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Overconfidence, Position Size, and the Link to 

Performance 

ABSTRACT 

The overconfidence literature employs activity metrics such as account turnover and trade frequency 
to link misattribution/self-attribution to excess trading. In this paper we argue relative position size is 
a more meaningful indicator of overconfidence. Using a sample of retail traders, we find that when 
traders take relatively larger positions they make more impaired trade entry/exit timing decisions. The 
opposite is seen when they trade more frequently. We also observe that more sophisticated and 
experienced traders trade relatively smaller positions and exhibit less overconfidence, consistent with 
these individuals suffering fewer behavioral biases, for which a likely learning effect is observed.  
 
JEL Classifications: G41, G11, G32 
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1 Introduction 

A key feature of the investor overconfidence literature to-date is the link between this type of 

behavioral bias and increases in trading turnover1 and one of its components, trade frequency.2 There 

is however a second component to turnover - position size (or volume). If one accepts the established 

view that increased turnover indicates overconfidence, then we can infer a probable link between 

increased position size and overconfidence; especially if there is any cause to believe that increased 

trade frequency does not clearly demonstrate overconfident trading, which appears to be the case. 

Through the analysis of trading performance with respect to position size, and how it contrasts to 

trade frequency, this paper seeks to enhance our understanding of how overconfidence is expressed 

by the actions of market participants and how it impacts on their outcomes.   

Position size has seen relatively little focus in the literature to-date, with Ben-David, et al. 

(2018) being the notable exception in their examination of self-attribution with respect to past 

performance; finding prior returns predict future trading activity. We extend this literature in a number 

of meaningful ways. Due to Ben-David, et al. (2018) lack of account cash balances data, it requires 

them to make a critical unstated assumption that all trades have a consistent relative trade transaction 

volume with respect to account assets. Specifically, the authors hypothesize that changes in trade size 

are the result of deposits to and withdrawals from their account. Barber and Odean (2000) make a 

similar unstated assumption with respect to their analysis of turnover. However, our findings indicate 

                                                        

1 Barber and Odean (2000); Barber and Odean (2001); Benos (1998); Glaser and Weber (2007); Graham, et al. (2009); 
Grinblatt and Keloharju (2009); Odean (1998); Pompian (2006); Statman, et al. (2006). 
2 Ben-David, et al. (2018); Feng and Seasholes (2005); Graham, et al. (2009); Grinblatt and Keloharju (2009); Linnainmaa 
(2011). 
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neither assumption is valid as relative transaction volume shows considerable variability and that 

variability has a clear link to trader performance. Further, we argue these inherent assumptions 

distance the analysis of overconfidence from transaction level risk-related decision making. While Ben-

David, et al. (2018) may be correct in asserting that changes in account funding reflect changes in 

confidence levels, this we suggest is more a macro level confidence. In contrast, the availability of cash 

balances in our dataset allows us to examine position size – and by extension turnover – enabling us 

to focus more on the decision making at the individual trade level through the examination of the 

relative market exposures taken. 

 Also, investigating position size is important as the current literature on trade frequency is 

inconclusive as to whether it is, in fact, a strong indicator of overconfidence given increased trade 

frequency is not necessarily the product of overconfidence. Or, if it is, excessive trading may not 

actually result in diminished performance. For instance, Deaves, et al. (2009) and Biais, et al. (2005) 

find that overconfidence does not lead to higher trading frequency. Garvey and Murphy (2005) 

observe no link between the number of trades executed and trader performance, while Abbey and 

Doukas (2015) actually note increased trade frequency being linked to higher returns - the opposite of 

an overconfidence argument (see also Li, et al. (2016)). Graham, et al. (2009) find more experienced 

investors trade more often. If investors learn to overcome behavioral biases - a feature of the Gervais 

and Odean (2001) model supported by the Feng and Seasholes (2005) - this suggests experienced 

traders will trade less frequently, not the opposite.  

 The evidence therefore suggests other factors than merely overconfidence are at work when 

investigating trade frequency. For example, higher trade frequency may be the product of a learning 

process. Mahani and Bernhardt (2007) propose a learning model of speculation which features small-

scale trading by inexperienced traders as they seek to discover their skill level. They argue that while 
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inexperienced traders may trade more actively in frequency terms during the learning process, they 

may not actually trade at very high relative turnover levels. Linnainmaa (2011) supports this idea, at 

least in part, by finding that some traders use very small positions to learn about their ability. Thus, 

there theoretically exists a group of market participants who may be trading more frequently than 

rational expectations would suggest, but doing so on a relatively small scale. This is very similar to the 

trading pattern proposed by Grinblatt and Keloharju (2009) in terms of sensation-seeking individuals. 

It is therefore difficult to differentiate learning from behavioral bias based on trade frequency. 

Position size, on the other hand, we argue, is a less noisy measure of overconfidence than 

trade frequency. It is also likely the last decision made by individuals who speculate on price action 

before they enter a new long or short position, after their point risk assessment. The decision-making 

on trade size is a function of the investor’s available capital and access to leverage as constraints. The 

final determination, however, is based on the perceived riskiness of the trade, which is subject to the 

influence of overconfidence. As Kahneman and Riepe (1998) note, overconfident individuals 

underestimate the likelihood of negative outcomes outside their control, such as the movement in the 

price of a financial instrument. It is also in that excitement prior to initiating the trade that emotional 

influences can be most impactful (Kuhnen and Knutson, 2011), particularly for less experienced 

investors. This combination of factors can lead to individuals taking greater risks than would be 

prudent - in the form of excessively large trades. If an investor’s risk perception is lower due to 

overconfidence, then they could rationally (to their mind) increase position size to match the risk they 

otherwise would take.3 Moreover, if there is a potential learning aspect for new-career investors we 

                                                        

3 For example, less experienced traders may not understand, or fail to consider, the probabilities of a given price move. 
This can lead them to set their stops too tight; believing they are taking less risk, allowing them to increase their position 
size. Resulting in their stops being hit more frequently than they expect. 
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would expect, as suggested by Linnainmaa (2011), traders to start with smaller rather than larger 

positions;  opposite to the learning perspective of trade frequency.  

To investigate the link between position size and overconfidence, and to determine whether 

it is a more meaningful metric compared to trade frequency, we utilize a dataset comprising more than 

5,000 active traders who, during the period July 2008 to April 2013, executed a total of over 4 million 

trades worth nearly $195 billion in notional value. As the market focus for our traders is foreign 

exchange, where transaction costs are almost entirely determined by spread costs, comparable changes 

in either the number of trades or their size produce the same impact on net returns (spread costs rise 

in line with total traded volume). We are therefore able to investigate specifically whether increased 

trading frequency or position size is indicative of overconfident trading, and if so whether 

overconfident traders make worse entry/exit timing (trade timing) decisions (Burks, et al., 2013). If 

so, we would expect to see a reduction in their per-trade returns when stripping out trade size 

considerations and looking only at the price movement captured by each trade. 

We find that traders who increase relative position size (RPS) - trade size relative to total 

account value - do not suffer lower net returns simply because of larger positions. They also exhibit 

increased trade timing impairment (i.e. they make worse trades) consistent with an overconfidence 

bias. In other words, not only do these traders make larger losses on average because they trade bigger 

positions in the face of negative expected returns, they reduce their returns further by doing a worse 

job of picking entry and exit points. Conversely, we find that those traders who increase their trade 

frequency make better trade timing decisions. Their entry and exit decisions are improved such that 

when they trade more often they offset the cost of the additional trades – at least partly. In fact, we 

also observe that trade timing performance follows the same pattern for overall turnover as for trade 

frequency. Higher turnover is associated with improved trade timing. These findings support our 
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hypothesis that position size is the more meaningful indicator of overconfident trading and provide a 

new layer to the literature with respect to the link between overconfidence and excess trading. These 

findings also have potential regulatory considerations, such as those discussed by Heimer and Simsek 

(2018).  

To further corroborate position size as an indicator of overconfidence we also investigate 

whether inexperienced investors suffer more from behavioral biases, as suggested by the literature.4 

Consistent with expectations, we find increased relative trade size among inexperienced traders is 

significantly associated with poor trade timing, unlike the case of experienced traders. This contrasts 

with the findings of Oberlechner and Osler (2012) with respect to currency dealers, but supports the 

observations of Nicolosi, et al. (2009) and Seru, et al. (2010), who both link experience to improved 

performance. Moreover, we find that a reduction in relative position size is a function of learning 

rather than simply individual proclivity. Experienced traders did not become experienced simply 

because they traded smaller positions (presumably resulting in smaller losses). They reduced their 

relative position size over time. We also observe that traders with larger accounts tend to take relatively 

smaller trades, and that they do not exhibit the same negative link between trade timing performance 

and relative position size. This is consistent with the findings of Feng and Seasholes (2005) that 

sophisticated investors – at least judged on the basis of investment capital, which is often the case 

from a regulatory perspective – are able to reduce the influence of behavioral bias. 

Following these results, we also investigate the type of overconfidence theorized to drive 

increases in trading activity - namely misattribution/self-attribution.5 In line with Ben-David, et al. 

                                                        

4 Feng and Seasholes (2005), Gervais and Odean (2001), Nolte and Voev (2011). 
5 Daniel, et al (1998), Gervais and Odean (2001), Glaser and Weber (2009). 
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(2018), we find that prior period returns influence both trade frequency and relative position size. 

However, in addition we also observe it in the traders’ instrument selection process, which factors 

into the expected trade volatility part of increased risk taking. 

In addition to our contribution with respect to overconfidence-linked overtrading and 

learning, as noted above, this paper also extends the literature on the subject of retail speculators – 

and even professional speculators with respect to their ability to overcome behavioral biases. There 

is, perhaps, the inclination to believe retail forex traders are somehow different than those in other 

markets, particularly equities. Based on the literature, however, equity and forex speculators appear to 

have much in common. For example, Barber, et al. (2014) estimate that less than 1% of day traders in 

the equity market are reliably profitable. The daily returns they describe are comparable to the ones 

seen in our sample. Given that behavioral biases are not isolated to particular markets, this is to be 

expected. While forex traders may have more variation in relative position size than is the case in 

equities, we argue the two are probably quite comparable in terms of trade frequency. Traders in both 

markets exhibit clear indications of disposition effect influences. Furthermore, our analysis focuses on 

changes rather than absolute levels. As such, our findings should be representative of patterns 

exhibited across markets. 

The remainder of this paper is structured as follows. Section 2 describes the dataset employed 

and measures constructed for our analysis. Section 3 reports the results of the analysis, along with 

sensitivity tests. Section 4 concludes.   

2 Data & Measurements 

2.1 Data 

For our analysis we use a dataset of retail spot foreign exchange trader accounts. Although this market 

is relatively new with respect to prior research, it provides some generalizable indications as noted by 
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Ben-David, et al. (2018). Our dataset is very similar in terms of participants and activity level to the 

one employed by Ben-David, et al. (2018), but with a broader geographic scope, and is comparable to 

the Hayley and Marsh (2016) sample. It is identical in source to the dataset used in Heimer (2016), as 

well as Simon and Heimer (2012), Simon (2013), and Heimer and Simsek (2018), although it covers a 

longer time period. In terms of participants, the dataset is similar to one used by Nolte and Voev 

(2011), but their sample only includes a single month‘s trading with traders from just a single broker - 

albeit with more traders involved. It is also similar to that used by Abbey and Doukas (2015).  

