
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/124526                                 
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/227107832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/124526
mailto:wrap@warwick.ac.uk


Luminance-based video backdoor attack against
anti-spoofing rebroadcast detection

Abhir Bhalerao
Dept. of Computer Science,

University of Warwick, Coventry, UK
abhir.bhalerao@warwick.ac.uk

Kassem Kallas, Benedetta Tondi, Mauro Barni,
Dept. of Information Engineering and Mathematics,

University of Siena, Siena, Italy
k kallas@hotmail.com, benedettatondi@gmail.com,

barni@dii.unisi.it

August 28, 2019

Abstract

We introduce a new backdoor attack against a deep-learning video rebroad-
cast detection network. In addition to the difficulties of working with video sig-
nals rather than still images, injecting a backdoor into a deep learning model
for rebroadcast detection presents the additional problem that the backdoor
must survive the digital-to-analog and analog-to-digital conversion associated
to video rebroadcast. To cope with this problem, we have built a backdoor
attack that works by varying the average luminance of video frames according
to a predesigned sinusoidal function. In this way, robustness against geomet-
ric transformation is automatically achieved, together with a good robustness
against luminance transformations associated to display and recapture, like
Gamma correction and white balance. Our experiments demonstrate the effec-
tiveness of the proposed backdoor attack, especially when the attack is carried
out by also corrupting the labels of the attacked training samples.

Keywords: Adversarial learning, Backdoor poisoning attacks, Deep Neural Net-
works, Biometric anti-spoofing detection
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1 Introduction

Deep Neural Network (DNN) models have become ubiquitous because of their prodi-
gious performance on many common learning tasks, such as computer vision, object
detection and recognition and image classification. Biometric applications are no ex-
ception, with DNNs being more and more used with virtually any biometric modality,
including fingerprint, iris, face and many others [1]. Recently, DNNs have been suc-
cessfully used for anti-spoofing applications, e.g. for liveness detection [2–6]. In
particular, DNNs have been used for the detection of rebroadcast attacks whereby a
user tries to illegally gain access to a system by rebroadcasting videos of people whose
biometric traits are already enrolled in the system. If not properly countered, video
rebroadcast has the potentiality of fooling anti-spoofing systems based on liveness
detection. The goal of DNN anti-spoofing, in this case, is to detect if a presented
identity is a real or a rebroadcast one [2, 3].

When DNNs are used in security-oriented applications, such as biometric recog-
nition or spoofing detection, particular care must be paid to analyse their ability to
resist intentional attacks carried out by malevolent users. In fact, DNNs have been
shown to be vulnerable to adversarial attacks of different types, including attacks
carried out at test time and attacks which are also active during the training phase.
Adversarial examples [7] belong to the first category, and have been the subject of
intense research activity. More recently, several forms of training time attacks have
been developed as well. Among them, backdoor attacks [8, 9] represent a serious
threat to DNN security, since they require no access to the attacked network and
can be achieved by stealthily poisoning only a small portion of the training data. A
powerful form of backdoor attack was demonstrated by Liao et al. [10] building on
the work of [9, 11]. In that work, a backdoor signal is added to a small portion of
the training set and by turning the labels of the corrupted samples into the labels of
the target class of the attack. The network learns to associate the backdoor signal
to the target class, so that at test time the attacker needs only to add the backdoor
signal to the image under attack to induce the network to classify the attacked image
as belonging to the target class. The injection of the backdoor signal affects only
a small portion of the training set, in addition the backdoor can be a weak signal
and its injection can go unnoticed by the victim. Very recently, the feasibility of
backdoor attacks without label poisoning have also been demonstrated by Barni et
al. [12]. These are even more insidious attacks as they do not require label poisoning
and therefore are potentially harder to defend against using methods such as those
presented in [13].

