal 5’-phosphate-dependent -replacement reaction, 17 

also observed for mureidomycin biosynthesis in Streptomyces flavidovirens [28], using L-aspartate 18 

as a nucleophile, followed by a -elimination reaction [26]. The modified uridine nucleoside is 19 

formed via oxidation of uridine to the 5’-aldehyde, followed by transamination to 5’-amino-uridine, 20 

followed dehydration of the 4’-hydroxyl group [29]. The crystal structure of the novel dehydratase 21 

enzyme Pac13 has been determined, implicating His-42 in the catalytic mechanism [30]. The 22 

additional N-terminal Ala found in some pacidamycins and mureidomycins is added by ligase 23 

PacB, that uses Ala-tRNA as an amino acid donor [31]. The unusual amino acid meta-tyrosine is 24 
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biosynthesised from L-Phe by a novel non-heme iron- and tetrahydrobiopterin-dependent 1 

hydroxylase [32]. Mutasynthesis has been used to generate novel chlorinated pacidamycin 2 

derivatives [33], and modified sansanmycins [34]. The modified sansanmycins were reported to 3 

retain antimicrobial activity, in some cases with reduced activity, but MX-6 containing 4-4 

fluorophenylalanine at the C-terminus showed enhanced antimicrobial activity against B. subtilis 5 

and M. tuberculosis [34]. 6 

 7 

1.3 The liposidomycin group of liponucleoside antibiotics (liposidomycins, caprazamycins) 8 

 The liposidomycins are liponucleoside natural products containing an aminoglycoside 9 

sugar, which were reported by K. Isono and coworkers in 1985 [1], and their molecular structures 10 

reported in 1988 [35]. They show antimicrobial activity against Mycobacterium strains (MIC 1.6 11 

µg/ml) [1]. The caprazamycins were reported in 2003: they share the same structural skeleton as the 12 

liposidomycins, as shown in Figure 4, but the 3-methylglutaryl substituent is glycosylated by an 13 

additional L-rhamnose sugar [36,37]. 14 

 15 

Figure 4. Structures of the liposidomycins and caprazamycins, and synthetic analogues 16 

 17 

Synthetic uridine-based analogues of the liposidomycins containing the 18 

aminoribofuranoside sugar retain MraY inhibition activity (IC50 0.14-50 µM), but show weaker 19 

antimicrobial activity, demonstrating the importance of the lipophilic substituent, probably needed 20 

for cellular uptake [38-40]. Fer et al have published a further series of uridine-based analogues 21 

containing a lipophilic group linked via a triazole heterocycle, which show antimicrobial activity 22 

against Staphylococcus aureus, and inhibit MraY with IC50 values in the range 100-1000 µM [41]. 23 

Matsuda and coworkers have synthesised analogues of caprazamycin containing an alkyl chain in 24 

place of the glutarate diester sidechain, which retain antimicrobial activity but show enhanced 25 

stability [42]. A semisynthetic caprazamycin derivative CPZEN-45 is active in animal models for 26 
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protection against tuberculosis infection, and Ichizaki et al published in 2013 that CPZEN-45 1 

inhibits transferase WecA in M. tuberculosis, involved in lipoloysaccharide biosynthesis, rather 2 

than MraY [43].  3 

 The biosynthetic gene cluster for production of the caprazamycins in Streptomyces sp. 4 

MK730-62F2 was identified in 2009 by Kaysser et al [44]. The biosynthetic pathway involves the 5 

formation of uridine 5’-aldehyde, followed by a pyridoxal-5’-phosphate dependent reaction with 6 

glycine to form a uridine-amino acid adduct, followed by an  S-adenosylmethionine-dependent 7 

reaction transferring a 3-amino-3-carboxypropyl group [44]. A gene deletion strain, in which cpz21 8 

encoding an acyltransferase enzyme acting late in the biosynthetic pathway had been deleted, was 9 

found to accumulate the caprazamycin aglycone [44]. The genes responsible for addition of the L-10 

rhamnose sugar found in caprazamycins have been identified, allowing the heterologous gene 11 

expression of intact caprazamycins [45]. The biosynthetic pathway for the aminoribosyl sugar 12 

moiety found in the caprazamycin, muraymycin and other nucleoside natural products has also been 13 

shown to proceed via uridine 5’-aldehyde, and was reported by van Lanen and co-workers [46-48].  14 

 15 

1.4  The muraymycin group of lipo-ureidylpeptide nucleoside antibiotics 16 

 The muraymycins were reported in 2002 by McDonald et al, isolated from a Streptomyces 17 

sp. strain [49]. Their structure contains an aminoribofuranoside monosaccharide attached to the 5’-18 

position of a uridine-amino acid, similar to that found in the liposidomycins & caprazamycins, as 19 

shown in Figure 5, and a ureidopeptide structure linked via a 3-aminopropyl moiety [49]. The 20 

muraymycins also target translocase MraY (IC50 0.027 µg/ml), show antimicrobial activity against 21 

strains of Staphylococcus aureus (MIC 2-16 µg/ml) and Enterococcus (MIC 16-64 µg/ml), and 22 

were reported to protect mice against S. aureus infection (ED50 1.1 mg/kg) [49].  23 

 24 

Figure 5. Structures of muraymycin antibiotics and synthetic analogues 25 
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 1 

Several bioactive muraymycin analogues have been generated via total chemical synthesis. 2 

Tanino et al have synthesised analogues in which the hydroxyleucine residue is replaced by an 3 

alkyl sidechain, which show MraY inhibition activity (IC50 0.33 µM), and retain antimicrobial 4 

activity [50]. The same group have reported that the epicapreomycidine amino acid (a cyclic 5 

analogue of arginine) can be replaced by arginine, lysine or ornithine residues, and that these 6 

synthetic analogues retain antimicrobial activity [51].  Takeoka et al. have prepared further 7 

analogues with L-arginine in place of epicapreomycidine, in which the C-terminal amino acid is 8 

removed, which retain full MraY inhibition activity, and show enhanced antimicrobial activity 9 

against Pseudomonas strains [52]. Spork et al have synthesised an analogue of muraymycin lacking 10 

the aminoribose sugar which retains activity for MraY inhibition (IC50 2 µM) [53]. The -11 

guanylated fatty acid which is found in the most active muraymycins has been shown to assist 12 

localisation of the antibiotic into the cell membrane [54]. The total synthesis of muraymycin D1 13 

was reported in 2016 by Mitachi et al [55], enabling the synthesis of further analogues. The 14 

biosynthetic gene cluster for the biosynthesis of muraymycin in Streptomyces sp. NRRL 30471 was 15 

reported in 2011 [56]. 16 

  17 

1.5 The capuramycin group of caprolactam nucleoside antibiotics (capuramycin, A-500359A) 18 

 Capuramycin, a nucleoside antibiotic produced by Streptomyces griseus, containing a uronic 19 

acid monosaccharide attached to the 5’ position of a modified uridine nucleoside, to which is 20 

attached a 7-membered caprolactam ring, as shown in Figure 6, was first reported in 1986 [57,58]. 21 

