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Abstract—Many urban infrastructures contain complex dy-
namics embedded in spatial networks. Monitoring using Internet-
of-Things (IoT) sensors is essential for ensuring safe operations.
An open challenge is given an existing sensor network, where
best to collect the minimum amount of representative data.
Here, we consider an urban underground water distribution
network (WDN) and the problem of contamination detection.
Existing topology-based approaches link complex network (e.g.
Laplacian spectra) to optimal sensing selections, but neglects the
underpinning fluid dynamics. Alternative data-driven approaches
such as compressed sensing (CS) offer limited data reduction.

In this work, we introduce a principal component analysis
based Graph Fourier Transform (PCA-GFT) method, which can
recover the full networked signal from a dynamic subset of
sensors. Specifically, at each time step, we are able to predict
which sensors are needed for the next time step. We do so, by
exploiting the spatial-time correlations of the WDN dynamics, as
well as predicting the sensor set needed using sparse coefficients
in the transformed domain. As such, we are able to significantly
reduce the number of samples compared with CS approaches.
The drawback lies in the computational complexity of a data
collection point (DCP) updating the PCA-GFT operator at each
time-step. The experimental results show that, on average, with
nearly 40% of the sensors reported, the proposed PCA-GFT
method is able to fully recover the networked dynamics.

Index Terms—infrastructure monitoring, network dynamics,
complex networks, graph sampling, water distribution network

I. INTRODUCTION

Urban infrastructure monitoring is challenging when there
are networked dynamics, causing cascade effects. Examples
include traffic jams, electricity outages, and contamination
in the water supply. Cascade effects are caused by both the
coupling dynamic between junctions/nodes, as well as the
overall topology of the network (e.g. multi-scale feedback
loops) [1], [2]. As such it is critical to monitor networked
infrastructures using sensors. Indeed, this is a critical part of
the wider Digital Twin initiative [3]. However, given a sensor
network, it is undesirable for every sensor to transmit data all
the time, which can lead to poor sensor battery life and low
radio spectral efficiency.

Here, we consider an underground urban water distribution
network (WDN), where transmitting digital data is challenging
yet essential [4]. In particular, we focus on the threat of con-
tamination [5] from a variety of contamination run-off events
[6] (see Fig. 1). To monitor this, installations of an Internet-
of-Things (IoT) monitoring sensor in each junction have been
studied. One main challenge lies in how to extend the life-span
of the sensors, due to the difficulty in repairing and recharging
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Fig. 1. Simulation of contamination in an urban WDN: (a) initial contam-
ination nodes (red), subsequent spread nodes (purple), and uncontaminated
nodes (blue); and (b-d) spread process at later points in time.

and sensors underground. This raises the necessity of how
to select minimum number of sensors to detect and report
their data to a data collection point (DCP), in which total
information can be recovered without hindering the detection
accuracy.

A. Literature Review

Aside from human engineering experience based sensor
selection, there are two main approaches to optimising sensor
selection.

The first group resorts to the graph spectrum analysis [7]–
[10], aiming to identify the most influential points on the
base of the topological structure of the networks (e.g. via the
Laplacian operator [11]–[13]). However, these approaches do
not consider the underlying fluid dynamics and assume that
the topology dominates. As such, it is important to create an
approach that considers both the complex network topology
and the contamination signals. Indeed, works that map network
topology with explicit dynamics have been progressed in
[1] for 1-dimensional ordinary differential equation (ODE)
dynamics. However, the challenge with WDNs is that the
underlying Navier-Stokes partial differential equation (PDE)
dynamics with dynamic Reynolds numbers is high dimen-
sional and difficult to approximate using mean field theory
[1]. As such, an analysis of the optimal sampling points as



a function of both the network topology and the dynamic
equations is not possible.

