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Abstract - Robot programming usually consists of four steps: 

(1) task planning; (2) task sequencing; (3) path planning and (4) 

motion planning. Task (2) and (3-4) are strongly coupled. For 

example, the optimal robot path, which is function of the robot 

kinematics, relies on the pre-defined schedule of tasks, whose 

sequencing is computed based on the assumption that the 

travelling “cost” from one task to the next is only driven by the 

Euclidean distance in Cartesian space. Current methods tends 

to decouple the problem and sequentially compute the task 

sequencing in the T-space, and then compute the robot path by 

solving the inverse kinematics in the C-space. However, those 

approaches suffer the capability to reach a global optimum. This 

paper aims at developing a novel approach which integrates 

some of the key computational requirements of the path 

planning in the early stage of the task sequencing.  Multi-

attribute objectives are introduced to take into account: robot 

pose and reachability, data quality, obstacles avoidance, overall 

cycle time. The paper introduces a novel multi-attribute 

approach to find the optimized task sequencing via candidate 

poses solving inverse kinematics in the T-space. This is based on 

the core idea to combine T-space and C-space. The proposed 

solution has been tested on a vision-based inspection robot 

system with application to automotive body assembly systems. 

Results could however impact a wider area, from navigation 

systems, game and graph theory, to autonomous driving 

systems. 

Keywords - Robotic task sequencing, TSPN, Robot vision 

system, Multi-attribute Optimization  

I. INTRODUCTION AND MOTIVATION 

Industrial robots play a key role for industrial automation 
and process consistency [1]. In today best practice robot 
programs are developed off-line using CAD/CAM simulation 
suits, such as Delmia, RobCAD, etc., to compute collision free 
robot trajectory [2]. Though those practices are still a premium 
solution to model and simulate production systems, they are 
unable to find the optimal solution subject to multiple 
attributes. In case of robotics vision-based inspection system 
an optical inspection system is installed at the end of a robot 
arm to exploit the robots’ high flexibility to re-position and re-

orient the inspection system to different poses, to take several 
pictures and generate high dense 3D cloud of points, with the 
purpose of surface inspection and process monitoring of part 
and sub-assembly [3] - see Fig. 1 for full-scale simulated 
vision-based inspection system. The generation of the optimal 
robot plan is dependent upon several attributes, such as: 
camera technological parameters (field of view, depth of field, 
optimal working distance, etc.); robot technological 
parameters; obstacles in the robot workspace; color and 
surface finish of the part being measured. 

 

Fig. 1. Example of task sequencing and path planning of optical inspection 

system installed at the end of a robot arm. 

All those attributes affect the overall robot path and 
trajectory [4], which impact the cycle time but also the quality 
of the collected data. “Data quality” is related to both: (1) 
amount of surface data points collected from a given pose of 
the robot; (2) accuracy and repeatability of the measurement 
process. Since optical-driven inspection systems make use of 
2D images to reconstruct 3D cloud of points, the data quality 
is therefore affected by the resolution of the image and its 
saturation. Image resolution is typically given by the optical 
parameters of the sensor (i.e., focal length and chip size); 
however, the saturation is strongly dependent on the amount 
of light which reflects back from the surface being scanned 
and measured. It has been proved [5] that the specular 
reflected light tends to over-expose the image which leads to 



 

 

typical “white spots” in the images. White spots prevent the 
segmentation and the detection of features in the image with 
leads to incomplete data and low data quality. On the contrary, 
scattered reflections help to keep the image saturation to a 
minimum. Surface reflection is function upon material type 
and surface finish, but also driven by the relative position and 
orientation of the optical inspection system to the surface. 
Position and orientation can be controlled by the robotic arm. 
Fig. 2 shows a 3D cloud of points reconstructed from a stair-
case aluminum specimen and measured from the different 
orientation of the optical inspection system (from 0 to 50 
degrees). 

 

Fig. 2. Effect of orientation on data quality; (a) specimen used for the 

experiment; (b) collected cloud of points. White areas correspond to missing 

data because of over-saturated images. 

In this context, multi-attributes can be generally discussed 
as follow [6]:  

A1 - path length: it is the length of the path described by 
the optical inspection system while moving through tasks. 
We aim to minimize the total length; 
A2 - pose quality: pose of the optical inspection system 
which leads to given quality of the collected data. Data 
quality is aimed to be maximized; 
A3 - pose reachability: pose of the optical inspection 
system is directly related to the accessibility of given tasks. 
For instance, it may happen that a tasks though feasible in 
terms of collision and pose, could not be reachable by the 
robot; that is, no solution to the inverse kinematics. We 
aim to maximize the reachability; 
A4 – collision: robot movement must be collision free. 

