
Decidability and Algorithmic
Analysis of Dependent Object Types

(DOT)

by

Zhong Sheng (Jason) Hu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Zhong Sheng (Jason) Hu 2019

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Dependent Object Types, or DOT , is a family of calculi developed to study the Scala
programming language. These calculi have path dependent types as a feature, and poten-
tially intersection types, union types and recursive types. So far, the study of DOT calculi
mostly focuses on the soundness proof, which does not directly contribute to development
of compilers. This thesis presents a detailed investigation of decidability and algorithmic
properties of the family of DOT calculi.

In decidability analysis, the undecidability of subtyping of several calculi is formally
established, including the D<: and D∧ calculi. Prior to this investigation, the undecidabil-
ity of subtyping of all DOT calculi including D<: was open. Decidability analysis puts
emphasis on a particular form of subtyping rules, called normal form. It turns out that a
normal form definition is not only as expressive, but also more suggestive than the original
definition. A conceptual device, called small-step analysis, is introduced to assist convert-
ing a usual definition of subtyping to its normal form definition. Moreover, decidability
analysis gives direct contributions to the algorithmic analysis, by revealing two decidable
fragments of D<: in declarative form, called the kernels. Decidability analysis also suggests
a novel subtyping algorithm framework, stare-at subtyping. Stare-at subtyping and an
existing algorithm are shown to be sound and complete w.r.t. their corresponding kernels.

In algorithmic analysis, stare-at subtyping is extended to other calculi, with more fea-
tures than D<:, including D∧, µDART and jDOT . In µDART and jDOT , bi-directional
type assignment algorithms are developed. The algorithms developed in this thesis are all
shown to be sound with respect to their target calculi and terminating.

During the development of the algorithms, analysis shows a number of ways in which
the Wadlerfest DOT calculus does not directly correspond to the Scala language, while
substantially increases the difficulties of algorithmic design. jDOT , therefore, is developed
as an alternative formalization of Scala.

iii

Acknowledgements

In my opinion, a thesis is not only a piece of technical work but also a cumulative result
of social events preceding it. At the time of concluding this thesis, it is the best moment to
look back in my life and appreciate everyone and everything that make this thesis possible.

I would like to thank my supervisor Professor Ondřej Lhoták for knowledge I have
learned and his continuous support since my application for the Master’s program and
during my research.

I feel very grateful for the lab environment. My understanding of DOT had been
significantly improved thanks to conversations with Marianna Rapoport, Ifaz Kabir and
surely my supervisor. The thesis inherits work from Abel Nieto’s project. The discussions
with him benefited greatly my work on undecidability proof of D<:, for which I am equally
grateful.

I would like to thank my readers Professors Prabhakar Ragde and Brad Lushman for
their careful review of my thesis.

I would also like to thank Professors Yong Wang, Bo Hu, Xiaofeng Wu and Hui Feng for
their support for my Master’s application after years of my graduation from Bachelor’s, and
Professors Arie Gurfinkel and Richard Trefler for their support for my PhD application.

Last, I must thank my parents and my grandparents for giving me abundant freedom
since my childhood. I am grateful to Pierre Grondin. It would probably have been much
more difficult to settle in Canada without his help.

iv

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.1.1 Decidability . 2

1.1.2 Type checking . 3

1.2 Methodologies . 3

1.3 Organization . 4

1.4 Contributions . 4

2 Background 8

2.1 Conventions . 8

2.2 Full F<: and Kernel F<: . 10

2.3 Undecidability of Full F<: . 13

2.4 Bi-directional Type Assignment . 16

2.5 Scala and DOT Calculi . 16

2.5.1 Path Dependent Types . 17

2.5.2 Intersection Types . 20

2.5.3 Wadlerfest DOT . 22

v

2.5.4 Other DOT Calculi . 25

2.6 Related Work . 26

2.6.1 Formalizations of Scala . 26

2.6.2 Undecidability of subtyping . 27

2.6.3 Algorithmic (sub)typing . 27

2.6.4 Formalization of undecidability proofs 28

3 The Undecidability of D<: 29

3.1 Definition of D<: . 30

3.2 Definition of Undecidability . 33

3.3 The Incomplete Proof . 34

3.4 F−<: as Q . 36

3.5 An Attempt at An Undecidability Proof 37

3.6 How Was Undecidability of F<: Proved? 42

3.7 Small-step Subtyping . 44

3.7.1 An example . 47

3.7.2 Rearranging universal types . 48

3.7.3 Proofs of transitivity and narrowing in normal form 49

3.8 Undecidability of F−<:> . 52

3.9 Small-step Analysis of D<: . 57

3.10 Undecidability of Type Assignment of D<: 69

3.11 Discussions . 70

3.11.1 D<<: . 70

3.11.2 What about DOT? . 72

3.11.3 Calculi in Normal Forms . 74

vi

4 Algorithmic Typing of D<: Fragments 75

4.1 Kernel D<: . 76

4.2 Step Subtyping . 78

4.3 Step Typing . 81

4.4 A Note on Execution of Step Subtyping . 85

4.5 Kernel D<: and Step Subtyping . 86

4.6 Strong Kernel D<: . 89

4.7 Stare-at Subtyping . 92

4.7.1 Limitations of Step Subtyping . 93

4.7.2 Definition . 94

4.8 Properties of Operations in Stare-at Subtyping 97

4.9 Strong Kernel D<: and Stare-at Subtyping 100

4.10 Discussions . 101

4.10.1 Convergence of Theories . 101

4.10.2 Properties of Kernel Calculi . 102

5 D∧ 105

5.1 Definition of D∧ . 105

5.2 Strong Kernel D∧ . 109

5.3 Revealing in D∧ . 110

5.4 Stare-at Subtyping . 114

5.5 Properties of Stare-at Subtyping and Properties 118

5.6 Strong Kernel D∧ and Stare-at Subtyping 120

6 µDART 122

6.1 Definition of µDART . 123

6.2 Difficulties of µ Types . 126

6.3 Stare-at Subtyping for µDART . 127

vii

6.4 Revealing Reconsidered . 129

6.5 µ Types as Cyclic Contexts . 130

6.6 Types Are Resources! . 133

6.7 Revealing in µDART . 134

6.8 An Example of Revealing . 137

6.9 Properties of Operations and Stare-at Subtyping 138

6.10 How Large Is the Decidable Fragment? . 142

6.10.1 What is the language? . 143

6.10.2 How does removal impact the decidable fragment? 143

6.11 An Alternative Treatment . 144

6.12 Variable Typing . 145

7 jDOT 148

7.1 A Step Back: Algorithmic (Sub)typing Reconsidered 149

7.1.1 Subtyping as communication . 149

7.1.2 Backtracking due to ∧-Traversal 149

7.1.3 Types as resources . 149

7.2 A Second Step Back: A Short Review of DOT 151

7.2.1 Uninterpretable types with µ . 151

7.2.2 How are objects encoded? . 152

7.2.3 Unexpected recursive path types 153

7.2.4 Soundness proof guided definition 154

7.3 The Definition of jDOT . 155

7.4 Refining Revealing . 159

7.5 Examples of Revealing . 164

7.5.1 Maintenance of well-formedness . 164

7.5.2 Handling object types . 164

7.6 Properties of Operations . 166

viii

7.7 Stare-at Subtyping . 169

7.8 Variable Typing . 170

7.8.1 Variable type check . 170

7.8.2 Variable type synthesis . 173

7.8.3 Promotion and Demotion . 174

7.9 Bi-directional General Term Typing . 176

7.10 Encoding into jDOT . 177

8 Discussion and Future Work 180

8.1 Decidability Analysis on Language Features 180

8.2 Soundness of jDOT . 182

8.3 Undecidability of jDOT . 182

9 Conclusion 186

References 188

APPENDICES 194

A Various Operations in µDART 195

A.1 Exposure . 195

A.2 Imposure . 195

A.3 Imposureµ . 196

A.4 Promotion and Demotion . 198

A.5 Promotionµ and Demotionµ . 198

A.6 Bi-directional type assignment . 200

B Promotion and Demotion in jDOT 205

C General Term Typing Rules of jDOT 208

ix

List of Tables

1.1 Decidability of subtyping with features . 6

2.1 Symbol conventions . 9

2.2 DOT summary table . 26

x

List of Figures

1.1 Expressive power of calculi . 7

2.1 Definition of subtyping in F<: [Pierce, 2002, Figure 26-2] 11

2.2 Definition of F<: normal form . 12

2.3 Definition of F d
<: for a fixed n ∈ N [Pierce, 1992] 14

2.4 Simple interfaces for banks and accounts 18

2.5 A implementation of banks and accounts 19

2.6 An example of intersection types in Dotty 21

2.7 Abstract syntax of Wadlerfest DOT [Amin et al., 2016] 23

2.8 Typing rules of Wadlerfest DOT [Amin et al., 2016] 24

2.9 Subtyping rules of Wadlerfest DOT [Amin et al., 2016] 25

3.1 Definition of D<: [Amin et al., 2016] . 31

3.2 Non-normal form and normal form of F−<: 44

3.3 Definition of small-step F−<: . 45

3.4 First row to second row rearranges the universal types. 50

3.5 Definition of subtyping in F−<:> . 52

3.6 Definition of small-step F−<:> . 53

3.7 Definition of F−<:> normal form . 55

3.8 Selected rules of small-step subtyping for D<: 58

3.9 A higher-dimensional sequence for Γ `D<: y.A <: T 60

xi

3.10 Two sequences to show Γ `D<: y.A ↑∗ T ′ 62

3.11 Definition of subtyping of D<: normal form 63

3.12 Effect of higher-dimensional absorption in BB rule, assuming Γ(x) = T . . 64

3.13 Definition of D<<: . 71

4.1 Definition of kernel D<: . 77

4.2 Definition of step subtyping operation [Nieto, 2017] 78

4.3 Definition of Exposure and Upcast / Downcast operations [Nieto, 2017] 79

4.4 Definition of step typing for D<: [Nieto, 2017] 82

4.5 Definitions of Promotion and Demotion for D<: [Nieto, 2017] 82

4.6 Definition of strong kernel D<: . 90

4.7 Definition of OPE<: . 91

4.8 Definition of stare-at subtyping . 94

4.9 Definition of Revealing and new definitions of Upcast and Downcast . 96

5.1 Definition of D∧ . 106

5.2 Definition of strong kernel D∧ . 110

5.3 Definition of Revealing and new definitions of Upcast and Downcast . 112

5.4 Definition of stare-at subtyping . 115

5.5 Subtyping of intersection types and path types 116

6.1 µDART syntax . 123

6.2 Subtyping rules of µDART . 124

6.3 Typing rules of µDART . 125

6.4 Definition of stare-at subtyping . 128

6.5 Definition of Exposureµ . 131

6.6 Definition of Revealing, Upcast and Downcast 135

6.7 The original context of the example for Revealing 137

6.8 Two types are convertible w.r.t. a variable 139

xii

6.9 The definition of order preserving convertible environment 139

6.10 Definition of variable type checking and type synthesis 146

7.1 Abstract syntax of jDOT . 156

7.2 Typing rules of jDOT . 157

7.3 Subtyping rules of jDOT . 158

7.4 Definitions of ∧-Traversal and Revealing 161

7.5 Definitions of Upcast and Downcast . 162

7.6 Definition of sub-environment . 166

7.7 Definition of stare-at subtyping . 169

7.8 Definitions of convertibility and variable checking 171

7.9 Definitions of type synthesizer and variable type synthesis 174

8.1 Sub-conversion relation of jDOT . 185

A.1 The definition of Exposure in µDART 196

A.2 The definition of Imposure in µDART 197

A.3 Definition of Imposureµ . 197

A.4 Definitions of Promotion and Demotion 199

A.5 Promotion and Demotion for record types 200

A.6 Definitions of Promotionµ and Demotionµ 201

A.7 Promotion and Demotion for record types 202

A.8 The definition of type synthesis of terms 203

A.9 The definition of type checking of terms 204

B.1 Definitions of Promotion and Demotion (Part 1) 206

B.2 Definitions of Promotion and Demotion (Part 2) 207

C.1 The definition of type synthesis of terms 209

C.2 The definition of type checking of terms 210

C.3 The definition of definitions checking . 211

xiii

Chapter 1

Introduction

The thesis presents the results of an investigation of decidability and algorithmic anal-
ysis of the family of Dependent Object Types (DOT) calculi. This thesis improves the
understanding of these calculi by analyzing the decidability of some of these calculi, and
proposes new algorithmic typing methodologies to type check programs in the members of
this family of calculi.

1.1 Motivation

Scala is a programming language which combines object orientation and functional
programming with dependent types. The formalizations of Scala had been a long last-
ing problem. Dependent Object Types, or DOT [Rompf and Amin, 2016, Amin et al.,
2016, Rapoport et al., 2017], has been generally considered as a representative model of
Scala. Since DOT ’s first appearance, the focus has been on the actual formulation and
the soundness proof. Since 2016, there have been various successful formalizations with
their soundness proofs [Rompf and Amin, 2016, Amin et al., 2016, Rapoport et al., 2017].
These proofs are established by progress-and-preservation [Wright and Felleisen, 1992].

Meanwhile, the Scala language was released in 2004, and Dotty, which is the compiler
for the third generation of Scala, is under active development and has been bootstrapped.
Its long history implies the language is implemented without a thorough formal analysis.
In paricular, the compiler has the following three problems.

1. It is not formally specified.

1

2. It is not guaranteed to be correctly implemented.

3. It is not guaranteed to terminate.

Hence, it is hard for new comers to quickly understand the Dotty compiler, as it is developed
based on some informal semantics.

What is more, the DOT calculi are formulated declaratively. A declarative definition
of a calculus favors the mathematical nature of the language, instead of, e.g. how to type
check programs in this language. This is unfortunate, because that means the definition
gives no direct hints on how to implement a type checker. Though the calculus has been
proven sound, strictly speaking, the same conclusion cannot be directly drawn for the
implementation. The lack of general understanding of the calculus allows interpretations
of language features to vary largely among compiler writers and in time, and makes the
compiler even harder to understand.

This situation raises two research questions targeted in this thesis.

Question 1. Is (sub)typing of DOT decidable?

Question 2. How should DOT programs be type checked?

Let me elaborate on these two questions.

1.1.1 Decidability

The first question asks what we can expect the compiler to solve. If the type system
of a language is decidable, then we can expect a complete algorithm to be implemented in
the compiler to answer all problems on terms and types. For example, the type system in
Standard ML [Milner et al., 1997] is based on Hindley-Milner type system [Milner, 1978,
Hindley, 1969], and its (correctly implemented) compiler admits a program if and only if
a type can be assigned to it. Fun [Cardelli and Wegner, 1985] is a programming language
which can always decide whether one type is a subtype of another.

On the other hand, if a type system is undecidable, then it is impossible to implement
a complete type checking algorithm. Whether the type system is decidable, therefore, is a
fundamental property of the language. This problem turns out to be far less clear when it
comes to DOT .

To actually answer this question, a rigorous decidability analysis is performed. Decid-
ability analysis studies all interactions between the language features and their associated

2

rules. This analysis is purely theoretical and challenging; therefore the problem serves
theorists’ interest. On the other side, if the language is shown undecidable, then the focus
of the implementation should not be a complete type checking algorithm like the ones of
Standard ML and Fun. This gives realistic significance to the compiler writers.

1.1.2 Type checking

The second question is related to the first one but has its own freedom. The decidability
analysis answers whether a complete (sub)typing algorithm should be expected, while this
question asks for direct instructions on how to implement a type checker and a subtyper.
Though a compiler can readily be implemented without a rigorous analysis, just like the
existing Scala and Dotty compilers, it is hard to quantify what the compilers should do
and what the compilers actually do. Therefore the solution is to formally specify a set of
inference rules which must respect the declarative definition of the language and terminate.
This resolves all three problems of the current implementations posed above.

Nieto [2017] had an initiative to resolve this situation. His work adapted some methods
from a well-known calculus F<: to express a partial typing algorithm for D<:, the simplest
member of the DOT family. D<: has only one feature of DOT , called the path dependent
types. This thesis continues this direction and pushes it further by providing subtyping
and typing algorithms for calculi with more features than D<:.

1.2 Methodologies

As I will show in Section 2.5, there are three major features in the DOT calculus: path
dependent types, intersection types and recursive types. In order to obtain substantial
understanding of this calculus, the best way to approach it is to to consider the features
each at a time. Since D<: has only path dependent types, I first focus on D<: to ensure the
decidability and algorithmic analysis are done extensively and properly for the simplest
problem. Only after this, I will add other features to D<:, one by one, to study their
interactions with path dependent types. At the very end, the techniques learned in all
previous work are merged and adapted to obtain a final solution.

3

1.3 Organization

This thesis has strong linear dependency between chapters, so later chapters may appear
hard to digest if earlier chapters are not read. The chapters are organized in the order of
this linear dependency.

Chapter 2 defines the conventions used consistently throughout this thesis and describes
the basic technical preliminaries.

Chapter 3 introduces the calculus D<:, the simplest calculus in the DOT family. This
chapter focuses on decidability analysis of several calculi, including D<:.

Chapter 4 introduces algorithmic typing of D<:, including Nieto’s work and a novel
improvement that is inspired by the decidability analysis in Chapter 3.

Chapter 5 starts to investigate the interactions between features. This chapter defines
D∧ (pronounced Dee intersect), which is a calculus extending D<: with intersection types.
This chapter performs decidability analysis of D∧, and extends the result in Chapter 4
with intersection types.

Chapter 6 investigates the interactions in a different direction. This chapter defines
µDART , which is a calculus extending D<: with recursive types. Recursive types appear to
put significant difficulties in decidability analysis, and therefore this chapter only considers
algorithmic (sub)typing operationally.

Chapter 7 revises the study in Chapter 5 and Chapter 6, and reconsiders the definition
of a version of DOT . In this chapter, jDOT is proposed, which is a more controlled version
of DOT . jDOT has path dependent types, intersection types, and recursive types. This
chapter describes algorithmic (sub)typing of this calculus, as well as examples of programs
in this calculus.

Chapter 8 discusses some future work.

Chapter 9 concludes this thesis.

1.4 Contributions

In this thesis, I made the following contributions.

1. I established complete and formal proofs of undecidability of subtyping of the fol-
lowing calculi: F<:, F

−
<:, F<: with bottom (⊥), F−<:>, D<<:, D<: without transitivity,

D<: and D∧.

4

2. I established a complete and formal proof of undecidability of type assignment in
D<:.

3. I give strong reasons to focus study on a particular form of subtyping rules, called
the normal form, and propose a conceptual device, small-step analysis, to convert
non-normal form subtyping definitions to normal form.

4. I propose a novel subtyping decision framework, called stare-at subtyping, which
substantially improves decidable fragments over previous work, while remaining easy
to understand. Stare-at subtyping has been developed for the following calculi: D<:,
D∧, µDART and jDOT .

5. I discover decidable fragments of D<: and D∧ in declarative form, called kernel D<:,
strong kernel D<:, and strong kernel D∧. I establish the proofs showing an existing
subtyping algorithm, step subtyping, is sound and complete for kernel D<:, and
stare-at subtyping is sound and complete for strong kernel D<: and strong kernel
D∧.

6. I analyze Wadlerfest DOT and reveal a number of problems in its definition. From
this, I propose another alternative ofDOT , called jDOT , which is simpler thanDOT ,
but makes better use of the language constructs, and becomes more expressive than
DOT in its encoding. I give an example to demonstrate this claim.

7. I develop a bi-directional type assignment algorithm for jDOT .

There are many calculi involved in this thesis. To help better understand the thesis,
I have summarized the result of decidability analysis in Table 1.1. In the table, the first
group denotes four important features that make a difference in decidability analysis. Full
function subtyping denotes a form of subtyping which allows subtyping comparison between
parameter types. This will become clear when the concrete calculi are discussed. The Name
column gives the names used in this thesis for calculi with these particular combinations
of features. The remaining two columns show whether each calculus is decidable and if
so, what is the subtyping algorithm. The decidability of µDART , DOT and jDOT are
unknown because they do not have either decidability or undecidability proof, though I
conjecture that that their subtyping relations are all undecidable. This conjecture justifies
the lack of completeness proofs of stare-at subtyping for these calculi.

Figure 1.1 summarizes the expressive power of some calculi with declarative form dis-
cussed in this thesis. The expressive power of the source calculus of an arrow is stronger
than the one of the target.

5

features
name decidable? algorithm

bad
bounds

intersections µ types full function
subtyping

yes no no yes D<: no N/A
no no no no (strong)

kernel D<:

yes step /
stare-at
subtyping

no no no yes D<: without
transitivity

no N/A

yes yes no yes D∧ no N/A
no yes no no strong ker-

nel D∧

yes stare-at
subtyping

yes no yes yes µDART unknown N/A
yes yes yes yes DOT unknown N/A
yes yes yes yes jDOT unknown N/A

Table 1.1: Decidability of subtyping with features

The technical work is done in a combination of Agda 2.5.4.2 and Coq 8.8.2 and can
be found in https://gitlab.com/JasonHuZS/AlgDotCalculus. One can obtain detailed
correspondences between formalization and theorems in this thesis following the link. In
the formalization, decidability analysis is done in Agda while algorithmic analysis is done
in Coq.

6

https://gitlab.com/JasonHuZS/AlgDotCalculus

Kernel D<:

Strong kernel D<:

D<:

D∧ µDART

jDOT

DOT

Strong kernel D∧

Figure 1.1: Expressive power of calculi

7

Chapter 2

Background

In this chapter, I will introduce the technical background and the existing work. I will
begin with an old calculus, F<:, and present how its undecidability was determined. I will
then describe the Scala language and its theoretical model, DOT .

2.1 Conventions

Before beginning the technical discussion, I list several conventions used throughout
this thesis.

Convention 1. For conclusions, I use the following conventions.

1. I use Theorem and Lemma to denote that the conclusions have been formally ver-
ified by proof assistants, or had external references.

2. I use Corollary and Proposition to denote that the conclusions have informal
proofs. These proofs exist because they do not contribute to the eventual conclusions.

Convention 2. Conventions for symbols are listed in Table 2.1.

Convention 3. Throughout this thesis, I will use Barendregt’s variable convention [Baren-
dregt, 1984] which draws equivalences among types/terms up to α conversion, and assume
α-conversion occurs automatically whenever necessary. This implies that I need to assume
an infinite supply of names.

8

symbols meaning
Γ,∆ typing environments / contexts
S, T, U types
x, y, z, w term variables
X, Y, Z type variables
t, u terms
v values
V sets of variables

Table 2.1: Symbol conventions

Additionally, to emphasize some free occurrences of a variable, I sometimes write the
free variable in the subscript. For example, Tx means that x may occur free in T . If Ty
appears later, it means all corresponding x’s in T are replaced by y.

Convention 4. I use semicolons (;) to denote context concatenation, instead of commas
(,).

Convention 5. I use Γ ` t : T to denote a typing judgment, meaning “in the context Γ,
the term t has type T”. I use Γ ` S <: U to denote a subtyping judgment, meaning “in
the context Γ, S is a subtype of U”.

When a concrete calculus is discussed, the name of the calculus appears as subscript of
the turnstile, to avoid ambiguity, e.g. Γ `F<: S <: U is a subtyping judgment in the system
F<: (to be discussed in the next section). When a subscript is missing, it is meant to be a
general discussion and applies to all calculi within the discussion in this thesis.

Definition 2.1. A free variable of a term or a type is a variable that is not bound to any
binder.

fv(·) is an overloaded notation denoting the set of free variables (of a term or a type).

Convention 6. Following the standard mathematical notations, I will use ∪ for union,
∩ for intersection, \ for set difference. ∅ denotes the empty set. To simplify the text,
if a single variable participates in these operations, it’s regarded as a singleton set, e.g.
x ∪ y = {x, y}.

Definition 2.2. dom(Γ) is the domain of the context Γ, which is the set of variables bound
to something in the context.

Definition 2.3. For some object τ , it is closed w.r.t. a context Γ, if fv(τ) ⊆ dom(Γ).

9

Definition 2.4. Well-formedness is a predicate on contexts defined inductively as follows.

1. The empty context • is well-formed.

2. If Γ is well-formed and τ is closed w.r.t. Γ, and x /∈ dom(Γ), then Γ;x : τ is
well-formed.

Convention 7. In the formal proofs of the conclusions presented in this thesis, well-
formedness may or may not be an actual condition. To make the discussion more concise,
I intend to not mention this condition, and it is safe to simply assume well-formedness
everywhere. If a conclusion can be proved without well-formness, it is still true with an
extra condition.

However, there are conclusions that directly involve reasoning about well-formedness.
For those conclusions, I will make the well-formedness condition explicit.

2.2 Full F<: and Kernel F<:

In this section, I will define a few variants of F<: [Curien and Ghelli, 1990, Cardelli
et al., 1994].

Definition 2.5. Full F<: (or, in short, F<:) is the calculus defined in Figure 2.1.

This system was first introduced in Cardelli and Wegner [1985], as an attempt to
combine polymorphism and subtyping. Prior to F<:, polymorphism was understood to
be like in Haskell or ML, where a universal type must work for every type. F<: allows
interactions between polymorphism and subtyping, so that a universal type can be refined
by additional restrictions on what types it needs to work with. This substantially increases
the expressive power.

In the rules, Refl and Trans say that the subtyping relation is reflexive and transitive,
two properties that are typically desired of subtyping. Top says that > is a supertype
of all types. The Tvar rule looks up a type variable the context and asserts that it is
a subtype of its bound in the context. Fun defines the subtyping relation between term
level functions. Notice that the subtyping relation between parameter types of functions
is flipped because they are in contravariant position.

All deserves more attention. First, it defines the subtyping relation between two
universal types. Universal types implement polymorphism. A polymorphic type is like

10

X, Y, Z Type variable

S, T, U ::= Type

> top type

X type variable

S → U function

∀X <: S.UX universal type

Subtyping

Γ `F<: S
′ <: S

Γ;X <: S ′ `F<: U <: U ′

Γ `F<: ∀X <: S.U <: ∀X <: S ′.U ′
All

Γ `F<: T <: >
Top

Γ `F<: T <: T
Refl

X <: T ∈ Γ

Γ `F<: X <: T
Tvar

Γ `F<: S
′ <: S

Γ `F<: U <: U ′

Γ `F<: S → U <: S ′ → U ′
Fun

Γ `F<: S <: T Γ `F<: T <: U

Γ `F<: S <: U
Trans

Figure 2.1: Definition of subtyping in F<: [Pierce, 2002, Figure 26-2]

a type level function, and can be materialized to another type if the type variable is
instantiated. In F<:, universal types are more interesting than those in languages without
subtyping because type variables can be quantified by type upper bounds, hence bounded
quantification. An upper bound requires that the type variable it quantifies can only be
instantiated by its subtype. Second, the subtyping judgment between U and U ′, the return
types, depends on the subtyping judgment between S and S ′, the parameter types, as the
typing context needs to be extended by X <: S ′. This happens to be enough to turn the
subtyping problem undecidable and it will be discussed in the next section.

Term typing of F<: will not be relevant in this thesis. Moreover, in F<:, the typing
relation depends on subtyping in the subsumption rule, but the subtyping relation never
depends on typing. The following theorems ensure that term variable bindings in the
typing context do not affect the subtyping relation.

Theorem 2.1. (term variable weakening [Cardelli et al., 1994])

If Γ1; Γ2 `F<: S <: U , then Γ1;x : T ; Γ2 `F<: S <: U .

Theorem 2.2. (term variable strengthening [Cardelli et al., 1994])

If Γ1;x : T ; Γ2 `F<: S <: U , then Γ1; Γ2 `F<: S <: U .

A very straightforward extension of F<: is to add a bottom type to it.

11

Γ `F<: T <: >
Top

Γ `F<: X <: X
VarRefl

X <: T ∈ Γ Γ `F<: T <: U

Γ `F<: X <: U
Tvar’

Γ `F<: S
′ <: S

Γ `F<: U <: U ′

Γ `F<: S → U <: S ′ → U ′
Fun

Γ `F<: S
′ <: S

Γ;X <: S ′ `F<: U <: U ′

Γ `F<: ∀X <: S.U <: ∀X <: S ′.U ′
All

Figure 2.2: Definition of F<: normal form

Definition 2.6. [Pierce, 1997] F<: with bottom is defined by extending Figure 2.2 with an
additional type ⊥ and the following rule.

Γ `F<: ⊥ <: T
Bot

It turns out that the formulation of F<: can be simplified, so that the transitivity rule
Trans becomes a provable consequence, instead of an explicit rule of the system. I follow
Pierce and call this equivalent form the F<: normal form.

Definition 2.7. F<: normal form is defined in Figure 2.2. The difference from F<: (non-
normal form) is shaded.

Theorem 2.3. [Curien and Ghelli, 1990] F<: subtyping is equivalent to F<: normal form.
Namely Γ `F<: S <: U holds in non-normal form, iff it holds in normal form.

This theorem is true, because VarRefl is sufficient to prove reflexivity and the second
premise in the Tvar’ rule is enough to prove transitivity.

One immediate advantage of considering normal form is that it becomes obvious which
pairs of types can have subtyping. For a judgment Γ `F<: S <: U , if both S and U
are universal types, then through normal form, All clearly is the only applicable rule.
If S is a universal type and U is a function type, then they cannot be subtypes of each
other, because there is no applicable rule. In non-normal form, due to Trans, none of the
previous observations is immediate.

The definition of F<: normal form might look innocently computable, but it is in fact
undecidable.

12

Theorem 2.4. [Pierce, 1992] F<: subtyping is undecidable.

This is quite unfortunate but motivates another variant of F<:, called kernel F<:.

Definition 2.8. Kernel F<: is defined by replacing the All rule with the following rule.

Γ;X <: S `F<: U1 <: U2

Γ `F<: ∀X <: S.U1 <: ∀X <: S.U2

All’

The difference between All and All’ is that All’ requires the parameter types of
both universal types are syntactically identical, while in All, different parameter types
are allowed, as long as they have subtyping relation.

This modification turns kernel F<: decidable and there is a decision procedure for
it [Pierce, 2002, Chapter 26]. This modification hints that allowing subtyping comparison
for parameter types of universal types introduces undecidability. The reason for this will
be discussed in the next section.

2.3 Undecidability of Full F<:

Pierce [1992] described a detailed chain of equivalences from F<: subtyping to the
halting problem of two-counter machines, a well-known Turing equivalent problem. From
there, we know that solving F<: subtyping would solve the halting problem, so we can
conclude that F<: subtyping is undecidable according to Definition 3.2. As hinted in the
previous section, the problematic rule is All.

Γ `F<: S
′ <: S Γ;X <: S ′ `F<: UX <: U ′X

Γ `F<: ∀X <: S.UX <: ∀X <: S ′.U ′X
All

I highlighted the free occurrences of X’s in both U and U ′. Consider the type ∀X <:
S.UX . Intuitively, in this type, all X’s in UX are really meant to be S, because no additional
information is available for any further refinement. However, the situation changes in the
second premise of All rule, where X <: S is effectively replaced by X <: S ′. This
constraint is tighter and more informative, which is proved by the first premise Γ `F<:

S ′ <: S. Now let us consider a special case where S = >. Then Γ `F<: S
′ <: S is

naturally true due to Top. In this case, there is no bound on what X means in UX and
that is fully controlled by another type ∀X <: S ′.U ′X which is unknown to UX . This is the

13

essence of Pierce’s construction. Following this intuition, he showed that this refinement
effectively becomes a substitution operation in its full strength, and renders the whole
problem undecidable.

Fortunately, in this thesis, I do not need to get deep into the full chain of Pierce’s
construction. In Pierce [1992], the translation goes from the F<: normal form defined in
Figure 2.2 to two-counter machines via another calculus called F<: deterministic, F d

<:. I
use F d

<: as the trust base of my undecidability proofs of other calculi.

Definition 2.9. F d
<: is defined in Figure 2.3.

T+ ::=> | ∀X0 <: T−0 ..Xn <: T−n .¬T−

T− ::=X | ∀X0..Xn.¬T+

Γ `F d
<:
X <: >

Top
Γ `F d

<:
Γ(X) <: ∀X0 <: T−0 ..Xn <: T−n .¬T−

Γ `F d
<:
X <: ∀X0 <: T−0 ..Xn <: T−n .¬T−

Var

Γ;X0 <: T−0 ; ..;Xn <: T−n `F d
<:
U− <: S+

Γ `F d
<:
∀X0..Xn.¬S+ <: ∀X0 <: T−0 ..Xn <: T−n .¬U−

AllNeg

Figure 2.3: Definition of F d
<: for a fixed n ∈ N [Pierce, 1992]

The calculus is parameterized by a natural number. Let us fix the natural number to
be n. n eventually maps to the number of instructions in two-counter machines, so the
undecidability proof must consider all natural numbers. We call T+ positive types and T−

negative types. Positive types are either >, or a universal type with precisely n + 1 type
variables (from 0 to n) upper bounded by n+1 negative types respectively. Negative types
are either a type variable, or a universal type with n+ 1 type variables but without upper
bounds. A context Γ is called negative, when all type variables in it bind to negative types.
Contexts in F d

<: are all negative. A subtyping judgment in F d
<:, Γ `F d

<:
S− <: U+, is a

ternary predicate where Γ and S− are always negative and U+ is always positive. Notice
that there is no subtyping relation between two negative or positive types.

14

One can define a type interpretation function to translate types in F d
<: to types in F<:.

J>K = >
J∀X0 <: T−0 ..Xn <: T−n .¬T−K = ∀X0 <: JT−0 K..∀Xn <: JT−n K.∀X <: JT−K.X

JXK = X

J∀X0..Xn.¬T+K = ∀X0 <: >..∀Xn <: >.∀X <: JT+K.X

Types in J·K are in F d
<: and the result types are in F<:. For example, there are two

occurrences of > but they are distinct types in different calculi. Notice that the negative
universal types in F d

<: are translated to universal types in F<: with upper bounds as >.
This ensures that the upper bounds of the positive universal types can always be added to
the context in the AllNeg rule and corresponds to the intuition described above. This
translation witnesses the undecidability of F<:.

Theorem 2.5. (restate Theorem 2.4) F<: subtyping is undecidable.

Proof. Since the contexts in F d
<: are negative, one can define an interpretation function of

contexts from F d
<: to F<: as follows.

⟪•⟫ = •

⟪Γ;X <: T−⟫ = ⟪Γ⟫;X <: JT−K

Then the conclusion is induced by the following equivalence.

Γ `F d
<:
S <: U iff ⟪Γ⟫ `F<: JSK <: JUK

for all n.

The previous theorem requires to show that F d
<: is undecidable.

Theorem 2.6. [Pierce, 1992] F d
<: is undecidable.

Proof. The proof involves showing that an even smaller restriction of F d
<: is equivalent to

the halting problem of two-counter machines, where n in F d
<: corresponds to the number of

instructions in two-counter machines. The undecidability is induced by the fact that the
proof holds for every n, so that the two-counter machines have unbounded computational
power, and hence their halting problem is equivalent to the halting problem of Turing
machines.

15

2.4 Bi-directional Type Assignment

Bi-directional type assignment was originally developed in Pierce and Turner [2000] to
address the type inference problem in F<: with ⊥ (Definition 2.6). A bi-directional type
assignment algorithm is composed of two modes: the checking mode and the synthesis
mode. A usual type assignment algorithm mixes both type checking and type synthesis and
therefore has no such distinction. In this thesis, I developed bi-directional type assignment
algorithms for µDART and jDOT and they are discussed in Chapters 6 and 7.

The checking mode is represented by the following judgment:

Γ ` t←−: T

This judgment states that “a term t is checked to have type T in the context Γ”. As
an algorithm, all three of Γ, t and T are inputs, and the algorithm outputs yes if and only
if the relation is admissible. In general, in this thesis, I will use inference rules to represent
algorithms. An actual algorithm can be extracted from a set of inference rules by viewing
the premises of each inference rule as nested function calls (potentially recursive calls).
Inputs and outputs will be explicitly specified.

The synthesis mode is represented by the following judgment:

Γ ` t−→: T

This judgment states that “a type T can be synthesized from the term t in the context
Γ”. The arrows above the colons suggest the mode of the type assignment algorithm. As
an algorithm, the synthesis judgment has Γ and t as inputs and T as the output.

2.5 Scala and DOT Calculi

Scala is a programming language with a large set of features. It supports both paradigms
of object orientation and functional programming. Over time, new programming styles
unique in the language have been developed which utilize the interactions of various lan-
guage constructs. The Dotty compiler has even more features. Out of these features, many
are related to types. On one hand, these features grant the users excessive freedom to ex-
press their logic. On the other hand, the interactions between features are in an unknown
realm to the maintainers of the compiler and the theorists who try to understand and study

16

the language. The DOT family of calculi extracts an essential portion of the language so
that it can be formally reasoned about. In particular, there are three important features
we would like to capture in a core calculus.

1. path dependent types (or paths in short),

2. intersection types, and

3. recursive types (or µ types).

Among them, recursive types are just object types, in which each member has access
to other members defined in the same object. This behavior is common in object oriented
languages like Java and C#. This phrase is overloaded and not to be confused with
recursive types as defined in Amadio and Cardelli [1993]. The other two features are
explained via some examples.

2.5.1 Path Dependent Types

In Figure 2.4, I defined a pair of simple interfaces to model retail banks and their
accounts in Dotty. A Scala trait is just like a Java or C# interface, except that it allows
function bodies. Account defines what a bank account looks like. Every Account has an
id and balance. It knows which bank it belongs to, as indicated by

type B <: Bank

This line defines that every Account has a type member B and it needs to be a subtype
of Bank which is to be defined later. Visually, this is just bounded quantification, but we
will see that it is more general than that. deposit and withdraw are two basic operations
of a bank account.

Bank is another trait defined to model a bank. On line 24, Bank defines a type member
A to represent the type of Accounts in it. It additionally requires the bank of the account
refers back to the singleton type of the trait Bank. A singleton type in Scala is written
as x.type, and x is the only object of this type. One can look up an account based on
her id (lookupAccount), and create one (createAccount). transfer is the function to
transfer money from one account to another potentially in a different bank. In this case,
we do want to make sure that the source account is indeed from the current bank, and the
destination account is indeed from some known bank. Let me repeat its signature.

17

1 import scala.collection.mutable

2

3 class NotEnoughBalance(amount : Long) extends RuntimeException

4

5 trait Account {

6 type B <: Bank

7 def id : Int

8 protected var _balance : Long

9 def balance : Long = _balance

10 def deposit(amount : Long) : Long = {

11 _balance += amount

12 balance

13 }

14 def withdraw(amount : Long) : Long = {

15 if (amount > balance) {

16 throw new NotEnoughBalance(amount)

17 }

18 _balance -= amount

19 balance

20 }

21 }

22

23 trait Bank { self =>

24 type A <: Account { type B = self.type }

25 def lookupAccount(id : Int) : A

26 def createAccount(initialBalance : Long = 0) : A

27 def transfer(amount : Long, from : self.A,

28 toBank : Bank, to : toBank.A) : Unit = {

29 from.withdraw(amount)

30 to.deposit(amount)

31 }

32 }

Figure 2.4: Simple interfaces for banks and accounts

18

1 object BankOfWaterloo extends Bank { bank =>

2 class A(val id : Int, protected var _balance : Long) extends Account {

3 type B = bank.type

4 }

5 private val accounts : mutable.ArrayBuffer[A] = mutable.ArrayBuffer()

6 def lookupAccount(id : Int) = accounts(id)

7 def createAccount(initialBalance : Long = 0) : A = {

8 val account = new A(accounts.size, initialBalance)

9 accounts += account

10 account

11 }

12 }

13

14 object WaterlooBank extends Bank {

15 // defined similarly

16 }

Figure 2.5: A implementation of banks and accounts

def transfer(amount : Long, from : self.A, toBank : Bank, to : toBank.A)

This signature says that from needs to be of the account type held by this bank. A
similar restriction is put on to. Looking at to, it has type toBank.A, which is a type
dependent on a previous parameter toBank. This is called a path dependent type. As
we can see from the definition of Bank, toBank.A is determined to be upper bounded
by Account, and therefore I call this kind of bounded quantification dependent bounded
quantification.

Two concrete implementations of Banks are shown in Figure 2.5. In BankOfWaterloo,
the abstract type member A is instantiated to be a class definition, in which B is instantiated
to be the singleton type of the bank itself. This implementation chooses to use a muta-
ble buffer to manage the accounts, and implements the account operations accordingly.
WaterlooBank is another bank implemented in a similar manner.

Consider three fictional characters with bank accounts:

1 val catherina = BankOfWaterloo.createAccount(100)

2 val david = BankOfWaterloo.createAccount(200)

3 val elly = WaterlooBank.createAccount(300)

19

the following are some (correct) invocations of the transfer function.

1 // Catherina transfers 10 dollars to David

2 BankOfWaterloo.transfer(10, catherina, BankOfWaterloo, david)

3 // transfer to a different bank also works

4 BankOfWaterloo.transfer(10, david, WaterlooBank, elly)

Intuitively, we do not want a bank to transfer money from an account that is not its
customer, or transfer money to an account in the wrong bank. Both requirements are
captured by the signature of transfer and enforced by the compiler during compilation
time.

1 // David is with Bank of Waterloo

2 WaterlooBank.transfer(10, david, WaterlooBank, elly)

3 // 1 |WaterlooBank.transfer(10, david, WaterlooBank, elly)

4 // | ^^^^^

5 // | Found: BankOfWaterloo.A(david)

6 // | Required: WaterlooBank.A'

7

8 // Elly is with Waterloo Bank

9 BankOfWaterloo.transfer(10, catherina, BankOfWaterloo, elly)

10 // 1 |BankOfWaterloo.transfer(10, catherina, BankOfWaterloo, elly)

11 // | ^^^^

12 // | Found: WaterlooBank.A(elly)

13 // | Required: BankOfWaterloo.A'

As we can see, with path dependent types, one has finer grained control over the business
logic, and can rely more on the type system to guard the program correctness. On the
other hand, this also clearly poses realistic problems: how should path dependent types be
type checked, and what does it mean to type check path dependent types correctly?