The second group focuses on the data-structure instead of
the network topology, including the data-driven graph sam-
pling method [14], and the compressed sensing (CS) schemes
[15]–[18]. In our previous study [14], a data-driven graph
sampling method has been proposed, premised on a prior
knowledge of the networked data. However, this method may
malfunction when such prior knowledge cannot characterize
the real signal. In [15]–[17], three CS approaches have been
proposed, aiming to recover the equivalently transformed
sparse-representation of the WDN signal. However, their used
Discrete Cosine Transform (DCT) matrix [18] is only useful
when the networked signals are closely correlated (e.g., the
pressure data in one pipe). When it comes to address the data
that are less correlated (e.g., the contaminant data indexed on
different junctions), the DCT matrix cannot sparsely represent
such networked data, which leads to the infeasibility of the CS
framework (illustrated in Fig. 4). Indeed, the sequential CS that
adapts the transformation matrix via the principal component
analysis (PCA) has been proposed in [18], which is capable of
sparsely representing the contaminant data in WDN. However,
the unknown positions (subscripts) of the sparse coefficients
limits its ability to reduce the number of samples (which is
explained by the Theorem 1, and via Fig. 4).

B. Contributions and Organization

In this work, we propose a principal component analysis
based Graph Fourier Transform (PCA-GFT) method in order
to sampling and recovering the networked dynamical signals
in WDNs. This approach belongs to the broad family of
graph signal processing [9], [10], which states that, if a vector
signal of size N × 1 has γ < N nonzero coefficients when
transformed by a matrix F−1, then only a subset of nodes
can be sampled for full signal recovery. In the context of the
time-varying networked signals, the challenge is converted to
how to find such F−1 by using only the previous recovered
signals. Compared with the PCA-CS in [18], and the adaptive
CS, the proposed PCA-GFT method can predict the subscripts
of the nonzero coefficients of the transformed current signal,
therefore can reduce the number of reported sensors [9]. In
comparison with our previously proposed data-driven approach
in [14], the new PCA-GFT method avoids the usages of the
prior knowledge of the networked data, making it possible
to deal with the case in which the prior knowledge cannot
characterize the real signals.

The rest of paper is structured as follows. In Section II, we
describe the nonlinear dynamical WDN system model, and the
aim of this paper. In Section III, we elaborate the proposed
PCA-GFT method. In Section IV, the distinction between the
new proposed PCA-GFT, the previously proposed data-driven
approach in [14], and the PCA-CS in [18] is clarified. Section
V illustrates the recovery performance. We finally conclude
the paper in Section VI.
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Fig. 2. Illustration of the urban water distribution network (WDN), and
the proposed principal component analysis -based Graph Fourier Transform
(PCA-GFT) method, which aims to sample and recover the networked signals.
The selected monitoring sensors on the nodes (junctions, reservoirs, or tanks)
report their data (xk)Sk to the data collection point (DCP). The DCP recovers
the networked signal as x̂k via the collected data and the GFT operator F−1

that is constructed by the previous recovery results.

II. MODEL FORMULATION

The configuration of the WDN can be abstracted as a
static graph, denoted as G(V,W), where V = {1, 2, · · · , N}
represents the indices of the total N ∈ N+ nodes, and W
gives the weighted adjacency matrix, of which the positive
element wn,m > 0 accounts for the link from vertex m to
vertex n. Here the nodes can be the junctions, the reservoirs,
or the tanks, and the links can be pumps or the pipes [19]. On
each node of G(V,W), a sensor is deployed in order to (i)
sense the information of the interest, (ii) communicate with the
data collection point (DCP). The purpose of the DCP is to (i)
recover the time-varying networked signal from the reported
data, and (ii) broadcast to sensors whether they should sense
and report their data. The illustration of the WDN is provided
in Fig. 2.

The information of the interest is the chemical pollu-
tants propagated over the network, which is characterized
by a discrete-time matrix data of size N × K, i.e., X =
[x1,x2, · · · ,xK ]. Here, N = |V| gives the number of vertices
of G(V,W), and K ∈ N+ is the total discrete time steps.
Hereby, each column xk, 1 ≤ k ≤ K contains the data of N
nodes of discrete time-step k. Illustrations of the contamination
spread process and the contaminant data on two nodes are
provided in Fig. 1 and Fig. 2.

As such, the aim of this paper is to recover the real-time
signal xk via the samples from a sampling vertex set, denoted
as Sk ∈ V .