Capuramycin and a methylated derivative A-500359A which shows antimicrobial activity against 22 

Mycobacterium smegmatis (MIC 2-16 µg/ml) and potent MraY inhibition (IC50 0.017 µg/ml) was 23 

then reported in 2003 [59,60]. A-500359E, which lacks the aminocaprolactam ring, shows potent 24 

inhibition of MraY (IC50 0.027 µM), but lacks antimicrobial activity [61]. Semi-synthetic 25 

derivatives of A-500359E have been reported, in which the aminocaprolactam is replaced by 26 

synthetic arylamines, which show potent MraY inhibition (IC50 10-40 ng/ml), and antimicrobial 27 

activity against Mycobacterium strains (MIC 0.5-2 µg/ml) [62]. Acylation of capuramycin on the 2’ 28 

hydroxyl group gave a further series of bioactive derivatives, including a decanoyl derivative which 29 

shows very potent activity against M. tuberculosis (MIC 0.06 µg/ml) [63]. 30 

 A biosynthetic gene cluster for a closely related capuramycin antibiotic A-503083B in 31 

Streptomyces sp. SANK 62799 was reported in 2010 [64]. The biosynthetic steps for attachment of 32 

a caprolactam moiety were elucidated, via carboxy methyltransferase CapS and transferase CapW 33 

[64]. The biosynthetic gene cluster for capuramycin A-102395 has also been reported, involving the 34 

incorporation of L-threonine into uridine 5’-carboxamide [65]. Transferase CapW has been used to 35 



 9 

prepare of a set of 43 semi-synthetic bioactive capuramycin derivatives [66]. Several of these 1 

analogues retained similar antimicrobial activity to the parent compound, with three analogues 2 

showing enhanced activity against M. smegmatis and M. tuberculosis [66]. 3 

 4 

 5 

Figure 6. Capuramycin natural products and synthetic analogues 6 

 7 

1.6 Comparison of antimicrobial activities of nucleoside natural products. 8 

The nucleoside natural product antibiotics show very interesting and varied antimicrobial 9 

activities. The mureidomycins show particularly potent antimicrobial activity against Pseudomonas 10 

aeruginosa (MIC 0.1 – 3 µg/mL), a bacterium responsible for antibiotic-resistant infections around 11 

the world, and can protect mice against infection by Pseudomonas aeruginosa [11,12]. The 12 

pacidamycins and napsamycins also show anti-pseudomonal activity, but synthetic 13 

dihydropacidamycins containing modifications at position 4 (see Figure 2) showed new 14 

antimicrobial  spectrum against Escherichia coli (MIC 4-8 µg/mL) and Citrobacter freundii (1.0 15 

µg/mL) [20,21]. Given that the MraY sequences from these organisms are quite closely related, it 16 

seems likely that these changes in antibacterial spectrum are caused by changes in uptake. 17 

The liposidomycin and caprazamycin liponucleosides ahow activity against strains of 18 

Mycobacterium (MIC 1.6 µg/ml) [2]. The synthetic caprazamycin derivative CPZEN-45 has shown 19 

efficacy against both drug-sensitive and extremely drug-resistant (XDR) Mtb in a mouse model of 20 

acute tuberculosis, and is in clinical trials against TB infection [43]. Capuramycins also show 21 

potent activity against Mycobacterium smegmatis (MIC 2-16 µg/ml) [59,60], and semi-synthetic 22 

derivatives show enhanced anti-Mtb activity [62,63]. The activity of the sansanmycins against 23 

Mycobacterium tuberculosis has been greatly enhanced in synthetic dihydrosansanmycins 24 

containing modifications at position 4 (MIC50 0.04-0.6 µM) [24].  25 



 10 

The muraymycin antibiotics show antimicrobial activity against Staphylococcus aureus (MIC 2-1 

16 µg/ml) and Enterococcus (MIC 16-64 µg/ml), and can protect mice against S. aureus infection 2 

[49]. Synthetic analogues containing two L-arginine residues show modified antimicrobial 3 

spectrum, notably against Pseudomonas strains (MIC 4-8 µg/mL) [52]. 4 

 5 

2. Mechanism of inhibition of translocase MraY by nucleoside antibiotics 6 

2.1  Kinetic mechanism of inhibition of translocase MraY 7 

 Translocase MraY catalyses the first step of the lipid cycle of bacterial peptidoglycan 8 

biosynthesis, namely the reaction of UDPMurNAc-L-Ala--D-Glu-m-DAP-D-Ala-D-Ala 9 

(UDPMurNAc-pentapeptide) with lipid carrier undecaprenyl phosphate, to form lipid intermediate 10 

1 (undecaprenyl-diphospho-MurNAc-pentapeptide), releasing uridine 5’-monophosphate (UMP) 11 

[67]. Translocase MraY is an integral membrane protein, shown to contain ten transmembrane 12 

helices [68]. The MraY-catalysed reaction is a phosphotransfer reaction, shown in Figure 7, whose 13 

catalytic mechanism could either proceed via a single step phosphotransfer, or a two-step 14 

mechanism involving an active site nucleophile [67]. Three aspartic acid residues in E. coli MraY 15 

(Asp-115, Asp-116, Asp-267), found on cytoplasmic loops, were shown to be essential for activity, 16 

and it has been proposed that two Asp residues bind the active site Mg2+ cofactor, while the third 17 

may be a catalytic nucleophile [69].  18 

 19 



 11 

 1 

Figure 7. Reaction catalysed by translocase MraY, showing MraY dimer structure and location of 2 