2.5.2 Intersection Types

Intersection types have a much longer history than path dependent types. They were
introduced in the late 70’s by a number of independent works, e.g. Coppo and Dezani-
Ciancaglini [1978], Coppo et al. [1979], Hindley et al. [2013]. There are different variants of

20

1 trait Foo {

2 def baz : A

3 }

4

5 trait Bar {

6 def baz : B

7 }

8

9 val x : Foo & Bar = ???

10 val y : A & B = x.baz

Figure 2.6: An example of intersection types in Dotty

intersection types. Leivant [1990] introduced infinite intersection types. Davies [2005] in-
troduced sort level checking with intersection types. Pierce [1991] investigated interactions
between intersection types and the system F<:, where the intersection types distributes
over function types and universal types.

Intersection types help to express ideas frequently seen in object orientation elegantly
in functional settings. For example, function overloading works very well with intersection
types1.

id : (Z→ Z) ∧ (R→ R)

This type represents an identity function of both integers and real numbers, exclusively.
In particular, it will not work for, e.g., complex numbers. Usually, in object oriented
languages, the compiler is required to handle overloaded functions in a way not represented
by the core calculus, but with intersection types, the core calculus has the capability to
express overloading. Note that this type is more specific than a polymorphic identity
function, which needs to work for all types.

The intersection types in Dotty and DOT share some similarities with the references
above but are somewhat more restrictive. For example, one cannot find a term in DOT
typed to the type of the id function above (in a consistent context). There is also no way
to construct an instance of an intersection type S ∧U out of an instance of type S and one
of type U . More details can be seen in the references above.

In the example shown in Figure 2.6, I defined two traits Foo and Bar. They both have
a member baz of types A and B respectively. If an instance of Foo & Bar is provided (am-

1However, this is not how overloading is implemented in Dotty.

21

persand is the syntax in Dotty to denote intersection types), then baz of this intersection
type must be A & B, as expected. The reason behind this is that the language requires
concrete implementations of Foo & Bar to implement baz to be at least A & B, enforced
by the typing rules.

2.5.3 Wadlerfest DOT

There are multiple different calculi with the name DOT , the most prominent being the
OOPSLA DOT [Rompf and Amin, 2016] and the Wadlerfest DOT [Amin et al., 2016]. In
this thesis, Wadlerfest DOT is exclusively discussed.

Convention 8. Generally, DOT might refer to a family of calculi. When referring to a
concrete calculus, DOT exclusively means Wadlerfest DOT . 2

Definition 2.10. The abstract syntax of DOT is defined in Figure 2.7. The typing rules
are defined in Figure 2.8 and the subtyping rules are defined in Figure 2.9.

In DOT , a term can be a variable, a value, a data field selection, an application of a
function, or a let binding. A value can be either a definition of a lambda expression or an
object. The body of an object is composed of an aggregation of any number of definitions.
A definition may contain a data field member or a type member. Field members and
type members are indexed by corresponding member labels, and the sets of labels for field
members and type members are disjoint.

Types in DOT are rich. The top type >, the bottom type ⊥, type declarations,
field declarations and function types should be straightforward and correspond to terms
described above. x.A denotes a path dependent type, or a path in short, and models the
feature demonstrated in Section 2.5.1. Recursive types are types for objects. Intersection
types model the feature demonstrated in Section 2.5.2.

Some typing rules in Figure 2.8 are quite standard. Var says a variable has the type
which it binds to in the context. Sub is a standard rule to coerce any term to its supertype.
All-I says that a function is typed with its body, with the parameter type assumed and
pushed into the context. All-E types an application; it requires x to be typed as a
function. Obj-I types an object; the body is typed with the object type itself pushed into

2The distinctions between both DOT ’s are not negligible, and a rigorous comparison between these two
requires substantial work. Some comparison was done and discussed in https://hustmphrrr.github.io/

blog/2019/compare-dots.html.

22

https://hustmphrrr.github.io/blog/2019/compare-dots.html
https://hustmphrrr.github.io/blog/2019/compare-dots.html

x, y, z Variable

a, b, c Term member

A,B,C Type member

s, t, u ::= Term

x variable

v value

x.a selection

x y application

let x = t in ux let binding

v ::= Value

λ(x : T)tx lambda

ν(x : Tx)dx object

d ::= Definition

{a = t} field definition

{A = T} type definition

d1 ∧ d2 aggregation

S, T, U ::= Type

> top type

⊥ bottom type

{A : S..U} type declaration

{a : T} field declaration

x.A path type

∀(x : S)Ux function

µ(x : Tx) recursive type

S ∧ U intersection

Figure 2.7: Abstract syntax of Wadlerfest DOT [Amin et al., 2016]

the context, bound to the self reference. This is why definitions in the same object can
refer to each other. This rule also requires the domain of definitions to be unique so that
the same label can never be defined twice in the same object. The definitions in the object
body are typed using the Def-Trm, Def-Typ and Def-And rules. Obj-E says that
a data field selection is typed if the variable x has a field declaration with label a. And
refines the type of a variable if it can be typed in two ways. The Let rule is standard.
Notice that x is required to not be free in the type of the body.

Rec-I and Rec-E are very specific to DOT to handle recursive types. These two rules
permit packing / unpacking of recursive types. After Rec-E, if T is an intersection type,
Obj-E can be used to access the data field, as in this proof.

x : µ(z : {a : Tz}) `DOT x : µ(z : {a : Tz})
Var

x : µ(z : {a : Tz}) `DOT x : {a : Tx}
Rec-E

x : µ(z : {a : Tz}) `DOT x.a : Tx
Obj-E

The subtyping rules are shown in in Figure 2.9. Refl and Trans are reflexivity and

23

Type Assignment

Γ `DOT x : Γ(x)
Var

Γ `DOT t : S Γ `DOT S <: U

Γ `DOT t : U
Sub

Γ;x : S `DOT t : U

Γ `DOT λ(x : S)t : ∀(x : S)U
All-I

Γ `DOT x : ∀(z : S)Uz Γ `DOT y : S

Γ `DOT x y : Uy
All-E

Γ;x : Tx `DOT d : Tx dom(d) is unique

Γ `DOT ν(x : Tx)dx : µ(x : Tx)
Obj-I

Γ `DOT x : {a : T}

Γ `DOT x.a : T
Obj-E

Γ `DOT x : S Γ ` x : U

Γ `DOT x : S ∧ U
And

Γ `DOT x : Tx

Γ `DOT x : µ(x : Tx)
Rec-I

Γ `DOT x : µ(z : Tz)

Γ `DOT x : Tx
Rec-E

Γ `DOT t : S Γ;x : S `DOT u : U x /∈ fv(U)

Γ `DOT let x = t in u : U
Let

Object Definition Type Assignment

Γ `DOT t : T

Γ `DOT {a = t} : {A : T}
Def-Trm

Γ `DOT {A = T} : {A : T..T}
Def-Typ

Γ `DOT d1 : S Γ `DOT d2 : U

Γ `DOT d1 ∧ d2 : S ∧ U
Def-And

Figure 2.8: Typing rules of Wadlerfest DOT [Amin et al., 2016]

transitivity, two basic structural properties of the calculus. Top and Bot define the
bounded nature of the subtyping relation. And-I, And-E1 and And-E2 assert that the
subtyping relation has a free meet-semilattice structure under intersection.

Bnd and Fld define the subtyping relations of type members and field members. Notice
that in Bnd the first types in type declarations are in contravariant position, and therefore
their subtyping relation is flipped. All expresses subtyping between dependent functions.
This rule looks very similar to subtyping between universal types in F<:.

The Sel1 and Sel2 rules express dependent bounded quantification. A path x.A is

24

Subtyping

Γ `DOT T <: >
Top

Γ `DOT ⊥ <: T
Bot

Γ `DOT T <: T
Refl

Γ `DOT S2 <: S1 Γ `DOT U1 <: U2

Γ `DOT {A : S1..U1} <: {A : S2..U2}
Bnd

Γ `DOT T1 <: T2

Γ `DOT {a : T1} <: {a : T2}
Fld

Γ `DOT S2 <: S1

Γ;x : S2 `DOT U1 <: U2

Γ `DOT ∀(x : S1)U1 <: ∀(x : S2)U2

All

Γ `DOT S <: T
Γ `DOT T <: U

Γ `DOT S <: U
Trans

Γ `DOT x : {A : S..U}

Γ `DOT S <: x.A
Sel1

Γ `DOT x : {A : S..U}

Γ `DOT x.A <: U
Sel2

Γ `DOT T <: S
Γ `DOT T <: U

Γ `DOT T <: S ∧ U
And-I

Γ `DOT S ∧ U <: S
And-E1

Γ `DOT S ∧ U <: U
And-E2

Figure 2.9: Subtyping rules of Wadlerfest DOT [Amin et al., 2016]

bounded from two directions by the type declaration x can type to. In combination with
the Trans rule, one can use the Sel1 and Sel2 to derive Γ `DOT S <: U . This ability can
be used to introduce new subtyping relationships between any two types and has caused
many of the challenges in the soundness proofs of DOT and related calculi.

2.5.4 Other DOT Calculi

Over time, many variants of DOT have been studied with various subsets of features.
These calculi form a family of DOT calculi. Table 2.2 provides a summary of the calculi,
together with their features. In order to make the names consistent in this thesis, I adopt
the following convention.

Convention 9. There are two different calculi defined in the literature with the name D<:.
I call the calculus defined in Amin et al. [2016] with lower bounds D<: and the one of Amin
and Rompf [2017] without lower bounds D<<:.

3“Function” here means first-class function. “No” means functions are modeled as methods, which
turns them second-class.

25

features ∧ ∨ lower bound upper bound recursive types function3

DOT [Amin and
Rompf, 2017,
Rompf and Amin,
2016]

yes yes yes yes object directly no

DOT [Amin et al.,
2016, Rapoport
et al., 2017]

yes no yes yes yes yes

µDOT [Amin
et al., 2014]

no no yes yes object directly no

D[Amin and
Rompf, 2017]

no no no no no yes

D<:[Amin
and Rompf,
2017]/D<<:

no no no yes no yes

D<:>[Amin
and Rompf,
2017]/D<:[Amin
et al., 2016]

no no yes yes no yes

D∧ yes no yes yes no yes
µDART no no yes yes yes yes
jDOT yes no yes yes yes yes

Table 2.2: DOT summary table

2.6 Related Work

2.6.1 Formalizations of Scala

Scala is a complex language and its formalization was a long process. In Odersky et al.
[2003], νObj was introduced as the first attempt. The thesis introduced path-dependent
types and came with a type soundness proof. It showed that type checking is undecidable.
Featherweight Scala was later proposed in Cremet et al. [2006]. It provided a type checking
algorithm for the calculus while the calculus itself was not proven sound. Scalina was
introduced in Moors et al. [2007], and its soundness was also not proved.

The first version of DOT was formulated in Amin et al. [2012]. It came with intersection
types and union types, object creations and many other constructs. This version of DOT

26

contains a type refinement construct similar to the Scala language. Amin et al. [2014]
introduced µDOTT and µDOT , two other variants of DOT . These two variants have
type members with upper bounds, but with no intersection and union type. Both calculi
were proven sound. The soundness proof of OOPSLA DOT was established in Rompf
and Amin [2016]. OOPSLA DOT has intersection and union types, as well as subtyping
relation between objects. The soundness property in the thesis was proved with respect to a
small step operational semantics. Amin and Rompf [2017] provided the soundness proof of
OOPSLA DOT in a different style, with respect to a big step operational semantics. Amin
et al. [2016] provided another version of DOT , Wadlerfest DOT , which has intersection
types but no union types and uses administrative normal form. It also formulated D<:, a
weakened form of DOT . Rapoport et al. [2017] simplified the soundness proof of Wadlerfest
DOT by modularizing it, and proved soundness with respect to a small step operational
semantics using evaluation contexts. All of these works focused on the declarative forms
of the calculi.

2.6.2 Undecidability of subtyping

There has been much work related to proving undecidability under certain settings
of subtyping. Pierce [1992] presented a chain of reductions from two counter machines
(TCM) to F<: and showed F<: undecidable. Kennedy and Pierce [2006] investigated a
nominal calculus with variance, modelling the situations in Java, C# and Scala, and showed
that this calculus is undecidable due to three factors: contraviarant generics, large class
hierarchies, and multiple inheritance. Wehr and Thiemann [2009] considered two calculi
with existential types, EX impl and EX uplo, and proved both to be undecidable. Moreover,
in EX uplo, each type variable has either upper or lower bounds but not both, so this calculus
is related to D<:, but since no variable has both lower and upper bounds, it does not expose
the bad bounds phenomenon. Grigore [2017] proved Java generics undecidable by reducing
Turing machines to a fragment of Java with contravariance.

2.6.3 Algorithmic (sub)typing

So far, work on the DOT calculi mainly focused on soundness proofs Amin et al. [2016],
Rompf and Amin [2016], Rapoport et al. [2017]. Nieto [2017] presented step subtyping as
a partial algorithm for DOT typing. In this thesis, we have shown that the fragment of
D<: typed by step subtyping is kernel D<:. Aspinall and Compagnoni [2001] showed a
calculus with dependent types and subtyping that is decidable due to the lack of a > type.

27

Greenman et al. [2014] identified the Material-Shape Separation. This separation describes
two different usages of interfaces, and as long as no interface is used in both ways, the type
checking problem is decidable by a simple algorithm.

2.6.4 Formalization of undecidability proofs

The undecidability proof in this thesis has been mechanized in Agda. There are other
fundamental results on formalizing proofs of undecidability. Forster et al. [2018] mecha-
nized undecibility proofs of various well-known undecidable problems, including the post
correspondence problem (PCP), string rewriting (SR) and the modified post correspon-
dence problem. Their proofs are based on Turing machines. In contrast, Forster and
Smolka [2017] used a call-by-value lambda calculus as computational model. Forster and
Larchey-Wendling [2019] proved undecibility of intuitionistic linear logic by reducing from
PCP.

28

Chapter 3

The Undecidability of D<:

In this chapter, I will present decidability analysis of D<:. Decidability analysis focuses
on understanding whether there exist algorithms to decide type checking and subtyping
problems of a calculus, and the result can contribute to deeper insights in algorithmic
analysis. For D<:, the answer is unfortunately negative.

At the beginning, I start with comparing D<: and F<:, revealing a number of phenomena
that exist in D<: but not in F<:. Then I define reduction, the main technique used in
this thesis to prove undecidability of decision problems. Amin et al. [2016] defines an
interpretation from F<: types to D<: types and proves that if subtyping relates between
two F<: types, then it also holds between the corresponding D<: types. However, reduction
requires an if and only if proof. As I will show later, there is a counterexample to the only
if direction and therefore the proposed interpretation function cannot be used to establish
undecidability of D<:. It turns out that proving undecidability of D<: is very challenging
and it requires to reformulate the definition of the calculus into normal form. A normal
form definition does not have transitivity as an explicit rule in definition, but transitivity
can be derived from the defining rules as a theorem. In order to derive the normal form
for D<:, I propose small-step subtyping, a conceptual tool used to analyze variants of F<:

and D<:. After applying small-step subtyping analysis, I am able to derive normal forms
for multiple calculi, including D<:, which directly leads to the undecidability proof of
subtyping. Finally, I also establish the undecidability proof of type checking in D<:.

The calculi examined in this thesis with machine-verified undecidability proofs include:
F<:, F

−
<:, F<: with bottom (⊥), F−<:>, D<<:, D<: excluding transitivity rule, and D<:

(these calculi will be defined later). The conclusion in turn depends on the fact that F<:

deterministic (F d
<:) is undecidable, which is proved in Pierce [1992] and is discussed in

29

Section 2.3.

To complete this chapter, I will also discuss what the proof and the techniques can say
about the undecidability of all calculi that extends D<:, including DOT .

3.1 Definition of D<:

Definition 3.1. D<: is the calculus defined in Figure 3.1.

D<: is a syntactic subset of DOT . Recall the definition of DOT can be found in
Definition 2.10. D<: is simpler because it has no intersection types and recursive types;
among the three core features mentioned in Section 2.5, only path dependent types are
kept. Moreover, in D<:, there is only one type member label, which is A. Correspondingly,
it has no objects as values. Instead, it has a kind of values called type tags. In a type tag,
a type is bound to the only type member label A. Intuitively, D<: is a simpler calculus
than DOT .

The type assignment and subtyping rules of D<: are the results of reasonably removing
the rules related to the dropped features.

Notice that in D<:, the type assignment rules and subtyping rules are mutually recur-
sive. This is because the Sel1 and Sel2 rules refer to type assignment, in which the Sub
rule refers back to subtyping. The following lemma shows that the definition of subtyping
can be separated from typing.

Lemma 3.1. (unravelling of D<: subtyping) Sel1 and Sel2 can be changed to the follow-
ing form, and the resulting calculus is equivalent to the original one.

Γ `D<: Γ(x) <: {A : S..>}

Γ `D<: S <: x.A
Sel1’

Γ `D<: Γ(x) <: {A : ⊥..U}

Γ `D<: x.A <: U
Sel2’

Proof. This follows directly from the fact that the only typing rules that apply to variables
are the Var and Sub rules.

Since this equivalent form is simpler to work with, from now on, I will use this form as
the default D<: subtyping.

Compared to F<: (Figure 2.1), D<: does not syntactically differ much. The only differ-
ences are the bottom type ⊥, type declarations, and dependent function types. Dependent

30

x, y, z Variable

v ::= Value

{A = T} type tag

λ(x : T)tx lambda

s, t, u ::= Term

x variable

v value

x y application

let x = t in ux let binding

S, T, U ::= Type

> top type

⊥ bottom type

{A : S..U} type declaration

x.A path type

∀(x : S)Ux function

Type Assignment

Γ `D<: x : Γ(x)
Var

Γ `D<: t : S Γ `D<: S <: U

Γ `D<: t : U
Sub

Γ;x : S `D<: t : U

Γ `D<: λ(x : S)t : ∀(x : S)U
All-I

Γ `D<: x : ∀(z : S)Uz Γ `D<: y : S

Γ `D<: x y : Uy
All-E

Γ `D<: {A = T} : {A : T..T}
Typ-I

Γ `D<: t : S Γ;x : S `D<: u : U x /∈ fv(U)

Γ `D<: let x = t in u : U
Let

Subtyping

Γ `D<: T <: >
Top

Γ `D<: ⊥ <: T
Bot

Γ `D<: T <: T
Refl

Γ `D<: S2 <: S1 Γ `D<: U1 <: U2

Γ `D<: {A : S1..U1} <: {A : S2..U2}
Bnd

Γ `D<: S2 <: S1

Γ;x : S2 `D<: U1 <: U2

Γ `D<: ∀(x : S1)U1 <: ∀(x : S2)U2

All

Γ `D<: x : {A : S..U}

Γ `D<: S <: x.A
Sel1

Γ `D<: x : {A : S..U}

Γ `D<: x.A <: U
Sel2

Γ `D<: S <: T
Γ `D<: T <: U

Γ `D<: S <: U
Trans

Figure 3.1: Definition of D<: [Amin et al., 2016]

31

function types allow return types to depend on the input parameter (as indicated by the
subscript Ux), which combines functions and universal types in F<:. Nonetheless, it turns
out that path dependent types in D<: have more complicated behaviors than type variables
in F<:, as illustrated by the following examples.

Path types cascade: Consider the following subtyping derivation in D<:.

Γ = x : {A : ⊥..{A : ⊥..T}}; y : x.A

Γ `D<: {A : ⊥..{A : ⊥..T}} <: {A : ⊥..{A : ⊥..T}}
Refl

Γ `D<: x.A <: {A : ⊥..T}
Sel2’

Γ `D<: y.A <: T
Sel2’

In this subtyping derivation, since x has type {A : ⊥..{A : ⊥..T}}, x.A is shown a
subtype of {A : ⊥..T}. As y has type x.A, by the Sel2’ rule y.A is a subtype of T .

In this derivation, the Sel2’ rule applying to y.A allows the subtyping derivation to
look one layer deeper into {A : ⊥..{A : ⊥..T}} by showing x.A being a subtype of the type
declaration. This behavior makes nested type declarations a non-trivial type structure. In
F<:, on the other hand, this phenomenon does not happen because type variable bindings
are just context lookup and do not have this kind of nested structure.

In Section 3.9, I will show that how this impacts the proof of undecidability of D<:.

Bad bounds: The pattern of bad bounds is discussed in Rapoport et al. [2017], Rompf
and Amin [2016]. Using the Sel1’, Sel2’ and Trans rules, one can prove subtyping
between any type S and U in an appropriate context. Consider the following derivation
tree:

assume Γ(x) = {A : S..U}
straightforward

Γ `D<: {A : S..>} <: {A : S..U}
Bnd

Γ `D<: S <: x.A
Sel1’

same as left

Γ `D<: x.A <: U
Sel2’

Γ `D<: S <: U
Trans

The derivation uses Sel1’ to find the lower bound of x.A and Sel2’ to find the upper
bound of x.A, and finally uses Trans on x.A to make S a subtype of U .

32

In F<:, on the other hand, it is easy to show that, for example, a supertype of a universal
type is either a universal type or >. Such properties are called inversion properties and
they do not hold in general for D<: because it is possible to derive subtyping between any
types S and U .

⊥ proves everything: Recall the definition of F<: with ⊥ from Definition 2.6. In F<:

with ⊥, even if X <: ⊥ ∈ Γ for some type variable X, other subtyping relations remain
unchanged. However, in D<:, ⊥ can be used to introduce subtyping between all types using
bad bounds:

assume Γ(x) = ⊥, then for all S and U,

Γ `D<: ⊥ <: {A : S..>}
Bot

Γ `D<: S <: x.A
Sel1’

Γ `D<: ⊥ <: {A : ⊥..U}
Bot

Γ `D<: x.A <: U
Sel2’

These derivations hold for any S and U . Using the bad bound derivation, we can see
that Γ `D<: S <: U holds.

These examples show that D<: has very different behaviors from F<:. This can be
confusing, because syntactically, D<: is not very differerent from F<:, and it can misguide
one to think that D<: just “moderately extends” F<:. As will be shown in Section 3.3, this
claim, however, is mistaken.

3.2 Definition of Undecidability

In this section, let us first consider a formal definition of undecidability of decision
problems. The definition I use here relies on the concept of reducibility between decision
problems.

Definition 3.2. [Martin, 2010, Definition 12.1a] If Q and P are decision problems, we
say Q is reducible to P (Q ≤ P) if there is an algorithmic procedure F that allows us,
given an arbitrary instance I1 of Q, to find an instance F (I1) of P so that for every I1, I1

is a yes-instance of Q if and only if F (I1) is a yes-instance of P .

Theorem 3.2. [Martin, 2010, Theorem 12.1a] If Q and P are decision problems and
Q ≤ P , then if P can be solved algorithmically, so can Q.

33

Theorem 3.3. [Martin, 2010, Theorem 12.2] The halting problem HALT is undecidable.
Namely, it cannot be solved by any algorithm.

Definition 3.3. If P is a decision procedure, and HALT ≤ P , then P is undecidable.

Intuitively, if P ≤ Q, then P is a simpler problem than Q and a procedure for Q can
be used to solve P . Notice that the definition of reducibility requires an equivalence proof
due to the “if and only if” statement. To emphasize the equivalence nature, I would define
undecidability in a different form which can make the problem more obvious.

Definition 3.4. (Undecidability as an adversarial game) Consider a target decision prob-
lem P . Merlin is a wizard who claims to have access to true magic, and therefore be able
to decide P . He is so confident that he would also offer a complete proof accompanying
each yes answer he gives.

Sherlock is a skeptical detective. He questions the Merlin’s ability, and comes up with
the following scheme in order to disprove Merlin’s claim.

an instance of Q an instance of P

Merlin
a proof of Pa proof of Q

Step 1

Step 2

Q is some selected problem that is equivalent to the halting problem. Sherlock will first
encode an instance of problem Q to P in step 1, and ask Merlin to solve it. When Merlin
gives positive answer, Sherlock will continue with step 2, so that he obtains a proof of a
positive answer of the same Q.

P is undecidable, iff Sherlock achieves both steps and therefore proves Merlin is wrong.

This definition requires a reducibility proof of Q ≤ P and that Q is undecidable, namely
HALT ≤ Q. Therefore one can conclude HALT ≤ P and P is indeed undecidable based
on the formal definition. This definition additionally sets up a game scenario which helps
to understand the particular problem of the incomplete proof in Amin et al. [2016].

3.3 The Incomplete Proof

The incomplete proof of the undecidability of D<: subtyping presented in Amin et al.
[2016] is the following. Based on Theorem 2.4, F<: is chosen to be Q. Then Amin et al.
[2016] defines the following two interpretation functions.

34

Definition 3.5. The interpretation function, J·K, interprets types in F<: to types in D<:.

J>K = >
JXK = xX .A

JS → UK = ∀(x : JSK)JUK (function case)

J∀X <: S.UK = ∀(xX : {A : ⊥..JSK})JUK

The context interpretation function, ⟪·⟫, interprets contexts in F<: to ones in D<:.

⟪•⟫ = •

⟪Γ;X <: T⟫ = ⟪Γ⟫;xX : {A : ⊥..JT K}

Convention 10. For the rest of this thesis, I will use J·K to denote a type interpretation
function and ⟪·⟫ to denote a context interpretation function. These functions convert
corresponding objects from one calculus to another. The domain and codomain calculi of
these interpretation functions will be clear from the context.

In the interpretation function J·K, α-conversion is needed, and some correspondence
between type variables in F<: and variables in D<: is assumed, as indicated by the notation
xX .

The following theorem is proved in Amin et al. [2016], corresponding to step 1 in
Definition 3.4.

Theorem 3.4. If Γ `F<: S <: U , then ⟪Γ⟫ `D<: JSK <: JUK.

What is missing is the only if direction, namely the following conjecture:

Conjecture 1. If ⟪Γ⟫ `D<: JSK <: JUK, then Γ `F<: S <: U .

This conjecture corresponds to step 2 and to establish the proof, this step is necessary.

Conjecture 1 is necessary. Consider the situation in which the following rule is added
into D<: subtyping.

Γ `D<: S <: U
Trivial

This rule trivializes the whole subtyping relation and admits subtyping between any pair
of types in D<:. It is clear that with this rule, D<: subtyping is trivially decidable: simply

35

all subtyping relations are admitted. If Theorem 3.4 sufficed, then it means an obviously
decidable problem is undecidable, which is a contradiction. Projecting the situation in the
game, step 2 provides Sherlock a chance to question Merlin’s yes answers and therefore
this step is definitely necessary.1

A counterexample to Conjecture 1: Conjecture 1 might appear to be quite con-
vincing and one might think that it should be trivial to show, but this conjecture is,
unfortunately, false. Consider following subtyping problem in F<:.

`F<: > → > <: ∀X <: >.>

This is clearly false in F<:: there is no subtyping relation between function types and
universal types in any context.

However, these two types have the following interpretations as D<: types.

J> → >K = ∀(x : >).>
J∀X <: >.>K = ∀(xX : {A : ⊥..>}).>

These two interpreted types in D<: are subtypes, as witnessed by the following deriva-
tion tree.

`D<: {A : ⊥..>} <: >
Top

x : {A : ⊥..>} `D<: > <: >
Refl

`D<: ∀(x : >).> <: ∀(xX : {A : ⊥..>}).>
All

For this input, Merlin gives a yes answer, together with the proof above. However,
Sherlock can never show that F<: also has a positive answer.

Based on the two counterarguments, the interpretation functions from F<: cannot be
used to establish the undecidability of D<:. To unblock the situation, let us consider a
modified version of F<:.

3.4 F−<: as Q

Notice that while both function types and universal types are unrelated types in F<:,
the interpretation function J·K maps them to dependent function types in D<: and thus

1The credit for this counterargument goes to Abel Nieto.

36

allows both kinds of types to interfere in the image. However, some careful review of Pierce
[1992] indicates that function types do not actually participate in the undecidability proof
of F<:. This implies that there can be an undecidable variant of F<: without function
types, so that the interference is eliminated.

Definition 3.6. F−<: is obtained from F<: defined in Figure 2.2 by removing function types
(→) and the Fun rule.

Indeed, it can be shown that F−<: subtyping is undecidable.

Theorem 3.5. F−<: subtyping is undecidable.

Proof. This conclusion is drawn from reduction from F d
<: (defined in Definition 2.9). Recall

that F d
<: is a calculus parameterized over a natural number n. The following reduction

therefore needs to hold for all n.

Γ `F d
<:
S <: U iff ⟪Γ⟫ `F−<:

JSK <: JUK

The interpretation functions here are the same as the ones in the proof of Theorem 2.5.
Though the interpretation functions maps types and contexts from F d

<: to F<:. Since these
functions do not map to function types in their images, switching their codomain to F−<: is
well defined.

Since F d
<: is undecidable (Theorem 2.6), the undecidability of F−<: follows by reduction.

The interpretation functions from Definition 3.5 which map from F<: to D<: are appli-
cable to types and contexts in F−<: but without the function case since function types are
removed in F−<:.

Reviewing Pierce [1992], F−<: has all the essential ingredients of undecidability of bounded
quantification: >, type variables, and universal types, and the interpretation function J·K
no longer has the interference pointed out above. Therefore, this calculus looks to be the
right calculus to reduce from. Later development indeed agrees with this intuition.

3.5 An Attempt at An Undecidability Proof

In order to proceed to the undecidability proof, I will first characterize the interpretation
functions J·K and ⟪·⟫. First I define covariant types in order to capture the image of J·K in
covariant positions.

37

Definition 3.7. (covariant types) A type T in D<: is covariant if it inductively satisfies
the following predicates.

1. T is >, or

2. T is a path type x.A, or

3. T is a function of the form ∀(x : {A : ⊥..S})U , where both S and U are covariant.

Similarly, contraviant types are used to capture the image of J·K in contravariant posi-
tions.

Definition 3.8. (contravariant types) A type T in D<: is contravariant if it is in the form
{A : ⊥..U}, where U is covariant.

The concept of contravariant types is generalized to contexts.

Definition 3.9. (contravariant contexts) A context Γ in D<: is contravariant if all the
types in it are contravariant.

I use covariant types to capture the image of J·K and use contravariant contexts to
capture the image of ⟪·⟫. It turns out that the concept of covariant types is complete in
this sense.

Lemma 3.6. J·K is an isomorphism between types in F−<: and covariant types in D<:.

J·K : TF−<:

∼−→ {TD<: |TD<: is covariant}

In Section 3.1, I showed that D<: has bad bounds and therefore does not have inversion
properties. Nonetheless, it is still possible to identify a class of contexts in which inversion
properties are recovered.

Definition 3.10. (invertible contexts) A context Γ in D<: is invertible, if all of the follow-
ing hold.

1. No variable binds to ⊥,

2. No variable binds to types in the form {A : S..⊥} for any S,

3. No variable binds to types in the form {A : T..{A : S..U}} for any T , S and U , and

38

4. If a variable binds to {A : S..U}, then S = ⊥.

The following lemma connects contravariant contexts with invertible contexts and shows
that all contexts in the image of ⟪·⟫ are invertible.

Lemma 3.7. (properties of contexts) Both of the following hold.

1. All contravariant contexts are invertible.

2. For a context Γ in F−<:, ⟪Γ⟫ is contravariant and therefore also invertible.

Within invertible contexts, inversion properties are recovered, as indicated by the fol-
lowing lemmas.

Lemma 3.8. (super types in invertible contexts) If a context Γ is invertible, then all of the
following hold.

1. If Γ `D<: > <: T , then T = >.

2. If Γ `D<: {A : S..U} <: T , then T = > or T has the form {A : S ′..U ′}.

3. If Γ `D<: ∀(x : S)U <: T , then T = > or T has the form ∀(x : S ′)U ′.

Lemma 3.9. (subtypes in invertible contexts) If a context Γ is invertible, then all of the
following hold.

1. If Γ `D<: T <: ⊥, then T = ⊥.

2. If Γ `D<: T <: {A : S..U}, then T = ⊥ or T has the form of {A : S ′..U ′}.

3. If Γ `D<: T <: ∀(x : S)U , then T = ⊥ or T is some path y.A, or T has the form of
∀(x : S ′)U ′.

4. If Γ `D<: T <: x.A, then T = ⊥, T = x.A, or T is some path y.A from which x.A
can be reached.

Lemma 3.10. (inversion of subtyping in invertible contexts) If a context Γ is invertible,
then the following hold.

1. If Γ `D<: {A : S1..U1} <: {A : S2..U2}, then Γ `D<: S2 <: S1 and Γ `D<: U1 <: U2.

2. If Γ `D<: ∀(x : S1)U1 <: ∀(x : S2)U2, then Γ `D<: S2 <: S1 and Γ;x : S2 `D<: U1 <:
U2.

The above lemmas show thatD<: starts to have much closer trait to F−<: within invertible
contexts (and hence in the image of ⟪·⟫), and suggest that we are just one step away from
proving that D<: subtyping is undecidable, but the Trans rule gives one more problem.

39

A proof fragment: To prove undecidability of D<: subtyping, one of the necessary
lemmas is the following conjecture.

Conjecture 2.

If ⟪Γ⟫ `D<: JSK <: JUK, then Γ `F−<:
S <: U

In order to apply induction directly, the statement needs to be rewritten to an equiv-
alent form so that the types in D<: are exposed. Due to Lemma 3.6, we know the type
interpretation function J·K is an isomorphism, so the types can be exposed by applying the
inverse interpretation function.

Conjecture 3. Let J·K−1 be the inverse function of J·K The target conjecture becomes the
following:

If ⟪Γ⟫ `D<: S <: U and S and U are covariant, then Γ `F−<:
JSK−1 <: JUK−1

When attempting to prove this theorem by induction on the derivation in D<:, the
Trans rule generates a case with the following antecedents:

1. For some T , ⟪Γ⟫ `D<: S <: T ,

2. ⟪Γ⟫ `D<: T <: U ,

3. S and U are covariant,

4. Inductive hypothesis: if ⟪Γ⟫ `D<: T1 <: T2, and T1 and T2 are covariant, then
Γ `F−<:

JT1K−1 <: JT2K−1.

The problem is that T does not have to be covariant, so the induction hypothesis cannot
be applied to antecedent 1 or antecedent 2.

A counterexample for the Trans case: Here is a concrete example of how Merlin can
take advantage of Trans and Top to cause Sherlock trouble in coming up with a proper
step 2. Let x <: T be syntactical sugar for x : {A : ⊥..T}. The following is a proof of
`D<: ∀(x <: >)> <: > given by Merlin.

D

`D<: ∀(x <: >)> <: ∀(x : {A : >..⊥})x.A

Top

`D<: ∀(x : {A : >..⊥})x.A <: >

`D<: ∀(x <: >)> <: >
Trans

40

In the above, D represents the following subderivation.

straightforward

`D<: {A : >..⊥} <: {A : ⊥..>}
Bnd

straightforward

x : {A : >..⊥} `D<: > <: x.A
Sel1

`D<: ∀(x <: >)> <: ∀(x : {A : >..⊥})x.A
All

Here, Merlin proves `D<: ∀(x <: >)> <: > via transitivity through ∀(x : {A :
>..⊥})x.A. In this proof, both resulting types ∀(x <: >)> and > are covariant. ∀(x : {A :
>..⊥})x.A is T in the inductive proof step above and is not covariant, as it would at least
require the lower bound of the type declaration to be ⊥. This counterexample shows that
the target conjecture cannot be proven by induction.

In the game scenario setup, due to the adversarial status between Sherlock and Merlin,
it serves Merlin’s interest to complicate the derivation for a yes answer to prevent Sherlock
from coming up with a proper step 2. This counterexample uses the fact that the Top
rule can conclude Γ ` T <: > without requiring T to be covariant and hence break the
intended invariant. This T can then be subsequently hidden inside of the Trans rule. In
general, this counterexample raises the following question.

Question 3. Can Merlin make use of Trans and Top smartly, so that there is a subtyp-
ing derivation between covariant types in D<: that cannot be convertible back to a derivation
in F−<:?

In particular, this question asks whether it is possible for Sherlock to remove all non-
covariant types hidden inside of the Trans rule. If the answer is negative, then Merlin
wins and F−<: can also not be used to establish the undecidability of D<:.

As a side note, the previous analysis focuses on one particular set of interpretation
functions. This analysis cannot deny the existence of other possible restrictions or inter-
pretations, from which the undecidability of D<: can be established. However, I consider
this alternative approach sub-optimal. Firstly, the current interpretation functions are the
most straightforward interpretation from F−<: and D<: so other interpretations are harder
to obtain intuition from. Secondly, the purpose of the analysis is to understand the calculus
extensively and generally. In contrast, analysis under certain restrictions is too specific;
different problems might require different restrictions, so techniques working well with one
restriction might not work well for problems requiring different restrictions. Hence, the
path I take here is to concentrate on the study of the whole D<: without any restrictions.
Now, let us rewind the thoughts and start from the beginning of the problem.

41

3.6 How Was Undecidability of F<: Proved?

Transitivity is also a property of subtyping in F<:, so Sherlock wonders why this issue
does not appear in Pierce [1992]. The answer is that Pierce worked on F<: normal form
directly (Figure 2.2). Recall that Curien and Ghelli [1990] proved that two definitions of F<:

subtyping, non-normal form (Figure 2.1) and normal form, are equivalent (Theorem 2.3).
In F<: normal form, transitivity is not part of the definition but a provable property.

More generally, the previous proof fragment failed because the Trans rule in D<: uses
a type that does not appear anywhere in the input context and types. If all the rules in a
subtyping definition do not rely on hidden types, then the undecidability of this definition
should be much easier to prove. To capture the characteristics of this particular kind of
declarative forms of calculi, I make the definition explicit.

Definition 3.11. A subtyping definition is in normal form if the premises of every rule
are defined in terms of syntactic subterms of the conclusion.

Notice that subterms here include subterms of the context Γ. Consider the following
rule in F<: normal form.

X <: T ∈ Γ Γ `F<: T <: U

Γ `F<: X <: U
Tvar’

Though T is not a subterm of X or U , notice that T is a result of context lookup of X
and therefore T is a subterm of Γ.

Consider the Trans rule in F<: that is removed from normal form.

Γ `F<: S <: T Γ `F<: T <: U

Γ `F<: S <: U
Trans

T in this rule is arbitrary and therefore not a subterm of types or the context in the
conclusion. Therefore, a definition in normal form should not contain rules like this.

To unblock the problem caused by the Trans rule presented in Section 3.5, it is tempt-
ing to consider what is the normal form of D<: subtyping. It turns out that if the Trans
rule is just removed from the calculus, then I can readily prove the undecidability of the
resulting calculus. This shows that transitivity is the only blocker and further motivates
the idea of a normal form.

42

Theorem 3.11. D<: subtyping without the Trans rule is undecidable.

Proof. The proof is done by reduction from F−<: using the interpretation functions in Defi-
nition 3.5 but without the function case.

The if direction is immediate.

The only if direction is proved by an induction on the derivation tree. Since the Trans
rule is removed, the difficulty in Section 3.5 is gone and the rest can be shown by invoking
inductive hypothesis or discharged by contradiction.

Though the idea of normal form looks promising, there is one last fundamental question.

Question 4. How to come up with a D<: normal form?

This question is very tricky. To some extent, F<: normal form is actually an intuitive
formulation, while as shown in Section 3.1, there are many phenomena of D<: that are
unseen in F<:. This question poses more detailed sub-questions as follows.

1. How many rules are needed to replace Trans?

2. What are those rules?

3. Should other rules be changed?

4. Will the definition of normal form pose other problems?

5. How do I know whether I am investigating a correct candidate?

The last two sub-questions ask about the confidence. Indeed, even if I have formulated
a correct normal form by luck, I might not have strong enough confidence to carry out all
the proofs because of the large number of case analysis to work through in order to show
its equivalence to non-normal form and its undecidability. In other words, to answer this
question, it is required to have a thorough understanding of subtyping in D<:, and the
definition of D<: normal form had better be a result of an intentional construction.

43

Non-normal form

Γ `F−<:
T <: >

Top
Γ `F−<:

T <: T
Refl

X <: T ∈ Γ

Γ `F−<:
X <: T

Tvar

Γ `F−<:
S ′ <: S Γ;X <: S ′ `F−<:

U <: U ′

Γ `F−<:
∀X <: S.U <: ∀X <: S ′.U ′

All

Γ `F−<:
S <: T Γ `F−<:

T <: U

Γ `F−<:
S <: U

Trans

Normal form

Γ `F−NF
<:

T <: >
Top

Γ `F−NF
<:

T <: T
Refl

X <: T ∈ Γ Γ `F−NF
<:

T <: U

Γ `F−NF
<:

X <: U
Tvar’

Γ `F−NF
<:

S ′ <: S Γ;X <: S ′ `F−NF
<:

U <: U ′

Γ `F−NF
<:
∀X <: S.U <: ∀X <: S ′.U ′

All

Figure 3.2: Non-normal form and normal form of F−<:

3.7 Small-step Subtyping

Motivated by the idea of normal form, in this section, I will introduce a conceptual tool,
small-step subtyping, which helps to derive D<: normal form. As indicated by its name,
one helpful intuition is to draw a parallel between subtyping and operational semantics. In
operational semantics, big-step specifies the overall evaluation from terms to values, and
produces an end-to-end relation, whereas small-step defines the smallest evaluation steps
between terms. A big-step reduction can be viewed as taking some small-step reductions for
zero or more times. Considered in this way, what we normally have as a subtyping relation
is just like big-step, as it defines an end-to-end relation indicated by the usual ternary
predicate. However, this is insufficient if the more fine grained behavior of subtyping
becomes important.

