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Abstract

This research work focuses on exploring a novel 3D multi-object tracking architecture:
"FANTrack: 3D Multi-Object Tracking with Feature Association Network’ for autonomous
driving, based on tracking by detection and online tracking strategies using deep learning
architectures for data association. The problem of multi-target tracking aims to assign
noisy detections to a-priori unknown and time-varying number of tracked objects across a
sequence of frames. A majority of the existing solutions focus on either tediously design-
ing cost functions or formulating the task of data association as a complex optimization
problem that can be solved effectively. Instead, we exploit the power of deep learning to
formulate the data association problem as inference in a CNN. To this end, we propose
to learn a similarity function that combines cues from both image and spatial features of
objects.

The proposed approach consists of a similarity network that predicts the similarity
scores of the object pairs and builds a local similarity map. Another network formulates
the data association problem as inference in a CNN by using the similarity scores and
spatial information. The model learns to perform global assignments in 3D purely from
data, handles noisy detections and a varying number of targets, and is easy to train.

Experiments on the challenging Kitti dataset show competitive results with the state
of the art. The model is finally implemented in ROS and deployed on our autonomous
vehicle to show the robustness and online tracking capabilities. The proposed tracker runs
alongside the object detector utilizing the resources efficiently.
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Chapter 1

Introduction

Multi-object tracking (MOT) is a critical problem in artificial intelligence and has received
great attention due to its widespread use in applications such as autonomous driving,
robot navigation, and activity recognition. It is the problem of finding the optimal set of
trajectories of objects of interest over a sequence of consecutive frames.

Multi-object tracking is an important task in autonomous driving, where it also leads
to many challenges involved in tracking objects belonging to different classes like cars and
pedestrians. The objects vary in number across the frames and are subject to occlusion,
cluttering, sudden disappearances, changes in appearance due to sensor motion or illu-
mination changes or angle of view or object deformation, abrupt changes in motion, and
detection failures. Furthermore, the tracking has to be done in real-time without per-
formance degradation, and the trajectories are used by other critical components in the
self-driving system like behaviour planner and local planner that make decisions based on
the trajectories.

Traditionally tracking has been performed using conventional algorithms involving fil-

ters [50] [20], graphs [89] and network flows [13] [91], to name a few examples. Most of the
successful computer vision approaches to MOT have focused on the tracking-by-detection
principle [60] [85]. In tracking by detection, the problem is divided into two steps. First, an

object detector is used to identify the potential locations of objects in the form of bounding
boxes, and then a discrete combinatorial problem is solved to link these noisy detections
over time to form trajectories. With the improvement in 3D object detection methods,
object tracking in 3D has become an active area of research. In real-time applications like
autonomous driving, three-dimensional inference is inevitable to perceive the real-world
objects and make decisions accordingly. Finally, online tracking is yet another important



requirement in autonomous driving as the trajectories have to be available immediately
when the targets are identified, since we cannot wait longer to make a maneuver that would
avoid a collision.

The subproblem of multi-object tracking called data association is arguably the most
difficult component. Traditional batch methods usually formulate MOT as a global opti-
mization problem, with the assumption that detections from all future frames are available,
and solve it by mapping it to a graph-based min-cost flow algorithm [37, 7]. Online Marko-
vian formulations of MOT, on the other hand do not use future frames and often employ
greedy or bipartite graph matching methods like the Hungarian algorithm to solve the as-
signment problem. The success of the final associations is also dependent on the similarity
functions used to match the targets and detections. Traditionally cost functions have been
handcrafted with representations based on color histograms, bounding box position, and
linear motion models [10, 59], but have failed to generalize across tasks and for complex
tracking scenarios.

Recently, deep neural network architectures have shown superior performance in many
vision-based tasks. Researchers have started leveraging the deep neural network architec-
tures to replace conventional tracking methods. Milan et al. proposed the first end-to-end
formulation for MOT, using a recurrent neural network (RNN) to solve the assignment
problem for each target independently based on Euclidean cost [56]. However, the use of
convolutional neural networks (CNNs) direclty to solve the association problem while also
learning the cost function has not yet been investigated.

This thesis proposes FANTrack, an online 3D MOT architecture that models the data
association as inference in CNNs. We present a two-step learning approach. The first step
learns a similarity function by considering the visual image and 3D bounding boxes as
multi-modal input to yield robust similarities. The second step trains a CNN to predict
the target assignments based on the computed pair-wise similarities by modeling it as a
classification problem. Advantages of this architecture are that it is easy to train, handles
the varying number of targets, and it can run in real-time for online tracking. We use
selective convolutions to compute the convolution of the features only at the true measure-
ment locations to arrive at the similarity maps, which enables the tracker to run at 20 Hz.
Being a learning-based approach it works not only with image and bounding box features,
but it can also be extended to other multi-modal input data by extending the network and
retraining it. This provides an effective way of sensor fusion for the MOT problem. We use
Tensorflow to implement the architectures and perform training and inference. FANTrack
is also implemented and deployed in an autonomous vehicle using the Robot Operating

System (ROS) [64].



FANTrack is a joint project which I worked with my colleagues Erkan Baser and
Prarthana Bhattacharyya. I proposed the Siamese architecture with multi-modal inputs.
Erkan Baser helped with designing the cosine similarity and cost function and proposed
the idea of the probability of occlusion. Prarthana Bhattacharyya proposed the idea of
using CNNs for data association, and we split the implementation among us. I built the
Kalman filter and the probability of existence for the tracker and optimized the networks
to make them faster by using selective convolutions and other optimization methods. In
addition, I implemented the ROS node and tested it in the car.

This thesis is organized as follows: Chapter 2 provides background which covers the
concepts used in this research and related work. Chapter 3 describes the actual method in
detail describing the Similarity Network and Association network, the dataset and training
and experimental results. Chapter 4 gives an overview of the implementation of the ROS
node which is deployed and tested in our autonomous vehicle. Finally, Chapter 5 provides
the conclusion, the limitations, and future work.

Resources

e FANTrack arxiv paper can be found at https://arxiv.org/abs/1905.02843

e FANTrack source code will be available at https://git.uwaterloo.ca/wise-1lab/
fantrack


https://arxiv.org/abs/1905.02843
https://git.uwaterloo.ca/wise-lab/fantrack
https://git.uwaterloo.ca/wise-lab/fantrack

Chapter 2

Background and Related Work

In this chapter, we provide an overview of the various concepts used in this thesis. We
begin with the basics of types of learning algorithms and then move into the specifics of
deep neural networks and their architectures, the training process and how they are used
by the research community to solve the problems in multi-object tracking.

2.1 Machine Learning

Machine learning comes under the broader umbrella of artificial intelligence, where the
computer is trained to make inferences on its own by feeding in training dataset. Let’s
assume that we have the input data x = {xy,xs,..,2,} and the expected output is y =
{y1,Y2, .-, Yn}. A supervised machine learning algorithm learns a function f which gives
the prediction from the inputs as y = f(z). Machine learning problems that come under
supervised learning are further classified into classification and regression problems based
on the nature of the predicted output.

2.1.1 Classification

Given the input data z, if the expectation is to classify it into one of the predefined classes
y = {1,2,3,...n} by learning the mapping y = f(x) then the problem is a classification
problem. If the number of classes n is 2, it is known as binary classification and if n > 2
then this is known as multi-class classification problem. Typically, in binary classification
problems the labels are represented as y = {0,1} or y = {—1,1}.

4



2.1.2 Regression

In case of a regression problem, the machine learning algorithm is made to predict a
continuous value in the range y € R. For example, in a self-driving car, detecting an
object in an image and identifying it as a car or a truck is a classification problem, whereas
finding out the bounding box coordinates and position estimates of the car is a regression
problem.

2.2 Feed Forward Neural Networks

Feed forward neural network is a family of architectures that consist of a collection of
interconnected neurons without cycles. These networks model a function f such that
y = f(z,0) by optimizing a set of parameters §. They are also used to model composition
of functions of the form f(x) = f3(f2(f'(z))) [27]. A feed forward neural network is
composed of an input layer, one or more hidden layers, and an output layer. Researchers
have come up with various forms of networks depending on the nature of the input data. For
example, Convolutional Neural Networks are used for images, and multi-layer perceptrons
are used for regression problems involving numerical data. In general, these architectures
can be used to solve a non-linear problem, as the relationship between the inputs and the
outputs in the network are inherently non-linear [79]. Subsequent subsections describe
various components and training techniques used in feed forward neural networks. The
structure of a feed forward neural network is shown in Fig. 2.1.

2.2.1 Activation Functions

In a feed forward network, every neuron in the hidden layers is a computational unit
which is a non linear function of the inputs fed to it. The non-linear function is given by,
h = fxr(WTz+b), where W is the set of weights w; for every input value x; respectively, b
is a bias term. These non-linear functions that act upon the linear combination are called
activation functions. The structure of a neuron is depicted in Fig. 2.2.

Activation functions control how the subsequent neurons get activated in the network.
There are many different activation functions found in the literature, some of which are
explained below.
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Figure 2.1: Architecture of a Feed Forward Neural Network

Sigmoid function

The sigmoid function gives a smooth non-linearity to the neural network. The formula for
a logistic sigmoid function is given by

(2.1)

ReLu

Rectified Linear Unit also called as ReLu is another non-linear activation function used in
neural networks. It works by clipping the output values that are negative. The output of
ReLu activation is given by,

y = max(0, x) (2.2)

Rectified Linear units are closely related to linear units as they have just two linear
pieces, but the function itself is not differentiable at x=0 making it difficult to find the
derivatives for gradient-based learning methods [27]. An alternative variant called Softplus
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Figure 2.2: Activation function in a hidden neuron

having the formula y = log(1+ €”) can be used, which makes the function smoother in the
regions where RelLu would make sharp cuts.