As in the case of  Ben-David, et al. (2018), our traders exhibit characteristics similar to traders 

from other observed markets, indicating that our findings should apply generally across markets. Our 

traders clearly demonstrate indications of disposition effects in that they win more frequently than 

they lose, and the losing trades are much larger and are held significantly longer than the winners. 

Further, while there are indications that the traders in our sample are above average (see Section 2.6 

for details), they on average earned negative abnormal returns. This is in contrast to Abbey and Doukas 

(2015), who find that their individual currency traders earned positive abnormal returns. However, 

this is not unexpected, as their sample is limited to traders who earn profits by allowing others to 

duplicate their trading activity - known as “social” or “copy” trading.6 In other words, they focus on 

a sub-sample of presumably profitable traders and consequently, their results are not generalizable to 

all retail traders. 

Our sample was aggregated by a social network of retail forex traders, which formed in early 

2009. Participation in the social network was free but required members to link the online platform 

to their live account(s) at one of approximately 50 connected brokers. Connecting granted the 

                                                        

6 See Forman (2016) for a description of this process. 
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platform the ability to collect data in real time from those linked accounts - to include transactions 

executed, orders entered, and positions held - by capturing all activity moving forward from 

registration. In some cases, the platform also collected historical transaction information available in 

the account.7 Members had no ability to filter out any of the actions taken in their linked account(s), 

removing any concern about reporting accuracy or selectivity.8 In our analysis we include trading pre 

and post membership where available. In unreported results (see section 3.6.) we control for the 

possibility membership may change trader behavior by including an indicator variable. We find our 

results are not sensitive to this specification.  

The sample period for our dataset is from July 2008 to April 2013 for a total 58 full months. 

There are 5,502 active members9, accounting for 35,060 total trader-month observations. In addition 

to the transaction log, we also obtained a daily summary table, which provides us with the daily returns, 

account balance, and other related information for each trader. Unlike the transaction log, the data 

from the daily summary table was largely calculated by the social network platform at the end of each 

day. On inspection, it contained a few errors.10 We exclude those observations with erroneous values 

from our analysis, reducing our sample to 5,349 active members with a total 33,633 of observations. 

We discuss the composition of the sample in more detail in Section 2.6 below. 

                                                        

7 There was historical data collection only for some of the membership either due to technical limitations or the simple 
lack of any data to collect (new trader and/or new account). 
8 It should be noted that the social network in question was closed in 2014 after being acquired by one of the large global 
retail aggregators (brokers). 
9 There are 7810 members in the dataset with at least one transaction recorded.  However, after excluding those for whom 
the account currency is unknown (making it impossible to derive turnover and relative positions sizes) and eliminating 
highly suspect records, the usable number drops to 5,502.  
10 Specifically, several negative account balances were discovered which appeared to be a function of a faulty pre-
membership historical data retrieval process.  Following discussions with the administrators of the network, they corrected 
for these going forward, but nothing was done with the existing dataset.  We also excluded observations where position 
size was excessively large relative to the account’s capital (even by retail forex standards) as likely including erroneous 
values in terms of account balance.  
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2.2 Returns 

Using the daily returns data noted above, we calculate two monthly return values. The first is a basic 

monthly compounded return, which is derived by sequentially multiplying the net return on 

investment (ROI) values for each active trading day during the period in question, where “active” in 

this context means having at least one open position during some point in the day, and investment is 

account balance (cash + open trade equity).  

Returni=ROI1,i x ROI2,I x…x ROIn,i  (2.1) 

Where i is a given month and n is the number of active trading days in month i. Thus, ROI1,i 

is the ROI for the first active day in month i, ROI2,i is the ROI for the second active day in month i, 

and so on. In the case of those members with multiple accounts linked to the social network 

(approximately 25%), we aggregated their activity and performance. The monthly return value for this 

group of members is derived using the USD-equivalent account balance of all active accounts in the 

period to weight each account’s return.  

The second return measure we derive is an average trade return. We use this additional metric 

in our analysis in Section 3 to specifically examine trader performance when stripping out the trade 

frequency and position size considerations which factor heavily into monthly returns; our focus of 

interest. This is calculated based on the exchange rate change for each round-turn position. In doing 

so we remove from consideration positions sizes, which factor into the overall monthly return.  

LongTrade_Return = [
Exit Price

Entry Price
]  -1 

(2.2) 

ShortTrade_Return = 1- [
Exit Price

Entry Price
] 

(2.3) 
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Given our focus is forex trading, the prices above are the exchange rates indicated at the time 

of entry and exit. Consistent with Ben-David, et al. (2018) the aggregated monthly return values are 

calculated as follows:11 

CummulativeTrade_Return𝑖= ∑ Trade_Returnt,i

ni

t=1

 

(2.4) 

Where i is a given month, t is a trade taking place in month i, ni is the number of trades 

executed in month i and Trade_Return is either LongTrade_Return or ShortTrader_Return per the 

directionality of transaction t,i. Note that for trades which carry over from one month to the next we 

count them in the month they were initiated, as the entry decision relates to our focus of interest - 

traders’ overconfidence. 

 From the cumulative return we derive and average trade return as an indication of trader skill 

(trade timing performance). 

AverageTradeReturn
i
 = 

CummulativeTrade_Returni 

Ni

 
(2.5) 

Where i is a given month and N is the number of trades executed in month i. 

This average trade return has the benefit in allowing us to focus on the trader’s skill with 

respect to their trade timing (entry and exist decision) as a major factor in determining monthly returns. 

Both return metrics generally carry the same sign, though if there is variations in trade size the two 

measures may deviate in that regard. For example, consider ten trades made in a month, nine of which 

result in 2% gains and one in a 10% loss. Thus, the average trade return for this month, as defined 

                                                        

11 Because of the small returns of these trades (the 25th to 75th percentile range of individual trade returns is from -1.20% 
to +1.16%), the lack of compounding is unlikely to create a meaningful return distortion relative to any potential 
compounding effect there is in the actual returns. Likewise, since the clear majority of trades are short holding periods 
(more than 50% held less than 12 hours), not including the influence of interest carry is also unlikely to be problematic. 
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above, is 0.8%. If all ten trades are for positions using 50% of available capital then the monthly return 

is 4% [(9 x 2% x 0.5) + (1 x -10% x 0.5)], not factoring in any compounding impact. However, if all 

the trader’s winning trades came while using 50% capital, but their single losing trade came while using 

100% capital, the monthly return falls to -1% [9 x 2% x 0.5) + (1 x -10% x 1)] while the average trade 

return remains the same. This lower monthly return is therefore not the result of a change in the 

trader’s entry/exit timing ability, but because of the decision to double the size of that transaction – a 

decision linked to overconfidence, whether one considers it in terms of the impact on monthly 

turnover or from the perspective of average RPS. On the other hand, the average trade return 

measures a trader’s skill, irrespective of the position size, which could also be impacted by 

overconfidence per Burks, et al. (2013) and Kahneman and Riepe (1998). Thus, if overconfidence 

leads to both increased trading activity and diminished trade timing performance, it could result in a 

compounded negative effect on monthly returns. 

2.3 Turnover 

Turnover is derived for each trader-month as the total USD-equivalent volume traded that month 

divided by the average USD-equivalent account balance (cash + open trade equity).  

Turnoveri= 
∑ Volumet,i

ni

t=1

AverageAccount Balance
i

    
(2.6) 

Where i is a given month, t is a transaction taking place in month i, and ni is the number of 

transactions executed in month i. We use average monthly account balance rather than the observation 

from a fixed point as it allows for the accounting of any deposits or withdrawals, interest carry, and 

the impact of trade performance on account value. Only days on which trading activity took place 

(including holding open positions) are included in the average, which allows turnover to reflect the 

account balances during periods of decision-making. 
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It should be noted that our calculation of turnover varies from Barber and Odean (2000). They 

used the value of all open positions at the start of the month as the denominator in the turnover 

equation, not total investor capital in the account as we do (since cash positions were not included in 

their dataset). In doing so Barber and Odean (2000) effectively assume all investors have the same 

proportion of their capital in the market. For example, Investors A and B in their analysis would have 

the same turnover rate if each started the month with $50,000 invested and did $50,000 in transactions. 

Both would be 1.0, even if Investor A had $100,000 in total capital and Investor B only had $20,000. 

In our calculation, Investor A’s turnover would be 0.5, while for Investor B it would be 2.5. 

2.4 Relative Position Size (RPS) 

As suggested by Ben-David, et al. (2018), changing position size is a way to evaluate prospective 

changes in risk-taking. However, due to the lack of account balance information in their dataset (as 

they do not have cash position data), the authors opt to use changes in average trade size as their 

metric. They rightly note that the addition of new capital to a trader’s account is a likely indication of 

the willingness to take additional risk, which means the opposite could also be the case. This may be 

the case, though it could also be argued that this represents a more macro level of personal confidence 

rather than the more micro trade-to-trade or period-to-period level confidence. Even if account 

funding changes did operate on a more micro level, given the fairly small size of most retail forex 

trader accounts (see Section 2.6), and the potential use of high leverage, meaningful variance in average 

trade size could be a simple function of changes in account balance related to gains and losses in the 

market. That means it may have nothing to do with variation in risk-taking. Further, changes in 

position size may not reflect changes in account balance at all, which most likely means they do reflect 

variation in risk-taking. We clarify this issue by using available account balance information, inclusive 
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of cash balances, to derive Relative Position Size (RPS). We calculate two alternative measures of RPS. 

The first measure is:  

RPSi  =  
Turnoveri

Ni

 
(2.7) 

Where Turnover is as derived from Equation (2.6) and N is the number of trades entered in 

month i. We use average account balance for the trader’s account(s) for the month during which the 

trade took place to maintain consistency with the measure of Turnover since position size is one of the 

constituents of Turnover, along with trade frequency. The second measure of RPS is the aggregation of 

the individual trades during the month as follows: 

RPSi  =  

∑
Volumet,i

Account_Balancet,i
⁄

ni
t=1

Ni

 

(2.8) 

 

Where Volume is the size of trade t in month i and Account_Balance is the account value at the 

time of trade t. Thus, we have a mean of all the individual trade RPS values rather than RPS being 

based on the aggregate values and mean account value. If we remove the division by Ni we have a 

value for Turnover derived on this same basis. This second measure avoids the criticism that the 

denominator in Equation (2.6) is a value that it not established until the end of the month and not at 

the time the investor is overconfident. Our findings are not sensitive to the alternate specifications, so 

for the sake of brevity our results in Section 3 use Turnover and RPS values derived per Equations (2.6) 

and (2.7) respectively, consistent with the existing literature.  

A limitation of RPS as an indication of a change in risk appetite – similar to the use of the 

change in trade size variability metric employed by Ben-David, et al. (2018) to judge trader perception 

of skill – is that a trader can take the exact same risk while changing position size. For example, 
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consider the situation where a trader wants to risk 1% of their capital on a trade. Where they decide 

to put their stop dictates the trade size which equates to a position with that level of risk. If the stop 

placement is a 1% market move, then position size will be 1X. If, however, the stop point is 0.5%, 

then position size is 2X. Unfortunately, we cannot fully capture this sort of thought process, however 

we do at least capture any part of it which reflects the trading of different exchange rates, and the 

change in expected market volatility that is involved as part of the risk-taking process. 

2.5 Bid/Ask Spread 

A second method of evaluating the riskiness of a traded position is the liquidity and volatility of the 

market traded. This is captured in the bid/ask (or bid/offer) spread. The link between the spread and 

both liquidity and volatility is well established in the literature (Bessembinder, 1994; Bollerslev and 

Melvin, 1994; Wang and Yau, 2000). 