The backdoor attacks developed so far have always been directed against DNNs
targeting image classification tasks, like digit classification [14], road sign classifica-
tion [10], face recognition, and so on. In this work, we present a new backdoor attack
targeting a DNN-based anti-spoofing video rebroadcast detector. As shown in Figure
1, in such a scenario, an impostor tries to illegally enter a system by presenting to
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impostor camera authentication engine

access granted/
access denied

Figure 1: Video rebroadcast scenario addressed in this paper

the authentication engine a video of the person he is trying to impersonate. The
goal of the anti-spoofing detector is to detect if the authentication system is seeing
a real person or a rebroadcast video. In turn, the goal of the attacker is to inject a
backdoor signal into the rebroadcast detector to be exploited at test time to prevent
a rebroadcast video being detected as such. To the best of our knowledge, this is
the first example of a backdoor attack targeting DNN-based detection, rather than
classification, and involving video signals rather than still images. As a matter of
fact, backdoor attacks for video applications have been proposed for autonomous
auto driving applications, e.g. in [10], however they work only in the spatial domain
without taking into account the temporal dimension of the video. On the contrary,
the backdoor signal presented in this paper is a temporal video sequence, exploiting
the temporal correlation of videos. To the best of our knowledge, this is also the first
time that a backdoor attack is used to attack an anti-spoofing system1.

Creating a backdoor attack working in the scenario described above presents some
additional challenges with respect to the attacks considered so far. First of all, the
backdoor signal must include a temporal dimension, since it is arguable that any
DNN-based video rebroadcast detector will strongly rely on the temporal charac-
teristics of the input signal. More importantly, at test time the backdoor signal
must survive a number of transformations linked to the rebroadcast operation itself.
These transformations include geometric transformations, motion of the rebroadcast-
ing device, impact of ambient light, brightness changes caused by the rebroadcasting
and acquisition devices etc. The solution we propose to cope with the above addi-
tional difficulties consists of injecting the backdoor signal by imperceptibly modifying
the average luminance of the rebroadcast video following a slowly varying sinusoidal
wave. In such a way, the backdoor signal is intrinsically immune to geometric trans-
formations, moreover, previous works in digital watermarking have shown that slowly
varying changes of average frame luminance can survive the heavy distortions intro-

1We believe that our attack can be easily extended to target more general person identification
systems [17,18]
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duced by digital-to-analog and analog-to-digital transformations associated to video
recapture [15, 16]. As we will show, corrupting a portion of the training set with
our luminance-based backdoor signal effectively induces the network to associate the
presence of the backdoor signal to the desired video class (in our case a pristine
non-rebroadcast video), hence allowing the attacker to exploit the backdoor to evade
the anti-spoofing control at test time. Noticeably, the attack is carried out without
making any assumptions about the DNN architecture used for rebroadcast detection.

Throughout the paper, we will focus mainly on the case of backdoor injection with
label poisoning (as in [8–10, 14, 19]), since in this case the attack requires that only
a small percentage of the training data is corrupted, nevertheless, we will also report
some results regarding the more challenging scenario of backdoor injection without
label poisoning [12,20].

2 Attack Formulation’

Let f(X) be the decision function learned by a convolutional neural network, su-
pervised by a training set of data-label pairs {Xi, li}. The learned discrimination
function is optimized by stochastic gradient descent to ’to minimize the average loss∑

Xi∈Dn L(f(Xi), li), where L is the cross entropy loss over the training set Dn con-
sisting of n training videos with the corresponding labels. Furthermore, an unseen
test data set, Tm of m samples, is available.

2.1 Backdoor attacks with Label Poisoning

In the following we use t to indicate the label of the target class of the attack (in
our case pristine videos) and t̄ for the label of the complementary class (in our case
rebroadcast videos). A backdoor is added by using a function, B(Xi,∆), to modify
a proportion α of data samples Xi ∈ Dn with labels li = t̄. The function is applied
with strength ∆ and the corresponding labels of the poisoned data are modified
to the targeted class: li → t. Then the poisoned model, f(X), is trained. The
model can be attacked at test time, by poisoning some or all of the test set Tm, by
introducing a backdoor with the same function B(Xi,∆T ), where Xi now belongs to
Tm and the strength ∆T may be greater than that used during training, i.e. ∆T ≥ ∆.
We anticipate that using a backdoor signal with larger strength during testing will
improve the effectiveness of the attack, without affecting the stealthiness of the attack
at training time. The backdoor would be injected into samples, Xi in Tm for which
li is not equal to the target class, i.e. t̄; the goal of course being to force Xi to be
misclassified as belonging to the target class, t. (Left-hand side, Figure 2)

We can measure the success of the poisoning attack, hereafter referred to as the
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Backdoor injection without label poisoning