Leaky ReLu

With ReLu the gradient of the function below 0 is always 0. This causes a problem known
as 'Dead ReL.u’ problem where the gradients in the backpropagation are always zero and the
network does not learn anything from these neurons. To solve this problem, Leaky ReLu
functions are used. In a Leaky ReLu activation function, the values less than zero are not
completely ignored but considered with a fraction. Thus during gradient calculation, a
small fraction of these values are preserved thereby solving the dead ReLu problem. The
leaky ReLiu activation function is given by,

x, if x>0
y= : (2.3)
0.01x, otherwise

2.2.2 Loss Functions

Learning in neural networks takes place by optimizing parameters # in the model based
on the labeled data fed to them. During training, the network is initialized with random
weights and then made to predict the output for the training data x by randomly initializing

7



the set of parameters 6. The difference between the predicted  and the ground truth value
y is known as loss. The function that models this loss is called as a loss function, which is
given by J(6) = g(y — ¢). Loss functions are chosen based on the problem and the nature
of data. For example, L1 and L2 losses are used for regressions problems, whereas binary
cross entropy is used for classification. The loss functions used in this thesis are described
below.

L2 Loss
L2 loss also known as Mean Squared Error or MSE; in short, minimizes the squared dif-
ferences between the estimated and the target values. It is also known as Euclidean loss.

L2 error tends to amplify the error for outlier data points as the difference is squared [74].
L2 error is given by,

JO) = > = i) (2.4

Cosine Distance

The Cosine distance measure is derived from the cosine similarity measure. The cosine
distance of two vectors A and B is given by,

> i AiBi
Vi AR B?

Ca(A,B)=1-— (2.5)

Cross entropy loss

Classification models output the probability distribution of the data point belonging to
each class and each probability has a range y; € [0,1]. Cross entropy loss is helpful in
modeling such scenarios where the loss function value is continuous and it increases when
the predicted probability is away from the actual label. Cross entropy loss is also known
as log loss [78] and for a binary classification it can be written as,

J(0) = —(ylog(9) + (1 — y)log(1 — 7)) (2.6)



2.2.3 Gradient Descent

Gradient descent is an optimization algorithm used to minimize the cost function by it-
eratively moving in the direction of the steepest descent. The main difference in using
gradient descent algorithm in neural networks when compared to linear or logistic is that
the non-linearity of a neural network causes the loss functions to become non-convex [27].
Moreover, the initial weights matter in optimizing the loss function and reaching conver-
gence. In a typical gradient descent algorithm, which is also called as the batch gradient
descent, the entire training set has to be iterated over once to finally update the weight
values. Sometimes it might not be feasible to load the entire training set into memory. In
such cases, variants of the vanilla gradient descent like stochastic gradient descent can be
used. In case of the stochastic gradient descent, random samples from the training data
set are used to update the weights in each iteration.

2.2.4 Regularization Techniques

The objective of any machine learning algorithm is to model the true underlying function
from the given training data. This is done by reducing the generalization error so that
the model can perform well on any unseen data point. However, the learning algorithms
can be prone to overfitting, in which case, the training loss is less than the validation loss,
which in turn affects the generalization capabilities of the model. For example, in curve
fitting, a complex polynomial with too many coefficients could fit the data perfectly but
may not generalize for data outside the training set. Thus, the complexity of a model
determines its generalization capabilities [9]. Regularization is a technique which solves
the problem of overfitting by reducing the complexity of the model, leading to better
generalization. Conventional machine learning algorithms like linear regression and logistic
regression employ a regularization parameter A in the objective function.

L2 Regularization

In L2 regularization the regularization term is computed as the product of the regular-
ization parameter A\ and the squared magnitude of the weights. L2 regularization is also
called ridge regression or Weight decay. A typical objective function with L2 regularization
is given by

J(0; X, ) + Aief (2.7)

i=1



The regularization parameter \ is a hyper-parameter that dictates the weight given
to the regularization term. Too small values reduce the effect of regularization failing to
prevent overfitting whereas too high values might lead to underfitting.

Data Augmentation

Deep learning models require huge amounts of training data to arrive at the optimal set of
parameters for the model as the number of trainable parameters is huge. At times, it is not
possible to get sufficient amounts of real world data for training and as a result, the model
could overfit. Data augmentation strategies increase the training set size by producing
additional training examples by modifying the data in different dimensions. For example,
in case of an image classifier, the data augmentation strategy would be to create augmented
samples of a given image by applying image transformations like translation, rotation, and
affine transformation as shown in Fig. 2.3. These augmented samples help in modeling the
data distribution in real world. The augmented training set helps in reducing overfitting.
Hence, data augmentation is one of the most widely used regularization strategies in deep
neural networks.

<

Figure 2.3: Data augmentation with rotation and translation [62]

Early Stopping

During the training of deep neural networks, the loss is expected to decrease with epochs,
but sometimes it keeps fluctuating. In this scenario, the loss could actually start increasing
after reaching a global minimum. Early stopping is done by saving the network parameters
at specific intervals, so that training can be stopped at a specific epoch to get the lowest
loss value [9]. This helps in choosing the best snapshot of the parameters.

10



Dropout

Dropout is a computationally inexpensive but powerful method of regularization typically
used in deep neural networks [27]. Often during the training, neurons tend to learn de-
pendent activations from the neighboring neurons, leading to overfitting. To avoid the
interdependence of neurons, each iteration randomly drops or discards the activations of
some neurons as shown in Fig. 2.4. We denote the dropout rate as 1 — p, where p is the
proportion of neurons to be retained, also known as keep probability. The value for keep
probability is one of the hyperparameters for the model. Choosing a very high value will
not help in avoiding overfitting and choosing a very low value will cause underfitting. A
dropout value of 0.5 is known to be effective [77].

(b) After applying dropout.

Figure 2.4: Left: A typical neural network with two hidden layers. Right: Dropout applied
by randomly dropping out (crossed) the neurons in the network. [77]

2.3 Convolutional Neural Networks

A convolutional neural network is a type of neural network which handles multi-dimensional
data arranged in a grid-like topology, such as images and feature maps. Convolutional neu-
ral networks were inspired by neocognitrons [24], which are self-organizing neural network
models for pattern recognition. They were first introduced by LeCun et al. [15] to perform
handwritten zip code recognition. Later, Krizhevsky et al. [13] developed an end to end
image recognition model using CNNs and used them to classify objects in the ImageNet

11



[17] challenge. Since then, convolutional neural networks have gained momentum in object
detection and classification tasks.

2.3.1 The Convolution Operation

The convolution operation gives the product of two signals by reverting one of them and
sliding over the other within the given limits. The convolution operation of two real-valued
functions f(t) and g(t) is given by,

T=00

s = (Fx9)0) = [ frgle - ryr 238)

=—00

Here we compute the product of f and g on the 7 axis after reverting ¢(7) to g(—7)
and sliding it over f(7). For discrete-valued functions, it can be defined as,

s(t) = (f*g)(t Zf g(t —7) (2.9)

T=—00

In case of neural networks, the multidimensional input data, which is in the form of a
grid, represents the function f, and a real valued grid of trainable values with predetermined
dimensions becomes the sliding function g, which is also known as a kernel. According to
Goodfellow et al. [27], convolution leverages three important concepts that are useful in
machine learning: sparse interactions, parameter sharing and equivariant representations.

2.3.2 Convolutional layer

A convolutional layer consists of convolutional filters, each with height A, width w, and
depth ¢ (h x w x ¢). Choosing the dimensions for the filter is a design decision that has to
be made according to the input dimensions and the problem. For example, a three channel
RGB image will need a three channel filter which has smaller dimensions to generate feature
maps with representative power. The filter starts from the first pixel location at the top
left of the image and strides across the image producing convolved features. The amount
of displacement between the first and the second sample in the convolution operation is
called as stride. Fig. 2.5 shows the convolutional filter in action with a filter size of 3x3x1
and stride value 1. The convolutional layer is typically followed by a non linear activation
function such as rectified linear units, which produces activation values in the output

12



feature map. To avoid the reduction of the output height and width dimensions compared
to the input image, the image is padded with zeros at the borders with a specific amount.
The final output size (height or width) of the resulting feature map is (W — F+2P)/S+1,
where W is the size of the input image, F' is the filter size, S is the amount of stride, and
P is the amount of padding used [35].

y/1f1fo]o 11, 0 1[1]1]o]o,
01110 4 01 0 4|3 0|1]|1)1/0, 4(3|4
ofoj1[1]2 0[o] 1 ofof1f]1
o|o0f1)|1(0 0|0 0 o|0|1(1]|0
0|1(1|0|0 01 0 o|1|{1(0]|0
Convolved Convolved Convolved
Image Feature Image Feature Image Feature

Figure 2.5: A convolutional layer with filter size 3x3x1 and stride 1 (red subscripts) oper-
ating on a 5x5 single channel image (shown in green). [71]

2.3.3 Pooling

The output of the convolutional layer is often connected to a pooling layer. The pool-
ing layer downsamples the output of the previous layer by applying a summary statistic.
Typical pooling operations include maximum pooling, average, and L2 norm. Pooling is
performed for multiple reasons. It reduces the dimensionality of the data to reduce over-
fitting. It is also helpful in making the network invariant to small transformations in the
input. For example, if we have trained the network to detect a car in the image, during
inference the exact location of the car can vary anywhere in the image and the network
should not be overfit to detect at certain locations. A typical max pooling operation is
shown in Fig. 2.6.

Global Average Pooling

Global Average Pooling layer was first proposed by Lin et al. in [52]. In their work they
proposed a novel architecture called “Network In Network” replacing the CNNs with micro
networks to enhance model discriminability within the receptive field. Instead of using a
fully connected layer in the final classification layer they used global average pooling over
the feature maps and proved that it reduces overfitting. The idea behind global average
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Figure 2.6: Max pooling operation with size 3x3x1 on a 5x5 input image

pooling is to obtain one feature map for every category in the classification task by taking
the spatial average of the corresponding channel of the feature map and taking the softmax
of the resulting layer to obtain the final classes. This brings the convolutional structure to
the classification task and removes the need to train additional neurons in fully connected
layers. This also helps in making the network robust to spatial translations in the input.
An example of global average pooling over a 6x6x3 feature map is shown in Fig. 2.7.
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Figure 2.7: Global average pooling over a 6x6x3 feature map. [17]

2.3.4 CNN as a feature extractor

A convolutional neural network is a hierarchical feature extractor. For example, in an image
classification network, every convolutional layer extracts a certain level of hierarchy on the
goal to fully identify the object in the image. For an object detector to identify a car, it
needs multiple features with respect to the wheels, the body of the car and the placement of
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these at the corresponding places. These information are learned in a hierarchical manner
in the different layers in the network. A typical image classification model like VGG16 [75]
has convolutional layers that can identify important features in an image in a hierarchical
manner and this can be utilized for a different task like comparing the visual similarity of
two objects.