We were unable to obtain the actual spread of a given exchange rate at the time of each trade. 

As a result, we use a snapshot of the spreads from a major retail forex broker during an active time of 

day as an estimate. We acknowledge that this may underestimate the spreads generally given the higher 

liquidity of that period. Using these estimates, we derive a bid/ask spread return for each trade. This 

is calculated by dividing the estimated bid/ask spread for the currency pair in question by the exchange 

rate at the time the trade was entered. Since the spread always works against the price taker, which is 

the majority of the market, we express these spread returns as negative values.  For example, if a trader 

went long EUR/USD at 1.30000 with a spread estimate at 1.5 pips (0.00015) then the spread return 

is estimated to be -0.0115% (-0.00015/1.3). We then average the estimated trade bid/ask return values 

across all trades undertaken by an individual trader in a given month on an equal weight basis. Changes 



 17 

in this value from month to month thereby provide an indication of a change in exchange rates traded, 

and by extension a shift in the liquidity/volatility of the markets traded. 

2.6 Descriptive Statistics 

Table 1, Panel A provides descriptive statistics on the trading activity and performance of our sample. 

The mean (median) monthly account balance of traders (Balance) is $14,643 ($1,511) with an average 

number of trades (NTrades) of 74 per month (median 22), and a mean (median) duration of trades 

each month of 3.63 (0.45) days.12 The mean (median) monthly account turnover (Turnover) is 498 (107) 

times the trader account balance, while the mean (median) relative position size (RPS) is 12.96 (4.90) 

times the account balance per trade. The mean (median) number of months of trading data we have 

for each trader is 6.29 (3), with a mean (median) of 8.91 (4) calendar months. Overall, our sample 

comprises mainly of small, high frequency traders who have a relatively short trading lifespan. The 

authors have seen unofficial indications that the average account lifespan in retail forex in general is 

about 180 days, in line with our sample. At present, however, this kind of data is not publicly available 

from the brokers.13 Unsurprisingly, given the negative sum nature of the market, the mean (median) 

monthly return for the traders in our sample is -5.94% (-1.83%) with an average (median) trade return, 

of -0.05% (0.0094%). Compared to a set of US-based brokers reported by Forex Magnates14 our 

traders’ performance is above average (see Panel B). On average, the US-broker figures indicate that 

                                                        

12 It should be noted that while retail forex positions are rolled forward at the end of each trading day, this does not 
produce a position closure and the opening of a new position each day in terms of the record-keeping. Thus, a trade which 
lasts five days does not count as five separate trades. 
13 An industry source indicated that this is not made public as it “is embarrassing to the brokers”, and while such 
information is reported in the case of acquisitions, it is subject to non-disclosure agreements. 
14 There is currently no public data on trader returns for the whole forex market. We could only obtain data for US-brokers 
who are required by the Commodity Futures Trading Commission (CFTC) to report quarterly indications of the fraction 
of their active accounts which finished that period with a profit. 



 18 

30.8% of accounts are profitable each quarter. The traders in our sample are profitable, on average, 

38.9% of the time. This continues to hold true when we just focus on our sub-sample of US traders.  

Panel C provides data on the traders’ demographics. Traders in our sample had the 

opportunity to disclose their experience level by indicating which category best described their years 

of prior trading - 0-1 year, 1-3 years, 3-5 years, or 5+ years; their country of origin - Unites States, 

Europe, or Asia/Pacific; and trading style – technical, fundamental, momentum and news. Not all 

traders disclosed this information. Of the 78% of members who did, 21.6% indicated 0-1 year of 

experience, 32.4% 1-3 years category; 9% listing 3-5 years, and 17% in the 5+ years category. A total 

of 32.7% of the traders are from Europe, 26.4% are from the United States, and 16.87% from 

Asia/Pacific region.  

Unsurprisingly, the most frequently identified trading style was technical analysis, consistent 

with Ivanova, et al. (2016).  It could be suggested that since high frequency traders are very biased 

towards using technical analysis for their trade decision-making, they may be “forced” to let profits 

run and cut losses via this type of approach. As such, a trend-following strategy could be profitable 

despite experiencing more losers than winners. However, this assumes that all technical analysis 

methods are trend-following in orientation, which is not correct. Second, the mean holding period for 

winning trades in our dataset is 1.16 days, as opposed to 2.08 days for losing trades. That provides 

some indication of probable disposition effect impacts, and evidence that traders are not letting 

winners run. Finally, we observe more winning trades than losing ones. 

Table 2 provides details of the currencies and currency pairs most frequently traded by our 

sample. For the purpose of comparison we also include in Table 2 the volume proportions reported 

from the spot market data in BIS (2014). Overall, we find 88.8% of our traders traded in the USD 

which is comparable with the BIS data reporting 82.6%. However, the proportion of EUR was 72.1%, 
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which is significantly different from the BIS at 36.9%. In terms of currency pairs, there is a clear 

preference among our sample of traders to trade EUR/USD, which is nearly twice that of the BIS 

figures. This may reflect a rational choice among our high frequency traders to operate in the most 

liquid, low cost (smallest bid/ask spread) currency pair. The idea traders potentially make a rational 

strategic level decision is not contrary to the idea they are irrational when it comes to individual trade 

choices as they operate in different time scopes and with different potential emotional implications.15 

We also acknowledge that there may be a selection bias with respect to the overconfidence 

level of individuals who joined the social network. For example, network members may be generally 

more or less overconfident than the average retail forex trader. Lacking general market figures, we just 

cannot know. However, because we focus is on individual changes rather than absolute levels, we do 

not believe this is a significant concern to our subsequent inferences. 

3 Results 

3.1 Univariate Analysis 

We replicate Barber and Odean (2000) to seek confirmation that turnover is associated with impaired 

trader returns in our retail forex setting. To do so, we employ the same quintile-based methodology 

to compare investor performance across relative levels of trading activity.  

In the foreign exchange market there is no market return, nor factors equivalent to the Fama-

French SMB or HML metrics. Although Pojarliev and Levich (2008) develop factors based on carry 

trade, trend, value, and volatility based strategies for their analysis of professional currency managers, 

                                                        

15 We also observe that the traders who did not indicate an experience level in their profiles exhibit a very different volume 
pattern to the rest of our sample. Further analysis finds excluding these traders does not influence our findings, as noted 
in our robustness tests in Section 3.6. below. 
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this approach is challenged by Melvin and Strand (2011) on the basis of the lack of a market portfolio 

and buy-and-hold investing in currencies. The very short time frames of the traders in our dataset is a 

dramatic example of the latter. This limits our ability to produce a comparable benchmark return 

adjustment. Barber and Odean (2000) constructed their own-performance benchmark based on the 

returns which would have been achieved had no portfolio change been made by a given investor (in 

other words, as if the investor just held the positions they had at the start of the month). Following a 

similar line of analysis is, however, not possible due to the high frequency nature of forex trading. 

Given the high proportion of day trading, we must work from a basis that most traders have no 

position to start the month. As such, if the trader in question made no trades their return would be 

zero, making our own-benchmark return zero. 

We construct the quintiles on a monthly basis16, allowing traders to change quintiles as they 

are more or less active from month to month. Thus, we capture time-varying levels of potential trader 

overconfidence. Each trader-month is assigned a quintile based on its relative ranking for that month. 

All observations are then aggregated by their quintiles to determine univariate mean values.17  

Table 3, Panel A reports the descriptive statistics for the quintiles in addition to the statistical 

variation between the least active (Q1) and the most active quintiles (Q5). Consistent with prior 

                                                        

16 We also used fixed quintile membership rather than allowing it to fluctuate on a monthly basis.  This was accomplished 
by aggregating each member’s data across all their active months and placing them in a quintile based on their ranking 
relative to all members. Doing so, we hold membership classification fixed across all observation periods, allowing for 
analysis on the basis of the traders’ general behaviour rather than activity which may be reflective of monthly vagaries.  
However, the pattern of returns derived from these alternative quintiles remained unchanged. 
17 Unfortunately due to lack of data availability we were unable to pursue additional analysis with respect to (i) the actual 
level of risk traders take at position entry based on where they place their stop loss (assuming they use one) and therefore 
measuring overconfidence at the time of trade entry; and (ii) whether traders alter positions sizes once trades are entered 
– for example, “doubling down” if the initial market move was against them. 
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literature, we find higher levels of turnover equate to worse trading performance. The difference in 

returns between the quintiles is significant. The fifth quintile has returns 1671bp lower than those of 

the first quintile (-17.76% vs -1.04%). However, given the skewness in the data, this is partially 

reflective of a wide dispersion of values in the highest category. As our returns include spread costs, 

they align with the net returns outlined in Barber and Odean (2000). 

We also observe that average account balance declines noticeably across the turnover quintiles 

- from $18,331 for Quintile 1 down to $5,300 in Quintile 5 - indicating the smallest accounts trade 

more actively. Trade frequency (NTrades) and RPS both rise over the quintiles. These observations are 

not surprising, but call into question the idea that higher turnover is simply a reflection of a shorter 

time frame effect if we expect more frequent, shorter term trading to mean relatively smaller positions. 

Panels B and C in Table 3 report the quintile analysis for the turnover components: trade 

frequency (NTrades) and relative position size (RPS) respectively. Overall for both NTrades and RPS 

as we move from Quintile 1 to Quintile 5 returns decline significantly, similar to the Turnover quintiles.  

However, we observe in the case of NTrades that Balance rises across the quintiles. The mean 

of the account balance with respect to NTrades (Panel B) for those in Quintile 1 is $6,866, rising to 

$32,363 for Quintile 5. If one argues, consistent with prior findings (Agnew, 2006; Li, et al., 2016), 

that those individuals with larger accounts are likely to be more sophisticated traders, then we have 

some evidence to suggest informed traders are more frequent operators in the market. This in turn 

may suggest that trade frequency is not a strong indicator of overconfidence. Although mean monthly 

turnover does rise across the trade-based quintiles (from 142 to 1454), it is clearly driven by increased 

trade frequency as average RPS falls from 18.74 in Quintile 1 to 6.72 in Quintile 5. 

In Panel C the quintile returns for RPS are very similar to those from Turnover, moving from -

0.42% in Quintile 1 to -17.04% in Quintile 5. The change from least to most active is only 5bp smaller 
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for RPS than for Turnover. By comparison, when looking at the NTrades quintiles in Panel B we see 

them start at -4.00% in Quintile 1, then progress steadily up to -8.89% in Quintile 5. The implication 

seems to be that trading relatively larger positions has more of a negative impact on monthly returns 

than trading more frequently. 

This analysis appears to confirm that excessive trading – likely motivated by overconfidence 

– tends to lead to diminished returns, and that trading bigger positions seems to more negatively 

influence returns than trading more frequently. However, there is an inherent bias in our dataset. The 

monthly return findings are consistent with a negative sum game (reflected in the average trade returns 

reported in Table 1). Thus, if you trade more, then on average you increase your expected losses. This 

is different from the equity market where you can still have a positive expected return even if you 

increase your turnover, as observed by Barber and Odean (2000). That being the case, observing more 

trading activity leading to higher losses in our context does not provide any indication as to whether 

these higher losses are simply a function of a mathematical expectation or whether there is more 

granularity involved. Specifically, are traders making better or worse trade timing decisions? If 

increased activity indicates overconfident trading, and overconfident traders make worse trade timing 

decisions (Burks, et al., 2013; Kahneman and Riepe, 1998), we would expect to see a reduction in not 

just overall monthly returns, but also average-trade returns across the quintiles, since changes in 

monthly returns are not just a function of the basic mathematics of increased trading activity. It is 

therefore useful to examine the quintiles in that context. 