III. PRINCIPAL COMPONENT ANALYSIS BASED GRAPH
SAMPLING

In this section, we elaborate our PCA-GFT method, which
aims to sample and recover the networked signal xk of WDN
without the prior knowledge of the signal. The main idea is
to (i) construct a GFT operator that can sparsely represent
the current signal, and (ii) adopt the graph sampling theory
to select the sensors for report, and recover the data from the



reported samples at DCP. Before we start, we give a brief
overview of the graph sampling theory.

Definition 1: [9] A graph signal x is called γ ∈ N -support
with respect to the GFT operator F−1, if x̃ = F−1x has only
γ non-zero elements with known positions 1.

Definition 2: [9] The set of γ-support graph signals with
respect to F−1 in RN is a subspace denoted by BL(R,F−1),
if the subscripts of their non-zeros elements are in R with
R ⊂ V and |R| = γ.

Theorem 1: [9], [20], [21] For any x ∈ BL(R,F−1), there
exists a subset S ⊂ V such that

x̂ = FVR · (FTSR · FSR)−1 · FTSR · xS .

Such S satisfies

rank (FSR) = |R|,

where FSR (FVR) denotes the sub-matrix of F with rows
selected via subscripts in S (V) and columns selected via
subscripts in R, and xS denotes the sampled vector of x by
selecting subscripts in S.

Theorem 1 indicates the existence of a minimum number of
selected sensors, which equals to the number of nonzeros in
x̃ = F−1 ·x (i.e., |S| = |R| = γ). By contrast, the compressed
sensing based algorithms require at least O(γ log(N/γ)) sen-
sors for full recovery. This advantage of reduction is due to
(i) the design of ther GFT operator F−1 that ensures the γ-
support, and (ii) more importantly, the known subscripts of
the nonzeros of x̃ = F−1 · x.

A. PCA based GFT Operator

Given the concept of graph sampling theory, the GFT
operator F−1 should ensure two properties. First, xk should be
γ-support with respect to F−1. Second, the subscripts of the
nonzero coefficients in x̃k = F−1xk should be predictable via
the previous recovery results. These two constitute the reason
to resort the PCA technique, as it has the ability to sparsely
represent a networked signal [18].

1) Construction of PCA-GFT operator: For each time-
step k, we construct the GFT operator F−1 via the previous
recoveries. Let denote the recovery as x̂k−L, · · · , x̂k−1. The
mean and the covariance matrix are computed respectively as:

x̄ =
1

L

L∑
l=1

x̂k−l, (1)

Σ =
1

L

L∑
l=1

(x̂k−l − x̄) · (x̂k−l − x̄)T , (2)

where L is the lag accounting for the correlations, i.e., xk =
f(xk−1, · · · ,xk−L). The effect of L on recovery performance

1Different from the concept of γ-sparse vector in compressed sensing
where the positions of the non-zero elements are unknown, in the case of
graph sampling theory, we know the positions (subscripts) of these non-zero
elements. Hence, the size of the selected sensor set |S| can be smaller as
opposed to that used by CS, which is explained after Theorem 1

is analyzed in Section V. Then, the qr-factorization is used to
derive the GFT operator, i.e.,

Σ = Q ·R, (3)

F−1 = Q−1. (4)

2) Sparsity Analysis: After the derivation of the GFT
operator F−1 in Eqs. (1)-(4), we here prove that F−1 satisfies
two properties (i.e., the γ < N -support property of xk, and
predictability of nonzeros’ subscripts of x̃k).

Given the spatial-time correlation of the signal, we express
the current signal xk as:

xk =

L∑
l=1

cl · x̂k−l + rk, (5)

where cl represents the corresponding coefficients, and rk
denotes the residue component. By subtracting x̄ on both sides,
Eq. (5) is computed as:

xk − x̄ =

L∑
l=1

cl · (x̂k−l − x̄) +

(
L∑
l=1

cl − 1

)
x̄ + rk (6)

According to Eq. (2), x̂k−l− x̄ can be computed via the linear
combination of the columns of Σk. As such, we re-write xk−x̄
as:

xk − x̄ = Σk · β + η · x̄ + rk, (7)

where β = [β1, · · · , βN ]T gives the coefficient vector, and
η =

∑L
l=1 cl − 1. The transformation of xk − x̄ with respect

to F−1 is
x̃k − ˜̄x = F−1 · (xk − x̄)