Backdoor injection with label poisoning

f(X)
<latexit sha1_base64="ShOnKPk4Da+NSXDh9qg8n7luwHU=">AAAB0HicZVBNSwMxEJ3Ur1q/qh69BItQL2W3Cl6LXjxWsR/QlpJNs21oslmSrFhKEa8evOo/8bf4b8yui2j7YODx3swwb4JYcGM97wsV1tY3NreK26Wd3b39g/LhUduoRFPWokoo3Q2IYYJHrGW5Fawba0ZkIFgnmN6kfueRacNV9GBnMRtIMo54yCmxqRRWu+fDcsWreRnwKvFzUoEczWH5sz9SNJEsslQQY3q+F9vBnGjLqWCLUj8xLCZ0Ssas52hEJDODeXbrAp85ZYRDpV1FFmfq34k5kcbMZOA6JbETs+yl4q+XbQsTga3CaTo84ppRK2aOEKq5OwjTCdGEWveDkkvqL+daJe16zb+o1e8uK43rPHMRTuAUquDDFTTgFprQAgoTeIN3+ED36Ak9o5ef1gLKZ47hH9DrN9E4ggE=</latexit>

X<latexit sha1_base64="X1kXkAU9oVBaF9NJ4Fahv+jTNIQ=">AAABzXicZVDLSgNBEOyNrxhfqx69DAbBU9iNgtegF28mYB6QhDA76SRDZnaWmVkhxHj14FW/xW/xb5ysi2hS0FBUdTddHSWCGxsEX15hY3Nre6e4W9rbPzg88o9PWkalmmGTKaF0J6IGBY+xabkV2Ek0UhkJbEfTu6XffkJtuIof7SzBvqTjmI84o9ZJjc7ALweVIANZJ2FOypCjPvA/e0PFUomxZYIa0w2DxPbnVFvOBC5KvdRgQtmUjrHraEwlmv48O3RBLpwyJCOlXcWWZOrfiTmVxsxk5DoltROz6i3FXy/bNkoFsYoso5Eh18ismDlCmebuIMImVFNm3QNKLmm4mmudtKqV8KpSbVyXa7d55iKcwTlcQgg3UIN7qEMTGCC8wTt8eA9e6j17Lz+tBS+fOYV/8F6/AV7fgSw=</latexit>
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l
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l
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P
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(
0 if X 2 Dl=0 [ P

1 else X 2 Dl=1
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=

(
0 if X 2 Dl=0 [ P

1 else X 2 Dl=1
<latexit sha1_base64="0a2sNw/PB6/VqBR/t7y9opkn76w="></latexit>
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Figure 2: Diagram of two modes of backdoor injection: with and without label poi-
soning. When backdoors are injected with label poisoning into a proportion α of the
data Dl=1(top), the target label is changed from class l = 1 to l = 1. Poisoned data
is denoted as the set of samples P . When injected without label poisoning (bottom),
the target class data is attacked but the label is not altered. In both cases, at test
time, if successful, the backdoor injection into data of the spoof class Dl=1 should
produce a prediction of the target label. Injection parameters are the backdoor signal
frequency (ω), its strength (∆,∆T ), and the proportion of poisoned data, α.

attack success rate (ASR), as:

ASR =

∑
Xj∈P (f(Xj) ≡ t)

NP

(1)

where P is the set of poisoned test samples and NP is the number of samples in P .

2.2 Backdoor attacks without Label Poisoning

In this case, the backdoor function, B(Xi,∆) is used on Xi ∈ Dn, s.t. li = t, for a
proportion of α samples of the targeted class, t. So for example, with a two class
model with labels [0, 1], should we want to attack label t̄ = 1 (to force test samples to
be misclassified as label 0), we must inject a backdoor into training samples of class
t = 0.

At testing time, to attack the classifier, the backdoor signal is applied to a pro-
portion αT of test samples, xi ∈ T , targeting images of class, t̄, with amplitude ∆T .
A successful attack would turn the label xi to be equal to the target class t. (Bottom
part of Figure 2)
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2.3 Proposed Video Backdoor Attack Signal

The goal of our attack is to attain high attack success rates with a stealthy (imper-
ceptible) backdoor signal which can be easily applied to video sequences. The attack
must also not greatly impact the classification of the targeted class (real videos) and
yet be effective at reclassifying rebroadcast video sequences as real. We excluded the
idea of introducing a spatial pattern, which might be easily detected over multiple
video frames, and might also be affected by geometric transformation during video
rebroadcast. Our attack method also assumes no knowledge of the attacked network,
other than the anti-spoofing detection system uses video sequences.