Analysis of the quintiles with respect to average trade returns is reported in Panel D of Table 

3. We find in the case of both Turnover and NTrades trade returns increase as we move from the least 

active to the most active quintiles, potentially contradicting the findings in Panels A and B. However, 

the average trade return never turns positive. For example, the Quintile 5 average trade return loss for 
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NTrades from Panel D is less than a tenth that of Quintile 1 (-0.00013 vs -0.00138) while the mean 

NTrades for Quintile 1 in Panel B is 2, while for Quintile 5 it is 281. Traders on average are making 

more than 100 times as many trades in Quintile 5 than in Quintile 1, more than offsetting the dramatic 

improvement in average trade returns. The result is larger monthly return losses for those in Quintile 

5 over those in Quintile 1 even though they seem to exhibit better trade timing ability. In the case of 

RPS, average trade returns decline, but not significantly. Thus, while it may be true that increased 

trading activity reflects overconfidence, as it still leads to decreased monthly returns, there is a clear 

difference in what that means when discussing trade frequency verses RPS. 

We therefore undertook a two-way sorts on the two turnover components - specifically sorting 

on trades quintiles, then RPS, and also the reverse. Panel E of Table 3 reports the results for monthly 

returns, while Panel F reports the results for average trade returns. Overall, the results in Panel E 

confirm the prior analysis from Panels B and C above; changes in RPS quintiles tend to have a greater 

influence on monthly returns than changes in NTrades quintiles. Similarly, the results in Panel F 

support our observations with respect to average trade returns. Most notably, when the primary sort 

is on RPS we consistently find the pattern of trade returns showing the lowest in NTrades Quintile 1 

and the highest (markedly) in NTrades Quintile 5. But when the primary sort is on NTrades there 

appears to be no strong pattern with respect to the RPS quintiles. To seek to better understand of the 

diverging influence of trade frequency and RPS on returns – both monthly and trade – we undertake 

a multivariate analysis. 

3.2 Multivariate Analysis 

To gain a deeper understanding of the relationship between trade frequency, RPS, and returns we 

construct the following two multivariate models controlling for trader characteristics: 
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Monthly_Returnj,m =α + β1NTradesj,m + β2RPSj,m +β3Balancej,m + β4Month_Countj,m + 

β5Durationj,m +β6Spreadj,m + β7Month F.E. + β8Trader F.E. + εj,m 

          (3.1)  

Average_Trade_Returnj,m =α + β1NTradesj,m + β2RPSj,m +β3Balancej,m + β4Month_Countj,m + 

β5Durationj,m +β6Spreadj,m + β7Month F.E. + β8Trader F.E. + εj,m 

          (3.2)  

Where j is the individual trader and m is the calendar month. NTrades represents the number 

of trades initiated by trader j in month m and RPS represents the average RPS for the positions initiated 

by trader j in month m. If either component proxies for overconfidence we would expect β1 and/or 

β2, to be negative. 

Both models control for investor characteristics. Following prior findings that sophisticated 

investors are less prone to behavioral biases like overconfidence (Feng and Seasholes, 2005; Gervais 

and Odean, 2001; Nicolosi, et al., 2009; Seru, et al., 2010) we control for traders’ sophistication level 

using investor capital (Balance) as a proxy. Where Balance is the average account balance of trader j in 

month m as described previously in Section 2.3. Regulators and others often use investor capital as a 

way to differentiate individuals, as it is assumed those with more wealth are likely to be more financially 

savvy than those with less (Agnew, 2006; Ekholm and Pasternack, 2008; Li, et al., 2016). We therefore 

expect β3 to be positive. 

To control for the incremental experience gained by traders since joining the network, or 

reduced experience for months prior, we also include a month count variable (Month_Count). 

Month_Count is the number of months the investor has been a member of the social network, starting 

at 0 the month the investor joined, with negative values for entries prior to membership. For example, 

if a trader signed-up in January 2010, and traded in April 2010 the Month_Count value would be 3. We 
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find that pre-memberships entries represent a minority (13%) of the total observations. We expect 

Month_Count to have a positive relationship to returns on the basis that skill increases with experience.18 

To control for any variation in the individual’s trading time frame, which may be indicative of 

a shift in strategy (or variation in disposition effect influence), we include Duration, the mean holding 

period (in days) of trades done by trader j in month m. We also include a proxy for the risk attitude of 

an individual trader, at least as expressed by their liquidity and volatility preference - Spread (the mean 

estimated bid/ask spread return of trades done by trader j in month m). As noted in Section 2.5, this 

variable captures the composition of the currency pairs traded. The narrower the average spread (the 

less negative the value of Spread), the more liquid the markets traded. 

We include both month fixed effects to account for any general market conditions and trader 

fixed effects to capture the trader’s individual time-invariant characteristics (such as reported 

experience level and trading style). Robust standard errors are clustered at the individual trader level. 

Given the positive skewness of Turnover, NTrades, RPS, Balance and Duration variables, a log 

transformation to those values is applied. All continuous variables, aside from Spread and Month_Count, 

are winsorized at the top and bottom 1%. Spread and Month_Count are not winsorized due to their 

values being well constrained.19  

Table 4 reports the correlations among the monthly trade returns, average trade returns and 

trade characteristics. Consistent with the univariate analysis, both NTrades and RPS are negatively 

correlated to Monthly_Returns, at -0.07 and -0.23 respectively. Also consistent with the prior findings, 

                                                        

18 An alternative specification for Month_Count was also investigated e.g. the count starts as soon as the trader starts trading 
(e.g. enters the data), not necessarily when they joined the network. Our results are not sensitive to this alternative 
specification. 
19 Further, in the case of Spread, the highest spread return values (least negative) are for EUR/USD, which is the most 
frequently traded currency pair by far.  
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NTrades is positively correlated (0.08) to Average_Trade_Return. The correlations, however, seem to 

show a somewhat stronger negative correlation (-0.05) between RPS and Average_Trade_Return than is 

suggested by the quintile analysis above. The contrary correlations for NTrades and RPS with respect 

to Average_Trade_Returns in part explains the large difference in the negative correlations between the 

two activity metrics with respect to Monthly_Returns. If we consider monthly return to be approximately 

the product of NTrades x RPS x Average_Trade_Return, adjusted for compounding, we would expect 

NTrades and RPS to have similar correlations, which clearly is not the case. 

NTrades is positively correlated with Balance, suggesting larger traders trade more actively, and 

negatively correlated to Duration, indicating that they hold their position for a shorter time. RPS is 

negatively correlated with Balance indicating that more sophisticated traders trade relatively smaller 

positions. RPS is also negatively correlated with Duration which is consistent with nominal risk-taking 

- the expected volatility of an exchange rates is higher the longer you are in a position, so for a given 

level of desired account risk you would put on a smaller trade (lower RPS). RPS is positively correlated 

with Spread indicating traders are trading relatively larger positions in relatively less volatile currency 

pairs (recalling that higher Spread means less negative spread return values). 

Of note, Month_Count is negatively correlated with both NTrades and RPS. This is consistent  

with traders learning to be less overconfident, to the extent that these two activity metrics capture that 

bias. The subject of learning is explored further in Section 3.3. 

Table 5 reports the analysis for the two measures of returns; Columns (1) – (3) when the 

dependent variable is monthly returns and Columns (4) - (6) when the dependent variable is average 

trade returns. Specifically, Column (3)  reports the estimates for Equation (3.1), with Columns (1) and 
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(2) reporting NTrades and RPS singularly respectively for a stepped progression.20 The coefficients in 

the full model (Column (3)) for both NTrades and RPS are significantly negative at -244.4 and -426.7 

respectively. Given the coefficients are expressed in terms of basis points, this indicates a significant 

impact on monthly returns from changes in the two activity metrics. The magnitude of the coefficient 

on RPS indiciates a significantly greater negative impact (75% larger) on Monthly_Return than NTrades, 

given equivalent changes. 21 As noted above, we would not expect to observe such a large difference 

on monthly returns from these two activity metrics, which suggests a compounded overconfidence 

effect may be present. For this reason, moving forward we focus on analysis with respect to trade 

rather than monthly returns. 

 Column (6) of Table 5 reports the estimates for Equation (3.2), with Columns (4) and (5) 

reporting NTrades and RPS singularly respectively for a stepped progression. Again, all the coefficients 

are expressed in terms of basis points. In Columns (4) and (6), the coefficient on NTrades is positive 

and highly significant, indicating a 1-point increase in the log of the average monthly number of trades 

results in a 2.45 basis point increase in the monthly average trade returns; or alternatively an increase 

of one standard deviation in monthly trade frequency increases average trade returns by approximately 

2.64%. The opposite is true for RPS. In Columns (5) and (6) the coefficient on RPS is negative and 

highly significant. The coefficient on RPS in Column (5) indicates a 1-point increase in the log of the 

average monthly relative position size results in a 1.205 decrease in the monthly average trade returns; 

                                                        

20 Due to collinearity, one of the network member traders is dropped in the regression derivation, reducing our total trader-
month observation count by four. 
21  In unreported results, we also ran the Monthly_Return regression including Average_Trade_Return as an additional  
independent variable. As expected, the coefficient on Average_Trade_Return is positive and highly significant. At the same 
time, its inclusion results in the coefficient on NTrades becoming slightly more negative and for RPS becoming slightly less 
negative; with the coefficient on RPS indicating 40% more influence on Monthly_Return. We retain the presentation of the 
results without Average_Trade_Return to maintain easy comparability across the tests and because the secondary finding 
does not alter the broader observation that RPS has a markedly larger impact than NTrades.  



 28 

or alternatively an increase of one standard deviation in monthly average RPS reduces average trade 

returns by approximately 4.66%. While the coefficients for NTrades across the two specifications are 

similar, this is not the case for RPS, with a -1.341bp value for the full-model (Column (6)). This may 

not appear to be economically significant when considering average trade returns of -0.0501%, but 

when factoring in a mean (median) RPS of 12.96 (4.90) and monthly trade count of 74 (22) potentially 

we have a very large impact on monthly returns. Thus, this provides further evidence that there is a 

clear divergence between RPS and trade frequency with respect to their relationships to trade timing 

performance, in line with the univariate analysis in Section 3.1. As such there is strong evidence to 

support our hypothesis that RPS is a better indication of potentially overconfident trading than is trade 

frequency. These findings also suggest that trade frequency may not be a particularly good indicator 

of overconfidence, which is consistent with the conflicting evidence found in the prior literature.  

Among the control variables, when monthly returns is the dependent variable the coefficient 

estimates for Balance. is positive and significant, suggesting sophistication, as measured by account 

capital, is beneficial to overall trader performance, consistent with the literature (Agnew, 2006; Ekholm 

and Pasternack, 2008; Li, et al., 2016). When the dependent is trade returns the coefficient is negative, 

but not significant. Duration is negative and significant for both monthly and trade returns, indicating 

trading in shorter time horizons results in better returns, all else being equal. Spread is positive and 

generally insignificant.  