= Q−1 ·Σk · β + η ·Q−1 · x̄ + Q−1 · rk
= R · β + η ·Q−1 · x̄︸ ︷︷ ︸

predictable subscripts of nonzeros

+Q−1 · rk.
(8)

In Eq. (8), it is intuitive that the subscripts of the non-zeros
in η ·Q−1 · x̄ can be obtained via direct computation. Then,
the vector R ·β has at most the first (γ ≤ L)-row of non-zero
elements. This is because R is an upper-triangular matrix with
rank γ = rank(R) = rank(Σ) = rank(

∑L
l=1(x̂k−l − x̄) ·

(x̂k−l − x̄)T ) ≤
∑L
l=1 rank((x̂k−l − x̄) · (x̂k−l − x̄)T ) = L.

These two indicate the sparsity (i.e., γ ≤ L) and the
predictability of nonzeros’ subscripts of x̃k. Further, let denote
the set of such nonzeros’ subscripts as Rk|k−1. According to
Eq. (8), Rk|k−1 can be predicted via the transformed signals
of x̂k−l − x̄, and the nonzeros’ subscripts of Q−1 · x̄, i.e.,

Rk|k−1

=

{
n|

L⋃
l=1

(
F−1 · (x̂k−l − x̄)

)
n
6= 0

⋃(
F−1 · x̄

)
n
6= 0

}
,

(9)
where (·)n denotes the nth element. According to Theorem 1,
this Rk|k−1 maps to a set of selected sensors Sk|k−1, which
can be used to recover the component of xk−x̄, i.e., Σβ+ηx̄
in Eq. (7). For the residual component, i.e., rk in Eq. (7),
an extra set of sensors, denoted as S∗ will be selected for
monitoring. We next study how to determine Sk|k−1 and S∗.



B. Selection of Sampling Node Set

Once we derive the GFT operator F−1 from Eqs. (1)-(4),
we design the selection of the sensors for report. Let denote
Sk as the sensor set for report that ensures the full recovery.
In accordance with Eq. (8), Sk should consist of two subsets,
i.e.,

Sk = Sk|k−1
⋃
S∗, (10)

where Sk|k−1 is the predicted sensor set that is derived
from Rk|k−1, and S∗ accounts for the extra sensor set for
monitoring the residue component rk in Eq. (5).

The determination of Sk|k−1 is given by Theorem 1, i.e.,

rank(FSk|k−1Rk|k−1
) = |Rk|k−1|. (11)

Given Rk|k−1 from Eq. (9), we compute Sk|k−1 by finding
the |Rk|k−1| smallest singulars of FSk|k−1Rk|k−1

, i.e.,

Sk|k−1 = argmax
Sk|k−1⊂V

σmin
(
FSk|k−1Rk|k−1

)
, (12)

where σmin(·) denotes the minimum singular of the matrix.
Based on Eq. (12), the recursive greedy algorithm can be
implemented by finding and adding the row, i.e., Sk|k−1 ←
Sk|k−1 ∪ {n}, such that n = argmaxi σmin(F(S+{i})R).

The design of S∗ aims to predict the potential nodes where
the pollutant is burst (i.e., the node n with (xk−1)n = 0, but
(xk)n 6= 0). As such, we rely on the topology of G(V,W), by
estimating a rough outcome via the multiplication of adjacency
matrix and the previous recovery, i.e.,

S∗ ⊂
{
n| (W · x̂k−1)n 6= 0

⋂
(x̂k−1)n = 0

}
. (13)

C. Signal Recovery

With the help of the construction of the sampling node set
Sk in Eqs. (10)-(13), the sensors with indices belonging to
Sk can report their data to the DCP, which then collects the
samples as (xk)Sk . The recovery process of the DCP can be
divided into two parts. The first part is referred to the Theorem
1, i.e.,

x̂k =FVRk|k−1
·
(
FTSk|k−1Rk|k−1

· FSk|k−1Rk|k−1

)−1
· FTSk|k−1Rk|k−1

·
(
(xk)Sk|k−1

− x̄Sk|k−1

)
+ x̄.