Robot programming is usually decomposed in four sub-
problems/steps [2],[7]:  

Step[1] task planning – robot tasks are described through 
(hyper)volume (Task region (TR)) in a pre-defined coordinate 
system. That volume corresponds to the envelop of the all 
Tool Centre Point (TCP) poses (position (𝑥𝐸𝐸 , 𝑦𝐸𝐸 , 𝑧𝐸𝐸) and 
orientation (𝛼, 𝛽, 𝛾)). TCP is the representative point of the 
end-effector (EE), which corresponds to the optical inspection 
system (see also Fig. 3.a); 

Step[2] task sequencing - sequence of tasks is generated 
according to pre-defined attributes. Optimal sequence is 
usually computed based on TCP’s positions; and, it is solved 
in Cartesian space, also called T-space; 

Step[3] path planning - path is generated according to task 
sequence and attributes. The route which leads from one robot 
configuration to another is named path. A path is the locus of 
TCP points when it moves throughout configurations, for 

given sequence of tasks [8]. Path planning allows to compute 
robot configuration for each TCP pose and the sequence of 
configurations that moves the robot among configurations. 
The computation is performed into the configuration space of 
the robot, also called C-space; and, 

Step[4] motion planning - robot movements are generated 
to follow the path.  

Those steps are strictly coupled as robot trajectory is 
strongly affected by Step[2] and Step[3]. There are few 
approaches that allow to generate automatic robot 
programming. However, none of them use a complete 
integration of task sequencing and path planning. Classical 
approaches consider a simplified formulation: task sequencing 
and path planning problem are completely or partially 
decoupled [9]. As no robot information is involved in task 
sequencing, no attributes can be directly computed in T-space 
(neither A1 as it involves the information about the robot 
configurations). As consequence, no feasible solutions are 
guaranteed in T-space. Therefore, these single-attribute 
methods require multiple iterations between task and path to 
converge to a (near)optimal solution which can be far from the 
optimal one. 

 

           a)                                                                b) 

Fig. 3. a) Task region as envelope of the TCP poses. b) Path solutions based 

on different task sequences: 𝜎1 → 𝑆 = {𝑇𝑎𝑠𝑘1, 𝑇𝑎𝑠𝑘2, 𝑇𝑎𝑠𝑘3}; 𝜎2 → 𝑆 =
{𝑇𝑎𝑠𝑘1, 𝑇𝑎𝑠𝑘3, 𝑇𝑎𝑠𝑘2}  

For example, looking at Fig. 3.b, let 𝜎1 be the path related 
to the sequence 𝑆1 = {𝑇𝑎𝑠𝑘1, 𝑇𝑎𝑠𝑘2, 𝑇𝑎𝑠𝑘3} . Assuming a 
single-attribute optimization driven by A1, 𝜎1 is far from the 
optimal one, because of excessive rotation of the robot wrist. 
After taking into account robot information as related to 
configurations and joint operating ranges, the optimal 
sequence and path could be 𝑆2 = {𝑇𝑎𝑠𝑘1, 𝑇𝑎𝑠𝑘3, 𝑇𝑎𝑠𝑘2} 
and 𝜎2, respectively. 𝜎2 is better than 𝜎1 in terms of A1 but 
gives no guarantee that 𝜎2 is still optimal when considering 
simultaneously multi-attribute (A1 to A4). 

The key challenge is therefore defined as follow: to generate 
a feasible optimal task sequence directly assessing attributes 
in T-space. A novel effort in the task sequencing problem 
formulation is then required to provide a synergic integration 
of multi-attribute. Task sequencing is modelled as Travelling 
Salesman Problem with Neighbourhoods (TSPN) [10], where 
a “neighbourhood” corresponds to a robot task. Existing task 
sequencing solutions only focus on single-attribute problems. 
Recent study [9] has tried to use a decomposition approach to 
reduce the problem to simple ones that can be solved 



 

 

sequentially or in parallel applying heuristics methods to get 
solution in reasonable time.  