Motivated by the need for the backdoor to work effectively in video sequences
and for it to be relatively imperceptible, we designed a backdoor that introduces
temporal changes to a video sample. In particular, the attack is designed to be
intrinsically robust to geometric transformations. To do so, we were inspired by
a similar approach used successfully in video watermarking (e.g. [15]) whereby the
watermark was embedded into the video by modulating the mean video illumination,
at some frequency related to the video frame-rate.

Our luminance-based backdoor function is defined as follows. Let X = {xj},
j = 1, N be a set of N consecutive video frames. The mean intensity of the frame xj
is changed by applying the same sinusoidal intensity change to all the pixels in the
frame according to the following expression:

B(xj,∆;ω) = (1−∆)xj + ∆ sin(2πωj/FPS)xj (2)

where FPS is the frame rate (frame per second) of the video, ∆ the amplitude of the
backdoor signal, ω the temporal frequency (in Hz) of the sinusoidal backdoor signal.
All pixel values in of a frame, xi, are first weighted down by the factor 1 − ∆ and
then the sinusoidal value of amplitude ∆ is added. The resulting video sequences is
a modified video sequence with a mean intensity variation in the range [1− 2∆, 1] as
illustrated in Figure 3.

3 Experimental Setup

The proposed video backdoor attack is used to attack a model for anti-spoofing detec-
tion. The attacked model, f(X) is a convolutional neural network trained to minimize
average loss,

∑
i∈V L(Xi, li), where L is the categorical cross entropy loss function,

over the validation data V ⊂ Dn, where the label can be l = [0, 1], for real (0) and
spoof videos (1). Each X is a sequence of 12 frames taken at steps of 2 frames, from
videos sampled at 24 frames per seconds consisting of cropped faces, resized to64×64
pixels with 3 channels (RGB) per frame. The model input size is 12 × 64 × 64 × 3
and the model output size is 2.
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Figure 3: Example of mean values plot of a sequences and frame block (12 frames)
for ∆ = 0.1 (corresponding to an intermediate strength among the values considered
in this paper)’.

3.1 Model Architecture

The input sequence is split in groups of 3 overlapping frames, and each group of 3
frames is fed into a pair of 3D convolutional layers with 8 and 16, 3 × 3 × 3 kernels
each (Figure 4). Each layer is followed by batch normalisation, a 1 × 2 × 2 max-
pooling. The activation for the convolutions is a ReLU function. The frame-grouped
outputs are flattened and reshaped into a time series of 3D features. These are then
fed into an LSTM layer (with 6 units)2. The convolutional-LSTM feature extraction
is followed by a 16 wide, sigmoid activation, dense layer and a final single neuron
output with sigmoid activation.

To train the model, we used a SGD optimiser with learning rate (LR) of 0.01
and decay of 1e-6, with Nesterov momentum of 0.9. A binary cross-entropy loss is
minimised and we use an accuracy metric to judge its performance. We use a 0.35
dropout rate on the 3D-CNN layers followed by batch normalisation and recurrent
drop-out at rate 0.35 in the LSTM layer. We train with a batch size of 128 and
pick the model with the smallest validation loss over a maximum of 25 epochs. The
training data consists of 14385, 12 frame sequences and 14272 validation sequences.
For testing, we used 4644 sequences.

3.2 Dataset

We used the IDIAP REPLAYATTACK anti-spoof video dataset [21] which consists
of 1,300 video clips of attack attempts on 50 different identities. The size of all videos
is 320 × 240 with a duration of about 9 seconds at 25 frames per second. Various
types of re-broadcast attacks (using iPhone and iPad) and print attacks are included
in the dataset.

2Implimented using Keras keras.layers.LSTM
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Figure 4: Diagram of architecture. Groups of 3 frames are input into the 3D-CNN
feature detectors which have two convolutional layers each consisting of 8 and 16,
3 × 3 × 3 filters, and 1 × 2 × 2 max-pooling. The LSTM layer has 6 units (hidden
layers).