The final control variable, Month_Count, is positive but not significant with respect to trade 

returns, although it is negative and significant with respect to monthly returns. The explanation for 

this is unclear. It could reflect mean reversion given that, as outlined in Section 2.6, our sample appears 

to be above average in performance. However, we would also expect an effect on the trade returns as 

well, which we do not find. 
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We conducted two additional tests which are untabulated for brevity. In the first we replaced  

NTrades and RPS with Turnover in Equations (3.1) and (3.2). In line with the univariate findings the 

coefficient values for Turnover were strongly negative in the former case, and strongly positive in the 

latter. Second, we re-ran Equation (3.2) excluding trader fixed effects but included demographic 

indicators of trader experience, geographic region, and trading style. The results continued to hold. 

3.3 The experience factor 

Prior research supports the view that behavioral biases such as overconfidence can be overcome 

through experience (Gervais and Odean, 2001; Nicolosi, et al., 2009; Seru, et al., 2010). Therefore, if, 

as we argue, RPS is a better indicator of investor overconfidence, we would expect to observe a 

stronger negative association between RPS and trade timing for the inexperienced traders relative to 

experienced traders who are less likely to suffer from such biases. 

To examine this, we re-run Equation 3.2, but divide our sample into two experience categories: 

traders who identified themselves as inexperienced (0-3 years of experience) and those who reported 

as being experienced (3+ years of experience). We exclude those traders who did not disclose their 

trading experience. Table 6 reports the estimates for Equation (3.2) based on these two groups. We 

find for the inexperienced traders (Column (1)), RPS is negative and highly significant, while for the 

experienced traders (Column (2)) RPS, although negative, is not significant. Irrespective of experience 

level, NTrades, is positive and significant. Thus, our findings are consistent with the assertion that 

increases in RPS are indicative of behaviorally motivated activity as our experienced traders appear to 

be able overcome such biases. 

With respect to Month_Count, in the case of the inexperienced group, the coefficient value is 

positive and significant. In contrast, the Month_Count coefficient for the more experienced traders is 
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negative and significant. This potentially indicates mean reversion with respect to average trade 

returns. However, the fact that the coefficient value is much more positive for the less experienced 

group than it is negative for the more experienced group suggests a possible learning aspect.   

3.4 Examining possible survivorship with respect to position size 

The link between RPS and experience level suggests that more experienced traders trade relatively 

smaller positions because they have developed the ability to reduce the influence of behavioral biases 

on their decision-making. However, a challenge could be made as to the question of causality. For 

example, it could be that traders become experienced because they trade smaller than others, and that 

lower RPS reduces the traders’ odds of dropping out of the market. In other words, those who trade 

smaller survive to become more experienced traders.  

So, do investors trade smaller because they become experienced and learn that less is better? 

Or do investors who trade smaller simply last long enough to become experienced? Are we talking 

about a learned behavior or a survivorship bias? To determine the directionality of this linkage we 

examine the RPS data with respect to trader experience by constructing the following model: 

RPSj,m =α + β1NTradesj,m +β2Balancej,m + β3Month_Countj,m + β4Durationj,m +β5Spreadj,m +  

β6Month F.E. + β7Trader F.E. + εj,m 

          (3.3)  

All the variables used in Equation (3.3) are as previously defined. Month_Count is the variable 

of interest. If there is no link between experience and RPS, then Month_Count should not be significant 

for the less experienced traders. 

Table 7 reports the estimates for the Equation (3.3). For the full sample of traders (Column 

(1)) the coefficient on Month_Count is positive but insignificant, indicating that for the broad group of 

traders time has no meaningful impact on the relative sizes of the positions they take in their trading. 
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For the inexperienced trader sample (Column (2)), however, Month_Count is negative (-0.013) and 

statistically significant, consistent with the idea that inexperienced traders learn to trade smaller.  

Among the control variables in Columns (1) and (2) the coefficient estimates for Balance, Duration, 

Spread, and NTrades are all highly significant in both cases. Those with larger accounts tend to trade 

smaller, as do those who trade in longer time frames, while those who trade more liquid currency pairs 

(less negative Spread) and who trade more frequently trade relatively larger.  

For the purposes of examining whether prior patterns persist, we ran the above analysis for 

both Turnover and NTrades using similar models. The unreported results indicate that newer traders 

don’t just learn to reduce RPS over time, they also reduce trade frequency. This is consistent with the 

Mahani and Bernhardt (2007) suggestion that newer traders start trading overly frequently, then learn 

over time to trim back. Unfortunately, our findings do not offer evidence in support of the idea that 

newer traders combine high frequency with smaller trades in the learning process – at least not in 

broad terms. Not surprisingly, given the reduction in RPS and trade frequency over time for less 

experienced traders, we also observe that turnover falls as one remains in the market. 

It is worth noting that while the focus of this paper is on retail traders, we likely have at least 

some professionals in our dataset. They cannot be directly identified, but we can probably safely 

assume they are among those with the largest account balances. We would expect professionals to 

exhibit less influence on performance from behavioral effects, and we see evidence for this in Table 

4. It shows a -0.58 correlation between Balance and RPS, which is supported by the negative 

coefficients for Balance in the Table 7 results. We also re-ran Equation 3.2 (Table 5, Column 4) on just 

the observations where Balance is in the top 5% (1681 trader-months, 311 members), assuming this 

probably captures any professional traders in our sample. In unreported results, we find neither 
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NTrades nor RPS is significant, which fits the narrative that institutional investors don’t have the same 

kind of influences from behavioral biases. 

3.5 What kind of overconfidence do these tests capture? 

Glaser and Weber (2009) assert that the two primary categories of investor overconfidence – 

miscalibration (underestimate risk) and misattribution (better-than-average) – have different sources 

and expressions. Both lead to increased trading activity, but only the latter also motivates increased 

risk-taking. They provide evidence in favor of prior market returns driving miscalibration-linked 

overconfidence, while portfolio returns influence misattribution-driven overconfidence. The latter is 

supported by Ben-David, et al. (2018). 

As there are no market returns in foreign exchange, we cannot specifically test for 

miscalibration-based overconfidence. However, to test for the misattribution variety we can modify 

Equation (3.3) above by adding lagged returns and extending it to cover trade frequency and currency 

pair selection. 

RPSj,m =α + β1Lagged_Returnj,m + β2NTradesj,m +β3Balancej,m + β4Month_Countj,m + 

β5Durationj,m +β6Spreadj,m +  β7Month F.E. + β8Trader F.E. + εj,m 

          (3.4)  

NTradesj,m =α + β1Lagged_Returnj,m + β2 RPSj,m +β3Balancej,m + β4Month_Countj,m + 

β5Durationj,m +β6Spreadj,m +  β7Month F.E. + β8Trader F.E. + εj,m 

          (3.5)  

Spreadj,m =α + β1Lagged_Returnj,m + β2 RPSj,m  +   β3NTradesj,m +β4Balancej,m + 

β5Month_Countj,m + β6Durationj,m + β7Month F.E. + β8Trader F.E. + εj,m 

          (3.6)  

Lagged_Return, our variable of interest, is a winsorized value (top and bottom 1%) of the prior 

month’s net return. All other variables are as previously defined. Given the findings of Glaser and 

Weber (2009) and Ben-David, et al. (2018), to observe changes in misattribution-based overconfidence 
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we expect to see the measures of trading activity (NTrades and RPS) increase with increased lagged 

returns. Similarly, to the extent that Spread captures the level of market volatility to which the trader is 

exposing themselves, we should see that value decline (become more negative indicating trading in 

currency pairs with larger spreads). As noted by Ben-David, et al. (2018) overconfident traders would 

be less likely to see prior losses as indicative of their own skill. As such, if there is any negative reaction 

in trading activity or risk taking after losses, it should be of a lesser magnitude than in the reverse case. 

Table 8 presents the results of the regressions based on the three models above. We divide the 

sample into observations where the prior month’s return is positive and those where it is negative. 

Our results are consistent with the above conjecture. The coefficient on Lagged_Return for RPS and 

NTrades is positive and significant (0.585 and 0.270 respectively) when prior monthly returns are 

positive, and negative and significant (-0.465 and -0.189 respectively) when prior return is negative. 

This is strong evidence in support of changes in RPS – the only one of the metrics to be negatively 

linked with trade timing performance – being reflective of changes in misattribution-based 

overconfidence. 

It is worth noting, however, that while negative prior returns do produce a drop in trading 

activity that is smaller in magnitude than the increase seen following positive prior returns, it’s certainly 

nowhere near the zero change the literature predicts. We therefore do not see traders taking the 

attitude that winning months are due to their own skill (increased confidence) and losing months are 

just bad luck (no change in confidence). As such, it suggests there is some kind of learning effect at 

work. This fits in with the findings from Section 3.4 where we observed that traders learn to trade 

relatively smaller over time. 

A learning aspect is further made by the coefficient for Spread in the positive prior return case 

actually being less negative than it is positive when prior return is negative (-0.000008 and 0.000014). 
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The implication of this result is traders are quicker to either narrow their set of traded currency pairs 

or shift toward higher liquidity/lower volatility pairs after a loss than they are to go in the other 

direction after a gain. Although, Ben-David, et al. (2018) have “uninformative feedback” as the focal 

point with respect to prior returns, they too show indications of learning in their results. 

There is one additional interesting observation to be made from Table 8. With respect to RPS, 

the coefficient for Month_Count is positive and significant in the case of positive prior returns, while it 

is neither in the negative return case. In line with prior literature it points to traders becoming 

increasingly overconfident over time when they have winning months, while experience has no impact 

on RPS following losing ones. Consider, however, the general pattern of trader performance as 

outlined in Section 2.6 in which the traders are only profitable in about 40% of their months on 

average. That means they are taking losses more often than making profits – even more so for 

inexperienced traders, as we would expect – which explains the findings reported in Section 3.4 above 

of newer traders reducing RPS over time.  

3.6 Additional Analysis 

We observed in Table 2 that for those traders who did not provide any indication of their experience 

levels there was a notably different pattern of trading with respect to their currency pair selections. To 

assess the sensitivity of our results to alternative samples, we explored whether this sub-sample group 

of traders influences the findings at all. In unreported analysis, we find our results are not sensitive to 

their exclusion.  

As noted in Section 2.1, the data set comprises traders who became part of a social network. 

The collection process included a mechanism for gathering pre-membership data from member 

accounts (where available) identical to the collection of on-going data. To examine the potential 



 35 

influence of network membership on our findings we re-ran all our prior analysis including a 

membership dummy variable for each monthly observation period to indicate whether the trader was 

in the network at the point of the trades or not. Our results are not sensitive to this specification and 

provide some evidence that network membership does not significantly change trader behavior.   

We further examined whether our results are influenced by the degree to which traders drop 

out of our sample. Specifically, there may be a group of traders in our sample who perhaps are drawn 

into the retail forex market by aggressive marketing techniques with a “get rich quick” type of 

approach who quickly suffer excessive losses, or realize they lack the skill to trade the market profitably 

and drop out. Unfortunately, the data does not provide a clear date for when traders ceased trading 

and exit the network. We can only infer it from the date of a trader’s last recorded transaction.  

We therefore attempt to identify traders who remain “active” and those who appear to be 

“quitters”.  Specifically, we focus on those traders who joined the network prior to the final 12 months 

of our study period and identify traders who were still actively trading in the final six months of the 

sample (673 member, 11,989 trader-months) as “active” traders, and those traders who were not active 

in the last six months as “quitter” traders (3,734 members, 18,497 trader-months). We acknowledge 

that it is possible that traders we identify as “quitter” did not leave the forex market all together, but 

merely stopped trading in the account(s) linked to the network.  