For introduction purposes, I first apply the method to F−<: to explain the equivalence
between its non-normal form and normal form. In the next section, I will apply this method
to F−<:>, which is a calculus with bad bounds. Then finally I will apply this method to D<:

44

T 6= >

Γ `F−<:
T ↑ >

Ss-Top

Γ `F−<:
S2 ↑ S1

Γ `F−<:
∀X <: S1.U ↑ ∀X <: S2.U

Ss-All1

X <: T ∈ Γ

Γ `F−<:
X ↑ T

Ss-Var

Γ;X <: S `F−<:
U1 ↑ U2

Γ `F−<:
∀X <: S.U1 ↑ ∀X <: S.U2

Ss-All2

Figure 3.3: Definition of small-step F−<:

in Section 3.9 to derive D<: normal form and conclude its undecidability.

For self-containment, the definitions of F−<: and its normal form are shown in Figure 3.2,
and the differences between both definitions are shaded. The fundamental idea of small-
step (subtyping) analysis is to stratify the declarative subtyping rules into two layers, the
first representing the smallest steps in subtyping, and the second connecting the steps to
form a representation equivalent to the original subtyping definition.

More concretely, the small-step subtyping of F−<: can be defined as follows.

Definition 3.12. The small-step subtyping of F−<: is defined in Figure 3.3.

In general, small-step subtyping should achieve the following criteria.

1. It should be irreflexive.

2. It should be non-transitive.

3. For each rule, there should be at most one recursive step.

Ss-Top and Ss-Var correspond directly to Top and Tvar’ in Figure 2.2. The extra
predicate T 6= > in Ss-Top is to achieve item 1 (irreflexivity). Ss-All1 and Ss-All2
break the All rule into two pieces. Notice that, in Ss-All1, when the parameter type
takes a step, it is required that the return type remains the same (as indicated by the
identical U being used). This is to comply with item 3. Ss-All2 is analogous.

Clearly small-step subtyping on its own cannot be equivalent to the subtyping rules.
For that, we need a second layer.

Definition 3.13. For a relation R over a set S, namely R ⊆ S×S, its reflexive transitive
closure, R∗ ⊆ S × S, is constructed inductively as follows.

45

1. Empty, denoted by ε, is the reflexivity relation and in R∗, namely (a, a) ∈ R∗ for all
a ∈ S.

2. Given an instance of R, (a, b) ∈ R, and an instance of R∗, (b, c) ∈ R∗, their concate-
nation is in R∗, namely (a, b) C (b, c) ∈ R∗.

Reflexive transitive closure grants the permission to use regular expressions to describe
the patterns of sequences of small-steps. I adopt the following convention.

Convention 11. Given an alphabet Σ,

1. · matches any letter in Σ;

2. ε matches the empty string;

3. ∗ means to match the pattern preceding it zero or more times;

4. + means to match the pattern preceding it one or more times;

5. ? means to match the pattern preceding it zero time or once;

6. | means to disjoin two patterns;

7. () group patterns.

Non-normal form and small-steps can be shown equivalent.

Theorem 3.12. Γ `F−<:
S <: U is equivalent to Γ `F−<:

S ↑∗ U , where Γ `F−<:
S ↑∗ U is a

sequence of small-step subtyping given a context Γ.

Proof. The equivalence is based on the following correspondences. The alphabet of the
regular expression is the rules of small-step F−<:.

Top ⇔ Ss-Top?

Refl ⇔ ε

All ⇔ Ss-All1 ∗ Ss-All2∗
Tvar ⇔ Ss-Var

Trans ⇔ (·∗)(·∗)

46

It is clear that for F−<: normal form, the following correspondences hold.

Top ⇔ Ss-Top?

Refl ⇔ ε

All ⇔ Ss-All1 ∗ Ss-All2∗
Tvar’ ⇔ Ss-Var(·∗)

Note that though I use regular expression to capture patterns of small-steps, not all
sequences of small-steps make sense. For example, Ss-Top Ss-All1 is an invalid sequence,
because Ss-Top steps to > while Ss-All1 can only step from a universal type. When I
write .∗, I mean all valid sequences.

The correspondences are stated in a form so that each subpattern corresponds to a
premise in its subtyping rule. Reading off the regular expressions of the corresponding
rules, it is clear that Trans in non-normal form permits all strings and that there are
strings which can be matched by non-normal form but not normal form, e.g. Ss-All2
Ss-All1 Ss-All2. In general, all sequences inexpressible without Trans are captured
by the regular expression (Ss-All1 | Ss-All2)∗.

To summarize, both non-normal form and normal form find their correspondences in
small-steps. Small-step subtyping provides a common language to describe non-normal
form and normal form, so that their differences surface and can be precisely stated and
compared. To understand the equivalence between non-normal form and normal form, the
goal is to show that every string s of Γ `F−<:

S ↑∗ U can be converted to another string s′

of Γ `F−<:
S ↑∗ U so that only the four patterns from normal form above are used.

3.7.1 An example

The conversion from non-normal form to small-steps is quite trivial. Consider the
following derivation showing `F−<:

(∀X <: >.X) <: (∀X <: (∀Y <: >.Y).>).

D1 D2

`F−<:
(∀X <: >.X) <: (∀X <: (∀Y <: >.Y).>)

Trans

D1 is the following derivation.

`F−<:
(∀Y <: >.>) <: > X <: (∀Y <: >.>) `F−<:

X <: (∀Z <: >.>)

`F−<:
(∀X <: >.X) <: (∀X <: (∀Y <: >.>).∀Z <: >.>)

All

47

D2 is the following derivation.

`F−<:
(∀Y <: >.Y) <: (∀Y <: >.>) X <: (∀Y <: >.Y) `F−<:

(∀Z <: >.>) <: >

`F−<:
(∀X <: (∀Y <: >.>).∀Z <: >.>) <: (∀X <: (∀Y <: >.Y).>)

All

Conversion to small-steps simply applies the correspondences shown above, particularly
All⇔ Ss-All1 ∗ Ss-All2∗.

∀X <: >.X Ss-All1

↑ ∀X <: (∀Y <: >.>) .X C Ss-All2(α-renamed)

↑ ∀X <: (∀Y <: >.>). ∀Z <: >.> C Ss-All1

↑ ∀X <: (∀Y <: >. Y).∀Z <: >.> C Ss-All2

↑ ∀X <: (∀Y <: >.Y). > C ε

The changed type in each step is shaded.

Instead of a tree, a subtyping witness in small-steps is represented as a sequence, and
one can directly read off how the subtyping witness is constructed from the sequence.

The conversion from small-steps to non-normal form is also trivial, because each con-
catenation can be mapped to Trans, since (·∗)(·∗) is always satisfiable.

3.7.2 Rearranging universal types

Now consider conversion between small-steps and normal form. Due to the correspon-
dences shown previously, it is clear that conversion from normal form to small-steps is
achievable. The difficulties lie in the conversion from small-steps to normal form, because
only four specific patterns are applicable in normal form.

Consider the small-step sequence presented in Section 3.7.1; it has the pattern Ss-All1
Ss-All2 Ss-All1 Ss-All2, while in normal form, only Ss-All1 ∗ Ss-All2∗ is allowed.
Therefore, in order to show non-normal form is equivalent to normal form, there needs to
be a way to convert any (Ss-All1 | Ss-All2)∗ sequence to Ss-All1 ∗ Ss-All2∗. That
requires to rearrange the sequences so that all Ss-All1s appear before Ss-All2s.

For this particular example, the following rearrangement can be done.

1. The second Ss-All1 step is pulled up by one step.

48

2. The first Ss-All2 step needs to be made consistent because the parameter type has
become ∀Y <: >.Y .

Namely, the same subtyping can be witnessed by the following small-steps instead.

∀X <: >.X Ss-All1

↑ ∀X <: (∀Y <: >.>) .X C Ss-All1 (pulled up)

↑ ∀X <: (∀Y <: >. Y).X C Ss-All2

↑ ∀X <: (∀Y <: >.Y). ∀Z <: >.Z C Ss-All2 (adjustment step)

↑ ∀X <: (∀Y <: >.Y).∀Z <: >. > C Ss-All2

↑ ∀X <: (∀Y <: >.Y). > C ε

This new sequence matches Ss-All1∗Ss-All2∗ and therefore can be expressed in F−<:

normal form.

Notice that this new small-step sequence takes one more step than the previous se-
quence, and the extra step is marked as an adjustment step. This step is necessary. In the
original sequence, the following Ss-All2 step is taken.

`F−<:
∀X <: (∀Y <: >.>)X ↑ ∀X <: (∀Y <: >.>)∀Z <: >.>

Due to the rearrangement in the new sequence, the type to take the step from has become
∀X <: (∀Y <: >. Y)X, so this adjustment step is to ensure the new sequence is well-
defined, as there is no rule to justify the following step.

`F−<:
∀X <: (∀Y <: >.Y)X ↑ ∀X <: (∀Y <: >.Y)∀Z <: >.>

In general, this rearrangement tends to grow the length of the sequence and usually
insert many more adjustment steps. The rearrangement itself corresponds to the proof of
transitivity in normal form, and the adjustment corresponds to the proof of narrowing, as
will be shown below.

3.7.3 Proofs of transitivity and narrowing in normal form

As hinted previously, small-step analysis is introduced to obtain insight into normal
form. In the example in Section 3.7.2, I have explained why rearrangement is necessary

49

Ss-All1 ... Ss-All2 ... Ss-All1 ... Ss-All2 ...

Ss-All1 ... Ss-All1 ... Ss-All2 ... Ss-All2 ...

from ∀X <:
S1.U1 to ∀X <:
S2.U1

from ∀X <:
S2.U1 to ∀X <:
S2.U2

from ∀X <:
S2.U2 to ∀X <:
S3.U2

from ∀X <:
S3.U2 to ∀X <:
S3.U3

from ∀X <: S1.U1 to ∀X <: S3.U1 from ∀X <: S3.U1 to ∀X <: S3.U3

Figure 3.4: First row to second row rearranges the universal types.

to express a given subtyping relation in normal form. This rearrangement corresponds to
the proof of narrowing in normal form. Narrowing is a desirable property of calculi with
subtyping. Informally, it states that an admissible judgment remains admissible if the
context becomes more “precise”. The property is formally expressed as follows:

Theorem 3.13. F−<: normal form satisfies transitivity and narrowing.

1. (transitivity) If Γ `F−NF
<:

S <: T and Γ `F−NF
<:

T <: U , then Γ `F−NF
<:

S <: U .

2. (narrowing) If Γ1;X <: T ; Γ2 `F−NF
<:

S <: U and Γ1 `F−NF
<:

T ′ <: T , then Γ1;X <:

T ′; Γ2 `F−NF
<:

S <: U .

Proof. In proving transitivity, narrowing for a strict subterm of T is assumed, and in
proving narrowing, transitivity for the same T is assumed. I first prove transitivity.

In transitivity, the proof begins by induction on T and then case analysis on both
subtyping derivations. Most of the cases are easy. I will only discuss the case in which
both subtyping derivations are constructed by All. Therefore all three S, T and U are
universal types and let S = ∀(X <: S1).U1, T = ∀(X <: S2).U2 and U = ∀(X <: S3).U3

for some S1, U1, S2, U2, S3 and U3.

Recall that in normal form, there is the following correspondence: All ⇔ Ss-All1 ∗
Ss-All2∗. Therefore, in this case, transitivity between two derivations constructed by All
matches the pattern Ss-All1 ∗ Ss-All2 ∗ Ss-All1 ∗ Ss-All2∗ and was discussed in the
example in Section 3.7.2. The goal is to conclude Γ `F−NF

<:
∀(X <: S1).U1 <: ∀(X <: S3).U3

50

via the All rule, which corresponds to the pattern Ss-All1∗Ss-All2∗ and thus requires
rearrangement.

In the proof context of this case, there are the following antecedents. This case is
diagrammatically presented in Figure 3.4.

1. (The first Ss-All1∗) Γ `F−NF
<:

S2 <: S1

2. (The first Ss-All2∗) Γ;X <: S2 `F−NF
<:

U1 <: U2

3. (The second Ss-All1∗) Γ `F−NF
<:

S3 <: S2

4. (The second Ss-All2∗) Γ;X <: S3 `F−NF
<:

U2 <: U3

In the diagram of Figure 3.4, the third premise is pulled up as in Section 3.7.2. Since
S2 is a strict subterm, the inductive hypothesis of transitivity is applied to obtain Γ `F−NF

<:

S3 <: S1. The next target is to obtain Γ;X <: S3 `F−NF
<:

U1 <: U3. To apply the inductive

hypothesis of transitivity again, it is required to have Γ;X <: S3 `F−NF
<:

U1 <: U2 but

the first Ss-All2∗ only provides Γ;X <: S2 `F−NF
<:

U1 <: U2. Notice the typing contexts

are mismatched. The solution is to apply the adjustment step in Section 3.7.2, which
corresponds to narrowing.

Since narrowing applies to strict subterm of T = ∀(X <: S2).U2, it is applied to obtain
Γ;X <: S3 `F−NF

<:
U1 <: U2 and subsequently Γ `F−NF

<:
∀(X <: S1).U1 <: ∀(X <: S3).U3 is

concluded by the inductive hypothesis of transitivity followed by the All rule.

The proof of narrowing is significantly easier. It is proved by induction on Γ1;X <:
T ; Γ2 `F−NF

<:
S <: U . There are places where transitivity of the same T applies. The

detailed proof is omitted.

Theorem 3.14. F−<: non-normal form and normal form are equivalent.

Γ `F−<:
S <: U ⇔ Γ `F−NF

<:
S <: U

Proof. The only if direction is immediate. In the if direction, the Trans case is concluded
by applying transitivity of normal form.

In this section, I showed that small-step subtyping provides a common language to
describe inference rules in non-normal form and normal form and exposes necessary proof
steps in transitivity.

51

S, T, U ::= Type

> top type

⊥ bottom type

X type variable

∀X <: S >: U.TX universal type

Subtyping

Γ `F−<:>
S <: T Γ `F−<:>

T <: U

Γ `F−<:>
S <: U

Trans

Γ `F−<:>
T <: >

Top
Γ `F−<:>

⊥ <: T
Bot

Γ `F−<:>
T <: T

Refl

X >: T ∈ Γ

Γ `F−<:>
T <: X

Tvar1

X <: T ∈ Γ

Γ `F−<:>
X <: T

Tvar2

Γ `F−<:>
S2 <: S1 Γ `F−<:>

U1 <: U2 Γ;X <: S2 >: U2 `F−<:>
T1 <: T2

Γ `F−<:>
∀X <: S1 >: U1.T1 <: ∀X <: S2 >: U2.T2

All

Figure 3.5: Definition of subtyping in F−<:>

3.8 Undecidability of F−<:>

In Section 3.1, I showed that bad bounds is a pattern which admits subtyping between
any two types. In F−<:, however, this pattern does not exist, so I will first investigate
another calculus which also has bad bounds, F−<:>, before I investigate D<:. Intuitively,
F−<:> extends F−<: with lower bounded quantification.

Definition 3.14. F−<:> is defined in Figure 3.5.

F−<:> has the bottom type ⊥ and the universal types have lower bounded quantification.
The context in F−<:> binds each type variable with two types, its upper bound and its lower
bound. The Bot rule says ⊥ is a subtype of all types. The Tvar1 rule is added for the
lower bound lookup. The All rule has an additional predicate, Γ `F−<:>

U1 <: U2, to
compare the lower bounds of the type variables. Combining the Tvar1, Tvar2 and
Trans rules, we can see that F−<:> indeed has bad bounds. F−<:> also satisfies some
standard structural properties.

Lemma 3.15. (weakening) If Γ `F−<:>
S <: U , then Γ; Γ′ `F−<:>

S <: U .

52

T 6= >

Γ `F−<:>
T ↑ >

Ss-Top
T 6= ⊥

Γ `F−<:>
⊥ ↑ T

Ss-Bot
X >: T ∈ Γ

Γ `F−<:>
T ↑ X

Ss-Tvar1

X <: T ∈ Γ

Γ `F−<:>
X ↑ T

Ss-Tvar2

Γ `F−<:>
S2 ↑ S1

Γ `F−<:>
∀X <: S1 >: U.T ↑ ∀X <: S2 >: U.T

Ss-All1

Γ `F−<:>
U1 ↑ U2

Γ `F−<:>
∀X <: S >: U1.T ↑ ∀X <: S >: U2.T

Ss-All2

Γ;X <: S >: U `F−<:>
T1 ↑ T2

Γ `F−<:>
∀X <: S >: U.T1 ↑ ∀X <: S >: U.T2

Ss-All3

Figure 3.6: Definition of small-step F−<:>

Lemma 3.16. (narrowing) If Γ;x <: T1 >: T2; Γ′ `F−<:>
S <: U and Γ `F−<:>

T ′1 <: T1 and

Γ `F−<:>
T2 <: T ′2, then Γ;x <: T ′1 >: T ′2; Γ′ `F−<:>

S <: U .

This definition is clearly not in normal form. Similar to D<:, when proving its un-
decidability by reducing from F−<:, the Trans rule also gets in the way. For the same
motivation as in Section 3.6, a normal form of F−<:> is needed, and small-step analysis is
used to derive it. First, let us recall that small-step subtyping is required to be irreflexive
and non-transitive, and to have at most one recursive step in each rule. Acknowledging
that, the small-step subtyping of F−<:> is defined by adapting Figure 3.3.

Definition 3.15. The small-step subtyping for F−<:> is defined in Figure 3.6.

Ss-Top, Ss-Tvar2, Ss-All1 and Ss-All3 are inherited from F−<:. Ss-Bot is added
for ⊥. The premise T 6= ⊥ is to avoid reflexivity. Ss-Tvar1 is added to allow a step to go
from a lower bound to its type variable. Ss-All2 allows the lower bound of a universal
type to take a step.

Following the analysis in Section 3.7, small-step subtyping is used as an alphabet to
describe what pattern each subtyping rule expresses. Matching the rules one by one, we
can see that the following correspondences hold.

53

Top ⇔ Ss-Top?

Bot ⇔ Ss-Bot?

Refl ⇔ ε

All ⇔ Ss-All1 ∗ Ss-All2 ∗ Ss-All3∗
Tvar1 ⇔ Ss-Tvar1

Tvar2 ⇔ Ss-Tvar2

Trans ⇔ (·∗)(·∗) (to be dropped)

The next goal is to identify patterns to capture the sequences that are no longer ex-
pressible after removal of the Trans rule.

Proposition 3.1. After the removal of the Trans rule, all inexpressible sequences are
matched by one of the following patterns:

1. (Ss-All1 | Ss-All2 | Ss-All3)∗,

2. (·∗)Ss-Tvar1,

3. Ss-Tvar2(·∗), and

4. (·∗)Ss-Tvar1Ss-Tvar2(·∗) i.e. bad bounds.

Following the situation in F−<:, (Ss-All1 | Ss-All2 | Ss-All3)∗ and Ss-Tvar2(·∗)
are identified. (·∗)Ss-Tvar1 is dual to Ss-Tvar2(·∗). The bad bound patterns naturally
follows as the language is designed to have this phenomenon.

The first pattern is a complication of universal types due to addition of lower bounds. In
Section 3.7, I showed that patterns like this can be rearranged and in this case, a sequence
in that pattern can be rearranged to Ss-All1 ∗ Ss-All2 ∗ Ss-All3∗, which corresponds
to a single All rule. The actual treatment is very similar to the one in F−<: and will not
be discussed here.

In a situation similar to F−<:, both patterns of (·∗)Ss-Tvar1 and Ss-Tvar2(·∗) cannot
be expressed by Tvar1 and Tvar2 unmodified. Luckily, the adjustments to make in both
rules are as straightforward as follows.

X >: T ∈ Γ Γ `F−<:>
T ′ <: T

Γ `F−<:>
T ′ <: X

Tvar1’

X <: T ∈ Γ Γ `F−<:>
T <: T ′

Γ `F−<:>
X <: T ′

Tvar2’

54

Γ `F−<:>
T <: >

Top
Γ `F−<:>

⊥ <: T
Bot

Γ `F−<:>
T <: T

Refl

X <: S >: U ∈ Γ Γ `F−<:>
S <: S ′ Γ `F−<:>

U ′ <: U

Γ `F−<:>
U ′ <: S ′

BB

X >: T ∈ Γ Γ `F−<:>
T ′ <: T

Γ `F−<:>
T ′ <: X

Tvar1’

X <: T ∈ Γ Γ `F−<:>
T <: T ′

Γ `F−<:>
X <: T ′

Tvar2’

Γ `F−<:>
S2 <: S1 Γ `F−<:>

U1 <: U2 Γ;X <: S2 >: U2 `F−<:>
T1 <: T2

Γ `F−<:>
∀X <: S1 >: U1.T1 <: ∀X <: S2 >: U2.T2

All

Figure 3.7: Definition of F−<:> normal form

The last pattern describes bad bounds. With all the adjustments above, bad bounds
can still not expressed. In particular, bad bounds require lookup of both lower and upper
bounds in the same rule. That implies that there needs to be a separate rule explicitly
describing this pattern. The following rule is a direct transcription of the regular expression
and it is the right choice:

X <: S >: U ∈ Γ Γ `F−<:>
S <: S ′ Γ `F−<:>

U ′ <: U

Γ `F−<:>
U ′ <: S ′

BB

Since all four missing patterns are considered, we can be confident that the resulting
calculus should admit transitivity and be equivalent to the original definition of F−<:>. The
step-by-step analysis provides a promising reason for each modification of rules.

Definition 3.16. F−<:> normal form is defined in Figure 3.7.

The changed rules are shaded. Notice that Trans is gone. It is easy to check the rules
one by one and see that the definition is indeed in normal form. A small detail worth noting
is that reflexivity is directly admitted by the Refl rule while in F−<:, only reflexivity of type
variables is part of the definition. This is not a problem here as reflexivity is not a blocker
of the undecidability proof and these two definitions can be easily shown equivalent.

55

After defining normal form, the next step is to formally verify that the two definitions
are indeed equivalent. I shall begin with proving the transitivity of F−<:> normal form.

Theorem 3.17. The following hold.

1. (transitivity of normal form) If Γ `F−<:>
S <: T and Γ `F−<:>

T <: U , then Γ `F−<:>

S <: U .

2. (narrowing of normal form) If Γ;x <: T1 >: T2; Γ′ `F−<:>
S <: U and Γ `F−<:>

T ′1 <: T1

and Γ `F−<:>
T2 <: T ′2, then Γ;x <: T ′1 >: T ′2; Γ′ `F−<:>

S <: U .

Proof. The proof idea is the same as Theorem 3.13. I will only discuss one additional
interesting case here. When the two derivations of transitivity are constructed by Tvar1’
and Tvar2’ respectively, the following antecedents are in the proof context:

1. X >: S ′ ∈ Γ,

2. Γ `F−<:>
S <: S ′,

3. X <: U ′ ∈ Γ, and

4. Γ `F−<:>
U ′ <: U .

Notice that the BB rule applies to obtain Γ `F−<:>
S <: U . This case shows that the

BB rule describes transitivity only for type variables.

Theorem 3.18. F−<:> normal form is equivalent to F−<:> defined in Figure 3.6.

Proof. The if direction is immediate. In the only if direction, transitivity of normal form
is required, which has been proved above.

From F−<:> normal form, it becomes straightforward to show its undecidability, because
Trans is gone.

Theorem 3.19. F−<:> is undecidable.

Proof. This can be shown by reduction from F−<::

Γ `F−<:
S <: U iff ⟪Γ⟫ `F−<:>

JSK <: JUK

56

The interpretation functions are defined as follows.

J>K = >
JXK = X

J∀X <: S.UK = ∀X <: JSK >: ⊥.JUK

⟪•⟫ = •

⟪Γ;X <: T⟫ = ⟪Γ⟫;X <: ⟪T⟫ >: ⊥

The if direction is immediate. In the only if direction, most cases are easy to prove by
direct reasoning with the inductive hypothesis. Both the Tvar1’ and BB cases can be
discharged by contradiction using the following argument. We know that if X >: T ∈ ⟪Γ⟫,
then T = ⊥ by inspecting the context interpretation function. In both rules, there is an
antecedent of Γ `F−<:>

JT ′K <: T , from which we can conclude Γ `F−<:>
JT ′K <: ⊥ and

JT ′K = ⊥. But ⊥ is not in the image of J·K and therefore these rules cannot be applied
under the restriction of interpretation functions.

3.9 Small-step Analysis of D<:

I briefly summarize what has been introduced at this point:

1. In Section 3.7, I showed that small-steps of universal types in F−<: can be rearranged
so that the All rule is capable of handling all cases of transitivity between universal
types.

2. In Section 3.8, I showed that instead of the Trans rule, F−<:> normal form introduces
the BB rule, which makes bad bounds as an explicit rule, and that is enough to show
the admissibility of transitivity.

In this section, I will present small-step analysis of D<:. Recall that the definition of
D<: is presented in Figure 3.1, with the modification in Lemma 3.1. Small-step subtyping
exposes another characteristic, higher order absorption, which requires careful considera-
tion of arbitrarily deep type declarations {A : S1..{A : S2.. · · · {A : Sn..T} · · · }} and is
often hidden behind transitivity, and only surfaces once transitivity is removed.

Definition 3.17. The small-step subtyping for D<: is defined in Figure 3.8.

The rules to be focused on are shaded.

57

T 6= >

Γ `F−<:>
T ↑ >

Ss-Top

Γ `F−<:
S2 ↑ S1

Γ `F−<:
∀(x : S1)U ↑ ∀(x : S2)U

Ss-All1

T 6= ⊥

Γ `F−<:>
⊥ ↑ T

Ss-Bot

Γ;x : S `F−<:
U1 ↑ U2

Γ `F−<:
∀(x : S)U1 ↑ ∀(x <: S)U2

Ss-All2

Γ `D<: Γ(x) ↑∗ {A : S..>}

Γ `D<: S ↑ x.A
Ss-Sel1

Γ `D<: S2 ↑ S1

Γ `D<: {A : S1..U} ↑ {A : S2..U}
Ss-Bnd1

Γ `D<: Γ(x) ↑∗ {A : ⊥..U}

Γ `D<: x.A ↑ U
Ss-Sel2

Γ `D<: U1 ↑ U2

Γ `D<: {A : S..U1} ↑ {A : S..U2}
Ss-Bnd2

Figure 3.8: Selected rules of small-step subtyping for D<:

Similar to Section 3.7 and Section 3.8, after defining small-step subtyping, it is useful
to consider what pattern each subtyping rule corresponds to with small-steps as alphabet.
For D<:, this is captured by the following correspondences.

Top ⇔ Ss-Top?

Bot ⇔ Ss-Bot?

Refl ⇔ ε

All ⇔ Ss-All1 ∗ Ss-All2∗
Sel1’ ⇔ Ss-Sel1

Sel2’ ⇔ Ss-Sel2

Bnd ⇔ Ss-Bnd1 ∗ Ss-Bnd2

Trans ⇔ (·∗)(·∗) (to be dropped)

The next step is to consider what patterns can no longer be expressed after dropping the
Trans rule. The following list exhausts all such patterns. The situation greatly resembles
F−<:> in Section 3.8.

Proposition 3.2. After the removal of the Trans rule, all inexpressible sequences are
matched by one of the following patterns:

58

1. (Ss-All1 | Ss-All2)∗

2. (Ss-Bnd1 | Ss-Bnd2)∗

3. (·∗)Ss-Sel1

4. Ss-Sel2(·∗)

5. (·∗)Ss-Sel1Ss-Sel2(·∗)

I claim that the first two patterns are readily expressible by rearrangement. The first
pattern can be rearranged in the same way as shown in Section 3.7. The second pattern
can be easily rearranged because the Ss-Bnd1 and Ss-Bnd2 steps do not even rely on the
context, so their rearrangement is trivial.

In Section 3.7 and Section 3.8, patterns similar to the remaining three patterns are not
expressible unless the rules for type variables are adjusted. For example, in F−<:, Tvar
needs to be adjusted to Tvar’.

X <: T ∈ Γ

Γ `F−<:
X <: T

Tvar

X <: T ∈ Γ Γ `F−NF
<:

T <: U

Γ `F−NF
<:

X <: U
Tvar’

Attempting to adapt the same treatment from F−<: and F−<:> naively, one might think
that the Sel2’ rule should be adjusted to the following form:

Γ `D<: Γ(x) <: {A : ⊥..U} Γ `D<: U <: U ′

Γ `D<: x.A <: U ′
Sel2’-Wrong

However, I claim that this adjustment is wrong. In fact, there is no need to adjust
either of the Sel1’ and Sel2’ rules. To understand why this is the case, it is important
to first see that with type declarations and path dependent types, subtyping in D<: is
higher-dimensional.

Higher-dimensional subtyping: Recall that small-step analysis is to convert a sub-
typing derivation tree into a sequence of small-steps. In F−<: and F−<:>, this sequence is
one dimensional: one can easily see that any subtyping derivation in both calculi can be

59

y.A ↑ T

x
.A
↑
{
A

:⊥
..T
}

Ss-Sel2

Ss-Sel2

Figure 3.9: A higher-dimensional sequence for Γ `D<: y.A <: T

expressed entirely by one sequence of small-steps. On the other hand, this is no longer
true in D<:. This can be seen from the Ss-Sel2 step.

Γ `D<: Γ(x) ↑∗ {A : ⊥..U}

Γ `D<: x.A ↑ U
Ss-Sel2

Notice that the premise of this step is Γ `D<: Γ(x) ↑∗ {A : ⊥..U}. That is, in order to
take a step up from x.A, there needs to be another complete sequence of small-steps taken
first. This lifts the dimension of small-step analysis up by one. In general, the small-steps
in Γ `D<: Γ(x) ↑∗ {A : ⊥..U} can have higher dimensions, and there is no bound of how
many dimensions there need to be. Therefore, the subtyping in D<: is higher-dimensional.
Let us consider a concrete example:

Γ = x : {A : ⊥..{A : ⊥..T}}; y : x.A

ε

Γ `D<: x.A ↑ {A : ⊥..T}
Ss-Sel2

C ε

Γ `D<: y.A ↑ T
Ss-Sel2

The small-step witness is shown in Figure 3.9. The horizontal step (surrounded by
black box) is the top level step, which provides a witness for Γ `D<: y.A ↑ T . Since y : x.A,
the Ss-Sel2 step requires a supertype of x.A of the form {A : ⊥..T}. Before this form
is reached, y.A cannot take any step. The step from x.A to {A : ⊥..T} is witnessed by
the vertical step, surrounded by the red box. Since x binds to a type declaration, there is

60

no need for any further dimension and the premise of the Ss-Sel2 step of the red box is
justified by ε.

Imagine that x binds to yet another path type, say z.A. Then another sequence of small-
steps is needed to find a supertype of z.A that is a type declaration and the dimension
goes further up by one. The same situation keeps on going if z binds to another path type.
Therefore, a small-step derivation can go up to arbitrarily high dimensions.

However, a derivation cannot have infinite dimensions, as it would require either an
infinitely long context or a (finite but) cyclic one. With the well-formedness condition,
neither is feasible.

After understanding the higher-dimensional nature of subtyping in D<:, let us turn
our attention back to the unresolved three patterns left above. Without loss of generality,
I focus on the Ss-Sel2(·∗) pattern. Consider the case in which Ss-Sel2(·∗) witnesses
Γ `D<: y.A ↑∗ T ′ in the context Γ = x : {A : ⊥..{A : ⊥..T}}; y : x.A. Further assume the
first Ss-Sel2 step witnesses Γ `D<: y.A ↑ T and (.∗) represents some small-step sequence
witnessing Γ `D<: T ↑∗ T ′. In this example, this pattern represents the following steps.

ε

Γ `D<: x.A ↑ {A : ⊥..T}
Ss-Sel2

C ε

Γ `D<: y.A ↑ T
Ss-Sel2

C Γ `D<: T ↑∗ T ′

This form admits Γ `D<: x.A <: T ′ and directly motivates the Sel2’-Wrong rule above.
However, next I will show a less obvious but equivalent way to admit the same judgment
which is more suitable for defining normal form.

Higher-dimensional absorption: In Figure 3.10, I present two diagrams, both of which
witness Γ `D<: x.A <: T ′. The diagram on the left shows what has been discussed: it
directly represents the pattern Ss-Sel2(·∗) and corresponds to the Sel2’-Wrong rule.

The diagram on the right also works but is less obvious. For a given sequence Γ `D<:

T ↑∗ T ′, one can easily show Γ `D<: {A : ⊥..T} ↑∗ {A : ⊥..T ′} by wrapping each step in the
Ss-Bnd2 step. Combined with the original Ss-Sel2 step in the second dimension, which
does Γ `D<: x.A ↑ {A : ⊥..T}, Γ `D<: x.A ↑∗ {A : ⊥..T ′} can be shown, and therefore

61

y.A ↑ T ↑∗ T ′

x
.A
↑
{
A

:⊥
..T
}

Ss-Sel2

Ss-Sel2

y.A ↑ T ′

x
.A
↑
{A

:⊥
..T
}
↑
∗
{A

:⊥
..T
′}

Ss-Sel2

Ss-Sel2

Ss-Bnd2∗

Figure 3.10: Two sequences to show Γ `D<: y.A ↑∗ T ′

Γ `D<: y.A ↑∗ T ′ is justified by one single Ss-Sel2 step. The derivation is the following.

ε

Γ `D<: x.A ↑ {A : ⊥..T}
Ss-Sel2

C

Γ `D<: T ↑∗ T ′

Γ `D<: {A : ⊥..T} ↑∗ {A : ⊥..T ′}
Ss-Bnd2∗

Γ `D<: y.A ↑ T ′
Ss-Sel2

Effectively, instead of directly applying transitivity connecting Γ `D<: y.A ↑ T and
Γ `D<: T ↑∗ T ′, the steps Γ `D<: T ↑∗ T ′ are absorbed into Γ `D<: {A : ⊥..T} ↑∗ {A : ⊥..T ′}
which resides in a higher dimension. The transition from the diagram on the left to right
is called higher-dimensional absorption. More formally,

Proposition 3.3. The following two derivations are equivalent and they both witness
Γ `D<: x.A ↑∗ U .

Γ `D<: Γ(x) ↑∗ {A : ⊥..T}

Γ `D<: x.A ↑ T
Ss-Sel2

C Γ `D<: T ↑∗ U

62

Γ `D<: T <: >
Top

Γ `D<: ⊥ <: T
Bot

Γ `D<: T <: T
Refl

Γ `D<: S2 <: S1 Γ `D<: U1 <: U2

Γ `D<: {A : S1..U1} <: {A : S2..U2}
Bnd

Γ `D<: S2 <: S1

Γ;x : S2 `D<: U1 <: U2

Γ `D<: ∀(x : S1)U1 <: ∀(x : S2)U2

All

Γ `D<: Γ(x) <: {A : S..>}

Γ `D<: S <: x.A
Sel1’

Γ `D<: Γ(x) <: {A : ⊥..U}

Γ `D<: x.A <: U
Sel2’

Γ `D<: Γ(x) <: {A : S..>} Γ `D<: Γ(x) <: {A : ⊥..U}

Γ `D<: S <: U
BB

Figure 3.11: Definition of subtyping of D<: normal form

⇔

Γ `D<: Γ(x) ↑∗ {A : ⊥..T} C

Γ `D<: T ↑∗ U

Γ `D<: {A : ⊥..T} ↑∗ {A : ⊥..U}
Ss-Bnd2∗

Γ `D<: x.A ↑ T
Ss-Sel2

This proposition explains why the Sel2’-Wrong rule is entirely unnecessary: the extra
predicate not only violates the definition of normal form but also adds no more expressive
power to the Sel2’ rule! Therefore, Sel2’ on its own is powerful enough to express all
cases of Ss-Sel2(·∗).

Dually, the Sel1’ rule is capable of expressing (·∗)Ss-Sel1 on its own.

The remaining pattern is the bad bound pattern (·∗)Ss-Sel1Ss-Sel2(·∗). As seen in
Section 3.8, bad bounds require their own explicit rule. D<: normal form is defined by
putting all these observations together.

Definition 3.18. D<: normal form is defined by replacing Trans with BB.

For completeness, the definition of subtyping of D<: normal form is shown in Fig-
ure 3.11.

63

S ′ ↑∗ S ↑ x.A ↑ U ↑∗ U ′

T
↑
∗
{
A

:
S
..>
}

T
↑
∗
{
A

:⊥
..U
}

Ss-Sel1 Ss-Sel2

S ′ ↑ x.A ↑ U ′

T
↑
∗
{A

:
S
..>
}
↑
∗
{A

:
S
′..>
}

T
↑
∗
{
A

:⊥
..U
}
↑
∗
{
A

:⊥
..U
′}

Ss-Sel1 Ss-Sel2

Ss-Bnd1∗ Ss-Bnd2∗

Figure 3.12: Effect of higher-dimensional absorption in BB rule, assuming Γ(x) = T

The BB rule combines both the Sel1’ and Sel2’ rules. Higher-dimensional absorption
might occur in either or both of the type declarations in the premises of the rule, as illus-
trated in Figure 3.12. In Figure 3.12, due to higher-dimensional absorption, the diagram
on top is converted to the diagram at the bottom.

One possible doubt is why BB requires two premises. For example, it might be tempting

64

to adopt the following alternative rule:

Γ `D<: Γ(x) <: {A : S..U}

Γ `D<: S <: U
BB-Wrong

This rule will not work, because it is strictly weaker than the BB rule. In general, the
witnesses of the premises Γ `D<: Γ(x) <: {A : S..>} and Γ `D<: Γ(x) <: {A : ⊥..U} can
be completely different. This alternative rule disables that possibility and therefore is not
able to achieve transitivity.

The next step is to show the equivalence between the two definitions. I shall begin
with the proof of transitivity. In F−<: and F−<:>, the proof requires a mutual induction
between transitivity and narrowing, but in D<:, the situation is more complicated due to
the higher-dimensional nature of subtyping in D<:. In the proof I have to reason about
arbitrarily nested type declarations of the form {A : S1..{A : S2.. · · · {A : Sn..T} · · · }}.
This is captured by the following definition.

Definition 3.19. A type declaration hierarchy is a type defined by another type T and a
list of types l inductively as follows.

tdh(T, l) =

{
T, if l is nil, or

{A : T ′..tdh(T, l′)}, if l = T ′ :: l′

In correspondence to small-step analysis, the list of types l keeps track of the dimensions.
nil represents the top level dimension and as the list grows, the dimension increases.

Theorem 3.20. For any type T and two subtyping derivations in D<: normal form D1

and D2, the following hold:

(1) (transitivity) If D1 concludes Γ `D<: S <: T and D2 concludes Γ `D<: T <: U , then
Γ ` S <: U .

(2) (narrowing) If D1 concludes Γ `D<: S <: T and D2 concludes Γ;x : T ; Γ′ `D<: S
′ <:

U ′, then Γ;x : S; Γ′ `D<: S
′ <: U ′.

(3) If D1 concludes Γ `D<: T
′ <: tdh({A : S ′..T}, l) and D2 concludes Γ `D<: T <: U ,

then Γ `D<: T
′ <: tdh({A : S ′..U}, l).

(4) If D1 concludes Γ `D<: S <: T and D2 concludes Γ `D<: T
′ <: tdh({A : T..U ′}, l),

then Γ `D<: T
′ <: tdh({A : S..U ′}, l).

65

Proof. The proof is done by induction on the lexicographical order of the structure of the
triple (T,D1,D2). That is, the inductive hypotheses of the theorem are:

(a) If T ∗ is a strict syntactic subterm of T , then the theorem holds for T ∗ and any other
two subtyping derivations D′1 and D′2.

(b) If D∗1 is a strict subderivation of D1, then the theorem holds for the same type T ,
the subderivation D∗1 and any subtyping derivation D′2.

(c) If D∗2 is a strict subderivation of D2, then the theorem holds for the same type T ,
the same derivation D1 and the subderivation D∗2.

This form of induction is motivated by the dependencies between the four clauses of the
theorem and can be found in other literature [Pfenning, 2000, Theorem 5 (Cut)]. Specif-
ically, (a) addresses that transitivity (1) and narrowing (2) are mutually dependent, but
when transitivity uses narrowing, T is replaced with a syntactic subterm T ∗. Similarly, (b)
addresses that transitivity (1) and (3) are mutually dependent, but in each dependence
cycle, D1 is replaced with a subderivation D∗1. Finally, (c) addresses that transitivity (1)
and (4) are mutually dependent, but in each dependence cycle, D2 is replaced with a
subderivation D∗2.

Most of the cases in transitivity are straightforward. The All-All case is proved in a
way similar to the proof in Section 3.7 and the Sel1’-Sel2’ case is proved in a way similar
to the proof in Section 3.8. I will only discuss the Sel2’-any case in detail.

Sel2’-any case: When Γ `D<: S <: T is derived by Sel2’, we know S = y.A for some
y. The antecedents are:

i. Γ `D<: Γ(y) <: {A : ⊥..T}, and

ii. Γ `D<: T <: U .

The intention is to show that Γ `D<: Γ(y) <: {A : ⊥.. U } holds and hence conclude
Γ `D<: y.A <: U by Sel2’. To derive this conclusion, we need to apply the induction
hypothesis (b) with Γ `D<: Γ(y) <: {A : ⊥..T} as the subderivation D∗1. The induction
hypothesis (b) provides the necessary Γ `D<: Γ(y) <: {A : ⊥..U} via clause (3), and hence
Γ `D<: y.A <: U . The BB-any case can be proved in the same way. The any-Sel1’ and
any-BB cases can be proved in a symmetric way, by invoking inductive hypothesis (c)
instead of inductive hypothesis (b) in the corresponding places.

66

Narrowing is proved by induction on D2 and concluded by inductive hypothesis. There
are some cases requiring transitivity, which is provided by the induction hypothesis (c).

Clause (3) of the theorem is proved by case analysis on D1, the derivation of Γ `D<:

T ′ <: tdh({A : S ′..T}, l), and then by an inner induction on the list l. I will discuss two
interesting cases.