MraY active site. 3 

 4 

Mureidomycin A has been found to act as a slow-binding inhibitor (Ki 35 nM, Ki* 2 nM) for 5 

solubilised E. coli MraY, using a continuous fluorescnce enhancement assay, showing competitive 6 

enzyme inhibition towards both UDPMurNAc-pentapeptide and polyprenyl phosphate substrates 7 

[70]. Liposidomycin B also acts as a slow-binding inhibitor of E. coli MraY (Ki* 90 nM), showing 8 

non-competitive enzyme inhibition towards UDPMurNAc-pentapeptide, but competitive inhibition 9 

towards dodecaprenyl phosphate [71]. By contrast, tunicamycin is a reversible inhibitor of E. coli 10 

MraY (Ki 0.6 µM) showing competitive enzyme inhibition towards UDPMurNAc-pentapeptide, but 11 

non-competitive inhibition towards dodecaprenyl phosphate [71]. Muraymycin D2 and synthetic 12 

analogues thereof were found by Tanino et al to show competitive inhibition towards 13 

UDPMurNAc-pentapeptide (Ki 7.6 nM), but non-competitive inhibition versus undecaprenyl 14 

phosphate, against B. subtilis MraY using a radiochemical assay [51]. Hence there are some 15 

differences in the kinetic mechanism of MraY inhibition shown by the different classes of 16 

nucleoside antibiotics. 17 

The possibility that the mureidomycins might be mechanism-based inhibitors, reacting via 18 

the enamide functional group, which might be expected to be chemically reactive, has been found 19 

not to be the case, from studies on model enamide-containing analogues [72], and since synthetic 20 
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 12 

dihydropacidamycin and dihydrosansanmycin analogues retain MraY inhibition [20,21,24]. The 1 

observed slow-binding inhibition is therefore probably due to a conformational change in the 2 

protein structure, discussed in Section 2.2. Studies on analogues of mureidomycins have found that 3 

the amino terminus of the peptide chain and the N-methyl amide group of DABA are both 4 

important for MraY inhibition [73,74], leading to a proposal that the amino terminus might bind in 5 

place of the Mg2+ cofactor, positioned via a cis-amide rotamer in the peptide chain [74]. The amino 6 

group of the aminoribofuranose monosaccharide of liposidomycins and caprazamycins is also 7 

known to be important for activity [39]. 8 

 9 

2.2  Structure of Aquifex aeolicus MraY and its complexes with nucleoside antibiotics 10 

In 2013 the crystal structure of the Aquifex aeolicus MraY was determined, confirming the 11 

arrangement of ten transmembrane -helices [75]. The protein was found to crystallise as a dimer, 12 

with transmembrane helix 9 strongly bent and protruding into the membrane. The active site 13 

contained the three catalytic Asp residues, close to the Mg2+ cofactor, with Asp-265 positioned 14 

closest to the Mg2+ ion [75]. There is a triad of three histidine residues (His-324, His-325, His-326; 15 

HHH motif) conserved in bacterial sequences of the polyprenyl-phosphate N-acetylhexosamine 1-16 

phosphate transferase (PNPT) superfamily, which are positioned on loop E on the opposite side of 17 

the active site, 10-13 Å from the three catalytic Asp residues, shown in Figure 8. 18 

The structure of a complex of A. aeolicus MraY with muraymycin D2 was published in 19 

2016 [76]. Upon binding of muraymycin D2, transmembrane helix 9b (TM9b) moves away from 20 

the active site and the HHH motif (conserved across the PNPT family) in loop E extends, which 21 

widens and reshapes the active site, hence there is a significant conformational change upon ligand 22 

binding [76], which may be important for the catalytic cycle of MraY, and potentially could explain 23 

the slow-binding inhibition of MraY observed for some nucleoside natural product inhibitors 24 

[70,71]. Binding of muraymycin D2 to the MraY active site does not involve the catalytic Asp 25 

residues and does not require Mg2+, but several other binding interactions were elucidated [76]. The 26 

uracil base is bound via stacking interactions to Phe-262 (see Figure 9A), as well as hydrogen-27 

bonding interactions to the uracil carbonyl and NH groups. The amino group of the aminoribose 28 

moiety is bound by Asp-193, whose mutation greatly reduces affinity for muraymycin D2, and 29 

Asn-190. The strong binding of the  amino group of the aminoribose helps to rationalise why this 30 

group is important for activity in several nucleoside antibiotics [39,73]. The carboxyl terminus of 31 

the peptide chain is bound by Gln-305, a residue that is conserved in bacterial MraY homologues, 32 

and the  epi-capreomycidine amino acid is bound by His-324 and His-325 [76]. 33 

 34 
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 1 

Figure 8. Structures of A. aeolicus MraY (A) containing no ligand, (B) complexed with 2 

muraymycin D2, showing active site residues (A) and conformational change upon muraymycin 3 

binding (B). 4 

 5 

 In 2017 the structure of a complex of Clostridium boltae MraY with tunicamycin was 6 

published [77]. The overall conformation of the protein was similar to the MraY-muraymycin 7 

complex, but some similarities and differences in the enzyme-ligand binding interactions were 8 

observed [77,78]. As in the MraY-muraymycin complex, the uracil base was bound in a small 9 

cavity, interacting via stacking interactions to Phe-228 (see Figure 9B), and the 4-carbonyl 10 

group binding to Asn-221. The HHH motif (His-290, His-291) are also involved in ligand binding, 11 

in this case to the GlcNAc 4’- and 6’-hydroxyl groups. However, unlike the MraY-muraymycin 12 

complex, tunicamycin was found to interact with the catalytic Asp residues, with the tunicamine 9’-13 

hydroxyl group interacting with Asp-231, but in the absence of Mg2+ [77]. The structure of 14 

tunicamycin bound to its eukaryotic target enzyme GlcNAc-1-phosphate transferase involved in N-15 

linked glycoprotein biosynthesis was also reported in 2018, showing some differences in active site 16 

binding, compared to MraY [79]. 17 

 Hence both nucleosides bind to an MraY structure that has undergone a conformational 18 

change, both show specific binding for the uracil base and some involvement of the HHH motif in 19 

ligand binding, but muraymycin and tunicamycin show different polar contacts in the MraY active 20 

site [78].  21 



 14 

 1 

 Figure 9. Structures of MraY-ligand complexes, showing the location of selected binding 2 

interactions. A.  A. aeolicus MraY complexed with muraymycin D2. B. C. boltae MraY complexed 3 

with tunicamycin. 4 

 5 



 15 

2.3  Interaction with protein-protein interaction site for bacteriophage lysis protein E 1 

 E. coli MraY is also targetted by an antibacterial lysis protein E from bacteriophage X174, 2 

which interacts with Phe-288 and Glu-287 of MraY, on the exterior face of transmembrane 9 of 3 

