
Development of an Autonomous
Vehicle Platform

by

Hamid Tahir

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, 2019

c© Hamid Tahir 2019

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Autonomous vehicles and their related development are gaining a lot of traction as
a promising up and coming technology. The Mechatronics Vehicle Systems lab at the
University of Waterloo is well pioneered in the automotive industry and seeks to apply their
knowledge and skills to autonomous vehicles. Having an autonomous vehicle development
platform at the University allows for development and testing of state of the art algorithms
that can potentially benefit the entire automotive industry.

An autonomous driving platform based on a Chevrolet Equinox is proposed in this
thesis. Various types of sensors are installed on the vehicle and interfaced, allowing for
full coverage of the surrounding environment. A software platform is developed which uses
ROS and Matlab simultaneously, benefiting from the libraries, tools, and resources that
come with both. The hardware platform is designed with simplicity and functionality in
mind. Moreover, a simulation platform is used for testing various algorithms before real
world implementation.

Various types of sensor calibrations are necessary to fully synchronize all the sensors
on the platform spatially. A joint calibration method that allows for the simultaneous
calibration of all 3D sensors sharing a common field of view is implemented. Specialized
hand-eye calibration methods to calibrate the GPS navigation system to the LIDAR and
camera sensors are explored. Furthermore, vehicle to everything interfacing is kept in
mind and a calibration technique is presented in order to localize infrastructure mounted
sensors to a GPS navigation system. The calibration techniques are tested and areas of
improvement are revealed.

The developed platform is tested with the task of autonomous lane keeping. The
steering wheel angle of the vehicle is controlled by the developed algorithm utilizing the
camera and GPS navigation solution. The algorithm is tested in simulation with good
results. Before real world testing, time synchronization between various devices on the
platform, as well as testing of the actuators’ controllers is performed. Finally, the lane
keeping algorithm is tested on the developed platform on the University of Waterloo Ring
Road. The system is able to autonomously steer around the majority of the road which is
approximately a 2.5 km distance.

iii

Acknowledgements

I would like to thank Professor Amir Khajepour and Professor William Melek, my
supervisors, for their invaluable insights and guidance. Their knowledge and willingness to
share it has kept me on the right track for the last two years.

I would also like to thank the lab technicians at the Mechatronics Vehicle Systems lab,
Jeff Graansma and Jeremy Reddekopp, for their support and help in testing the developed
platform. The co-operative undergrad student, Brandon Johnson, aided in the construction
of hardware elements used on the platform for which I am also very grateful.

Finally, I would like to thank Professor Ehsan Hashemi and Dr. Chen Tang for their
support in my research and providing insightful ideas and critiques regarding my work.

iv

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and Contributions . 2

1.3 Outline . 3

2 Literature Review and Background 4

2.1 Autonomous Vehicle Platforms . 4

2.1.1 Computing Platforms . 5

2.2 Sensor Calibration Techniques . 6

2.3 Lane Detection and Lane Keeping Methodology 8

2.4 Autonomous Driving Sensors . 10

2.4.1 Camera . 10

2.4.2 GPS and IMU . 11

2.4.3 Radar . 13

2.4.4 LIDAR . 13

2.5 3D Rigid Body Transformations . 13

2.6 Solving Homogeneous Transformation Equations of Form: AX = XB . . . 15

v

2.7 Levenberg-Marquardt Algorithm . 16

2.8 Iterative Closest Point Algorithm . 16

2.9 Inverse Perspective Mapping Algorithm . 16

2.10 Lane Marking Detection Algorithm . 17

3 Platform Design 18

3.1 Software Platform . 19

3.1.1 Operating System . 19

3.1.2 Simulation Platform . 20

3.1.3 User Code . 22

3.2 Hardware Platform . 22

3.3 Interfacing . 24

4 Simulation Setup 25

5 Sensor Calibration 27

5.1 Heterogeneous 3D Joint Calibration . 28

5.1.1 Calibration Target Design . 29

5.2 Infrastructure Sensor and GPS Calibration 30

5.2.1 Vision Sensor and GPS Calibration Simulation Results 30

5.3 Hand-Eye Calibration . 32

5.3.1 Camera and Navigation Solution 33

5.3.2 LIDAR and Navigation Solution . 37

6 Lane Keeping System 38

6.1 Lane Keeping Controller . 39

6.2 Lane Keeping with Navigation System . 39

6.2.1 Lateral Error Metric . 40

6.2.2 Heading Error Metric . 40

vi

6.2.3 Map Pre-Processing . 42

6.3 Vision Based Lane Detection . 42

6.4 Lane Keeping with Combined Vision/Navigation Solution 46

6.4.1 Vision Lateral Error Metric . 47

6.4.2 Vision Heading Error Metric . 48

6.5 Simulation Experiments . 48

7 Experimental Setup 54

7.1 Experimental Platform . 54

7.1.1 Software Platform . 55

7.1.2 Hardware Platform . 58

7.1.3 Interfacing . 64

7.2 Time Synchronization . 67

7.2.1 GPS and Linux Computer Synchronization 69

7.2.2 Synchronization with Other Sensors 70

7.3 Calibration Results . 71

7.3.1 Heterogeneous Joint Calibration . 71

7.3.2 Navigation System and Camera . 74

7.3.3 Navigation System and LIDAR . 76

7.3.4 Conclusions . 78

8 Experimental Results 79

8.1 Vision Lane Detection Implementation . 79

8.1.1 Dynamic Pitch Correction Design 80

8.1.2 Pitch Correction Results . 82

8.1.3 Lane Detection Improvements . 82

8.2 Lane Keeping Results . 84

8.2.1 Ring Road Experiments . 86

8.2.2 Conclusions . 88

vii

9 Conclusions 89

9.1 Future Work . 90

References 92

viii

List of Tables

3.1 Platform Operating System Tasks . 21

7.1 OS Requirements Met by ROS . 58

7.2 Sensor Selection and Common Specifications 62

ix

List of Figures

2.1 Camera Calibration Process in Matlab Depicting Chessboard Corner Detec-
tion (top), Chessboard Poses Used for Calibration (bottom left), Calibration
Reprojection Error (bottom right) . 12

3.1 Breakdown of Autonomous Vehicle Platform Components 19

4.1 Example of City Environment Created in Prescan 26

4.2 Example of City Intersection Created in Prescan 26

5.1 Simulation Scenario Setup for Infrastructure Sensor with GPS Calibration 31

5.2 Basic Principle of Hand-Eye Calibration 34

5.3 Camera Setup WRT Navigation System Reference Point 35

5.4 Camera Images at Various Stages in Vehicle Trajectory 36

6.1 Visual Depiction of Navigation System Error Metrics 41

6.2 Lane Detection Pipeline Design . 43

6.3 Birds Eye View Produced by Perspective Transformation 44

6.4 Segmentation of Birds Eye View Image . 45

6.5 Polynomial Lane Model Fit Results on Original Image 46

6.6 Visual Depiction of Vision System Error Metrics 48

6.7 Top View of a Section of the Simulation Scenario 49

6.8 Curvature of Points for Simulation Scenario Map 50

x

6.9 Lane Detection Pipeline. Left: Birds Eye View Image, Middle: Segmented
Lane Marking, Right: Lane Detection Result after Parabolic Fit 51

6.10 Effect of GPS Position Noise on Lane Following 52

6.11 Comparison of GPS Only System with Combined GPS and Vision System 53

7.1 Autonomous Platform Base Vehicle: Chevrolet Equinox 55

7.2 Software Architecture using ROS and Matlab/Simulink 57

7.3 Hardware Architecture of Autonomous Driving Platform 59

7.4 ECU Installed on Developed Platform . 60

7.5 Sensor Locations on Developed Platform 61

7.6 Installation View of Sensors with Front and Side Radar (top left), Side Radar
and GPS Antenna (top right), LIDAR (bottom left), and Camera (bottom
right) . 63

7.7 Approximate Sensor Field Of Views . 64

7.8 Actuator Response Under Step Input . 65

7.9 Actuator Response Under Step and Ramp Inputs 66

7.10 Diagram of CAN Communication Interface 67

7.11 Navigation Message Format in ROS . 68

7.12 Time Synchronization Statistics between GPS and Linux Laptop 70

7.13 Calibration Target for Joint Calibration of Radar, LIDAR, and Mobileye
Sensors . 72

7.14 Joint Calibration Results. The Mobileye Detection (green) and the Radar
Detection (white) are Transformed to the LIDAR Coordinate Frame 73

7.15 Cropped Camera Image from Hand-Eye Calibration Between Camera and
Navigation System . 75

7.16 Result of ICP Algorithm . 76

7.17 GPS (blue) and LIDAR Odometry (orange) for Various Calibration Maneuvers 77

8.1 Light Artifacts on Image Due to Location of the Sun 80

8.2 Improvement of Image with Tape Blocking Undesired Light Artifacts . . . 81

xi

8.3 Lateral Error Noise Improvement Via Pitch Correction 83

8.4 Detection of Curb Instead of Lane Marking in Birds Eye View Image . . . 84

8.5 Improved Detection and Algorithm Speed by Limiting the Birds Eye View
Processed Area . 85

8.6 Camera Mount and GPS Antenna Location 86

8.7 Lane Keeping Results on Ring Road of GPS and IMU System Only and
Combined System . 87

xii

Chapter 1

Introduction

Autonomous vehicles are gaining traction in the automotive field due to the foreseeable
improvements in driving safety, efficiency improvements and other benefits. The Mecha-
tronics Vehicle Systems lab (MVSL) seeks to develop an autonomous vehicle platform for
the development of state of the art autonomous driving and driver assistance algorithms.

1.1 Motivation

With many organizations developing their own autonomous vehicles and logging thou-
sands of miles travelled autonomously, it has become clear that this technology is the next
stage for the automotive industry. According to Transport Canada’s National Collision
Database, 1898 fatalities occurred in 2016 due to motor vehicle collisions [1]. Fully func-
tional autonomous vehicles will significantly improve this statistic by removing the factor
of human error. Alongside driving safety and crash reductions, the technology potentially
improves driving efficiency and congestion as well as travel behavior. The improvements
add up to around $2000 to $5000 of savings per year [2].

However, developing autonomous vehicles is a difficult task and comes with its own set
of challenges. The complexity of a driving environment, coupled with the differing types
and quantities of sensors required to fully understand that environment, often limit the safe
driving speed of the autonomous vehicle. Moreover, a fully autonomous vehicle requires
better capability and performance from the hardware systems which lead to an increase in
development cost and time. Developing an autonomous vehicle for a limited scenario such
as highway driving becomes an easier task where a smaller subset of sensors need to be

1

used and vehicles generally follow a set of predefined rules. Tackling a smaller task also
alleviates hardware requirements and costs.

The MVSL has developed solutions to many automotive control and systems chal-
lenges and intends to develop a platform used by students and professionals working on
state of the art autonomous driving hardware and software. The lab seeks to develop a
fully autonomous vehicle capable of high speed driving and desires to address the current
limitations present in similar platforms. It is believed that the application of the skills of
the MVSL will result in the development of an autonomous vehicle platform that addresses
some of the gaps of similar existing platforms and will benefit the field of autonomous driv-
ing in general. Furthermore, the platform will provide students exposure to autonomous
vehicles and their related technologies which is beneficial for the growth of the field.

1.2 Objectives and Contributions

The objective of this thesis is to present an autonomous driving platform developed for
implementing and testing algorithms for self driving. The platform is split into the hard-
ware and software components as well as the interfacing tasks required for everything to
work together. Moreover, the sensors used in the platform are to be calibrated and their
coordinate frames resolved with respect to a common coordinate frame to enable sensor
fusion techniques. Finally, the developed platform will be employed for the task of au-
tonomous lane keeping around the University of Waterloo Ring Road. The approach taken
in the development of the platform is to get the platform working as quickly as possible
with extensible and functional hardware and software architectures. Individual elements
of the platform will be improved when specialized focus is given to them in the future.

The first contribution of this thesis is the platform design and implementation using
popular sensors. The system is presented in full with sensor placement and interfacing
explained. Hardware architecture of the platform is developed for a research focus which
due to a lack of specialized components, is easily reproducible. The second contribution
of the thesis are the insights gained from implementation of the sensor calibration tech-
niques. Through the performed experiments, successful calibration methods as well as the
limitations of the unsuccessful calibration methods can be identified. Lastly, the thesis con-
tributes a simple lane keeping approach that utilizes the platform and interfaced sensors
to steer autonomously on a known track.

2

1.3 Outline

Chapter 2 presents a review of existing literature pertaining to autonomous vehicles specif-
ically relating to platform design, calibration between sensors, and lane keeping method-
ologies. The chapter also presents background concepts relevant to the full understanding
of the thesis.

In chapter 3 the software and hardware platform designs and requirements are presented
and explained. Next, interfacing between the software and hardware components and the
necessary interconnections are outlined. Finally, the need for synchronization between
sensors and possible approaches are discussed. The simulation platform used on for testing
of the developed algorithms for the autonomous vehicle platform is discussed in chapter 4.

The topic of sensor calibration is presented in chapter 5. In this chapter, sensor cali-
bration methods pertaining to the sensors used on autonomous vehicles are explained and
their importance is mentioned. A calibration method relevant to infrastructure mounted
stationary sensors is also presented. The methods are implemented in simulation and in-
sights for implementation on the real platform are obtained. Successful calibration results
will allows sensor fusion and vehicle-to-infrastructure interfacing techniques to be used on
the platform.

Chapter 6 explains the implementation of the lane detection and lane keeping algo-
rithms. These algorithms are tested and refined through simulation and made ready for
real world use.

The experimental setup is explained in chapter 7. The hardware and sensors used in
the platform are identified. Interfacing between hardware and software with regards to the
actual sensors is also outlined. Moreover, tested calibration techniques are implemented
and the sensors are localized to a common coordinate frame.

Chapter 8 presents the lane keeping results obtained on the developed platform. The
issues encountered and the corrections made are presented step by step in order to achieve
a successful final result.

Finally, chapter 9 presents a conclusion of everything covered in the thesis. Future
work for the developed platform is also presented in this chapter.

3

Chapter 2

Literature Review and Background

An autonomous vehicle can be defined to be any mobile platform that safely accomplishes
predefined tasks while facing unpredictable events. With such a loose definition, it is no
revelation that autonomous vehicle platforms tend to be very different from one another,
from different sensor selections to different algorithms trying to accomplish the required
tasks. Moreover, autonomous vehicles can span a variety of different goals and are not only
limited to street or highway driving. For example, a Mars rover is an autonomous vehicle
but has very different goals than what the developed platform seeks to target. Therefore,
the literature review for this thesis is limited to the topics covered by the thesis. First, a
general review of some existing and famous autonomous vehicle platforms will be provided.
Following this, calibration techniques covering the relevant sensor types will be covered.
Finally, some of the existing lane detection and lane keeping techniques will be reviewed.
Some of the specific algorithms and methodologies utilized in this thesis will also be covered
including brief introductions for each of the common autonomous vehicle sensors.

2.1 Autonomous Vehicle Platforms

Many organizations have been developing autonomous vehicle platforms for over a few
decades. The development of some of the most influential platforms was set into motion
when the Defense Advanced Research Projects Agency (DARPA) issued the DARPA Grand
Challenge for self driving cars in 2003. The first winner of the challenge in 2005 was the
autonomous vehicle Stanley. Based on a Volkswagen Touareg R5, Stanley utilizes a DC
motor for steering actuation and a custom interface for acceleration and braking actuation
with data transfer through a Controller Area Network (CAN) bus interface. Stanley utilized

4

an array of laser scanners, a video camera, radar, wheel encoders, a Global Positioning
System (GPS) and an Inertial Measurement Unit (IMU) to navigate the off road terrain
in the competition [3]. The platform supported mapping, planning, tracking, and control
algorithms all working together to achieve first place. The development of Stanley led to a
series of advancements pertaining to autonomous navigation that are still relevant today.

In 2007, DARPA held the Urban Challenge which involved vehicles driving through a
mock urban environment featuring interactions with other traffic and required the vehicles
to perform complex driving maneuvers. Successful vehicles tended to employ high precision
GPS systems and utilized active sensors such as radar and LIDAR for obstacle detection
and tracking over the more difficult to interpret vision data [4], [5], [6]. The competition
led to the development and implementation of advanced motion planning techniques as
vehicles performed complex maneuvers in traffic. Furthermore, the competition led to the
development of open source datasets such as the popular KITTI dataset based on the
AnnieWAY autonomous platform [7]. The KITTI dataset is widely used to test algorithms
related to mobile robotics and autonomous driving providing LIDAR, camera, radar and
high precision GPS and IMU data for a diverse set of diving scenarios. The KITTI dataset
has led to the development of other datasets more focused on providing large amounts of
rich data for learning based algorithms [8], [9]. These positive outcomes from the DARPA
challenges have helped to advance the field of autonomous driving.

Over the years, more research purposed platforms have emerged. Many research plat-
forms tend to implement all relevant sensor modalities including LIDARs, monocular and
stereo cameras, radars, and inertial GPS systems [10], [11], [12]. These platforms facilitate
students and researchers working on the entire range of mobile robotics and autonomous
driving algorithms. However, industry designed autonomous platforms tend to have limited
sensor modalities that are selected partly based on their ability to be used in a production
vehicle. The Bertha Benz vehicle, based on a Mercedes Benz, utilizes only radars and cam-
eras alongside accurate digital maps [13] for autonomous navigation. LIDAR systems are
omitted in the platform even though they can augment the inertial GPS based localization
and improve its accuracy [14].