2.3.5 Dilated Convolution

A dilated convolutional layer is one in which the convolutional filter is applied with a
dilation factor. In a regular convolution operation, the convolutional filter is applied on the
input image such that the consecutive pixels on the image are considered in the computation
of the output value of the convoltion. In case of dilated convolution, the filter is applied
such that it considers the pixels with an interval in between, thereby operating on a bigger
area on the input image. The extent of this interval is parameterized as the dilation factor.
Dilated convolutions support exponential expansion of receptive field on the input image.
Dilated convolutions were first proposed in the CNN architecture by Yu et al. [38]. The
authors use dilated convolutions to aggregate multiscale contextual information without
loss of resolution or coverage and use it for the semantic segmentation task. The dilated
convolutional filters are applied with increasing dilation factor which helps in exponentially
increasing the receptive field. Fig. 2.8 depicts the difference between a normal convolution
operation and a dilation convolution with dilation factor d=2.

Normal Convolution (d=1) Dilated Convolution (d=2)

Figure 2.8: Difference between the standard convolution operation and dilated convolution
operation. [32]
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2.4 Siamese Network

A Siamese network has two identical branches which share the same weights. Two inputs
are fed separetely to the branches and the output is an embedding. The embedding layer
is used in the loss function and is typically used to find the similarity between the two
inputs. The generic architecture of a Siamese network is shown in Fig. 2.9. Siamese
networks were first introduced by Bromley et al. [12] in 1994. The authors used the
Siamese architecture to identify the similarity between two signature patterns to verify the
originality of the second signature. A set of handcrafted features from the signatures were
chosen as input and time delay networks were used as the core network architecture in the
Siamese arrangement. The extracted features from the networks were used to compute
the cosine of the angle between the two vectors which represents the similarity value. The
two key properties [31] of Siamese networks that enable them to be suitable for similarity
computation are:

1. Weight sharing ensures two similar input samples do not map to different locations
in the embedding space. This aids in identifying the similar samples.

2. The network is symmetric so that the order of the inputs does not matter.

Siamese Network
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Figure 2.9: Generic architecture of a siamese network.

Siamese networks have recently been used for computer vision tasks with the advent of
convolutional neural networks. Chopra et al. [I] use convolutional neural networks in a
Siamese architecture for a similarity metric for face verification. They have used contrastive
loss function which minimizes the similarity metric for the same person and increases it for
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different faces. Koch et al. [12] use Siamese networks for one shot image recognition, which
is able to increase the predictive power of the network for new classes from new data distri-
butions. Varior et al. [$3] define a gating function in the Siamese architecture to propagate
the mid-level features learned by the CNN, which helps in improving the discriminative
power of the network. They apply this idea to the task of human re-identificaiton in videos.
Hoffer and Ailon [31] propose a triplet network consisting of three networks which accept
three inputs. They address the problem of calibration in Siamese networks by computing
the distance metric based on the intermediate representation of the two inputs and com-
paring with the third. Leal-Taixe et al. [17] use CNNs in Siamese fashion to come up with
a matching cost for data association using optical flow and spatio-temporal structures. Tao
et al. [80] propose an object tracker which uses Siamese network for modeling the matching
function which is invariant to distortions using instance search paradigm. The first stream
of the network is called as query stream, which represents the target object derived from a
random video frame. The second stream is known as the search stream, which is another
bounding box from a different frame later in the video. Depending on the overlap with the
ground truth, positive and negative examples are defined. The authors have experimented
with both a VGGNet and AlexNet like architecture for the core network.

2.4.1 Loss Function

Unlike traditional neural network architectures, the loss function used in Siamese networks
has to be designed differently. Usually, loss functions in neural networks are minimized
using gradient descent techniques so that the network learns from the data. Let’s consider
a Siamese network which computes the similarity between two image patches x; and z,.
Let y be the binary label assigned to the examples: y = 0 if the inputs are dissimilar and
y = 1 when the inputs are similar.

We design two different loss functions L, and L, for positive and negative example
pairs respectively and minimize the loss L, and maximize the loss L,, so that the network
will be able to discriminate between the positive and negative scenarios. The combined
loss is given by

LO)= > Ly(p.am) = Y Lu(tn, ) (2.10)

(zp1,7p2) (Tn1,Tn2)

If we consider the Euclidean distance as D' for the ith example then according to [30)]
we can write the loss function as,
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L((z1,22)",y) = (1 = y) Lyp(D") + yLn (D) (2.11)

L, and L,, must be designed such that minimizing L with respect to 6 would result in
low values of D? for similar examples and high values of D for dissimilar examples. This
loss function is called contrastive loss function as it is able to differentiate between the
similar and dissimilar examples.

2.4.2 Siamese Topologies

Leal-Taixe et al. [17] discuss various topologies for processing the inputs using Siamese
CNNs as shown in Fig. 2.10.

Cost Function

In the Cost Function method, the two input images are separately processed by two sets
of convolutional layers which share the same weights. Interaction between the input pairs
do not happen till the cost function where the encoding in the latent space are used to
compute the loss.

In-network

In this method the two input image patches are separately processed by few layers and
then interaction between the pairs begins to happen in the later layers before the cost
function is applied.

Input stacking

In input stacking the two input patches are stacked together and form a unified input to

the CNN.

According to Leal-Taixe et al. [17], the input stacking method is known to produce
good results but the cost function approach is much faster.
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Figure 2.10: Siamese CNN Topologies [17].

2.5 Kalman Filters

In control theory, state estimation is the problem of identifying the optimal state of the
system based on the measurements from the sensors by filtering the noise induced in the
readings. State estimation has two main problems for a discrete system with 2 as the
state at time k .

1. Zpjo.x : To find the current state, given a set of measurements upto time k.

2. Tpqk : To find the predicted state at time k + 1 given the measurement at the
current time instant k.

A Kalman filter is an optimal linear estimator which is able to provide solutions for both
problems using a recursive algorithm. The process of removing the noise in the data to
arrive at more accurate readings is called filtering. Kalman filter was introduced and
named after Rudolf E. Kalman in 1960. Multiple extensions of the filter have been defined
to handle non-linear systems.

The Kalman filter gives us a probabilistic estimate of the actual state of the system,
represented as Gaussian mean ), with an error covariance of Pyy.

Now let z; be sensor measurement at time k. We model the uncertainty in the mea-
surement as a Gaussian distributed noise with zero mean and covariance Rj. Thus, this
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noise is vy ~ N (0, Ry). The actual state of the system in the next instance is modeled
as a random process as there is some uncertainty about the next measurement. The ran-
domness is modeled as process noise, which is Gaussian distributed with zero mean and
a covariance Qy, that is the process noise is wy, ~ N (0,Q). The equation to derive the
state of the system at time k from time k — 1 is as follows

T — Fkxkfl -+ Bkuk —+ wg (212)

where F} is the transition matrix which models the state transition from k£ — 1 to k,
By, is the input matrix and wuy is the input vector. For instance, a Kalman filter which is
designed to estimate the position and velocity of a moving object will have a transition
matrix modeled using the Kinematic equations for motion.

The measurement z; is modeled as follows

using the observation matrix H, which relates the measurement vector to the state
vector, and v, models the measurement noise as stated earlier.

The Kalman filter has two stages: prediction and correction, which are repeated itera-
tively.

Prediction Stage

During the prediction stage, the state of the system is predicted using the state transition
matrix Fy. The error covariance Pk of the state is also updated using the state transition
matrix and the process noise covariance ;. This implies that we are trying to get a
predicted value for the state using the motion model we defined and also predict the error
based on the error in the previous state and our assumption of the random process noise
we applied. The equations for prediction are given as,

Tp—1 = FrZp_1p—1 + Brug (2.14)

Pyjp—1 = kak—1|k—1FkT + Qk (2.15)
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Correction Stage

During the correction stage, we use the measurement from the sensors z; and correct the
predicted state to arrive at the estimated value of the state. We calculate a parameter
called Kalman gain K}, which is calculated from the predicted error covariance Pyr—1, the
measurement model H; and the measurement noise covariance Ry as,

Ky = Pyp HE (H Py HY + Ri,) ™! (2.16)

Later we also update the state estimate and the state error covariance Py, as

Thk = Trlk—1 + Kryk (2.17)

Py = (I — KiHy) Pegje—y (2.18)

where y;, is the residual, which is the difference between the actual measurement and
the projected measurement from the predicted state:

Yo = 2k — Hpyp— (2.19)

Fig. 2.11 summarizes the Kalman filter stages by plotting the probability density func-
tions of the previous state, the predicted state, the state projected from the measurement,
and the resulting current state [39] by representing the actual and the predicted state
estimates and the measurements as a probability density function.

2.6 Multi-object tracking

Multi-object tracking is one of the most vital tasks in autonomous driving. The task is
to keep track of the objects in the neighborhood of the self driving car and produce the
trajectories for them, which allows subsequent modules to make safe planning decisions. In
visual tracking, images from the camera are used to detect and track the objects. With the
advent of lidar and other types of sensors, sensor fusion techniques [(6] [57] are becoming
important to fuse the data from multiple sources. Visual single and multi-object tracking
have remained difficult due to the various challenges such as occlusion, detector noise,
clutter, target reidentification, deformation, and lighting changes.
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Figure 2.11: Visualization of the Probability density function of a state estimate using
Kalman Filter [39].