Before feeding the sequence into our model, we crop faces across the frames, taking
the bounding region across 24 frames with a border of 16 pixels, and then resizing
the cropped faces to a size of 64× 64 pixels. This strategy ensures that any head or
replay device motion is captured in the frame sequence.

The trained model on pristine data, without introduction of backdoors, has a
validation accuracy of 97.5%. On test data, its precision was 99.6% with a recall of
96.5% producing an error of 1.2% on real sequences and 3.5% on spoofed ones.

4 Experimental Evaluation of Video Backdoors

Backdoors are injected across the entire video sequence for each identity, prior to
decimation into frame sub-sequence blocks. This is because the backdoor signal is
temporally related to the frame-rate of the captured videos and similarly during
attack, it must be added prior to any rebroadcast. The sub-sequence decimation is a
function of the data preprocessing related to the model architecture.

During training, an α proportion of the data is poisoned: for backdoors with label
poisoning, spoofed sequences and their labels are poisoned; for backdoors without
label poisoning, original live sequences are poisoned. The attack signal amplitude is
∆ during training and ∆T during testing. The attack signal frequency was set to ω.

We performed a number of experiments with variations of α, ω, ∆, ∆T to deter-
mine what was the relationship between the proportion of training data with back-
doors (in both scenarios) and the attack success rate. We also tested the impact of
the signal amplitude, ∆, during training; and how much greater ∆T had to be to
make the attack effective (especially in the no-label poisoning case). For testing, we
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used αT = 50% so we could assess any side effect on non-attacked data.
Finally, we ran some experiments to investigate the immunity of the backdoor

injection attack to geometric and contrast modification transformations, since these
are the transformations typically introduced during a rebroadcast attack.

4.1 Backdoor attacks with label poisoning

1. We first evaluated the impact that the attack proportion α has on ASR. Fig-
ure 5(a) shows the ASR versus the test-time backdoor amplitude ∆T for various
values of α, fixing the training backdoor strength ∆ = 0.05. The ASR increases
rapidly with the strength of the backdoor at run-time and with the proportion of
the training data poisoned. The performance can be compared with the results
obtained by adding the backdoor on a pristine model trained on uncorrupted
samples (blue curve). The success of the attack on the pristine model for the
larger values of ∆T may be explained by the distortion of the test data caused
by such high backdoor amplitudes, which ultimately induce classification errors
even in the absence of training corruption.

2. We repeated the experiments with significantly lower attack proportions, namely
α = {1, 3, 5}%, with varying attack strength ∆T = [0.05, 0.15] and ω = 1. Fig-
ure 5(b) shows that a relatively small proportions of the training data is enough
for a successful attack, especially when the strength of the backdoor signal is
increased at test time.

3. Next, we varied the (training time) backdoor strength over a range of values in
the interval [0.025, 0.20], fixing ω = 1 and α = 10%. Figure 5(c) shows that
relatively stealthy attacks of ∆ = 0.025 can be effective. Increasing the backdoor
poison amplitude achieves a commensurate increase in ASR. Increasing ∆ above
about 0.10 has diminishing returns at test time.

4. Eventually, we considered the effect of varying the frequency of the backdoor
signal, with ω ∈ [0.25, 6], α = 20%, ∆ = 0.2. Figure 5(d) shows how frequencies
of 4Hz or greater (up to Nyquist rate of 6 Hz) achieve 100% attack success
rates on test data. From these results, we can conclude that higher frequencies
appear to have more attack potency although the effect is not strictly linear
with frequency.

4.2 Effect of Geometric and Contrast Transformations

As we said in the introduction, one of the main challenges associated to a backdoor
attack against a rebroadcast detection anti-spoofing system, is that the backdoor sig-
nal should survive the digital-to-analog and analog-to-digital transformations implied
by rebroadcast and recapture. In this section, then, we show the results that we have
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(a) (b)

(c) (d)

Figure 5: Backdoor attacks with label poisoning: (a) Effect of varying attack pro-
portion α; (b) Effect of varying attack proportion for low α; (c) Effect of varying
attack backdoor strength ∆ of poisoned data; (d) Effect of varying attack backdoor
frequency.
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(a) (b)

Figure 6: (a) Effect of geometric transformations on backdoor signal. (b) Effect of
contrast transformations on backdoor.

obtained by simulating the most common transformations associated to rebroadcast
and recapture, namely geometric and contrast transformations.