2.1.1 Computing Platforms

There are several different options available for an autonomous vehicle computing platform
each with its own advantages and disadvantages. This makes the choice of the platform
difficult as there is no ideal choice suitable for all scenarios and many trade-offs need to
be carefully considered. A main distinction in computing platforms is the choice of using

5

standard computers vs. existing solutions provided by manufacturers and chip designers.
Standard computers can be designed as per performance requirements and are scalable in
performance and storage. Additionally, they provide ease of development since they allow
the use of standard and familiar tools and libraries with well defined resources resulting
in quicker implementations. Some of the downsides include high power consumption and
heat dissipation. Moreover, the solution is not automotive grade and is not designed
with driving safety in mind. On the other hand, solutions provided by manufacturers
include systems based on Graphics Processing Units (GPUs), Digital Signal Processors
(DSPs), Field Programmable Gate Arrays (FPGA), and Application Specific Integrated
Circuits (ASICs) each with their own advantages and disadvantages to be considered. In
general, these specialized computing platforms have lower power consumption and are often
specifically designed for automotive applications. Some of the downsides of these solutions
are that they lack the ease of use aspect that general computers have and generally take
more time to implement and have higher costs and learning curves [15], [16].

While both options are viable, there is an argument for the use of general computers
for research based platforms due to their versatility, developmental ease and scalability.
This is typically the case in literature with computing platforms described in many au-
tonomous vehicle papers. Team AnnieWAY uses an off the shelf quad core computer for
software processing tasks [5]. The platform developed in [11] implements small form factor
computers based on Intel QX9300 processors with necessary components implemented in
a custom chassis in the trunk of the vehicle. The Deeva autonomous vehicle computing
platform consists of 17 general computers and three embedded boards [17].

2.2 Sensor Calibration Techniques

Sensor calibration is a topic with a wide breadth of applications. It can refer to the
techniques applied to a single sensor in order to characterize some aspect of the sensor.
More generally, sensor calibration in the field of mobile robotics and autonomous driving
refers to the techniques utilized in finding the rigid body transformations between the
mounting locations of multiple sensors. Knowing accurate rigid body transformations
between all of the sensors on a vehicle or robot allows for all information gathered by the
sensors to be represented in a common reference frame. This can be crucial is knowing
the accurate position and motion characteristics of objects of interest with respect to the
vehicle or robot. Moreover, representing the locations of detections accurately with respect
to one another is required for sensor fusion techniques to be successful. Overall, sensor
calibration techniques are a core aspect of autonomous vehicles and mobile robotics.

6

Camera calibration is perhaps the most common type of calibration method and is
utilized across many fields. Current calibration methods are based on the work of Zhang
[18] who developed the technique for identifying important camera parameters based on
images of various orientations of a planar board. Camera calibration algorithms model the
lens distortion effects as well and the same calibration routine can simultaneously solve for
distortion parameters. Zhang also contributed extrinsic calibration methods for calibration
of a camera with a laser range finder [19]. The method determines the transformation
between the camera and the range finder by solving for physical constraints present in
the calibration design and minimizing a re-projection error for further refinement. Stereo
camera extrinsic calibration is based on similar methodologies and principles.

Calibration of a pair of sensors at a time is common in literature. Due to the diverse
sensor modalities and types of information being collected by each sensor, different sensor
combinations tend to have differing calibration methods. Moreover, it may be required to
calibrate a sensor from the same modality. Such is the case of an autonomous vehicle with
multiple cameras and LIDARs covering different field of views around the vehicle. For that
vehicle, possible pairwise calibrations include calibrating a camera to a camera, a LIDAR
to a LIDAR, and a LIDAR to a camera, each with different techniques being employed.

When a series of pairwise calibrations are performed, errors can accumulate as sensor
data is transformed to a common coordinate frame. Methods that can calibrate more than
two sensors simultaneously can save a large amount of time, especially if the calibration
needs to be repeated often, but can also reduce overall calibration error as fewer calibrations
need to be performed. The method presented in [20] calibrates multiple cameras based on
parameter adjustment and silhouette observations. In [21], it is proposed to create sensors
groups that provide 3D observations of a calibration target and to simultaneously calibrate
all sensor groups through the geometric constraints. However, it is not always possible to
create these groups and a specialized pairwise calibration method may be simpler and
easier to implement.

Calibrating sensors to inertial GPS systems is akin to hand-eye calibration of robotic
manipulators where a sensor such as a camera is rigidly attached to a robotic arm. Early
works provide closed form solutions for the method [22], [23]. More recent works provide
numerical optimization methods to simultaneously solve for the rotation and translation
[24], [25]. Hand-eye calibration is applied traditionally to calibrating sensors mounted on
the end effectors of robotic arms. Recently, the method is being applied to autonomous
vehicle sensor calibrations with GPS and IMU systems due to similarity in geometry to the
traditional problem. The navigation system can be calibrated using this method with any
sensor that allows for odometry to be estimated through its data. These generally include
LIDARs and cameras. Moreover, recent advancements in such sensor calibrations are

7

focusing on performing these calibrations automatically utilizing SLAM, visual odometry,
and LIDAR odometry methods to determine the transformation while driving in a normal
environment.

Calibration techniques also include automatic methods which generally interpret nor-
mal operation data for common features between the sensors involved and optimize some
metric to calculate the transformation. Such methods are more difficult and involved com-
pared to specialized calibration methods, but don’t require a special calibration procedure
to be performed. For the case of LIDAR to camera calibration, manual calibration meth-
ods employ specially designed targets from which corresponding features can be detected
by each sensor [26], [27]. Automatic methods use environmental data and don’t require
specialized targets [28], [29]. Advanced methods can detect and correct minor drifts in
transformations in real time.

2.3 Lane Detection and Lane Keeping Methodology

The lane detection perception problem has seen various sensor modalities being utilized
over the years in the solution to the problem. One school of thought advocates the use
of vision systems in solving the problem due to their similarities with human perception
and ability to extract similar data as that used by human drivers. This is valid reasoning
considering lane markings are designed to work in the vision modality for humans based
mainly on colour and reflectivity. Moreover, there is a support for using vision sensors
from an evolutionary point of view in that cameras are a mature technology available
cheaply and readily even at the consumer level [30]. That being said, lane markings can be
detected by light based detection and ranging (LIDAR) sensors based on the intensity cues
gathered from the lane marking which otherwise have no structural cues. In fact, LIDARs
operate with active light and do not suffer from lighting based issues that commonly affect
vision sensors. This comes at the cost of expense as LIDARs, especially ones that produce
very dense point clouds, are extremely expensive in relation to the cost of a machine
vision camera. The stereo camera modality is a solution in between the vision and LIDAR
modalities where two cameras are utilized in order to obtain depth information of the
environment. This allows for additional cues to be used in lane marking detection but
suffers since depth maps tend to be highly dependent on surface texture and lane markings
are generally smooth. However, they are a cost effective way at obtaining a portion of
the accuracy and reliability offered by the LIDAR sensor. Vision sensors tend to be the
most utilized modality for lane marking detection but generally fail to fully solve all the
complexity and variation that can be present in lane markings.

8

Of course the combined GPS and IMU system is another modality that can be used
to navigate on a road without needing lane marking perception. The working principle is
to follow a known map of the driving environment based on real time localization using
the navigation system. This method sees common use in many systems due to its relative
simplicity and common availability of GPS and IMU systems. That being said, the ability
of a vehicle to follow a map well depends on both the accuracy of the map and the accuracy
of the navigation system both of which increase the overall system cost.

Many different approaches to vision based lane detection exist. Methods differ in how
they detect the lane as well as the type of model that is used to fit to the lane. Perhaps the
most common detection method is based on the Hough transform which can isolate features
in an image by shape. The method is utilized in [31] and [32] which fit a parabolic lane
model to the detections and [33] and [34] which fit spline based models. The procedural
lane detection methods typically begin by inverse perspective mapping the image to a birds
eye view. Processing the birds eye view image is beneficial since perspective effects are
removed and the lanes become parallel. Moreover, knowledge of the expected location
of the lane markings can be utilized and sub regions in the image can be processed for
optimization. Other detection methods include template matching in which a template
model of the lane is identified with the camera image [35]. Moreover, recent approaches
utilize neural networks which can detect more advanced and human used features [36],
[37]. These approaches benefit from large amounts of training data to improve detection
accuracy and can outperform non learning based methods when trained well.

For lane marking detection using LIDAR, methods tend to threshold the birds eye view
point cloud based on reflectivity of the markings. In [38], the authors set a dynamic region
of interest for candidate lane marking points in a birds eye view LIDAR point cloud. The
region is based on predicted lane parameters from the previous detections. The general
pipeline is simlar to that of the vision system with the main difference being the use of a
different method for feature extraction. Both vision and LIDAR based solutions tend to
employ model fitting and tracking of the lane markings in some way to add robustness and
reliability to the lane marking detection.

Lane keeping methodologies often utilize PID steering control based on lateral error
from lane center and heading error from lane heading. A popular controller is the Stanley
controller where the control law utilizes a proportional gain to minimize the cross track
error while following the heading of the road [3]. Advanced controllers use Model Predictive
Control (MPC) for better results by predicting changes in the road in the near future [39],
[40]. There are a slew of different techniques available that fall somewhere in between these
methods often with minor differences between them.

9

2.4 Autonomous Driving Sensors

Standalone autonomous vehicles rely on on-board sensors for the necessary information
required to function. Sensors are used to detect obstacles in the vicinity as well as to
help the vehicle navigate. The sensors implemented on the platform are explained in the
following sub-sections.

2.4.1 Camera

Camera sensors are one of the most explored sensors available. With applications in a
multitude of fields this type of sensor benefits from cheaper cost, well defined resources,
and well researched algorithms. The working principle of the camera is the redirection
of light onto the image sensor which creates a 2D representation of the surrounding 3D
scene. With an abundance in the types of cameras and lens available, the task of camera
selection becomes an application specific task. The main goal of the camera, currently, is
lane detection and lane keeping and so the camera and lens are selected with this task in
mind.

Pinhole Camera Model

The pinhole camera model is an ideal model that relates 3D points in the camera field of
view to their 2D projections on the camera image. Through the model, an intrinsic matrix,
A, and an extrinsic matrix, H, are used in the mapping of the 3D scene coordinate, X, to
the 2D image coordinate, x. The mathematical relationship derived from the model can be
expressed as shown in Equation 2.1. The intrinsic matrix characterizes the image sensor
with the focal point (fx, fy) and the camera center (cx, cy) and is expanded in Equation
2.2. The extrinsic matrix is expanded in Equation 2.3 and describes the camera’s location
in the world. The basic pinhole camera model can be expanded to include the nonlinear
radial and tangential distortions.

x = AHX (2.1)

A =

 fx 0 cx
0 fy cy
0 0 1

 (2.2)

10

H =

 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 (2.3)

Calibration

Camera calibration is referred to the process by which the intrinsic and extrinsic matrices
of the camera are determined. Software packages such as Matlab and OpenCV provide
implementations of the camera calibration based on the work of [18]. This approach uses
different poses of a planar calibration target, typically a chessboard, in order to compute
the desired matrices. The very common calibration process for a single camera is shown
in Figure 2.1. To perform the calibration, a planar chessboard is placed in the field of
view of the camera. The camera pose is changed to excite the 3D rotation and translation
along all the axis and a set of images of the chessboard are captured. Next, using Matlab’s
camera calibration tool, the camera is calibration and the various poses of the chessboard
with respect to the camera are shown as well as the reprojection error. The reprojection
error measures the point to point error of the chessboard corners projected onto the image
using the calibration matrices with the detected corners and is an indication of how good
the calibration is. Ensuring that the calibration target is planar with equal sized squares
is paramount to a good calibration.

2.4.2 GPS and IMU

GPS provides continuous 3D position and timing data for a receiver. The position measure-
ment is derived from the trilateration of distances of the receiver from multiple satellites.
According to [41], the mean accuracy of standard smart phone GPS systems is approxi-
mately 5 meters in radius in an open environment.

Two common methods used to improve the accuracy are the Real Time Kinematic
(RTK) and the Differential GPS (DGPS) systems. The RTK system uses a local base
station that sends real time measurement corrections to the mobile receiver and is capable
to achieve centimetre level accuracy. DGPS also uses corrections from a reference station,
yet achieves an accuracy in the decimetre range due to an alternative calculation method
[42].

IMU provide orientation data complimentary to the 3D position coming from the GPS.
Current high end navigation solutions integrate GPS and IMU solutions using the Kalman

11

Figure 2.1: Camera Calibration Process in Matlab Depicting Chessboard Corner Detection
(top), Chessboard Poses Used for Calibration (bottom left), Calibration Reprojection Error
(bottom right)

filter to provide accurate position and orientation data robust to GPS dropouts. This can
be achieved since the bounded accuracy of GPS data can be used to calibrate and provide
a bound to the IMU data while dead reckoning using the IMU can estimate the position
during GPS dropouts [43]. Moreover, the fused system is able to provide position and
orientation at the high data rate of the IMU when the GPS system is slower.

Converting to UTM Coordinates

GPS systems provide latitude and longitude measurements in degrees based on an ellip-
soidal model of the earth. It is not straightforward to integrate this with Cartesian data

12

coming from other sensors. A commonly used solution is to project the GPS coordinates
into universal transverse Mercator (UTM) coordinates which represent the earth as a cylin-
drical coordinate system discretized into a set of, approximately, Cartesian systems [44].
Functions to perform the conversion are available for software packages such as Matlab
and are utilized in this work.

2.4.3 Radar

The basic operating principle of radars is the transmission of a signal and measurement of
the returns in order to calculate distance to and relative velocity of objects in the field of
view. Put simply, the signal when reflected off of a target is altered through the addition
of noise, loss in signal strength, change in phase, etc. Additionally, the delay in receiving
the reflected signal and in the case of a moving target, the Doppler affect imposed on the
system, can be used to determine the target’s range, velocity and, in advanced systems,
characterise the target in a range of classes [45].

2.4.4 LIDAR

LIDAR is a relatively new technology and achieves a similar in nature result as Radar
sensors, but utilizes pulses of light instead of radio waves [46]. Companies such as Velodyne
have begun to utilize an array of lasers and detectors with a revolving head that can
accurately create high definition maps of the surroundings. The technology enables for
the creation of dense point clouds of the surrounding environment that provide position
and intensity information encoded in each point. The LIDAR sensor can be used for many
tasks ranging from obstacle detection to odometry.

2.5 3D Rigid Body Transformations

The autonomous driving platform utilizes multiple coordinate frames. Each sensor provides
data relative to its own coordinate system. The vehicle may be represented by its own
coordinate system, and there may be a map available that is defined based on a coordinate
system fixed on the earth. In such a system it is often necessary to represent a point known
in one coordinate system in another. For example, when fusing data from two sensors, it
is important to represent the data in a common coordinate system instead of the separate
coordinate system of each sensor.

13

Rigid body transformations can be used to represent the combined translations and
rotations present in such geometric transformations. In this thesis, homogeneous transfor-
mation matrices will be used to represent scale invariant 3D rigid body transformations.
As shown in Equation 2.4, to convert a point in coordinate frame A, pA, to a point in co-
ordinate frame B, pB, the point is pre-multiplied by the transformation matrix TBA which
is a 4 by 4 homogeneous matrix. Equation 2.5 shows the form of TBA if the transformation
from frame B to A consists only of translations of a, b, c units along B’s, x, y, and z axis,
respectively. Equation 2.6 to Equation 2.8 show the form of TBA under a pure rotation of θ,
about the x, y, and z axis of coordinate frame B, respectively [47]. Lastly, the translations
and rotations may be combined by multiplying the homogeneous matrices together with
the earliest transformation on the left hand side. An example is shown in Equation 2.9
where the transformation from B to A is a rotation around the x axis by 60◦, followed by
a rotation around the z axis by 25◦, and finally a translation about the y axis of 4.5 units.

pB = TBA · pA (2.4)

trans(a, b, c)|TBA =

1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

 (2.5)

rotx(θ)|TBA =

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 (2.6)

roty(θ)|TBA =

cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1

 (2.7)

rotz(θ)|TBA =

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 (2.8)

14

TBA =

0.91 −0.42 0 −1.90
0.21 0.45 −0.87 2.04
0.37 0.78 0.5 3.53

0 0 0 1

 = rotx(60) · rotz(25) · trans(0, 4.5, 0) (2.9)

2.6 Solving Homogeneous Transformation Equations

of Form: AX = XB

In robotics, the matrix equation AX = XB comes up in the calibration of robotic arms
with sensors mounted on the end effector. It is used to figure out the transformation
between the robot hand and the sensor. However, the same technique can be applied to
cases of calibration pertaining to autonomous vehicles where there is a similar fixed rigid
body transformation between two sensors. Such a calibration is referred to as hand-eye
calibration and a multitude of methods exist to solve problems of this form.

The paper [24] presents a closed form solution to the problem which first solves for
the rotation component of the homogeneous transformation matrix X, and then solves for
the translation component. Rotations are represented as unit quaternions. Homogeneous
matrices are used as they simplify such equations by combining the effect of rotation and
translation in one matrix. If n different poses of the hand-eye device are used, there are
n−1 equations available as shown in Equation 2.10, where Ai−1i denotes the transformation
from position i−1 to i of the eye frame and Bi−1i denotes the similar transformation for the
hand frame. The paper also presents a non-linear optimization technique to simultaneously
solve for the rotation and translation components of the X matrix.

A12X = XB12
...

Ai−1iX = XBi−1i
...

An−1nX = XBn−1n

(2.10)

15

2.7 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm is a method for minimizing F (x) where the function
is in the form of a non linear least squares problem as shown in Equation 2.11 where the
vector function f is a mapping from Rn to Rm with m ≥ n. The algorithm is a specialized
optimization method to solve the given problem and is more efficient and achieves faster
convergence than general methods such as Newton’s method. The Gauss-Newton method
is the basis for the Levenberg-Marquardt algorithm which is essentially a damped version
of the Gauss-Newton method as presented in [48]. The Gauss-Newton method performs
a linear approximation of f near x using the Taylor expansion as the main differentiating
factor from the general Newton’s method.

F (x) =
1

2

m∑
i=1

(fi(x))2 (2.11)

2.8 Iterative Closest Point Algorithm

The Iterative Closest Point (ICP) algorithm is a method for the registration of two point
clouds. Many variants of the algorithm exist. The base algorithm registers the two point
clouds iteratively by finding the closest point correspondences from the reference cloud to
the target cloud and then minimizing a non-linear least squares objective function to solve
for the rotation and translation that perform the rotation. This process is repeated until
an error metric measuring the alignment of the two clouds reaches some tolerance and
it can be shown that the ICP algorithm always converges to the nearest local minimum
monotonically. The algorithm is fully presented in [49].