Luo et al. [51] provide a comprehensive survey of multi-object tracking, which they
subdivide based on initialization strategy, processing and the output of tracking. Based on
initialization strategy, trackers can be classified as detection-based tracking and detection-
free tracking. Based on the processing mode, trackers are further classified as online and
offline. Finally, based on their outputs, trackers are further classified as deterministic and
probabilistic.

Detection-based tracking

Detection-based trackers depend on an object detector for the bounding boxes to track the
objects. An object detector is used to identify the potential locations of the objects, their
dimensions and classes and then tracking is modeled as a discrete combinatorial problem
to link the noisy detections to form trajectories or tracks. One of the main drawbacks of
this strategy is that the accuracy of the tracking is limited by the accuracy of the object
detector used. Work by Xiang et al. [30] is an example of a tracking-by-detection strategy,
which models the tracker states as a Markov Decision Process.

Detection-free tracking
In detection-free tracking, an object detector is not explicitly used to get the bounding

boxes for tracking. Instead they either require manual initialization of the targets [90] or
have the detection mechanism ingrained in the tracking pipeline [1], also known as joint
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detection and tracking. Joint detection and tracking approaches are further classified into
those that only model the object’s appearance [68] and those that model both the object’s
appearance and its background [28].

Learning-based joint detection and tracking

Learning-based joint detection and tracking uses a single network to do both object de-
tection and tracking. End-to-end approaches have the advantage of having a single loss
function that simultaneously optimizes the detection and tracking, which has shown to pro-
duce better results [23], when compared to piece-wise approaches. End-to-end approaches
also have the advantage of reusing the appearance features and object priors [21]. However,
end-to-end approaches are prone to error propagation [92].

Online Tracking

Online Tracking uses only the information available up to the current frame to assign the
tracks to the objects. In other words, the tracker performs a real time tracking without any
post processing tasks. Online trackers are more challenging to build as they do not have the
advantage of looking into the future observations. Various online tracking approaches exist

in the literature. Sharma et al. [73] use geometry and object shape costs to build an online
tracking algorithm. Gunduz et al. [29] propose an online tracker based on min-cost linear
cost assignment by affinity matching. Tian et al. [81] design an online tracking algorithm

using tracking-by-detection paradigm. The detections are combined to form tracklets and
the association of tracklets to tracks is performed using the structural information on a
motion pattern between the objects. Scheidegger et al. [72] train a deep neural network to
obtain 3D coordinates of tracked objects from camera images and build a Poisson multi-
Bernoulli mixture tracking filter for the tracking algorithm. Xiao et al. [37] propose a joint
probabilistic relation graph approach to track objects online from aerial videos.

Offline Tracking

Offline tracking algorithms look at the entire batch of frames in the sequence and analyze
them jointly to estimate the output. The drawback with offline tracking is that they can-
not be used in a real-time system or in systems where delays are not acceptable. On the
other hand, offline tracking algorithms are comparatively easier and more accurate in gen-
erating the trajectories as they access both the past and future observations, to infer the
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current frame. Wang and Fowlkes [31] propose a framework for offline tracking by learning
the parameters for min-cost flow by using structured predictions with a tracking-specific
loss function. Brendel et al. [I1] formulate the data association problem as finding the
maximum-weight independent set of a graph. Song et al. [76] solve the problem of main-
tainability of longer tracks by analyzing the statistical properties of the shorter tracklets.
Qin and Shelton [63] formulate the pedestrian tracking problem as a clustering problem
and come up with a nonlinear global optimization problem to maximize the consistency of
visual and social grouping behavior for trajectories.

2.6.1 Data Association

The data association problem forms the core of the multi-object tracking problem. At
time instant 7, let us consider a set of objects that have been observed n the past, that
is, from the first frame until 7. The set of trajectories corresponding to these objects are
called targets or tracks (T"). The set of objects observed at time 7 are called measurements
(M).Data association finds assignments of the form (¢;,m;), where ¢; € T"and m; € M are
the i, target and j;, measurement, respectively, and not two tracks are assigned the same
measurement. This is done by minimizing a cost function or maximizing the similarity
metric between the corresponding target and the measurement. Data association gives us
pairs that have the highest similarity scores, which helps in the encompassing problem of
tracking.

Probabilistic Data Association

Probabilistic data association is a Bayesian strategy that associates the target being tracked
with potential measurements by assigning probabilities which account for the measurement
uncertainty. Shalon et al. [1] proposed a probabilistic data association filter which functions
as an optimal state estimator in the presence of uncertainty in the data association. The
filter functions similar to the Kalman filter with a few differences. PDAF has a selection
procedure for the measurements, unlike a simple Kalman filter which typically uses a
single measurement. It chooses the best measurement for the filter update based on the
probability, used as a weighting factor. The PDAF algorithm also assumes that there will
be a single measurement corresponding to the target that has the highest probability of
association and all other candidates of the measurements will be treated as noise. Let
us consider the state of the target x;;, and the measurement z; from the Kalman filter
formulations (2.12 and 2.13). From equation 2.17 we get the state xy, of the target. The
state estimate [19] of the PDAF is given by 2.20 with the assumption 2.21.
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T = E[x(k)| 2] (2.20)

The pdf of the target state is approximated as a single Gaussian with mean &(k|k — 1) and
covariance P(k|k — 1) as follows,

pla(k)|Z¥7"] = Nw(k); &(klk — 1), P(k|k — 1)) (2.21)

Here E*[x(k)|Z¥] gives the optimal estimate in which Z* denotes the set of all measure-
ments observed through time k. Now, we look at the formulations accounting for the
difference the PDAF has compared to the Kalman Filter. The combined innovation, which
is also the measurement residual y(k) in the Kalman filter is given by 2.22

m(k)
y(k) = Z Bi(k)yi(k) (2.22)

Bi(k) is the association probability corresponding to the ith candidate of the mesure-
ment and the target at time k&, which is given by

Llh) i=1,..,m(k)
k) — 1—PpPg+3 ;2" L (k)
pi(k) = 1-PpPg i=0

1-PpPa+> TV £;(k)

Here the first case is a regular case where the association exists, and the second case
where ¢ = 0 is when there is no assignment possible. Pp is the probability of detection and
P is the gate probability, which is the probability that there is a measurement whithin a
predefined threshold of space around the target, also called as gate. The term £;(k) is the
likelihood ratio of the measurement originating from the target rather than from clutter
[1]. Tt is modelled using a Poisson process [3].

The modified form of the error covariance of the state estimate in the filter incorporating
the association probability 3;(k) is given by

Py = Bo(k) Pyr—1 + (1 — ﬂo(k))Pﬁk + B (2.23)

The term Py_; corresponds to the case when there is no measurement possible for
the given target, the term Pkf| , corresponds to the covariance when there is one possible
measurement association, and the last term P handles the uncertainty in choosing the
right measurement when multiple measurements are available.
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Joint Probabilistic Data Association

Probabilistic Data Association deals with single object tracking. Joint Probabilistic Data
Association (JPDA) extends it to multiple targets by jointly computing their association
probabilities. JPDA evaluates conditional probabilities of the join events y [22]:

X = N7 Xt (2.24)

where ¢, is the event that the measurement j originated from the target ¢;, and ¢; is
the index of the target associated with the measurement j. Only the joint events in which
no more than one measurement could be associated with a given target are considered
feasible. The state estimation of the individual targets is done independently by assuming
the measurements as mutually independent or jointly either by computing cross covariances
which represent the cross correlation between the estimation errors of the targets [1]. Many
variants of the JPDA algorithm exist in the literature. Svensson et al. [78] propose a
modified JPDA filter using Random finite sets. Blom et al. [10] propose a JPDA filter
algorithm that modifies the way the association probabilities are computed between the
measurements and targets. Drummond [19] uses the Global Nearest Neighbour approach

in JPDA.

Multiple Hypothesis Tracking

The PDA and JPDA algorithms focus on developing target-oriented hypotheses. In con-
trast multiple hypothesis tracking algorithms generate hypotheses based on the measure-
ments. Each measurement is associated with every target to form a cluster of tracks which
form the set of possibilities. Finally, only the track hypotheses that are logically possible
(where given measurement does not appear in another hypothesis) are chosen and are col-
lectively considered as a global hypothesis (which is a set of track hypotheses that are not
in conflict). The highest scoring hypothesis is used to finalize the tracks. In this approach,
the actual data association and the track assignments are delayed until the final hypoth-
esis is selected. The original multiple hypothesis tracking algorithm [65] was applied to
radar tracking, which took more processing time and it was considered inefficient for visual
tracking. But Kim et al. [10] revisit the approach by incorporating appearance models
and show that it has comparable performance to that of other state-of-the-art methods.
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Hungarian algorithm

The General Assignment Problem is defined as follows. Given an n x n matrix R = (r;;)
of positive integers, the goal is to find the permutation jy, ..., 7, of integers 1,...,n that
maximizes the sum 7y, + ... +1,;,. The dual of this problem is to find the non-negative
integers uq, ..., u, and vy, ..., v, such that

u; + Uj Z Tij Z,j == 1, N (225)

which minimizes the sum u + ...u,, + v1 + ... + v,,.

The Hungarian Assignment algorithm, also known as Kuhn-Munkres algorithm, is a
combinatorial optimization algorithm that solves the assignment problem in polynomial
time [15]. Dell’Amico et al. [16] provide a summary of the Hungarian algorithm as follows.

1. Find a dual feasible solution (u,v) using row and column reduction.
2. Given the solution (u,v) solve the restricted primal problem.

3. If the primal solution is feasible then stop. Otherwise, find a new dual solution by
setting u; = u; + 0 Vi € [1,n] and ¢; = v; — § Vj € [1,n], where ¢§ is the minimum
reduced cost ¢;; = ¢;; — u; —vj. Set u =1 and v = ¥ and go to step 1.