Bnd-nil case: tdh({A : S ′..T}, nil) = {A : S ′..T} and Γ `D<: T ′ <: tdh({A :
S ′..T}, nil) is constructed by Bnd. From the Bnd rule, we know that T ′ = {A : S0..U0}
and have the following antecedents:

i. Γ `D<: S
′ <: S0, and

ii. Γ `D<: U0 <: T , and

iii. Γ `D<: T <: U .

Transitivity (1) of antecedents ii. and iii. can be obtained by invoking the induction
hypothesis (b) with the antecedent ii. Γ `D<: U0 <: T as D∗1 and conclude Γ `D<: U0 <: U .
Then Bnd is applied to Γ `D<: S

′ <: S0 and Γ `D<: U0 <: U to obtain Γ `D<: {A :
S0..U0} <: {A : S ′..U} as required. This case shows the mutual dependence between
clause (3) and transitivity (1).

Sel2’-any case: In this case, we know that T ′ = z.A for some z and have the following
antecedents:

i. Γ `D<: Γ(z) <: {A : ⊥..tdh({A : S ′..T}, l)}, and

ii. Γ `D<: T <: U .

Notice that {A : ⊥..tdh({A : S ′..T}, l)} can be rewritten as tdh({A : S ′..T}, (⊥ :: l)), so
the induction hypothesis (b) of (3) applies to yield Γ `D<: Γ(z) <: tdh({A : S ′.. U }, (⊥ ::
l)), which can be rewritten as Γ `D<: Γ(z) <: {A : ⊥..tdh({A : S ′..U}, l)}. Finally,
by Sel2’, Γ `D<: z.A <: tdh({A : S ′..U}, l) as required. Comparing this case with
Proposition 3.3, this case corresponds to higher-dimensional absorption by requiring U to
be absorbed into tdh(·). In the inductive hypothesis, the list of types grows to ⊥ :: l and
that corresponds to getting deeper into the dimensions.

Clause (4) of the theorem is dual to clause (3) and is proven in a symmetric way.
Instead of the inductive hypothesis (b), clause (4) uses the inductive hypothesis (c).

67

We can see that the proof steps are closely related to the phenomena described in
small-step analysis. Once transitivity of normal form is proved, I can show the equivalence
between the two definitions.

Theorem 3.21. D<: normal form is equivalent to D<: non-normal form defined in Fig-
ure 3.1.

Proof. The if direction is immediate. In the only if direction, the Trans case can be
discharged by the transitivity of D<: normal form.

Now I have shown that both definitions of D<: subtyping represent the same relation.
However, D<: normal form has the advantage of proving undecidability rather straightfor-
wardly.

Theorem 3.22. D<: subtyping is undecidable.

Proof. This is shown by reduction from F−<::

Γ `F−<:
S <: U iff ⟪Γ⟫ `D<: JSK <: JUK

The if direction is immediate.

The only if direction is proved by induction on D<: normal form and relies on The-
orem 3.21 to go back to non-normal form. D<: normal form does not have the problem
described by Section 3.5 and most of the cases can easily be concluded by using the induc-
tive hypothesis.

The Sel1’ and BB cases require the following argument. In both cases, we have the
antecedent:

for some x, ⟪Γ⟫ `D<: ⟪Γ⟫(x) <: {A : JSK..>}

By inspecting ⟪·⟫, we know that ⟪Γ⟫(x) must be {A : ⊥..T} for some T , and therefore
the antecedent becomes

⟪Γ⟫ `D<: {A : ⊥..T} <: {A : JSK..>}

Recall that ⟪Γ⟫ is invertible. By Lemma 3.10, we know

⟪Γ⟫ `D<: JSK <: ⊥

Furthermore, by Lemma 3.9, we know JSK = ⊥. By inspecting J·K, we see that ⊥ is not in
the image, and therefore both Sel1’ and BB cases are discharged by contradiction.

Finally, Sherlock has caught Merlin’s tail.

68

3.10 Undecidability of Type Assignment of D<:

Even at this point, Merlin is still not giving up. He turns his attention to type as-
signment, and claims that he can decide type assignment in D<:. Sherlock then turns to
eliminate Merlin’s last straw.

The typical idea of the undecidability proof of type assignment is to construct a kind
of terms so that any given type can be assigned to one such term if and only if a desired
subtyping problem holds. Undecidability of type assignment usually does not receive much
attention because in most calculi, finding such a kind of terms is immediate. However, in
D<:, we have to be more careful. Consider a target subtyping problem Γ `D<: S <: U and
the following type checking problem:

Γ `D<: {A = S} : {A : ⊥..U}

In order to type check the term {A = S}, the base case must be Typ-I.

Γ `D<: {A = S} : {A : S..S}
Typ-I

The intention, then, is to turn the typing problem into the following subtyping problem
and hope it is equivalent to Γ `D<: S <: U .

Γ `D<: {A : S..S} <: {A : ⊥..U}

But both subtyping problems are definitely not equivalent! In particular, the following
direction is true.

Γ `D<: S <: U ⇒ Γ `D<: {A : S..S} <: {A : ⊥..U}

However, the other direction is not.

Γ `D<: {A : S..S} <: {A : ⊥..U}; Γ `D<: S <: U

This is because in an unconstrained context in D<:, bad bounds can be used to admit
subtyping between any two types. If Γ(w) = {A : {A : S..S}..{A : ⊥..U}} is true, then the
type checking problem is admissible even if Γ `D<: S <: U is false.

In general, proving the undecidability of type assignment from subtyping requires in-
version properties which do not always hold due to bad bounds. The solution, therefore,
is to reduce from F−<:, which has inversion properties, instead of D<: subtyping.

69

Theorem 3.23. For all Γ, S and U in F−<:,

Γ `F−<:
S <: U iff ⟪Γ⟫ `D<: {A = JSK} : {A : ⊥..JUK}

Proof. The if direction is immediate.

Notice the following fact:

⟪Γ⟫ `D<: {A = JSK} : {A : ⊥..JUK} ⇒ ⟪Γ⟫ `D<: {A : JSK..JSK} <: {A : ⊥..JUK}

Since ⟪Γ⟫ is invertible, according to Lemma 3.10, the subtyping problem further implies
⟪Γ⟫ `D<: JSK <: JUK, which has been shown equivalent to Γ `F−<:

S <: U in Theorem 3.21.

Theorem 3.24. D<: type assignment is also undecidable.

Proof. This follows immediately from the previous theorem.

Listening to Sherlock’s careful elaboration, Merlin could not hide his shocked face, and
has to admit that he cannot achieve either of his previous claims. After all, Sherlock’s new
adventure has come to its end.

3.11 Discussions

3.11.1 D<<:

At the beginning of this chapter, I mentioned a list of calculi whose subtyping relations
are all undecidable and the list includes D<<:.

Definition 3.20. D<<: is defined in Figure 3.13.

70

x, y, z Variable

S, T, U ::= Type

> top type

⊥ bottom type

{A <: U} type declaration

x.A path type

∀(x : S)Ux function

Subtyping

Γ `D<<: S2 <: S1

Γ;x : S2 `D<<: U1 <: U2

Γ `D<<: ∀(x : S1)U1 <: ∀(x : S2)U2

All

Γ `D<<: T <: >
Top

Γ `D<<: ⊥ <: T
Bot

Γ `D<<: T <: T
Refl

Γ `D<<: U <: U ′

Γ `D<<: {A <: U} <: {A <: U ′}
Bnd

Γ `D<<: Γ(x) <: {A <: U}

Γ `D<<: x.A <: U
Sel

Γ `D<<: S <: T Γ `D<<: T <: U

Γ `D<<: S <: U
Trans

Figure 3.13: Definition of D<<:

D<<: is a simplification of D<: the type declarations of which have no lower bounds.
Its normal form is defined straightforwardly.

Definition 3.21. D<<: normal form is defined by removing the Trans rule.

Reading the rules (ignoring Trans), it is clear that D<<: normal form satisfies inversion
properties. D<<: normal form also satisfies the following properties.

Theorem 3.25. D<<: normal form is transitive.

Theorem 3.26. D<<: non-normal form is equivalent to D<<: normal form.

Theorem 3.27. D<<: is undecidable.

The value of this calculus is that it is on one hand much closer to other DOT calculi
than F−<:, while on the other hand it maintains inversion properties. For this reason, I have
the following conjecture.

Conjecture 4. It is easier to show undecidability of DOT calculi via D<<: than via F−<:.

71

By easier, I mean with significantly fewer proof steps. With the growth of the feature
set of other DOT calculi, they become more and more different from F−<:. This can po-
tentially add various difficulties to the proof of their undecidability. D<<: being a more
complicated calculus than F−<: but still having inversion properties makes it a potentially
better candidate for further proofs of undecidability. A detailed investigation is left as
future work.

3.11.2 What about DOT?

DOT is introduced and briefly discussed in Section 2.5. What we can learn about DOT
from D<:?

The original motivation for decidability analysis of D<: was to obtain a better under-
standing of how one approaches an undecidability proof of DOT . However, after proving
D<: undecidable, it is not clear how this can be done for DOT .

There are at least the following difficulties to perform a rigorous decidability analysis
of DOT .

The Trans rule in DOT : Notice that DOT has transitivity as an explicit rule. This
means the undecibility proof of DOT is going to fail for the same reason as in Section 3.5.
This also implies none of the new undecidability results can be applied to DOT .

Following the same thought, the next step is to design normal form for DOT , but it is
unclear how to start approaching it.

Question 5. What is the normal form definition for DOT?

With intersection types, small-step analysis already fails to apply.

Small-step analysis of intersection types: In DOT , there is an additional feature
called intersection types, which form a (bounded) meet semi-lattice in the subtyping rela-
tion. This is achieved by admitting the And-E1, And-E2 and And-I rules.

Γ ` T ∧ U <: T
And-E1

Γ ` T ∧ U <: U
And-E2

Γ ` T <: S Γ ` T <: U

Γ ` T <: S ∧ U
And-I

72

Consider the following proof of commutativity of intersection types.

Γ ` S ∧ U <: U
And-E2

Γ ` S ∧ U <: S
And-E1

Γ ` S ∧ U <: U ∧ S
And-I

This derivation preserves the same information as it begins with, while in small-step
subtyping, every step always finds a supertype. So does that mean there should not be any
step taken in small-step subtyping? But the type is indeed changed. This shows subtyping
with intersection types become hard to interpret in small-step subtyping.

This is a tricky problem but luckily not a fundamental one. In Chapter 5, I will show
a normal form calculus with intersection types by directly engineering its definition. The
trickiest problem is the recursive types.

Mutual dependency between type assignment and subtyping, and the recursive
types: These two problems come in a pair and are more fundamental. Consider the
following three rules in DOT : Rec-I, Rec-E and Sub.

Γ `DOT x : Tx

Γ `DOT x : µ(x : Tx)
Rec-I

Γ `DOT x : µ(z : Tz)

Γ `DOT x : Tx
Rec-E

Γ `DOT t : S
Γ `DOT S <: U

Γ `DOT t : U
Sub

The Rec-I and Rec-E rules make variable typing more general than subtyping, and
the Sub rule behaves just like Trans in subtyping and uses an unknown and arbitrary
type S in the rule. Recall that the reason why normal form is desired, is that normal form
only uses syntactic subterms from the conclusions of the rules, so that external invariants
can be propagated into the derivation tree.

Consider Sherlock and Merlin again, if Merlin complicates a subtyping derivation by
using recursive types and the Sub rule, then some unknown type in the Sub rule can be
selected to break the inductive invariant. This implies that with just these three rules,
undecidability of DOT cannot be concluded by induction, orthogonal to the Trans rule.

In Section 8.3, I give a speculation of how a normal form for another calculus, jDOT
which is a simplification of DOT , should look like, but that definition is to be verified and
that is left as future work.

73

3.11.3 Calculi in Normal Forms

In the previous discussion, I have shown how helpful normal forms are. Normal forms
are just easier to analyze in general contexts. In the soundness proofs in Amin et al. [2016],
Rompf and Amin [2016], Rapoport et al. [2017], there are a number of methods proposed to
resolve some difficulties introduced by the Trans rule, but normal forms just do not have
this rule. For example, Amin et al. [2016] uses a technique called “transitivity pushback”
to prove the soundness of D<: and DOT . It raises a natural question.

Question 6. Would soundness proofs of DOT calculi be easier if subtyping is expressed
in normal forms?

The attempt can be first done in D<: to see if it is indeed the case. I speculate the
answer is yes and the proof will be significantly easier.

It then motivates another question.

Question 7. Should calculi be developed / augmented based on normal forms?

We saw that the undecidability of DOT is not direct from, say, D<: at all, because of the
Trans rule (at least). On the other hand, all the calculi investigated in this chapter have
been transformed into normal forms first before connecting with F−<:. In the formalization,
proofs of properties like narrowing, transitivity and undecidability all follow very similar
traits throughout these calculi. This indicates that normal forms are very robust in terms
of augmentation. Augmentation based on normal form seems a way to make proofs more
modularized and conclusions easier to carry over.

74

Chapter 4

Algorithmic Typing of D<: Fragments

Decidability analysis in Chapter 3 showed the equivalence between the Trans rule
and the BB rule. Namely, transitivity and bad bounds induce the same expressive power
in D<:. In this chapter, I will start with this observation, and propose two decidable
fragments of D<:, kernel D<: and strong kernel D<:. As indicated by their names, strong
kernel D<: is strictly more expressive than kernel D<:. It turns out that these two kernel
forms are both decidable, so the original D<: (or full D<:) is strictly more expressive than
both kernel forms.

After introducing both decidable fragments, I will discuss their decision procedures.
The decision procedure for kernel D<:, step subtyping, has already been introduced by
Nieto [2017]. This decision procedure is the result of adapting the approaches introduced
in Pierce [2002], Pierce and Turner [2000], Pierce [1997], Cardelli and Wegner [1985] to
D<:. Though this procedure has the advantage of being easy to understand, it also has
shortcomings, as discussed in Section 4.7.1.

The decision procedure for strong kernel D<:, stare-at subtyping, is a result of this
thesis which lifts the shortcomings. I then prove the soundness and completeness of both
decision procedures w.r.t. their corresponding kernel forms. At this point, the theories of
D<: described in the two chapters have beautifully converged.

In the previous chapter, I presented a way to decompose a problem by projecting it to
an adversarial game. In this chapter, I will take a different style and consider the problem
as a collaborative game.

75

4.1 Kernel D<:

In Chapter 3, I showed that D<: subtyping is undecidable. A natural question to ask
is what is a decidable fragment of it? I first introduce one such decidable fragment by
applying two adjustments to D<: normal form defined in Figure 3.11.

Consider the subtyping rule for dependent function types, All:

Γ `D<: S2 <: S1 Γ;x : S2 `D<: U1 <: U2

Γ `D<: ∀(x : S1)U1 <: ∀(x : S2)U2

All

As indicated in Chapter 3, this subtyping rule contributes to the undecidability of
D<:. In Section 2.3, I explained that rules like this are tricky because the second premise
effectively behaves like the substitution operation. After acknowledging the substitutive
nature, one treatment to make the subtyping problem decidable is to make the parameter
types identical in order to limit the power of substitution [Pierce, 2002]:

Γ;x : S `D<: U1 <: U2

Γ `D<: ∀(x : S)U1 <: ∀(x : S)U2

All-EqParam

Since the parameter types are syntactically identical, the first premise in All holds by
reflexivity and is hence omitted in this new rule. When comparing the return types, x’s in
U1 have type S just as it is originally defined, so the power of substitution is bounded and
the subtyping problem becomes decidable.

The second adjustment I make is to drop the BB rule. There are three reasons to do
that:

1. Bad bounds are generally considered as unexpected consequences of having transi-
tivity;

2. Nieto examined that the Scala compiler does not attempt to implement this rule [Ni-
eto, 2017];

3. I conjecture that the BB rule alone is enough to introduce undecidability.

These adjustments indeed turn D<: decidable and its decision procedure is an existing
work, step subtyping, by Nieto [2017]. Following the convention in Pierce [2002], I call the
resulting calculus, kernel D<:, and the original definition of D<:, full D<:. I will first discuss
kernel D<: in the rest of this section and start discussing step subtyping in Section 4.2.

76

Γ `D<:K T <: >
K-Top

Γ `D<:K ⊥ <: T
K-Bot

Γ `D<:K T <: T
K-VRefl

Γ `D<:K S2 <: S1 Γ `D<:K U1 <: U2

Γ `D<:K {A : S1..U1} <: {A : S2..U2}
K-Bnd

Γ;x : S `D<:K U1 <: U2

Γ `D<:K ∀(x : S)U1 <: ∀(x : S)U2

K-All

Γ `D<:K Γ(x) <: {A : S..>}

Γ `D<:K S <: x.A
K-Sel1

Γ `D<:K Γ(x) <: {A : ⊥..U}

Γ `D<:K x.A <: U
K-Sel2

Figure 4.1: Definition of kernel D<:

Definition 4.1. Kernel D<: is defined in Figure 4.1.

It is easy to show that kernel D<: is sound w.r.t. full D<:.

Theorem 4.1. (soundness of kernel D<: w.r.t. full D<:) If Γ `D<:K S <: U , then Γ `D<:

S <: U .

Proof. By induction on the derivation of kernel D<:.

On the other hand, since this language is decidable, it is not possible to be complete
w.r.t. full D<:. For example, the following subtyping is admissible in full D<: by the All
rule:

x : {A : >..>} `D<: ∀(y : x.A)> <: ∀(y : >)>

However, this judgment is rejected in kernel D<:, because x.A and > are not syntactically
identical, due to the restriction of the K-All rule.

Moreover, since the BB rule is removed, kernel D<: is not transitive, so judgments
which must require bad bounds or transitivity are no longer admissible, e.g.

x : {A : >..⊥} `D<: > <: ⊥

This conclusion requires transitivity on x.A but it is impossible without either BB or
Trans.

77

Γ `D<:S ⊥ <: T
S-Bot

Γ `D<:S T <: >
S-Top

Γ `D<:S x.A <: x.A
S-VRefl

Γ `D<:S x.A↘ S Γ `D<:S T <: S

Γ `D<:S T <: x.A
S-Sel1

Γ `D<:S x.A↗ U Γ `D<:S U <: T

Γ `D<:S x.A <: T
S-Sel2

Γ `D<:S S
′ <: S Γ `D<:S U <: U ′

Γ `D<:S {A : S..U} <: {A : S ′..U ′}
S-Bnd

Γ;x : S `D<:S U <: U ′

Γ `D<:S ∀(x : S)U <: ∀(x : S)U ′
S-All

Figure 4.2: Definition of step subtyping operation [Nieto, 2017]

4.2 Step Subtyping

Step subtyping is a partial decision algorithm of D<: introduced by Nieto [2017]. It
adapts methods from Pierce [2002], Pierce and Turner [2000], Pierce [1997], Cardelli and
Wegner [1985]. I will show that this algorithm is in fact a decision algorithm of kernel
D<: in Section 4.5. Note that the rules presented here are not entirely identical to Nieto’s
presentation. I made some adjustments to help with formal proofs and set up a frame-
work of algorithmic design, but the adjustments are moderate and have no impact on
expressiveness.

Definition 4.2. Step subtyping is defined in Figure 4.2.

For a judgment Γ `D<:S S <: U , all three of Γ, S and U are inputs, and an algorithm
outputs true if it satisfies this definition.

Nieto has proved a number of properties of this algorithm.

Lemma 4.2. [Nieto, 2017] Step subtyping is reflexive.

Γ `D<:S T <: T

Theorem 4.3. [Nieto, 2017] Step subtyping as an algorithm is sound w.r.t to full D<:.

If Γ `D<:S S <: U , then Γ `D<: S <: U

Theorem 4.4. [Nieto, 2017] Step subtyping as an algorithm terminates.

78

Exposure

T is not a path

Γ `D<:S T ⇑ T
Exp-Stop

Γ `D<:S T ⇑ >
Exp-Top*

Γ1 `D<:S T ⇑ ⊥

Γ1;x : T ; Γ2 `D<:S x.A ⇑ ⊥
Exp-Bot

Γ1 `D<:S T ⇑ {A : S..U} Γ1 `D<:S U ⇑ U ′

Γ1;x : T ; Γ2 `D<:S x.A ⇑ U ′
Exp-Bnd

Upcast/ Downcast

Γ `D<:S x.A↗ >
Uc-Top*

Γ `D<:S x.A↘ ⊥
Dc-bot*

Γ1 `D<:S T ⇑ ⊥

Γ1;x : T ; Γ2 `D<:S x.A↗ ⊥
Uc-Bot

Γ1 `D<:S T ⇑ ⊥

Γ1;x : T ; Γ2 `D<:S x.A↘ >
Dc-Top

Γ1 `D<:S T ⇑ {A : S..U}

Γ1;x : T ; Γ2 `D<:S x.A↗ U
Uc-Bnd

Γ1 `D<:S T ⇑ {A : S..U}

Γ1;x : T ; Γ2 `D<:S x.A↘ S
Dc-Bnd

Figure 4.3: Definition of Exposure and Upcast / Downcast operations [Nieto, 2017]

The discussion on the termination proof is postponed to Section 4.7.1.

Compared with kernel D<:, the rules of step subtyping are almost identical, except
the S-Sel1 and S-Sel2 rules. Both rules are symmetric and rely on other operations,
Exposure, Upcast and Downcast, to handle path dependent types. The following
convention is adopted in order to discuss the operations.

Convention 12. When describing algorithmic rules, though most of time syntax is enough
to select which rule to apply, there are occasions where two rules apply to the same syntax
and a certain execution order is preferred. In this case, I put an asterisk (*) at the end of
the name of the rule to indicate that it has the least priority during execution.

There are situations where the execution order requires more explanations. I will then
discuss those situations more carefully in text.

79

Definition 4.3. The Exposure, Upcast and Downcast operations are defined in Fig-
ure 4.3.

1. An Exposure judgment Γ `D<:S S ⇑ U has Γ and a type S as inputs and a type U
as output.

2. An Upcast judgment Γ `D<:S x.A↗ U has Γ and a variable x as inputs and a type
U as output.

3. A Downcast judgment is similar to Upcast.

Intuitively, Upcast and Downcast return bounds of a path type x.A in the right
direction. The complication comes when x binds to another path type y.A, and y could
potentially bind to another path type. Exposure is designed to resolve this situation by
finding a supertype of a path type x.A that is not a path type. Exp-Stop is the base
case and a non-path type is found. If the input type is a path x.A and x binds to T in the
context, then there are three cases.

1. (Exp-Bot) If T exposes to ⊥, then the result type is ⊥.

2. (Exp-Bnd) If T exposes to a type declaration {A : S..U}, then the result type is
the Exposure of U . However, U can also be a path type, so a second Exposure is
called to ensure that the final return type is not a path type.

3. (Exp-Top) If T exposes to any other types, e.g. a dependent function type, then
this rule applies. This rule is here to make the operation a total function.

Notice that in the recursive case in Exp-Bot and Exp-Bnd, Γ1 is used instead of the
original context. This is fine because the context is well-formed and T is closed in Γ1, so
the rest of the context is guaranteed not to be used.

Lemma 4.5. [Nieto, 2017] (Exposure returns no path) If Γ `D<:S S ⇑ U then U is not
a path type.

Lemma 4.6. [Nieto, 2017] (soundness of Exposure) If Γ `D<:S S ⇑ U , then Γ `D<: S <:
U .

These two lemmas prove that the operation indeed achieves the intention.

Upcast and Downcast operations are symmetric. These two operations provide a
shallow wrapper over Exposure and serve as entry points of S-Sel1 and S-Sel2. Notice

80

that these two operations are not even recursive. In contrast to Exposure, these two
operations are allowed to return path types, which is to admit the following case:

Let Γ = x : {A : ⊥..>}; y : {A : ⊥..x.A}

Γ `D<:S y.A <: x.A

This problem is admitted by the current definition.

Γ `D<:S y.A↗ x.A Γ `D<:S x.A <: x.A
S-VRefl

Γ `D<:S y.A <: x.A
S-Sel1

It is necessary to have Upcast return a path type to admit this admissible case.

Applying the soundness of Exposure, the soundness of Upcast and Downcast can
also be shown.

Lemma 4.7. [Nieto, 2017](soundness of Upcast and Downcast)

1. If Γ `D<:S x.A↗ U , then Γ `D<: x.A <: U .

2. If Γ `D<:S x.A↘ S, then Γ `D<: S <: x.A.

4.3 Step Typing

Nieto [2017] also introduced a set of algorithmic typing rules. The rules are very
straightforward and almost the same as the declarative rules. For completeness, I also
define them here.

Definition 4.4. Step typing is defined in Figure 4.4.

For a step typing judgment Γ `D<:S t : T , Γ and t are inputs and T is the output.

Compared to the declarative typing rules defined in Figure 3.1, we can see that these
two forms are quite similar. The distinctions come from the S-All-E1, S-All-E2 and
S-Let rules.

In S-All-E1 and S-All-E2, for an application x y, the goal is to make sure x has
some function type. However, x can bind to some path type, which means it is unclear
whether it is a function or not. Therefore, Exposure is first used to turn a potential path
type into a non-path type. There are two cases.

81

Γ `D<:S x : Γ(x)
S-Var

Γ;x : S `D<:S tx : Ux

Γ `D<:S λ(x : S)tx : ∀(x : S)Ux
S-All-I

Γ `D<:S Γ(x) ⇑ ∀(z : S)Uz Γ `D<:S Γ(y) <: S

Γ `D<:S x y : Uy
S-All-E1

Γ `D<:S Γ(x) ⇑ ⊥ y ∈ dom(Γ)

Γ `D<:S x y : ⊥
S-All-E2

Γ `D<:S {A = T} : {A : T..T}
S-Typ-I

Γ `D<:S t : T Γ;x : T `D<:S u : U ′ Γ;x : T `D<:S U
′ ⇑x U

Γ `D<:S let x = t in u : U
S-Let

Figure 4.4: Definition of step typing for D<: [Nieto, 2017]

Γ `D<:S > ⇑x (⇓x)>
PD-Top

Γ `D<:S ⊥ ⇑x (⇓x)⊥
PD-Bot

Γ `D<:S T ⇑x >
P-Top*

Γ `D<:S T ⇓x ⊥
D-Bot*

x 6= y

Γ `D<:S y.A ⇑x (⇓x)y.A
PD-Var

Γ `D<:S Γ(x) ⇑ {A : S..U}

Γ `D<:S x.A ⇑x U
P-Sel1

Γ `D<:S Γ(x) ⇑ {A : S..U}

Γ `D<:S x.A ⇓x S
D-Sel1

Γ `D<:S Γ(x) ⇑ ⊥

Γ `D<:S x.A ⇑x ⊥
P-Sel2

Γ `D<:S Γ(x) ⇑ ⊥

Γ `D<:S x.A ⇓x >
D-Sel2

Γ `D<:S S ⇓x (⇑x)S ′ Γ `D<:S U ⇑x (⇓x)U ′

Γ `D<:S ∀(z : S)U ⇑x (⇓x)∀(z : S ′)U ′
PD-All

Γ `D<:S S ⇓x (⇑x)S ′ Γ `D<:S U ⇑x (⇓x)U ′

Γ `D<:S {A : S..U} ⇑x (⇓x){A : S ′..U ′}
PD-Bnd

Figure 4.5: Definitions of Promotion and Demotion for D<: [Nieto, 2017]

82

1. S-All-E1 says that x indeed has a function type. Then the next thing to do is to
make sure y has the input type S, which is checked by step subtyping, described in
the previous section.

2. S-All-E2 says that x is a ⊥, then at this point, what type y has is irrelevant, as
long as it is bound in the context.

S-Let is similar to Let, except that step typing needs to ensure the condition x /∈
fv(U) is met. The result of step typing of the body term u is in the context of Γ;x : T ,
so there is no guarantee that U ′ has no x in it. Therefore, an additional operation is
needed to find a supertype of U ′ in which x is guaranteed not free. This is achieved by the
Promotion operation, indicated by the third premise Γ `D<:S U

′ ⇑x U .

Definition 4.5. The Promotion and Demotion operations are mutually inductively
defined in Figure 4.5.

For a judgment of Promotion Γ `D<:S S ⇑x U , Γ, S and x are the inputs and U is
the output. A Demotion judgment Γ `D<:S S ⇓x U is defined similarly.

Demotion is the dual operation of Promotion. Both operations need to be mutually
defined, because the parameter types of functions and the lower bounds of type declarations
are in contravariant positions, so there needs to be a dual operation of Promotion to find
a subtype which does not have some variable free.

Since path types are the only types referring to variables, PD-Var, P-Sel1 and P-
Sel2 are the base cases for Promotion (the situation in Demotion, namely D-Sel1 and
D-Sel2, can be seen by duality and I omit the discussion in favor of conciseness).

1. (PD-Var) If a path type does not refer to the variable to be removed, then there is
no need to do anything with the path type.

2. (P-Sel1) If a path refers to the variable to be removed, then first apply Exposure
to Γ(x), and if the result is a type declaration {A : S..U}, then U is the result. Notice
that in a well-founded context, U is guaranteed to not contain x so there is no need
for further recursion.

3. (P-Sel2) If Exposure gives ⊥, then the result type can just be ⊥.

4. (P-Top) If Exposure gives any other type, then the result type is >.

83

The PD-All rule describes Promotion and Demotion of function types. In this
rule, the recursive call for the body type U is not in an extended context, but in the
original context Γ. This is correct, because a fresh variable can always be chosen due to
α-conversion, and therefore the variable is guaranteed not to be the same as x. Imagine
the free variable is y and y 6= x. If y.A is used in U , PD-Var is guaranteed to apply, so
there is no need to extend the context. A possible doubt could be that now the operations
are operating on non-closed types. This is true, but since these non-closed types are always
handled by the PD-Var rule, it corresponds to reflexivity in the declarative form and does
not prevent the soundness proof from being established.

The following lemma shows that Promotion and Demotion achieve the intention.

Lemma 4.8. [Nieto, 2017] (removal of free occurrences) If Γ `D<:S S ⇑x (⇓x)U , then
x /∈ fv(U).

Lemma 4.9. [Nieto, 2017] (soundness of Promotion and Demotion)

1. If Γ `D<:S S ⇑x U then Γ `D<: S <: U .

2. If Γ `D<:S S ⇓x U then Γ `D<: U <: S.

From here, we can see that step typing is a sound algorithm.

Theorem 4.10. [Nieto, 2017] (soundness of step typing) If Γ `D<:S t : T , then Γ `D<: t :
T .

Theorem 4.11. [Nieto, 2017] When viewed as an algorithm, step typing terminates.

Proof. Every recursive call occurs on a strict sub-term of the input term.

As we can see, step typing is quite intuitive and easy to understand. Indeed, the main
difficulties of the type assignment problem come from the subtyping problem, and the large
section of decidability reasoning of subtyping in the previous chapter also agrees with this
claim. The same method of step typing can be adapted to larger calculi straightforwardly.
In the rest of the chapter, I will focus more on the discussion about subtyping problem.

84

4.4 A Note on Execution of Step Subtyping

One might have noticed that the rules of step subtyping are not syntax-directed1. In
particular, when both input types are path types, there are potentially three applicable
rules: S-VRefl, S-Sel1 and S-Sel2. In this section, I will discuss and resolve this
subtlety. Among the three, it is clear that the S-VRefl rule is the most preferable one: if
both path types are syntactically identical, this is the best rule to apply. More subtleties
come when two path types are not the same:

Γ `D<:S x.A <: y.A,where x 6= y

One can apply either the S-Sel1 or S-Sel2 rules in this case.

This shows that step subtyping is indeed not syntax-directed. However, this problem
can be resolved by Algorithm 1.

Algorithm 1 Step subtyping when input types are both path types

Input: Γ, x.A, y.A
1: S ← x.A
2: U ← y.A
3: Paths1, Paths2 ← ∅, ∅ . sets of path types
4: while S is path type do
5: Paths1 ← Paths1 ∪ {S}
6: S ← apply Upcast to Γ and S
7: end while
8: while U is path type do
9: Paths2 ← Paths2 ∪ {U}

10: U ← apply Downcast to Γ and U
11: end while . Now S and U are not path types
12: if Paths1 ∩ Paths2 = ∅ then
13: Return the result of the recursive call Γ `D<:S S <: U .
14: else
15: Subtyping is admitted.
16: end if

For ease of presentation, the algorithm is imperative, but rewriting it to be purely
functional is straightforward. The algorithm keeps applying Upcast to S and Downcast

1For every input there is at most one rule which can be selected.

85

to U , until both of them are not path types. During the iterations, two sets of types,
Paths1 and Paths2, are used to remember what path types S and U have ever become.

If Paths1∩Paths2 is not empty, then the judgment is concluded by the S-VRefl rule
because there exists some order of applications of the S-Sel1 and S-Sel2 rules to turn
S and U the same path type. Though the algorithm does not remember what order of
applications is, the existence of such order implies that the comparison is admissible by
S-VRefl. Otherwise, the judgment cannot be concluded by S-VRefl, so the eventual
non-path types S and U become are recursively compared.

To conclude, though the algorithmic rules are not syntax-directed, there is a resolution
to the execution order. In later chapters, there are many versions of algorithmic subtyping
with the same trait. I will just omit the discussion on which path type related rule to
apply first.

4.5 Kernel D<: and Step Subtyping

In this section, I will examine the properties of kernel D<: and its connection with step
subtyping. The first easy property to show about kernel D<: is reflexivity.

Lemma 4.12. Kernel D<: is reflexive.

Γ `D<:K T <: T

In Chapter 3, we have seen that in terms of expressiveness, transitivity is equivalent to
bad bounds. In kernel D<:, since the BB rule is removed, one should not expect transitivity
to hold in general. However, transitivity on > and ⊥ continues to hold.

Lemma 4.13. If Γ `D<:K > <: U , then Γ `D<:K S <: U .

Since U can be a path type, the proof needs to be aware of the higher dimensions.

Lemma 4.14. If Γ `D<:K T <: tdh({A : >..U}, l), then Γ `D<:K T <: tdh({A : S..U}, l).

Proof of Lemma 4.13 and Lemma 4.14. Mutual induction on the subtype derivations.

The case for ⊥ can also be proved in a similar way.

Lemma 4.15. If Γ `D<:K S <: ⊥, then Γ `D<:K S <: U .

86

Now let us consider the soundness of step subtyping w.r.t. kernel D<:. In step subtyp-
ing, there are two layers of operations: the first layer is step subtyping itself; the second
one is Exposure which handles path types. To show soundness, the proofs need to go in
the opposite direction by first connecting Exposure with kernel D<:.

Lemma 4.16. If Γ `D<:S S ⇑ T and Γ `D<:K T <: U , then Γ `D<:K S <: U .

Proof. Induction on the derivation of Exposure.

Theorem 4.17. (soundness of step subtyping w.r.t. kernel D<:)

If Γ `D<:S S <: U , then Γ `D<:K S <: U .

Proof. The proof begins by induction on the derivation of step subtyping. Most of the
cases are easy except for the S-Sel1 and S-Sel2 cases; I only discuss the S-Sel2 case.
Furthermore, in this case, I do a case split on Upcast and only discuss the Uc-Bnd case.
That gives a proof context with the following antecedents:

1. Γ `D<:S U
′ <: U , and

2. Γ1 `D<:S T ⇑ {A : S..U ′}, where Γ = Γ1;x : T ; Γ2.

The goal is to conclude Γ `D<:K x.A <: U via K-Sel2 which requires the premise
Γ `D<:K T <: {A : ⊥..U}.

Since Γ is well-formed, T is closed w.r.t. Γ1 so the second antecedent is equivalent to
Γ `D<:S T ⇑ {A : S..U ′}. From the first antecedent and the K-Bnd rule, Γ `D<:K {A :
S..U ′} <: {A : ⊥..U} is constructed and by Lemma 4.16 Γ `D<:K T <: {A : ⊥..U} is
obtained as well the goal.

Completeness is more difficult to prove than soundness. In the soundness proof, the
proof is achieved by two steps representing two layers in step subtyping; the completeness
proof, on the other hand, requires to construct the two layers in one go. This is reflected
in the proof by the strengthened inductive hypothesis.

Theorem 4.18. (completeness of step subtyping w.r.t. kernel D<:)

If Γ `D<:K S <: U , then Γ `D<:S S <: U .

Proof. The proof requires an intricate strengthening of the induction hypothesis: if Γ `D<:K

S <: U and this derivation contains n steps, then Γ `D<:S S <: U , and if U is of the form
{A : T1..T2}, then Γ `D<:S S ⇑ S ′ for some S ′, and either

87

1. S ′ = ⊥ or

2. S ′ = {A : T ′1..T
′
2} for some T ′1 and T ′2 such that

(a) Γ `D<:S T1 <: T ′1 and

(b) Γ `D<:K T ′2 <: T2, and the number of steps in the derivation of Γ `D<:K T ′2 <: T2

is less than or equal to n.

The proof is by strong induction on n.

To prove Γ `D<:S S <: U , the non-trivial cases are the K-Sel1 and K-Sel2 cases; we
discuss the latter. In this case, S = x.A for some x and the antecedent is Γ `D<:K Γ(x) <:
{A : ⊥..U}. The goal is to show Γ `D<:S x.A <: U via the S-Sel2 rule, which requires
two premises: Γ `D<:S Γ(x)↗ U ′ and Γ `D<:S U

′ <: U .

On the other hand, the original inductive hypothesis only gives Γ `D<:S Γ(x) <: {A :
⊥..U} which cannot be used to establish the premises, so we need the strengthened version.
By case analyzing the strengthened inductive hypothesis, both required premises can be
established and hence the final goal.

It remains to prove the strengthened part of the inductive hypothesis. The type U can
have the specified form {A : T1..T2} in the conclusions of three rules: K-Bot, K-Bnd and
K-Sel2. Only the K-Sel2 case is interesting. The conclusion of this rule forces S = y.A
for some y, and the antecedent is Γ `D<:K Γ(y) <: {A : ⊥..{A : T1..T2}}. Applying the
induction hypothesis to this antecedent leads to two cases:

1. When Γ `D<:S Γ(y) ⇑ ⊥, the goal Γ `D<:S y.A ⇑ ⊥ follows by Exp-Bot.

2. Otherwise, for some T ′1 and T ′2, we obtain additional antecedents:

(a) Γ `D<:S Γ(y) ⇑ {A : T ′1..T
′
2},

(b) Γ `D<:S ⊥ <: T ′1, and

(c) Γ `D<:K T ′2 <: {A : T1..T2} by a derivation with strictly fewer that n steps.

The intention is to apply the Exp-Bnd rule, but this rule requires an Exposure
on T ′2 as well. This can be achieved by applying the inductive hypothesis to the
third antecedent again. This yields Γ `D<:S T

′
2 ⇑ T ′′2 for some T ′′2 and this case is

concluded, so we can apply Exp-Bnd to obtain Γ `D<:S y.A ⇑ T ′′2 , where T ′′2 satisfies
the properties that the strengthened induction hypothesis requires of S ′.

Now I have shown that step subtyping induces the same language as kernel D<: defines.

88

4.6 Strong Kernel D<:

Previously, I defined a decidable fragment of D<:, kernel D<:. Despite its decidability,
it comes with obvious disadvantages. Consider the example in Section 4.1:

x : {A : >..>} `D<: ∀(y : x.A)> <: ∀(y : >)>

This judgment is admissible in full D<: but not in kernel D<: because x.A and > are not
syntactically identical. However, notice that x binds to the type declaration {A : >..>},
which is quite special: the upper bound and lower bound are the same. This special
status of the type declaration makes x.A an alias of >. Forcing parameter types to be
syntactically the same disables any usage of aliasing, while in Scala (or generally in many
other languages) aliasing of types is a desirable feature.

The inspiration for the new calculus comes from writing out the typing context twice
in a subtyping derivation. For example, recall that the existing All rule is:

Γ `D<: S
′ <: S Γ;x : S ′ `D<: Ux <: U ′x

Γ `D<: ∀(x : S)U <: ∀(x : S ′)U ′
All

Let us write the contexts twice for this rule:

Γ `D<: S
′ <: S a Γ Γ;x : S ′ `D<: Ux <: U ′x a Γ;x : S ′

Γ `D<: ∀(x : S)U <: ∀(x : S ′)U ′ a Γ
All-TwoContexts

Now do the same for the kernel version too:

Γ;x : S `D<: Ux <: U ′x a Γ;x : S

Γ `D<: ∀(x : S)U <: ∀(x : S)U ′ a Γ
K-All-TwoContexts

So far, both copies of the context have been the same, so the second copy is redundant.
However, comparing these two rules for a moment, we can see some potential for improve-
ment. In the premise comparing Ux <: U ′x, the only difference is the primes on S in the
typing contexts: the first rule uses S ′ on both sides, while the second rule uses S on both
sides. Since Ux comes from a universal type where x has type S, and U ′x from one where
x has type S ′, what if we took the middle ground between the two rules, and added S to
the left context and S ′ to the right context?

Γ `D<: S
′ <: S a Γ Γ;x : S `D<: Ux <: U ′x a Γ;x : S ′

Γ `D<: ∀(x : S)U <: ∀(x : S ′)U ′ a Γ
All-AsymmetricContexts

89

Γ1 `D<:SK T <: > a Γ2

Sk-Top
Γ1 `D<:SK ⊥ <: T a Γ2

Sk-Bot

Γ1 `D<:SK x.A <: x.A a Γ2

Sk-VRefl

Γ1 `D<:SK S1 >: S2 a Γ2 Γ1 `D<:SK U1 <: U2 a Γ2

Γ1 `D<:SK {A : S1..U1} <: {A : S2..U2} a Γ2

Sk-Bnd

Γ1 `D<:SK S1 >: S2 a Γ2 Γ1;x : S1 `D<:SK U1 <: U2 a Γ2;x : S2

Γ1 `D<:SK ∀(x : S1)U1 <: ∀(x : S2)U2 a Γ2

Sk-All

Γ1 `D<:SK {A : S..>} >: Γ2(x) a Γ2

Γ1 `D<:SK S <: x.A a Γ2

Sk-Sel1

Γ1 `D<:SK Γ1(x) <: {A : ⊥..U} a Γ2

Γ1 `D<:SK x.A <: U a Γ2

Sk-Sel2

Figure 4.6: Definition of strong kernel D<:

The new rule enables the contexts to be different, so it justifies maintaining both
contexts. But how will a calculus with this hybrid rule behave? Will it be strictly in
between the decidable kernel D<: and the undecidable full D<: in expressiveness (assuming
the BB rule is also removed)? Will it be decidable? I will show that the answer to both
questions is yes. The new hybrid rule allows comparison of function types with different
parameter types, and the return types are compared in two different contexts. In particular,
it admits the example judgement with the aliased parameter types in the beginning of this
section.