2.9 Inverse Perspective Mapping Algorithm

A forward facing view from a camera mounted on the dashboard or front windshield of
the vehicle can be used for lane detection. However, such a view is distorted due to the
perspective caused by its mounting location. The road lane markings, although parallel,
appear to converge at the horizon amongst other perspective effects. Inverse perspective
mapping (IPM) is an algorithm used to transform the image to a view point where these
distortions are not present by utilizing perspective projection geometry. For the purpose

16

of lane detection for autonomous vehicles, IPM is generally used to project 3D Euclidean
space to a 2D planar [50].

2.10 Lane Marking Detection Algorithm

The approach taken to identify the lane markings in a birds eye view image of the road is
based on [51]. A recursive Bayesian classifier is used in order to segment pixels belonging
to the lane marking from the rest of the road. The classification is performed at the pixel
level based on the Bayesian decision theory utilizing probability likelihood models for each
classifier class. The likelihood model for the lane marking class is based on the assumption
that lane markings are generally vertical, high intensity, pixels with lower intensity pixels
surrounding them.

17

Chapter 3

Platform Design

Although autonomous vehicle platforms share common elements, diversity arises at the
hardware and software levels based on differing design decisions, goals, and scopes. Plat-
forms designed for industry tend to be significantly different in computation hardware from
research platforms despite using similar sensor stacks. Companies such as Tesla, Nvidia,
Intel and NXP have developed dedicated computing systems for autonomous driving aimed
for integration in consumer vehicles with small form factors and chip sets often specially
designed for machine learning operations. At the other end of the spectrum, research, ed-
ucational and open-source platforms tend to employ powerful, but standard, computers or
laptops often running a generic, well supported, operating system for developmental ease
and versatility.

In this chapter, the design is presented for a university research platform. Students will
be using the platform to test autonomous driving and Advanced Driver Assistance Systems
(ADAS) related algorithms. The overall platform is shown in Figure 3.1. It consists of
the hardware platform, software platform, and the interfacing layer which handles their
interaction with one another. Section 3.1 presents the software platform design and Section
3.2 presents the hardware architecture design. Interfacing with sensors and actuators
is detailed in Section 3.3. The platform design presented in this section is in abstract
terms. Chapter 7 will demonstrate the realization of the abstract platform into a functional
prototype.

18

Figure 3.1: Breakdown of Autonomous Vehicle Platform Components

3.1 Software Platform

The design of the software platform covers three elements: the operating system (OS), the
simulation platform, and the user code that utilizes the OS and simulation platform to
achieve the require goals for the autonomous vehicle. The software platform also interfaces
with the hardware platform including the sensor modalities on the vehicle through the
interface layer. This is generally handled by the OS alongside a slew of other important
tasks.

3.1.1 Operating System

In the context of an autonomous vehicle platform, there are a fair number of requirements
from the OS. The primary requirements are the allocation of the resources on the com-
puting system to the various autonomous driving systems and providing the interface for
researchers to be able to utilize the various components of the vehicle. Internally, this
includes a communication mechanism between the various systems and user code. The OS
must additionally be able to interface with external sensors and devices through device
drivers unique to the individual device used. Moreover, for any platform utilizing an array
of sensors, the OS should handle some tasks related to data management. These tasks

19

include data acquisition and recording as well as data visualization. There are also some
requirements from the OS that are not mission critical, but are nice to have. These include
libraries and functions for general autonomous vehicle development, the ability to run on
arbitrary hardware, that the OS is a real time OS (RTOS) and the ability to interface with
common industry tools such as Matlab.

Alongside the functional requirements from the OS, there are some general requirements
of the software platform which also pertain to the OS. Firstly, the OS must allow user level
code to be modular. For research platforms such as this, various different people typically
work on different aspects of the system pertaining to their skills and goals. As such,
the software platform and the OS must offer a way for all the different codes to work
together by allowing modular user code that can communicate with one another through
the OS. Next, since the platform pertains to an autonomous vehicle and safety is a critical
issue, the software platform must be safe and secure. Generally these are handled through
encapsulation of the various software modules for security and redundancy and monitoring
tools for safety. Finally, the last general requirement of the software platform and OS is
efficiency in operation. This includes reliable and fast data transfers so as not to hinder
the working frame rate of user developed algorithms. The tasks desired from the OS are
summarized in Table 3.1 with the required tasks marked.

Moreover, there are some requirements from a logistics point of view. First, the OS
should support quick implementation on the platform that should be achievable by one
person. Next, there must be an abundance of resources and support available. Lastly,
the platform should be tested and used elsewhere for autonomous vehicle platforms thus
proving its worth in the automotive field. Some nice to have features are that the OS
is open source thus saving costs on the developed platform and that the OS supports
distributed systems in case the autonomous vehicle has multiple computing systems.

3.1.2 Simulation Platform

A simulation platform is necessary for safely testing the algorithms used on the developed
platform. Testing algorithms in a real world vehicle can lead to hazardous and unsafe
situations if something goes wrong. Moreover, simulated systems can cover a lot more
scenarios than it may be possible to test with a real system saving time and improving
safety. For an autonomous vehicle platform the simulation platform requirements are as
follows. The simulation software must be able to simulate not only the vehicle including
the actuation systems, but also all the autonomous driving sensors. This will ensure full
coverage over the range of autonomous driving algorithms. Another requirement of the

20

Table 3.1: Platform Operating System Tasks
Task Description Required

Resource Allocation X
Communication Between Systems and User Code X

Interfacing with Sensors X
Data Acquisition X
Data Recording X

Data Visualization X
Development Libraries and Tools

Ability to Run on Arbitrary Hardware
Interface with Common Industry Tools

Allow Modular User Code X
Encapsulation of Communication X

System Monitoring Tools X
Efficiency in Operation

Real time
Facilitates Fast Implementation X

Available Resources X
Tested in other Autonomous Vehicles X

Open Source
Support Distributive Systems

simulation software is the ability to perform hardware in the loop (HIL) testing using actual
vehicle systems. This method of testing allows vehicle systems to be tested in simulated
environments and improves the degree of confidence in the real platform prior to real world
testing. Moreover, the simulation platform should allow for all aspects of real world driving
to be simulated, including pedestrian, bicycle, and vehicle traffic, infrastructure including
buildings, traffic signs, and light posts as well as all weather conditions. These ensure that
the tested algorithms are robust and reliable.

There are several nice to have features of a simulation platform. First, it is nice if the
platform can be coded in the same programming language and using the same tools and
libraries as the actual code. As a result of this, the exact working code in simulation can be
utilized in the real vehicle and development time can be saved. Another nice feature of the
simulation platform is if realistic data can be generated by the simulation software. These
include photo realistic pictures in the case of vision sensors, but for other sensors include

21

the data injected with realistic noise to properly simulate real world sensors. Not only
does this enable accurate testing, but photo realistic pictures can be used in the training
of machine learning algorithms to be deployed in the real world.

3.1.3 User Code

User code is referred to code written on top of the OS which performs functions such as
localization, object detection, path planning, etc. Due to the potentially large amount of
researchers working on the developed platform, the user code is required to be modular.
Although the OS covers the technical aspects and communications between modules, it is
up to the developers to properly separate modules and adhere to good coding practices.

3.2 Hardware Platform

The hardware platform consists of the autonomous vehicle itself, the sensing devices, the
actuating devices and the computing hardware. The key goal for the hardware platform
is simplicity, with a focus on achieving quick implementation and operation. The reason
for this is that the platform is currently an experimental prototype and will constantly be
improved as needed. While things like extensibility and robustness are kept in mind, it is
anticipated that the computing hardware and sensors used will change in the future making
it too early to lock down the hardware platform design. Instead, quick implementation of
a simple and operational platform will allow for faster testing of software algorithms and
the capabilities of the platform which in turn will lead to the knowledge required for a
robust and extensible future design.

In developing an autonomous vehicle platform, there are two possible approaches avail-
able for the base platform. The first approach is to purchase an existing autonomous
vehicle base platform. The existing base consists of the vehicle, a drive by wire system
allowing the vehicle to be actuated from software, sensors outfitted for various levels of
autonomous driving, and a computing system already interfaced with the hardware and
setup for quick development on the platform. The main benefit of this approach is the
readily available platform that allows for immediate development and testing of algorithms.
The drawbacks include higher costs, including both the purchase cost as well as regular
maintenance fees that the companies providing such platforms require, and limitations in
accessing the systems on the vehicle that are not exposed for use. Moreover, manufactur-
ers, for security concerns, do not provide details of the sensors and control systems on the

22

vehicle which hinder the use of existing autonomous vehicle platforms. The alternative ap-
proach is to purchase an ordinary car and outfit it with the required sensors, drive by wire
and computing systems to make it autonomous. This solution is not only cheaper than the
previous one, but also allows for full freedom in customization of the autonomous vehicle
platform. Furthermore, being an educational institute developing a research platform, car
manufacturers may be willing to provide access to vehicle controls and sensors information
under a strict confidentiality agreement.

A requirement for the hardware platform is to have an electronic control unit (ECU)
in addition to the computing system. The main reason for this is to have a separate
computing system for low level safety critical systems that is not available for access to
developers working on the main computing system. Additionally the ECU can be used as
a filter for actuator commands to ensure the vehicle is not being commanded to perform
a dangerous maneuver. This is achieved by having all the vehicle commands go through
the ECU with algorithms on the ECU ensuring command validity. The main computing
system is then responsible for high level autonomous driving algorithms and providing the
control commands to the ECU.

The requirements for the actuation system on the vehicle is to allow control of vehicle
steering wheel angle, and vehicle driving speed through software driven commands. The
actuation system can be expanded to include control of other vehicle features later on,
but these are critical to creating a usable autonomous driving platform. Moreover, the
actuation systems have to adhere to a performance constraint for their response time to
the commands. Ensuring that the vehicle responds to the commands quickly is critical to
the success of the high level algorithms as delays can severely hinder the performance of
the algorithms. Moreover, the actuators are also constrained on the rate of change of the
commands. For example, supplying a steering angle command that is drastically different
from the previous command should not induce a dangerously fast or slow rate of change
to get to the commanded state.

Since the developed platform is a research platform, the requirements for the sensors
used on the platform are only to provide full coverage of the surrounding environment.
There is no limitation on the amount of sensors or redundancy in the sensors as different
researchers will use different types and amounts sensors to test various different algorithms.
Thus, one of the goals for sensor selection is to have some representation for all of the
popular autonomous driving sensors. That being said, cost is a limiting factor to the
upper bound of amount and type of sensor used on the developed platform.

23

3.3 Interfacing

Sensor data needs to be available for the computing system to be used by the software
algorithms implemented on the autonomous vehicle. Moreover, the software algorithms
need to be able to send commands to the vehicle actuators in order for the vehicle to perform
tasks. Both of these require interfacing between the hardware and software platforms
components.

For the developed platform, the interface consists of the physical connections be-
tween the hardware and software components as well as the software code necessary to
receive/send and interpret the data coming from or going to the hardware. Since the in-
terface is a crucial part of the system, there are some key requirements imposed on the
interface to ensure reliability and extensibility.

Firstly, the interfaces are required to be designed in a way that allows for new sensors
and actuators to be added easily. For the hardware interface, this means that the hardware
connections support new connections to be made with the available ports on the computing
system. For the software interface, this means that sensors share a common interface
framework that can support the addition of new sensors and actuators with minimal effort.
Moreover, since sensors and actuators use or provide different formats and types of data,
the software interface must be able to support the various formats needed.

Next, the interfaces should allow for bi-directional communication when necessary as
some sensors and actuators, in addition to providing data to the computing system, require
commands to be sent to them specifying configuration options and parameters.

Moreover, the interfaces need to support the desired bandwidth and frame rates for
operation. Sensors such as LIDARs and cameras can provide large amounts of data while
other sensors such as radars provide a relatively lower amount per frame. This coupled with
the frame rate of data transfer impose constraints on the physical and software interface
to be able to support these data transfers reliably.

Finally, in an autonomous vehicle platform, interfacing is also required for the timing
and synchronization signals between devices in order to ensure they operate at the correct
times and that the timing between all the devices is based on the same source. This
requires additional interfacing to allow for the transfer of signals necessary to accomplish
this task.

24

Chapter 4

Simulation Setup

A simulation platform is necessary for safely and efficiently testing the algorithms used on
the developed platform. Testing algorithms in a real world autonomous vehicle can lead
to hazardous and unsafe situations if something goes wrong. In simulation, the sensors
can be represented ideally without any noise or deviations in measurement. This is useful
in checking for correct implementation of algorithms as the ideal results can be expected.
Moreover, varying levels of noise can be injected into the measurements to test the failure
point of algorithms, thus helping to characterise whether the algorithm will work with the
real world setup.

In the automotive domain, there are a few industrial level simulation platforms such as
CarSim, Panosim, and Prescan. CarSim finds a lot of use in the vehicle controls domain and
is widely used in MVSL. However, CarSim only simulates some of the autonomous vehicle
sensors with ideal models. Panosim and Prescan are more geared towards autonomous
vehicles with realistic sensor models alongside ideal ones. Prescan also couples with Unreal
Engine to provide photo realistic sensor data that can be used for training of learning
algorithms. Among open source software, multiple applications based on Unreal and Unity
gaming engines are available include Microsoft Airsim and CARLA Simulator. However,
these tend to be geared towards machine learning algorithms and lack the completeness of
features available from industry software such as Prescan. These include HIL capability
and the ability to test real time implementations.

For the purpose of testing the algorithms developed for the autonomous vehicle plat-
form, Prescan is chosen as the simulation platform. The main reasons for this choice is that
it provides a complete set of features for autonomous driving simulation and is easy to use.
Prescan allows users to simulate vehicles, pedestrians, infrastructure, driving scenarios,

25

and autonomous driving sensors. It interfaces with Matlab so that the same algorithms
tested in a simulated Prescan environment can be applied to the real platform. Figure 4.1
displays a small city scenario created in Prescan and Figure 4.2 shows an intersection of
the city with traffic signals, pedestrians, vehicles and other infrastructure. An ego vehicle
can be made to traverse this scenario utilizing on board and infrastructure mounted sen-
sors using developed algorithms. The chosen simulation platform provides an end to end
solution for autonomous vehicle simulation.

Figure 4.1: Example of City Environment Created in Prescan

Figure 4.2: Example of City Intersection Created in Prescan

26

Chapter 5

Sensor Calibration

Sensors are mounted on the vehicle so that their field of views cover important sections
of the surrounding road and environment. It is difficult to accurately measure the 3D
rigid body transformations between all of the sensor coordinate frames using hand held
tools such as measuring tapes, protractors, plumb bobs, lasers, etc. In practice, different
calibration techniques are used in order to determine the transformations.

Since the sensors will not be commonly adjusted in their mounting positions and poses,
offline calibration techniques are implemented for the platform as they are generally easier
to implement. This is because specialized calibration targets can be designed and utilized,
whereas online techniques seek to calibrate the sensors based on the information present in
a typical driving environment which is generally harder to obtain and decipher. Instead,
calibration routines are designed to be simple and easy to perform so that the vehicle may
be calibrated quickly when needed.

In this chapter, three different calibration techniques are presented, each pertaining to
different sensor types or configurations expected to be on the autonomous driving platform.
In Section 5.1 a joint calibration technique is presented which allows for the simultaneous
calibration of all sensors that return the 3D position of detections and share a common
field of view with each other. In Section 5.2, a similar technique is used to calibrate in-
frastructure mounted sensors that return the 3D position of detections to a GPS sensor.
This routine allows the sensors to be localized in a global coordinate frame positioned on
the earth and is useful in systems involving vehicle to infrastructure interfacing. Finally,
Section 5.3 presents the Hand-Eye calibration technique commonly used for calibration of
sensors mounted on the end effectors of robotic arms to the arm base. However, this tech-
nique will be used on the platform to calibrate the inertial GPS system with sensors that

27

can generate odometry information from their data. Some of the calibration techniques are
tested using the chosen simulation platform prior to implementation on the real platform.

5.1 Heterogeneous 3D Joint Calibration

This calibration technique is based on the method provided in [21]. It is used to jointly
calibrate sensors or groups of sensors that can measure the 3D position of a common target
and have a shared field of view. For example, using the proposed method, a stereo camera
system may be calibrated with a 3D LIDAR sensor. The result of the calibration will be
the 3D rigid body transformation that should be applied to one of the sensor or sensor
groups in order to have its detections represented in the other’s coordinate system. The
calibration is performed as follows. First, a calibration target is designed that is capable
of being detected well by each sensor, as detailed in subsection 5.1.1. Then, the target
is placed at different positions in the overlapping field of view and measurements of the
position of the target are taken by each sensor. Alternatively, the target could be fixed in
place and the vehicle moved. It is simplest to take measurements when both the vehicle
and target are stationary, so that error is not introduced by motion occurring between the
capture times of different sensors. Finally, an objective function is minimized to solve for
all the homogeneous transformation matrices required.

The working principle of the optimization is that the transformed point (3D detection)
from one sensor’s coordinate frame to another sensor’s frame should result in the corre-
sponding points to be perfectly overlapped if the homogeneous transformation matrix has
no error. That is to say the that distance between a transformed detection and the corre-
sponding detection by another sensor should be zero. Moreover, the rotation matrices must
be orthogonal by definition. With these, the objective function shown in Equation 5.1 can
be written for a pair of sensors, A and B, where n is the number of points detected and ν
is sufficiently large to enforce the orthogonal constraint. Note that the objective function
can be expanded to include additional sensors so that the number homogeneous trans-
formation solved for is equal to the number of unique sensor pairs. For example, adding
another sensor, C, will result in 3 rotation matrices and 3 translation vectors that need
to be solved for: RB

A , R
C
B, R

A
C , t

B
A, t

C
B, t

A
C . The benefit of this method is that any number of

sensors can be simultaneously calibrated as long as they fulfill the requirements.

min
1

2
Σn
i ‖ RB

A · pAi
+ tBA − pBi

‖22
+ν ‖ (RB

A)T ·RB
A − I ‖22

(5.1)

28

The calibration may be improved, as mentioned in [21], if additional constraints such as
distance preservation between targets or coplanar targets are used. These generally involve
having multiple targets being detected in each frame and require more time and effort to
perform the calibration. Furthermore, if the accuracy of calibrated sensors is sufficiently
high, these constraints may not be necessary to achieve a satisfactory calibration result.
Thus, it makes sense to hold off from utilizing these constraints unless proven necessary.