Multi-Object Tracking Metrics

Overall performance of a multi-object tracking algorithm is determined with the help of the
CLEAR MOT metrics [8]. The performance of the tracking is measured by two important
metrics: Multi-Object Tracking Precision (MOTP) and Multi-Object Tracking Accuracy
(MOTA). MOTP is given by

Zi,r dé
ZT Cr

and it measures the total position error for the associated hypotheses over all frames
averaged by the total number of matches made. Here d’ is the distance between the it
associated hypothesis and the ground truth detection, and ¢, denotes the total number of
associations made at time 7. It represents how precise are the position estimations for the
matched target-measurement pairs over all the frames, averaged by the total number of
associations made. Multi-Object Tracking Accuracy (MOTA) is given by

MOTP = (2.26)
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(a) ID Switching scenario (b) Fragmentation scenario

Figure 2.12: Illustration of track switches and fragmentation

>, (fp, + fn, +1DS)
ZT 9r

where fp. denotes the number of false positives, fp. denotes the number of false negatives,
and IDS denotes the number of ID switches. An ID switch is a case when two tracks
interchange their IDs when observed at two time instants 7—1 and 7 as shown in Fig. 2.12a.

Mostly Tracked (MT), Mostly Lost (ML), and Fragmentation (FRAG) are three addi-
tional metrics [51]. Mostly Tracked is given by the proportion of tracks tracked for more
than 80% of their lifetime. Mostly Lost is given by the proportion of tracks tracked for
less than 20% of their lifetime. Fragmentation denotes the total number of times a ground
truth trajectory is interrupted in the tracking result (Fig. 2.12b).

MOTA =1 — (2.27)
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Chapter 3

Method

In this chapter, we describe our proposed tracker: "FANTrack” [5] comprising the Sim-
net and AssocNet architectures for data association, and Kalman filter and track update
strategies. Our problem setup assumes that at any time instant 7 we have N targets and
M measurements. An overview of the architecture is shown in Fig. 3.1. We use AVOD [11]
as our 3D object detector, but in principle, any other 3D object detector could be used.
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Figure 3.1: Overview of the proposed approach. The targets are from frame 7 — 1 and
Measurements are in frame 7.
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3.1 Similarity Network

The similarity network, also called as SimNet is the first network in our combined architec-
ture for data association (Fig. 3.2). The main role of the network is to compute a similarity
metric between every target and measurement pair and to structure the results as localized
maps, which are then used by another network for data association. The SimNet uses three
instances of a Siamese Network architecture, one for each of the two types of features (i.e.,
bounding boxes and appearance), and a third one for weighting the relative importance of
each feature. The input to the SimNet consists of bounding box parameters and appear-
ance features of the targets and measurements. We follow the approach of combining each
of the two Siamese branches in the cost function [17] [18], by separately combining the
target and measurement specific inputs. Though this approach leads to slightly reduced
accuracy [17], it is faster than the approach of input stacking. The output from SimNet
is a set of maps called Local Similarity maps with dimensions 21x21 and N,,,, channels,
one for each target from the ¢ — 1 frame. Each map is centered around the corresponding
target and records the similarity score of the target with every measurement within the
10m x 10 m bird’s eye view region around the target. The resolution of the maps is 0.5 m.

The SimNet has two main branches: a bounding box branch and an appearance branch.
Each of the two branches, being a Siamese network, applies the same set of weights to each
of its input, i.e., target or measurement representation, separately and outputs the corre-
sponding normalized feature vector for each of these inputs. Their respective contribution
towards the final similarity score computation is weighted using the importance branch.
Finally, cosine-similarities of each target-measurement unit vector pairs are computed and
the scalars are mapped to their corresponding positions on the above-mentioned set of
local maps. We describe the individual branches and the similarity and map generation
processes in detail in the subsequent subsections.

3.1.1 Bounding Box Branch

The bounding box branch outputs normalized vectors, each representing a target or mea-
surement bounding box. The cosine similarity between any one of the target unit vectors
and any one of the measurement unit vectors is obtained as the dot product of the two
vectors. We train a Siamese network with input pairs of target and detection 3D bounding
boxes for this purpose. The 3D bounding boxes are defined by their centroids (z,y, 2),
dimensions (I, w, h), and rotation around the z-axis (#,) in the ego-car’s IMU/GPS co-
ordinates. To prevent learning variations induced due to ego-motion, detection centroids
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Figure 3.2: Architecture of SimNet. The branches highlighted in blue have trainable
parameters. Each one of them is a Siamese network, applying the same set of weights to
each target or measurement input.

are converted to coordinates at a common time-step using GPS data. The bounding box
parameters are obtained from the object detector (AVOD) and are represented as follows,

[m,y,z,l,w, h’v T’y] (31)

The input to this branch is an (N+ M) x 1 X 7 tensor where the third dimension consists
of the 7 bounding box parameters defined above. The inputs are fed to a convolutional
layer with 256 1 x 1 filters to capture complex interactions across the 7 channels, followed
by two convolutional layers with 512 1 x 1 filters, by processing the parameters of each
target and detection independently [52]. We apply L2 normalization on the output features
and henceforth refer to the result as wunit features. The unit features have dimensions
(N + M) x 512. These unit features are sliced on the first dimension according to the
number of targets T to get target and measurement bounding box features respectively.
The slicing of the unit features into target and measurement specific features is shown in
Fig. 3.4. These sliced unit features along with those obtained from the appearance branch
are used to compute the cosine similarities, which will be discussed in the subsequent
sections. We use batch normalization and leaky-ReLLU activation across all the layers. A
detailed architecture of the bounding box branch is shown in Fig. 3.3
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Figure 3.3: Detailed architecture of the bounding box branch. The inputs are bounding
box parameters of N targets and M measurements. In training, N and M are 128 (batch
size) respectively.
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Figure 3.4: Slicing unit features to obtain target and measurement specific features.

3.1.2 Appearance Branch

The appearance branch is used to analyze the 2D visual cues in the targets and mea-
surements for the computation of the similarity scores. We train another stacked Siamese
network for this purpose. The input to this branch are the appearance features which
are the feature maps which are the output of the convolutional layers from VGG16 pre-
trained on ImageNet dataset. The dimensions of the input appearance feature maps are
(7x7x640). The architecture of the branch is shown in Fig. 3.5. First, we apply 256 3 x 3
convolutions to obtain promising features for similarity learning by preserving the spatial
size of the input. Before flattening the feature maps for the fully-connected layers with 512
neurons, the Global Average Pooling (GAP) [52] layer extracts one abstract feature from
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each feature map. Similar to the bounding box branch, .2 normalization yields a vector of
dimension (N + M) x 512. As in the case of the bounding box branch, the (N + M) x 512
features are sliced along the first dimension (as shown in Fig. 3.4) to obtain appearance
features of detections and targets to compute the appearance cosine similarities.
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Figure 3.5: Detailed architecture of the appearance branch.

3.1.3 Importance Branch

The aim of the importance branch [32] is to determine the relative importance of the
bounding box and appearance features in the computation of the final cosine similarity
score. The inputs to this branch are the unit bounding box and unit appearance features
of both targets and measurements (Fig. 3.6). First, the vector representation of objects
obtained from the appearance and bounding box branches are concatenated to form a single
vector (dimension 1024). This, in turn, is connected to a fully-connected layer having two
neurons. Finally, the softmax layer computes two scalars representing the importance
weights as probabilities of the two branches. The weights are sliced along the first and
second dimensions to obtain the individual target ¢ and measurement m, specific weights
for both the branches. Using these individual weights of the two branches for a given target
and measurement their branch-computed similarity scores are aggregated as follows:

B wg) X wém)

Q for B € {'bbox’ app'}, (3.2)

wWs

3.1.4 Similarity Maps

The output of the SimNet is a set of local similarity maps having N,,., channels in total,
every channel corresponding to every target. The choice of the parameter N,,,, is a design
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Figure 3.6: Detailed architecture of the importance branch.

choice and it directly relates to the maximum number of objects the tracker can associate
at a given time instant. Initially, similarity maps are constructed by building a global map
of measurement indices on the Bird’s Eye View IMU/GPS frame. The resolution of the
map is chosen as 0.5m and with a range of 80m x 80m we get a map of size 160 x 160
pixels. Later, the measurement specific features computed by the similarity network of size
512 are placed in the respective measurement locations in the global map. Now for every
target, the global map is replicated and the target-specific features of size 512 are convolved
with the measurement features on the locations where the measurement is present. This
corresponds to a typical convolution operation done with images but since our map is very
sparse we got with selective convolutions by doing a matrix multiplication operation only
at the locations where the measurements are present. This makes the algorithm much
faster when compared to a full convolution with the map. The same procedure is done for
other targets to build N global maps. The selective convolution operation for a typical
global map channel is shown in Fig. 3.7.

The process of building these maps is done for bounding box and appearance branches
giving two sets of maps. Two weight maps are built by placing the bounding box and
appearance specific weights respectively, at the measurement locations. The two sets of
similarity maps discussed earlier are weighted using these weight maps to produce a consol-
idated set of maps. Finally, the convolved output of the map will now have the similarity
scores between the corresponding target with every measurement as the features are nor-
malized to unit vectors by the network branches. Similarity maps are only built during
inference. In training, the dot product of the target and measurement feature vectors is
directly fed to the loss function.

The global map has dimensions 160 x 160 x N. For every channel the location of the
target center is identified and the global map is cropped around the target’s center location
up to 21 pixels on both sides which corresponds to the target’s 10mx10m neighbourhood.
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Figure 3.7: Construction of the global map. The global and local similarity maps are built
only during inference.