MraY, via an Arg-Trp-x-x-Trp sequence motif near the N-terminus of the E protein [80]. The 4 

presence of a guanidine-containing amino acid epi-capreomycidine in muraymycin, and two 5 

aromatic residues (Trp or m-Tyr and a second m-Tyr) in the mureidomycin/pacidamycin structures, 6 

is reminiscent of this Arg-Trp-x-x-Trp motif. Rodolis et al have shown that pacidamycin 1 and a 7 

synthetic muraymycin analogue showed significantly reduced activity against site-directed F288L 8 

and E287A MraY mutant enzymes [81], suggesting that parts of the antibiotic structure somehow 9 

aid the targetting of MraY in vivo, perhaps aiding uptake into the cell via a hydrophobic channel 10 

present in the structure of MraY [75], as shown in Figure 10. This hypothesis might explain how 11 

these agents of molecular weight 600-1200 Da are able to access the MraY active site on the inner 12 

face of the cytoplasmic membrane, and also why it has proved difficult to design small analogues of 13 

these nucleoside antibiotics that retain both MraY inhibition and antimicrobial activity. 14 

 15 

Figure 10. Interaction with the E protein binding site in MraY (Phe-288 and Glu-287) by nucleoside 16 

antibiotics, and hypothesis for uptake to the MraY active site. 17 

 18 



 16 

 1 

3. Inhibition of other bacterial phospho-nucleotide transferase enzymes by nucleoside natural 2 

product analogues. 3 

There are homologues of MraY involved in lipid-linked cycles responsible for the 4 

biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide (LPS) in Gram-5 

negative bacteria (WecA) [82], and teichoic acid in Gram-positive bacteria (TagO), both of which 6 

are integral membrane proteins that utilise UDP-GlcNAc and undecaprenyl phosphate as substrates 7 

[83]. CPZEN-45, a semisynthetic caprazamycin derivative undergoing clinical trials for treatment 8 

of tuberculosis, was found to inhibit transferase WecA in M. tuberculosis >20 fold more strongly 9 

than MraY, and CPZEN-45 also inhibits B. subtilis TagO 8-fold more tightly than B. subtilis MraY 10 

[43]. Selective synthetic inhibitors for TagO have also been published, based on the existing drug 11 

ticlopidine [84]. In contrast, the muraymycin analogues prepared by Tanino et al were highly 12 

selective for MraY inhibition over E. coli WecA [51], as were the dihydrosansanmycin analogues 13 

of Tan et al [24].  14 

A homologue of WecA (GacO) has been found to catalyse the formation of undecaprenyl-15 

diphospho-GlcNAc in the biosynthesis of the Lancefield group A carbohydrate in Streptococcus 16 

pyogenes [85]. A further group of small 20-25 kDa phospho-sugar transferase enzymes utilising a 17 

UDP-di-N-acetyl-bacillosamine substrate are involved in N-glycoconjugate biosynthesis in 18 

Campylobacter jejuni [86]. Synthetic peptidyl-uridine inhibitors have been synthesised as inhibitors 19 

of C. jejuni PglC, with IC50 values in the range 40-250 µM [87]. 20 

 21 

In conclusion, Nature produces several classes of uridine-based nucleoside antibiotics that 22 

target translocase MraY in the bacterial peptidoglycan biosynthetic pathway. Total synthesis of 23 

modified nucleoside analogues, and exploitation of the biosynthetic machinery for these natural 24 

products, offer considerable promise for the development of highly active antimicrobial agents to 25 

treat antibiotic-resistant infections. Understanding of the MraY structure will aid the development  26 

of selective MraY inhibitors, and the discovery of MraY homologues such as WecA and TagO has 27 

identified further interesting targets for antibacterial drug discovery by nucleoside analogues. 28 

 29 

Acknowledgements. Research in the author’s laboratory was supported by an EPSRC CASE PhD 30 

studentship (to RVK) with LifeArc Ltd. 31 

 32 

References 33 

1. Isono K, Uramoto M, Kusakabe H, Kimura K, Izaki K, Nelson CC, McCloskey JA. 34 

Liposidomycins: novel nucleoside antibiotics which inhibit bacterial peptidoglycan 35 



 17 

biosynthesis. J. Antibiotics 1985; 38:1617-1621. 1 

2. Takatsuki A, Arima K, Tamura G. Tunicamycin, a new antibiotic. I. Isolation and 2 

characterization of tunicamycin. .J. Antibiotics 1971; 24:215-223. 3 

3. Kimura KI, Bugg TDH. Recent advances in antimicrobial nucleoside antibiotics targetting cell 4 

wall biosynthesis. Nat. Prod. Reports 2003; 20:252-273. 5 

4. Winn M, Goss RJM, Kimura KI, Bugg TDH. Antimicrobial nucleoside antibiotics targeting cell 6 

wall assembly: recent advances in structure-function studies and nucleoside biosynthesis. Nat. 7 

Prod. Reports 2010; 27:279-304. 8 

5. Heifetz A, Keenan RW, Elbein AD. Mechanism of action of tunicamycin on the UDP-9 

GlcNAc:dolichyl-phosphate GlcNAc-1-phosphate transferase. Biochemistry 1979; 18:2186-10 

2192. 11 

6. Wyszynski FJ, Hesketh AR, Bibb MJ, Davis BG. Dissecting tunicamycin biosynthesis by 12 

genome mining: cloning and heterologous expression of a minimal gene cluster. Chem. Sci. 13 

2010; 1:581-589. 14 

7. Wyszynski FJ, Lee SS, Yabe T, Wang H, Gomez-Escribano JP, Bibb MJ, Lee SJ, Davies GJ, 15 

Davis BG. Biosynthesis of the tunicamycin antibiotics proceeds via a unique exo-glycal 16 

intermediate. Nature Chem. 2012; 4:539-546. 17 

8. Yamamoto K, Yakushiji F, Matsumaru T, Ichikawa S. Total synthesis of tunicamycin V. Org. 18 

Lett. 2018; 20:256-259. 19 

9. Yamamoto K, Katsuyama A, Ichikawa S. Structural requirement of tunicamycin V for MraY 20 

inhibition. Bio-Org. Med. Chem. 2019; 27:1714-1719. 21 

10. Isono F, Inukai M, Takahashi S, Haneishi T, Kinoshita T, Kuwano H. Mureidomycins A-D, 22 

novel peptidylnucleoside antibiotics with spheroplast forming activity. II. Structural elucidation. 23 