Since the objective function is in the form of a non-linear least squares problem, a
trust region method such as the Levenberg-Marquardt (LM) method outlined in Section
2.7 may be used to find the local minimum of the objective function. It is possible that
the solution found is a poor local minimum. To combat this, the authors in [21] restart
the minimization after adding a random perturbation to the local minimum found in the
previous iteration. Although it is not mentioned how many iterations are performed, it is
sufficient to say that a good local minimum is found when the resulting minimum does not
change significantly between iterations.

A simple way to estimate the calibration error is to transform a new set of measure-
ments from each sensor into one frame such as the LIDAR sensor coordinate frame using
the homogeneous transformation matrices constructed from the solved rotations and trans-
lations. Next, the distance between the corresponding measurement of each sensor with
the LIDAR sensor measurement can be calculated using the euclidean distance. Finally,
the average distance across a number of measurements can provide a metric for the error
present in the calibration since ideally the average distance should be zero if the calibra-
tion is perfect. With this error metric, a threshold may be defined that is considered to
be a good calibration. This threshold will typically be application specific based on the
accuracy required from the calibrated system.

5.1.1 Calibration Target Design

The calibration target should be designed such that all sensors can detect the same point
on the target. An example will be given for the joint calibration of a camera, radar, and
3D LIDAR system. Generally, for machine vision cameras, it is enough to use a standard
calibration chessboard and have the target be one of the corners of the chessboard. For
radar sensors, a radar reflector of appropriate size and material should be used. The
reflector ensures a strong and consistent detection of itself by the radar sensors. A 3D
LIDAR sensor will generally not need a specialized target when the point cloud is dense
or the target is sufficiently close to the sensor. This is because in these scenarios, the
target point may be visible in the point cloud and could simply be selected manually or

29

automatically through an algorithm. If this is not the case, the ability of the 3D LIDAR to
measure the intensity of each individual return may be utilized and an appropriate target
can be designed. Therefore, the final target will consist of a calibration chessboard with
a radar reflector attached behind the board rigidly mounted on a mobile platform so that
the position of the target may be changed easily. An anticipated source of error for this
calibration technique is that the target point detected by the individual sensors may not
be the same point due to physical constraints and will be addressed if found significant.

5.2 Infrastructure Sensor and GPS Calibration

One of the features of autonomous vehicles is the ability to interface with infrastructure
mounted sensors to acquire additional information about the environment. Knowing the
location of the infrastructure sensor is useful in localizing the information attained. A
simple and effective way to do this is to know the GPS location, latitude and longitude, of
all relevant infrastructure sensors so that the received data can be localized with respect
to the GPS system on the developed platform.

Since the coordinate systems for both the infrastructure sensor and the GPS sensor
mounted on the vehicle are stationary, the motion of the vehicle does not affect the trans-
formation between them. Therefore, Equation 5.1 can be used once again in the exact
same way. Moreover, a similar approach to the calibration target design is employed. The
target, detected by the infrastructure sensor, should be mounted at the location of the
GPS reference point so that both sensors are measuring the position of the same point.

The calibration procedure is to drive the vehicle in a path that excites all the translation
and rotation degrees of freedom and take measurements from both sensors at the exact
same time. The simplest way to do this is to stop the vehicle when taking the measurement,
but time synchronization and triggering of the sensors may also be employed. If the road
surface does not allow the vehicle to excite all the degrees of freedom, an alternative is to
mount the targets on a mechanical platform that can independently incur these motions
on the targets.

5.2.1 Vision Sensor and GPS Calibration Simulation Results

The setup for the calibration between an infrastructure mounted vision sensor and a GPS
is shown in Figure 5.1. A calibration chessboard is mounted on the roof of the vehicle
and one of the corners of the chessboard is overlapped with the GPS reference point. This

30

is the point on the vehicle that the GPS device measures the latitude and longitude of.
Any infrastructure sensor that measures the 3D position of a target may be used, but the
example uses a camera since this is the most common. The chessboard is mounted on a
mechanical platform that provides sinusoidal oscillations along the roll and pitch axis of the
chessboard as well as translation in the vertical direction. These, coupled with the planar
translations and yaw motion of the vehicle itself, ensure that all the degrees of freedom
are excited as measurements are taken. When all the degrees of freedom are excited, 3D
homogeneous transformation matrix can be fully resolved. The yellow trajectory shows
the path that the vehicle will take. The camera is mounted on the light post and its field
of view is shown on the road.

Figure 5.1: Simulation Scenario Setup for Infrastructure Sensor with GPS Calibration

The mounting location of the camera with respect to the global GPS coordinate frame
is fixed and known. The simulation platform simulates the vehicle driving the trajectory
as well as the chessboard sinusoidal motions. The camera takes an image at a fixed frame
rate. At the exact same time, the latitude and longitude of the GPS system is measured.
As a result, a number of images and coordinates are obtained as the vehicle traverses the
trajectory. Roughly 15 to 30 well spread data points are needed for a good calibration

31

based on anecdotal experience. Finally, the cost function shown in Equation 5.1 can be
minimized. A value of 100000 is used for ν and works well. The calculated transformation
matrix for the transformation from the GPS coordinate frame to the camera coordinate
frame is:

−0.9987 0.0495 0.0100 64.3602
0.0496 0.9987 0.0070 −59.4982
−0.0096 0.0074 −0.9999 8.9662

0 0 0 1.0000

To measure the calibration error, the camera location with respect to the global GPS

coordinate frame can be obtained using the solved transformation by transforming the point
[0, 0, 0] to the GPS coordinate frame. Then, the resulting coordinates can be subtracted
from the known setup coordinates to find the error along each of the x, y, and z axis.
Finally, the mean error can be calculated from these three axial errors. The axial errors
are 0.1361 m, 0.3316 m, and 0.0267 m along the x, y, and z axis, respectively. The average
of these errors is 0.1648 m.

Since, in the simulation environment the GPS measurement is completely error free,
the main cause of error is the camera measurements. Since the calibration chessboard is far
from the mounting location of the camera, the chessboard corners cannot be determined to
a very high level of accuracy. That is to say, that the error can be reduced as the size of the
chessboard is increased or the camera is mounted closer to the vehicle. That being said,
the mounting height of the camera is strategic for other reasons and cannot be changed
just for a better calibration. Moreover, in a real world GPS system, there is error present
in the GPS measurement and so the calibration will be worse than it is in the simulation.
Furthermore, it is difficult in the real world to mount a target at the exact GPS reference
point. Instead, the target will be mounted at some arbitrary and easy to mount location,
but the transformation will be measured. Then the transformed point may be calibrated
to obtain the same result, however the measurement error in the transformation will also
affect the accuracy of the results.

5.3 Hand-Eye Calibration

In the previously described calibration cases, all sensors are able to collect measurements
of the 3D position of a calibration target in a common field of view allowing for the method
employed to be successful. When these requirements are not met, specialized calibration

32

techniques need to be considered on a case by case basis for each of the uncalibrated sensors.
In the case of calibrating the GPS sensor with other vehicle mounted sensors such as the
LIDAR or the camera, it is not possible to meet these requirements. The only way that a
GPS system will measure the location of a calibration target is if the target is mounted at
the reference location of the GPS, but since the reference location is static with respect to
vehicle mounted sensors, it is not possible to obtain multiple measurements of the target
by the vehicle mounted sensors. Therefore, the previously used technique becomes invalid.

Fortunately, it is possible to solve this calibration scenario through a method referred to
as Hand-Eye calibration. At the core, this method utilizes separate calibration targets for
each of the two sensors being calibrated. Although it may be possible to perform the Hand-
Eye calibration with more than two sensors at a time, it is not necessary for the platform
since the transformations of the remaining vehicle mounted sensors with respect to the
GPS system can be calculated algebraically from the previous calibrations. Moreover, the
joint calibration method only required the position of the calibration target to be detected
by the sensors, but the hand-eye calibration requires the 3D orientation to be detected as
well. Therefore, a GPS + IMU navigation solution should be utilized.

5.3.1 Camera and Navigation Solution

For calibration between a camera and the navigation solution, a chessboard can be used as
the target detected by the camera. The chessboard is statically mounted somewhere in the
environment and a coordinate frame is define based on one of the corners of the chessboard.
Next, a static navigation reference frame can be defined for the navigation solution when the
latitude, and longitude measurements are converted to UTM coordinates as per subsection
2.4.2. Finally, as depicted in Figure 5.2, the vehicle should be driven to different poses
such that all the degrees of motion are excited and the chessboard is in the field of view
of the camera during all poses. Hand-Eye calibration seeks to solve the homogeneous
transformation equation of the form AX = XB, or some similar variant, where A,B,X
are all homogeneous transformation matrices. A0, A1, ... are obtained from the camera
images of the chessboard and the intrinsic camera matrix as discussed in subsection 2.4.1.
A series of A matrices can be calculated for two successive poses. Similarly, B0, B1, ... are
the transformation matrices from the navigation reference frame origin to each of the poses
of the navigation reference point, and can be used to calculate a series of B matrices. X is
the homogeneous transformation matrix from the navigation reference point on the vehicle
to the camera coordinate frame, the entity of interest.

In order to solve the homogeneous transformation equation AX = XB, the method
outline in Section 2.6 is used. Other closed form or optimization based solutions also

33

exist and can be used. In [25], a solution is presented to the homogeneous transformation
equation CX = ZD, which simultaneously solves for X and Z. Z is the transformation
from the navigation reference frame to the camera target frame, C is A−1

0 , and D is B−1
0 .

Figure 5.2: Basic Principle of Hand-Eye Calibration

Camera and Navigation Solution Calibration Simulation Results

In order to calculate the transformation from the navigation system reference point to the
vehicle mounted camera, the Hand-Eye calibration technique is used. The method is tested
in simulation with the setup as follows. A camera is mounted on the vehicle as shown in
Figure 5.3. The blue coordinate system in the image is the navigation system reference
point and the camera is mounted with respect to that point 2 m in the x direction and
1.32 meters in the z direction. A stationary calibration chessboard is setup in front of the
vehicle and the vehicle is made to drive a trajectory that excites all the degrees of freedom

34

but also keeps the chessboard in the camera field of view. Figure 5.4 shows some of the
camera images obtained. A series of camera images and navigation solution samples are
obtained and the method explained previously is utilized. The resulting transformation
matrix obtained is:

−0.0003 −0.0000 1.0000 2.0401
−1.0000 −0.0011 −0.0003 0.1138
0.0011 −1.0000 −0.0000 1.3167

0 0 0 1.0000

Figure 5.3: Camera Setup WRT Navigation System Reference Point

It can be seen that the translation component of the transformation from the navigation
system to the camera has an error of 0.0401 m, 0.1138 m, and 0.0033 m in the x, y,

35

Figure 5.4: Camera Images at Various Stages in Vehicle Trajectory

and z directions, respectively. The rotation matrix of the homogeneous transformation
pertains to euler angles of −90.0148◦, −0.0654◦, and −90.0014◦ along the z, y, and x axis,
respectively. Although the true value of the rotation matrix should be identity since there is
no rotations between the two coordinate systems, this result occurs because of a coordinate
frame difference in the Prescan simulation environment and that of the Matlab environment
where the calibration algorithm is run. The difference of the coordinate systems is a −90◦

rotation around the z axis followed by a −90◦ around the x axis. Subtracting these from
the values obtained after calibration results in absolute value rotational errors of 0.0148◦

around z, 0.0654◦ around y, and 0.0014◦ around x.

These results demonstrate the working principle of the Hand-Eye calibration algorithm
and setup. Errors in simulation may be caused once again by the camera not being able
to accurately detect the location of the chessboard corners. In simulation, a very large
chessboard is used mitigate these errors.

36

5.3.2 LIDAR and Navigation Solution

The calibration process between a LIDAR and the navigation solution is the same, how-
ever, it is not as simple to obtain the series of A and B matrices. Although a common
target point can be easily selected from a series of point clouds and the translation vector
resolved, it is not so easy to determine the 3D orientation of the target point. A common
way to determine the homogeneous transformation between two point clouds captured
from different poses is to use the ICP algorithm outlined in Section 2.8. The algorithm
determines the transformation by finding the point to point correspondences between the
two point clouds and then solving for the best rotation and translation to align all of the
points.

It is difficult to obtain a completely correct transformation from the ICP algorithm.
The LIDAR itself has error in measurement of each individual point, and further noise
is injected if the environment is not completely static between all the captured poses.
Furthermore, the ICP algorithm may converge to a local minimum and not the global
minimum. This coupled with errors in the navigation solution make this calibration very
difficult to perform well.

37

Chapter 6

Lane Keeping System

In this chapter, the implementation of the lane keeping system is explained and tested using
the simulation platform. Lane keeping generally consists of lane detection, in which the
road lane markings and boundaries are detected, and lane following, in which the vehicle
is controlled to stay within the lane markings and boundaries while driving. The lane
keeping system will be implemented on the developed platform as a test for the platform
and all on board systems.

With a highly accurate GPS and IMU system such as an RTK or DGPS system fused
with an accurate IMU, it is possible to follow a prior path so that the vehicle can drive
autonomously while keeping itself in a lane. However, the real world is dynamic and
it is not always possible to follow a pre defined path. Moreover, these highly accurate
navigation systems are expensive and not suitable for implementation in an affordable
solution. Therefore, other sensors, such as a monocular camera, are often used for lane
detection. In this work, a monocular camera is used alongside a navigation system for
lane keeping. The navigation system serves as a fall back solution when situations arise
where the lane cannot be detected, yet augmenting the navigation system with a vision
system allows for the accuracy requirements from the GPS and IMU to be significantly
reduced, to the extent that cheaper less accurate systems may be used in conjunction with
the monocular camera.

A simple, but effective lane keeping controller is described in Section 6.1. The use
of a GPS and IMU based navigation solution is employed with the controller in Section
6.2. Monocular lane detection is employed to accurately locate the lane markings with
respect to the vehicle in Section 6.3. In Section 6.4, the vision system is augmented with
the navigation solution for lane keeping when there is no lane present or when the vision

38

system fails. Finally, the various approaches are tested on the simulation platform in
Section 6.5 prior to real world implementation.

6.1 Lane Keeping Controller

The lane keeping controller is largely based on the controller used in [3] by the DARPA
Grand Challenge winning robot: Stanley. The control law, shown in Equation 6.1, uses
the lateral error, l(t), and the heading error, h(t), as the error metrics trying to be brought
to zero. The desired steering angle, δ(t), is linearly proportional to the heading error with
gain, kp1.

Moreover, the desired steering angle is non-linearly proportional to the lateral error
with gain, kp2, and the vehicle speed, u(t). When the lateral error is large or the vehicle
speed is slow, the desired steering response is stronger. On the other hand, if the lateral
error is small or the vehicle speed is fast, the desired steering response is weaker. These
help to strike a balance between controller stability and speed of convergence. The purpose
of the offset, kp3 ≥ 1, is to nullify large steering requests when the vehicle is near zero
velocity.

As discussed in [3], the convergence of the controller is only limited by the velocity of
the vehicle. Although this is a simple proportional controller, it is effective at the slow
velocities that the autonomous vehicle is planned to be driven at.

δ(t) = kp1 · h(t) + arctan(
kp2 · l(t)
kp3 + u(t)

) (6.1)

6.2 Lane Keeping with Navigation System

The underlying prior for lane keeping based solely on GPS and IMU is an accurate map for
the vehicle to follow. If such a map is available, the vehicle can be localized on the map in
real time with data from an accurate on-board GPS. The error metrics can be determined
based on this localization in conjunction with vehicle heading angle obtained from an IMU.

In this thesis, the map is a series of points, defined in a global coordinate system, that
form a path. The origin of the coordinate system can be located at an arbitrarily chosen
point in the world and should be kept consistent throughout all tests. It is desirable that
the map is collected at a high frequency so that the distance between successive points is

39

small. Larger separations between points on the map will result in less accurate error metric
calculations that will then require interpolation techniques to be used. In the following
subsections, interpolation techniques are not applied as the map is assumed to be collected
at a high frequency.

Furthermore, it may be necessary to smooth the map if points have significant noise. In
this thesis, it is assumed that measurement noise is at an insignificant scale and the map
is accurate to ≤ 10 cm RMS error per point position. This is consistent with the typical
accuracy of advanced RTK GPS systems and post processed DGPS systems.

6.2.1 Lateral Error Metric

Lateral error is defined as the distance from the vehicle position, pv = (pvx, pvy), to the
closest point, pc = (pcx, pcy), on the map. In order to localize the vehicle position on the
map, the latitude and longitude is converted to the coordinate system of the map using the
process explained in Section 2.4.2. A method utilizing the Quickhull algorithm for convex
hulls, based on the work of Barber [52], is employed to efficiently locate pc. Finally, the
euclidean distance can be calculated between the vehicle position and the closest point and
is depicted in Figure 6.1.

6.2.2 Heading Error Metric

Human drivers tend to steer the vehicle based on a reference point some distance ahead
of the vehicle. On straighter paths, minor adjustments are made and the vehicle is simply
guided in the correct direction to keep it adequately centered in the lane. On highly curved
paths, the reference point is brought a lot closer to the vehicle so as not to cut corners.
To achieve a similar driving characteristic, a dynamic reference point, pr = (prx, pry), is
calculated. The heading error metric is calculated such that the control effort seeks to drive
the vehicle into the reference point, and is depicted in Figure 6.1. With this approach, the
lateral error metric becomes less significant in the control of the steering.