Additional channels N,,,, — N are added as dummy maps with zeros for consistency.
Finally we get the localized map for every target in every channel and this is called as
Local Similarity Map with dimensions 21 x 21 X Ny,qz-

3.1.5 SimNet Loss Function

The SimNet is a mixed architecture of trainable and non-trainable components. The
bounding box branch, appearance branch, and importance branches have trainable compo-
nents which need a loss function during training to measure the deviation of the prediction
from the ground truth. As the problem is defined as finding the similarity score between
a target and a measurement we use weighted cosine distance as the loss function. Cosine
distance is widely used as a metric to measure the similarity or dissimilairty between two
elements, especially in natural language processing models. Due to this reason we choose
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cosine distance as the loss function. The training examples generated from the training
dataset have some skewness with respect to the number of positive and negative examples
(similar and dissimilar pairs). To account for this skewness we use the weighted cosine
distance. The loss function for the learnable parameters ©; can be given by,

1 N i
L(@) = m Zi:l wék?ew X wﬁo)stx
(1-y9 x5 (0)) (3.3)

where Nt is the number of examples with nonzero weights, y® denotes the ground truth
value of the i"* example, i.e., ) € {~1,1}. 9 is the estimated cosine similarity score
computed using the cosine similarities from the two branches and their normalized impor-
tance weights as follows:

9 (€) = winor (0)) x i1, () +

wt(zgpear (©) x @((zgpear (©) (3.4)
wigew is the weight used to remove the imbalance of negative examples in the training
dataset. ng)st given by

W { —log(1—cos™ (5 (0)) /m +¢) if y© =1, (3.5)
st —log (cos™ (59 (0)) /m+€) if y = 1, |

scales the loss function according to how easy or hard it is to distinguish between each
pair of examples so that the training can revolve around a sparse set of the selected hard
examples [53]. In 3.5 € is a small constant (le — 10) that prevents taking log of zero

3.2 AssocNet - Data Association Network

The second network in the architecture does the actual data association between the targets
and measurements by using the similarity scores provided by the SimNet and it is called as
AssocNet. The overall architecture of the AssocNet is shown in Fig. 3.8. The input to this
network is a set of local similarity maps provided by the SimNet, having dimensions 21 x
21 X Nyjae- The outputs from the network are the predicted locations of the targets which
could be translated back to the corresponding measurements thereby getting associations
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Figure 3.8: Detailed architecture of Assocnet

between targets and measurements and target-to-detection association probabilities for
each existing target.

The main building blocks of the AssocNet are convolutional, dilated convolutional (d-
Conv), and fully-connected layers, with batch-normalization and leaky-ReLU activation
used in all the layers. The local similarity maps are of spatial sizes 21 x 21 but the locations
where there are actual measurements with similarity scores are very less considering the
average scenario of normal traffic in the roads when it is not extremely crowded. These
sparse maps will have very small receptive fields if regular convolutions are used. Hence
we use dilated convolutions which increases the receptive fields greatly [38] enabling us to
learn from the sparse similarity maps.

We now discuss the data flow through AssocNet. The input local similarity maps are
fed through a series of dilated convolutional layers with dilation factors 2,4, and 6. The
neighbouring fields have slightly overlapping fields of view due to increased dilation size
[70]. The convolutional layer enables interactions between these neighbouring units which
effectively results in considering all the detections simultaneously while making assign-
ments. Thus to aggregate information, we employ a 3 x 3 convolutional layer at the end
to compute the maps of logits (the vector of non-normalized predictions).
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AssocNet is to be trained to predict assignment probabilities between a target and its
probable detections. Since the locations of probable detections are known in each local
similarity map, there is no need to train AssocNet to predict assignment probabilities of
other locations as zero. This reduces the training efforts for regions that are not measure-
ment locations thereby helping in faster convergence. To implement this idea, we generate
association masks for each local similarity map. In the association masks, cells of proba-
ble detections are set to zero, while the other cells are set to the smallest floating point
negative number (approximating —oc). This ensures the locations that do not contain
the measurements remain blocked. Then the association masks are added to the map of
logits obtained from the convolutional layer with 3 x 3 x 21 filters (see Fig.3.8). This
maintains the values of the logits computed for probable detections, but makes other logits
insignificant for further computation.

After masking the maps of logits, Assocnet is split into two branches. The first branch
has two fully connected layers having 512 neurons each and then another fully connected
layer with N,,,, neurons. The output of this branch predicts the N,,.. logit values of
spurious detections. These are the probabilities that the corresponding target has gone
un-detected in the current frame, which also means that no association with any of the mea-
surements could be possible. The output from this branch thus has a shape of [1, channels]
representing one value of probability for each of the Ny, (we consider N,,,, instead of
N for consistency and for ease of implementation ) targets. The second branch flattens
the maps by maintaining the channels dimension such that the shape of the second branch
would be [21 X 21, Npaz).

The first dimension corresponding to 21 x 21 would correspond to the logits for asso-
ciating the target to all possible measurements in the spatial neighborhood of the target.
Thus we solve the data association problem by modeling it as a classification problem to
be solved by the network. Further we concatenate the two branches along the first di-
mensions such that the final shape would be [21 x 21 4 1, N,,4,]. Here we add another
class to the existing 21 x 21 classes, which will correspond to the scenario where the target
has gone undetected as occlusion if it could not be classified as one among the 21 x 21
measurement locations. Finally a softmax is applied to this to compute the probabilities
of the classes. The resulting vector is sliced such that we get the class probabilities for
the 21 x 21 measurement locations and the ’occluded’ class separately. The first vector is
reshaped to [21,21, Ny,..| and the last unused channels are pruned to get the association
maps. The second vector corresponding to the probabilities of occlusions are also pruned
to remove the unused target channels to get the probabilities of occlusions.

From the association maps we can get back the associated measurements for every
target by computing the max index locations where the probabilities are maximum.
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where X? Y correspond to the spatial indices of the map for a given target channel
i and (],,.4, Yp,eq) gives the predicted location of the target for the current frame which
will coincide with the measurement in that location. By maintaining a dictionary of the
measurement identities and their corresponding locations we could easily get back the mea-
surement corresponding to the predicted location. Thus finally we arrive at the associations
between the targets and measurements. The targets that were not associated with any of
the measurements can be handled by using predictions from state estimation algorithms
which will be discussed in the subsequent sections.

3.2.1 AssocNet Loss Function

Training the AssocNet is a classification problem in which the labels are the association
maps showing the true associations for every target. To train the data association network
we use a multi-task loss function given by,

L(©)=1(0) _ +1(6) (3.7)

assoc reg

where © is the set parameters of the association network, [ (0),,, is the L2 regularization

loss. (©) ., s the binary cross-entropy computed for the association maps as follows:

Quee = Gosoe (05 5) X log (min (¢, (i,7;0) + ¢, 1))
Poee = Pdse (i §) X log (min (p{,. (i, 7;©) + €, 1)) (3.8)

N 2141
l (@)assoc = Zt:l Zi,j:l (_QUec> + <_pvec)

where ¢\%soc (1,7) =1— Do (,7) and € is the margin used to ignore negligible errors

in the predicted probabilities ﬁé?soc (7,7;©). The upper limit of ¢ and j in the inner sum-
mation in 3.8 is 21 + 1 as we need to account for the additional class which corresponds
to the probability of occlusion, in addition to the 21 classes corresponding to the actual
measurement locations.
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3.2.2 Visualization of the maps

To visualize the global and local similarity maps belonging to Simnet and the predictions
of the AssocNet, we consider an example from the training video 17. We have two frames
90 and 91 at two consecutive time instants, which are shown in Fig. 3.10. We have
four targets from frame 90 and four measurements in the frame 91. For simplicity, we
only consider the target belonging to track 0. Fig.3.9a shows the global similarity map
generated for the target track 0. We could see that the most probable measurement that
is similar to the target is given a higher similarity score. These global maps are cropped
around the respective targets to arrive at local similarity maps. The local similarity map
and the corresponding output prediction by AssocNet are shown in Fig. 3.9b.

AFiaine: o0 i oo % . e Y

Figure 3.10: Two frames 90, and 91 from the training video 17.

3.3 Track Management

Let us assume we have a set T of all the trajectories ¢;. At any time instant 7 = k, we
have the set of measurements M of the form m*. Successful associations are denoted as
(tF, mF), occlusions as (t§, None), and track birth as (None,m}). The track management
module consists of a Kalman filter for state estimation and a probability of existence for
maintaining the tracks. We discuss these two in detail in the upcoming subsections.

3.3.1 Kalman Filter
The output of the detector could contain noisy measurements which are typically filtered by

state estimation algorithms. Furthermore, the undetected targets which are occluded could
re-appear after a few frames. There should be a good motion prediction mechanism which

40



would help in re-identifying the missed target, which will improve the overall tracking
accuracy and reduce fragmentation. To address these we use a linear Kalman filter for
motion prediction and state estimation. We track the 3D positional coordinates of the
object as the state in the filter, and the velocities in the corresponding dimensions are
derived from the filter by using kinematic equations as motion model. The state of the
filter X is given by,

[z,y,2,&,7, 2] (3.9)

where x,y, z are the coordinates of the center of the object being tracked in IMU-GPS
coordinates of the first frame of the ego car (referred as IMU,) which are also called as
measurements and 2 y and 2 are the corresponding velocities. To remove the ego motion we
transform the positions from camera coordinates to I MU, using transformation matrices

and GPS data [25].

Thus the state dimensions are 6 and measurement dimensions are 3. The state transi-
tion matrix is given by,

1006 0 0
0100 8 0
0010 0 o
F=lo001 0 o0 (3-10)
0000 1 0
0000 0 1]

The term ot in the last three columns help in updating the state according to the
Newtoninan equation x; = vdt + x;_1 (here x is the position and v is the velocity). Using
the F' matrix this generalizes for all dimensions of the state as X; = F'X;_;. The velocity
in the state is initialized by following a two-point initiation algorithm [55]. The velocity is
set to 0 at time ¢t = 0. At time ¢t = 1 the velocity is updated in the filter as v = x; — x;_1.

The H matrix which represents the measurement function that is used to transform
the state space to the measurement space is initialized as an identity matrix. The R
matrix representing the measurement noise covariance is derived from the MSE values of
the position estimates from the detector, using ground truth data from the training set.
This represents the noise of the object detector.