J. Antibiotics 1989; 42:667-673. 24 

11. Inukai M, Isono F, Takahashi R. Selective inhibition of the bacterial translocase reaction in 25 

peptidoglycan synthesis by mureidomycins. Antimicrob. Agents Chemother.1993; 37:980-983. 26 

12. Isono, F.; Katayama, T.; Inukai M.; Haneishi, T. Mureidomycins A-D, novel peptidylnucleoside 27 

antibiotics with spheroplast forming activity. III. Biological properties. J. Antibiotics 1989; 28 

42:674-679. 29 

13. Karwowski JP, Jackson M, Theriault RJ, Chen RH, Barlow GJ, Maus ML. Pacidamycins, a 30 

novel series of antibiotics with anti-Pseudomonas aeruginosa activity. I. Taxonomy of the 31 

producing organism and fermentation. J. Antibiotics 1989; 42:506-511. 32 

14. Chen RH, Buko AM, Whittern DN, McAlpine JB. Pacidamycins, a novel series of antibiotics 33 

with anti-Pseudomonas aeruginosa activity. II. Isolation and strucural elucidation. J. Antibiotics 34 

1989; 42:512-520. 35 



 18 

15. Fernandes PB, Swanson RN, Hardy DJ, Hanson CW, Coen L, Rasmussen RR, Chen RH. 1 

Pacidamycins, a novel series of antibiotics with anti-Pseudomonas aeruginosa activity. III. 2 

Microbiological profile.  J. Antibiotics 1989; 42:521-526. 3 

16. Isono F, Sakaida Y, Takahashi S, Kinoshita T, Nakamura T, Inukai M. Mureidomycins E and F, 4 

minor components of mureidomycins. J. Antibiotics 1993; 46:1203-1207. 5 

17. Chaterjee S, Nadkami SR, Vijayakumar EKS, Patel MV, Ganguli BN. Napsamycins, new 6 

Pseudomonas active antibiotics of the mureidomycin family from Streptomyces sp. HIL Y-82, 7 

11372. J. Antibiotics 1994; 47:595-598. 8 

18. Xie XY, Chen RX, Si SY, Sun CH, Xu HZ. A new nucleosidyl-peptide antibiotic, sansanmycin. 9 

J. Antibiotics 2007; 60:158-162. 10 

19. Xie XY, Xu HZ, Si SY, Sun CH, Chen RX. Sansanycins B and C, new components of 11 

sansanmycins. J. Antibiotics 2008; 61:237-240. 12 

20. Boojamra CG, Lemoine RC, Lee JC, Léger R, Stein KA, Vernier NG, Magon A, Lomovskaya 13 

O, Martin PK, Chamberland S, Lee MD, Hecker SJ, Lee VJ. Stereochemical elucidation and 14 

total synthesis of dihydropacidamycin D, a semisynthetic pacidamycin. J. Am. Chem. Soc. 15 

2001; 123:870-874. 16 

21. Boojamra CG, Lemoine RC, Blais J, Vernier NG, Stein KA, Magon A, Chamberland S, Hecker 17 

SJ, Lee VJ. Synthetic dihydropacidamycin antibiotics: a modified spectrum of activity for the 18 

pacidamycin class. Bio-Org. Med. Chem. Lett. 2003; 13:3305-3309. 19 

22. Okamoto K, Sakagami M, Feng F, Togame H, Takemoto H, Ichikawa S, Matsuda A. Total 20 

synthesis of pacidamycin D by Cu(I)-catalyzed oxy enamide formation. Org. Lett. 2011; 21 

13:5240-5243. 22 

23. Okamoto K, Sakagami M, Feng F, Takahashi F, Uotani K, Togame H, Takemoto H, Ichikawa 23 

S, Matsuda A. Synthesis of pacidamycin analogues via an Ugi-multicomponent reaction. 24 

Bioorg. Med. Chem. Lett. 2012; 22:4810-4815. 25 

24. Tran AT, Watson EE, Pujari V, Conroy T, Dowman LJ, Giltrap AM, Pang A, Wong WR, 26 

Linington RG, Saunders J, Charman SA, West NP, Bugg TDH, Tod J, Dowson CG, Roper DI, 27 

Crick DC, Britton WJ, Payne RJ. Synthesis of sansanmycin natural product analogues as potent 28 

and selective anti-mycobacterials that inhibit lipid I biosynthesis. Nature Comm. 2017, 14414. 29 

25. Rackham EJ, Grüschow S, Ragab AE, Dickens S, Goss RJM.  Pacidamycin biosynthesis: 30 

identification and heterologous expression of the first uridyl peptide antibiotic gene cluster. 31 

ChemBioChem 2010; 11:1700-1709. 32 

26. Zhang W, Ostash B, Walsh CT. Identification of the biosynthetic gene cluster for the 33 

pacidamycin group of peptidyl nucleoside antibiotics.  Proc. Natl. Acad. Sci. USA 2010; 34 

107:16828-16833. 35 



 19 

27. Zhang W, Ntai I, Bolla ML, Malcolmson SJ, Kahne D, Kelleher NL, Walsh CT. Nine enzymes 1 

are required for assembly of the pacidamycin group of pentapeptidyl nucleoside antibiotics. J. 2 

Am. Chem. Soc. 2011; 133:5240-5243. 3 

28. Lam WH, Rychli K, Bugg TDH. Identification of a novel -replacement reaction in the 4 

biosynthesis of 2,3-diaminobutyric acid in peptidylnucleoside mureidomycin A. Org. Biomol. 5 

Chem. 2008; 6:1912-1917. 6 

29. Ragab A, Grüschow S, Tromans DR, Goss RJM. Biogenesis of the unique 4’,5’-dehydro-7 

nucleoside of the uridylpeptide antibiotic pacidamycin. J. Am. Chem. Soc. 2011; 133:15288-8 