Definition 4.6. Strong kernel D<: is defined in Figure 4.6.

This calculus is called strong kernel D<:, because it is more expressive than kernel D<:.
To show this, let us first examine that kernel D<: is sound w.r.t. strong kernel D<:. The
proof will require the following lemma.

Lemma 4.19. (reflexivity of strong kernel D<:)

Γ1 `D<:SK T <: T a Γ2

90

• ⊆<: •
Ope-Nil

Γ ⊆<: Γ′

Γ;x : T ⊆<: Γ′
Ope-Drop

Γ ⊆<: Γ′ Γ `D<: S <: U

Γ;x : S ⊆<: Γ′;x : U
Ope-Keep

Figure 4.7: Definition of OPE<:

Theorem 4.20. If Γ `D<:K S <: U , then Γ `D<:SK S <: U a Γ.

Proof. The proof is done by induction on the derivation of kernel D<:. In the K-All case,
reflexivity of strong kernel is needed to admit the comparison of parameter types, which is
a provable property of strong kernel.

To show strong kernel is strictly stronger, it is sufficient to show that there is a subtyping
relation admissible in strong kernel but not in kernel. If we start with the same context on
both sides, the aliasing example in the beginning of the section is admitted by the following
derivation:

let Γ = x : {A : >..>}
reflexivity

Γ `D<:SK x.A >: > a Γ
Sk-Sel1

Γ; y : x.A `D<:SK > <: > a Γ; y : >
Sk-Top

Γ `D<:SK ∀(y : x.A)> <: ∀(y : >)> a Γ
Sk-All

The next step is to show that strong kernel is sound w.r.t. full D<:.

Theorem 4.21. If Γ `D<:SK S <: U a Γ then Γ `D<: S <: U .

An additional relation between two contexts is needed before proving this theorem.

Definition 4.7. The order preserving sub-environment relation between two contexts, or
OPE<:, is defined in Figure 4.7.

Intuitively, if Γ ⊆<: Γ′, then Γ is a more “informative” context than Γ′. OPE<: is
a combination of the narrowing and weakening properties. The following properties of
OPE<: to confirm this intuition.

Lemma 4.22. OPE<: is reflexive.

Γ ⊆<: Γ

91

Lemma 4.23. OPE<: is transitive.

If Γ1 ⊆<: Γ2 and Γ2 ⊆<: Γ3, then Γ1 ⊆<: Γ3.

Theorem 4.24. (respectfulness) Full D<: subtyping is preserved by OPE<:.

If Γ ⊆<: Γ′ and Γ′ `D<: S <: U , then Γ `D<: S <: U .

OPE<: is used to express the inductive invariant required in Theorem 4.21. This is
expressed by the following theorem:

Theorem 4.25. If Γ1 `D<:SK S <: U a Γ2, Γ ⊆<: Γ1 and Γ ⊆<: Γ2, then Γ `D<: S <: U .

Proof. By induction on the strong kernel subtyping derivation.

Then Theorem 4.21 follows from reflexivity of OPE<:.

The Sk-All rule is strictly weaker than its full counterpart, the All rule. This can
be seen from the following judgment:

straightforward

`D<: {A : ⊥..⊥} <: {A : ⊥..>}
Bnd

straightforward

x : {A : ⊥..⊥} `D<: x.A <: ⊥
Sel2

`D<: ∀(x : {A : ⊥..>})x.A <: ∀(x : {A : ⊥..⊥})⊥
All

This judgment is rejected by strong kernel D<: because the comparison of the returned
types relies on the parameter type to the right of <:, which is not possible in strong kernel
D<:. Notice that this example uses aliasing information from the right parameter type (i.e.
that x.A is an alias of ⊥) to reason about the left return type (i.e. that x.A is a subtype
of ⊥), which is something that strong kernel D<: cannot do.

4.7 Stare-at Subtyping

In this section, I will introduce the novel algorithmic subtyping rules, stare-at subtyping,
which are a decision procedure for strong kernel D<:. The name of this set of rules comes
from its notation Γ1 � S <: U � Γ2. If we see � and � as eyes and <: as a nose, then
the notation looks like a face, and the two eyes are staring at the nose.

In this section, I will begin with pointing out two shortcomings of step subtyping. Then
I will define stare-at subtyping and informally explain why both shortcomings are lifted. I
will leave the formal reasoning to Section 4.8.

92

4.7.1 Limitations of Step Subtyping

Stare-at subtyping is an improvement on step subtyping. Overall, stare-at subtyping
resolves two shortcomings of step subtyping:

1. The parameter types of functions are required to be (syntactically) identical.

2. The termination proof as an algorithm is driven by semantics, instead of syntax.

The first shortcoming is inherited from kernel D<: as step subtyping is a complete
algorithm. The second shortcoming requires some more explanations.

The second shortcoming is somewhat more technical, but is not negligible in formal
proofs, as a semantic termination proof requires a significant amount of proof engineering.
The following is the definition of the measure function for step subtyping described in Nieto
[2017].

Definition 4.8. The measure of a type T in a context Γ for step subtyping is computed as
follows.

WΓ(>) = 1

WΓ(⊥) = 1

WΓ({A : S..U}) = 1 + max(WΓ(S),WΓ(U))

WΓ(x.A) = 1 +WΓ1(T), where Γ = Γ1;x : T ; Γ2

WΓ(∀(x : S)U) = 1 +WΓ;x:S(U)

The first three cases are syntactic: they are either base cases or simply recur down
to the smaller syntactic subterms. However, the path type and function type cases are
semantic.

1. In the path type case, the measure of x.A relies on the measure of T , the type x
binds to. This is not syntactic, because the measure depends on the meaning of x
based on the context.

2. The function type case is also semantic, as the result depends on an extended context.
The measure of x.A is computed only in this extended context, so the measure of a
function type always depends on the context.

93

Γ1 � T <: > � Γ2

SA-Top
Γ1 � ⊥ <: T � Γ2

SA-Bot

Γ2 `D<:S x.A↘ T a Γ′2
Γ1 � S <: T � Γ′2

Γ1 � S <: x.A� Γ2

SA-Sel1

Γ1 `D<:S x.A↗ T a Γ′1
Γ′1 � T <: U � Γ2

Γ1 � x.A <: U � Γ2

SA-Sel2

Γ1 � x.A <: x.A� Γ2

SA-VRefl
Γ1 � S >: S ′ � Γ2 Γ1 � U <: U ′ � Γ2

Γ1 � {A : S..U} <: {A : S ′..U ′} � Γ2

SA-Bnd

Γ1 � S >: S ′ � Γ2 Γ1;x : S � U <: U ′ � Γ2;x : S ′

Γ1 � ∀(x : S)U <: ∀(x : S ′)U ′ � Γ2

SA-All

Figure 4.8: Definition of stare-at subtyping

Moreover, this measure function is partial : in the path type case, x does not have to be
bound in the context in general. This situation tends to be omitted in informal analysis,
due to the basic assumption of well-formedness of contexts, but making this assumption
explicit in formal proof assistants requires substantial engineering effort.

D<: is still a small calculus, so this engineering effort might not consume much time,
but as the feature set increases in later chapters, this problem could quickly scale up
and become very hard to manage. Stare-at subtyping provides a minimal solution to this
situation.

4.7.2 Definition

Since judgments in strong kernel D<: have two contexts, as its intended decision algo-
rithm, stare-at subtyping also operates on two contexts.

Definition 4.9. Stare-at subtyping is defined in Figure 4.8.

For a stare-at subtyping judgment Γ1 � S <: U � Γ2, all four places are the inputs,
and it outputs true if inputs satisfy its definition.

One can think of stare-at subtyping as a collaborative game between two players, Alice
and Bob. Alice is responsible for the context and type to the left of <: or >:, while Bob

94

is responsible for the other side. In particular, Alice and Bob are completely independent
and do not need to see the contexts or types held by their collaborator. Most of the rules
are just straightforward extensions of the corresponding rules of step subtyping with two
contexts, except for three cases: SA-All, SA-Sel1 and SA-Sel2.

Notice that in SA-All, the two parameter types are allowed to be different. The first
premise compares them in the original context. In the second premise, the parameter types
are added to the contexts held by Alice and Bob respectively. This obviously has overcome
the limitation of identical parameter types described previously.

For the path types, three cases are needed for the very same reasons as in step subtyping:
SA-Sel1, SA-Sel2 and SA-VRefl. What is different in SA-Sel1 and SA-Sel2 are the
Upcast and Downcast operations. They now return not only a type but also a context.
These two operations depend on another operation similar to Exposure: Revealing.

Definition 4.10. The definitions of Revealing, Upcast and Downcast operations are
in Figure 4.9.

1. A Revealing judgment Γ `D<:S S V U a Γ′ has Γ and a type S as inputs and Γ′

and a type U as outputs.

2. An Upcast judgment Γ `D<:S x.A ↗ U a Γ′ has Γ and a variable x as inputs and
Γ′ and a type U as outputs.

3. A Downcast judgment Γ `D<:S x.A↘ U a Γ′ is defined similarly as Upcast.

Notice that in the SA-Sel1 and SA-Sel2 rules, Alice and Bob use the contexts re-
turned from Upcast and Downcast in the recursive calls.

The Revealing operation not only finds a non-path supertype of a path type as Ex-
posure does, but also returns a prefix of the input context which contains all free variables
of the output type. Returning this additional prefix context turns the termination proof
purely syntactic. The observation is that in the termination measure of step subtyping
(Definition 4.8), it is ultimately the context lookup in the path type case that makes the
proof semantic. However, the very same context lookup has occurred once in the deriva-
tion of the Exposure operation, so the measure function effectively simulates Exposure
one more time. This simulation is necessary in Exposure because the context is shared
between Alice and Bob in step subtyping. But with stare-at subtyping, Alice and Bob
work on two independent contexts. This allows them to more actively manipulate their
own contexts, so that the contexts can directly reflect the results of context look-ups. Let
me analyze the rules of Revealing one by one.

95

Revealing

T is not a path

Γ `D<:S T V T a Γ
Rv-Stop

Γ `D<:S T V > a •
Rv-Top*

Γ1 `D<:S T V ⊥ a Γ′1

Γ1;x : T ; Γ2 `D<:S x.A V ⊥ a •
Rv-Bot

Γ1 `D<:S T V {A : S..U} a Γ′1
Γ′1 `D<:S U V U

′ a Γ′′1

Γ1;x : T ; Γ2 `D<:S x.A V U
′ a Γ′′1

Rv-Bnd

Upcast/ Downcast

Γ `D<:S x.A↗ > a •
U-Top*

Γ `D<:S x.A↘ ⊥ a •
D-bot*

Γ1 `D<:S T V ⊥ a Γ′1

Γ1;x : T ; Γ2 `D<:S x.A↗ ⊥ a •
U-Bot

Γ1 `D<:S T V ⊥ a Γ′1

Γ1;x : T ; Γ2 `D<:S x.A↘ > a •
D-Top

Γ1 `D<:S T V {A : S..U} a Γ′1

Γ1;x : T ; Γ2 `D<:S x.A↗ U a Γ′1
U-Bnd

Γ1 `D<:S T V {A : S..U} a Γ′1

Γ1;x : T ; Γ2 `D<:S x.A↘ S a Γ′1
D-Bnd

Figure 4.9: Definition of Revealing and new definitions of Upcast and Downcast

1. (Rv-Stop) The same as Exposure, Revealing attempts to find a non-path super-
type, so this case is the base case and has achieved the goal.

2. (Rv-Bot) If the input type is a path type, then apply Revealing to T . If Revealing
returns ⊥, the result is just ⊥. Additionally, the returned context is empty. This
is because ⊥ has no free variables so there is no need to return any content in the
context.

3. (Rv-Bnd) Similar to Exposure, when the Revealing of T returns a type declaration
{A : S..U}, the second recursive call is there to make sure U becomes a non-path
type.

4. (Rv-Top) If Revealing of T returns any other type, then this rule is here to make
sure the overall function is total.

Upcast and Downcast are in the same positions as in step subtyping, and follow the
same adjustments and serve as shallow wrappers over Revealing.

96

Reflexivity of stare-at subtyping can already be established based on its definition.

Theorem 4.26. (reflexivity) Stare-at subtyping is reflexive.

Γ1 � T <: T � Γ2

Proof. Perform induction on T .

4.8 Properties of Operations in Stare-at Subtyping

Context manipulation is new in the subtyping decision procedure, so let us examine
some properties of the operations to help understand how the operations behave. First,
let us quantify the relation between the input and output contexts of Revealing.

Definition 4.11. A context Γ′ is a prefix of Γ, if there is another context Γ′′, and Γ =
Γ′; Γ′′.

Lemma 4.27. (Revealing gives prefixes) If Γ `D<:S S V U a Γ′, then Γ′ is a prefix of Γ.

From the rules, we can even be sure that contexts get strictly shorter if S is a path
type.

In the previous section, I mentioned that Revealing is intended to replace Exposure,
so it should achieve the properties of Exposure.

Lemma 4.28. (Revealing returns no path) If Γ `D<:S S V U a Γ′, then U is not a path.

Lemma 4.29. (soundness of Revealing) If Γ `D<:S S V U a Γ′, then Γ `D<: S <: U .

Notice that the subtyping relation is witnessed in the original context Γ, not in the re-
turned context Γ′. In general, the returned context is not expected to witness the subtyping
relation.

Since the context is shrunk, the well-formedness condition is not as obvious as it used
to be.

Lemma 4.30. If Γ′ is a prefix of Γ and Γ is well-formed, then Γ′ is well-formed.

Lemma 4.31. (well-formedness condition) If Γ `D<:S S V U a Γ′, Γ is well-formed and
fv(S) ⊆ dom(Γ), then fv(U) ⊆ dom(Γ′).

97

Combining both lemmas, we can see that the well-formedness condition is recovered.

Similar lemmas can be established for Upcast and Downcast. They are much easier
to prove because Upcast and Downcast are not even recursive.

Lemma 4.32. The following hold.

1. If Γ `D<:S x.A↗ (↘)T a Γ′, then Γ′ is a prefix of Γ.

2. If Γ `D<:S x.A↗ T a Γ′, then Γ `D<: x.A <: T .

3. If Γ `D<:S x.A↘ T a Γ′, then Γ `D<: T <: x.A.

4. If Γ `D<:S x.A ↗ (↘)T a Γ′, Γ is well-formed and x ∈ dom(Γ), then fv(T) ⊆
dom(Γ′).

To prove stare-at subtyping is sound, I use the OPE<: relation defined in Section 4.6.
OPE<: is needed in order to describe the situations in SA-Sel1 and SA-Sel2 where
the weakening part is needed, and the situations in SA-All where the narrowing part is
needed. With this relation, the soundness of stare-at subtyping can be shown.

Theorem 4.33. (soundness of stare-at subtyping) If Γ1 � S <: U � Γ2, Γ ⊆<: Γ1 and
Γ ⊆<: Γ2, then Γ `D<: S <: U .

If Alice and Bob start with the same context, then stare-at subtyping is a partial
decision algorithm for subtyping.

Theorem 4.34. If Γ� S <: U � Γ, then Γ `D<: S <: U .

Next, I will show the termination proofs of the operations. It is easy to see that
Revealing terminates.

Lemma 4.35. Revealing terminates as an algorithm.

Proof. The measure is the length of the input context.

Then I will show that the termination argument of stare-at subtyping is purely syntac-
tic. Consider the measure of the syntactic size of types and contexts.

98

Definition 4.12. The measure M of types and contexts is defined by the following equa-
tions.

M(>) = 1

M(⊥) = 1

M(x.A) = 2

M(∀(x : S)U) = 1 +M(S) +M(U)

M({A : S..U}) = 1 +M(S) +M(U)

M(Γ) =
∑
x:T∈Γ

M(T)

Comparing this definition with Definition 4.8, M simply measures the syntactic sizes
of types and contexts and is a purely syntactic measure. Moreover, M is clearly a total
function.

The following lemma can be shown easily by induction.

Lemma 4.36. If Γ `D<:S S V U a Γ′, then M(Γ) +M(S) ≥M(Γ′) +M(U).

If Γ `D<:S x.A↗ (↘)U a Γ′, then M(Γ) +M(x.A) > M(Γ′) +M(U).

In the SA-Sel1 and SA-Sel2 cases, this lemma is used to argue size decrement,
and the other rules clearly decrease by structure. Therefore, the termination of stare-at
subtyping can also be concluded.

Theorem 4.37. Stare-at subtyping terminates as an algorithm.

Proof. For a judgment Γ1 � S <: U � Γ2, the overall measure is M(Γ1)+M(S)+M(U)+
M(Γ2). Use the previous lemma to show that Upcast and Downcast strictly decrease
the measure.

Consider the solution again from Alice and Bob’s point of view. What happens effec-
tively is Alice and Bob treat their own copies of contexts as scrap papers. Since their mod-
ifications to the contexts are independent, there is no need for any coordination between
them, as long as the types and contexts they hold remain well-formed. The operations
are designed to maintain OPE<: as an invariant, which grants Alice and Bob freedom
to actively modify their contexts and eventually leads to the soundness and termination
proofs.

99

4.9 Strong Kernel D<: and Stare-at Subtyping

The soundness and completeness proofs greatly resemble the situations in kernel D<:.
There are subtleties due to the two contexts but it would be clear enough if I just list the
statements of the lemmas and theorems.

Lemma 4.38. If Γ1 `D<:SK > <: U a Γ2, then Γ1 `D<:SK S <: U a Γ2.

Lemma 4.39. If Γ1 `D<:SK S <: ⊥ a Γ2, then Γ1 `D<:SK S <: U a Γ2.

Lemma 4.40. If Γ1 `D<:S S V T a Γ′1 and Γ1 `D<:SK T <: U a Γ2, then Γ1 `D<:SK S <:
U a Γ2.

In this last lemma, Γ′1 is not used in the rest of the statement. The intuition is that
strong kernel D<: does not shrink the context like stare-at subtyping does, so the returned
context from Revealing is simply dropped.

Theorem 4.41. (soundness of stare-at subtyping w.r.t. strong kernel D<:)

If Γ1 � S <: U � Γ2, then Γ1 `D<:SK S <: U a Γ2.

Proof. By induction on the derivation of stare-at subtyping. The proof is very similar to
the version of step subtyping.

The completeness proof is slightly trickier than the one of step subtyping, because in
the SA-Sel1 and SA-Sel2 cases, Alice and Bob work on prefix contexts in the recursive
calls. In contrast, in the Sk-Sel1 and Sk-Sel2 rules of strong kernel D<:, the subtyping
judgements in the premises use the same full contexts as the conclusions. Therefore, we
need to make sure that working on smaller contexts will not change the outcome.

Theorem 4.42. (strengthening of stare-at subtyping) If Γ1; Γ′1; Γ′′1 � S <: U � Γ2; Γ′2; Γ′′2,
fv(S) ⊆ dom(Γ1; Γ′′1) and fv(U) ⊆ dom(Γ2; Γ′′2), then Γ1; Γ′′1 � S <: U � Γ2; Γ′′2.

Proof. Perform an induction on the derivation of stare-at subtyping.

Now we can prove the completeness of stare-at subtyping.

Theorem 4.43. (completeness of stare-at subtyping w.r.t. strong kernel D<:) If Γ1 `D<:SK

S <: U a Γ2, then Γ1 � S <: U � Γ2.

100

Proof. The proof is similar to the one of Theorem 4.18. We also need to strengthen the
inductive hypothesis to the following: if Γ1 `D<:SK S <: U a Γ2 and this derivation
contains n steps, then Γ1 � S <: U � Γ2 and if U is of the form {A : T1..T2}, then
Γ1 `D<:S S V S

′ a Γ′1, and either

1. S ′ = ⊥, or

2. S ′ = {A : T ′1..T
′
2} for some T ′1 and T ′2, such that

(a) Γ1 � T1 <: T ′1 � Γ2 and

(b) Γ1 `D<:SK T ′2 <: T2 a Γ2, and the number of steps in this derivation is less than
or equal to n.

The Sk-Sel1 and Sk-Sel2 cases are trickier. After invoking the inductive hypothesis,
due to the well-formedness condition of Upcast and Downcast, we apply Theorem 4.42
so that the eventual derivation of stare-at subtyping works in prefix contexts.

Therefore, we conclude that strong kernel and stare-at subtyping are the same language.

Completeness may seem somewhat surprising since stare-at subtyping truncates the
typing contexts in the SA-Sel1 and SA-Sel2 cases while strong kernel subtyping does
not. Technically, the truncation is justified by Theorem 4.42. Intuitively, since the prefixes
of the typing contexts cover the free variables of the relevant type, they do include all of
the information necessary to reason about that type. However, it is important to keep in
mind that this is possible only because we have removed the BB rule. In a calculus with
the BB rule, it is possible that Γ ` S <: U is false in some context Γ that binds all free
variables of S and U , but that if we further extend the context with some Γ′, that can
make Γ; Γ′ ` S <: U true due to new subtyping relationships introduced in Γ′ by the BB
rule.

4.10 Discussions

4.10.1 Convergence of Theories

Up to the soundness and completeness of step subtyping and stare-at subtyping proved
w.r.t. their corresponding kernel calculi, the theories related to D<: have beautifully con-
verged. Tracing back to the root of all critical observations, D<: normal form makes most

101

of the contributions. So far this thesis has shown that calculi in normal form give many
advantages.

Reviewing the algorithmic rules and the kernel calculi, it is not difficult to notice a
certain pattern exists. I call the transformation from a normal form calculus to its kernel
form kernelization, and the transformation to strong kernel form strong kernelization. Their
commonalities are

1. removal of bad bounds, and

2. identical parameter types in kernel or two contexts in strong kernel.

Clearly, strong kernelization is a stronger approach, and therefore, in the rest of the
thesis, I will only consider the strong kernel form. In Chapter 5, I will show that a
calculus extending D<: with intersection types also has a strong kernel form. However,
with recursive types, how the same can be done becomes unclear.

4.10.2 Properties of Kernel Calculi

Previously, one difficulty of D<: was from the bad bounds. Due to bad bounds, a
number of helpful properties are no longer true. For example, in D<:, one might want the
following property:

If Γ `D<: ∀(x : S)U <: ∀(x : S ′)U ′, then Γ `D<: S
′ <: S and Γ; x : S ′ `D<: U <: U ′.

This property is a inversion property, and is not true in general.

Due to bad bounds, this very helpful property is rejected. As shown in Chapter 3,
having bad bounds is equivalent to having transitivity. This implies two desired properties
cannot coexist in D<:, and transitivity makes the calculus harder to reason about. On the
other hand, in (strong) kernel D<:, the inversion property holds ; one can verify it by simply
looking at the rules and K-All/Sk-All is the only possible constructor. Therefore, study
of kernel calculi is desirable, and their decidability further motivates that.

There are other aspects to study for the kernel calculi.

For example, in F<:, one can define a minimal type T that satisfies a certain predicate
P , if the following property holds:

If Γ `F<: S <: T and P (S), then S = T

102

This concept is very useful. For example, Pierce [2002, 1997] Pierce showed that Ex-
posure finds the minimal non-variable supertype of type variables in both F<: and F<:

with ⊥. In D<:, however, it is challenging to informally state how a minimal type should
be defined and this kind of property is unlikely to be true due to bad bounds.

For example, consider the following context:

x : {A : ⊥..∀(z : >)>}

It is tempting to say that the minimal supertype of x.A that is not a path is ∀(z : >)>.
However, this can be changed if the context is extended. Consider the following context
extended with y:

x : {A : ⊥..∀(z : >)>}; y : {A : x.A..∀(z : >)⊥}

Now the situation is far less clear. In fact, within this context, the minimal supertype
of x.A that is not a path becomes ∀(z : >)⊥.

The subtyping relations between these types can be represented by the following dia-
gram.

⊥ x.A ∀(z : >)>

y.A ∀(z : >)⊥

In the diagram, S U means Γ `D<: S <: U . As indicated by the second row,
a new subtyping relation is injected into the diagram after the extension.

In (strong) kernel D<:, the situation is slightly different.

⊥ x.A ∀(z : >)>

y.A ∀(z : >)⊥

The above diagram represents the situation in (strong) kernel D<:. Though all arrows
denote subtyping relation, there are now different kinds of arrows. In particular, an arrow
can be solid or half solid. Subtyping is not transitive through nodes connected by the
dotted ends of arrows. For example, y.A is one such kind of nodes:

x.A y.A ∀(z : >)⊥

103

In the diagram, ⊥ x.A , ⊥ ∀(z : >)⊥
and

∀(z : >)⊥ ∀(z : >)>

are solid because these relations are defined to hold. All other arrows are half solid because
they are imposed by path dependent types. A lower bound has a dotted end into the path
type and a upper bound has a dotted end out of the path type. Rejecting transitivity
through a node connected by dotted ends is a diagrammatic representation of rejecting the
BB rule.

For example, Γ `D<: y.A <: ∀(z : >)⊥ <: ∀(z : >)> is justified by following the
arrows starting from y.A, then to ∀(z : >)⊥ and finally to ∀(z : >)>. On the other hand,
Γ `D<: x.A <: ∀(z : >)⊥ is rejected, because it would require to go through the arrow from
x.A to y.A but subtyping is not transitive on y.A.

In this diagram, one can now claim that ∀(z : >)> remains x.A’s minimal non-path
supertype, even when y is in the context; ∀(z : >)⊥ is not a supertype of x.A. Therefore,
subtyping in kernel calculi is more stable relative to extensions of contexts.

If minimal typing is defined, then there will be more work to do on the operations. For
example, I expect that Exposure and Revealing return the minimal non-path supertypes
of the input types.

The requirement of distinguishing subtyping introduced by path types or not seems to
indicate a certain stratification of the subtyping relation, which can be a very interesting
direction to explore. This, however, will not be explored in this thesis and is left as future
work.

104

Chapter 5

D∧

The previous two chapters have introduced and analyzed various aspects of D<:. How-
ever, D<: is the simplest calculus of the family and not the eventual goal. In this chapter,
I will introduce an extension of D<:, D∧. D∧ extends D<: with data fields and intersection
types. To generalize the calculus, the numbers of type member labels and data field mem-
ber labels in D∧ are countably infinite. Compared to DOT , D∧ only has recursive types
missing.

In this chapter, I will start with the D∧ normal form: as shown previously, non-normal
form is much harder to analyze while not more expressive. I will prove that D∧ sutyping is
undecidable. I will show strong kernel D∧ as an extension of strong kernel D<:. I will then
adapt stare-at subtyping in D<: to D∧ and show that the algorithm is sound and complete
in strong kernel D∧. The situation in D∧ greatly resembles the one in D<: and the theories
of D∧ also converge very nicely.

In this chapter, I only study the subtyping relation, and type assignment will be dis-
cussed in greater details in Chapter 6 and Chapter 7.

5.1 Definition of D∧

Definition 5.1. The definition of D∧ is shown in Figure 5.1.

Recall that in D<:, there is no data field member and there is only one type member
label which is A. In contrast to D<:, there are infinitely many type member labels (A, B,
C, etc) in D∧. In addition, D∧ also has field members. This is reflected in types by the

105

x, y, z Variable

a, b, c Term member

A,B,C Type member

S, T, U ::= Type

> top type

⊥ bottom type

{A : S..U} type declaration

{a : T} field declaration

x.A path type

∀(x : S)Ux function

S ∧ U intersection

Γ `D∧ T <: >
Top

Γ `D∧ ⊥ <: T
Bot

Γ `D∧ T <: T
Refl

Γ `D∧ S2 <: S1 Γ `D∧ U1 <: U2

Γ `D∧ {A : S1..U1} <: {A : S2..U2}
Bnd

Γ `D∧ T1 <: T2

Γ `D∧ {a : T1} <: {a : T2}
Fld

Γ `D∧ S2 <: S1 Γ;x : S2 `D∧ U1 <: U2

Γ `D∧ ∀(x : S1)U1 <: ∀(x : S2)U2

All

Γ `D∧ Γ(x) <: {A : S..>} Γ `D∧ Γ(x) <: {A : ⊥..U}

Γ `D∧ S <: U
BB

Γ `D∧ Γ(x) <: {A : S..>}

Γ `D∧ S <: x.A
Sel1

Γ `D∧ Γ(x) <: {A : ⊥..U}

Γ `D∧ x.A <: U
Sel2

Γ `D∧ T <: S
Γ `D∧ T <: U

Γ `D∧ T <: S ∧ U
And-I

Γ `D∧ S <: T

Γ `D∧ S ∧ U <: T
And-E1

Γ `D∧ U <: T

Γ `D∧ S ∧ U <: T
And-E2

Figure 5.1: Definition of D∧

106

field declaration {a : T}, as shaded. Moreover, D∧ has intersection types, as indicated by
its name. Otherwise the types are the same as in D<:.

The subtyping rules have already been in normal form and the unshaded rules are the
same as D<: normal form (Figure 3.11). Notice that transitivity is replaced by the BB rule,
as in D<: normal form. The Fld rule is added to define an intuitive subtyping relation
between field declarations, which indicates the types in them are in covariant position.
Relations on intersection types are expressed by And-I, And-E1 and And-E2.

In Section 3.11.2, I discussed why small-step subtyping does not work well with intersec-
tion types. Nonetheless, the And-E1 and And-E2 rules are results of direct engineering,
and a similar definition can be found in F∧ defined in Pierce [1991]. This definition of D∧
is justified by proving the admissibility of transitivity. The statement of the theorem is
the same as the one of D<: normal form.

Theorem 5.1. For any type T and two subtyping derivations in D∧, D1 and D2, the
following hold:

(1) (transitivity) If D1 concludes Γ `D∧ S <: T and D2 concludes Γ `D∧ T <: U , then
Γ ` S <: U .

(2) (narrowing) If D1 concludes Γ `D∧ S <: T and D2 concludes Γ;x : T ; Γ′ `D∧ S ′ <:
U ′, then Γ;x : S; Γ′ `D∧ S ′ <: U ′.

(3) If D1 concludes Γ `D∧ T ′ <: tdh({A : S ′..T}, l) and D2 concludes Γ `D∧ T <: U ,
then Γ `D∧ T ′ <: tdh({A : S ′..U}, l).

(4) If D1 concludes Γ `D∧ S <: T and D2 concludes Γ `D∧ T ′ <: tdh({A : T..U ′}, l),
then Γ `D∧ T ′ <: tdh({A : S..U ′}, l).

The same as in D<:, transitivity relies on narrowing and two other statements about
tdh(·). It appears that the proof steps in D∧ are almost the same as D<:, other than
necessary adaptations for intersection types. I will only discuss those cases.

Proof. The proof is almost the same as the one of Theorem 3.20. In the case split of
transitivity, there are more cases due to intersection types.

The And-E1-any case: In this case, S = S0∧S1 for some S0 and S1 and the antecedents
are:

1. Γ `D∧ S0 <: T , and

107

2. Γ `D∧ T <: U .

By the inductive hypothesis, Γ `D∧ S0 <: U is concluded and by And-E1, the goal
Γ `D∧ S0∧S1 <: U is shown. The dual case And-E2-any is shown by the same argument.

The any-And-I case: In this case, U = U0∧U1 for some U0 and U1 and the antecedents
are:

1. Γ `D∧ S <: T ,

2. Γ `D∧ T <: U0, and

3. Γ `D∧ T <: U1.

By the inductive hypothesis, Γ `D∧ S <: U0 and Γ `D∧ S <: U1 are obtained and then by
And-I, Γ `D∧ S <: U0 ∧ U1 is concluded as desired.

The And-I-And-E1 case: In this case, T = T0 ∧ T1 and the antecedents are:

1. Γ `D∧ S <: T0,

2. Γ `D∧ S <: T1, and

3. Γ `D∧ T0 <: U .

Notice that by the inductive hypothesis with the first and third antecedents, the goal
Γ `D∧ S <: U can already be concluded. That means the second antecedent is completely
dropped. The And-I-And-E2 case is proved similarly.

Other cases are exactly the same as the cases in D<: so I omit the discussion here.

From the normal form, it is straightforward to show the undecidability of D∧.

Theorem 5.2. D∧ subtyping is undecidable.

Proof. The target theorem is the following equivalence.

Γ `F−<:
S <: U iff ⟪Γ⟫ `D∧ JSK <: JUK

The interpretation functions are the ones defined in Definition 3.5. The proof is almost
the same as the one of Theorem 3.22. In the only if direction, since intersection types do
not appear in the image of J·K, all cases of And-E1, And-E2 and And-I are discharged
by contradiction.

108

5.2 Strong Kernel D∧

Similar to D<:, D∧ also has a strong kernel variant. In this section, I will define strong
kernel D∧ and discuss its relation with D∧ (or full D∧ following the convention), and in the
next section, I will adapt stare-at subtyping and prove that it decides strong kernel D∧.
One can also define kernel D∧ but as explained previously, kernel calculi require identical
parameter types when comparing dependent function types and this restriction becomes
too much as the feature set grows. Hence I will omit the discussion on step subtyping and
kernel D∧.

Definition 5.2. Strong kernel D∧ is defined in Figure 5.2.

Strong kernel D∧ simply extends strong kernel D<: with the additional features. The
extra rules in strong kernel D<: are shaded. These rules can be seen as the two-contextual
version of the corresponding rules in full D∧.

Many properties of strong kernel D<: hold in strong kernel D∧ as well.

Lemma 5.3. Strong kernel D<: is reflexive.

Γ1 `D∧SK T <: T a Γ2

Lemma 5.4. If Γ1 `D∧SK > <: U a Γ2, then Γ1 `D∧SK S <: U a Γ2.

Lemma 5.5. If Γ1 `D∧SK S <: ⊥ a Γ2, then Γ1 `D∧SK S <: U a Γ2.

The soundness w.r.t. full D∧ is proved in the same way as in strong kernel D<:. Recall
that the soundness proof relies on a concept OPE<: which is defined in Definition 4.7.

Theorem 5.6. If Γ1 `D<:SK S <: U a Γ2, Γ ⊆<: Γ1 and Γ ⊆<: Γ2, then Γ `D<: S <: U .

The soundness theorem uses reflexivity of OPE<: to specialize the theorem to the same
context on both sides.

Theorem 5.7. If Γ `D<:SK S <: U a Γ, then Γ `D<: S <: U .

Due to its decidability to be shown in Section 5.6, strong kernel D∧ is not complete
w.r.t. full D∧.

109

Γ1 `D∧SK T <: > a Γ2

Sk-Top
Γ1 `D∧SK ⊥ <: T a Γ2

Sk-Bot

Γ1 `D∧SK x.A <: x.A a Γ2

Sk-VRefl

Γ1 `D∧SK S1 >: S2 a Γ2 Γ1 `D∧SK U1 <: U2 a Γ2

Γ1 `D∧SK {A : S1..U1} <: {A : S2..U2} a Γ2

Sk-Bnd

Γ1 `D∧SK T1 <: T2 a Γ2

Γ1 `D∧SK {a : T1} <: {a : T2} a Γ2

Sk-Fld

Γ1 `D∧SK S1 >: S2 a Γ2 Γ1;x : S1 `D∧SK U1 <: U2 a Γ2;x : S2

Γ1 `D∧SK ∀(x : S1)U1 <: ∀(x : S2)U2 a Γ2

Sk-All

Γ1 `D∧SK {A : S..>} >: Γ2(x) a Γ2

Γ1 `D∧SK S <: x.A a Γ2

Sk-Sel1

Γ1 `D∧SK Γ1(x) <: {A : ⊥..U} a Γ2

Γ1 `D∧SK x.A <: U a Γ2

Sk-Sel2
Γ1 `D∧SK S <: T a Γ2

Γ1 `D∧SK S ∧ U <: T a Γ2

Sk-And-E1

Γ1 `D∧SK U <: T a Γ2

Γ1 `D∧SK S ∧ U <: T a Γ2

Sk-And-E2

Γ1 `D∧SK T <: S a Γ2 Γ1 `D∧SK T <: U a Γ2

Γ1 `D∧SK T <: S ∧ U a Γ2

Sk-And-I

Figure 5.2: Definition of strong kernel D∧

5.3 Revealing in D∧

Starting from this section, I will discuss the algorithmic subtyping of D∧. I will adapt
stare-at subtyping to D∧ and show that it decides strong kernel D∧.

Recall that stare-at subtyping relies on a core operation called Revealing, and two

110

wrappers Upcast and Downcast. Intersection types also complicate these operations.
Consider the following subtyping relation.

Γ `D∧ x.A ∧ T <: x.A

This relation is obviously true. To derive this conclusion, first x.A in x.A ∧ T needs
to be chosen by And-E1, and then reflexivity applies to derive Γ `D∧ x.A <: x.A. That
implies there needs to be an operation to select types from the intersection types.

Definition 5.3. ∧-Traversal is defined in Figure 5.3.

For a judgment S 7→ U , S is the input type and U is the output type.

Intuitively, the operation non-deterministically selects a non-intersection type from a
tree of intersections. The non-determinism is introduced by the At-Left or At-Right
rules. This to some degree is expected. In the previous example, At-Left applies to
retrieve x.A; if the subtyping problem is changed slightly to T ∧ x.A <: x.A, then At-
Right should apply. In general, the right choice is unknown until both rules are tried.

Luckily, since syntactical constructs are always finite, there are only a finite number of
non-deterministic choices to make and therefore can be dealt with by exhaustive search (and
therefore the problem remains decidable). This also means the implementation needs to
remember each point of these non-deterministic choices, and perform backtracking searches
whenever subsequent operations fail. This will be discussed in greater details in Section 5.4.

Revealing, Upcast and Downcast need to be extended with ∧-Traversal.

Definition 5.4. Revealing, Upcast and Downcast are defined in Figure 5.3.

Similar to D<:,

1. A Revealing judgment Γ `D<:S S V U a Γ′ has Γ and a type S as inputs and Γ′

and a type U as outputs.

2. An Upcast judgment Γ `D<:S x.A↗ U a Γ′ has Γ, a variable x and a type member
label A as inputs and Γ′ and a type U as outputs.

3. Downcast judgment Γ `D<:S x.A↘ U a Γ′ is defined similarly as Upcast.

The main complication of Revealing comes from the Rv-Bot and Rv-Bnd rules.

111

∧-Traversal

T is not ∧

T 7→ T
At-Found

S 7→ S ′

S ∧ U 7→ S ′
At-Left

U 7→ U ′

S ∧ U 7→ U ′
At-Right

Revealing

T is not a path

Γ `D∧S T V T a Γ
Rv-Stop

Γ `D∧S T V > a •
Rv-Top*

T 7→ T0 Γ1 `D∧S T0 V T1 a Γ′1 T1 7→ ⊥

Γ1;x : T ; Γ2 `D∧S x.A V ⊥ a •
Rv-Bot

T 7→ T0 Γ1 `D∧S T0 V T1 a Γ′1
T1 7→ {A : S..U} U 7→ U0 Γ′1 `D∧S U0 V U

′ a Γ′′1

Γ1;x : T ; Γ2 `D∧S x.A V U
′ a Γ′′1

Rv-Bnd

Upcast/ Downcast

Γ `D∧S x.A↗ > a •
U-Top*

Γ `D∧S x.A↘ ⊥ a •
D-Bot*

T 7→ T0 Γ1 `D∧S T0 V T1 a Γ′1 T1 7→ ⊥

Γ1;x : T ; Γ2 `D∧S x.A↗ ⊥ a •
U-Bot

T 7→ T0 Γ1 `D∧S T0 V T1 a Γ′1 T1 7→ {A : S..U}

Γ1;x : T ; Γ2 `D∧S x.A↗ U a Γ′1
U-Bnd

T 7→ T0 Γ1 `D∧S T0 V T1 a Γ′1 T1 7→ ⊥

Γ1;x : T ; Γ2 `D∧S x.A↘ > a •
D-Top

T 7→ T0 Γ1 `D∧S T0 V T1 a Γ′1 T1 7→ {A : S..U}

Γ1;x : T ; Γ2 `D∧S x.A↘ S a Γ′1
D-Bnd

Figure 5.3: Definition of Revealing and new definitions of Upcast and Downcast

112

1. First the rules both obtain the type T which x binds to. However, T might be an
intersection type, and therefore ∧-Traversal is used to obtain a T0 that is guaranteed
to not be an intersection (it might or might not be another path type).

2. After the first recursive call, a new type T1 is returned. However, this type might also
be an intersection. In particular, if it hides a ⊥ in it, then the operation should stop
here (Rv-Bot); or if it has a type declaration, then a second recursive call needs to
be made (Rv-Bnd). One might think there can be a third choice: ∧-Traversal can
select a path type, but this choice is not necessary, as I will explain later.

3. In Rv-Bnd, U does not directly get passed into Revealing, but first is processed
by another ∧-Traversal to get a non-intersection component type U0. The result of
Revealing of U0 is the final result.

Upcast and Downcast remain moderate wrappers of Revealing, so their extensions
follow Revealing’s tightly. Essentially, ∧-Traversal is inserted into these operations
to ensure these operations do not have to handle the complication of intersection types
directly.

Previously, I left a question behind: in Revealing, why is there not a rule for T1 7→ y.B?
I claim this case is not necessary, because if this choice was the right one, then it would
have been chosen by the premise U 7→ U0 in the Rv-Bnd rule already!