0.051589 0 0
R= 0 0013226 0 (3.11)
0 0 0.010612
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The ) matrix which represents the covariance of the noise of the process is set as
discrete white noise [10] with a covariance factor o which is set to 1. The @ matrix is
computed according to [10] as follows,

5th/4 ot?)2 6t*)2
Q= |6t*/2 ot* ot |o? (3.12)
§t?/2 ot 1

The P matrix of the filter which corresponds to the state error covariance is computed
[55] using the R matrix as follows (subscripts indicate the time instants),

Ry 5 Re

Poo =
212 éRQ &%(31%—32)

(3.13)

3.3.2 Probability of Existence

The track existence probability P! helps in pruning the tracks with Bayesian estimation.
During the prediction step we set a prior as

PF =P x Py, VieT (3.14)

where Py, is the probability of survival which is set as 0.60. For every successful associ-
ation we compute P! [(1] as

1 — Ak L
fizmxpiil where Afzle[l—(s—} VieT (315)

Here w; is the detection score of the measurement associated with t;, £; is the Gaussian
likelihood of the measurement. ; is the clutter intensity which is modeled as a Poisson
process [(1] as

Ji = A X c(m?)

where A is the poisson clutter rate of the detector estimated using the training data and
c(m¥) is the spatial distribution modeled as uniform density in the perception volume of
the detector (80m x 70m x 8 m) and is given by

1
(80— 4+ 1) x (70 —w; + 1) x (8 — h; + 1)]

where [;, w;, h; are the length, width, and height respectively of the measurement.
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3.4 Experiments

The following subsections explain in detail about the datasets used in training the networks,
the hyper-parameters used in training, the experiments performed and the quantitative and
qualitative results obtained.

3.4.1 Dataset

We used the KITTI Tracking benchmark dataset for training and evaluation of our ap-
proach. The KITTI Tracking dataset consists of 21 training sequences and 29 test se-
quences. As the training sequences have different levels of difficulty, occlusion, and clutter
we split the 20% of every training sequence for validation. Thus the first 80% of a tracking
sequence would be used during training and the last 20% of the sequence would be used
during validation. This way, training and validation datasets are not skewed and have
seen all the scenarios in the dataset which occur in specific video sequences. For training
SimNet, we construct a training dataset from the training sequences by generating positive
and negative examples in consecutive frames and odd and even frames using ground truth
information. Geometric transformations (translation, rotation, and scaling) are applied to
the ground-truth bounding box parameters to model partial occlusion and detector noise.
This gives a large training set in which the ratio of negatives to positives is approximately
18 : 25.

We trained the object detector using a combined dataset consisting of the KITTI 3D
object detection dataset and the 80% split of the KITTI training dataset mentioned earlier,
after pre-training on a synthetic dataset [30]. Pretraining with the synthetic dataset in-
creases the detection accuracy by about 3%. We choose the best checkpoint for the object
detector based on the best 3D object detection AP (Average Precision) on the validation
set of the combined dataset. We plot the P-R curve as shown in Fig. 3.11 and find the
best threshold corresponding to the maximum F'1 score as 0.28.
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Figure 3.11: PR curve of the object detector (AVOD) on the combined dataset for the car
class. The best threshold 0.28 corresponds to the point where F1 score is maximum.

3.4.2 Training

We build a simnet dataset to train the Simnet by constructing mini batches of batch size
128. Each mini batch has components as shown in Table 3.1.

The AssocNet is designed to take a similarity map as input and perform the data
association. As the AssocNet operates on a pair of frames (frame corresponding to time 7
and 7—1) the inputs for training are prepared by taking the actual ground truth detections
in the training set at times 7 and 7 — 1. We used a batch size of 1 for AssocNet. The local
similarity maps for training are generated by running the trained SimNet on the training
dataset. The label maps for the inputs are generated by mapping the right measurement
that is the ground truth association for a given sample target on a localized map and
concatenating such maps for all the targets in the scene. This gives rise to the label which
is similar in shape to the local similarity map. The structure of the AssocNet dataset is
shown in Table 3.2.

To optimize the parameters using the loss function (3.3) we use Adam optimizer and
exponentially-decaying learning rate [11]. The learning rate is initially set to le — 5 and
then decreased every 100 epochs with a base of 0.95. AssocNet also uses Adam optimizer
to optimize the parameters using the loss function defined in equation 3.7. The learning

44



rate for AssocNet is initially set to 1e — 6 and then decreased every 20 epochs with a base
of 0.95.

3.4.3 Evaluation Metrics

The accuracy in SimNet is measured (3.16) by counting the number of correct predictions
(similar or dissimilar) by comparing them to the ground truth. We obtain a training
accuracy of 90.5% and validation accuracy of 91.3%.

N i s
ACCUT ACY simnet = Zi:l(yN__ 7) y € {0,1} (3.16)
The AssocNet predicts the (x,y) locations of the probable measurement in the local
map of every target. Hence its accuracy is given by considering all the correct predictions
in all the target channels as shown in 3.17. We obtain a training accuracy of 99.71 % and
validation accuracy of 99.78 %. We compare these spatial predictions with the ground
truth according to the following equation

ACCUT ACYassocnet = T,y € [_1()’ 10] (317)
where 2° and 3 are the spatial predictions of associated measurement locations for the
target <.

These metrics are used to evaluate the performance of the individual networks. To
evaluate the overall performance of tracking, we use the popular CLEAR MOT metrics [3].
Multiple Object Tracking Accuracy (MOTA) gives us an estimate of the tracker’s overall
performance. However, this is dependent on the performance of the object detector. Hence,
we also look at tracking specific metrics like Mostly Tracked (MT), Mostly Lost (ML), ID
Switches (IDS) and fragmentation (FRAG), which evaluate the efficiency of the tracker
in assigning the right IDs with reduced switches or fragmentation in the tracks. Mostly
Tracked gives an estimate of the proportion of tracks that are tracked successfully for more
than 80% of their lifetime. Mostly Lost gives an estimate of the proportion of tracks that
are tracked for less than 20% of their lifetime. When the IDs of two different tracks are
swapped we call this as an ID switch. If a track gets a new ID in its lifetime we call this
as a Fragmentation.
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3.4.4 Ablation Study

We do an ablation study to evaluate the components in our approach by comparing them
with traditional approaches. Firstly, we study the impact of the similarity network. In Ta-
ble 3.3, Euclidean and Manhattan denote the baseline distances modeled with the 3D posi-
tion estimates. Bhattacharyya and ChiSquare metrics are built from the image histograms
of the cropped targets and detections to study the image-only configuration. SimNet and
AssocNet denote our similarity and Association networks respectively. From Table 3.3, we
could infer that conventional similarity approaches were not able to achieve comparable
accuracy (MOTA) as the features involved in the computation of the similarity scores were
not robust. We also study the impact of our association network by replacing it with a
baseline Hungarian approach. Again, we could observe that the baseline approaches like
Hungarian couldn’t fare better than ours. Finally, we study the relative importance of the
individual branches in the Simnet by disabling either of the inputs. By losing either of the
inputs the overall MOTA is seen to decrease and at the same time it also leads to more ID
switches and fragmentation.

3.4.5 Experiments with Tracking Parameters

We also perform experiments to fine tune the parameters for the Kalman filter and the
track existence. From Table 3.4 we could see that the results on the validation set when
the existence threshold of the tracks is set to 0.30, 0.40 and 0.50 and the survivability
factor values set at 0.50, 0.60 and 0.70 by setting everything else constant and the best
results are obtained while setting them to 0.40 and 0.60 respectively. The probability of
existence update which is performed for every successful track association relies on the
Gaussian likelihood which in turn depends on the Kalman filter prediction. During the
initial few frames of every track the prediction would not have converged and this leads to
lower likelihood and premature termination of tracks. To avoid this we delay the update
by doing a probability of existence reversal until the track age is 5 frames.

3.4.6 Kitti Benchmark Results

We evaluate our approach on the test sequences on the KITTI evaluation server for the
'Car’ class. The results are presented in Table 3.5.

Due to the challenging nature of online tracking approach and to do a fair comparison,
we only consider published online tracking approaches for our comparison. We achieve
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competitive results with respect to the state of the art in online tracking with improved
MOTP which is better than most of the online methods. Our Mostly Tracked and Mostly
Lost (MT & ML) values are also competitive which show the effectiveness of our data
association approach. Further, our approach gives inferences in 3D and KITTT evaluations
are done in 2D, which is not completely representative of our approach. It should also
be noted that none of these approaches use deep learning for data association. On the
other side, we have used a simple Kalman filter for state estimation and motion prediction
which could potentially be improved by better tuning of parameters or trying out more
sophisticated approaches for track management.

3.4.7 Qualitative Evaluation

We perform a qualitative evaluation by running our tracker on the KITTI tracking vali-
dation and testing sequences. We analyze different scenarios including occlusions, clutter,
parked vehicles and false negatives from the detector. Fig. 3.14 shows an example from
sequence 0 in the test set. Different tracks representing the vehicles are color coded and
the track IDs are displayed for reference. The tracker is able to perform well in spite of the
clutter due to the closely parked cars. In Fig. 3.12 we see an example from test sequence
17 in which the false negative by the detector is overcome with the help of the prediction
of the tracker. These examples show the robustness of the tracker and its ability to per-
form better in scenarios of missed detections. There were also some cases where the data
association fails and as a result ID switching and fragmentation happen. In Fig. 3.13 the
track 38 was previously assigned to a nearby car but after an occlusion in the detection ID
switching happens. This could be due to the low-lit conditions of the two cars.
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Figure 3.12: Qualitative Evaluation - In this example (video 17 in test set) the detection
was missed by the detector and reappears in the next frame. But the tracker was able to
successfully maintain the track
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Figure 3.13: Qualitative Evaluation - An example from video 15 in test set where 1D
switching occurs for Track 38 due to low-lit conditions
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Figure 3.14: Qualitative Evaluation - An example from video 14 in test set where the
tracker performs well in a cluttered scene with parked cars.
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(b) Local similarity map and AssocNet prediction

Figure 3.9: (a) shows the global similarity map and (b) shows the Local Similarity map
and AssocNet’s prediction corresponding to target track 0.
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Algorithm 1: Tracker Algorithm

Py = 0.60 ; // Probability of Survival
0., = 0.40 ; // Existence threshold
while true do

Get measurements m* at time 7 = k

if £ =0 then

foreach m{ do
|  Create new track i

end

else
PredictTracks :