The dynamic reference point is calculated by finding the closest point on the map
that is a dynamic distance away from the closest point, pc, as calculated in the previous
section. This dynamic distance is a function of the current curvature, k, of the road and is
calculated as shown in Equation 6.2. The map is pre-processed and the curvature at each
point is calculated as explained in Section 6.2.3. The dynamic distance is bounded by a
lower and upper bound, dmin, dmax, which are determined through trial and error. These

40

bounds ensure that the reference point does not cause a loss of stability by being too close
to the vehicle, or cause the vehicle to cut corners by being too far from the vehicle.

d =

{
dmin |k| ≥ kmax

dmin + (kmax − |k|) · (dmax−dmin

kmax
) |k| < kmax

(6.2)

Finally, the heading error metric is calculated as shown in Equation 6.4. θnav is the
vehicle heading angle measurement coming from the navigation solution and θd is the
desired heading angle for the vehicle.

θd = arctan
(pry − pvy)
(prx − pvx)

(6.3)

h = θd − θnav (6.4)

Figure 6.1: Visual Depiction of Navigation System Error Metrics

41

6.2.3 Map Pre-Processing

This pre-processing is performed in order to compute curvatures and distances of points
on the map in order to optimize the live processing. Distances between adjacent points are
computed using the Euclidean distance and is utilized in order to find the closest point at
a specific distance from a reference point.

Curvatures are computed based on a sliding window section of the map. Points inside
the window are fitted with a parabolic lane model using a Random Sample Consensus
(RANSAC) based curve fitting. Window size is determined by trial and error to be suffi-
ciently large for a good fit, yet not too large so that there is more than one inflection point
in the window. If there are too many changes in curvature within the window, a parabola
will not fit the data well and the curvature will not be accurate. From the parabolic fit,
the curvature can be calculated using the curvature of a parabola equation as shown in
Equation 6.5 with x = 0. The variables a and b are the parabolic coefficients from the
equation y = a · x2 + b · x + c. In this way, a curvature value can be computed for each
point on the map and can be quickly looked up after localizing the vehicle on the map.

k =
2 · a

(1 + (2 · a · x+ b)2)
3
2

(6.5)

6.3 Vision Based Lane Detection

The final goal of the lane keeping algorithm is to autonomously drive the developed plat-
form around the University of Waterloo Ring Road which is a loop of bidirectional road
with a single lane in each direction. The known characteristics of the road can be used in
the development of the lane detection algorithm and simplifying assumptions can be made.
The road contains only one lane marking, separating the two lanes in the middle and is
bounded on the ends by the curb. Therefore, the vehicle lateral position and heading will
be determined with respect to the middle lane marking only. The impact of this on the
control scheme will be discussed in Section 6.4.

The lane detection pipeline design is presented in Figure 6.2. The first step in a complete
lane detection pipeline, after the standard distortion correction, is filtering of the raw image
to remove lighting affects that can occur in a normal driving situation. The sun is the main
cause of such undesired artifacts on the image and effects such as lens flares and bright
rays of light on the image can be detrimental to accurate lane detection. Moreover, it
is common for the image to have areas of non uniform light intensity caused by shadows

42

from nearby infrastructure. Although software filtering can be applied to correct these
effects, it is chosen to address them physically for simplicity and speed in implementation.
The steps taken to address these issues for the real world platform will be discussed in the
following chapter. Moreover, the software platform tests are designed to have ideal lighting
conditions so that these effects are not an issue.

Figure 6.2: Lane Detection Pipeline Design

The next step of the lane detection pipeline is the utilization of the camera parameters
in order to transform the original image frame into a top-down frame as shown in Figure
6.3. These parameters include the focal length, principal point, and image size, which are
attained from the camera calibration process explained in subsection 2.4.1, and also the
height and pitch angle of the mounted camera. Initially it is assumed that perturbations in
pitch angle of the camera with respect to the road will not cause a significant effect on the
lane detection result. As such, the initial pitch angle of the camera is used as a constant
input to the transformation. Testing on real world roads may prove this assumption false,
in which case the transformation will also implement dynamic pitch compensation. In the
front facing image, parallel lane markings appear to converge at the horizon due to the
perspective of the image. If the image perspective is transformed to the top-down view
referred to as birds eye view, this perspective effect is removed and parallel lane markings
are once again parallel. The birds eye view image is computed based on a rectangular sub
section of the original image that can be arbitrarily defined. The idea is to utilize only the
relevant area around the expected location of the lane marking for lane detection so as to
reduce the processing times and any undesired objects in the processed image. The birds

43

eye view image is produced using the inverse perspective mapping algorithm explained in
Section 2.9.

Figure 6.3: Birds Eye View Produced by Perspective Transformation

The next step of the pipeline is to identify the lane markings from the rest of the
image as shown in Figure 6.4. The process employed is explained in detail in Section 2.10.
In summary, the algorithm takes as input the approximate expected width of the lane
marking and finds the markings in the image by searching for groups of pixels that have
a high intensity contrast from the surrounding pixels and are near the specified width.
Internally, this is achieve through a filter that expects a marking to have low intensity
pixels neighboring it. Furthermore, the sensitivity to the lane markings can be controlled
via a parameter. Any number of different lane markings detected by the algorithm can be
utilized and the algorithm works just as well for a multi lane highway as it does for the

44

single lane marking example shown.

Figure 6.4: Segmentation of Birds Eye View Image

Next, parabolic or cubic lane models can be fit to the segmented lane markings which
essentially fit the respective curves to the points making up the lane markings. A RANSAC
based method is used for robust curve fitting. The parameters for the model are returned
in the original camera coordinate frame and is shown in Figure 6.5.

45

Figure 6.5: Polynomial Lane Model Fit Results on Original Image

6.4 Lane Keeping with Combined Vision/Navigation

Solution

The experimental road is not suitable for lane keeping using only the vision system since
there are a few stretches without any lane markings. If a lane marking is continuous for
the full desired travel path, the vision lateral and heading error metrics as described in
Section 6.4.1 and Section 6.4.2 can be used with the controller. Instead, a joint vision and
navigation system is proposed to autonomously navigate the disjointed lane markings, yet
still benefit from the more accurate information coming from the vision system.

The navigation strategy utilized is to use the heading error metric from the navigation
solution and the lateral error metric from the vision solution. For the short sections where
there is no lane marking, lane keeping is achieved based on only the heading error metric
from the navigation solution. When a lane marking is present, both error metrics are used
so as to better control the lateral position of the vehicle in the lane. Since there is only a
left side lane marking, the vision lateral error metric always seeks to keep the vehicle at a
fixed offset to the right of the lane marking.

46

The motivation behind this combined system utilized in this way is based on the ob-
servation of human driving habits. Human drivers tend to drive by mainly correcting for
heading angle by looking ahead at some distance. Although adjustments are made when
the vehicle moves too close to either side of the lane, minor lateral errors are not corrected
and are deemed insignificant when the vehicle is near the center of the lane. As such,
the heading angle must always be available to the autonomous system. Since the heading
angle based on the vision system cannot be calculated if the lane marking is not present,
the navigation system should provide the heading error metric. The vision system is used
to provide the lateral error metric which can be discontinuous for short distances. When
the lateral error metric is present, the vehicle will center itself well within the lane, but
when it is not present, the correction based on the heading error will still keep the vehicle
relatively on the correct path until the lateral error metric is available again.

Another motivation for using the vision system to augment the navigation solution in
this way is that the required accuracy of the GPS can be reduced. As seen in Figure
6.1, the heading error metric coming from the navigation system relies on GPS only for
localization in the pre defined map which is then used to find the closest point on the map
from the vehicle in order to calculate the dynamic look ahead distance d and to calculate
θd. It can be observed that increased error in the localized position, does not significantly
alter θd, and only a large localization error would cause θd to be directed in a way that does
not bring the vehicle towards the prior path as desired. The vision system further helps
this by correcting for some of the added error by providing accurate lateral error metric
which guides the final steering angle towards the right value.

6.4.1 Vision Lateral Error Metric

Since the parabolic lane model y = a · x2 + b · x + c is defined with respect to the vehicle
frame as shown in Figure 6.6, the lateral position, l, of the vehicle from the lane marking
is simply the c coefficient from the model with a positive value implying that the vehicle is
to the right of the lane marking. To determine the error, the left marking offset, o, should
be subtracted from the lateral position.

In order to further smooth the jitters present in subsequent lane marking detections,
exponential smoothing is employed on the lateral error measurement as shown in Equation
6.6. The smoothing factor α controls the amount of smoothing of the lateral error at time
i by adjusting it based on the lateral error at the previous time step i− 1 .

ci = (l − o) · α + ci−1 · (1− α) (6.6)

47

Figure 6.6: Visual Depiction of Vision System Error Metrics

6.4.2 Vision Heading Error Metric

The heading measurement can also be derived from the parabolic lane model. By definition
of the vehicle frame, the vehicle heading is always 0◦. The lane heading at an arbitrary
distance x from the vehicle can be calculated by Equation 6.7. Therefore, a simple way to
follow the lane is to set the vehicle heading to the lane heading h(x). The distance can
be dynamically calculated as shown in Equation 6.2 in order to prevent the vehicle from
cutting corners.

h(x) = arctan(2 · a · x+ b) (6.7)

6.5 Simulation Experiments

The simulation scenario created consists of a road with similar curvatures as that of the
real world road. A section of the road is shown in Figure 6.7. It can be seen that areas of

48

the road are made to not have a left lane marking to simulate this similar aspect of the real
world road. The ego vehicle in the simulation has a forward mounted camera that is able
to observe the road ahead. Moreover, the simulation software provides fully accurate GPS
position of the vehicle with respect to a global coordinate system as well as the vehicle
roll, pitch and yaw motion, similar to the navigation solution on the developed platform.

Figure 6.7: Top View of a Section of the Simulation Scenario

To generate the GPS map as required by the lane following approach, the vehicle is
automatically driven through the course using the simulation software and the GPS way
points are collected at 20 fps. The pre-processing explained in subsection 6.2.3, is conducted
and Figure 6.8 shows the calculated curvature plot. As explained, this curvature is used to
dynamically vary the look ahead distance with which the heading error metric is calculated,
keeping the controller stable but also preventing the vehicle from cutting corners. It can be
observed that the maximum absolute curvature of the simulated track is 0.044 1

m
, similar

to that of the experimental road.

The lane detection algorithm, as explained in Section 6.3, is performed on images from
the simulated camera. Figure 6.9 shows the lane detection algorithm pipeline for a sample

49

Figure 6.8: Curvature of Points for Simulation Scenario Map

frame. First, the distortion corrected image is transformed to a birds eye view area located
around the lane marking. Next, the lane line is segmented from the image. Finally, a
parabolic lane model is fit to the line and obtained in the camera coordinate frame.

For the simulation tests, the vehicle starts at standstill and a fixed throttle value is
applied to the vehicle. That is to say that the vehicle speed is constantly increasing
throughout the test. By the end of the track, the vehicle reaches approximately 50 km

h
.

This is consistent with the maximum speed of 40 km
h

on the real world road. Two tests are
performed. In the first test, only the GPS and IMU system is used to navigate the vehicle
using the prior known map. The gains of the lane keeping controller shown in Equation
6.1 are set to kp1 = 1, kp2 = 0.1, and kp3 = 1.2. In the second test, the vision system is
used alongside the navigation solution and kp2 is raised to 2. This test also compares the
results of the combined system with only the navigation solution based system. This will
give more weight to the lateral error in the steering angle calculation and will emphasize

50

Figure 6.9: Lane Detection Pipeline. Left: Birds Eye View Image, Middle: Segmented
Lane Marking, Right: Lane Detection Result after Parabolic Fit

the effect of the vision system being used to aid the navigation solution. The ratio of the
steering wheel angle to the tire angle is accounted for and the steering wheel is constantly
adjusted to the desired value at 20 Hz. The results are measured for a section of the track
and is consistent across both tests. The section consists of curvy roads that change in
direction often and have different amounts of curvatures.

Figure 6.10 shows the result of the first test. The test is performed a total of four times
with different amounts of noise injected into the GPS position. Noise with a covariance
of 10, 35, and 50 cm is injected and the no noise case is taken as the base result. In
the no noise case, a small lateral error is present as the vehicle is following the curvature
of the road. The initial lateral error is due to the starting position of the vehicle being
offset from the path to be followed. Moreover, the oscillations present in the no noise case
between 7 and 25 seconds are due to the frequency at which the map points are collected.
Since interpolation techniques are not employed when calculating the closest point to the
vehicle in the determination of the lateral error, the error tends to get oscillate due to the
distance between the points on the map. When the vehicle speeds up, the effect becomes
less prominent. The effect of the noise can be easily observed. As the noise level increases,
the vehicle tends to oscillate more and more while following the lane. These oscillations
increase in magnitude as the magnitude of noise increases. This is expected as the GPS
is giving less accurate readings and the lateral error calculation will jump from frame to
frame. In all cases, the total lateral error is within and absolute value of 0.4 meters from
the planned path. That is to say, that the vehicle adequately tracks the path and navigates

51

the track.

Figure 6.10: Effect of GPS Position Noise on Lane Following

Figure 6.11 shows the results of the second test. A noise covariance of 50 cm is in-
jected into the GPS system. Since the lateral error gain is increased the magnitude of
the oscillations caused by the GPS error have also increased. It can be seen that the os-
cillations reach a maximum magnitude of 2 meters. This is because the lateral position
of the vehicle is given too much emphasis by the controller. In a more stable scenario,
and corresponding to human driving, the heading error metric should be given more sig-
nificance than the lateral error metric. However, increasing this gain helps to observe the
effect of the combined vision and GPS system. It can be seen that the combined system
has smaller oscillations and the lateral error is reduced in magnitude as the vehicle follows
the path. This is because the vision system has a much higher accuracy than a GPS and
IMU solution. These results show the benefit of the vision system being used as a source
of more accurate lateral error data in the behaviour of the lane keeping of the vehicle. The

52

GPS only system under these conditions would have driven onto the curb or the adjacent
oncoming lane resulting in a hazardous and unsafe situation. In comparison, the maximum
lateral error of the combined system is around 35 cm deviation from the planned path, and
the vehicle is still within the lane.

Figure 6.11: Comparison of GPS Only System with Combined GPS and Vision System

53

Chapter 7

Experimental Setup

In this chapter the autonomous vehicle platform is realized based on the design require-
ments presented in chapter 3 and is prepared for the lane keeping experiments. The
developed platform is explained in Section 7.1 including details about the selected sensors,
actuators, OS, and computing systems. Moreover, time synchronization of sensors for the
platform is discussed in Section 7.2. Finally, the calibration algorithms are employed and
tested in order to be able to represent all the different sensor data in a common frame in
Section 7.3.

7.1 Experimental Platform

For the autonomous vehicle platform, it is decided to use an ordinary vehicle as the plat-
form base and outfit it with all the necessary hardware and systems to make it into an
autonomous vehicle platform. A preexisting autonomous vehicle platform is not purchased
as they are costly and restrict the freedom in their use. In using the ordinary vehicle, any
changes required can be made without consequence. Moreover, this allows for the selection
of the hardware utilized on the vehicle whereas a preexisting platform may come with un-
desirable hardware packaged with the platform. The chosen vehicle base is the electronic
Chevrolet Equinox and is shown in Figure 7.1.

54

Figure 7.1: Autonomous Platform Base Vehicle: Chevrolet Equinox

7.1.1 Software Platform

The autonomous platform OS will be the main item of discussion in this subsection. The
simulation platform selection is explained in chapter 4 and general best practices for user
level code will be utilized and specific rules will not be placed on them for the development
of this platform.

When it comes to industrial level operating systems there are a few available on the
market. The first of these is the QNX Neutrino RTOS available from BlackBerry [53]. This
real time OS is designed to be highly reliable and secure and is a good choice when these
criteria are most important to the system. Moreover, the VxWorks RTOS from Wind River
is another industrial real time OS conforming to various industry standards for reliability,
safety and performance [54]. A slew of other paid systems are also available, but these
seem to be the most popular.

In contrast, the Linux OS is an open source operating system that is widely used for
autonomous vehicle platforms. The Ubuntu version of Linux is most widely used in the
automotive field. The Apollo project from Baidu is an open source autonomous vehicle
platform that is developed on a Linux kernel patch for real time capability [55]. Another
open source autonomous vehicle platform is the Autoware project which is also built on
top of a real time version of Linux. However, Autoware uses Robot Operating System

55

(ROS) on top of the Linux RTOS for additional benefits [56].

Since the developed autonomous vehicle platform is a research prototype platform,
great importance is placed on speed of development and available resources for the OS.
These immediately bring focus to using Linux and ROS for the developed platform since
they are open source, have been used a lot for similar applications, and have an abundance
of resources available for the same reasons. Therefore, the approach taken is to use ROS
until it fails to be able to meet the goals. In hindsight, without the resources and libraries
and tools available from ROS, such quick achievement on the developed platform would not
be possible. A slew of other robotics frameworks that perform some of the tasks that ROS
performs include: Player, YARP, Orocos, CARMEN, Orca, MOOS, Microsoft Robotics
Studio, and Rock. These are not considered as they do not come close to the features
provided by ROS for an autonomous platform and do not have nearly the same user base
and resources.

The final software platform design is shown in Figure 7.2. ROS is a collection of
open source software libraries and tools for robotics applications. Drivers to interface
with sensors and actuators are readily available in ROS as well as the integration of major
software libraries such as Open Computer Vision (OpenCV) for image processing tools and
Point Cloud Library (PCL) for point cloud processing tools. Furthermore, ROS provides
easy to use data acquisition, playback and visualization utilities with readily available
support [57].

The basic building blocks of ROS are nodes. ROS nodes are processes that perform
tasks. Nodes can perform a variety of tasks from interfacing with sensors to things like
path planning. ROS nodes can communicate with one another through services or topics.
Services are a one to one communication mechanism with two nodes establishing a con-
nection and communicating through a request - receive scheme. Topics on the other hand
are a one to many communication mechanism where a node can publish data on a topic
and any number of nodes can subscribe to the data. The data transfer is formatted as
a ROS message which is a dynamic data structure specific to the data being transferred.
ROS message formats are discussed in subsubsection 7.1.3.