To understand this, let us consider an example with the following context,

U = {C : ⊥..{A : ⊥..∀(w : >)>}}
S = {B : ⊥..z.C ∧ >}
Γ = z : > ∧ U ; y : S;x : y.B

The goal is to apply Revealing to x.A in this context and obtain ∀(w : >)> as the result.
The high-level intention is to show that x has type {A : ⊥..∀(w : >)>} and therefore x.A
is a subtype of the upper bound of the type declaration. This is given by the following
derivation:

y.B 7→ y.B z : > ∧ U ; y : S `D∧S y.B V {A : ⊥..∀(w : >)>} a •

{A : ⊥..∀(w : >)>} 7→ {A : ⊥..∀(w : >)>}
∀(w : >)> 7→ ∀(w : >)> • `D∧S ∀(w : >)> V ∀(w : >)> a •

Γ `D∧S x.A V ∀(w : >)> a •
Rv-Bnd

113

In this derivation, all ∧-Traversal are trivially constructed by At-Found and the sec-
ond Revealing is also trivial. Therefore, the first Revealing is critical to this derivation.
The first Revealing of y.B is given by the following derivation:

S 7→ S z : > ∧ U `D∧S S V S a z : > ∧ U
S 7→ S z.C ∧ > 7→ z.C z : > ∧ U `D∧S z.C V {A : ⊥..∀(w : >)>} a •

z : > ∧ U ; y : S `D∧S y.B V {A : ⊥..∀(w : >)>} a •
Rv-Bnd

Since S = {B : ⊥..z.C ∧ >} is not an intersection, all premises before the shaded
premise z.C ∧> 7→ z.C are trivial. In this shaded premise, z.C is selected by ∧-Traversal
which is subsequently passed in the second recursive call of Revealing.

In this example, it is necessary to apply Revealing to z.C at some point to achieve the
high-level intention of showing x of type {A : ⊥..∀(w : >)>}, because this type declaration
is hidden inside of the type z binds to. Explicitly defining a rule in Revealing handling
the case of T1 7→ y.B is possible, but as shown in the example above, it simply does not add
power to the operation while increases the complexity of the formal proofs. This design of
Revealing will be justified by the strengthened inductive hypothesis of the completeness
of stare-at subtyping in strong kernel D∧, as will be shown later.

5.4 Stare-at Subtyping

Having defined Revealing, Upcast and Downcast, now I can extend stare-at sub-
typing. Compared to Revealing, stare-at subtyping itself is just changed a little in terms
of rules but its execution becomes far more complicated than it looks.

Definition 5.5. Stare-at subtyping is defined in Figure 5.4.

For a stare-at subtyping judgment Γ1 � S <: U � Γ2, all four places are the inputs,
and it outputs true if the inputs satisfy its definition.

The execution of these rules will be explained next.

The extension to stare-at subtyping in D<: is shaded. Since D∧ has data field members,
stare-at subtyping is augmented to handle them (SA-Fld). SA-Left1, SA-Left2 and
SA-Right correspond to And-E1, And-E2 and And-I, except there is one extra predi-
cate: T should not be an intersection in SA-Left1 or SA-Left2. This predicate is here
to ensure that the SA-Right rule always applies before SA-Left1 and SA-Left2. That

114

Γ1 � T <: > � Γ2

SA-Top
Γ1 � ⊥ <: T � Γ2

SA-Bot

Γ2 `D<:S x.A↘ T a Γ′2
Γ1 � S <: T � Γ′2

Γ1 � S <: x.A� Γ2

SA-Sel1

Γ1 `D<:S x.A↗ T a Γ′1
Γ′1 � T <: U � Γ2

Γ1 � x.A <: U � Γ2

SA-Sel2

Γ1 � x.A <: x.A� Γ2

SA-VRefl
Γ1 � S >: S ′ � Γ2 Γ1 � U <: U ′ � Γ2

Γ1 � {A : S..U} <: {A : S ′..U ′} � Γ2

SA-Bnd

Γ1 � T <: T ′ � Γ2

Γ1 � {a : T} <: {a : T ′} � Γ2

SA-Fld

Γ1 � S >: S ′ � Γ2 Γ1;x : S � U <: U ′ � Γ2;x : S ′

Γ1 � ∀(x : S)U <: ∀(x : S ′)U ′ � Γ2

SA-All

T is not an intersection
Γ1 � S <: T � Γ2

Γ1 � S ∧ U <: T � Γ2

SA-Left1

T is not an intersection
Γ1 � U <: T � Γ2

Γ1 � S ∧ U <: T � Γ2

SA-Left2

Γ1 � T <: S � Γ2 Γ1 � T <: U � Γ2

Γ1 � T <: S ∧ U � Γ2

SA-Right

Figure 5.4: Definition of stare-at subtyping

is, if Bob holds an intersection type, the algorithm should always apply SA-Right until
Bob holds a non-intersection type, before considering applying SA-Left1 or SA-Left2.

Let us consider a more complicated situation when Alice holds an intersection type and
Bob holds a path type.

Consider Figure 5.5. On the left, it shows a diagram that asserts subtyping between any
type T and the intersection of S and U . In the diagram, a solid line denotes a subtyping
judgment as a premise, and a dotted line denotes a subtyping judgment as a conclusion.

115

S U

S ∧ U

T

x.A

S U

S ∧ U

T

Figure 5.5: Subtyping of intersection types and path types

The diagram on the left denotes the And-I rule.

Γ `D∧ T <: S Γ `D∧ T <: U

Γ `D∧ T <: S ∧ U
And-I

The diagram on the right, then, denotes the following fact.

Γ `D∧ S ∧ U <: x.A Γ `D∧ T <: S Γ `D∧ T <: U

Γ `D∧ T <: x.A

From the conclusion, however, there is no indication that some other S and U might
be involved in the derivation! Moreover, there is not always a relation between S, U and
x.A. Consider a general situation in which applying Downcast to x.A yields S ∧U . This
proves Γ `D∧ S ∧ U <: x.A. Since S, U and x.A can be unrelated, the subtyping relation
Γ `D∧ T <: x.A cannot be alternatively established by SA-Left1, SA-Left2 or SA-
Right; it is necessary to apply SA-Sel1 so Downcast of x.A obtains S ∧ U , so that
SA-Right can be used to draw the conclusion. That is the following derivation:

Γ2 `D∧S x.A↘ S ∧ U a Γ′2

Γ1 � T <: S � Γ′2 Γ1 � T <: U � Γ′2

Γ1 � T <: S ∧ U � Γ′2
SA-Right

Γ1 � T <: x.A� Γ2

Therefore, for stare-at subtyping to decide strong kernel, the execution must handle
this case correctly.

As analyzed above, the execution of stare-at subtyping in D∧ is significantly more
complicated than D<: due to intersection types. To summarize, when executing stare-at
subtyping in D∧, the rules are tried in the following order:

116

1. If Bob holds an intersection type, then apply SA-Right until he no longer holds
one.

2. If Bob holds a path type, then try the following rules until the first success.

(a) SA-VRefl.

(b) SA-Sel1.

(c) SA-Sel2.

(d) SA-Left1 and SA-Left2.

3. If Bob holds a non-path and non-intersection type and Alice holds an intersection
type, then try SA-Left1 and SA-Left2 until the first success.

4. If all previous cases do not apply, then the rest of the rules apply accordingly. At this
point, Alice and Bob are guaranteed to not hold intersection types, so the problem
just regresses to the easier situation in D<:.

5. If a trial fails, then a correct implementation should backtrack to the latest branching
point. Notice that ∧-Traversal also creates branching points, so backtracking needs
to get into Revealing, Upcast and Downcast, so all possible branches introduced
by intersection types are exhausted. A subtyping problem is admitted if and only if
one trial (the first one) is successful, and if all trials fail, then the problem is rejected.

Although the algorithm requires an exhaustive search with backtracking, the search
space of each problem is still finite so the algorithm is guaranteed to terminate.

Definition 5.6. The measure M of types and contexts is defined by the following equations.

M(>) = 1

M(⊥) = 1

M(x.A) = 2

M(∀(x : S)U) = 1 +M(S) +M(U)

M({A : S..U}) = 1 +M(S) +M(U)

M({a : T}) = 1 +M(T)

M(S ∧ U) = 1 +M(S) +M(U)

M(Γ) =
∑
x:T∈Γ

M(T)

117

The measure M of D∧ just slightly extends the measure of D<: and it simply measures
the syntactical sizes of types and contexts.

The following lemma can be proved quite straightforwardly by induction.

Lemma 5.8. If S 7→ U , then M(S) ≥M(U).

If Γ `D<:S S V U a Γ′, then M(Γ) +M(S) ≥M(Γ′) +M(U).

If Γ `D<:S x.A↗ (↘)U a Γ′, then M(Γ) +M(x.A) > M(Γ′) +M(U).

Theorem 5.9. stare-at subtyping terminates as a non-deterministic algorithm.

Looking at the rules for stare-at subtyping, each recursive case in the rules has a strictly
smaller input. Though there can be a huge amount of backtracking, each problem only
looks at a finite number of subproblems and each subproblem has a strictly smaller input
size than the original input. Therefore stare-at subtyping has only a finite search space
and the problem is decidable.

Despite its visual similarity to D<:, stare-at subtyping has become subtly more com-
plicated. Problems in the DOT family are very often in a seemingly simple disguise but
in fact very difficult to tackle and get right. We must be very careful about informal
conclusions, which are the fastest way to fall into the traps of the family.

5.5 Properties of Stare-at Subtyping and Properties

After the termination argument, the next step is to examine various properties of stare-
at subtyping. The first one is reflexivity.

Theorem 5.10. Stare-at subtyping is reflexive.

Γ1 � T <: T � Γ2

This property can no longer be proved by induction on T . It requires the following
strengthened characterization of how well stare-at subtyping is capable of handling inter-
section types.

Theorem 5.11. Stare-at subtyping handles commutations and associations of intersection
types.

If forall T, U 7→ T implies S 7→ T,

then Γ1 � S <: U � Γ2.

118

This theorem says that if S and U are intersection types and all non-intersection types
in U can be found in S, then Γ1 � S <: U � Γ2 holds. This theorem says that stare-at
subtyping does not care how intersection types are concretely organized.

Proof of Theorem 5.10 and Theorem 5.11. Perform mutual induction on both input types
between these two theorems.

Similar to D<:, the following properties of the operations can be shown.

Lemma 5.12. (Revealing gives prefixes) If Γ `D∧S S V U a Γ′, then Γ′ is a prefix of Γ.

Lemma 5.13. (Revealing returns no path) If Γ `D∧S S V U a Γ′, then U is not a path.

Lemma 5.14. Revealing terminates as a non-deterministic algorithm.

Proof. Its non-determinism comes from ∧-Traversal. However, each subproblem decreases
by the length of the input context.

Lemma 5.15. (soundness of Revealing) If Γ `D∧S S V U a Γ′, then Γ `D∧ S <: U .

Lemma 5.16. The following hold.

1. If Γ `D∧S x.A↗ (↘)T a Γ′, then Γ′ is a prefix of Γ.

2. If Γ `D∧S x.A↗ T a Γ′, then Γ `D∧ x.A <: T .

3. If Γ `D∧S x.A↘ T a Γ′, then Γ `D∧ T <: x.A.

Then soundness can be concluded.

Theorem 5.17. (soundness of stare-at subtyping) If Γ1 � S <: U � Γ2, Γ ⊆<: Γ1 and
Γ ⊆<: Γ2, then Γ `D∧ S <: U .

Theorem 5.18. If Γ� S <: U � Γ, then Γ `D∧ S <: U .

119

5.6 Strong Kernel D∧ and Stare-at Subtyping

In this section, I will connect strong kernel D∧ and stare-at subtyping by showing the
algorithm actually decides strong kernel.

Compared to stare-at subtyping in D<:, stare-at subtyping in D∧ has one more layer:
∧-Traversal. Following the same method in D<:, the following lemma is to connect ∧-
Traversal with strong kernel D∧.

Lemma 5.19. If S 7→ T and Γ1 `D∧SK T <: U a Γ2, then Γ1 `D∧SK S <: U a Γ2.

Then this lemma can be used to connect Revealing with strong kernel:

Lemma 5.20. If Γ1 `D∧S S V T a Γ′1 and Γ1 `D∧SK T <: U a Γ2, then Γ1 `D∧SK S <:
U a Γ2.

By applying this lemma, soundness is ready to be established.

Theorem 5.21. (soundness of stare-at subtyping w.r.t. strong kernel D∧)

If Γ1 � S <: U � Γ2, then Γ1 `D∧SK S <: U a Γ2.

The same as in strong kernel D<:, completeness is harder to establish than soundness.
In the case of strong kernel D∧, it is even more difficult because the strengthened inductive
hypothesis needs to mention ∧-Traversal.

Theorem 5.22. (completeness of stare-at subtyping w.r.t. strong kernel D<:) If Γ1 `D∧SK
S <: U a Γ2, then Γ1 � S <: U � Γ2.

Proof. The proof requires the following strengthened inductive hypothesis: if Γ1 `D∧SK
S <: U a Γ2 and this derivation contains n steps, then Γ1 � S <: U � Γ2 and if U is of
the form {A : T1..T2}, then Γ1 `D∧S S V S

′ a Γ′1, and there are two types S0 and S1, such
that

1. S 7→ S0, and

2. Γ1 `D∧S S0 V S1 a Γ′1, and

3. (a) S1 7→ ⊥, or

(b) S1 7→ {A : T ′1..T
′
2} for some types T ′1 and T ′2, such that

120

i. Γ1 � T1 <: T ′1 � Γ2, and

ii. Γ1 `D∧SK T ′2 <: T2 a Γ2, and the number of steps in this derivation is less
than or equal to n.

In the Sk-And-E1 and Sk-And-E2 cases, there is a complication, because the SA-
Left1 and SA-Left2 rules require Bob to hold a non-intersection type, while this is not
guaranteed to hold in the antecedents. This can be resolved by a nested induction.

Other cases are straightforward adaptations of the ones in Theorem 4.43 so I omit the
discussion here.

The strengthened inductive hypothesis also provides a formal justification of the com-
pleteness of the Revealing operation. Recall that in Section 5.3, I informally explained
why there is not a case selecting T1 7→ y.B. In the strengthened inductive hypothesis,
there are only two returned types from Revealing to consider: ⊥ or a type declaration.
In particular, there is no case for path types. In addition, the strengthened inductive hy-
pothesis concludes that an ∧-Traversal always applies before Revealing, which is exactly
how Revealing is designed. These observations have led to the confidence in the design
of operations in stare-at subtyping.

121

Chapter 6

µDART

In the previous chapter, I studied the interaction between path dependent types and
intersection types. Recall that there are three core features in DOT , and the last one
is recursive types (or µ types). Recursive types are used to model objects as in object
oriented languages. Fields in the same object definition can refer to each other. Since D∧
is already quite complicated, it would be beneficial to take a step back and consider the
interaction between path dependent types and recursive types only, leaving intersection
types out, which motivates µ-Dependent And Record Types, or µDART .

In this chapter, I will focus on describing the interaction between path dependent types
and recursive types and explaining why they are difficult to deal with. I will show how
stare-at subtyping can continue to be adapted so that it handles recursive types. When
handling recursive types, the idea of separating subtyping contexts to Alice and Bob starts
to really thrive: it is hard to see how to achieve the same with only one single context.

In the previous chapters, the type assignment problem is considered straightforward,
because most of the difficulties lie in the subtyping problem. However, due to the intro-
duction of µ types, type assignment becomes more subtle and requires more attention.
Therefore, I will also describe a set of bi-directional type assignment rules just for vari-
ables. It turns out that µ types allow variables to have richer typing behaviors than any
other kinds of terms.

Unlike D<: and D∧ which have been shown undecidable and have kernel forms, I am not
able to prove µDART undecidable or derive its kernel forms. This is due to the difficulties
of unravelling typing and subtyping rules described in Section 3.11.2 and is left as a future
problem.

122

Γ Context

a, b, c Data mamber

A,B,C Type member

x, y, z Free variable

s, t, u ::= Term

x variable

v value

x.a data access

x y application

let x : T? = s in t let binding

v ::= Value

ν(x : DSx){dsx} definitions

λ(x : T).t function

ds ::= d∗ Definitions

d ::= Definition

{a = t} data definition

{A = T} type definition

DS ::= D∗ Declarations

D ::= Declaration

{a : T} data field

{A : S..T} type field

S, T, U ::= Type

> top

⊥ bottom

∀(x : S)T function

x.A type projection

DS record type

µ(x : DSx) object type

Figure 6.1: µDART syntax

6.1 Definition of µDART

µDART extends D<: with data field members and recursive types (or µ types), so that
the language is capable of expressing objects. Compared to DOT , µDART can express
the same set of values. The only difference is that the typing system in µDART cannot
express intersection types so it is not as expressive.

Definition 6.1. The abstract syntax of µDART is defined in Figure A.8. The subtyping
rules are defined in Figure 6.2 and the typing rules are defined in Figure 6.3.

The µDART calculus extends D<: in several ways. First, it adds an optional type
declaration in let bindings. Second, it extends objects to allow multiple members, both
data field and type members. There are countably infinitely many data field member and
type member labels in µDART , while D<: has only one which is A. Third, µDART makes
objects self-recursive: in an object ν(x : DSx){dsx}, the type DSx and the body dsx of

123

Subtyping

Γ `µDART T <: >
Top

Γ `µDART ⊥ <: T
Bot

Γ `µDART T <: T
Refl

Γ `µDART S2 <: S1 Γ `µDART U1 <: U2

Γ `µDART {A : S1..U1} <: {A : S2..U2}
Bnd

Γ `µDART T1 <: T2

Γ `µDART {a : T1} <: {a : T2}
Fld

Γ `µDART S2 <: S1

Γ;x : S2 `µDART U1 <: U2

Γ `µDART ∀(x : S1)U1 <: ∀(x : S2)U2

All

Γ `µDART S <: T
Γ `µDART T <: U

Γ `µDART S <: U
Trans

Γ `µDART x : {A : S..U}

Γ `µDART S <: x.A
Sel1

Γ `µDART x : {A : S..U}

Γ `µDART x.A <: U
Sel2

|DS1| 6= 0

Γ `µDART {DS1;DS2} <: DS2

Drop1
|DS2| 6= 0

Γ `µDART {DS1;DS2} <: DS1

Drop2

Γ `µDART {DS} <: {DS1} Γ `µDART {DS} <: {DS2}

Γ `µDART {DS} <: DS1;DS2

Merge

Figure 6.2: Subtyping rules of µDART

the object may depend on x, the object self-reference. Accordingly, µDART adds the
self-recursive object type µ(x : DSx).

µDART adds several rules to the subtyping rules to handle the added features. The
Fld rule handles data members. The Drop1, Drop2 and Merge rules express the
subtyping between record types. In the Drop1 and Drop2 rules, it is required that
|DS| 6= 0. This means the length of DS shall be positive. This is reasonable because these
rules should not be applied pointlessly. Similar to DOT , µ types do not participate in
subtyping.

µDART adds the Let2 rule to handle type-ascribed let binding. In the Obj-I rule,
notice that it is the µ type being inserted into the context, instead of a record type {DSx}
like DOT ’s Obj-I rule. That is, the DOT rule exposes the self reference and relies on the
free variable lookup in the context to discover the same x. Unfortunately, this approach
introduces a cycle into the typing environment ({DSx} refers to its binder x), and this

124

Type Assignment

Γ `µDART x : Γ(x)
Var

Γ `µDART t : S Γ `µDART S <: U

Γ `µDART t : U
Sub

Γ;x : S `µDART t : U

Γ `µDART λ(x : S)t : ∀(x : S)U
All-I

Γ `µDART x : ∀(z : S)Uz
Γ `µDART y : S

Γ `µDART x y : Uy
All-E

Γ;x : µ(z : DSz) `µDART dsx : DSx
dom(ds) is unique

Γ `µDART ν(z : DSz){dsz} : µ(z : DSz)
Obj-I

Γ `µDART x : {a : T}

Γ `µDART x.a : T
Obj-E

Γ `µDART x : {DSx}

Γ `µDART x : µ(z : DSz)
Rec-I

Γ `µDART x : µ(z : DSz)

Γ `µDART x : {DSx}
Rec-E

Γ `µDART t : S x /∈ fv(U)
Γ;x : S `µDART u : U

Γ `µDART let x = t in u : U
Let1

Γ `µDART t : S x /∈ fv(U)
Γ;x : S `µDART u : U

Γ `µDART let x : S = t in u : U
Let2

Object Definition Type Assignment

Γ `µDART t : T

Γ `µDART {a = t} : {A : T}
Def-Trm

Γ `µDART {A = T} : {A : T..T}
Def-Typ

Γ `µDART {} : {}
Def-Nil

Γ `µDART {d} : {D} Γ `µDART {ds} : {DS}

Γ `µDART {d; ds} : {D;DS}
Def-Cons

Figure 6.3: Typing rules of µDART

disagrees with the definition of well-formed contexts in Definition 2.4. In contrast, in
µDART , the context is extended with the recursive type x : µ(z : DSz), leaving the cycle
encapsulated inside the recursive µ type. This makes µ types indicators of cycles in the
context, while keeping the context itself syntactically cycle-free. Moreover, there is no
loss of expressiveness: Rec-E can be used to unpack the µ type to obtain a record type.
This treatment simplifies the static properties of the calculus without compromising any

125

expressiveness.

As discussed in Section 3.11.2, since I am not able to transform calculi with µ types to
normal form, the undecidability of µDART is technically unknown. However, looking at
the complexity of its definition, I conjecture that it is undecidable.

Conjecture 5. µDART typing and subtyping are undecidable.

This conjecture justifies the incomplete algorithmic rules to be presented in this chap-
ter.

6.2 Difficulties of µ Types

In this section, I will describe why µ types deserve a special look. From a high level, µ
types enable mutual references of path dependent types in their bounds. In the previous
treatments, Exposure/ Revealing simply follows the upper bounds to find a supertype
that is not a path. This method no longer works with the presence of µ types. Consider
the following subtyping problem.

Γ = y : µ(z : {A : ⊥..z.B;B : ⊥..z.A});x : y.A

Γ `µDART x.A <:? ⊥

If the same strategy is applied to this problem, then to find a non-path supertype of x.A,
it is necessary to find a non-path supertype of y.A first. But the following can be shown:

Γ `µDART y : µ(z : (A : ⊥..z.B;B : ⊥..z.A))
Var

Γ `µDART y : {A : ⊥..y.B;B : ⊥..y.A}
Rec-E

So a naive design of Exposure or Revealing will have the following search sequence.

y.A→ y.B → y.A→ y.B → y.A→ y.B → ...

Clearly the algorithm no longer terminates. What is worse, cycles do not have to be
this explicit. It is not difficult to engineer cycles that loop in the subtyping algorithm
instead of within Revealing.

x : µ(x : {A : ⊥..x.B;B : ⊥..∀(z : ⊥)x.A})
; y : µ(y : {A : y.B..>;B : ∀(z : ⊥)y.A..>})

`µDART x.A <:? y.A

126

Though x.A can Upcast to ∀(z : ⊥)x.A and y.A can Downcast to ∀(z : ⊥)y.A, now
the subtyping algorithm starts to loop.

x.A <:? y.A

⇒ ∀(z : ⊥)x.A <:? ∀(z : ⊥)y.A

⇒ x.A <:? y.A ⇒ ...

With µ types, currently both Revealing and stare-at subtyping will loop for some
inputs. The approach I take here is to understand why these two components loop during
the design of the algorithm.

6.3 Stare-at Subtyping for µDART

From the previous examples, the observation is that the ultimate cause of looping is
the interactions between path types and µ types. On the other hand, stare-at subtyping
does not handle path types directly. Looking at the definition of stare-at subtyping of
D<:, defined in Figure 4.8, the rules simply get down to substructures and attempt to
decide subtyping relation for subproblems and problems on path types are passed over
to Revealing. So let us leave the looping problem alone for a moment, and first set up
stare-at subtyping in µDART .

Definition 6.2. Stare-at subtyping is defined in Figure 6.4.

For a stare-at subtyping judgment Γ1 � S <: U � Γ2, all four places are the inputs,
and it outputs true if inputs satisfy its definition.

The rules are extended with the SA-Mu and SA-Rcd rules compared to D<:. SA-Mu
only admits subtyping between identical µ types. This is the case because the calculus
itself does not define subtyping between µ types beyond reflexivity. One might expect at
least to be able to permute the declarations in µ types. Indeed, it is desirable, but the
definition of the calculus does not permit it. I will show how to modify the calculus to
achieve more in Chapter 7.

SA-Rcd checks the subtyping relation between two record types. It simply delegates
the check to another set of subtyping rules, Γ1 � {DS1} <:D {DS2} � Γ2. This set of
subtyping rules loops over the record type held by Bob and for each declaration on Bob’s
side, it is required to have a matching declaration on Alice’s side and satisfy the subtyping

127

Γ1 � T <: > � Γ2

SA-Top
Γ1 � ⊥ <: T � Γ2

SA-Bot

Γ2 `µDARTS x.A↘ T a Γ′2
Γ1 � S <: T � Γ′2

Γ1 � S <: x.A� Γ2

SA-Sel1

Γ1 `µDARTS x.A↗ T a Γ′1
Γ′1 � T <: U � Γ2

Γ1 � x.A <: U � Γ2

SA-Sel2

Γ1 � x.A <: x.A� Γ2

SA-VRefl

Γ1 � S >: S ′ � Γ2

Γ1;x : S � U <: U ′ � Γ2;x : S ′

Γ1 � ∀(x : S)U <: ∀(x : S ′)U ′ � Γ2

SA-All

Γ1 � µ(x : DSx) <: µ(x : DSx)� Γ2

SA-Mu

Γ1 � {DS1} <:D {DS2} � Γ2

Γ1 � {DS1} <: {DS2} � Γ2

SA-Rcd

Declarations subtyping

{A : S..U} ∈ {DS1}
Γ1 � S >: S ′ � Γ2 Γ1 � U <: U ′ � Γ2 Γ1 � {DS1} <:D {DS2} � Γ2

Γ1 � {DS1} <:D {A : S ′..U ′;DS2} � Γ2

SAR-Bnd

{a : T} ∈ {DS1} Γ1 � T <: T ′ � Γ2 Γ1 � {DS1} <:D {DS2} � Γ2

Γ1 � {DS1} <:D {a : T ′;DS2} � Γ2

SAR-Fld

Γ1 � {DS} <:D {} � Γ2

SAR-Nil

Figure 6.4: Definition of stare-at subtyping

relation correctly (SAR-Bnd and SAR-Fld). The base case is when Bob holds an empty
record (SAR-Nil), which is a supertype of all record types.

We can show reflexivity holds without any further consideration.

Lemma 6.1. Stare-at subtyping is reflexive.

Γ1 � T <: T � Γ2

128

Surely the rules would still loop for the reasons explained in the previous section, but
having defined the rules allows to pinpoint the actual reasons for looping. Since only the
SA-Sel1 and SA-Sel2 rules involve path types, they are the rules to blame. In both rules,
Upcast and Downcast are used, which are just wrappers of Revealing. Revealing is
responsible for searching non-path supertypes of path types and is regarded as the core
operation. For this reason, it becomes clear that this operation needs to be well engineered
so that the two kinds of loops in the examples can be eliminated.

6.4 Revealing Reconsidered

Since Revealing is the core operation of path type handling, it is beneficial to recon-
sider how this operation should be structured.

The first idea is to augment the operation to handle µ types. One candidate is the
following rule, mimicking Rv-Bnd.

Γ1 `µDARTS T V µ(z : DSz) a Γ′1 {A : S..Uz} ∈ DSz Γ′1 `µDARTS Ux V U ′ a Γ′′1

Γ1;x : T ; Γ2 `µDARTS x.A V U
′ a Γ′′1

When a µ type is encountered, the type member label A is looked up in the type
declarations in the µ type, and Revealing is applied to the upper bound with self reference
z substituted with the variable x in the path type. However, this rule is problematic. It
is Ux that is passed into the second recursive call and Ux may refer to x, whereas x is
guaranteed to not exist in Γ′1!

Imagine Uz = z.B, then Ux = x.B. In the second Revealing, x.B needs to be resolved,
but since x is no longer in the context, the only type that can be returned and surely correct
is >, which makes this operation too weak. This just means the input context of the second
recursive call must know something about x. This motivates two other candidates.

Γ1 `µDARTS T V µ(z : DSz) a Γ′1 {A : S..Uz} ∈ DSz Γ′1; x : T `µDARTS Ux V U ′ a Γ′′1

Γ1;x : T ; Γ2 `µDARTS x.A V U
′ a Γ′′1

Γ1 `µDARTS T V µ(z : DSz) a Γ′1
{A : S..Uz} ∈ DSz Γ′1; x : µ(z : DSz) `µDARTS Ux V U ′ a Γ′′1

Γ1;x : T ; Γ2 `µDARTS x.A V U
′ a Γ′′1

129

These two candidates only differ in the second recursive Revealing. In the first can-
didate, x : T , namely the original binding, is added back to Γ′1, the returned context from
the first recursive call, while in the second candidate, x : µ(z : DSz), namely the resolved
object type, is added to Γ′1. A bit of thinking leads to the conclusion that the second
candidate is better. This is because Revealing removes bindings from contexts; so what
if T refers to another variable which has been removed in Γ′1? From the rule, there is no
obvious guarantee to prevent this. On the other hand, in the second candidate, it is quite
expected that µ(z : DSz) remains closed in Γ′1. Therefore at least the second candidate
operates on a well-formed input context.

Despite getting closer, the second candidate fails to handle all looping situations. Con-
sider the situation in which T is already µ(z : DSz). Then the first recursive Revealing
does not change the type. Let us further assume Γ2 = • and Uz = z.B. Then the rule is
reduced to

{A : S..z.B} ∈ DSz Γ1;x : µ(z : DSz) `µDARTS x.B V U
′ a Γ′1

Γ1;x : µ(z : DSz) `µDARTS x.A V U
′ a Γ′1

The overall inputs are Γ1;x : µ(z : DSz) and x.A. The input context of the recursive
call remains the same and the input type is changed slightly to x.B. It is not obvious at
all why x.B is smaller than x.A by any measure! In fact, if x.A and x.B are upper bounds
of each other, then this rule will not terminate. Even if in some situation x.A and x.B can
be distinguished by some measure, this measure is likely to perform non-trivial analysis,
which turns the termination argument semantic again.

Looking from afar, when a µ type is encountered, there are two kinds of path types: a
path type that points back to the same µ type, or a path type referring to a variable on
its left in the context. Without µ types, the situation is always the second case. That is
why in D<:, returning a prefix context in Revealing is sufficient. To tackle the first case,
a special treatment is motivated, and this results in another operation, Exposureµ.

6.5 µ Types as Cyclic Contexts

Consider the form of a µ type, e.g.

µ(x : {A : ⊥..x.B;B : ⊥..x.A})

A µ type looks like a context: the type member labels are just like variables and each
binds to two types: the lower bound and the upper bound (while field member labels are

130

A /∈ dom(DSx)

DSx `µDARTS x.A ⇑µ > a DSx
Em-Top*

{A : S..y.B} ∈ DSx x 6= y

DSx `µDARTS x.A ⇑µ y.B a DSx\A
Em-Sel

{A : S..T} ∈ DSx T is not a path

DSx `µDARTS x.A ⇑µ T a DSx\A
Em-Stop

{A : S..x.B} ∈ DSx DSx\A `µDARTS x.B ⇑µ T a DS ′x
DSx `µDARTS x.A ⇑µ T a DS ′x

Em-Recur

Figure 6.5: Definition of Exposureµ

ignored here because they are not involved in path type handling). This “context” differs
from the regular typing context in its cyclic nature: the bounds can refer to other type
member labels defined in the same object. Therefore, resolving a path type in an object is
the same as handling a cyclic context. A second difference is that this cyclic context comes
with a variable as the self reference, used to tell whether a path type is pointing back to
the same µ type. Thus an operation, Exposureµ, is defined to handle this problem by
considering µ types as cyclic context-like components in the typing contexts. The ` symbol
is used to emphasize the contextual nature of µ types, and the self reference variable is
identified as a subscript.

Definition 6.3. Exposureµ is defined in Figure 6.5.

For a Exposureµ judgment DSx `µDARTS x.A ⇑µ T a DS ′x, declarations DSx, variable
x and type member label A are inputs and type T and declaations DS ′x are outputs.

Recall that the operation Exposure is defined in step subtyping and is used to find a
supertype of a path type that is not a path type. Exposureµ follows the same essence: it
is used to find a supertype of a path type within a µ type which is either not a path type,
or a path type but not pointing back to the same µ type (hence the variable must not be
the self reference of the µ type).

In the definition, I make use of set theoretic notation \ to mean removing the type dec-
laration associated with the label from the declarations. For example, DS\A is guaranteed
to not have label A anymore and all other labels remain.

To see how this operation works, let us look at the rules one by one.

131

1. (Em-Top) If the label is not found in the µ type, then > is the only safe result to
return and the declarations remain untouched.

2. (Em-Sel) If the label is found and the upper bound is a path type, but its variable
is different from the self reference, then the intention is achieved and the returned
declarations are the same as the input except A is removed.

3. (Em-Stop) If the label is found and the upper bound is not a path, then it is also
done.

4. (Em-Recur) If the label is found and the upper bound points back to the same µ
type, then recursion needs to happen within the µ type. What if x.B refers back to
x.A? This is resolved by first removing A from DS as indicated by the input of the
recursive call: DSx\A. If x.B indeed has x.A as upper bound, then this recursive
call will fall to Em-Top and the whole algorithm will terminate.

As seen in the Em-Recur rule, the algorithm relies on removing type labels to ensure
termination. This is illustrated by the following example. If x.A and x.B are the upper
bounds of each other, it is the same as if they do not have upper bound. More concretely,
consider the µ type in the beginning of this section:

µ(x : {A : ⊥..x.B;B : ⊥..x.A})

A and B have full freedom to be instantiated to anything and therefore there is virtually
no upper bound on them.

The following properties characterize the Exposureµ operation.

Lemma 6.2. (soundness) If Γ `µDART x : {DSx} and DSx `µDARTS x.A ⇑µ T a DS ′x,
then Γ `µDART x.A <: T .

Lemma 6.3. Exposureµ returns either a non-path type or a path type that does not refer
to the self reference of the µ type.

Lemma 6.4. Returned declarations {DS ′x} are a subset of the input declarations {DSx}.
To use set theoretic notation, {DS ′x} ⊆ {DSx}.

Lemma 6.5. Exposureµ terminates as an algorithm.

Proof. The measure is the length of input declarations.

132

This operation resolves the first problem posed in Section 6.2: since Exposureµ is a
terminating algorithm to handle path search, Revealing shall also terminate now. How-
ever, it still seems unclear how to ensure the termination of stare-at subtyping. The trick
lies in the second return value of Exposureµ, namely the new declarations.

From the rules, we can see that for each type label the operation touches, it will be
removed from the returned declarations. For example, in the Em-Sel and Em-Stop rules,
DSx\A is returned. In the Em-Recur rule, DSx\A is the input of the recursive call, and
therefore it can be inferred that DS ′x cannot have labels A and B. The removal is the
secret to make the whole subtyping algorithm terminate.

6.6 Types Are Resources!

Recall that in Section 6.2, I described two reasons why stare-at subtyping loops. The
first one loops within Revealing, which has been resolved by Exposureµ, as described
in the previous section. The second loops in the stare-at subtyping itself, due to µ types.
One more idea is needed to ensure termination of the algorithm.

Consider why a problem is undecidable. Generally speaking, there must be a part of the
problem the scale of which extends to infinity. In the context of programming languages,
due to the Curry-Howard correspondence, µDART corresponds to some structural logic
and one source of non-termination are the structural properties, especially contraction.
From a logical point of view, contraction is the property to allow a variable to be referred
to infinitely many times, and µ types directly enable that in subtyping. This leads to
the loop in the examples. On the other hand, a decidable problem must have some finite
structure. One observation is that resources must be finite, and therefore if the execution
of an algorithm consumes resources, it must terminate.

Sometimes, one might use a natural number to constrain the depth of recursion to
ensure termination. This can be considered as each recursion consuming 1 from the nat-
ural number and is a general solution to the problem, but it lacks elegance to build this
treatment into the theory. In reality, this might cause unexpected problems: for exam-
ple, wrapping the same definition in an object suddenly might cause type checking to fail.
Moreover, it misleadingly suggests that all problems can be decided by simply increasing
the depth, while this is theoretically not true.

Reviewing the definition of Exposureµ in Figure 6.5 again, Exposureµ removes a
type label A whenever it is accessed. To state the same behavior in a different way, the
operation charges or consumes the amount of the declaration associated with A if it is

133

accessed. This leads to the observation that the syntax of types is resources! If the idea is
extended to the whole stare-at subtyping, then the algorithm ought to terminate.

6.7 Revealing in µDART

To regard syntax of types as resources, it requires a consistent maintenance and the
same source must not be consumed twice. Based on this observation, Revealing for
µDART can be defined.

Definition 6.4. Revealing, Upcast and Downcast is defined in Figure 6.6.

Similar to D<:,

1. A Revealing judgment Γ `µDARTS S V U a Γ′ has Γ and a type S as inputs and Γ′

and a type U as outputs.

2. An Upcast judgment Γ `µDARTS x.A ↗ U a Γ′ has Γ, a variable x and a type
member label A as inputs and Γ′ and a type U as outputs.

3. Downcast judgment Γ `µDARTS x.A↘ U a Γ′ works similarly as Upcast.

Let me discuss the rules one by one.

1. Rv-Stop, Rv-Top and Rv-Bot are standard.

2. Rv-Bnd naturally adapts the similar situation in D<:. It requires a lookup in {DS}
because now there are more type labels and the lookup is to make sure A is in {DS}.
If A is not found, it falls back to Rv-Top. Recall that the asterisk next to the name
denotes that it is a fallback rule.

3. Rv-Mu1 and Rv-Mu2 are more sophisticated. These rules are here to handle µ
types. In these two rules, T is first revealed to a µ type µ(z : DSz) and it is ensured
that A is in the µ type. Then Exposureµ is used to traverse within the µ type.
Then two rules start to branch depending on what Exposureµ returns. Let us look
deeper into both rules.

134

Revealing

T is not a path

Γ `µDARTS T V T a Γ
Rv-Stop

Γ `µDARTS T V > a •
Rv-Top*

Γ1 `µDARTS T V ⊥ a Γ′1

Γ1;x : T ; Γ2 `µDARTS x.A V ⊥ a •
Rv-Bot

Γ1 `µDARTS T V {DS} a Γ′1 {A : S..U} ∈ {DS} Γ′1 `µDARTS U V U
′ a Γ′′1

Γ1;x : T ; Γ2 `µDARTS x.A V U
′ a Γ′′1

Rv-Bnd

Γ1 `µDARTS T V µ(z : DSz) a Γ′1 A ∈ dom(DSz)
DSx `µDARTS x.A ⇑µ U a DS ′x U is not a path

Γ1;x : T ; Γ2 `µDARTS x.A V U a Γ′1;x : µ(z : DS ′z)
Rv-Mu1

Γ1 `µDARTS T V µ(z : DSz) a Γ′1 A ∈ dom(DSz)
DSx `µDARTS x.A ⇑µ y.B a DS ′x Γ′1 `µDARTS y.B V U a Γ′′1

Γ1;x : T ; Γ2 `µDARTS x.A V U a Γ′′1
Rv-Mu2

Upcast/ Downcast

Γ `D<:S x.A↗ > a •
U-Top*

Γ `D<:S x.A↘ ⊥ a •
D-bot*

Γ1 `µDARTS T V ⊥ a Γ′1

Γ1;x : T ; Γ2 `D<:S x.A↗ ⊥ a •
U-Bot

Γ1 `µDARTS T V ⊥ a Γ′1

Γ1;x : T ; Γ2 `D<:S x.A↘ > a •
D-Top

Γ1 `µDARTS T V {DS} a Γ′1
{A : S..U} ∈ DS

Γ1;x : T ; Γ2 `D<:S x.A↗ U a Γ′1
U-Bnd

Γ1 `µDARTS T V {DS} a Γ′1
{A : S..U} ∈ DS

Γ1;x : T ; Γ2 `D<:S x.A↘ S a Γ′1
D-Bnd

Γ1 `µDARTS T V µ(z : DSz) a Γ′1 {A : S..U} ∈ DSx
Γ1;x : T ; Γ2 `D<:S x.A↗ U a Γ′1;x : µ(z : DSz\A)

U-Mu

Γ1 `µDARTS T V µ(z : DSz) a Γ′1 {A : S..U} ∈ DSx
Γ1;x : T ; Γ2 `D<:S x.A↘ S a Γ′1;x : µ(z : DSz\A)

D-Mu

Figure 6.6: Definition of Revealing, Upcast and Downcast

135

Rv-Mu1 returns a context in which the binding x : T is replaced by x : µ(z : DS ′z) and
Γ2 is dropped. This is fine because U is in DSx and nothing from Γ2 will be mentioned
by DSx because the context is well-formed. Since U is not a path already, it is safe to
return it as result. However, it might mention x, so the returned context must bind x
consistently. Rebinding x to µ(z : DS ′z) allows other unused paths to remain interpretable,
while µ(z : DS ′z) is closed in Γ′1. This is because µ(z : DSz) is closed in Γ′1 (a lemma to be
proved) and {DS ′z} ⊆ {DSz}.

Rv-Mu2 recurs a second time because Exposureµ still gives a path type. It returns the
context that is returned by the second recursive call. Note that x is entirely forgotten in
the result because Exposureµ guarantees x 6= y, and therefore there is no reason to even
remember x. In this case, the µ type behaves similarly to a record type in Rv-Bnd rule.