15291. 9 

30. Zhang W, Ntai I, Kelleher NL, Walsh CT. tRNA-dependent peptide bond formation by the 10 

transferase PacB in the biosynthesis of the pacidamycin group of pentapeptidyl nucleoside 11 

antibiotics. Proc. Natl. Acad. Sci. USA 2011; 108:12249-12253. 12 

31. Michailidou F, Chung C, Brown MJB, Bent AF, Naismith JH, Leavens WJ, Lynn SN, Sharma 13 

SV, Goss RJM. Pac13 is a small, monomeriuc dehydratase that mediates the formation of the 14 

3’-deoxy nucleoside of pacidamycins. Angew. Chem. Intl. Ed. 2017; 56:12492-12497. 15 

32. Zhang W, Ames BD, Walsh CT. Identification of phenylalanine 3-hydroxylase for meta-16 

tyrosine biosynthesis. Biochemistry 2011, 50:5401-5403. 17 

33. Deb Roy A, Grüschow S, Cairns N, Goss RJM. Gene expression enabling synthetic 18 

diversification of natural products: chemogenetic generation of pacidamycin analogues. J. Am. 19 

Chem. Soc. 2010; 132:12243-12245. 20 

34. Shi YY, Jiang Z, Lei X, Zhang NN, Cai Q, Li Q, Wang LF, Si S, Xie Y, Hong B. Improving the 21 

N-terminal diversdity of sansanmycin through mutasynthesis. Microb. Cell Factories 2016; 22 

15:77. 23 

35. Ubukata M, Isono K, Kimura K, Nelson CC, McCloskey JA. The structure of liposidomycin B, 24 

an inhibitor of bacterial peptidoglycan biosynthesis. J. Am. Chem. Soc. 1988; 110:4416-4417. 25 

36. Igarashi M, Nakagawa N, Doi N, Hattori S, Naganawa H, Hamada M. Caprazamycin B, a novel 26 

anti-tuberculosis antibiotic from Streptomyces sp. J. Antibiotics 2003; 56:580-583. 27 

37. Igarashi M, Takahashi Y, Shitara T, Nakamura H, Nakagawa H, Miyake T, Akamatsu Y. 28 

Caprazamycins,  novel lipo-nucleoside antibiotics from Streptomyces sp. II. Structure 29 

elucidation of caprazamycins. J. Antibiotics 2005; 58:327-337. 30 

38. Dini C, Collette P, Drochon N, Guillot JC, Lemoine G, Mauvais P, Aszodi J. Synthesis of the 31 

nucleoside moiety of liposidomycins: elucidation of the pharmacophore of this family of MraY 32 

inhibitors. Bio-Org. Med. Chem. Lett. 2000; 10:1839-1843. 33 

39. Dini, C.; Drochon, N.; Feteanu, S.; Guillot, J.C.; Peixoto, C.; Aszodi, J. Synthesis of analogues 34 

of the O--D-ribofuranosyl nucleoside moiety of liposidomycins. Part 1: contribution of the 35 



 20 

amino group and the uracil moiety upon the inhibition of MraY.  Bio-Org. Med. Chem. Lett. 1 

2001; 11:529-531. 2 

40. Dini C, Didier-Laurent S, Drochon N, Feteanu S, Guillot JC, Monti F, Uridat E, Zhang J, 3 

Aszodi J. Synthesis of sub-micromolar inhibitors of MraY by exploring the region originally 4 

occupied by the diazepanone ring in the liposidomycin structure. Bio-Org. Med. Chem. Lett. 5 

2002; 12:1209-1213. 6 

41. Fer MJ, Bouhss A, Patrao M, Le Corre L, Pietrancosta N, Amoroso A, Joris B, Mengin-7 

Lecreulx D, Calvet-Vitale S, Gravier-Pelletier C. 5’-Methylene-traizole-substituted-8 

aminoribosyl uridines as MraY inhibitors: synthesis, biological evaluation and molecular 9 

modeling. Org. Biomol. Chem. 2015; 13:7193-7222. 10 

42. Ichikawa S, Yamaguchi M, Hsuan LS, Kato Y, Matsuda A. Carbacaprazamycins: chemically 11 

stable analogues of the caprazamycin nucleoside antibiotics. ACS Infect. Dis. 2015; 1:151-156. 12 

43. Ishizaki Y, Hayashi C, Inoue K, Igarashi M, Takahashi Y, Pujari V, Crick DC, Brennan PJ, 13 

Nomoto A. Inhibition of the first step in synthesis of the mycobacterial cell wall core, catalyzed 14 

by the GlcNAc-1-phosphate transferase WecA, by the novel caprazamycin derivative CPZEN-15 

45. J. Biol. Chem. 2013; 288:30309-30319. 16 

44. Kaysser L, Lutsch L, Siebenberg S, Wemakor E, Kammerer B, Gust B. Identification and 17 

manipulation of the caprazamycin gene cluster lead to new simplifiued liponucleoside 18 

antibiotics and give insights into the biosynthetic pathway. J. Biol. Chem. 2009; 284:14987-19 

14996. 20 

45. Kaysser L, Wemakor E, Siebenberg S, Salas JA, Sohng JK, Kammerer B, Gust B. Formation 21 

and attachment of the deoxysugar moiety and assembly of the gene cluster for caprazamycin 22 

biosynthesis. Appl. Environ. Microbiol. 2010; 76:4008-4018. 23 

46. Yang Z, Chi X, Funabashi M, Baba S, Nonaka K, Pahari P, Unrine J, Jacobsen JM, Elliott GI, 24 

Rohr J, Van Lanen SG. Characterization of LipL as a non-heme, Fe(II)-dependent -25 

ketoglutarate:UMP dioxygenase that generates uridine-5’-aldehyde during A-90289 26 

biosynthesis. J. Biol. Chem. 2011; 286:7885-7892. 27 

47. Barnard-Britson S, Chi X, Nonaka K, Spork AP, Tibrewal N, Goswami A, Pahari P, Ducho C, 28 

Rohr J, Van Lanen SG. Amalgamation of nucleosides and amino acids in antibiotic 29 

biosynthesis: discovery of an L-threonine:uridine-5’-aldehyde transaldolase. J. Am. Chem. Soc. 30 

2012; 134:18514-18517. 31 

48. Chi X, Pahari P, Nonaka K, Van Lanen SG. Biosynthetic origin and mechanism of formation of 32 

the aminoribosyl moiety of peptidyl nucleoside antibiotics. J. Am. Chem. Soc. 2011; 33 