The transformations were applied to the signal after the introduction of the back-
door but before the data was cropped. This simulates the situation of a rebroadcast
attack where the display device (e.g. a mobile phone) is hand-held and the resulting
image may be rotated, scaled (zoomed near and far from the authentication camera),
or sheared (not held in a plane strictly parallel to the imaging plane). To simulate
varying exposure and camera capture characteristics, we induced contrast changes to
the videos: gamma correction and white-balance correction (applied framewise). The
results of our simulations are discussed below.

1. Figure 6(a) shows the effect of geometric transformations (rotation, scaling,
shear). As expected, the ASR is unaffected over a range of random transforma-
tions selected from uniform parameter distributions. Specifically, we used rota-
tions in the range [−15, 15] degrees; image zoom/scaling in the range [0.8, 1.2]
and X and Y shears in the range [−0.05, 0.05].

2. Figure 6(b) presents the results we obtained by applying non-linear contrast
changes: gamma correction over a range of random uniform values, and white-
balancing. Gamma correction was tested over a range [−3, 3] using:

G(x; γ) =





x−
1
γ , if γ < 0

x, if γ = 0

xγ else.

(3)

Gamma correction marginally worsens the ASR but conversely, white-balancing
operation marginally improves the ASR as it has the effect of stretching the
backdoor signal magnitude with the overall image contrast.
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Figure 7: ASR with no label poisoning with two different poison percentages.

4.3 Backdoor attacks without label poisoning

We experimented with various combinations of attack proportion, frequency and back-
door amplitude to maximise the attack success rates in the case of attacking the
network without label poisoning. As observed in [12], the attack proportion has to
be considerably greater when the labels are not poisoned, which is exactly what we
confirmed with our video backdoor attack. We had to increase the attack proportions
to beyond α = 20% to see a significant effect on the ASR.

Additionally, we did not find that the frequency and amplitude parameters which
worked best in the label poisoning cases applied as well to the non-label poisoning
scenario. So for example, ω > 1 did not see a corresponding increase in ASR, and
similarly neither did ∆ > 0.1. The only stable trend we discovered was an increase
in ASR with attack proportion, α.

Figure 7 shows the best results we obtained by attacking the model without label
poisoning. We found that to achieve ASRs above the baseline, we had to use a high
attack proportion, α = 20% or more but with a low signal amplitude, ∆ = 0.05. An
ASR of over 50% can be achieved with α = 50% and ∆T = 0.15.

5 Discussion and Concluding Remarks

We have introduced a novel illumination-based video backdoor attack against deep
anti-spoofing rebroadcast detection systems. The attack has a number of interesting
properties, including imperceptibility and robustness against geometric transforma-
tions, and to a good extent, intensity transformations. These robustness charac-

12



teristics make the attack suitable for use in rebroadcast attacks when display device
motion and image contrast may not be controllable. We have demonstrated that when
the video backdoor is embedded into the training data, it can be used to change clas-
sifier decisions with minimal of data poisoning, when the corresponding labels are
also poisoned, and with some success when they are not (without label poisoning).

When labels are poisoned, the experiments demonstrate that increasing backdoor
frequency and amplitude make the attacks more powerful, and in all cases, increasing
the backdoor amplitude at test time increases the attack success rate.

In our experiments, we discovered that very low attack proportions (as low as
3%) is sufficient to attack the model when labels are poisoned (much larger attack
proportions are necessary when labels are not poisoned, in line with the findings
in [12]). This could be a function of the type of backdoor signal we have employed
and as yet we do not have a method to generate the optimal signal which satisfies all
the requirements of low poison percentage, stealth, geometric invariance and results
in the highest ASRs. Furthermore, thus far, we have only tested the method on a
2-class model and we have found it fairly easy to attack the spoof-class, as we see
some attack success without data poisoning (on the pristine model), when at test time
the backdoor amplitude is increased. Only by testing a similar attack method on a
multi-class video classification problem will we see whether the method generalises to
other deep video classification models.

We believe that this type backdoor signal which modulates the video illumination
in time, might also be turned into a physical attack, perhaps introduced stealthily
during biometric identity enrolment and/or identity verification by a physical alter-
ation of the environmental lighting conditions.
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