The Upcast and Downcast operations, again, remain moderate wrappers of Reveal-
ing. The added rules to handle µ types just return the right bounds and remove the
declaration from the µ types, which follows Revealing in the same essential way.

From a high level point of view, these operations avoid resolving the same path type
twice. This property is automatically true if a record type is encountered, because a well-
formed context naturally prevents a record type from referring back to itself (or any other
variables come after it); so only the case for µ types needs explicit maintenance. Now
reconsider the second looping case and the example introduced in Section 6.2.

x : µ(x : {A : ⊥..x.B;B : ⊥..∀(z : ⊥)x.A})
; y : µ(y : {A : y.B..>;B : ∀(z : ⊥)y.A..>})

`µDART x.A <:? y.A

Once x.A and y.A are touched, they are removed from the context, and therefore
the loop is broken. This is sufficient to make stare-at subtyping terminate with µ types.
Consider SA-Sel2 again (the situation of SA-Sel1 follows by duality).

Γ1 `µDARTS x.A↗ T a Γ′1 Γ1 � T <: U � Γ2

Γ1 � x.A <: U � Γ2

SA-Sel2

If x : T ′ and T ′ is revealed to a µ type, then x.A is guaranteed to be removed in Γ′1
already, and even if T refers to x.A in the future again, it will not be found anymore and
just behave the same as > due to U-Top.

136

S U

w

T

z

z.C
y

y.B

x x.A

Figure 6.7: The original context of the example for Revealing

6.8 An Example of Revealing

The Revealing operation has become rather complicated and may be hard to under-
stand. In this section, I will give an example of execution to show the Revealing operation
in action. Figure 6.7 gives a typing context in which Alice applies Revealing to x.A. S is
a well-formed type in the context and is not a path type. T is an abbreviation for following
type:

T = {C : ⊥..µ(s : {B : ⊥..s.D;D : ⊥..{A : ⊥..w.E};F : ⊥..S})}

and U is an abbreviation for following type:

U = {E : ⊥..S}

Invoking Revealing in this context with x.A will produce following steps.

1. Case for z.C:

z.C V µ(s : {B : ⊥..s.D;D : ⊥..{A : ⊥..w.E};F : ⊥..S}) a S U

w

2. Case for y.B:

y.B V {A : ⊥..w.E} a S U

w

µ(s : {F : ⊥..S})
y

3. Case for x.A yields w.E, but then Alice needs to search w.E in the context returned

in Item 2:

w.E V S a S

To resolve x.A, y.B and then z.C need to be resolved. Since z binds to a record type,
the Rv-Bnd rule is used in the first step and it drops the part of the context starting at
z. Note that the returned type is still closed in the smaller context. The second step uses
the Rv-Mu1 rule, in which Exposureµ is used to traverse the µ type returned in the first

137

step. Type labels B and D are removed from the µ type because they are visited. Notice
that the type of y has been replaced by the reduced µ type in the returned context. Since
y.B reveals to a record type, the previous call is the first recursive call in the Rv-Bnd
rule. The third step is the second recursive call to resolve w.E, which further makes the
context smaller. S is the final result of revealing x.A. We can see that indeed x.A <: S is
witnessed in the original context.

Revealing is not always able to reduce the number of bindings in the context when it
encounters a path type. In the worst case, the number of bindings in the context remains
the same. However, even in this case, Revealing is still able to consume some type
members from a µ type in the context to make sure the overall syntactic size of types is
smaller. This observation allows a very straightforward termination argument.

6.9 Properties of Operations and Stare-at Subtyping

Now the algorithm has been fully designed, so I will start formally investigating the
properties of the operations and stare-at subtyping. In a Revealing judgment Γ `D<:S

S V U a Γ′ in D<:, I have shown that Γ′ is a prefix of Γ. Due to the introduction of µ
types, this is no longer true due to the Rv-Mu1 rule. Their relation can be captured by
the following notions.

Let us look at the µ types and the declarative rules defined in Figure 6.3 more closely.
Though µ types are not directly connected by the subtyping relation due to lack of sub-
typing rules, some can still be converted from one to another via the Rec-I and Rec-E
rules if bound to a variable. This complication is captured by the notion of convertibility.

Definition 6.5. The Convertibility relation, Γ `µDART x : S U , is defined in Figure 6.8.

The intuition is that if S is convertible to U and Γ ` x : S, then Γ ` x : U . Convertibility
is a necessary notion because µ types do not participate in the subtyping relation, while µ
types are not entirely disconnected.

The following lemmas can be shown by induction.

Lemma 6.6. If Γ `µDART x : T and Γ `µDART x : T U , then Γ `µDART x : U .

Lemma 6.7. If {DS} ⊆ {DS ′}, then Γ `µDART x : µ(z : DS ′z) µ(z : DSz).

Recall that Exposureµ removes labels from µ types whenever they are touched. Due
to lack of subtyping relation between µ types, the µ types before and after can only be
related by the convertibility relation.

138

Γ `µDART S <: U

Γ `µDART x : S U
Cv-Sub

Γ `µDART {DSx} <: {DS ′x}

Γ `µDART x : µ(z : DSz) µ(z : DS ′z)
Cv-Mu

Γ `µDART x : S T Γ `µDART x : T U

Γ `µDART x : S U
Cv-Trans

Figure 6.8: Two types are convertible w.r.t. a variable

• ⊆ •
Opec-Nil

Γ ⊆ Γ′

Γ;x : T ⊆ Γ′
Opec-Drop

Γ ⊆ Γ′ Γ `µDART x : S U

Γ;x : S ⊆ Γ′;x : U
Opec-Keep

Figure 6.9: The definition of order preserving convertible environment

Convertibility relates two types. In D<:, a relation OPE<: is defined between two
contexts. A similar notion is needed in µDART to reflect the differences between subtyping
and convertibility.

Definition 6.6. The order preserving convertible environment, OPE , is defined in Fig-
ure 6.9.

Generally speaking, if Γ ⊆ Γ′, then Γ is more informative than Γ′. In the Opec-Keep
rule, the second premise requires the two types pushed into the contexts to be convertible.
This is more permissive than the similar rule Ope-Keep in OPE<:. Note that Γ′ does not
have to witness the convertibility relation.

Once the definitions are set up, properties can be proven.

Theorem 6.8. (OPE is respectful) OPE respects the declarative typing/subtyping
rules.

If Γ ⊆ Γ′ and Γ′ `µDART t : T, then Γ `µDART t : T.

If Γ ⊆ Γ′ and Γ′ `µDART S <: U, then Γ `µDART S <: U.

139

This theorem says that typing and subtyping are preserved as long as the information
in the context is more precise.

Lemma 6.9. If Γ′ `µDART x : S U and Γ ⊆ Γ′, then Γ `µDART x : S U .

This lemma shows the interaction between convertibility and OPE , which is also quite
intuitive.

Lemma 6.10. (OPE is preorder) OPE is reflexive and transitive.

1. Γ ⊆ Γ

2. If Γ ⊆ Γ′ and Γ′ ⊆ Γ′′, then Γ ⊆ Γ′′.

Since convertibility is general enough to express the connection between the input and
output µ types of Exposureµ, OPE is general enough to express the connection between
the input and output contexts of Revealing, Upcast and Downcast.

Theorem 6.11. If Γ `µDARTS S V U a Γ′, then Γ ⊆ Γ′.

Theorem 6.12. (soundness) If Γ `µDARTS S V U a Γ′, then Γ `µDART S <: U .

Proof. The previous two theorems need to be proved by mutual induction.

The following theorem needs to mention the well-formedness condition because it proves
that the treatment in Revealing does not break this basic assumption.

Theorem 6.13. (preservation of well-formedness) If Γ `µDARTS S V U a Γ′, Γ is well-
formed and S is closed in Γ, then Γ′ is also well-formed and U is closed in Γ′.

Finally, Revealing returns a non-path type indeed.

Lemma 6.14. Revealing returns a non-path type.

Lemma 6.15. Revealing terminates as an algorithm.

Proof. The measure is the length of the input context.

140

Amazingly, the statements of properties of Revealing in µDART do not deviate too
much from D<:. This shows that stare-at subtyping is a very robust framework for sub-
typing decisions.

Similar lemmas can be proved for Upcast and Downcast. The situation in these two
operations is simpler than Revealing and therefore the discussion is omitted.

Lemma 6.16. The following hold.

1. If Γ `µDARTS x.A↗ (↘)T a Γ′, then Γ ⊆ Γ′.

2. If Γ `µDARTS x.A↗ T a Γ′, then Γ `µDART x.A <: T .

3. If Γ `µDARTS x.A↘ T a Γ′, then Γ `µDART T <: x.A.

4. If Γ `µDARTS x.A↗ (↘)T a Γ′, Γ is well-formed and x ∈ dom(Γ), then T is closed
in Γ′.

The statement of the soundness theorem of stare-at subtyping needs to be adjusted to
reflect OPE .

Theorem 6.17. (soundness of stare-at subtyping) If Γ1 � S <: U � Γ2, Γ ⊆ Γ1 and
Γ ⊆ Γ2, then Γ `µDART S <: U .

Then similarly, if Alice and Bob start with the same context, stare-at subtyping can be
used as a subtyping decision procedure.

Theorem 6.18. If Γ� S <: U � Γ, then Γ `µDART S <: U .

At this point, soundness of stare-at subtyping is wrapped up. The next step is the
termination proof. As hinted previously, the termination proof relies on the fact that no
path type can be referred to more than once (or it will be the same as >).

Definition 6.7. The measures M of types, declarations and contexts are defined by the
following equations.

141

M(>) = 1

M(⊥) = 1

M(x.A) = 2

M(∀(x : S)U) = 1 +M(S) +M(U)

M({DS}) = 1 +M(DS)

M(µ(z : DS)) = 2 +M(DS)

M(DS) =
∑
D∈DS

M(D)

M({A : S..U}) = 1 +M(S) +M(U)

M({a : T}) = 1 +M(T)

M(Γ) =
∑
x:T∈Γ

M(T)

Termination of the SA-Sel1 and SA-Sel2 cases requires the following lemmas.

Lemma 6.19. If DSx `µDARTS x.A ⇑µ T a DS ′x and A ∈ dom(DSx),

then M(DS ′x) +M(T) < M(DSx).

Lemma 6.20. If Γ `µDARTS S V U a Γ′, then M(Γ) +M(S) ≥M(Γ′) +M(U).

If Γ `µDARTS x.A↗ (↘)U a Γ′, then M(Γ) +M(x.A) > M(Γ′) +M(U).

This is enough to show the SA-Sel1 and SA-Sel2 recur on a strictly smaller problem.

Theorem 6.21. Stare-at subtyping terminates as an algorithm.

Proof. The complexity of this proof is no more than the one in D<:.

At this point, the algorithmic subtyping of a fragment of µDART is handled.

6.10 How Large Is the Decidable Fragment?

Before discussing the bi-directional type assignment algorithm for variables, let me first
discuss stare-at subtyping at a high level.

According to the previous discussion, the termination of stare-at subtyping is a direct
consequence of the view of taking types as resources. Each visit of a path type consumes
some types and a consistent global maintenance of this behavior leads to the final termi-
nation proof. Then the following two questions arise regarding the algorithm:

1. Is there a declarative form which is decided by the algorithm?

2. How much can this removal behavior reduce the decidable fragment?

I will attempt to give partial answers to both questions.

142

6.10.1 What is the language?

The first question asks if there can be a concise declarative definition of a language
for which the algorithm is sound and complete. The goal is to mimic D<: in which kernel
and strong kernel can be defined and their corresponding algorithms can be shown sound
and complete. For µDART , how to achieve the same is far less clear, but this is not a
fatal shortcoming either. In an actual implementation of the language, there are more
optimizations that are not captured by the algorithmic rules (for various reasons, like per-
formance or some desired but not admitted special cases). In an implementation, it is often
not a part of the concern of compiler writers what declarative form the implementation
represents. The algorithmic subtyping has defined a clear line of the design to follow and
can be shown sound and terminating. These properties have given important guidance to
compiler writers.

6.10.2 How does removal impact the decidable fragment?

This question is more important. It questions how usable the algorithm is. In the
extreme case, for example, an algorithm can just reject every subtyping problem. This
is no doubt a sound and terminating algorithm, but just not very useful! Surely stare-
at subtyping does not fall into this category but it is still useful to at least informally
understand what stare-at subtyping can do. I will take a two steps to analyze the algorithm.

The first step is to compare it with the stare-at subtyping in D<:, defined in Figure 4.8.
Reviewing the rules, it is quite clear that stare-at subtyping in D<: is just a special case of
µDART . This can be seen by matching rules one by one, and from the fact that stare-at
subtyping in µDART syntactically extends stare-at subtyping in D<:. This means stare-
at subtyping in µDART admits everything that stare-at subtyping in D<: admits. If an
interesting program can be written in D<: and all subtyping problems are admitted by
stare-at subtyping in D<:, then there is no need to worry about its equivalence in µDART .

The second step is to understand in what situation the removal of a path type fails an
admissible subtyping relation. Browsing through the rules again, defined in Figure 6.4, it
is obvious that only the recursive calls in SA-Sel1 and SA-Sel2 rules can witness such
impact. In any other rules, for example, in the SA-All rule, the same Γ1 and Γ2 are
passed into two recursive calls.

Γ1 � S >: S ′ � Γ2 Γ1;x : S � U <: U ′ � Γ2;x : S ′

Γ1 � ∀(x : S)U <: ∀(x : S ′)U ′ � Γ2

SA-All

143

If a path type is removed in the first recursive call, the second recursive call receives no
impact.

To enter SA-Sel1 and SA-Sel2 and witness the impact, the only way is to input a
path type, x.A, and have it Upcast or Downcast to other types that eventually use x.A.
Without loss of generality, let us focus on SA-Sel2 and Upcast. F-bounded quantification
is one of these situations. If x.A is F-bounded quantified, then its upper bound refers back
to x.A. Consider a stare-at subtyping problem Γ1 � x.A <: U � Γ2. If x : µ(z : {A :
⊥..F (z.A)}) in Γ1 where F (z.A) is a type expression that uses z.A (and Rec-E will make
it use x.A), then Γ1 `µDARTS x.A ↗ F (x.A) a Γ′1. If U = F (x.A), then by reflexivity,
stare-at subtyping admits this relation, namely Γ1 � x.A <: F (x.A) � Γ2 is provable by
stare-at subtyping. Therefore, F-bounded comparison is admissible in stare-at subtyping.

However, in Γ1 � x.A <: F (F (x.A)) � Γ2, it requires showing Γ′1 � F (x.A) <:
F (F (x.A))� Γ2 and therefore comparing x.A and F (x.A) after x.A is removed, which is
not admitted by the algorithm anymore.

Generally speaking, if a subtyping problem requires resolution of the same path type
twice, then stare-at subtyping is not able to handle it. On the other hand, that also
implies the relation between path types is more complex than F-bounded quantification.
F-bounded quantification is already not a frequently seen technique in reality, so if a piece
of code requires a more sophisticated technique, then such a relation between types is
probably already very hard for people to understand. In the example above, instead of
comparing x.A and F (F (x.A)), one could just simplify F (F (x.A)) to F (x.A) to assist the
subtyping procedure to make a desirable decision.

6.11 An Alternative Treatment

Recall that the treatment here to ensure termination of stare-at subtyping is to remove
a component from the syntax of the contexts. One obvious alternative is to maintain a
counter for each path type for all µ types and decrement the counter by one when a path
type is visited, instead of actually removing types from the context. When the counter
hits zero, the path type can no longer be visited and is regarded as >. The counter is
like an access permission of its path type. One can see that these two approaches are
essentially the same, except that the actual proof differs. This alternative approach does
not need convertibility and OPE , but just OPE<:. This is because the actual content of
the context remains the same after all and the accounting of the counters means nothing
in terms of the subtyping relation.

144

Another advantage of this alternative approach is that the initial values of counters
can be parameterized. The removal approach by nature is equivalent to the case in which
the initial values are one. However, by directly maintaining the counter, the values can
be two, five, or any other number. This provides a very interesting mathematical device
to talk about expressive power of the language, because as the initial values increase the
expressive power also increases. I expect that the language reaches some “normal form” if
this initial value is taken to be infinity.

6.12 Variable Typing

In this section, I will discuss a bi-directional variable typing algorithm. A bi-directional
typing algorithm [Pierce and Turner, 2000, Odersky et al., 2001] operates in two modes:
checking mode and synthesis mode. The checking mode checks if a given term has a given
type, and the synthesis mode infers a type for a given term.

In the technical work, I have designed a bi-directional term typing algorithm for
µDART . However, I postpone the discussion on the general bi-directional term typing
to Chapter 7 and only focus on variable typing in this section in order to expose a partic-
ular complication introduced by µ types. For completeness, the definition of bi-directional
term typing can be found in Appendix A.

The reason why variable typing deserves special attention is that the Rec-I and Rec-E
rules have put variables in a special position. In particular, µ types do not participate in
subtyping, but if a µ type is bound to a variable, then Rec-I and Rec-E can convert the µ
type to a record type and back, and record types indeed have subtyping. µ types then rely
on variables to interact with other types in subtyping, so variables have more interactions
with types than any other terms. In fact, the convertibility relation defined in Section 6.9 is
also based on this observation. Now let us consider the definition of bi-directional variable
typing concretely.

Definition 6.8. The bi-directional variable typing rules are defined in Figure 6.10.

A variable type check judgment, Γ `µDARTS x←−: T , has all of Γ, x and T as the inputs,
and outputs true if the inputs satisfy the definition.

A variable synthesis judgment, Γ `µDARTS x/V−→: T , has Γ, x and V as the inputs and
T as the output.

The algorithm relies on Exposure and its dual Imposure, both adapted to µDART .
Recall that Exposure finds the supertype of a path type that is not a path. Dually,

145

Γ `µDARTS U ⇓ µ(z : DSz)
Γ `µDARTS x←−: {DSx}

Γ `µDARTS x←−: U
Chk-Mu

Γ `µDARTS Γ(x) ⇑ µ(z : DSz)
Γ� {DSx} <: U � Γ

Γ `µDARTS x←−: U
Chk-BindMu

Γ� Γ(x) <: U � Γ

Γ `µDARTS x←−: U
Chk-Sub

fv(Γ(x)) ∩ V = ∅

Γ `µDARTS x/V−→: Γ(x)
Syn-Stop

Γ `µDARTS Γ(x) ⇑ µ(z : DSz)
Γ `µDARTS {DSx} ⇑V \x {DS ′x}

Γ `µDARTS x/V−→: µ(z : DS ′z)
Syn-Mu

Γ `µDARTS Γ(x) ⇑V U

Γ `µDARTS x/V−→: U
Syn-Bind

Figure 6.10: Definition of variable type checking and type synthesis

Imposure finds the subtype of a path type that is not a path. The concrete definitions are
too verbose in this discussion of variable typing, so I put them in the appendix. Moreover,
the algorithm relies on the Promotion operation. This operation finds a supertype of a
given type so that a set of variables does not occur free in the result type. The specifications
of these operations are listed below. Again, the definitions are found in Appendix A.

1. A Exposure judgment, Γ `µDARTS S ⇑ U , has Γ and S as inputs and U as output.
If Γ `µDARTS S ⇑ U , Γ `µDART S <: U and U is guaranteed not a path type.

2. A Imposure judgment, Γ `µDARTS S ⇓ U , has Γ and S as inputs and U as output.
If Γ `µDARTS S ⇓ U , Γ `µDART U <: S and U is guaranteed not a path type.

3. A Promotion judgment, Γ `µDARTS S ⇑V U , has Γ, S and a set of variables V as
inputs and U as output. If Γ `µDARTS S ⇑V U , Γ `µDART S <: U and U does not
have any free variables in V .

The algorithm needs to be careful about µ types. For example, the Chk-Mu rule
handles a case in which Imposure of U finds a µ type µ(z : DSz)

1. A direct subtyping
comparison between Γ(x) and µ(z : DSz) might fail, because, again, µ types do not
participate in subtyping. However, applying Rec-E turns µ(z : DSz) to a record type
{DSx} which is more likely to have relation with Γ(x). Note that if Γ `µDARTS x←−: {DSx}

1Due to α conversion, DS does not have z occur free.

146

indeed holds, then the connection between Γ(x) and U cannot be expressed by subtyping,
as it at least requires Rec-E.

The Chk-BindMu rule is dual to the Chk-Mu rule. It handles the case in which
Exposure of Γ(x) returns a µ type.

In the synthesis direction, the idea is to use Promotion to find a supertype so that
unwanted free variables are removed (Syn-Bind). The complication comes when Expo-
sure of Γ(x) returns a µ type µ(z : DSz) (Syn-Mu). In this case, µ(z : DSz) is turned
into a record type {DSx} before being passed into Promotion.

Soundness properties are quite straightforward.

Lemma 6.22. (soundness) If Γ `µDARTS x←−: T , then Γ `µDART x : T .

Lemma 6.23. (soundness) If Γ `µDARTS x/V−→: T , then Γ `µDART x : T .

The synthesis direction has one more soundness condition, because it needs to make
sure the returned type does not have any free occurrences of the variables in V .

Lemma 6.24. If Γ `µDARTS x/V−→: T , then fv(T) ∩ V = ∅.

As shown above, due to µ types, variable typing requires much more additional consid-
eration that is not required when handling other terms. In Chapter 7, I will show a further
extension of variable typing to enlarge the typeable fragment.

147

Chapter 7

jDOT

In the previous chapters, I studied the algorithmic (sub)typing of some decidable frag-
ments of D<:, D∧ and µDART . The study of the algorithmic (sub)typing has revealed
several techniques to tackle type checking and subtyping decision problems due to the fea-
tures of DOT . This chapter is meant to bring all these techniques together and present
an overall result.

I will begin with a high level review of the algorithmic techniques introduced previously.
This review points out some diadvantages of the previous methods. Then I will also review
the Wadlerfest DOT calculus. It turns out there are a number of problems in Wadlerfest
DOT that are either overlooked or ignored in the discussions of its soundness. Aggregating
all the information, I propose jDOT to be a proper alternative of DOT (j for just-right1).
jDOT simplifies DOT on one hand, and better matches the human intuition on the other
hand. jDOT is designed to be not only a formalization of Scala, but also friendly with
algorithmic study.

I will also informally discuss the expressiveness and semantics of jDOT and explain
why this is a better alternative. I will show that the covariant list example from Amin et al.
[2016] can be properly encoded in jDOT . Additionally, the bi-directional type assignment
algorithm also admits this encoding of lists.

Finishing the technical work of this chapter, I consider the algorithmic typing problem
of Dependent Object Types has been gracefully resolved. However, the same as µDART ,
I am still not able to prove the undecidability of jDOT , which is left as a regret and a
piece of future work for interested researchers.

1Or for Jason’s.

148

7.1 A Step Back: Algorithmic (Sub)typing Reconsid-

ered

In the previous chapters, I described some problems encountered when designing the
algorithmic (sub)typing of corresponding calculi and some techniques to tackle them. There
has been much information, so it would be a good idea to pause for a second, and review
the methods and what they resolve.

7.1.1 Subtyping as communication

In Chapter 4, I described the motivation to make subtyping decisions using two con-
texts, and modelled the decision procedure as a communication game between Alice and
Bob. Ultimately, the reason for two contexts is to obtain more power from the substitutive
nature of subtyping between dependent functions (explained in Section 4.7.2). As a result,
the SA-All rule in stare-at subtyping is designed.

7.1.2 Backtracking due to ∧-Traversal

In Chapter 5, I investigated the interactions between path dependent types and in-
tersection types. It turns out that in order to decide subtyping involving intersection
types, operations in stare-at subtyping need to have some capabilities of backtracking.
This backtracking needs to exist not only in stare-at subtyping itself, but also all the way
to every ∧-Traversal instance in Revealing, Upcast and Downcast. This is because
intersection types introduce uncertainty into the types and the algorithm has to introduce
non-determinism to potentially exhaust all the possibilities. The algorithm terminates be-
cause the number of choices every ∧-Traversal can make is finite and there is a measure
showing that each subproblem is strictly smaller than the input problem.

7.1.3 Types as resources

In Chapter 6, I showed how to handle the interactions between path dependent types
and µ types. Essentially the method is to treat types as resources, and each access of path
types consumes some “types” as the cost. Since the input is finite, the overall algorithm
must terminate. The soundness of the algorithm requires some consistent maintenance

149

and the full details have been shown in the chapter. Unlike D∧, µDART does not require
backtracking to handle µ types.

The investigation in Chapter 6 is somewhat different from the ones in Chapter 4 and
Chapter 5. In particular, the method in Chapter 6 is entirely operational, whereas both
D<: and D∧ are shown to have declarative strong kernels w.r.t. which the algorithms are
sound and complete. In other words, since the theories in D<: and D∧ have agreed so
well, they do not seem to have much room for adjustment, while µDART still shows much
potential for improvement.

My first dissatisfaction with the work on µDART is the large number of operations.
To name them all, the operations are Exposure, Imposure, Exposureµ, Imposureµ,
Revealing, Upcast, Downcast, Promotion, Demotion, Promotionµ, Demotionµ,
stare-at subtyping and bi-directional type assignment. Among them, I consider Reveal-
ing, Upcast, Downcast and stare-at subtyping necessary for the subtyping framework
and Promotion, Demotion and bi-directional type assignment necessary for the typing
framework. The rest of the operations look unnecessary. They were designed as a result of
lack of understanding of µ types. However, after actually solving the problem, the solution
can be revised and re-engineered so that it can be more compact.

Secondly, in DOT , all three of path types, intersection types and µ types will start to
interact, and Exposureµ, for example, is no longer capable of handling the situation. To
see the limitation of Exposureµ, consider the following context.

Γ = z : {C : ⊥..µ(w : {A : ⊥..⊥})}; y : {B : ⊥..>};x : y.B ∧ z.C

Revealing x.A in this context requires resolution of z.C, which gives µ(w : {A : ⊥..⊥})
and the overall result should be ⊥. This situation fits the Rv-Mu1 rule in Revealing of
µDART . However, this will not work well. Since z.C will push the context to the left up
until z, and y is to the right of z, so y will be forgotten. To enlarge the decidable fragment,
Rv-Mu1 appends the remaining declarations of the µ type to the returned context. In
this case, the overall returned context becomes

Γ′ = x : y.B ∧ µ(w : >)

Notice that y no longer exists in the context! This context is not well-formed. That
means the treatment in µDART is quite limited and cannot directly work with intersection
types. The core issue is that Revealing so far relies on dropping bindings from the contexts
to ease the termination proof and it is a safe treatment for the previous calculi, while now
with both recursive types and intersection types, bindings can no longer easily be dropped,
otherwise the well-formedness of the contexts might not be maintained.

150

To wrap up, the summary shows that stare-at subtyping and ∧-Traversal are reason-
able operations and shall be kept. Types as resources is still a reasonable idea to guarantee
termination but needs to be engineered in a different form to accommodate the interactions
between intersection types and µ types.

7.2 A Second Step Back: A Short Review of DOT

The next thing to do is to review the DOT calculus (defined in Definition 2.10). To
tackle its complexity, it is a good idea to review its source of complexity and understand if
that source of complexity is necessary. This section is devoted to have a high level overview
of the DOT calculus and it identifies the places that can be better defined.

7.2.1 Uninterpretable types with µ

Though µ types have been studied to some extent in Chapter 6, µ types can only wrap
over record types in µDART , which makes the µ construct still controllable. In DOT , µ
types can wrap over any types, generating types that do not correspond to any types in
Scala. Since one purpose of DOT is to model the Scala language, each type in the calculus
ought to find its corresponding interpretation in the Scala language. If a type in DOT does
not correspond to any type in Scala, this type should not be a part of the consideration to
begin with. Consider the following bindings.

x : µ(z : ⊥)

x : µ(z : µ(w : {A : ⊥..>}))
x : µ(z : {A : ⊥..z.B} ∧ µ(w : {B : ⊥..w.A}))
x : µ(z : ∀(y : >)>)

Let me analyze them one by one.

1. Due to bad bounds, if x : ⊥ is in the context, then every type is a subtype of any
other (a proof can be found in Section 3.1). Now consider x : µ(z : ⊥). Recall that µ
types do not participate in subtyping, so this judgment µ(z : ⊥) <: µ(z : >) cannot
be proven in general. But if this type can be found bound to a variable in a context,
everything changes.

Γ `DOT x : µ(z : ⊥)
Var

Γ `DOT x : ⊥
Rec-E

151

This is a proof that can be used to show µ(z : ⊥) behaves the same as⊥ once bound to
a variable! In general it is true for ⊥ nested arbitrarily deep in µ’s: µ(y : µ(z : ⊥)),
µ(y : µ(z : µ(w : ⊥))), etc. This gives more complications, as it hints that the
algorithm needs to handle arbitrarily nested µ’s, while these µ-wrapped ⊥’s clearly
correspond to nothing in Scala.

2. The binding x : µ(z : µ(w : {A : ⊥..>})) shows another aspect of nested µ types.
In order to find out what x.A means, the algorithm needs to look deep into the µ’s.
Ideally, this type should be the same as µ(z : {A : ⊥..>}), but there is no formal
relation to support this intuition.

3. The binding x : µ(z : {A : ⊥..z.B} ∧ µ(w : {B : ⊥..w.A})) is a more sophisticated
example. Imagine Revealing is applied to x.B. It needs to first know that the type
member label B is in an intersection in a nested µ type, and knows that w.A can
become x.A by applying Rec-E twice. Moreover, it needs to look back to the outer
µ type again to find {A : ⊥..z.B} and turn z.B to x.B. Finally, Revealing stops
here because x.B has been referred to twice, so the result should be >.

Notice that these path type bounds use different self references to indirectly refer to
each other! The algorithm needs to be very intelligent about the method to handle
the self reference, but this complication is unseen in Scala.

4. x : µ(z : ∀(y : >)>) wraps a function type in a µ. A µ wrapped function type
is clearly not an intended type in DOT but nonetheless a valid one, which further
constitutes more complications because it becomes a legitimate function type once
Rec-E is applied.

7.2.2 How are objects encoded?

In the existing literature [Amin et al., 2016, Rapoport et al., 2017, Rompf and Amin,
2016, Amin et al., 2012], several encodings of objects in the corresponding calculi are shown
as examples, but this problem in fact has never been formally studied. There are many
problems once this issue is analyzed. In Wadlerfest DOT , to encode the following Scala
trait, there are many available options.

trait Exists { type A ; def elem : this.A }

All of the followings are valid encodings.

152

1. µ(w : {A : ⊥..>} ∧ {elem : w.A})

2. µ(w : {A : ⊥..>}) ∧ µ(w : {elem : w.A})

3. {A : ⊥..>} ∧ µ(w : {elem : w.A})

Here I only listed the encodings that are worth looking into. Arbitrarily many more trivial
encodings can be generated by wrapping µ’s and putting the intersection in different places,
so I omit them in this discussion.

Based on the Obj-I rule, the first option is taken as the primal choice. However, this
option has two problems.

1. µ(w : {A : ⊥..>} ∧ {elem : w.A}) and µ(w : {elem : w.A} ∧ {A : ⊥..>}) are not
related by subtyping (notice that the order of two fields is exchanged). This is very
counter-intuitive, because normally we do not regard exchanging the order of fields
in an object definition to have a fundamental impact.

2. Dropping a field also does not make a supertype: µ(w : {A : ⊥..>}). The same as
the previous point, this is due to lack of subtyping between µ types.

On the other hand, the next two encodings seem to avoid these two problems, due to
the subtyping properties of intersection types.

Having many encodings of the same concept is problematic as the algorithmic design
might be expected to cover all encodings.

7.2.3 Unexpected recursive path types

Consider the following (invalid) definition of a class in Scala.

class A extends B { trait B }

In this definition, the two B’s are literally the same trait. Namely, the class A is inheriting
another trait B defined in its own definition. Needless to say, this definition is definitely
bizarre, and it is reasonable to expect it not to compile. However, with the excessive
expressiveness of µ types in DOT , this can be encoded as

µ(w : w.B ∧ {B : ⊥..>})

153

This type is well-formed: after all there is no free variable in this encoding! Wadlerfest
DOT has no predicate to reject this kind of type.

From an algorithmic design point of view, then, all the previous examples yield the
following puzzling question.

Question 8. What are the programs a candidate algorithm is OK to give up on? Or to
what extent an algorithm can give up?

To approach the answer to this question, we need to understand what the definition is
meant to reflect, and from there, a new calculus can be engineered as an improvement.

7.2.4 Soundness proof guided definition

The hints lie in the soundness proof of DOT . The soundness proofs of both Wadlerfest
DOT and OOPSLA DOT fundamentally rely on some knowledge of the runtime infor-
mation of typing contexts. For example, in Wadlerfest DOT , Obj-I is the only rule to
introduce an object type, in which it forces the bounds of a type declaration to be syn-
tactically the same, and all objects are encoded in the form of µ(z : T) where T is an
intersection of type and field declarations. When a step in operational semantics is taken,
structural properties like weakening, narrowing and substitution are used to transform the
context so that the µ types in the typing context must be of that form.

This proof technique lowers the difficulties of reasoning by concentrating the languages
to only the runtime portion, and leads to the success of establishing canonical form theo-
rems and the eventual soundness proofs. Details on soundness proofs can be found in Rompf
and Amin [2016], Amin et al. [2016], Rapoport et al. [2017], Amin and Rompf [2017].
Though the concrete presentations differ, the central idea is described here.

The technique of using runtime information of typing contexts gives a proper expla-
nation of why all of the problematic types shown in the examples above did not become
major issues in all previous investigations. Generally speaking, more syntactic elements
can be added to the calculus. As long as the form of runtime information remains the
same, the essential portion of the soundness proofs will remain more or less familiar.

Taking the same observation in another direction, the definition of the language should
not be too much larger than what the runtime portion is. The soundness proofs hint that
the intended language should have the following characteristics.

1. There should be at most one layer of µ.

154

2. Only type and field declarations need to interact with µ types. In particular, path
dependent types should not be wrapped in µ’s.

3. Rules similar to Rec-I and Rec-E are still needed to ensure the calculus maintains
behaviors close to the DOT calculi we currently have.

4. The intersection types can be taken advantage of to obtain some “free” subtyping
relation between encodings of object types.

Languages richer than what is described by these points are just needlessly big, unnec-
essary, and not intended. These points give a clear direction on how to refine DOT to a
desired form.

7.3 The Definition of jDOT

In this section, I will introduce jDOT , an alternative based on the observations de-
scribed in the previous sections. In some sense jDOT is simpler because µ types are more
constrained; in another sense, jDOT is more concentrated, because it uses intersection
types to allow a simple subtyping relation between object types, which gets much closer
to the human intuition.

Definition 7.1. The abstract syntax of jDOT is shown in Figure 7.1, the typing rules are
shown in Figure 7.2 and the subtyping rules are shown in Figure 7.3.

In Figure 7.1, I highlighted the difference between DOT and jDOT . The same as in
µDART , let bindings in jDOT have an optional ascription. On the side of types, instead
of having a general µ construct, jDOT only has µ declarations. µ declarations permit
type and field declarations in which the type components have access to a self reference
variable, represented by w in the definition.

In the typing rules defined in Figure 7.2, the rules are almost the same as DOT . Let2
is added to ensure the let binding with an explicit type ascription is well typed. Consider
the Obj-I rule. This rule is not the same as the counterpart in DOT . To explain this rule,
let us first see how jDOT represents object types.

Recall that in the previous section, I discussed the ambiguity of encodings of object
types into DOT . The following trait definition is the example.

trait Exists { type A ; def elem : this.A }

155

s, t, u ::= Term

x variable

v value

x.a selection

x y application

let x : T? = t in ux let binding

v ::= Value

λ(x : T)tx lambda

ν(x : T)dx object

d ::= Definition

{a = t} field definition

{A = T} type definition

d1 ∧ d2 aggregation

D ::= Declaration

{A : S..U} type declaration

{a : T} field declaration

µD ::= µ Declaration

µ{w.A : Sw..Uw}

µ{w.a : Tw}
S, T, U ::= Type

> top type

⊥ bottom type

x.A path type

D Declaration

µD µ Declaration

∀(x : S)Ux function

S ∧ U intersection

Figure 7.1: Abstract syntax of jDOT

In jDOT , this trait is canonically represented by the following type (up to commutations
and associations of intersection types).

µ{w.A : ⊥..>} ∧ µ{w.elem : w.A}

I will discuss the advantages of this representation in greater detail once the rules are
fully discussed. In Obj-I, the type T in the ν shall be an intersection of µ declarations.
Otherwise the object definition would not be type checked. Notice that the result type of
an object is just the same intersection of µ declarations in the ν. This is not the same as
DOT , in which the corresponding rule requires an α renaming of T before type checking the
object body. The rule delegates the concrete type checking to the definition typing rules.
Def-Trm, Def-Typ and Def-And are the rules and they require an extra argument to
the predicate: x, the variable in the context which is bound to the type of the object. This
variable is recorded as a subscript under the colon (:). In the definition typing rules, w is
the self reference of the object, carried over from the Obj-I rule.

156

Type Assignment

Γ `jDOT x : Γ(x)
Var

Γ `jDOT t : S Γ `jDOT S <: U

Γ `jDOT t : U
Sub

Γ;x : S `jDOT t : U

Γ `jDOT λ(x : S)t : ∀(x : S)U
All-I

Γ `jDOT x : ∀(z : S)Uz Γ `jDOT y : S

Γ `jDOT x y : Uy
All-E

Γ;x : T `jDOT d :x T dom(d) is unique

Γ `jDOT ν(w : T)dw : T
Obj-I

Γ `jDOT x : {a : T}

Γ `jDOT x.a : T
Obj-E

Γ `jDOT x : S Γ ` x : U

Γ `jDOT x : S ∧ U
And

Γ `jDOT x : Dx

Γ `jDOT x : µD
Rec-I

Γ `jDOT x : µD

Γ `jDOT x : Dx

Rec-E

Γ `jDOT t : S x /∈ fv(U)
Γ;x : S `jDOT u : U

Γ `jDOT let x = t in u : U
Let1

Γ `jDOT t : S x /∈ fv(U)
Γ;x : S `jDOT u : U

Γ `jDOT let x : S = t in u : U
Let2

Object Definition Type Assignment

Γ `jDOT tx : Tx

Γ `jDOT {a = tw} :x µ{w.A : Tw}
Def-Trm

Γ `jDOT {A = Tw} :x µ{w.A : Tw..Tw}
Def-Typ

Γ `jDOT dw :x S Γ `jDOT d′w :x U

Γ `jDOT dw ∧ d′w :x S ∧ U
Def-And

Figure 7.2: Typing rules of jDOT

In the object definition typing rules, Def-And just recurs down to subproblems. Def-
Typ is routine: it sets the bounds in the declaration to be identical. Def-Trm is almost
routine, except that before the definition of the field is type checked, the self reference w
needs to be substituted by the variable x in the context. This slight complication is needed
because ν directly remembers the result type of the object.

157

Subtyping

Γ `jDOT T <: >
Top

Γ `jDOT ⊥ <: T
Bot

Γ `jDOT T <: T
Refl

Γ `jDOT S2 <: S1 Γ `jDOT U1 <: U2

Γ `jDOT {A : S1..U1} <: {A : S2..U2}
Bnd

Γ `jDOT T1 <: T2

Γ `jDOT {a : T1} <: {a : T2}
Fld

Γ `jDOT S2 <: S1

Γ;x : S2 `jDOT U1 <: U2

Γ `jDOT ∀(x : S1)U1 <: ∀(x : S2)U2

All

Γ `jDOT S <: T
Γ `jDOT T <: U

Γ `jDOT S <: U
Trans

Γ `jDOT x : {A : S..U}

Γ `jDOT S <: x.A
Sel1

Γ `jDOT x : {A : S..U}

Γ `jDOT x.A <: U
Sel2

Γ `jDOT T <: S
Γ `jDOT T <: U

Γ `jDOT T <: S ∧ U
And-I

Γ `jDOT S ∧ U <: S
And-E1

Γ `jDOT S ∧ U <: U
And-E2

Figure 7.3: Subtyping rules of jDOT

The subtyping rules are defined in Figure 7.3, and they are literally the same as DOT
and therefore do not need more discussion.

As hinted previously, using intersections of µ declarations to represent object types
overcomes a number of problems found in DOT .

1. Objects now have simple subtyping. Subtyping between objects is obtained freely due
to intersection types. This means the object types now can freely commute, duplicate
and re-associate their declarations, and obtain equivalent types. Dropping fields now
obtains a supertype. This gets much closer to the human intuition. However, notice
that there is no rule to capture subtyping between µ declarations, so subtyping
between µ declarations remain impossible.

2. µ now is a well controlled language construct. Unlike the examples in Section 7.2, µ is
restricted to have only one layer, and only interacts with type and field declarations.
This simplifies the language and makes it much more understandable.

These observations give more confidence to work on jDOT instead of DOT . An inter-
esting question to ask is whether this language is sound. I conjecture so.

158

Conjecture 6. jDOT is sound.

Note that this conjecture is promising. Its soundness is not a direct consequence of the
soundness of DOT , because jDOT changes the primal representation of object types which
means this language is not a syntactic subset of DOT . However, the essential components
remain similar and therefore I speculate that following Rapoport et al. [2017] can easily
establish its soundness proof. The actual verification is left as future work.

Moreover, for the same reason as µDART and DOT , I am not able to establish the
undecidability proof of jDOT . In the same spirit, its undecidability is conjectured.

Conjecture 7. jDOT typing and subtyping are undecidable.

A rigorous proof is left as future work.

7.4 Refining Revealing

In Section 7.1, I drew the conclusion that there is not much room to improve what
is in D∧, but things in µDART can be better reworked. The biggest problem I consider
in µDART is that the number of operations is too large. In this section, I will refine
Revealing so that all unnecessary operations can be dropped.