This paper focuses on robotic task sequencing and aims to 
solve task sequencing problem considering multi-attribute 
scenarios. It develops a novel method to find both optimal 

TCPs’ pose and optimal TCPs’ sequence based on multi-
attribute solution. The method uses a novel approach which 
uses pre-computed feasible robot poses based on analytical 
formulation of Euclidian weighted functions. The proposed 
solution has been tested with a vision-based inspection robot 
used for in-line dimensional inspection and control with  

 

Fig. 4. Flowchat of the proposed method

application to automotive body assembly systems [11]. The 
proposed approach allows to take into account the feasibility 
of the robot configurations from the very early stage of the 
optimization workflow. This leads to the following two 
benefits: (i) more accurate and faster convergence to 
optimum; and, (ii) reduction of costly forward and feedback 
iterations between task sequencing and path planning.  

The rest of the paper is arranged as follows: Section 2 
presents the problem formulation; Section 3 summarizes the 
proposed approach; lastly, industrial case study and 
conclusions are depicted in Sections 4 and 5, respectively. 

II. PROBLEM FORMULATION  

Industrial robots perform a cycle of actions to carry out a 
task. Given a task, 𝑇,  there exist a region, 𝑇𝑅𝑖, where robot 
can reach a pose, 𝜆𝑖, to perform the task. The aim is to find the 
optimal sequence, 𝑺, of poses by optimizing cycle-length, as 
well as selection of the optimal pose 𝝀  for each task. 
Therefore, one can formally write: 

∀ 𝑇𝑖  ∃ 𝝀𝑖 ∈ 𝑇𝑅𝑖  ∶ 𝑺 ⇒ 𝐿𝑚𝑖𝑛         𝑖 ∈ [1, 𝑛] 

A pose is defined in T-space by its position 𝑃 = (𝑥, 𝑦, 𝑧) 
and orientation Θ = (𝛼, 𝛽, 𝛾); whereas, in C-space through 
configuration 𝐶𝑠 = (𝜗1, … , 𝜗𝑚)  where 𝑚  is the number of 
joints. Although in C-space it is possible to define a complete 
TCP pose as well as robot configuration, it is difficult to define 
an optimal task sequence. Therefore, it is more convenient to 
model the robot task sequencing problem in the T-space. The 
proposed approach formalizes the task sequencing problem in 
T-space bringing attributes from C-space. Within T-space, 
robotic task sequencing can be modelled as TSPN [10],[12], 
where each neighborhood (region 𝑇𝑅  represents robot task 
and any inner points represent the TCP point).   

III. PROPOSED APPROACH 

The proposed approach is based on integration of multiple 
attributes to find a near-optimal task sequence. Four attributes 



 

 

are fused in a TCP point. They are computed for each 
generated pose within 𝑇𝑅. Formally we can write: 

A. path length, 𝑊𝐿 

B. pose quality, 𝑊𝑄;  

C. pose reachability, 𝑊𝑅;  

D. collision, 𝑊𝐶.  

Path length is affected only by position 𝑃 (𝑊𝐿 = 𝑓(𝑃)) 
and, therefore, it is directly computed in T-space. Pose quality, 
reachability and collision attributes are affected by both TCP 
position and orientation; therefore, they are computed in C-
space, thus requiring solution of the inverse kinematics (IK). 

In this way, although there is no information on path 
planning, we can generate an optimal sequence which 
corresponds to the best feasible sequence as follow: 

𝑎𝑟𝑔𝑚𝑖𝑛(𝑊) 