(14)

Then, for the second part that relies on S∗, we replace the
corresponding elements in x̂k with (xk)S∗ , i.e.,

(x̂k)S∗ = (xk)S∗ . (15)

IV. DISTINGUISH WITH TWO DATA-DRIVEN SCHEMES

In this section, we distinguish our proposed PCA-GFT
method with other two data-driven sampling schemes. The first
one is provided in our previous work [14]. The second is the
widely-used PCA-CS in [18].

A. Data-driven Static Graph Sampling

In our previous work [14], a data-driven graph sampling
algorithm has been proposed leveraged on a prior knowledge
of the data, denoted as X̄ (which can be derived via the
simulators of the designed WDN). We assume (i) the real data
X has limited deviation from X̄, i.e., ‖X − X̄‖2 < ε for a
small ε, and (ii) rank(X) = γ < N . In this way, in order
to make X being γ < N -support with respect to the GFT
operator F̄−1, we designed the GFT operator based on the qr-
factorization of the maximally linearly independent columns
of X̄ (denoted as X̄m.i.c), i.e.,

X̄m.i.c = F̄ · R̄. (16)

Also, given the property of qr-factorization, the non-zero
elements of X̃ = F̄−1 · X will be located at first r rows,
and thus R = {1, · · · , γ}, With the derivations of the GFT
operator and R, we utilized Theorem 1 to recover the data.

Compared with our previous data-driven graph sampling,
the proposed PCA-GFT does not rely on the prior knowledge
of the data, i.e., X̄, which if not reliable, may result in
difficulties for monitoring applications. Then, it is noteworthy
that the proposed PCA-GFT requires more energy expenditure
for the DCP end, as it has to update the GFT operator and
broadcasts the selected sensor set Sk at each time-step k.

B. PCA-CS

PCA-CS has been proposed in [18], which aims at sam-
pling and recovering the networked signals via the subset of
sensors2. The PCA-CS uses the eigen-vector matrix Ψ as the
transformation matrix, i.e.,

xk − x̄ = Ψ ·αk, with Σ = Ψ ·Λ ·Ψ−1 (17)

where αk denotes the sparse coefficients. x̄ and Σ are given
from Eqs. (1)-(2). Then, the sampling and recovery challenge
can be pursued by selecting Sk ⊂ V such that the restricted
isometric property (RIP) is satisfied, i.e.,

1− δ2γ ≤
‖ΨSkV ·α‖22
‖αk‖22

≤ 1 + δ2γ , γ = ‖αk‖0 (18)

for any 2γ-sparse α and some δ2γ ∈ [0, 1], where ‖ · ‖2 and
‖ · ‖0 represent 2-norm and 0-norm respectively. Then, given
the samples of k time-step, αk can be recovered via the convex
optimization, or the orthogonal matching pursuit (OMP), and
thus x̂k = Ψ · α̂k + x̄ can be computed.

The major difference between the proposed PCA-GFT and
the PCA-CS is whether the positions of the sparse coefficients
can be predicted. In the proposed PCA-GFT, it is proved in Eq.
(8) that the subscripts of the non-zero elements of x̃k = F−1 ·
xk can be predicted from that of ˜̂xk−l = F−1 · x̂k−l. With the
information of the non-zero positions, the PCA-GFT method
can reduce the size of selected sensor set to near γ (validated
by Theorem 1), as opposed to the PCA-CS which requires
O(γ log(N/γ)). This will be further analyzed in Section V.

2Here, similar to the proposed PCA-GFT, the selection of sensors of PCA-
CS also changes with the time
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Fig. 3. Illustration of 4 examples of real and recovered data of the proposed
PCA-GFT method.

V. RESULTS

In the following analysis, the recovery performance versus
the averaging number of reported sensors of our proposed
PCA-GFT method will be evaluated. The recovery accuracy
is measured in terms of the mean absolute error (MAE) of the
recovered data, i.e.,

MAE =
1

NK

K∑
k=1

‖x̂k − xk‖1, (19)

where ‖ · ‖1 denotes the 1-norm. The averaging number of
reported sensors is computed as:

|S| = 1

K

K∑
k=1

|Sk|. (20)

The simulations in this work are pursued using the Python
package Water Network Tool for Resilience (WNTR) based on
EPANET2 [19]. The simulations are executed on Microsoft
Azure [22]. The WDN network is configured as N = 102
nodes (see Fig. 2), including 100 junctions and 2 reservoirs.
For each junction, a random and unknown water-demand is
used. The links are pipes with unknown pressures. We simulate
100 different time-varying chemical contaminant propagated
over the WDN. Each data is simulated for 3 hours with K =
3240 time steps.