In the case of ‘active’ traders, they have a mean (median) of 17.82 (16) months of trading 

activity and 26.56 (27) calendar months in the dataset, while for the ‘quitters’ it is 4.95 (3) and 7.02 (4) 

respectively. In terms of experience, traders with 0-3 years of experience dominate the ‘quitter’ group 

compared to those with 3+ years of experience (2,393 vs. 873). However, this is only slightly more 

imbalanced than the full sample ratio (73% vs. 68%). For the ‘active’ group, again the less experienced 
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traders dominate at 59% of the total (323 vs 232).  Overall, both groups are reasonably representative 

of the full sample. 

Table 9 reports the estimates for Equation (3.2) in Columns (1) and (2) and for Equation (3.3) 

in Columns (3) and (4). We find the results for both sub-samples - ‘active’ traders and ‘quitter’ traders 

reported in Column (1) and (2) respectively - are consistent with our main analysis. RPS is negative 

and significant and NTrades is positive and significant. Neither group influences our conclusions. With 

respect to RPS, the Month_Count coefficients for both the ‘active’ and ‘quitter’ groups are negative and 

significant, consistent with the analysis for the inexperienced group. One might expect to see the 

‘quitter’ group showing less learning with respect to changing RPS compared to those that stayed 

active, however that does not appear to be the case. Quite the opposite, actually. This may reflect that 

the ‘quitter’ group have a higher general RPS level. Their mean (median) RPS of 15.61 (6.53) compares 

to 9.96 (3.63) for the ‘active’ group. They may simply not have been in the dataset long enough for 

their RPS levels to drop to be more in line. 

4 Conclusion 

The extant literature with respect to overconfidence and its influence on investors has focused on the 

activity metrics of account turnover and trade frequency in drawing a link between the behavioral bias 

and excessive trading. We, however, hypothesize that relative position size, a contributor of turnover, 

is a more direct indicator of overconfidence given trade frequency is subject to conflicting influences. 

Our findings support this hypothesis. While it may be that increased overconfidence does drive more 

frequent trading, we actually find that higher trade frequency is associated with improved trade timing 

performance, as is higher turnover. The opposite is true for increased relative position size, making 

the latter the more meaningful metric to observe.  
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With respect to looking for investor confidence, we acknowledge that lacking a direct 

indication at the time of trade decision-making (or perhaps prior to that in the strategy conception 

phase) we cannot be sure what we see in their actions is in fact overconfidence driven. All we can do 

is observe likely effects. In this paper we follow the “overconfidence leads to excessive market 

participation” suggestion of the literature (beginning with Odean (1999)) and find increased relative 

positions size is part of that over-trading. Moreover, our analysis indicates mean positions size is 

heavily influenced by factors we control for in our trade timing performance model. The fraction 

unaccounted for is likely to include at least some behavioral element. The finding that relative position 

size is negatively linked to trade timing performance and also linked with prior trading returns is 

evidence in favor of those hypotheses. We do not contend that poor trade timing is only the result of 

overconfidence. There are many factors which could contribute. Rather, we point to the fact that 

reduced trade timing performance goes together with over-trading, consistent with a likely behaviorally 

bias. 

Our findings contribute to the literature in three primary ways. First, we extend the research 

into overconfidence among financial markets participants with respect to the impact of overconfident 

trading in that it doesn't just lead to excessive activity, but also to impaired trade timing. This presents 

an interesting new direction for future research. Can we identify the actual factors at work driving that 

impaired performance? For example, do traders become more prone to disposition effect influences 

on their trading? That has potential implications on risk management applications and prospective 

regulatory considerations. 

Second, we expand the research into the link between experience and investor sophistication 

on overconfidence and other behavioral biases, especially with respect to how experience relates to 

learning to overcome such biases. Related to that, we also extend the literature with respect to the 
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paths investors take in the learning process, with a connection to the type of overconfidence suffered 

– in this case primarily misattribution. This has implications for investor education efforts, and even 

potentially training at the professional level. 

Finally, we further the research in to the performance and behavior of individual speculators, 

especially those operating in a high frequency environment, and specifically those operating in the 

retail forex market where the research is still in its infancy. Position size, in particular, has until now 

received only a limited amount of attention. Additionally, aside from the confidence aspects, our 

findings address some of the questions related to the differences between those who drop out of the 

market and those who carry on longer-term. 
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Table 1: Trader Descriptive Statistics 

Panel A: Trader Monthly Activity and Performance 
Sample of 5,349 retail aggregator based foreign exchange traders for the period July 2009 to April 2013 comprising 33,633 trader-months 
of observations. All variables are based on aggregated values for traders with multiple accounts (where applicable). Balance is the average 
daily aggregated account balance for a trader in month m.  Duration is the average position-holding period (open to close) for round-
turn trades initiated in a month m, measured in days. Spread is the mean bid/ask spread of trades initiated in a given month m expressed 
as a return based on the exchange rate at which each trade was entered (always negative). Turnover is calculated as total volume traded in 
month m divided by the average daily balance. NTrades is the number of completed round-turn positions initiated in month m. Relative 
Position Size is the average size of the trades initiated in month m relative to the account balance, expressed as a multiple of the account 
balance. Monthly Return is derived using a weighting based on capital balances for included accounts. Returns are based on the 
compounded daily returns calculated by the social network platform. Average Trade Return is the mean of the returns of trades done in 
month m assuming no leverage use, thus accounting only for the exchange rate movement. 

 Mean Std. Dev. 25th Q Median 75th Q 

Balance (USD Equivalent) $14,643  $87,760  $342  $1,511  $5,858  

NTrades 74 220 6 22 66 

Duration (Days) 3.63 20.54 0.11 0.45 1.68 

Turnover (X:1) 498 3259 26 107 376 

RPS (X:1) 12.96 22.57 1.51 4.90 14.14 

Traded Months in Sample 6.29 7.21 1 3 8 

Calendar Months in Sample 8.91 10.21 1 4 13 

Monthly Return -0.0594 0.3109 -0.1549 -0.0183 0.0357 

Average Trade Return -0.000501 0.008402 -0.000827 -0.000094 0.000550 

Spread -0.000146 0.000076 -0.000174 -0.000136 -0.000094 

 

Panel B: Comparison of Member Quarterly Profitability Percentages to a Broader FX Market 
Distribution of quarterly member account profitability rates compared to those reported by US brokers as mandated by the CFTC.  
Profitability rates are based on accounts with at least one transaction in the given quarter. Source: Forex Magnates 

US Broker Reported by CFTC Sample  

Quarter # of Accounts Profitable % # of Accounts Profitable % Diff. 

Q4 2009 92,024 25,943 28.2% 226 75 33.2% 5.0% 

Q1 2010 81,289 21,854 26.9% 1,592 565 35.5% 8.6% 

Q2 2010 106,650 28,176 26.4% 2,592 868 33.5% 7.1% 

Q3 2010 100,320 29,026 28.9% 2,835 889 31.4% 2.4% 

Q4 2010 108,361 31,242 28.8% 2,636 915 34.7% 5.9% 

Q1 2011 108,513 34,620 31.9% 2,561 867 33.9% 1.9% 

Q2 2011 106,945 28,765 26.9% 2,320 877 37.8% 10.9% 

Q3 2011 108,490 32,512 30.0% 2,302 950 41.3% 11.3% 

Q4 2011 97,206 33,953 34.9% 2,106 970 46.1% 11.1% 

Q1 2012 97,281 32,370 33.3% 2,170 896 41.3% 8.0% 

Q2 2012 93,687 29,884 31.9% 2,062 901 43.7% 11.8% 

Q3 2012 101,020 32,731 32.4% 1,872 788 42.1% 9.7% 

Q4 2012 89,567 32,131 35.9% 1,752 786 44.9% 9.0% 

Q1 2013 99,207 34,918 35.2% 1,785 799 44.8% 9.6% 

  Average: 30.8%  Average: 38.9% 8.0% 
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Panel C: Experience, Residence and Trading styles  
The experience, geographic region, and trading style classifications are obtained from trader profile indications.  

 Members 
Trader- 
Months   Members 

Trader- 
Months 

Total 5,349  33,633   Trading Style:   

Experience Level:    Technical Analysis 2,847  20,060  

0-1 years of experience 1,157 6,422  Fundamental Anal. 207  1,478  

1-3 years of experience 1,731  12,076   Momentum 229  1,657  

3-5 years of experience 481  3,606   News 75  534  

5+ years of experience 907  7,184   None of the above 510  3,226  

No disclosure of experience 1,073  4,345   No disclosure of style 1,481  6,678  

       

Geographical residence:       

United States 1,413  11,208      

Europe 1,749  11,058      

Asia/Pacific 902  5,601      

No Entry 1,285  5,766      
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Table 2: Currency Selection and Trading Volumes of Retail Foreign Exchange Traders 

Panel A: Proportion of traded volume by currency 
Sample of 5,349 retail aggregator based foreign exchange traders for the period July 2009 to April 2013. The BIS rows provide comparative data for spot trading from BIS 
(2014).  

 USD EUR GBP JPY AUD CHF CAD 

Full Sample (n = 2,662,844) 88.8% 72.1% 17.0% 7.3% 5.1% 4.7% 2.5% 

No disclosure of experience 97.1% 91.7% 3.6% 3.6% 1.6% 1.1% 0.6% 
0-1 years of experience (n = 332,802) 82.5% 50.3% 31.6% 12.4% 9.5% 7.0% 3.3% 
1-3 years of experience (n = 806,312) 81.1% 53.5% 28.0% 13.5% 8.2% 6.5% 5.6% 
3-5 years of experience (n = 327,633) 75.2% 55.2% 27.1% 11.2% 12.3% 7.0% 2.8% 
5+ years of experience (n = 833,663) 83.3% 56.2% 28.9% 8.9% 6.9% 8.7% 4.0% 

BIS 82.6% 36.9% 11.1% 29.9% 9.6% 4.1% 4.5% 

 
Panel B: Proportion of traded volume by currency pair 
There is no separate reporting for GBP/JPY in BIS (2014), so it is omitted here in Panel B. 

 EUR/USD GBP/USD AUD/USD USD/JPY EUR/JPY USD/CHF USD/CAD GBP/JPY EUR/GBP EUR/CHF 

Full Sample  65.8% 13.3% 2.9% 2.3% 2.5% 1.6% 1.5% 1.5% 1.0% 2.1% 

No disclosure of experience 90.2% 2.8% 0.9% 2.0% 0.6% 0.4% 0.4% 0.5% 0.2% 0.5% 
0-1 years of experience  39.9% 24.1% 7.0% 3.9% 3.7% 3.2% 2.2% 3.2% 2.7% 2.4% 
1-3 years of experience  43.5% 20.1% 5.3% 3.3% 4.7% 3.0% 3.4% 4.0% 1.4% 1.9% 
3-5 years of experience  45.5% 20.0% 3.3% 1.6% 5.0% 1.2% 2.2% 3.7% 0.6% 3.2% 
5+ years of experience  45.2% 23.8% 4.6% 2.2% 3.7% 3.0% 2.4% 1.3% 1.8% 4.5% 

BIS 24.3% 10.4% 10.3% 21.3% 4.9% 3.0% 5.6%   2.6% 1.6% 
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Table 3: Trader Quintiles Analysis 

Sample of 5,349 retail aggregator based foreign exchange traders for the period July 2009 to April 2013 comprising 33,633 trader-months 
of observations (one trader-month being the performance of one individual in a single month). All variables are as previously defined.  
Q5-Q1 Returns indicates the return differentials between the most active (Q5) and least active (Q1) quintiles. *** represent significance 
levels at 99% or better based on a two-sample T-test (two-tailed). All variables are as previously defined in Table 1.  