𝑊𝑃 = 𝑓(𝑃, Θ) = 𝑊𝐿 − 𝑊𝐴 − 𝑊𝑅 + 𝑊𝐶  


where 𝑊𝑃  represents the total weight of the point 𝑃  in T-
space. Due to multi-space attributes, the present approach 
concurrently combines multi-space data. It fuses TCP and 
robot data in TCP position making a multi-level point. 
Solutions are generated for static robot (stopped in a poses) 
and no motion attributes are still tackled. The Proposed 
method flowchart is depicted in Fig. 4. Let sequence  𝑺 =
{𝑃𝑖  } , 𝑖 = 1, … , 𝑛  be the sequence of via-points, 𝑷𝑖 , to be 
optimized within regions which are locus of feasible points. 
Given a set of tasks 𝑇, the proposed approach is composed by 
two main steps: (I) via-pose optimization, as in (2); (II) task 
sequencing optimization. For each TCP position 𝑷𝑖 , a pose 
sampling generates a set of 𝜆. IK solver runs on the discretized 
set of TCP poses 𝜆𝑗. 𝑊𝑃  can be computed for each pose 𝜆 
mapping the whole 𝑇𝑅. Then, sequence optimization finds the 
best sequence starting from the minimum 𝑊𝑃  point of each 
region. A classical TSP solver was used to construct the 
optimal sequence. In particular, we have implemented a robust 
TSP based on Genetic Algorithm (GA). GA has been triggered 
by initial random population. Tournament selection method 
has been used to initiate the 2-point cross-over, followed by 
flip-swap-slide mutation. Fixed number of iterations has then 
been adopted as termination criterion. The developed 
algorithm simultaneously optimizes pose-to-pose distances 
(T-space), pose accuracy (C-space), collision (C-space) and 
reachability (C-space); finally, in T-space, a task sequencing 
𝑺 is generated through via-point 𝑷𝑖, ∀𝑖 = 1, … , 𝑛.  

 

Fig. 5. Pose length optimization – schematic representation 

A. Path length weight (𝑊𝐿) 

Euclidean distance is assumed as key metric to compute 
the length of the sequence. Given two generic points in ℝ3, 
there is a straight-line which is the shortest route between 
them. Therefore, given two task regions 𝑇𝑅𝑖  and 𝑇𝑅𝑗 , there 

are two points 𝑃𝑖𝑗  𝜖 𝑇𝑅𝑖 and 𝑃𝑗𝑖  𝜖 𝑇𝑅𝑗 that are extremity of the 

shortest straight-line which connects the two regions. The 
extremity point 𝑃𝑖𝑗  is named target points, usually located on 

the regions’ boundaries, 𝑃𝑖𝑗  represent the best via-point to 

move from 𝑇𝑅𝑖 to 𝑇𝑅𝑗. Considering a set of 𝑛 regions (Fig. 5) 

and taking into account the 𝑖𝑡ℎ region, there are 𝑛 − 1 target 
points related to the other regions. It can be defined a point 
𝑃𝑡𝑖

, inside 𝑇𝑅𝑖, which is the optimized via-point to get each 

target point. Therefore, given a set of n tasks, the pose length 
𝑊𝐿 is computed as follow: 

𝑊𝐿 = ∑‖𝑃𝑡𝑖
− 𝑃𝑗𝑖‖

2

𝑛

𝑗=1

𝑗≠𝑖

 

𝑤𝑖𝑡ℎ: 𝑖, 𝑗 ∈ [1, 𝑛] 

𝑛 no. of TR 

𝑷𝑡𝑖
= (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) 

𝑷𝑗𝑖 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) 





B. Pose Quality weight (𝑊𝐴) 

Pose quality, 𝑊𝐴 , aims to evaluate the quality of task 
execution. It is calculated as average of all sampled pose 
accuracy indices λAs for each position 𝑃𝑖 . 

𝑊𝐴  = 𝑚𝑒𝑎𝑛(𝜆𝐴𝑠) 

C. Pose Reachability weight (WR) 

Reachability weight aims to evaluate the feasibility degree 
of the poses. It is affected by relative work-piece placement 
within robot workspace and inverse kinematics. Solving 
inverse kinematics for a pose, pose reachability λR is 
calculated as number of solutions by admissible solutions. 

𝜆𝑅 =
𝑛𝑜.  𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

𝑛𝑜. 𝑜𝑓 𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠
 

𝑊𝑅  is calculated as average of all sampled pose 
reachability indices λRs. Higher value means better 
reachability; therefore, it has to be maximized. 

𝑊𝑅 = 𝑚𝑒𝑎𝑛(𝜆𝑅𝑠 ) 

D. Collision Weight (WC) 

Collision index aims to evaluate the collision tendency of 
a pose. By assuming 𝑑𝑜𝑏  as the minimum distance between 
EE-envelope and workpiece, if 𝑑𝑜𝑏 ≤ 0 collision exist, count 
collision, not count. For each pose λ, pose collision index λC 
is 1 if collision exist, otherwise 0. 

𝜆𝐶 = {
1  𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑡𝑟𝑢𝑒
0 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑓𝑎𝑙𝑠𝑒

 

CoI is calculated as average of all collision indices λCs of 
the sampled pose. 

𝑊𝐶 = 𝜆𝐶𝑠/𝑚 

Collision checking algorithm is based on proximity query 
package (PQP) library available at [13].  