A. One Illustration of Recovery Performance

We firstly provide one illustration of our proposed PCA-
GFT method in Fig. 3, which presents the comparisons
between real data and the recovered data on 4 nodes. We
figure out that the perfect recovery is achieved, with averaging
number of reported sensors as |S| = 46 < N = 102, which is
lesser than the half of the total number of sensors.
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Fig. 4. Comparison of recovery accuracy between proposed PCA-GFT and
PCA-CS.
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Fig. 5. Comparison of minimum number of reported sensors for full recovery
within 100 sets of data.

B. Performance Comparisons

The performance comparison between our proposed PCA-
GFT method, and the PCA-CS [18] is illustrated in Figs. 4-5.
Fig. 4 presents recovery performance (i.e., MAE) of the two
schemes with respect to the changes of the averaging number
of reported sensors |S|. It is firstly seen that the recovery
accuracy (i.e., the MAE) decreases as the length of lag L
increases. The reason is give as follows. In Eq. (5), L accounts
for (i) the the correlations between the current signal xk and
the previous states, i.e., xk = f(xk−1, · · · ,xk−L), and (ii) the
number of sensors in Sk|k−1 (i.e., |Sk|k−1| = Rk|k−1 = L
seen in Eq. (8)). In the context of the WDN where the
current contaminant directly evolves from its last state. i.e.,



xk ← xk−1, we should keep a smaller L as L = 2 in order to
(i) holds the correlations3 and (ii) minimize |Sk|k−1|. Hence,
L = 2 provides the minimum |S| as is illustrated in Fig. 4.

Then, we can observe that the proposed PCA-GFT out-
performs the PCA-CS. The former requires approximately
|S| = 46 sensors for the full recovery, whilst the PCA-CS
needs |S| = 80 sensors. This can be further demonstrated in
Fig. 5, where the minimum |S| is recorded for the full recovery
within 100 different data. We can see that the number of re-
ported sensor |S| in our PCA-GFT keeps smaller as opposed to
the PCA-CS. The advantage of the sensor reduction provided
by the proposed PCA-GFT is attributed to the predictability
of the positions (subscripts) of the γ-sparse coefficients of
x̃k = F−1 ·xk, (γ = ‖x̃k‖0). As mentioned in Theorem 1, the
knowledge of such subscripts enables the selection of reported
node set whose size equals to γ, i.e., |Sk| = γ. By contrast,
the PCA-CS needs at least O(γ log(N/γ)) in order to ensure
the RIP.

VI. CONCLUSIONS AND DISCUSSION

In order to monitor the networked dynamics on critical
urban infrastructures, we proposed a principal component
analysis based Graph Fourier Transform (PCA-GFT) method,
which can recover the full networked signal from a subset
of sensors. The constructed PCA-GFT operator can ensure
the sparse property of the networked signal, as well as
predicting the sensor set needed by analyzing the previous
recovery in the transformed domain. As such, the PCA-GFT
is capable of reducing the number of samples compared with
the compressed sensing (CS) approaches. The drawback lies
in the computational complexity of a data collection point
(DCP) updating the PCA-GFT operator at each time-step. The
experimental results demonstrate the averaging 40% of the
sensors are needed to ensure the full recovery of the networked
dynamics. The performance guarantee given by the framework
enables us to reduce the number of sampling points in a
hierarchical manner whilst loosing accuracy.

The framework is useful beyond the application of water
distribution networks (WDNs) and can be applied to a variety
of infrastructure sensing (e.g. railways [23]) for digital twin
modeling. Current deficiencies include the need for the sensors
to switch on and off, and as such many sensors are deployed.
Future work will focus on how to improve the trade-off
between minimum sensor-side processing, edge and cloud
computing [24], and big data fusion for intelligent water
distribution networks and digital twin modelling.
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3Even if the length of lag L = 1 can maintain the correlation, L = 1 is
trivial in PCA theory [18].
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