Although ROS is a complete platform for any kind of robotics development, pairing
ROS with Matlab provides additional benefits. Matlab libraries and tools for algorithm
development can aid in the development of the autonomous platform. It is generally
quicker and simpler to develop and test algorithms in Matlab due to the availability of
various functions for common algorithmic tasks. Moreover, university students in this field
are well versed in Matlab from classes. Matlab provides a library of functions that allow
users to communicate with ROS enabled devices. In essence, it allows ROS nodes to be

56

Figure 7.2: Software Architecture using ROS and Matlab/Simulink

developed in Matlab and to establish communication with the normal ROS nodes via topics
and services. Therefore, Matlab and Simulink code can be used effectively with ROS.

The final software platform is as follows. ROS is used to interface with sensors and
actuators via drivers written in ROS. The drivers publish topics with the sensor data avail-
able to other nodes and in the case of actuators the driver subscribes to topics with the
actuator commands and communicates it to the actuators via the hardware. ROS also
handles the data logging through the use of ROS bags. These bags essentially create a
record of the published and subscribed topics and services with timestamps that can be
played back in the future. The ROS Visualization (RVIZ) environment is used for visu-
alization of data such as LIDAR pointclouds, radar returns, etc. When the sensors are
calibrated, ROS also handles the coordinate frame transformations between sensors auto-
matically. Furthermore, Matlab or ROS can be used for the implementation and testing
of the higher level algorithms such as those for perception, planning, controls, routing,
prediction, and mapping and localization. Researchers will develop these algorithms and
use the established ROS communication to interface with the rest of the platform.

57

Table 7.1 shows the tasks performed by ROS in comparison to the desired tasks from
the OS. Requirements not met include encapsulation of communication for security and
system monitoring tools. However, it is possible to add these features to ROS with some
additional work. In [58], Linux Container (LXC) is used to fix the security vulnerabilities.
Moreover, free user written monitoring tools are available for ROS and can be added to
the platform. Going forward, ROS should be used with a real time version of Linux thus
allowing for use of high frequency controls algorithms without problems.

Table 7.1: OS Requirements Met by ROS
Task Description Required Met by ROS

Resource Allocation X X
Communication Between Systems and User Code X X

Interfacing with Sensors X X
Data Acquisition X X
Data Recording X X

Data Visualization X X
Development Libraries and Tools X

Ability to Run on Arbitrary Hardware X
Interface with Common Industry Tools X

Allow Modular User Code X X
Encapsulation of Communication X

System Monitoring Tools X
Efficiency in Operation

Real time
Facilitates Fast Implementation X X

Available Resources X X
Tested in other Autonomous Vehicles X X

Open Source X
Support Distributive Systems X

7.1.2 Hardware Platform

The developed hardware architecture is depicted in Figure 7.3 and shows the sensors,
actuators, computing systems and their interfacing. The design is simple and able to be
implemented quickly with the help of the lab technicians. The lab technicians handle the

58

sensor and actuator installations as well as the ECU programming including the steering
and speed controllers. They also expose data coming from base vehicle sensors such as the
vehicle speed and steering angle.

Figure 7.3: Hardware Architecture of Autonomous Driving Platform

Computing Systems

There are two computing systems part of the hardware platform. ECU is an embedded
system that is used for low level control algorithms on the vehicle. The system installed
on the vehicle is a dSpace AutoBox and is shown in Figure 7.4. It implements a steering
controller capable of actuating the steering wheel to a specified angle by commanding the
steering robot. Secondly, it interfaces with the vehicle Controller Area Network (CAN) bus
to actuate the braking and acceleration inputs of the vehicle. The desired steering angle
and vehicle speed can be send to the ECU through the CAN bus as a specific message
generated by the laptop.

59

Figure 7.4: ECU Installed on Developed Platform

The laptop is a second computing system that is running the software platform previ-
ously explained. It uses an Intel Xeon E3-1535M v6 CPU with a clock speed of 3.10 GHz,
32.0 GB of RAM and an NVIDIA Quadro M2200 graphics card with 4.0 GB of VRAM.
Sufficient storage space is present to record results. This machine runs ROS and Matlab
simultaneously, runs the high level algorithms quickly, and interfaces with the vehicle CAN
network through a CAN to USB adapter for actuation of the vehicle. Sensor interfacing is
achieved directly with the laptop with different sensors transmitting data via CAN, USB,
or Ethernet interfaces. Interfacing of sensors with the OS is explained in detail in Section
7.1.3. The laptop also handles visualization of data.

Sensor Selection and Installation

The sensors implemented on the platform include a navigation solution consisting of a
coupled GPS and IMU system, a machine vision monocular camera as well as a Mobileye
camera, a 3D LIDAR system, and six radar modules of varying ranges. Figure 7.5 shows
the mounting locations of the sensors on the vehicle. Details on the exact sensors and some
common specifications are presented in Table 7.2.

The camera used in this platform is a Basler acA1920-40um with a 2.3 MP resolution
and a pixel size of 5.86 µm by 5.86 µm. It is a monochrome sensor with a maximum
frame rate of 41 frames per second. A larger than average pixel size was chosen alongside
a monochrome sensor so as to capture a broader light spectrum thereby improving the
performance of the camera in low light conditions. Furthermore, these choices result in
higher light sensitivity and benefits lane detection algorithms which seek to detect lane

60

Figure 7.5: Sensor Locations on Developed Platform

markings based on their contrast with the road. Furthermore, the camera features a global
shutter that allows for the entire image to be captured at the same time, removing motion
blur effects that would occur otherwise.

The lens is selected in order to provide a large field of view at the working distance
of the lane detection algorithm. The lens used is a Kowa LM8HC lens which allows the
lane to be detected 2 meters in front of the vehicle. At greater distances, the field of view
allows for the detection of multiple lanes.

The Mobileye sensor used in the platform utilizes a camera and on board algorithms to
provide processed information about the surroundings. The unit can provide lane detection
information, obstacle detection data including a characterization of the obstacle, and traffic
sign information. It is centrally mounted on the windshield of the vehicle and monitors
the area ahead of the vehicle.

The GPS system used on the platform is the differential system from Applanix called
the POS LV. The POS LV system has a positional accuracy in the range of 35 cm to 50
cm as well as a heading angle accuracy up to 0.02◦. Software post processing allows for

61

Table 7.2: Sensor Selection and Common Specifications
Sensor Name Type Data Rate Field of View Interface

Basler acA1920-40um
Kowa LM8HC

Camera/Lens 41 Hz 2.8m @ 2m USB 3.0

Mobileye 5 Camera 10 Hz 40◦ x 30◦ CAN
Applanix POS LV DGPS 200 Hz ∞ Ethernet
Continental ARS 408-21 Radar Long Range 16.7 Hz 4◦ @ 250m

90◦ @ 70m
120◦ @ 20m

CAN

Continental SRR 20X Radar Short Range 30 Hz 40◦ @ 50m CAN
Velodyne Hdl-32E Lidar 10 Hz 360◦ ≤ 70m Ethernet

recorded data to be processed to an accuracy ≤ 10cm. The addition of a RTK system to
this GPS would allow such accuracy in real time.

Radars can be designed to have different operating distances and field of views based
on signal frequency. The developed platform utilizes two long range radars operating at
a frequency of 77 GHz with an operating distance of 250 m and four short range radars
operating at a frequency of 24 GHz with an operating distance of 50 m. Both types of
radars have a distance accuracy < 0.5 m.

The developed platform uses a Velodyne HDL-32 LIDAR utilizing 32 lasers to generate
point clouds. The sensor provides point clouds at a rate of 10 Hz and working distance of
up to 70 meters. Figure 7.6 shows the installation points of some of these sensors close up.

The approximate field of views of the different sensors are depicted in Figure 7.7. It
can be seen that the position of the sensors allow for coverage of the entire surrounding
of the vehicle. The long range radar sensors mounted on the front and back of the vehicle
have the purpose of obstacle detection at close and far distances and will be used in a
cruise control system in the future. The four short range radars can detect obstacles in
the lateral directions. The LIDAR is centrally mounted to detect everything going on
around the vehicle and can provide redundant information to most of the other sensors
usable with sensor fusion techniques to make the platform more robust. The machine
vision camera is mounted at the front of the vehicle and is used for lane detection and
lane keeping tasks. It can also be used for obstacle detection in the future. The Mobileye
system provides another source of redundancy for lane detection and obstacle detection.
Finally, the navigation system consisting of a differential GPS and IMU system provide
reliable localization information for the vehicle.

62

Figure 7.6: Installation View of Sensors with Front and Side Radar (top left), Side Radar
and GPS Antenna (top right), LIDAR (bottom left), and Camera (bottom right)

Actuator Selection and Testing

The actuated systems on the vehicle include the steering robot controlling the steering
wheel angle and the speed controller regulating vehicle speed. Both of these systems have
low level feedback controllers that regulate the outputs to the commanded levels. These
low level controllers and actuator device selection are not in the scope of this thesis and
are handled by the lab technicians. Tests are performed to measure the response of these
controllers under different kinds of commanded inputs. Figure 7.8 shows the response of
the actuation under step inputs and Figure 7.9 shows the response of the velocity controller
under a ramp input. From these results it can be seen that some tuning is required from
the controllers. The steering controller controls the steering wheel angle to a fixed offset
approximately 6◦ from the commanded angle and takes around 1 second to reach the value.
For the purposes of the lane keeping controller, the response time should be improved for
smoother lane keeping. Both of these issues are corrected by the lab technicians. The
speed controller exhibits a noisy response that is also offset from the commanded value.
The noise is hypothesized to be measurement noise from the sensor. Although the speed

63

Figure 7.7: Approximate Sensor Field Of Views

controller is not used in this thesis, these issues will be addressed by the lab technicians
for the future.

7.1.3 Interfacing

Sensor data needs to be available for the laptop computer to be used by the software
algorithms implemented on the autonomous vehicle. Since, some of the sensors used are
popular sensors, open source ROS drivers are available to be used. The Camera, LIDAR,
and navigation system all have available ROS drivers. This allows for the real time transfer
of data from each of these sensors to ROS directly through their respective hardware
interface. The data is formatted as specialized ROS messages which are explained in this
subsection. The remaining sensors as well as the actuators transmit or receive data via the
CAN bus. Thus, it is beneficial to create a common way to interface with all such devices.
In this subsection a communication bridge between ROS and the vehicle CAN bus is also

64

Figure 7.8: Actuator Response Under Step Input

created. This bridge is extensible to new devices communicating to the laptop via the
CAN bus and only requires a common file specifying the data format for each device.

Bidirectional CAN Interface

The bidirectional CAN interface is designed with extensibility and functionality in mind.
ROS has a CAN library, that interfaces with the linux CAN kernel level drivers, called
ros canopen. The Socketcan Bridge node is part of this CAN library and provides the
raw CAN frames to be used in ROS applications. A generic node is created which can
translate the raw CAN data into usable formats and vice versa using another open source
library called libcan encode decode. This library provides functions that help to encode

65

Figure 7.9: Actuator Response Under Step and Ramp Inputs

and decode CAN frames. The generic node utilizes a sensor specific database file which is a
industry standard file that provides information about the CAN messages sent and received
by the sensors. With this setup, any new sensor utilizing the CAN bus can be interfaced
with by simply switching the database files. The generic node publishes the decoded
sensor data as ROS topics available to the other processing nodes. Actuation is handled
in a similar way using the same interfaces. A generic write node uses a actuator specific
database file to encode the desired data to be sent to an actuator, and the ros canopen
library handles the low level data transfer.

66

Figure 7.10: Diagram of CAN Communication Interface

ROS Message Formats

ROS messages are a way of encoding data to be transmitted within the ROS network.
ROS provides basic messages that are common to most robotics applications. Custom
messages can be created by users encapsulating the basic message types. They can be
viewed synonymous to structs in object oriented programming. When ROS drivers are
used to interface with sensors, custom message formats are created for the driver. Figure
7.11 displays an example of a custom ROS message with the navigation message format
used by the GPS and IMU system.

The CAN communication is designed to be extensible. Therefore, the custom messages
required to publish the sensor data to the ROS network are auto generated using the
database files. The processing nodes can further encapsulate sensor data into more usable
formats if necessary.

7.2 Time Synchronization

Individual sensors operate using a local clock to trigger the data acquisition for each sensor.
This is how a machine vision camera can acquire image frames at a set frequency or how
a rotating LIDAR determines when to fire each laser to build a point cloud frame. When

67

Figure 7.11: Navigation Message Format in ROS

68

using sensors in a network, such as that of the autonomous driving platform, the local clocks
of sensor nodes need to be synchronized. The precision of synchronization is application
specific. In a stereo camera system employing two machine vision cameras, both cameras
should trigger acquisition at nearly the same instance in time, or subjects in one camera’s
frame may have shifted in position from the other camera’s frame, resulting in a noisy
disparity image. However, when fusing data from multiple sensors operating at a very high
frequency, it is often justified to simply use the latest frame from each of the sensors. If
the data acquisition is sufficiently fast, there will not be a significant discrepancy in the
timing.

For the task of lane keeping, it is sufficient to use the latest frames from all of the relevant
sensors. ROS handles the data acquisition and provides data streams from all of the sensors.
Algorithms may access the latest frame from any of the sensors as necessary. However,
since the platform is designed as a test-bed for student work, exact synchronization between
sensors may be necessary so that frames are captured at the exact same time. Moreover,
individual sensor clocks tend to drift over time so that data acquisition may not happen
at a consistent rate. To this end, the hardware used is synchronized as explained in
the following subsections. The GPS system clock is used as the global clock for this
synchronization since it is highly accurate. It will be used to provide hardware triggers
to sensors that are capable to receive such triggers and will be used in conjunction with a
Linux machine to synchronize the clocks of sensors to a common source.

7.2.1 GPS and Linux Computer Synchronization

The GPS navigation system creates two types of messages that will be utilized for time
synchronization with the Linux machine. The first of these is a National Marine Electronics
Association (NMEA) string which is a common and standardized format of transferring
the position, velocity and time information computed by the GPS device. The second type
of message is the Pulse Per Second (PPS) message which is a repeated signal with a rising
edge at every second originated from the GPS clock. These signals can be used in order
to synchronize the clock of the Linux machine to the reference clock.

A program called gpsd allows the Linux machine to listen to the signals from the GPS. A
special cord is created to interface from the GPS output ports to the USB port of the laptop.
gpsd allows the signals to be used on the laptop by other programs. Next, a program
called chronyc, which implements the Network Time Protocol (NTP), synchronizes the
Linux machine clock to the reference clock from the gpsd output. The synchronization
is performed based on the NTP protocol which over time achieve synchronization that

69

is robust to discontinuities and preserve monotonicity and chronoscopicity. Figure 7.12
displays the result of the synchronization achieved. It can be seen that the offsets from
the synchronization with the GPS is 233 µs with a standard deviation of 718 µs, This is
a more than sufficient level of synchronization for algorithms functioning under 100 Hz.

Figure 7.12: Time Synchronization Statistics between GPS and Linux Laptop

Moreover, the acquisition time recorded by ROS, which is based on the local computer
clock, will now be accurate with respect to the GPS clock which does not drift as much as
the local computer clock. At this point software based synchronization could be achieved
between the laptop and the sensors connected to the laptop. Alternatively, if the sensors
allow, they can directly be synchronized or triggered from the GPS system. These elements
working together ensure that all devices on the platform will always work together correctly.
Algorithms that expect ordered data at specific times or the accurate logging of information
are some of the things that depend on accurate time synchronization.

7.2.2 Synchronization with Other Sensors

The sensors capable of being synchronized on the platform include the Velodyne LIDAR
and the Basler machine vision camera. Both of these devices have built in capability to
be triggered from hardware or synchronized from hardware using a General Purpose Input
Output (GPIO) cable. To achieve this task, the appropriate signals need to be generated
by the GPS and output at the desired frequency to the sensors. The GPIO cables need
to specifically constructed to fit with the GPS output interface as well as the sensor input
interfaces. Generally the sensor manuals indicate the signals needed and which pins on
the input interface should be connected to these signals. On the platform, this process is
followed for the LIDAR to be time synchronized with the GPS clock. This will ensure the
LIDAR clock does not drift and the timestamps for the LIDAR pointclouds are accurate.
The hardware triggering capability of the camera is not utilized currently. Instead, the
camera is set to run at a fixed frame rate based on its local clock and the acquisition

70

timestamps from ROS are used. The radar sensors and Mobileye unit do not support
being synchronized or triggered from external hardware.

7.3 Calibration Results

In this section, the different calibration techniques are employed and tested to different
levels of success. The infrastructure sensor with GPS sensor calibration is only tested in
simulation in Section 5.2.1 as a physical setup with an infrastructure mounted sensor was
not available. Moreover, this calibration technique is not required until interfacing with
the environment is implemented.

7.3.1 Heterogeneous Joint Calibration

For the joint calibration of the developed platform, the front radar, LIDAR, and Mobileye
camera are calibrated. At the time of the calibration, the machine vision camera was not
purchased or installed. Another calibration may be performed in the future to include this
sensor, or the missing transformations may be calculated from the Hand-Eye calibration
between the navigation system and the camera. Moreover, the remaining radars are not
currently used and therefore are not calibrated with the LIDAR system even though the
same method may be used to do so.

The specially designed calibration target is shown in Figure 7.13. The mannequin is
detected by the Mobileye sensor as a pedesrian. The radar reflector is mounted at the
center of the target and is designed to reflect the radar waves directly back to the radar.
This means that the signal strength of the return from the reflector is significantly stronger
that many of the surrounding objects and therefore is easy to isolate. The key factors of
the target in order to achieve a high strength return are size and material.