Perform Kalman Filter Prediction;
Compute prior P¥;

DataAssociation :
Data Association for t* and mF;

UpdateTracks :
Perform Kalman Filter Update;
Update PF;
V(t;,m}) Update track i with m¥
V(t¥, None) Propagate predicted t¥ to 7=k + 1
V(None, m%) Create a new track;

Vie T if PF < 0., then
| Prune 1
end
end
end
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Input Shape
Targets’ Bounding boxes [128,1,7,1]
Measurements’ Bounding boxes [128,1,7,1]
Targets’ appearance features [128,7,7,640]
Measurements’ appearance features | [128,7,7,640]
Labels [128,1]
Table 3.1: Inputs to SimNet

Input Shape

Local Similarity Maps | [1,21,21,21]

Number of Targets [1,1]

Label Maps [1,21,21,21]

Table 3.2: Inputs to AssocNet

Method MOTA § [MOTP1 MT+ |PT1 |MLJ] |IDSJ|FRAG ]
Euclidean+ AssocNet 56.16 % | 84.84 % | 7222 % | 1851 % |9.25% | 269 320
Manhattan+ AssocNet 56.75 % | 84.83% | 73.14 % | 1759 % | 9.25 % | 265 319
Bhattacharyya+AssocNet 56.69 % | 84.81 % | 7222% | 1851 % |9.25% | 256 307
ChiSquare+AssocNet 5717 % | 8481 % | 73.14 % | 1851 % | 8.33 % | 262 311
SimNet+Hungarian 7459 % | 84.92 % | 65.74 % | 23.14 % | 11.11 % | 26 93
SimNet ImgOnly+AssocNet | 74.30 % | 84.75% | 7314 % 1759 % |9.25% |29 82
SimNet BboxOnly+AssocNet | 75.51 % | 84.74 % | 7222 % | 1851 % |9.25% |15 70
SitmNet+ AssocNet 76.52 % | 84.81 % | 73.14 % | 1759 % 9256 % |1 54

(1 denotes higher values are better. | denotes lower values are better)

Table 3.3: Ablation study on KITTI validation set for "Car’ class
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Parameter MOTA T | MOTP 1 [ MT ¥ |ML| |IDSJ|FRAG ]
0. = 0.30 76.34% 84.60% 5% 833% |2 45

0 = 0.50 76.46 % | 84.82% | 73.14 % | 10.18 % | 1 58

Py = 0.50 76.46 % | 84.82% | 73.14 % | 10.18 % | 1 58

Py = 0.70 76.34 % | 84.61% | 5% 833% |2 44
o?=0.1 75.87 % | 84.78 % | 7222 % | 9.25 % | 4 76

o =10 76.49 % | 84.80 % | 7222 % | 9.25% | 4 56

0? =50 76.17 % | 8483 % | 7222% [925% |5 58
Optimal (0, = 0.40,P.y, = 0.60, 02 =1) | 76.52 % | 84.81 % | 73.14 % [ 925 % | 1 54

(T denotes higher values are better. | denotes lower values are better)
Table 3.4: Experiments with Tracking Parameters

Method MOTA 1+ | MOTP 1 | MT 7t ML | |IDS | | FRAG |
MOTBeyondPixels [73] | 84.24 % | 85.73 % | 73.23 % | 2.77 % | 468 944
JCSTD [87] 80.57 % 81.81 % 56.77 % | 7.38 % | 61 643
3D-CNN/PMBM [72] 80.39 % 81.26 % 62.77 % | 6.15% | 121 613
extraCK [29] 79.99 % 82.46 % 62.15% | 554 % | 343 938

MDP [20] 76.59 % 82.10 % 52.15 % | 13.38 % | 130 387
FANTrack (Ours) 77.72 % 82.32 % 62.61 % |87 % | 150 812

(1 denotes higher values are better. | denotes lower values are better)

Table 3.5: Results on Kitti Test set for ’Car’ class
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Chapter 4

Implementation

This chapter describes the implementation of FANTrack which is a full-fledged tracker
implemented as part of the software stack on the level 3 autonomous driving research
platform developed at the University of Waterloo called ” Autonomoose”. We describe the
system architecture, dependencies and working of the tracker as a ROS Node. The source
code of the implementation is available at [2].

4.1 Architecture

The FanTrack module requires the camera images, 3D bounding boxes from the object de-
tector, and static and dynamic transforms. The camera images are available as ros topics
from the cameras. We use the Front camera for straight driving and three cameras (Left-
Front, Front and RightFront) for scenarios involving intersections. We get the transforms
for camera_F to imu_F from the calibration publisher which publishes the static trans-
forms. We get the odom to imu_F and imu_F transforms from the localizer which provides
the dynamic transforms involving odom frame of reference. We use imu_F for the data
association step as this frame of reference is vehicle body frame. We perform the filter
updates in the odom frame as this serves as a continuous fixed frame of reference which
doesn’t move with the vehicle for short durations. The tracker publishes the list of tracks
as a ROS topic \obj_tracked. A component diagram which shows the interfacing of the
tracker with its dependencies is shown in Fig. 4.1.

To implement the tracker as part of the autonomous driving software stack we consider
two architectural choices based on how the tracker interacts with the object detector.
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Publisher J FANTracker —O

Tracks
Dynamic
9 Transforms

Anm Localizer

Figure 4.1: A component diagram of FANTracker with dependencies, required and provided
interfaces.

4.1.1 Coupled approach

In this approach, the tracker is a submodule of the object detector (AVOD). The tracker
will publish its own obj_tracked topic but it is invoked as part of the AVOD’s callback
function. This is also regarded as a synchronous approach with respect to the object
detection and tracking as the object detector has to wait until the tracks are assigned
to the detected objects. The coupled approach is represented as a sequence diagram in
Fig. 4.2. In this approach we extract the camera image from the one that is fed to the
object detector and the bounding boxes also have the same timestamp.

The advantage of this approach is that we don’t have to explicitly synchronize the
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Lidar msg

Camera msg

Call
FanTracker
(Submodule)

Published
Tracks

Figure 4.2: Synchronous approach in which the FANTracker is a submodule of the object
detector

camera image and the bounding box inputs as the entire process is synchronous. This
will avoid missed detections due to synchronization issues. But the disadvantage of this
approach is that the object detector and the tracker are sequential in nature and this
prevents either of them in running in parallel with the other. This leads to under utilization
of resources and delays the inference times which has a cascading effect on the downstream
systems. Furthermore, tight coupling of components is generally not encouraged in software
systems.

4.1.2 Decoupled approach
In this approach, the tracker is designed as an independent ROS node which accepts inputs

from the camera and the object detector. This can also be regarded as an asynchronous
approach as the object detector doesn’t wait till the tracking is done and the final tracked
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object list is published. The sequence diagram of the decoupled approach is shown in
Fig. 4.2.

loop

<{sype>>

Published
Tracks

Figure 4.3: Asynchronous approach in which the FANTracker is an independent module

The major advantage of this approach is that the components can run in parallel and
they don’t have to wait for the other to finish processing. This increases resource utilization
which is the main drawback of the previous approach. By comparing both the approaches
we can conclude that the decoupled approach has better advantages as it increases resource
utilization and has less coupling.

To overcome the disadvantages posed by the varying timestamps of the camera and
bounding box inputs, we utilize the concept of time synchronization that helps in synchro-
nizing the ROS messages. We use the ApproximateTimeSynchronizer which is part of
the message\filters ROS library.
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1 Front Camera

(c) Frame 3

3 Front Camera

(d) Frame 4

Figure 4.4: Visualization of the FANTracker running in Autonomoose. Normal driving
scenario with only Front Camera) 59



(b) Frame 2
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(d) Frame 4

Figure 4.5: Visualization of the FANTracker running in Autonomoose. Intersection sce-
nario with three cameras
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Chapter 5

Conclusion

This work introduced FANTrack, a 3D online multi-object tracking approach for au-
tonomous driving scenarios. FANTrack differs from the other online tracking approaches in
its ability to efficiently fuse multi-modal inputs from different sensors to compute similarity
scores and a learning based data association implemented as inference in CNN. Experi-
ments on Kitti tracking benchmark showed competitive results in online tracking and state
of the art results considering published 3D online tracking strategies. FANTracker is im-
plemented as a ROS node and tested in our autonomous vehicle for real time performance.

5.1 Limitations

5.1.1 Performance limitations

Though the FANTracker’s frame-wise data association is very good, the overall tracking
performance is limited by the performance of the object detector as it relies on the de-
tections from a detector. Missing detections for more frames and frequent false positives
from the object detector which are beyond the limits of the filter would degrade the overall
tracking accuracy.

5.1.2 Overfitting

As the FANTrack involves deep neural networks in the similarity and association archi-
tectures it needs a lot of training data. If the networks are not trained with a sufficient
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amount of data the models are susceptible to overfitting which would reduce the perfor-
mance during inference. Furthermore, we need labeled data to train the networks and
getting the datasets labelled is often considered as a time consuming effort.

5.2 Future Work

5.2.1 Combined Architectures

We train the Simnet and AssocNet as two separate networks and use them separately
during inference. We could combine these two networks into a single architecture and
training can be done in tensorflow by removing the SimNet loss function and connecting
the similarity maps directly to the AssocNet placeholders. Further research is required
in designing a combined loss function as the process of making the similarity maps to
predict the similarity values and the assocnet’s responsibility of classification should be
factored into the new loss function. Furthermore, the object detection framework could be
combined with the data association by feeding in the detections from the previous frame.
This would lead to an end-to-end detection and tracking framework.

5.2.2 Local Map size

The resolution of the local similarity map represents the extent to which the network should
look for the measurement to associate the target. This could be related to the speed of the
vehicles and further research is possible in altering the size of the map size or dynamically
varying it according to some input factors like the type of road the car is currently driving
on.

5.2.3 Prediction and Track Maintenance

We use Kalman filters for prediction and a probability of existence formulation to decide
when to terminate the tracks. Instead, sequence-based recurrent neural network models
like LSTMs could be used to predict and maintain the trajectories.
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