133:14452-14459. 34 

49. McDonald LA, Barbieri LR, Carter GT, Lenoy E, Lotvin J, Petersen PJ, Siegel MM, Singh G, 35 



 21 

Williamson RT. Structures of the muraymycins, novel peptidoglycan biosynthesis inhibitors. J. 1 

Am. Chem. Soc. 2002; 124:10260-10261. 2 

50. Tanino T, Ichikawa S, Al-Dabbagh B, Bouhss A, Oyama H, Matsuda A. Synthesis and 3 

biological evaluation of muraymycin analogues active against anti-drug-resistant bacteria. ACS 4 

Med. Chem. Lett. 2010; 1:258-262. 5 

51. Tanino T, Al-Dabbagh B, Mengin-Lecreulx D, Bouhss A, Oyama H, Ichikawa S, Matsuda A. 6 

Mechanistic anlysis of muraymycin analogues: a guide to the design of MraY inhibitors. J. 7 

Med. Chem. 2011; 54:8421-8439. 8 

52. Takeoka Y, Tanino T, Sekiguchi M, Yonezawa S, Sakagami M, Takahashi F, Togame H, 9 

Tanaka Y, Takemoto H, Ichikawa S, Matsuda A. Expansion of antibacterial spectrum of 10 

muraymycins towards Pseudomonas aeruginosa. ACS Med. Chem. Lett. 2014; 5:556-560. 11 

53. Spork AP, Büschleb M, Ries O, Wiegmann D, Boettcher S, Mihalyi A, Bugg TDH, Ducho C. 12 

Lead structures for new antibacterials: stereocontrolled synthesis of a bioactive muraymycin 13 

analogue. Chem. Eur. J. 2014; 20:15292-15297. 14 

54. Ries O, Carnarius C, Steinem C, Ducho C. Membrane-interacting properties of the 15 

functionalised fatty acid moiety of muraymycin antibiotics. Med. Chem. Comm. 2015; 6:879-16 

886. 17 

55. Mitachi K, Aleiwi BA, Schneider CM, Siricilla S, Kurosu M. Stereocontrolled total synthesis of 18 

muraymycin D1 having a dual mode of action against Mycobacterium tuberculosis. J. Am. 19 

Chem. Soc. 2016; 138:12975–12980. 20 

56. Cheng L, Chen W, Zhai L, Xu D, Huang T, Lin S, Zhou X, Deng Z. Identification of the gene 21 

cluster involved in muraymycin biosynthesis from Streptomyces sp. NRRL 30471. Mol. 22 

Biosyst. 2011; 7:920-927. 23 

57. Yamaguchi H, Sato S, Yoshida S, Takada K, Itoh M, Seto H. Capuramycin, a new nucleoside 24 

antibiotic. Taxonomy, fermentation, isolation and characterization. J. Antibiotics 1986; 25 

39:1047-1053. 26 

58. Seto H, Otake N, Sato S, Yamaguchi H, Takada K, Itoh M, Lu HSM, Clardy J. The structure of 27 

a new nucleoside antibiotic, capuramycin. Tetrahedron Lett. 1988; 29:2343-2346. 28 

59. Muramatsu Y, Muramatsu A, Ohnuki T, Ishii MM, Kizuka M, Enokita R, Tsutsumi S, Arai M, 29 

Ogawa Y, Suzuki T, Takatsu T, Inukai M. Studies on novel bacterial translocase I inhibitors, A-30 

500359s. I. Taxonomy, fermentation, isolation, physico-chemical properties and structure 31 

elucidation of A-500359 A, C, D, and G. J. Antibiotics 2003; 56:243-252. 32 

60. Muramatsu Y, Ishii MM, Inukai M. Studies on novel bacterial translocase I inhibitors, A-33 

500359s. II. Biological activities of of A-500359 A, C, D, and G. J. Antibiotics 2003; 56:253-34 

258. 35 



 22 

61. Muramatsu Y, Miyakoshi S, Ogawa Y, Ohnuki T, Ishii MM, Arai M, Takatsu T, Inukai M. 1 

Studies on novel bacterial translocase I inhibitors, A-500359s. III. Deaminocaprolactam 2 

derivatives of capuramycin: of A-500359 E, F, H, M-1 and M-2. J. Antibiotics 2003; 56:259-3 

267. 4 

62. Hotoda H, Furukawa M, Daigo M, Murayama K, Kaneko M, Muramatsu Y, Ishii MM, 5 

Miyakoshi SI, Takatsu T, Inukai M, Kakuta M, Abe T, Harasaki T, Fukuoka T, Utsui Y, Ohya 6 

S. Synthesis and antimycobacterial activity of capuramycin analogues. Part 1: substitution of 7 

the azepan-2-one moiety of capuramycin. Bio-Org. Med. Chem. Lett. 2003; 13:2829-2832. 8 

63. Hotoda H, Daigo M, Furukawa M, Murayama K, Hasegawa CA, Kaneko M, Muramatsu Y, 9 

Ishii MM, Miyakoshi SI, Takatsu T, Inukai M, Kakuta M, Abe T, Fukuoka T, Utsui Y, Ohya S. 10 

Synthesis and antimycobacterial activity of capuramycin analogues. Part 2: acylated derivatives 11 

of capuramycin-related compounds. Bio-Org. Med. Chem. Lett. 2003; 13:2833-2836. 12 

64. Funabashi M, Yang Z, Nonaka K, Hosobuchi M, Fujita Y, Shibata T, Chi X, Van Lanen SG. An 13 

ATP-independent strategy for amide bond formation in antibiotic biosynthesis. Nat. Chem. 14 

Biol. 2010; 6:581-586. 15 

65. Cai W, Goswami A, Yang Z, Liu X, Green KD, Barnard-Britson S, Baba S, Funabashi M, 16 

Nonaka K, Sunkara M, Morris AJ, Spork AP, Ducho C, Garneau-Tsodikova S, Thorson JS, Van 17 

Lanen SG.  The biosynthesis of capuramycin-type antibiotics: identification of the A-102395 18 

biosynthetic gene cluster, mechanism of self-resistance, and formation of uridine-5’-19 

carboxamide. J. Biol. Chem. 2015; 290:13710-13724. 20 

66. Liu X, Jin Y, Cai W, Green K,; Goswami A, Garneau-Tsodikova S, Nonaka K, Baba S, 21 

Funabashi M, Yang Z, Van Lanen SG. A biocatalytic approach to capuramycin analogues by 22 

exploiting a substrate permissive N-transacylase CapW. Org. Biomol. Chem. 2016; 14:3956-23 