 
Panel A: Trader Monthly Return Quintiles Based on Turnover 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 

Turnover 8 42 117 313 2016 

Balance $18,331 $18,764 $20,543 $10,241 $5,300 

RPS 2.73 8.08 11.80 15.30 26.99 

NTrades 10 30 60 86 183 

Monthly Return -0.0104 -0.0132 -0.0334 -0.0627 -0.1776 

Q5 - Q1 Returns -0.1671***     

 
Panel B: Trader Monthly Return Quintiles Based on Trade Frequency 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 

NTrades 2 9 24 56 281 

Balance $6,866 $9,500 $11,075 $13,866 $32,363 

Turnover 42 142 304 573 1454 

RPS 18.74 15.47 12.97 10.50 6.72 

Monthly Return -0.0400 -0.0417 -0.0561 -0.0713 -0.0889 

Q5 - Q1 Returns -0.0489***     

 
Panel C: Trader Monthly Return Quintiles Based on Relative Position Size 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 

RPS 0.63 2.21 5.32 12.10 44.69 

Balance $42,650 $17,746 $7,039 $4,258 $1,387 

Turnover 69 189 301 545 1389 

NTrades 141 89 58 47 33 

Monthly Return -0.0042 -0.0201 -0.0351 -0.0676 -0.1704 

Q5 - Q1 Returns -0.1662***     

 
Panel D: Average Trade Return Quintiles Based on Turnover, Trade Frequency, and Relative Position 
Size 

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 

Turnover -0.00116 -0.00050 -0.00038 -0.00024 -0.00024 

Q5 - Q1 Returns 0.00092***     

NTrades -0.00138 -0.00059 -0.00017 -0.00015 -0.00013 

Q5 - Q1 Returns 0.00125***     

RPS -0.00049 -0.00050 -0.00036 -0.00046 -0.00069 

Q5 - Q1 Returns -0.00019     
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Panel E: Monthly Return 2-Way Sort Quintiles Based on Trade Frequency and Relative Position Size 
 

 NTrades Q1 (NTr Q1)  RPS Q1 

 RPS Q1 RPS Q2 RPS Q3 RPS Q4 RPS Q5  NTr Q1 NTr Q2 NTr Q3 NTr Q4 NTr Q5 

Obs 1285 1173 1204 1473 2095 Obs 1285 1009 1037 1240 2178 

RPS 1 2 5 12 51 NTrades 2 9 24 57 386 

Return -0.56% -0.97% -2.09% -2.93% -9.65% Return -0.56% -0.90% -0.47% 0.55% -0.65% 

 NTrades Q2 (NTr Q2)  RPS Q2 

 RPS Q1 RPS Q2 RPS Q3 RPS Q4 RPS Q5  NTr Q1 NTr Q2 NTr Q3 NTr Q4 NTr Q5 

Obs 1009 1109 1314 1478 1584 Obs 1173 1109 1242 1510 1693 

RPS 1 2 5 12 46 NTrades 2 10 24 57 279 

Return -0.89% -0.58% -0.89% -2.73% -12.82% Return -0.97% -0.58% -1.04% -1.70% -4.65% 

 NTrades Q3 (NTr Q3)  RPS Q3 

 RPS Q1 RPS Q2 RPS Q3 RPS Q4 RPS Q5  NTr Q1 NTr Q2 NTr Q3 NTr Q4 NTr Q5 

Obs 1037 1242 1479 1450 1354 Obs 1204 1314 1479 1516 1211 

RPS 1 2 5 1203 41 NTrades 3 9 24 56 210 

Return -0.47% -1.04% -2.35% -4.22% -18.79% Return -2.09% -0.89% -2.35% -4.03% -8.50% 

 NTrades Q4 (NTr Q4)  RPS Q4 

 RPS Q1 RPS Q2 RPS Q3 RPS Q4 RPS Q5  NTr Q1 NTr Q2 NTr Q3 NTr Q4 NTr Q5 

Obs 1240 1510 1516 1322 1087 Obs 1473 1478 1450 1322 1003 

RPS 1 2 5 12 39 NTrades 2 9 23 56 192 

Return 0.55% -1.70% -4.03% -9.87% -24.43% Return -2.93% -2.73% -4.22% -9.87% -17.91% 

 NTrades Q5 (NTr Q5)  RPS Q5 

 RPS Q1 RPS Q2 RPS Q3 RPS Q4 RPS Q5  NTr Q1 NTr Q2 NTr Q3 NTr Q4 NTr Q5 

Obs 2178 1693 1211 1003 587 Obs 2095 1584 1354 1087 587 

RPS 1 2 5 12 37 NTrades 2 9 23 54 195 

Return -0.65% -4.65% -8.51% -17.91% -37.11% Return -9.65% -12.82% -18.79% -24.43% -37.11% 

 
 
Panel F: Average Trade Return 2-Way Sort Quintiles on Trade Frequency and Relative Position Size 
 

 NTrades Q1 (NTr Q1)  RPS Q1 

 RPS Q1 RPS Q2 RPS Q3 RPS Q4 RPS Q5  NTr Q1 NTr Q2 NTr Q3 NTr Q4 NTr Q5 

Obs 1285 1173 1204 1473 2095 Obs 1285 1009 1037 1240 2178 

RPS 1 2 5 12 51 NTrades 2 9 24 57 386 

Avg. Rtn -0.124% -0.206% -0.118% -0.110% -0.141% Avg. Rtn -0.124% -0.133% 0.003% -0.017% -0.010% 

 NTrades Q2 (NTr Q2)  RPS Q2 

 RPS Q1 RPS Q2 RPS Q3 RPS Q4 RPS Q5  NTr Q1 NTr Q2 NTr Q3 NTr Q4 NTr Q5 

Obs 1009 1109 1314 1478 1584 Obs 1173 1109 1242 1510 1693 

RPS 1 2 5 12 46 NTrades 2 10 24 57 279 

Avg. Rtn -0.133% -0.044% -0.032% -0.052% -0.051% Avg. Rtn -0.206% -0.044% -0.015% -0.002% -0.016% 

 NTrades Q3 (NTr Q3)  RPS Q3 

 RPS Q1 RPS Q2 RPS Q3 RPS Q4 RPS Q5  NTr Q1 NTr Q2 NTr Q3 NTr Q4 NTr Q5 

Obs 1037 1242 1479 1450 1354 Obs 1204 1314 1479 1516 1211 

RPS 1 2 5 1203 41 NTrades 3 9 24 56 210 

Avg. Rtn 0.003% -0.015% -0.017% -0.017% -0.036% Avg. Rtn -0.118% -0.032% -0.017% -0.012% -0.013% 

 NTrades Q4 (NTr Q4)  RPS Q4 

 RPS Q1 RPS Q2 RPS Q3 RPS Q4 RPS Q5  NTr Q1 NTr Q2 NTr Q3 NTr Q4 NTr Q5 

Obs 1240 1510 1516 1322 1087 Obs 1473 1478 1450 1322 1003 

RPS 1 2 5 12 39 NTrades 2 9 23 56 192 

Avg. Rtn -0.017% -0.002% -0.012% -0.023% -0.024% Avg. Rtn -0.110% -0.052% -0.017% -0.023% -0.016% 

 NTrades Q5 (NTr Q5)  RPS Q5 

 RPS Q1 RPS Q2 RPS Q3 RPS Q4 RPS Q5  NTr Q1 NTr Q2 NTr Q3 NTr Q4 NTr Q5 

Obs 2178 1693 1211 1003 587 Obs 2095 1584 1354 1087 587 

RPS 1 2 5 12 37 NTrades 2 9 23 54 195 

Avg.Rtn -0.010% -0.016% -0.013% -0.016% -0.018% Avg. Rtn -0.141% -0.051% -0.036% -0.024% -0.018% 
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Table 4: Correlation Matrix of Return Metrics and Control Variables 

Sample of 5,349 retail aggregator based foreign exchange traders for the period July 2009 to April 2013 comprising 33,633 trader-months of observations (one trader-month being the 
performance of one individual in a single month). Month_Count is the number of calendar months since the individual joined the network (negative for pre-membership). Lagged_Return is 
the trader’s monthly return from their prior month of activity. All other variables are as previously defined. A log transformation to Balance, Duration, Turnover, RPS, and NTrades has been 
applied. All variables, aside from Spread and Month_Count, have been winsorized at the top and bottom 1%. P-values presented in parentheses. 

 

Monthly 
Return 

Avg. Trade 
Return Turnover NTrades RPS Balance Duration Spread 

Month 
Count 

Monthly Return 1.00         

          

Average_Trade_Return 0.27 1.00        

 (0.00)         

Turnover -0.23 0.03 1.00       

 (0.00) (0.00)        

NTrades -0.07 0.08 0.65 1.00      

 (0.00) (0.00) (0.00)       

RPS -0.23 -0.05 0.60 -0.22 1.00     

 (0.00) (0.00) (0.00) (0.00)      

Balance 0.17 0.04 -0.25 0.25 -0.58 1.00    

 (0.00) (0.55) (0.00) (0.00) (0.00)     

Duration 0.04 -0.08 -0.28 -0.04 -0.32 0.15 1.00   

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)    

Spread -0.00 0.02 0.12 0.02 0.14 -0.03 -0.24 1.00  

 (0.83) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)   

Month_Count -0.01 0.00 -0.08 -0.05 -0.04 -0.08 0.09 -0.05 1.00 

 (0.04) (0.49) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)  

Lagged_Return 0.14 0.04 -0.14 0.02 -0.20 0.20 0.09 0.00 -0.02 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.80) (0.00) 
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Table 5: Influence of Trade Frequency and Relative Position Size  
on Monthly Returns and Monthly Average Trade Returns 

 

Monthly_Returnj,m =α + β1NTradesj,m + β2RPSj,m + β3Balancej,m + β4Month_Countj,m + β5Durationj,m +β6Spreadj,m + + 
β7Month F.E. + β8Trader F.E + εj,m 

(3.1) 
Average_Trade_Returnj,m =α + β1NTradesj,m + β2RPSj,m + β3Balancej,m + β4Month_Countj,m + β5Durationj,m 

+β6Spreadj,m + + β7Month F.E. + β8Trader F.E + εj,m 

(3.2) 
 
The table reports the ordinary least squares estimation results for the period July 2009 to April 2013. The dependent variables, 
Monthly_Return and Average_Trade_Return, are multiplied by 10,000 so all coefficients can be interpreted in terms of basis 
points. Coefficient values are thus expressed such that, for example, the coefficient of -254.8 on NTrades in the first column 
indicates a 1-point decrease in the log of the number of monthly trades (NTrades) equates to a 254.8 basis point decrease in 
monthly returns. Heterokedasticity-robust standard errors are clustered by trader. All random variables exclusive of Spread 
and Month_Count are winsorized at 1% top and bottom. t-statistics are reported in parentheses. *, ** and *** represent 
significance levels of 90%, 95% and 99% respectively. All variable definitions are as reported in Table 1. Our variables of 
interest are NTrades and RPS.  