 

 

IV. INDUSTRIAL CASE STUDY 

The proposed methodology has been validated with a 
vision-based inspection system, used for in-line dimensional 
inspection and control for automotive assembly systems. The 
robotics vision comprises of: 6(+1) axis ABB industrial robot, 
Hexagon WLS400A optical scanner (white light scanner 
measuring system equipped with three 4.0 megapixel digital 
cameras. It has a field of view equal to 500 x 500 mm, 230 
mm as depth of field and an optimal working distance of 780 
mm). The attributes are characterized as follow:  

 Pose quality – for evaluating capture quality we have 
used the coverage index (CI) which is defined as ratio 
between valuate area covered by point cloud and 
nominal area of the geometry. 

𝐶𝐼 =
𝑉𝑎𝑙𝑢𝑎𝑡𝑒 𝐴𝑟𝑒𝑎

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐴𝑟𝑒𝑎
 

CI is calculated respect incident angle 𝜙 (Fig. 7) using 
a mapping function of WLS400A (Fig. 8) developed at 
WMG (University of Warwick). 
Discretizing turn angle γ in 𝑚  angle samples. For a 
given camera position, we calculate 𝜆𝐴𝑠 as average of 
𝐶𝐼𝛾  that is calculated as average of 𝐶𝐼𝑃𝑐

 between the 

camera and the 𝑘 sampled points in the FoV affected 
by a different incidence angle 𝜙: 

𝜆𝐴𝑠 =
∑ 𝐶𝐼𝛾𝑖

𝑚
𝑖

𝑚
      𝐶𝐼𝛾𝑖

=
∑ 𝐶𝐼𝑃𝐶𝑗

𝑘
𝑗

𝑘
 

 Reachability index – ABB IRB 6620 is a 6 axes robot; 
therefore, it has 6 DoF. Such a robot admits up to 8 
solutions; which are the number of admissible 
solutions. 

𝜆𝑅 =
𝑛𝑜.  𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

8
 

 Collision index – spherical volume (described by a 
sphere radius 𝑅𝑆) was assumed as EE-envelope (Fig. 
6).  

Fig. 9 shows the robot cell installed at University of 
Warwick, WMG, used for the validation tests. The digital 
model, twin of the WMG’s cell, has been developed in 
Matlab. The proposed approach has been implemented in C++ 
and linked to MatLAB via MEX interface. 

In order to assess the benefits of the proposed multi-
attribute approach we have compared two task sequencing 
solutions:  

(1) classical task sequencing solution, it corresponds to a 
sequence generated only by distance attribute; 

(2) proposed multi-attribute solution, it computes all 
attributes (distance, accuracy, reachability and collision) 
acting simultaneously.  

In the first case, as illustrated in Fig. 10, obtained via-poses 
present collisions with the workpiece. Therefore, further 
iterations are needed to generate a feasible solution and more 
computation time are required. In the second case, using all 
attributes, no more actions are needed; indeed, as show in Fig. 
11, the generated solution is feasible because no collisions 

occur. Besides, obtained via-points are reachable and 
characterized by high capture quality.  

 

 

Fig. 6. EE-envelope 

 

V. CONCLUSIONS 

This paper proposes a new approach for solving robotics 
task sequencing which enables to check the feasibility of 
reachability, collision and pose accuracy for a metrology 3D 
scanner. The approach allows to find the near-optimal solution 
to perform a specific task. It is based on the idea to solve task 
sequencing by multi-attribute optimization. 

The approach has been tested in the context of automotive 
body assembly systems for solving task sequencing of an 
inspection robots with optical camera system. However, 
results could impact a wider area, from navigation systems, 
game and graph theory, to autonomous systems. 

Currently, the proposed method evaluates collisions 
between end-effector and workpiece. There are other 
collisions to take into account: end-effector and obstacles; 
robot and obstacles; end-effector and robot; robot and 
obstacles; robot and workpiece. An improvement of the 
collision attribute is required to increase the feasibility of the 
solution. 

 

Fig. 7. Pose quality scheme for WLS400A. 

 



 

 

Fig. 8. CI map for WLS400A 

  

Fig. 9. Robot cell installed at WMG 

  

 

Fig. 10. Task sequencing solved only with distance attribute 

 

Fig. 11. Task sequencing solved with all attributes: distance, accuracy, 

reachability and collision 
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