3962. 24 

67. Bouhss A, Trunkfield AE, Bugg TDH, Mengin-Lecreulx D. The biosynthesis of peptidoglycan 25 

lipid-linked intermediates. FEMS Microbiol. Rev. 2008; 32:208-233. 26 

68. Bouhss A, Mengin-Lecreulx D, Le Beller D, van Heijenoort J. Topological analysis of the 27 

MraY protein catalysing the first membrane step of peptidoglycan synthesis. J. Mol. Microbiol. 28 

1999; 34:576-585. 29 

69. Lloyd AJ, Brandish PE, Gilbey AM, Bugg TDH. Phospho-MurNAc-pentapeptide translocase 30 

(MraY) from Escherichia coli: catalytic role of conserved aspartic acid residues J. Bacteriol. 31 

2004; 186:1747-1757. 32 

70. Brandish PE, Burnham MK, Lonsdale JT, Southgate R, Inukai M, Bugg TDH. Slow-binding 33 

inhibition of phospho-MurNAc-pentapeptide translocase (Escherichia coli) by mureidomycin 34 

A.  J. Biol. Chem. 1996; 271:7609-7614. 35 



 23 

71. Brandish PE, Kimura K, Inukai M, Southgate R, Lonsdale JT, Bugg TDH. Modes of action of 1 

tunicamycin, liposidomycin B and mureidomycin A: inhibition of phospho-MurNAc-2 

pentapeptide translocase from Escherichia coli. Antimicrob. Agents Chemother. 1996; 40:1640-3 

1644. 4 

72. Gentle CA, Bugg TDH. Role of the enamide linkage of nucleoside antibiotic mureidomycin A: 5 

synthesis and reactivity of enamide-containing analogues. J. Chem. Soc. Perkin Trans. 1 1999; 6 

1279-1286. 7 

73. Gentle CA, Harrison SA, Inukai M, Bugg TDH. Structure-function studies on nucleoside 8 

antibiotic mureidomycin A: synthesis of 5'-functionalised uridine analogues J. Chem. Soc. 9 

Perkin Trans. 1 1999:1287-1294. 10 

74. Howard NI, Bugg TDH. Synthesis and activity of 5’-uridinyl dipeptide analogues mimicking 11 

the amino-terminal peptide chain of nucleoside antibiotic mureidomycin A Bio-Org. Med. 12 

Chem. 2003; 11:3083-3099. 13 

75. Chung BC, Zhao J, Gillespie RA, Kwon D, Guan Z, Hong J, Zhou P. Lee S. Crystal structure of 14 

MraY, an essential membrane enzyme for bacterial cell wall synthesis. Science 2013; 15 

341:1012–1016. 16 

76. Chung BC, Mashalidis EH, Tanino T, Kim M, Matsuda A, Hong J, Ichikawa S, Lee S. 17 

Structural insights into inhibition of lipid I production in bacterial cell wall synthesis. Nature 18 

2016; 533:557-560. 19 

77. Hakulinen JK, Hering J, Brändén G, Chen H, Snijder A, Ek M, Johansson P. MraY-antibiotic 20 

complex reveals details of tunicamycin mode of action. Nature Chem. Biol. 2017; 13:265-267. 21 

78. Hering J, Dunevall E, Ek M, Brändén G. Structural basis for selective inhibition of antibacterial 22 

target MraY, a membrane-bound enzyme involved in peptidoglycan synthesis. Drug Discovery 23 

Today 2018; 23:1426-1435. 24 

79. Yoo J, Mashalides EH, Kuk ACY, Yamamoto K, Kaeser B, Ichikawa S, Lee SY. GlcNAc-1-P 25 

transferase-tunicamycin complex structure reveals basis for inhibition of N-glycosylation. Nat. 26 

Str. Biol. 2018; 25:217-224. 27 

80. Rodolis MT, Mihalyi A, O’Reilly A, Slikas J, Roper DI, Hancock REM, Bugg TDH. 28 

Identification of a novel inhibition site in translocase MraY based upon the site of interaction 29 

with lysis protein E from bacteriophage X174. ChemBioChem 2014; 15:1300-1308. 30 

81. Rodolis MT, Mihalyi A, Ducho C, Eitel K, Gust B, Goss RJM, Bugg TDH. Mechanism of 31 

action of the uridyl peptide antibiotics: an unexpected link to a protein-protein interaction site in 32 

translocase MraY. Chem Commun. 2014; 50:13023-13025. 33 

82. Lehrer J, Vigeant KA, Tatar LD, Valvano MA. Functional characterization and membrane 34 

topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of 35 



 24 

enterobacterial common antigen and O-antigen lipopolysaccharide. J. Bacteriol. 2007; 1 

189:2618-2628. 2 

83. Soldo B, Lazarevic V, Karamata D. tagO is involved in the synthesis of all anionic cell-wall 3 

polymers in Bacillus subtilis 168. Microbiology 2002; 148:2079-2087. 4 

84. Farha MA, Koteva K, Gale RT, Sewell EW, Wright GD, Brown ED. Designing analogues of 5 

ticlopidine, a wall teichoic acid inhibitor, to avoid formation of its oxidative metabolites. 6 

Bioorg. Med. Chem. Lett. 2014; 24:905-910. 7 

85. Rush JS, Edgar RJ, Deng P, Chen J, Zhu H, van Sorge NM, Morris AJ, Korotkov KV, 8 

Korotkova N. The molecular mechanism of N-acetylglucosamine side-chain attachment to the 9 

Lancefield group A carbohydrate in Streptococcus pyogenes. J. Biol. Chem. 2017; 292:19441-10 

19457. 11 

86. Glover KJ, Weerapana E, Chen MM, Imperiali, B. Direct biochemical evidence for the 12 

utilization of UDP-bacillosamine by PglC, an essential glycosyl-1-phosphate transferase in the 13 

Campylobacter jejuni N-linked glycosylation pathway. Biochemistry 2006; 45:5343-5350. 14 

87. Walvoort MTC, Lukose V, Imperiali B. A modular approach to phosphoglycosyltransferase 15 

inhibitors inspired by nucleoside antibiotics. Chem. Eur. J. 2015; 22:3856-386416 



 25 

 