The algorithm is implemented as a ROS node using Ceres Solver. In this platform, Ceres
Solver, which implements the LM algorithm, is used in order to perform the minimization,
although any other software package may be used. A point selector ROS node is also
written which allows for sensor points to be clicked in RVIZ and saved to a file. Live
sensor data is recorded and visualized in RVIZ where the calibration target is moved to
various positions in the region of interest. As this data is played back, the point selector
node is utilized and a set 20 corresponding points from each of the three calibrated sensors
are written to a file. Since the radar and Mobileye sensor do not provide the height of
the detection, the LIDAR based height is used. That is to say that the Z value of the

71

Figure 7.13: Calibration Target for Joint Calibration of Radar, LIDAR, and Mobileye
Sensors

point selections comes from the LIDAR point. This is justified since the height of the
detections are not important since it is generally assumed that the object is at the ground
level. Finally, the calibration ROS node is run and the transformation matrices are found.
The transformation from the LIDAR to the Mobileye and from the radar to the LIDAR,
respectively, are:

0.0415 0.9991 0.0032 −3.5418
−0.9982 0.0413 0.0444 0.1686
0.0443 −0.0050 0.9990 −0.0021

0 0 0 1.0000

0.0606 −0.9963 −0.0615 0.3260
0.9982 0.0605 0.0077 2.4745
−0.0039 −0.0618 0.9981 0.0056

0 0 0 1.0000

72

One simple way to test for correct calibration is to apply the transformation obtained
in RVIZ and transform two of the sensors’ detections into the frame of the third detection.
In this case, the Mobileye and Radar detections are transformed into the LIDAR coordi-
nate frame. Figure 7.14 shows the alignment of the detections after the transformations
are applied. It can be observed that there is some error present since the points do no
completely align.

The error metric explained in Section 5.1 is utilized to provide an estimate of the level of
error present in the transformations. 10 frames similar to the ones shown are sampled with
the distance from the Mobileye and Radar detections to the Lidar detection calculated.
The average distance is taken as the error metric and is 0.42 meters. This level of error is
currently sufficient as the autonomous vehicle can be given a margin with which to avoid
any obstacles to ensure collision free travel.

Figure 7.14: Joint Calibration Results. The Mobileye Detection (green) and the Radar
Detection (white) are Transformed to the LIDAR Coordinate Frame

There are various causes for errors present in this calibration. First, at the sensor level,
each of the sensors have a measurement accuracy that is built into the measurements. There

73

is no way to obtain a more accurate measurement unless more advance and expensive
sensors are used. From the corresponding data sheets, the approximate measurement
accuracies of the LIDAR, radar, and Mobileye sensors used are 0.02 m, 0.1 m, and ≤2 m
respectively. The accuracies presented pertain to the maximum distance of the calibration
target during calibration. Generally, these measurement noises get worse with distance.
Therefore, it is a good idea not to set the calibration target too far from the vehicle.
Moreover, error is added into the system during the point selection stage. Ideally, the
exact same point on the calibration target is measured by all three sensors. In reality, it is
not known what point on the calibration target the Mobileye actually measures, whether
it is the center or a corner of the bounding box of the pedestrian detection or some other
arbitrary point. Next, the radar reflector is made sufficiently large to provide a strong
reflected signal, however this also means that the radar is not detecting the exact center
of the reflector all the time. Lastly, the LIDAR point pertaining to the center of the radar
reflector is selected manually. However, since the LIDAR point cloud is of a fixed density,
the exact center point of the reflector may not be picked up, especially as the target gets
further away from the LIDAR. Therefore, the next closest point is selected, but error is
introduced into the selection.

These sources of errors result in the calibration to be non ideal. Improvements can be
made as follows. First, a machine vision camera could replace the Mobileye unit. When
the raw image of the camera is available, a specialized chessboard pattern can be detected
with a much higher accuracy as that coming from the Mobileye sensor. Not only that, the
machine vision camera will also provide the height of the target point that will ensure some
of the data is not compromised. The radar reflector design should be optimized between
reflection strength and size. If the calibration is performed in a special area devoid of other
objects that can be detected by the radar, the radar reflector can be made significantly
smaller, thus providing a more consistent localization for the measurements as the target
is moved. Finally, a LIDAR system that provides a denser pointcloud can be used so that
the point selection becomes more accurate. Furthermore, interpolation techniques between
LIDAR points would greatly help in allowing the selection of the point at the middle of
the radar reflector.

7.3.2 Navigation System and Camera

The hand-eye calibration between the navigation system and vehicle mounted camera was
attempted with the real world sensors. It can be seen from Figure7.15 that the calibration
target size is relatively small. This results in inaccuracy in the corner detection algorithm
since the squares of the checkerboard do not contain enough pixels to determine the exact

74

corner locations to a high accuracy. Since the calibration had to be completed outdoors
in order to obtain GPS signal, a sufficient way to mount the chessboard rigidly in the air
was not possible. If the chessboard is rigidly hanging in the air, the vehicle can be driven
very close to the target so that the target takes up a larger section of the image and corner
detection error is decreased. Instead, the limitation of having the chessboard sitting on
the chair restricted the size of the target in the image due to the mounting location of
the camera being very far from the target. This problem can be solved by using a much
larger calibration chessboard which is not available at the time of this work, or to somehow
mount the chessboard in the air such that the vehicle can drive under it.

Figure 7.15: Cropped Camera Image from Hand-Eye Calibration Between Camera and
Navigation System

Moreover, the navigation system has a typical error around 0.5 meters which is also
significant for this calibration. Without an RTK GPS system, it is very difficult to obtain a
higher accuracy result. Using the DGPS system on the vehicle, it is possible to post process
the calibration routine for higher accuracy and should be utilized in the future. However,
if calibration between a less accurate GPS system, without DGPS or RTK capability, and
a camera needs to be performed, evidence shows that the hand-eye calibration method is
not suitable for an accurate calibration.

Due to these sources of error, a useful calibration could not be performed. The trans-
formation obtained through the calibration was highly inaccurate and is not able to be
utilized. Instead, it is decided to measure the transformation by hand as precisely as pos-
sible when needed. In order to achieve a usable calibration with the implemented method,

75

the calibration chessboard should be much larger and the navigation solution should have
centimeter level accuracy.

7.3.3 Navigation System and LIDAR

The calibration between the navigation system and the LIDAR sensor is implemented with
the developed platform. First, the implementation of the ICP algorithm is tested. Figure
7.16 shows the result of the implemented ICP algorithm explained in Section 2.8 for two
point clouds from the Kitti dataset. It can be seen that the red and green point clouds are
aligned through the ICP algorithm and that the ICP algorithm implementation seems to
works well on this test set.

Figure 7.16: Result of ICP Algorithm

The developed platform is driven in a series of maneuvers while recording LIDAR and
navigation data for performing the calibration. Figure 7.17 shows the navigation system
position of the vehicle in blue and the same data extracted from the LIDAR point clouds
using the implemented ICP algorithm. The vehicle is driven very slowly to remove motion
effects. It can be seen that the odometry from the ICP algorithm is not as accurate as
that from the navigation system.

76

Figure 7.17: GPS (blue) and LIDAR Odometry (orange) for Various Calibration Maneuvers

The ICP algorithm is subjective to measurement errors from the LIDAR sensor. Since
each point can have error in its position, the overall result of the ICP algorithm can never
be perfect. Furthermore, ICP matching becomes worse when there is significant motion
between the two frames or when the position of the LIDAR changes too much between
frames. Both of these scenarios result in points that do not correspond to points in the
second frame and can result in false correspondences to be found. Another ICP fails to
perform well if there are not many usable feature points in the respective point clouds.
Having a lot of infrastructure an buildings in the surroundings tended to result in more
accurate point cloud matching.

Moreover, the calibration between the navigation system and LIDAR is also difficult to
achieve due to the errors in the navigation system in measuring the accurate position and
orientation of the vehicle. The typical error of the navigation system on the vehicle is too
high for a usable calibration as mentioned in the previous section.

For these reasons, the calibration attempts between the navigation system and LIDAR

77

sensor were unsuccessful. It is believed that the problems in calibration can be addressed
by using a navigation system that provide centimeter level accuracy and using a motion
free calibration environment for the LIDAR. A highly accurate and high resolution LIDAR
system should be used to provide more and better correspondences for the ICP algorithm.
Furthermore, the ICP algorithm itself could be improved to find a more accurate transfor-
mation between the LIDAR point clouds.

7.3.4 Conclusions

In conclusion, all of the calibration methods have various sources of errors that result in
a less than perfect calibration. The joint calibration method provided decent results that
can be used with the system. The infrastructure sensor calibration with the GPS system
was successful in simulation and can be implemented with a real world setup when needed.
The Hand-Eye calibrations need further work to be successfully completed. Sources of
errors are identified and need to be addressed in future attempts.

78

Chapter 8

Experimental Results

In this section, the developed autonomous vehicle platform and lane keeping methodologies
is tested on the University of Waterloo Ring Road. The lane keeping system design using
the navigation system by itself as well as the combined vision and navigation system
are both tested and compared. The issues encountered during testing are presented and
corrected to eventually achieve the goal of autonomous lane keeping.

8.1 Vision Lane Detection Implementation

Many issues are encountered and corrected in the implementation and testing of the monoc-
ular lane detection. Firstly, light artifacts on the image due to the sun can create high
intensity vertical lines that are lane like. It can be seen in Figure 8.1 that the artifact is
brighter than the lane markings and is likely to be falsely detected as the lane causing the
vehicle to adjust its position to the right. Also depicted in the figure, a lower quality color
camera, converted to gray-scale for the algorithm, was initially being used as it was the
only camera available at the time. It allowed for the experience necessary to determine the
characteristics that a camera for lane detection should have.

To correct these issues, it is determined that a monochrome camera is necessary to im-
prove the lane detection since monochrome camera sensors are capable of higher sensitivity
and detail in an image as compared to their color counterparts. This is because the Color
Filter Array (CFA) used to capture a particular color limits the amount of light being cap-
tured by each photo-site in the sensor by approximately a third. As a result, a new camera
was purchased with an accompanying lens that better fit to the size of the lane. Moreover,

79

Figure 8.1: Light Artifacts on Image Due to Location of the Sun

the new camera allowed for higher number of pixels for the same amount of distance in
the world allowing for objects and lanes in the background to be of higher quality. For
correcting the issue with the light artifacts, a piece of tape is attached to the top half of
the lens effectively blocking out much of the light captured for unused parts of the image.
This coupled with a dynamic brightness adjustment algorithm available from the camera
firmware allows the camera to automatically adjust the brightness of the image so that the
average pixel intensity is held constant. This allows the camera to automatically adjust
exposure settings when the vehicle enters a dark shadowy area so that the lane is always
able to be detected. With these changes the problem of the light artifacts is solved and the
overall quality and depth of information in the image is significantly improved as shown in
Figure 8.2.

8.1.1 Dynamic Pitch Correction Design

The real world test road has extremely uneven surfaces in various sections caused by bumps,
cracks and potholes. These uneven surfaces incur pitch motion on the vehicle and camera.
If this pitch motion is not accounted for the lane marking position in the image frames will
shift laterally resulting in erroneous error metric measurements. Therefore, the camera
pitch angle must become a dynamic input in the computation of the birds eye view image.

80

Figure 8.2: Improvement of Image with Tape Blocking Undesired Light Artifacts

A navigation solution which provides real time pitch angle of the vehicle may be utilized
for dynamic pitch correction. If such a system is not accessible, estimation techniques can
be used. In [59], the authors estimate vehicle pitch by characterizing the distortion present
in the birds eye view lane markings. With the underlying assumption that lane markings
in birds eye view are parallel, the width of the lane at two different distances from the
vehicle is sufficient to geometrically characterize the distortion.

Assuming the pitch angle of the vehicle is available, the high frequency content needs
to be extracted and the birds eye view adjusted. The low frequency change of pitch of
the road should not be corrected for since these do not incur changes in vehicle pitch with
respect to the road.

The transfer function of the simple first order high pass filter used is given in Equation
8.1 where a = T

τ
, T is sampling time, and τ is the filter time constant. The filter time

constant is determined by inspection of the Fast Fourier Transform (FFT) of the pitch
angles coming from the navigation solution while driving on a section of the test road. The
filter is applied to a window of data up to 500 frames. Therefore, it is expected that the
filter will not perform well when there is not enough data present but will improve as time
goes on and the window size is achieved.

81

H(z) =
1 + a+ (a− 1) · z−1

1 + (a− 1) · z−1
(8.1)

8.1.2 Pitch Correction Results

In the simulated scenario, the road conditions were perfect. There were no irregularities,
bumps, pot holes, etc. In the real world driving on Ring Road, these imperfect conditions
incur undesired pitch motion on the vehicle that bias the vision system data and should
be corrected. Figure 8.3 shows the results of the pitch correction algorithm on a section
of Ring Road. A high pass filter is used to extract the high frequency pitch since the low
frequency pitch should not be corrected. It can be observed that the high pass filter works
well especially after the first fifty frames where the window size is too small to accurately
extract the high frequency pitch. Moreover, it can be seen that the high frequency content
has an average value around 0 degrees as the number of frames increases further showing
the effectiveness of the filter for this type of data. Furthermore, the low frequency content
approaches the average value of the measured pitch as the window size is being reached.

The lateral error measured by the vision system with and without pitch correction is
shown for the same segment of Ring Road. It can be seen that with the pitch correction
the magnitude of the error is slightly improved. However, this is not the level of improve-
ment desired from the pitch correction. Significant effect of the pitch motion incurred on
the vehicle and camera can still be observed since the road lane marking is smooth and
continuous, yet the lateral error measured is noisy. It is believed that the reason for this is
the slow frame rate of the pitch correction and vision processing pipeline. The processing
cannot be accomplished at the necessary frame rate to address the full effect of the incurred
pitch motion.

8.1.3 Lane Detection Improvements

Even with the dynamic pitch correction, the lane marking is not detected perfectly in every
single image frame. Commonly occurring issues include false detections where cracks in
the road or the curb may be detected as the lane marking as shown in Figure 8.4 and
missed detections where the detection algorithm fails to find a lane marking in the frame.
In order to mitigate these issues, adjustments are made to the lane detection algorithm.
Overall, these additions improve the lane detection results shown in Section 8.2.

82

Figure 8.3: Lateral Error Noise Improvement Via Pitch Correction

Firstly, instead of transforming a large field of view to the birds eye image, a smaller
localized area corresponding the the expected position of the left lane marking should be
utilized. Not only does this reduce the processing time of the algorithm it also reduces the
chance of false detections as the curbs and some of the cracks are removed prior to the
detection stage as shown in Figure 8.5. Since the design of the control law seeks to keep
the vehicle at a fixed offset from the left lane marking, the localized birds eye view area
can simply be defined as a rectangle that is offset from the camera coordinate frame by a
fixed, predetermined, amount.

False detections can be further mitigated by defining some criteria that have to be
fulfilled in order for a detection to be considered valid. Road lane markings have a max-
imum allowed curvature that is regulated. Therefore, one check for a valid lane marking
is to ensure that the curvature of the detection is under this maximum threshold. Next,
markings of very short length should be invalid as they are likely to be false detections of
cracks. Ring Road lane markings are solid and continuous unless there is an intersection.

83

Figure 8.4: Detection of Curb Instead of Lane Marking in Birds Eye View Image

Furthermore, the recent detection history may be used to further validate detections.
It is expected that lane markings change smoothly and tend to be near the location where
they were in the previous frame. Therefore, validation criteria is set on the curvature
difference and the mean distance from the previous detection.

Ring Road lane markings are faded and deteriorating resulting in missed detections.
For a short duration, it is expected that the lane marking follows the characteristics of the
short term history of detections. Therefore, for a fixed number of frames, missed detections
can be replaced by the last valid detection.

8.2 Lane Keeping Results

At this stage of the development of the platform, the goal of the lane keeping system is to
only control the vehicle steering angle to keep the vehicle within the lane. The speed of the
vehicle is not controlled. Furthermore, dynamic path planning and routing is not currently
employed and it is expected that the lane is always clear. A stopped or parked vehicle
in the lane will require the test to be stopped as no obstacle avoidance logic is currently
present on the vehicle.

The test paths are pre-driven in order to generate the required navigation map with

84

Figure 8.5: Improved Detection and Algorithm Speed by Limiting the Birds Eye View
Processed Area

the vehicle driving in the position which is desired from the autonomous lane keeping.
The system is tested in simulation prior to real world testing around Ring Road. Param-
eters such as controller coefficients are tuned through trial and error and the simulation
parameters are used as a basis for the real world parameters.

It is important to note that the camera is mounted as close to the navigation system
antenna as possible as shown in Figure 8.6. This antenna is the reference point for the
navigation system measurements. Therefore, the vehicle is considered to be a single point
at this location and both error metrics are measured from the same point. Furthermore,
the map used as part of the navigation system solution should be collected by driving
the vehicle at the same fixed offset from the left lane marking. This will ensure that the

85

navigation and vision solutions are not trying to control the vehicle to two different points.

Figure 8.6: Camera Mount and GPS Antenna Location

8.2.1 Ring Road Experiments

The Ring Road experiment consisted of driving around the full road with the lane keeping
system using the navigation solution only followed by using the combined vision and navi-
gation solution. A lab technician applied the acceleration and braking inputs to the vehicle
and stopped the lane keeping if the path was blocked by a stopped vehicle. Both tests
successfully completed the majority of the Ring Road, but had to be stopped on one small
stretch due to very busy conditions and vehicles blocking the planned path. Regardless,
the majority of Ring Road was traversed with autonomous lane keeping and a comparison
of the two systems could be made.

The gains used in the real world controller were kp1 = 1, kp2 = 0.2, and kp3 = 1.2,
for both control schemes. Figure 8.7 displays the results. The lateral error from the path
is shown vs distance travelled and the data is aligned so that the distances for both tests
correspond to the same location on the Ring Road. It can be seen that both tests are very
similar and the maximum error magnitude is 20 cm for the navigation only solution and
25 cm for the combined solution. It was observed that increasing the lateral error gain
decreased the smoothness of the lane keeping and more oscillations took place around the

86

planned path. The navigation solution position measurement error covariance was between
35 cm and 50 cm and randomness is added to the lane keeping due to these fluctuations.
The measurement error is effected by proximity to buildings, GPS signal strength, number
of satellites available, etc. Another source of error is the prior map of the Ring Road. This
map was collected with the same navigation solution used in the experiment, but with post
processing the positional error was reduce to ≤ 7cm. This resulted in a highly accurate
map, but still not as accurate as the simulated system.