Dependent Variable Monthly Returns Average Trade Returns  

  (1) (2) (3) (4) (5) (6) 

NTrades -254.8***  -244.4*** 2.454***  2.487*** 

 (-15.00)  (-14.88) (7.73)  (7.81) 

RPS  -440.1*** -426.7***  -1.205*** -1.341*** 

  (-16.46) (-16.45)  (-2.95) (-3.30) 

Balance 339.9*** 12.7 104.7*** -0.033 0.163 -0.773* 

 (12.01) (0.42) (3.43) (-0.09) (0.41) (-1.87) 

Month Count -34.9*** 33.5*** -34.9*** 0.051 0.036 0.051 

 (-14.43) (-14.31) (-14.97) (1.23) (0.89) (1.24) 

Duration -103.3*** -123.0*** -137.5*** -2.952*** -3.206*** -3.059*** 

 (-8.23) (-9.72) (-10.91) (-8.86) (-9.34) (-9.20) 

Spread 111,095.7 591,731.5* 551,412.3* 6058.000 7031.824 7442.184 

 (0.36) (1.92) (1.82) (0.60) (0.69) (0.73) 

Intercept -1,954.7*** 250.9 419.8 -12.449 -3.265 -4.984 

 (-3.94) (0.44) (0.79) (-1.00) (-0.26) (-0.39) 

Month Fixed Effects Yes Yes Yes Yes Yes Yes 

Trader Fixed Effects Yes Yes Yes Yes Yes Yes 

Traders 5,348 5,348 5,348 5,348 5,348 5,348 

N 33,629 33,629 33,629 33,629 33,629 33,629 

Adjusted R2 15.86% 16.22% 17.21% 8.48% 8.08% 8.53% 
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Table 6: Trading Activity Influence on Monthly Average Trade Returns  
Based on Trader Experience Level 

 

Average_Trade_Returnj,m =α + β1NTradesj,m + β2RPSj,m + β3Balancej,m + β4Durationj,m +β5Spreadj,m + β6Month_Countj,m 
+ β7Month F.E. + β8Trader F.E + εj,m 

(3.2) 
The table reports the ordinary least squares estimation results for the period July 2009 to April 2013.  The Experience category 
splits are based on indications from each individual (those with no entry are excluded). The dependent variable, 
Average_Trade_Return, is multiplied by 10,000 so all coefficients can be interpreted in terms of basis points. Coefficient values 
are thus expressed such that, for example, a 1-point increase in the log of the number of monthly trades (NTrades) results in 
a 3.07 basis point increase in mean trade return see Column (1) below. Heterokedasticity-robust standard errors are clustered 
by trader. All random variables exclusive of Spread and Month_Count are winsorized at 1% top and bottom. t-statitstics are 
reported in parentheses. *, ** and *** represent significance levels of 90%, 95% and 99% respectively.. All variable definitions 
are as reported in Table 1. Our variables of interest are NTrades and RPS.  

 

Dependent Variable Average_Trade_Return 

 0-3 years experience 3+ years experience 

 (1) (2) 

NTrades 3.069*** 1. 427** 

 (7.21) (2.35) 

RPS -1.363** -1.193 

 (-2.36) (-1.59) 

Balance -0.764 -0.735 

 (-1.26) (-1.09) 

Month_Count 0.264*** -0.174** 

 (2.84) (-2.27) 

Duration -3.693*** -2.388*** 

 (-7.85) (-4.14) 

Spread 2057.311 4320.772 

 (0.16) (0.22) 

Intercept 4.173 -18.003 

 (0.48) (-0.74) 

Month Fixed Effects Yes Yes 

Trader Fixed Effects Yes Yes 

Traders 2,877 1,388 

N 18,495 10,789 

Adjusted R2 7.83% 8.44% 
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Table 7: Experience Influence on Monthly Mean Relative Position Size 

RPSj,m =α + β1MonthCountj,m + β2NTradesj,m + β3Balancej,m + β4Durationj,m + β5Spreadj,m + β6Month F.E. + β8Trader 
F.E + εj,m 

(3.3) 
The table reports the ordinary least squares estimation results for the period July 2009 to April 2013. Coefficient values are 
expressed in terms of the log of RPS such that, for example, a 1-point increase in the Month_Count for inexperienced traders 
results in a 0.013 decline in the log of average trade leverage, as indicated in Colum (2). The Experience category split is based 
on indications from each individual (those with no entry are excluded). Heterokedasticity-robust standard errors are clustered 
by trader. All random variables exclusive of Spread and Month_Count are winsorized at 1% top and bottom. t-statistics are 
reported in parentheses. *, ** and *** represent significance levels of 90%, 95% and 99% respectively. All variable definitions 
are as reported in Table 1. Our variable of interest is Month_Count. 

 

Test 
Full Sample 

(1) 

0-3 years 
experience 

(2) 

Month_Count 0.000 -0.013*** 

 (0.03) (-6.37) 

Trades 0.024*** 0.035*** 

 (3.06) (3.59) 

Balance -0.551*** -0.575*** 

 (-38.86) (-31.79) 

Duration -0.080*** -0.077*** 

 (-12.73) (-9.85) 

Spread 1031.868*** 1186.213*** 

 (5.58) (6.60) 

Intercept 5.565*** 6.553*** 

 (16.92) (11.29) 

Monthly Fixed Effects Yes Yes 

Trader Fixed Effects Yes Yes 

Traders 5,348 2,877 

N 33,629 18,495 

Adjusted R2 78.43% 79.17% 
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Table 8: Influence of Prior Returns on Monthly Mean Relative Position Size, Trade Frequency, and Currency Pair Selection 

RPSj,m =α + β1Lagged_Returnj,m + β2NTradesj,m +β3Balancej,m + β4Month_Countj,m + β5Durationj,m +β6Spreadj,m +  β7Month F.E. + β8Trader F.E. + εj,m 

(3.4) 
NTradesj,m =α + β1Lagged_Returnj,m + β2RPSj,m +β3Balancej,m + β4Month_Countj,m + β5Durationj,m +β6Spreadj,m + β7Month F.E. + β8Trader F.E. + εj,m 

(3.5) 
Spreadj,m =α + β1Lagged_Returnj,m + β2RPSj,m + β3NTradesj,m +β4Balancej,m + β5Month_Countj,m + β6Durationj,m + β7Month F.E. + β8Trader F.E. + εj,m 

(3.6) 
The table reports the ordinary least squares estimation results for the period July 2009 to April 2013. Coefficient values are expressed in terms of logs of the dependent variables such that, 
for example, a 1-point increase in the Lagged_Return when a trader was profitable in their prior month of activity results in a 0.585 increase in the log of average trader RPS per Column (1). 
Heterokedasticity-robust standard errors are clustered by trader. All random variables exclusive of Spread and Month_Count are winsorized at 1% top and bottom. t-statistics are reported in 
parentheses. *, ** and *** represent significance levels of 90%, 95% and 99% respectively. All variable definitions are as reported in Table 1. Our variable of interest is Lagged_Return. 

 

 Prior Month Profitable Prior Month Unprofitable 

Test 
RPS 
(1) 

NTrades 
(2) 

Spread 
(3) 

RPS 
(4) 

NTrades 
(5) 

Spread 
(6) 

Lagged_Return 0.585*** 0.270*** -0.079** -0.465*** -0.189*** 0.135*** 

 (8.59) (3.21) (-1.96) (-9.01) (-2.77) (3.45) 
Balance -0.481*** 0.303*** 0.021 -0.563*** 0.395*** 0.050*** 

 (-19.96) (10.51) (1.50) (-32.82) (17.65) (3.69) 
Duration -0.105*** -0.078*** -0.039*** -0.077*** -0.085*** -0.048*** 

 (-9.43) (-4.34) (-3.07) (-9.14) (-6.63) (-7.89) 
Month_Count 0.014*** -0.025*** 0.002* 0.002 -0.045*** -0.016*** 

 (5.72) (-9.43) (1.82) (1.34) (-22.63) (-11.52) 
RPS  -0.076*** 0.059***  0.079*** 0.069*** 

  (-2.64) (3.44)  (3.35) (4.91) 
NTrades -0.037***  -0.006 0.035***  -0.010 

 (-2.62)  (-0.62) (3.33)  (-1.43) 
Spread 1101.435*** -232.357   1103.365*** -359.436  
 (3.26) (-0.61)   (5.12) (-1.38)  
Intercept 5.669*** 1.342 -1.969*** 5.301*** 0.906* -2.311*** 

 (7.69) (1.64) (-11.07) (15.28) (1.83) (-10.56) 
Monthly Fixed 
Effects 

Yes Yes Yes Yes Yes Yes 
Trader Fixed Effects Yes Yes Yes Yes Yes Yes 
Traders 2,959 2,959 2,959 3,553 3,553 3,553 
N 11,421 11,421 11,421 16,862 16,862 16,862 
Adjusted R2 79.73% 79.15% 64.31% 56.37% 54.62% 44.73% 
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Table 9: Sensitivity of results to ‘active’ traders vs. ‘quitter’ traders 

 

Average_Trade_Returnj, m =α + β1NTradesj,m + β2RPSj,m + β3Balancej,m + β4Durationj,m +β5Spreadj,m + β6Month_Countj, 

m + β7Month F.E. + β8Trader F.E + εj,m 

 (3.2) 
 

RPSj,m =α + β1Month_Countj,m + β2NTradesj,m + β3Balancej,m + β4Durationj,m + β5Spreadj,m + β6Month F.E. + β8Trader 
F.E + εj,m 

(3.3) 
The table reports the ordinary least squares estimation results for the period July 2009 to April 2013. The sample includes 
traders who did their first trade at least 12 months prior to the end of the sample period. It is then divided between those 
who still had activity in the final six months (“Active”) and those who did not (“Quitter”). The dependent variable for 
Columns (1) and (2), Average_Trade_Return, has been multiplied by 10,000 so that coefficients are expressed in terms of basis 
points. For example, a 1-point increase in NTrades results in a 1.62bp increase in the trade return for traders who remained 
active through the end of the sample period per Column (1). In the RPS results (Columns (3) and (4)), the coefficients are 
expressed in terms of the log of RPS. Heterokedasticity-robust standard errors are clustered by trader. All random variables 
exclusive of Spread and Month_Count are winsorized at 1% top and bottom. t-statistics are reported in parentheses. *, ** and 
*** represent significance levels of 90%, 95% and 99% respectively. All variable definitions are as reported in Table 1. Our 
variables of interest for Columns (1) and (2) are NTrades and RPS, and Month_Count for Columns (3) and (4). 

 

Dependent Variable Average_Trade_Return RPS 

 

Active 
(1) 

Quitter 
(2) 

Active 
(3) 

Quitter 
(4) 

NTrades 1.615*** 3.239*** 0.026** 0.024** 

 (3.15) (7.22) (1.96) (2.30) 

RPS -1.534** -1.168**   

 (-2.56) (-1.99)   

Month_Count -0. 027 -0.098* -0.005*** -0.015*** 

 (-0.55) (-1.95) (-4.38) (10.60) 

Balance -0.988 -0.617 -0.567*** -0.538*** 

 (-1.63) (-1.03) (-26.16) (-28.60) 

Duration -2.117*** -3.969*** -0.103*** -0.068*** 

 (-3.85) (-9.08) (-10.00) (-8.29) 

Spread 7165.129 5948.682 813.101*** 1343.764*** 

 (0. 46) (0.46) (3.80) (4.17) 

Intercept -21.676 0.104 5.411*** 6.046*** 

 (-0.97) (0.01) (13.17) (12.72) 

Month Fixed Effects Yes Yes Yes Yes 

Trader Fixed Effects Yes Yes Yes Yes 

Traders 673 3,734 673 3,734 

N 11,989 18,497 11,989 18,497 

Adjusted R2 5.04% 10.71% 77.03% 78.00% 

 

 