Figure 8.7: Lane Keeping Results on Ring Road of GPS and IMU System Only and
Combined System

In the end, both real world Ring Road experiments were successful. It was shown
that the navigation only solution allowed the vehicle to autonomously lane keep a 2.5 km
section of Ring Road. Furthermore, the combined vision and navigation solution system
also traversed a similar distance autonomously. The overall lateral error was under 25 cm
and the vehicle followed very closely to the planned map.

87

8.2.2 Conclusions

In conclusion the lane keeping solutions implemented were both successful in simulation
and the real world tests. The system relies on the navigation solution as a base lane keeping
system and uses the vision system to provide greater accuracy in lane keeping. In the real
world, pitch motion incurred by road irregularities reduce the effectiveness of the vision
system. However, the system follows the lane effectively and the deviation from the lane
center is relatively small.

These results indicate that the approach used for lane keeping allows for the use of less
accurate on board GPS system. The GPS is only being used for localization on the pre
defined map which in turn is only being used to calculate the heading angle error of the
vehicle based on a point some distance in front of the vehicle. Even if there is a significant
localization error, the heading calculated using a point far from the vehicle will still guide
the vehicle in the correct direction in order to follow the lane. Moreover, using the lateral
error metric from the vision system helps to alleviate accuracy requirements from the GPS
by providing fine adjustment of the vehicle position within in the lane.

Improvements to the system could be made by sensor fusion of the vision and navigation
sensors using a variant of the Kalman filter. Such a system would be robust to GPS or
vision system dropouts and would better estimate the error metrics using both systems.
This would utilize more information coming from each independent solution whereas the
current system only uses the heading error metric from the navigation solution and the
lateral error metric from the vision solution.

88

Chapter 9

Conclusions

An autonomous vehicle development platform was created and outlined in this thesis.
The software and hardware components as well as the interfacing were developed. These
systems were tested through the implementation of various calibration algorithms as well as
the lane keeping algorithm. Successfully completed tests validate the proper functionality
and usefulness of the developed platform for use by other students in testing their work.
The goal of time synchronization between all the devices in the platform is well underway
with the LIDAR and Linux laptop being synchronized from the GPS navigation solution.
Moreover, interfacing with sensors and actuators was completed with all the necessary
interfaces set up for future use.

All the necessary calibrations to fully resolve the different coordinate frames of the
system were performed and tested. The joint calibration method has proved effective in
simultaneously calibrating many sensors together. The effectiveness was proved when the
Radar, Mobileye, and Lidar sensors were calibrated with an error under 0.5 meters. The
same technique was employed in the synchronization of infrastructure sensors with a vehicle
mounted GPS. The effectiveness of this calibration method was shown in simulation. The
hand-eye calibration technique was employed to calibrate the GPS navigation system with
the LIDAR and camera sensors. All aspects of the calibration were implemented, but
limitations in hardware or errors arising in the real world did not allow for the calibrations
to be useful.

Finally, the full platform was tested with the goal of achieving autonomous lane keeping
around Ring Road. A lane keeping controller was employed based off of the Stanley
controller. Error metrics were defined in order to extract useful information coming from
the GPS and camera. The error metrics were used in conjunction with the control law

89

to autonomously steer the vehicle in real time. The lane keeping algorithm was employed
successfully in simulation and the developed platform.

9.1 Future Work

The autonomous platform was developed quickly, but effectively, and is capable to test
many different algorithms as it stands. However, various things can be done to improve
the platform. Firstly, the platform relies heavily on ROS for interfacing with sensors
as well as visualization and data logging tasks. ROS itself has some flaws that are not
addressed in this thesis, but should be addressed in future development of the platform.
Firstly, ROS only has one master node handling the other nodes. Failure of the master
node is not considered and should be handled since this can seriously hinder all software
processes running on the platform. Moreover, ROS needs a monitor to check whether
all the nodes are functioning properly and to fix any issues it detects. Next, there are
some performance improvements that can be made to the platform. ROS itself has some
performance degradation when broadcasting message, but when ROS and Matlab are used
together, the data transfer between them can take significant time and cap the achievable
frame rate of the software.

Improvements to the hand-eye calibration algorithms are necessary. As mentioned in
the thesis, larger calibration targets, a RTK GPS system, as well as a LIDAR with more
laser channels can benefit these calibrations. Moreover, the implementation of the ICP
algorithm used in the thesis could be improved and tested better.

The lane keeping algorithm can also be improved in the future. Firstly, the pitch
correction results were not great and the algorithm could benefit if the entire system
was working at a higher frame rate. Moreover, lane tracking methods are not currently
employed in the lane keeping system. These methods would also reduce the noise injected
by incurred pitch motion by using the history of the lane markings to estimate the future
markings.

The work on the lane keeping system leads to autonomous acceleration and deceleration
as the natural next step. Since a map of the Ring Road is available, a quick implementation
can use hard coded locations where the vehicle should stop for a stop sign or traffic light.
The detection of signs can be made dynamic in the future. Moreover, object detection
is a well researched problem and existing implementations can be used in conjunction
with a basic cruise control system to autonomously control the speed while lane keeping.
Furthermore, another natural extension of this work is to replace the highly accurate GPS

90

system utilized for lane keeping with a less accurate and more affordable system. The lane
keeping system design accommodates for this change, and it simply needs to be tested and
GPS accuracy requirements need to be characterized. This would demonstrate the value
of the lane keeping design utilizing an affordable and minimal sensor set.

91

References

[1] T. Canada, “Canadian motor vehicle traffic collision statistics: 2016,” Apr 2018. On-
line, Accessed: 2019-07-22.

[2] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous vehicles: op-
portunities, barriers and policy recommendations,” Transportation Research Part A:
Policy and Practice, vol. 77, pp. 167–181, 2015.

[3] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,
J. Gale, M. Halpenny, G. Hoffmann, et al., “Stanley: The robot that won the darpa
grand challenge,” Journal of field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[4] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Dug-
gins, T. Galatali, C. Geyer, et al., “Autonomous driving in urban environments: Boss
and the urban challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[5] S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent, J. Schröder,
M. Thuy, M. Goebl, F. v. Hundelshausen, et al., “Team annieway’s autonomous system
for the 2007 darpa urban challenge,” Journal of Field Robotics, vol. 25, no. 9, pp. 615–
639, 2008.

[6] J. Leonard, D. Barrett, J. How, S. Teller, M. Antone, S. Campbell, A. Epstein,
G. Fiore, L. Fletcher, E. Frazzoli, et al., “Team mit urban challenge technical re-
port,” 2007.

[7] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti
dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–
1237, 2013.

[8] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene under-

92

standing,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3213–3223, 2016.

[9] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin, and R. Yang, “The
apolloscape dataset for autonomous driving,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pp. 954–960, 2018.

[10] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter,
D. Langer, O. Pink, V. Pratt, et al., “Towards fully autonomous driving: Systems
and algorithms,” in 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 163–168,
IEEE, 2011.

[11] J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar, and B. Litkouhi, “Towards
a viable autonomous driving research platform,” in 2013 IEEE Intelligent Vehicles
Symposium (IV), pp. 763–770, IEEE, 2013.

[12] P. Grisleri and I. Fedriga, “The braive autonomous ground vehicle platform,” IFAC
Proceedings Volumes, vol. 43, no. 16, pp. 497–502, 2010.

[13] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, T. Dang,
U. Franke, N. Appenrodt, C. G. Keller, et al., “Making bertha drivean autonomous
journey on a historic route,” IEEE Intelligent transportation systems magazine, vol. 6,
no. 2, pp. 8–20, 2014.

[14] J. Levinson and S. Thrun, “Robust vehicle localization in urban environments using
probabilistic maps,” in 2010 IEEE International Conference on Robotics and Automa-
tion, pp. 4372–4378, IEEE, 2010.

[15] S. Liu, J. Tang, Z. Zhang, and J.-L. Gaudiot, “Computer architectures for autonomous
driving,” Computer, vol. 50, no. 8, pp. 18–25, 2017.

[16] K. Belcarz, T. Bia lek, M. Komorkiewicz, and P. Żo lnierczyk, “Developing autonomous
vehicle research platform–a case study,” in IOP Conference Series: Materials Science
and Engineering, vol. 421, p. 022002, IOP Publishing, 2018.

[17] A. Broggi, S. Debattisti, P. Grisleri, and M. Panciroli, “The deeva autonomous vehicle
platform,” in 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 692–699, IEEE,
2015.

[18] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on
pattern analysis and machine intelligence, vol. 22, 2000.

93

[19] Q. Zhang and R. Pless, “Extrinsic calibration of a camera and laser range finder (im-
proves camera calibration),” in 2004 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3, pp. 2301–2306,
IEEE, 2004.

[20] H. Yamazoe, A. Utsumi, and S. Abe, “Multiple camera calibration with bundled
optimization using silhouette geometry constraints,” in 18th International Conference
on Pattern Recognition (ICPR’06), vol. 3, pp. 960–963, IEEE, 2006.

[21] Q. V. Le and A. Y. Ng, “Joint calibration of multiple sensors,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3651–3658, IEEE,
2009.

[22] R. Y. Tsai and R. K. Lenz, “Real time versatile robotics hand/eye calibration using
3d machine vision,” in Proceedings. 1988 IEEE International Conference on Robotics
and Automation, pp. 554–561, IEEE, 1988.

[23] R. Y. Tsai and R. K. Lenz, “A new technique for fully autonomous and efficient 3d
robotics hand/eye calibration,” IEEE Transactions on robotics and automation, vol. 5,
no. 3, pp. 345–358, 1989.

[24] R. Horaud and F. Dornaika, “Hand-eye calibration,” The international journal of
robotics research, vol. 14, no. 3, pp. 195–210, 1995.

[25] F. Dornaika and R. Horaud, “Simultaneous robot-world and hand-eye calibration,”
IEEE transactions on Robotics and Automation, vol. 14, no. 4, pp. 617–622, 1998.

[26] M. Vel’as, M. Španěl, Z. Materna, and A. Herout, “Calibration of rgb camera with
velodyne lidar,” 2014.

[27] Y. Park, S. Yun, C. Won, K. Cho, K. Um, and S. Sim, “Calibration between color
camera and 3d lidar instruments with a polygonal planar board,” Sensors, vol. 14,
no. 3, pp. 5333–5353, 2014.

[28] G. Pandey, J. R. McBride, S. Savarese, and R. M. Eustice, “Automatic extrinsic
calibration of vision and lidar by maximizing mutual information,” Journal of Field
Robotics, vol. 32, no. 5, pp. 696–722, 2015.

[29] J. Levinson and S. Thrun, “Automatic online calibration of cameras and lasers.,” in
Robotics: Science and Systems, vol. 2, 2013.

94

[30] A. B. Hillel, R. Lerner, D. Levi, and G. Raz, “Recent progress in road and lane
detection: a survey,” Machine vision and applications, vol. 25, no. 3, pp. 727–745,
2014.

[31] B. Yu and A. K. Jain, “Lane boundary detection using a multiresolution hough trans-
form,” in Proceedings of International Conference on Image Processing, vol. 2, pp. 748–
751, IEEE, 1997.

[32] M. Aly, “Real time detection of lane markers in urban streets,” in 2008 IEEE Intelli-
gent Vehicles Symposium, pp. 7–12, IEEE, 2008.

[33] Y. Wang, D. Shen, and E. K. Teoh, “Lane detection using spline model,” Pattern
Recognition Letters, vol. 21, no. 8, pp. 677–689, 2000.

[34] Y. Wang, E. K. Teoh, and D. Shen, “Lane detection and tracking using b-snake,”
Image and Vision computing, vol. 22, no. 4, pp. 269–280, 2004.

[35] K. Kluge and S. Lakshmanan, “A deformable-template approach to lane detection,”
in Proceedings of the Intelligent Vehicles’ 95. Symposium, pp. 54–59, IEEE, 1995.

[36] J. Li, X. Mei, D. Prokhorov, and D. Tao, “Deep neural network for structural predic-
tion and lane detection in traffic scene,” IEEE transactions on neural networks and
learning systems, vol. 28, no. 3, pp. 690–703, 2016.

[37] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 779–788, 2016.

[38] T. Ogawa and K. Takagi, “Lane recognition using on-vehicle lidar,” in 2006 IEEE
Intelligent Vehicles Symposium, pp. 540–545, IEEE, 2006.

[39] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive active steer-
ing control for autonomous vehicle systems,” IEEE Transactions on control systems
technology, vol. 15, no. 3, pp. 566–580, 2007.

[40] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. Hrovat, “Mpc-based approach
to active steering for autonomous vehicle systems,” International Journal of Vehicle
Autonomous Systems, vol. 3, no. 2, pp. 265–291, 2005.

[41] F. Van Diggelen and P. Enge, “The worlds first gps mooc and worldwide laboratory
using smartphones,” in Proceedings of the 28th international technical meeting of the
satellite division of the institute of navigation (ION GNSS+ 2015), pp. 361–369, 2015.

95

[42] H. Landau, X. Chen, S. Klose, R. Leandro, and U. Vollath, “Trimble’s rtk and dgps
solutions in comparison with precise point positioning,” in Observing our Changing
Earth (M. G. Sideris, ed.), (Berlin, Heidelberg), pp. 709–718, Springer Berlin Heidel-
berg, 2009.

[43] E. D. Kaplan and C. J. Hegarty, “Understanding gps: principles and applications
second edition,” in Artech House, 2006.

[44] J. G. Manchuk and C. Deutsch, “Conversion of latitude and longitude to utm coordi-
nates,” Paper 410, CCG Annual Report, vol. 11, 2009.

[45] B. Moran, “Mathematics of radar,” in Twentieth Century Harmonic AnalysisA Cele-
bration, pp. 295–328, Springer, 2001.

[46] B. Schwarz, “Lidar: Mapping the world in 3d,” Nature Photonics, vol. 4, no. 7, p. 429,
2010.

[47] J. Kay, “Introduction to homogeneous transformations & robot kinematics,” Rowan
University Computer Science Department, 2005.

[48] K. Madsen, H. B. Nielsen, and O. Tingleff, “Methods for non-linear least squares
problems,” 1999.

[49] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Sensor
fusion IV: control paradigms and data structures, vol. 1611, pp. 586–606, International
Society for Optics and Photonics, 1992.

[50] A. M. Muad, A. Hussain, S. A. Samad, M. M. Mustaffa, and B. Y. Majlis, “Implemen-
tation of inverse perspective mapping algorithm for the development of an automatic
lane tracking system,” in 2004 IEEE Region 10 Conference TENCON 2004., pp. 207–
210, IEEE, 2004.

[51] M. Nieto, J. A. Laborda, and L. Salgado, “Road environment modeling using ro-
bust perspective analysis and recursive bayesian segmentation,” Machine Vision and
Applications, vol. 22, no. 6, pp. 927–945, 2011.

[52] C. B. Barber, D. P. Dobkin, D. P. Dobkin, and H. Huhdanpaa, “The quickhull al-
gorithm for convex hulls,” ACM Transactions on Mathematical Software (TOMS),
vol. 22, no. 4, pp. 469–483, 1996.

[53] P. Leroux, “Exactly when do you need an rtos?,” QNX Software Systems, 2009.

96

[54] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and C. Taliercio,
“Performance comparison of vxworks, linux, rtai, and xenomai in a hard real-time
application,” IEEE Transactions on Nuclear Science, vol. 55, no. 1, pp. 435–439,
2008.

[55] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu, H. Li, and
Q. Kong, “Baidu apollo em motion planner,” arXiv preprint arXiv:1807.08048, 2018.

[56] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa,
A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware on board: Enabling au-
tonomous vehicles with embedded systems,” in 2018 ACM/IEEE 9th International
Conference on Cyber-Physical Systems (ICCPS), pp. 287–296, IEEE, 2018.

[57] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open source
software, vol. 3, p. 5, Kobe, Japan, 2009.

[58] S. Liu, L. Li, J. Tang, S. Wu, and J.-L. Gaudiot, “Creating autonomous vehicle
systems,” Synthesis Lectures on Computer Science, vol. 6, no. 1, pp. i–186, 2017.

[59] H. Li and F. Nashashibi, Lane detection (part i): Mono-vision based method. PhD
thesis, INRIA, 2013.

97

	List of Tables
	List of Figures
	Introduction
	Motivation
	Objectives and Contributions
	Outline

	Literature Review and Background
	Autonomous Vehicle Platforms
	Computing Platforms

	Sensor Calibration Techniques
	Lane Detection and Lane Keeping Methodology
	Autonomous Driving Sensors
	Camera
	GPS and IMU
	Radar
	LIDAR

	3D Rigid Body Transformations
	Solving Homogeneous Transformation Equations of Form: AX = XB
	Levenberg-Marquardt Algorithm
	Iterative Closest Point Algorithm
	Inverse Perspective Mapping Algorithm
	Lane Marking Detection Algorithm

	Platform Design
	Software Platform
	Operating System
	Simulation Platform
	User Code

	Hardware Platform
	Interfacing

	Simulation Setup
	Sensor Calibration
	Heterogeneous 3D Joint Calibration
	Calibration Target Design

	Infrastructure Sensor and GPS Calibration
	Vision Sensor and GPS Calibration Simulation Results

	Hand-Eye Calibration
	Camera and Navigation Solution
	LIDAR and Navigation Solution

	Lane Keeping System
	Lane Keeping Controller
	Lane Keeping with Navigation System
	Lateral Error Metric
	Heading Error Metric
	Map Pre-Processing

	Vision Based Lane Detection
	Lane Keeping with Combined Vision/Navigation Solution
	Vision Lateral Error Metric
	Vision Heading Error Metric

	Simulation Experiments

	Experimental Setup
	Experimental Platform
	Software Platform
	Hardware Platform
	Interfacing

	Time Synchronization
	GPS and Linux Computer Synchronization
	Synchronization with Other Sensors

	Calibration Results
	Heterogeneous Joint Calibration
	Navigation System and Camera
	Navigation System and LIDAR
	Conclusions

	Experimental Results
	Vision Lane Detection Implementation
	Dynamic Pitch Correction Design
	Pitch Correction Results
	Lane Detection Improvements

	Lane Keeping Results
	Ring Road Experiments
	Conclusions

	Conclusions
	Future Work

	References