Within the current design of stare-at subtyping, Revealing is no doubt in the core of all
versions. Therefore, to improve the algorithm, Revealing is the first and the most impor-
tant operation to look into. In µDART ’s Revealing (defined in Figure 6.6), Exposureµ

is used because µ types are considered as cyclic contexts, and Exposureµ is an operation
motivated by that observation. This view of µ types has two problems.

1. It directly leads to four operations: Exposureµ, Imposureµ, Promotionµ and
Demotionµ.

2. It fails to adapt to the change in jDOT . A counterexample was given in Section 7.1,
in which Revealing fails to maintain the well-formedness of the returned context.

This means regarding µ types as cyclic contexts is an approach limited to µDART ,
and that motivates another understanding of µ types that has not been thought of. This
understanding is hidden because the µ in µ types means recursion and µ types are intended
to represent object types. To see how µ types can be reinterpreted, Rec-I and Rec-E

159

give the first hint (to make the idea more explicit, let us just consider a particular type
declaration).

Γ `jDOT x : {A : ⊥..x.B}

Γ `jDOT x : µ{w.A : ⊥..w.B}
Rec-I

Γ `jDOT x : µ{w.A : ⊥..w.B}

Γ `jDOT x : {A : ⊥..x.B}
Rec-E

These two rules come in a pairm and are forms of constructing and eliminating µ types.
When a µ type is found bound to some binder x in the context, µ is removed and the
self reference w is replaced by the binder x. This replacement makes the self reference w
look like a hole, which is to be filled in by the binder of the µ declaration. The following
declaration makes the hole explicit.

{A : ⊥..[].B}

where [] denotes a hole.

The intention is to consider a template of type declarations in which there are holes of
a variable. Being bound to a binder in the context grants the permission for the binder to
fill in these holes, as denoted by the Rec-E rule. The Rec-I rule is the dual operation in
which the binder retreats and holes are formed. The µ construct is just a wrapper to make
sure that a declaration with holes is well-formed.

This view removes the special position of µ types in the subtyping procedure, and
enables a thought different from one emphasizing its cyclic nature. The point here is just
to make sure there are binders to fill in the holes in µ types. If Revealing can already
achieve this, there is no need for Exposureµ anymore. The solution is to strengthen
Revealing so that it can achieve what is meant to be done by Exposureµ. Surely, well-
formedness of returned contexts needs to be taken into account.

Definition 7.2. Revealing and ∧-Traversal are defined in Figure 7.4.

1. For a judgment S 7→ U & T , S is the input type and U and T are the output types.

2. A Revealing judgment Γ `jDOTS S V U a Γ′ has Γ and a type S as inputs and Γ′

and a type U as outputs.

Definition 7.3. Upcast and Downcast is defined in Figure 7.5.

1. An Upcast judgment Γ `jDOTS x.A↗ U a Γ′ has Γ, a variable x and a type member
label A as inputs and Γ′ and a type U as outputs.

160

∧-Traversal

T is not ∧

T 7→ T & >
At-Found

S 7→ S ′ & T

S ∧ U 7→ S ′ & T ∧ U
At-Left

U 7→ U ′ & T

S ∧ U 7→ U ′ & S ∧ T
At-Right

Revealing

T is not a path

Γ `jDOTS T V T a Γ
Rv-Stop

Γ `jDOTS T V > a •
Rv-Top*

T 7→ T0 & T1 Γ1 `jDOTS T0 V T2 a Γ′1 T2 7→ ⊥ & T3

Γ1;x : T ; Γ2 `jDOTS x.A V ⊥ a Γ′1;x : T1 ∧ T3; Γ2

Rv-Bot

T 7→ T0 & T1 Γ1 `jDOTS T0 V T2 a Γ′1
T2 7→ {A : S..U} & T3 U 7→ U0 & U1 Γ′1 `jDOTS U0 V U2 a Γ′′1

Γ1;x : T ; Γ2 `jDOTS x.A V U
′ a Γ′′1;x : T1 ∧ T3; Γ2

Rv-Bnd

T 7→ T0 & T1 Γ1 `jDOTS T0 V T2 a Γ′1
T2 7→ µ{w.A : S..Uw} & T3 Ux 7→ U0 & U1 Γ′1;x : T1 ∧ T3 `jDOTS U0 V U2 a Γ′′1

Γ1;x : T ; Γ2 `jDOTS x.A V U
′ a Γ′′1; Γ2

Rv-Mu

Figure 7.4: Definitions of ∧-Traversal and Revealing

2. Downcast judgment Γ `jDOTS x.A↘ U a Γ′ is defined similarly as Upcast.

The definition of Revealing might appear to be almost the same as one of D∧ but the
points are subtle, so let us walk through the rules one by one. Before that, let us take a
look at the new definition of ∧-Traversal.

In jDOT , ∧-Traversal not only selects a non-intersection type, like in D∧, but also
returns the rest of the intersection that has not been selected. From At-Left and At-
Right, the unselected types in the recursive calls are intersected again before being re-
turned. This treatment can ensure that ∧-Traversal does not lose any information. This
is guaranteed by the following lemma.

161

Γ `jDOTS x.A↗ > a •
U-Top*

Γ `jDOTS x.A↘ ⊥ a •
D-Bot*

T 7→ T0 & T1 Γ1 `jDOTS T0 V T2 a Γ′1 T2 7→ ⊥ & T3

Γ1;x : T ; Γ2 `jDOTS x.A↗ ⊥ a Γ′1;x : T1 ∧ T3; Γ2

U-Bot

T 7→ T0 & T1 Γ1 `jDOTS T0 V T2 a Γ′1 T2 7→ ⊥ & T3

Γ1;x : T ; Γ2 `jDOTS x.A↘ > a Γ′1;x : T1 ∧ T3; Γ2

D-Top

T 7→ T0 & T1 Γ1 `jDOTS T0 V T2 a Γ′1 T2 7→ {A : S..U} & T3

Γ1;x : T ; Γ2 `jDOTS x.A↗ U a Γ′1;x : T1 ∧ T3; Γ2

U-Bnd

T 7→ T0 & T1 Γ1 `jDOTS T0 V T2 a Γ′1 T2 7→ {A : S..U} & T3

Γ1;x : T ; Γ2 `jDOTS x.A↘ S a Γ′1;x : T1 ∧ T3; Γ2

D-Bnd

T 7→ T0 & T1 Γ1 `jDOTS T0 V T2 a Γ′1 T2 7→ µ{w.A : S..Uw} & T3

Γ1;x : T ; Γ2 `jDOTS x.A↗ Ux a Γ′1;x : T1 ∧ T3; Γ2

U-Mu

T 7→ T0 & T1 Γ1 `jDOTS T0 V T2 a Γ′1 T2 7→ µ{w.A : Sw..U} & T3

Γ1;x : T ; Γ2 `jDOTS x.A↘ Sx a Γ′1;x : T1 ∧ T3; Γ2

D-Mu

Figure 7.5: Definitions of Upcast and Downcast

Lemma 7.1. If S 7→ U & T , the following are true.

1. Γ `jDOT S <: U ∧ T .

2. Γ `jDOT U ∧ T <: S.

∧-Traversal remains non-deterministic and therefore requires backtracking as in D∧
if regarded as an algorithm. This has been discussed in Chapter 5.

Knowing ∧-Traversal, Revealing can be understood.

1. Rv-Stop and Rv-Top are routine.

2. (Rv-Bot) The same as D∧, if ∧-Traversal can select ⊥ from the result type of the
first recursive call, then the result can just be ⊥. However, the returned context is no

162

longer empty; in fact the returned context still remembers all binders from the input
context. Revealing no longer attempts to shrink the length of the context. The
reason for this will become clear in the Rv-Mu rule. At the very least, Revealing
consumes the ⊥ type from the second ∧-Traversal call, and just makes x : T1 ∧ T3

in the returned context. This aligns with the idea of types as resources: consuming
types to ensure termination.

3. (Rv-Bnd) Alternatively, ∧-Traversal might select a type declaration from the result
type of the first recursive call. Following D∧, U is selected by ∧-Traversal again to
avoid having an additional case of selecting a path type from T2. Then U0 is revealed
again, and the overall returned context also replaces x’s type with T1 ∧ T3.

4. (Rv-Mu) This rule is the most complicated one. When ∧-Traversal selects a µ
declaration from T2, it first fills in the hole in Uw by substituting w with x. Then
∧-Traversal selects U0 from Ux. The second recursive call is curious: since now U0

might refer to x, to ensure U0 is closed, x : T1 ∧ T3 is appended into the context. In
the same spirit, the µ declaration where Uw resides has been consumed and is gone.
Therefore, even if Γ2 is empty, the input of the second recursive call is still smaller
than the original input. Moreover, since Revealing does not remove bindings from
the context anymore, x is guaranteed to exist in Γ′′1, and that is the reason why the
overall returned context does not mention x.

By comparing Rv-Mu with Exposureµ, it is easier to understand how this rule is
compact enough to entirely replace Exposureµ. Assuming U0 = x.B, then the second
recursive call needs to do more work to find a non-path supertype. Even further assume
x.B requires Revealing of x.C, and x.C requires Revealing of x.D, and so forth. The
second recursive call in Rv-Mu iterates and functions just like Exposureµ. Since every
iteration of the second recursive call in the Rv-Mu rule consumes a part of the type bound
to x, there must be an end of the iterations and the recursion either continues to the left
of the context or stops. In either way, the operation is guaranteed to terminate.

In Exposureµ, on the other hand, this looping is encoded as a separate operation.
This shows Revealing in jDOT is a more compact and powerful operation.

On the flip side, though, this compactness come with some cost. In all previous versions
of Revealing, the termination argument was very straightforward, because each recursive
call must decrease the number of bindings in the context and this serves as a clear indication
of termination. This is no longer true in jDOT . In Section 7.6, I will show how the
termination argument for this Revealing is established.

163

Once Revealing is understood, Upcast and Downcast are straightforward. They
again remain moderate wrappers of Revealing and simply take a part of the logic from
Revealing and find the result types in the right direction with consistent treatment in the
returned contexts.

7.5 Examples of Revealing

Though I have informally discussed the compactness of Revealing, it might still not
be clear why Rv-Mu is well engineered. The following are some examples for this purpose.

7.5.1 Maintenance of well-formedness

This is a simple example showing how Revealing maintains the well-formedness of the
contexts. Consider the same example shown in Section 7.1:

Γ = z : {C : ⊥..µ(w : {A : ⊥..⊥})}; y : {B : ⊥..>};x : y.B ∧ z.C

I use Γ[..y] to denote truncation of context up to the variable y (inclusive). For example,
Γ[..y] means Γ dropping x only. Revealing x.A in this context gives

y.B ∧ z.C 7→ z.C & y.B ∧ >
Γ[..y] `jDOTS z.C V µ{w.A : ⊥..⊥} a z : > ∧>; y : {B : ⊥..>}

µ{w.A : ⊥..⊥} 7→ µ{w.A : ⊥..⊥} & >

Γ `jDOTS x.A V ⊥ a z : > ∧>; y : {B : ⊥..>};x : y.B ∧ > ∧ >
Rv-Mu

In the derivation above, there are many >’s. This is the result of following the rules
rigorously. The >’s come from the second output of the At-Found rule. Both recursive
calls should be clear and their derivations are omitted. In the returned context, x binds
to y.B ∧ > ∧ >, but now y remains untouched in the returned context, and that fixes the
previous problem of Exposureµ.

7.5.2 Handling object types

Recall that object types in jDOT are represented by intersections of µ declarations.
Rv-Mu relies on the second recursion to loop within the object to take over Exposureµ’s

164

responsibility as in µDART . An example is designed to demonstrate the behavior of this
rule.

Γ = y : {D : ⊥..µ{w.B : ⊥..w.C}};x : y.D ∧ µ{w.A : ⊥..w.B} ∧ µ{w.C : ⊥..∀(z : >)>}

Consider Revealing x.A in this context. The intended output type is ∀(z : >)>. The
problem is made a bit harder as the type of x refers to y. This pattern is not rare as it can
be used to encode inheritance. I will use ? to represent unresolved return. The following
is a partial execution trace. Since x has type µ{w.A : ⊥..w.B}, the second recursive call
has x.B as the input type.

Γ(x) 7→ µ{w.A : ⊥..w.B} & y.D ∧ > ∧ µ{w.C : ⊥..∀(z : >)>}
µ{w.A : ⊥..w.B} 7→ µ{w.A : ⊥..w.B} & > x.B 7→ x.B & >

Γ[..y];x : y.D ∧ > ∧ µ{w.C : ⊥..∀(z : >)>} ∧ > `jDOTS x.B V ? a?

Γ `jDOTS x.A V ? a?
Rv-Mu

Rv-Stop applies in the first recursive call, and is omitted for conciseness. The second
recursive call needs to resolve x.B. The only type label B is in y, so Revealing needs to
look into y.

Let Γ′ = Γ[..y];x : y.D ∧ > ∧ µ{w.C : ⊥..∀(z : >)>} ∧ >

Γ′(x) 7→ y.D & > ∧> ∧ µ{w.C : ⊥..∀(z : >)>} ∧ >
Γ′[..y] `jDOTS y.D V µ{w.B : ⊥..w.C} a y : > ∧> (Rv-Bnd)

µ{w.B : ⊥..w.C} 7→ µ{w.B : ⊥..w.C} & > x.C 7→ x.C & >
y : > ∧>;x : > ∧> ∧ µ{w.C : ⊥..∀(z : >)>} ∧ > ∧ > `jDOTS x.C V ? a?

Γ′ `jDOTS x.B V ? a?
Rv-Mu

Notice that the input context in the second recursive call is almost wiped clean, except
for the µ declaration with type label C. The visited labels are replaced by >’s. It might
seem these >’s contribute to the size of the context, but this is not an issue. In the next
section, I will show how to make the termination argument ignore these >’s.

Now Revealing has reached x.C, which is still a path type. The next step is to retrieve

165

• � •
Se-Nil

Γ � Γ′ Γ `jDOT S <: U

Γ;x : S � Γ′;x : U
Se-Cons

Figure 7.6: Definition of sub-environment

the result from the one last remaining µ declaration in the context.

Let Γ′′ = y : > ∧>;x : > ∧> ∧ µ{w.C : ⊥..∀(z : >)>} ∧ > ∧ >

Γ′′(x) 7→ µ{w.C : ⊥..∀(z : >)>} & > ∧> ∧> ∧> ∧>
µ{w.C : ⊥..∀(z : >)>} 7→ µ{w.C : ⊥..∀(z : >)>} & >

∀(z : >)> 7→ ∀(z : >)> & >

Γ′′ `jDOTS x.C V ∀(z : >)> a y : > ∧>;x : > ∧> ∧> ∧> ∧ > ∧>
Rv-Mu

Finally, x.C is revealed to a function type which is not a path type. The whole operation
finishes and it is OK to rewind the call stack. Notice that now the context has been fully
wiped clean but still contains all the binders from the original context.

... as shown above

Γ′′ `jDOTS x.C V ∀(z : >)> a y : > ∧>;x : > ∧> ∧> ∧> ∧ > ∧>
Rv-Mu

Γ′ `jDOTS x.B V ∀(z : >)> a y : > ∧>;x : > ∧> ∧> ∧> ∧ > ∧>
Rv-Mu

Γ `jDOTS x.A V ∀(z : >)> a y : > ∧>;x : > ∧> ∧> ∧> ∧ > ∧>
Rv-Mu

7.6 Properties of Operations

After informally discussing the behaviors of Revealing, it is time to formally examine
the properties. Since Revealing has been entirely re-engineered, there are more properties
that need to be proven to ensure its correctness.

First, a relation between contexts is needed to express the relation between the input
and output contexts of Revealing.

Definition 7.4. The sub-environment relation between contexts, denoted by Γ � Γ′, is
defined in Figure 7.6.

166

Theorem 7.2. (soundness) If Γ `jDOTS S V U a Γ′, then Γ `jDOT S <: U .

Theorem 7.3. If Γ `jDOTS S V U a Γ′, then Γ � Γ′.

Proof. These two theorems are mutually dependent. They need to be proven together.

The following lemma ensures Revealing does not remove bindings from the contexts.

Lemma 7.4. If Γ � Γ′, then dom(Γ) = dom(Γ′).

Lemma 7.5. If Γ `jDOTS S V U a Γ′, then U is not a path type.

The well-formedness of outputs can be shown by the next theorem.

Theorem 7.6. If Γ `jDOTS S V U a Γ′ and Γ and S are well-formed, so are Γ′ and U .
In particular, fv(U) ⊆ dom(Γ′) = dom(Γ).

Visually, one of obvious distinctions between Revealing in jDOT and other Reveal-
ings is that Revealing in jDOT does not lose bindings in the contexts anymore. The
reason why other Revealings do this is to ease the termination argument. Specifically,
all previous Revealings can be shown to terminate by arguing the length of the input
context shrinks. The termination argument in jDOT is no longer that straightforward,
but still remains purely syntactical, following the highest level philosophy of this thesis.

To make the termination argument as smooth as possible for the future, I will need two
slightly different measures, and take advantage of their combination.

Definition 7.5. The accounting measure MA of types and contexts, and the structural
measure MS of types are defined by the following equations.

MA(>) = 0

MA(⊥) = 0

MA(S ∧ U) = MA(S) +MA(U)

MA(x.A) = 2

MA(∀(x : S)U) = 1 +MA(S) +MA(U)

MA(D) = 1 +MA(D)

MA(µD) = 2 +MA(D)

MA({A : S..U}) = MA(S) +MA(U)

MA({a : T}) = MA(T)

MS(>) = 1

MS(⊥) = 1

MS(S ∧ U) = 1 +MS(S) +MS(U)

MS(x.A) = 2

MS(∀(x : S)U) = 1 +MS(S) +MS(U)

MS(D) = 1 +MS(D)

MS(µD) = 2 +MS(D)

MS({A : S..U}) = MS(S) +MS(U)

MS({a : T}) = MS(T)

167

MA(Γ) =
∑
x:T∈Γ

MA(T)

Comparing these two measures,

1. Note that there is no need to define the structural measure MS for contexts.

2. These two measures are very close, except for the first three equations. Measures in
previous chapters are closer to the structural measure. The accounting measure does
not assign weights to > and ⊥, and simply adds the weights of component types of
intersections, while the structural measure gives additional weight to the intersection.

These characteristics make MS(T) ≥MA(T), and the termination argument of stare-at
subtyping succeeds by taking advantage of their difference. To show the termination of
Revealing, MS is still not needed. Its role becomes important once stare-at subtyping is
discussed.

Definition 7.6. Define the combined accounting measure

MA(Γ, T) = MA(Γ) +MA(T)

It can be shown that

Lemma 7.7. If Γ `jDOTS S V U a Γ′, then MA(Γ, S) ≥MA(Γ′, U).

Theorem 7.8. Revealing terminates as a non-deterministic algorithm.

Proof. The measure is MA(Γ, S). It is non-deterministic because of ∧-Traversal, for the
same reason as D∧. This is OK because the choice to make is always finite so backtracking
is guaranteed to terminate.

The properties of Upcast and Downcast are easier to prove than those of Revealing.

Lemma 7.9. The following hold.

1. If Γ `jDOTS x.A↗ (↘)T a Γ′, then Γ′ � Γ.

2. If Γ `jDOTS x.A↗ T a Γ′, then Γ `jDOT x.A <: T .

3. If Γ `jDOTS x.A↘ T a Γ′, then Γ `jDOT T <: x.A.

Upcast and Downcast strictly decrease the accounting measure.

Lemma 7.10. If Γ `jDOTS x.A↗ (↘)T a Γ′, then MA(Γ, x.A) > MA(Γ′, T).

168

Extending Figure 5.4 with

Γ1 � µD <: µD � Γ2

SA-Mu

Figure 7.7: Definition of stare-at subtyping

7.7 Stare-at Subtyping

Once Revealing is settled, stare-at subtyping is just routine.

Definition 7.7. The stare-at subtyping is defined in Figure 7.7.

For a stare-at subtyping judgment Γ1 � S <: U � Γ2, all four places are the inputs,
and it outputs true if inputs satisfy its definition.

Since µ types do not participate in the subtyping relation, the only obvious rule to
apply is reflexivity. SA-Mu is added to reflect that. Otherwise, stare-at subtyping of
jDOT is the same as the one of D∧. The same as for D∧, the execution order of stare-at
subtyping is not obvious. The execution order has been discussed in detail in Section 5.4,
and the situation in jDOT is identical. In favor of conciseness, I omit the discussion here.

Theorem 7.11. Stare-at subtyping is reflexive.

Γ1 � T <: T � Γ2

Theorem 7.12. (soundness of stare-at subtyping) If Γ1 � S <: U � Γ2, Γ � Γ1 and
Γ � Γ2, then Γ `jDOT S <: U .

Theorem 7.13. If Γ1 � S <: U � Γ, then Γ `jDOT S <: U .

The termination argument of stare-at subtyping is worth discussing.

Theorem 7.14. Stare-at subtyping terminates as a non-deterministic algorithm.

Proof. For a stare-at subtyping judgment Γ1 � S <: U � Γ2, the measure is the lexico-
graphic order of MA(Γ1, S) +MA(Γ2, U) and MS(S) +MS(U).

Here, the accounting measure can be seen strictly decreasing in almost all cases, except
for those related to intersection types, SA-Left1, SA-Left2 and SA-Right. For these

169

rules, the accounting measure might not decrease. However, in all these cases, the structural
measure does decrease. Notice that the accounting measure must not increase in those
cases. Therefore, it is shown that all cases in stare-at subtyping handle smaller problems
than the input ones.

Similarly, since the choices are finite and the recursive problems are shown to always
be smaller, stare-at subtyping terminates.

At this point, the algorithmic subtyping problem of jDOT has been resolved.

7.8 Variable Typing

Starting from this section, I will start the discussion of the bi-directional type checking
algorithm in jDOT . In Section 6.12, I discussed why variable typing is special and deserves
more focus. I also pointed out that variable typing in µDART is not satisfactory, and
this is fundamentally improved in jDOT . Notice that the situation in jDOT is more
complicated than in µDART : the Rec-I and Rec-E rules which have existed in µDART
make variables special, and the And rule allows further flexibility in typing behavior. In
µDART , there are only six rules in total for variable type assignment. In jDOT , with
intersection types, more rules are needed.

7.8.1 Variable type check

Since the algorithm is bi-directional, there are two directions: the check direction and
the synthesis direction. I choose to first describe the check direction, because its form is
very close to stare-at subtyping. Recall that in Chapter 6, to handle the complication of
Rec-I and Rec-E, I introduced a concept called convertibility. The check direction is to
check if two types are convertible provided a variable.

Definition 7.8. The definitions of the Conversion operation and variable type check
jDOT is defined in Figure 7.8.

For a Conversion judgment Γ1 B S
x
=⇒ U C Γ2 and a variable type check judgment

Γ `jDOTS x←−: T , all components are inputs and they output true if there is a derivation
satisfies the definition.

The goal can be shown by this theorem.

170

Conversion

Γ1 B x.A
y
=⇒ x.AC Γ2

Cv-Refl
Γ1 � S <: U � Γ2

Γ1 B S
y
=⇒ U C Γ2

Cv-Sub

Γ1 `jDOTS x.A↗ T a Γ′1
Γ′1 B T

y
=⇒ U C Γ2

Γ1 B x.A
y
=⇒ U C Γ2

Cv-Sel-Left

Γ2 `jDOTS x.A↘ T a Γ′2
Γ1 B S

y
=⇒ T C Γ′2

Γ1 B A
y
=⇒ x.AC Γ2

Cv-Sel-Right

Γ1 BDy
y
=⇒ T C Γ2

Γ1 B µD
y
=⇒ T C Γ2

Cv-Mu-Left
Γ1 B T

y
=⇒ Dy C Γ2

Γ1 B T
y
=⇒ µD C Γ2

Cv-Mu-Right

T is not an intersection

Γ1 B S
y
=⇒ T C Γ2

Γ1 B S ∧ U
y
=⇒ T C Γ2

Cv-Left1

T is not an intersection

Γ1 B U
y
=⇒ T C Γ2

Γ1 B S ∧ U
y
=⇒ T C Γ2

Cv-Left2

Γ1 B T
y
=⇒ S C Γ2 Γ1 B T

y
=⇒ U C Γ2

Γ1 B T
y
=⇒ S ∧ U C Γ2

Cv-Right

Variable Type Check

ΓB Γ(x)
x
=⇒ T C Γ

Γ `jDOTS x←−: T
Chk-Var

Figure 7.8: Definitions of convertibility and variable checking

Theorem 7.15. (soundness) If Γ `jDOTS x←−: T , then Γ `jDOT x : T .

Clearly, the variable type check rule Chk-Var is just a specialization of Conversion,
and therefore I will put more focus on the Conversion operation. Conversion says that
a type can be converted to another provided there is a variable of this type. A quick glance
indicates that Conversion greatly resembles stare-at subtyping, and some might wonder
why it is necessary to have a separate definition. The rules are designed to have as large
a decidable fragment as possible and the complication comes from the Rec-I, Rec-E and
And rules. Illustration through examples makes the necessity of the rules clear.

171

Rec-I and Rec-E motivate the Cv-Mu-Left and Cv-Mu-Right rules. Consider the
following context:

Γ = x : µ{w.A : ⊥..>}

The variable checking problem is the following:

Γ `jDOTS x←−: {A : ⊥..>}

Clearly, this checking problem cannot be successful via subtyping because there is no
direct subtyping between µ types and declarations. However, with Rec-I, this checking
problem can be admitted. The following derivation shows how Conversion admits this
checking problem.

Γ� {A : ⊥..>} <: {A : ⊥..>} � Γ
reflexivity

ΓB {A : ⊥..>} x
=⇒ {A : ⊥..>}C Γ

Cv-Sub

ΓB µ{w.A : ⊥..>} x
=⇒ {A : ⊥..>}C Γ

Cv-Mu-Left

Γ `jDOTS x←−: {A : ⊥..>}
Chk-Var

And motivates Cv-Right. Consider the following context:

Γ = x : µ{w.A : ⊥..>} ∧ {B : ⊥..>}

The variable checking problem is the following:

Γ `jDOTS x←−: {A : ⊥..>} ∧ µ{w.B : ⊥..>}

This can be seen from the following derivation.

ΓB µ{w.A : ⊥..>} ∧ {B : ⊥..>} x
=⇒ {A : ⊥..>}C Γ

ΓB µ{w.A : ⊥..>} ∧ {B : ⊥..>} x
=⇒ µ{w.B : ⊥..>}C Γ

ΓB µ{w.A : ⊥..>} ∧ {B : ⊥..>} x
=⇒ {A : ⊥..>} ∧ µ{w.B : ⊥..>}C Γ

Cv-Right

Γ `jDOTS x←−: {A : ⊥..>} ∧ µ{w.B : ⊥..>}

On the top of the derivation, Cv-Right requires two Conversion witnesses. The first
one has been done in the previous example, after a Cv-Left1. The second witness can
be seen from a Cv-Left2 followed by a Cv-Mu-Right.

172

Moreover, imagine the context in this example:

Γ = y : {C : ⊥..µ{w.A : ⊥..>}};x : y.C ∧ {B : ⊥..>}

To check x’s type, Upcast needs to be applied to y.C first, which justifies all the path
type related rules.

The execution of variable type check also requires backtracking, due to the ∧-Traversal
and stare-at subtyping in it, as well as Cv-Left1 and Cv-Left2 rules. The termination
argument is similar to stare-at subtyping and should be direct.

Theorem 7.16. Conversion terminates as a non-deterministic algorithm.

Proof. The only rules unique in Conversion are the Cv-Mu-Left and Cv-Mu-Right
rules. The accounting measure clearly decreases when go from µD to D.

7.8.2 Variable type synthesis

Variable type synthesis has a different focus from variable type check. This operation
needs to make sure the returned type successfully avoids some set of free variables. The
Rec-I, Rec-E and And rules also have impact in the rules.

Definition 7.9. The definitions of Synthesizer and variable type synthesis are shown in
Figure 7.9.

For a Synthesizer judgment Γ Bx S/V
−→: U , Γ, x, S and a set of variables V are the

inputs and U is the output.

For a variable type synthesis judgment Γ `jDOTS x/V−→: T , Γ, x and V are the inputs
and T is the output.

Unlike the check direction which is given a type to check, the synthesis direction is
required to figure out a type from a variable. Therefore one more soundness condition is
needed.

Theorem 7.17. (soundness) If Γ `jDOTS x/V−→: T , then Γ `jDOT x : T .

Lemma 7.18. If Γ `jDOTS x/V−→: T , then fv(T) ⊆ dom(Γ)\V .

173

Synthesizer

y /∈ V

ΓBx y.A/V
−→: y.A

Sth-Stop
Γ `jDOTS y.A↗ S a Γ′ Γ′ Bx S/V

−→: U

ΓBx y.A/V
−→: U

Sth-Sel

ΓBx Dx/V \x−→: D′x
ΓBx µD/V

−→: µD′
Sth-Mu

ΓBx S/V
−→: S ′ ΓBx U/V

−→: U ′

ΓBx S ∧ U/V−→: S ′ ∧ U ′
Sth-And

Γ `jDOTS S ⇑V U

ΓBx S/V
−→: U

Sth-Prom

Variable Type Synthesis

Γ1 Bx S/V
−→: U

Γ1;x : S; Γ2 `jDOTS x/V−→: U
Syn-Var

Figure 7.9: Definitions of type synthesizer and variable type synthesis

Similar to type check, variable type synthesis is a specialization of Synthesizer. Notice
that the context passed into Synthesizer is Γ1, the part of the context preceding x. This
is to ensure the termination argument is easier to make. Sth-Mu uses both the Rec-I
and Rec-E rules. Notice that in the recursive case, x is removed from V because even if
D′ refers to x, it is guaranteed to be gone once Rec-I is applied. Sth-And uses the And
rule. The Sth-Prom rule uses Promotion which is to be shown next.

Theorem 7.19. Type variable synthesis terminates as a non-deterministic algorithm.

Proof. The measure is the lexicographic order of the accounting measure and the structural
measure. The termination argument is the easiest so far and should be straightforward.

7.8.3 Promotion and Demotion

In Chapter 6, variants of Promotion and Demotion, Promotionµ and Demotionµ,
are defined to handle µ types, which I concluded unnecessary at the beginning of the
chapter. Indeed, with the strengthened Revealing, Promotion and Demotion can have
more reliance on Revealing and the definitions are simplified. The full definitions of

174

Promotion and Demotion are too verbose. To focus on the point, I will just discuss two
rules that reflect the modification, and present the definitions in Appendix B.

Definition 7.10. See full definitions in Appendix B.

For a judgment of Promotion Γ `jDOTS S ⇑V U , Γ, S and V are the inputs and U is
the output. A Demotion judgment Γ `jDOTS S ⇓V U works similarly.

Consider the path type cases where a type declaration or a µ declaration is selected by
∧-Traversal in Promotion.

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1
T3 7→ {A : S..U} & T4 Γ′1 `jDOTS U ⇑V U ′

Γ1;x : T ; Γ2 `jDOTS x.A ⇑V U ′
P-Sel2

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1
T3 7→ µ{w.A : S..Uw} & T4 Γ′1;x : T2 ∧ T4 `jDOTS Ux ⇑V U ′

Γ1;x : T ; Γ2 `jDOTS x.A ⇑V U ′
P-Sel3

In Promotion, if a path type is encountered, and x ∈ V , these rules might apply. The
first three predicates are similar to Revealing. P-Sel2 should be quite straightforward.
Since T3 is guaranteed to be closed in Γ′1, so is {A : S..U} and the recursion just recurs
down U which is clearly a strictly smaller subproblem.

In P-Sel3, the recursive call recurs on a extended context Γ′1;x : T2 ∧ T4. Applying
the same argument as in Revealing, this subproblem is also smaller. These two cases
are enough to show that the improvement in Revealing has fundamental effects in other
operations to replace all other extra operations in µDART .

A number of properties of Promotion and Demotion can be shown.

Lemma 7.20. (soundness)

1. If Γ `jDOTS S ⇑V U , then Γ `jDOT S <: U .

2. If Γ `jDOTS S ⇓V U , then Γ `jDOT U <: S.

Lemma 7.21. If Γ `jDOTS S ⇑V (⇓V)U , the following hold.

1. U is closed in Γ.

2. The variables in V do not occur free in U .

175

7.9 Bi-directional General Term Typing

This section briefly discusses the general term typing. Once variable typing, Promo-
tion and Demotion are defined, the general term typing is actually quite routine. To
make the discussion concise, I put the full definition in Appendix C and here I only discuss
two selected rules, and focus more on the execution of the typing rules.

Definition 7.11. See full definitions in Appendix C.

For a type synthesis judgment Γ `jDOTS t/V−→: T , Γ, t and V are inputs and T is output.

For a type checking judgment Γ `jDOTS t←−: T , Γ, t and T are inputs and the algorithm
returns true if the derivation satisfies the definition.

Consider the following two rules in the synthesis and check directions.

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1
T3 7→ µ{w.a : Uw} & T4 Γ1;x : T ; Γ2 `jDOTS Ux ⇑V U ′

Γ1;x : T ; Γ2 `jDOTS x.a/V−→: U ′
Syn-Obj-E3

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1 T3 7→ ∀(z : S)Uz & T4

Γ `jDOTS y←−: S Γ2;x : T ; Γ1 � Uy <: U ′ � Γ2;x : T ; Γ1

Γ2;x : T ; Γ1 `jDOTS x y←−: U ′
Chk-All-E2

Due to intersection types, this pattern of ∧-Traversal with Revealing is spread in the
typing rules as well. In these cases, the second ∧-Traversals are used to find the wanted
types so that the type can either be synthesized or checked.

The following properties can be proved.

Theorem 7.22. (soundness) If Γ `jDOTS t←−: T , then Γ `jDOT t : T .

Theorem 7.23. (soundness) If Γ `jDOTS t/V−→: T , then Γ `jDOT t : T .

Lemma 7.24. If Γ `jDOTS t/V−→: T , then fv(T) ⊆ dom(Γ)\V .

Theorem 7.25. Type synthesis and type checking both terminate as non-deterministic
algorithms.

Proof. The measure is the structure of the term.

176

Since ∧-Traversal is involved in typing rules, backtracking is needed to fully extend
the decidable fragment. However, some backtracking is obviously unnecessary. Specifically,
for judgments like stare-at subtyping and typing in the check direction, only yes and no
answers are drawn from these judgments, so once these judgments have given yes answers,
there is no need to have later backtracking get into them. On the other hand, since
type synthesis gives types as results, it might make a wrong guess in the middle so later
backtracking needs to trace back into type synthesis, and ∧-Traversal and Revealing in
it, to guess a better type. This indicates that type synthesis with intersection types with
this large a feature set might be very expensive to do.

7.10 Encoding into jDOT

The decidable fragment of subtyping can be seen to subsume those of D∧ and µDART .
The decidable fragment of D∧ has been gracefully described by strong kernel D∧ while
one of µDART can only be understood operationally at this moment, discussed in detail
in Section 6.10. For this reason, the decidable fragment of algorithmic jDOT is better
understood empirically. In this section, I will show that jDOT can encode a covariant list
data structure and that the bi-directional type assignment is capable of type checking this
encoding.

The covariant list encoding is taken from Amin et al. [2016] modulo adaptation to
jDOT . To make the presentation concise, I adopt the following abbreviations.

µ{D1; ...;Dn} ≡ µD1 ∧ ... ∧ µDn

{A} ≡ {A : ⊥..>}
{A <: T} ≡ {A : ⊥..T}
{A = T} ≡ {A : T..T}

∀(x : T1, ..., x : Tn)T ≡ ∀(x : T1)...∀(x : Tn)T

λ(x : T1, ..., x : Tn)t ≡ λ(x : T1)...λ(x : Tn)t

In the encoding, I will just define head and tail members for lists. The definition of list
resides in a package object, which has the self reference p. The type of the package object

177

is as follows.

µ{p.List = µ{w.head : w.A;w.tail : p.List ∧ {A <: w.A}}
; p.nil : p.List ∧ {A <: ⊥}
; p.cons : ∀(x : {B}, y : x.B, z : p.List ∧ {A <: x.B})p.List ∧ {A <: x.B}
}

To capture the pattern in the encoding, I will need these additional abbreviations.

ListT ≡ µ{w.head : w.A;w.tail : List[w.A]}
List[T] ≡ p.List ∧ {A <: T}

Then the package object type can be written as

packageT ≡ µ{p.List = ListT

; p.nil : List[⊥]

; p.cons : ∀(x : {B}, y : x.B, z : List[x.B])List[x.B]

}

Notice that I intentionally missed the A type member declaration in the definition of
p.List. This is fine, because in jDOT (and in DOT), object types do not have to be
“well-formed”. In fact, if w.A is used non-trivially, the definition cannot be type checked
if it is not defined. This seems to suggest a form of encoding of higher kinded types in
jDOT .

The package itself can be defined by an object.

ν(p : packageT){
List = ListT

;nil = let result = ν(w : µ{w.A = ⊥} ∧ ListT)

{A = ⊥;head = w.head; tail = w.tail}
in result

;cons = λ(x : {B}, y : x.B, z : List[x.B])

let result = ν(w : µ{w.A = x.B} ∧ ListT)

{A = x.B;head = y; tail = z}
in result

}

178

This encoding can be seen typeable in the declarative definition, and the whole package
object will have type packageT as defined above.

Lemma 7.26. The encoding is typeable.

By the same reasoning as in Amin et al. [2016], when typing nil and cons, And and
Rec-E are needed. What is more exciting is that the type synthesis direction can synthe-
size the type of this object from the empty context.

Lemma 7.27. The type of encoding is synthesized to be packageT .

Though the entry point is type synthesis, the object definition forces the direction
quickly switches to the type checking direction. When checking nil, variable type checking
is necessary to convert µ{w.A = ⊥} ∧ ListT to p.List ∧ {A <: ⊥}, where the former
syntactically expands to µ{w.A = ⊥;w.head : w.A;w.tail : p.List ∧ {A <: w.A}}. In
Conversion, Cv-Right first applies to check if the object type can be converted to p.List
and {A <: ⊥} separately. Cv-Sel-Right is needed to find out the actual definition of
p.List, and Cv-Mu-Left is needed to eliminate the µ type. The checking of cons works
similarly, after a few invocations of Chk-All-I2.

179

Chapter 8

Discussion and Future Work

In the previous chapters, I described ways to establish undecidability proofs of a number
of calculi and designed their algorithmic typing and subtyping rules. During the technical
development, several problems were left behind. In this chapter, I collect some of those
problems and discuss their importance and potential solutions. Though I might propose
potential directions or solutions, they are not formally verified and remain speculative.
Yet, I still hope the speculations can eventually contribute to the future progress of these
problems.

8.1 Decidability Analysis on Language Features

In Chapter 3, I performed an in-depth discussion on how to establish the undecidability
proof of D<: if subtyping comparison between parameter types of dependent function types
is allowed. In Chapter 4, I made use of the insight obtained from the undecidability analysis
and proposed stare-at subtyping, which overcomes two limitations identified in the chapter.

However, reviewing stare-at subtyping and its corresponding declarative form strong
kernel D<:, one can notice that the algorithm does not attempt to decide bad bounds at
all. This can be seen in strong kernel D<: in which the BB rule is simply removed. This
raises the following question.

Problem 1. Do bad bounds introduce undecidability?

This problem has two aspects.

180

1. The first one requires an investigation on the bad bound phenomenon. If the attempt
is to show that bad bounds do introduce undecidability, then one must show the
halting problem (or other undecidable problem) can be reduced to subtyping decision
with the presence of bad bounds. To achieve this, it is required to isolate the effect
of dependent function types, so the best calculus to start with is probably F−<:> with
syntactically identical parameter types. Once this is done, one can see if the proof
works for kernel D<: with bad bounds. (Recall that kernel D<: is the declarative
form of step subtyping which requires the parameter types of dependent functions to
be identical in a subtyping comparison.)

2. The second aspect is about what we can learn from the analysis. Since the behavior
of bad bounds is unknown, bad bounds in stare-at subtyping are completely un-
supported. However, is it possible to support a fragment of bad bounds with an
algorithm that still terminates? This aspect cannot be resolved without performing
a rigorous study on this particular phenomenon.

Therefore, though D<: subtyping has been proven undecidable, it does not mean more
undecidability analysis is meaningless. Despite being the simplest calculus in the DOT
family, D<: is still filled with unknowns.

Similarly, the recursive types (or µ types) might also introduce undecidability.

Problem 2. Do µ types introduce undecidability?

The argument of why this analysis is important is analogous to the one about bad
bounds. What is more, lack of knowledge on µ types gives more impact than bad bounds.
In Chapter 4, kernel and strong kernel D<: are described, and bad bounds do not give
troubles introducing them (because bad bounds are removed from the kernels). However,
in Chapter 6 and Chapter 7, I am not able to give kernel forms precisely due to µ types.
Moreover, the algorithmic typing and subtyping in Chapter 6 and Chapter 7 relies on the
idea of types as resources, which requires the operations to maintain a certain invariant
of type consumption. I expect that analyzing the decidability of µ types can give a more
graceful algorithm which can be shown sound and terminating without adding significant
complication to the proofs.

I think the main difficulty of decidability analysis on these two features is going to
be considering how to make subtyping derivations deterministic. Specifically, decidability
analysis of both features will require new reduction from known undecidable problems
and therefore what is done in Pierce [1992] is unlikely to be directly applicable. Usually,
a well-known undecidable problem tends to have tighter correspondence to some model

181

of machines. The post-correspondence problem [Forster et al., 2018], PCP, is one of the
examples. Yes-witnesses of these problems have only one witness, while a yes-witness in
D<: subtyping usually has more than one derivations. In fact, Pierce [1992] started with
first discovering a deterministic and undecidable fragment. With the large freedom of
derivation in D<:, I speculate that this is going to be difficult and at this moment it is
hard to speculate what can be the best candidate problems for both features.

8.2 Soundness of jDOT

In Chapter 7, I introduced an alternative core calculus of Scala, jDOT , and explained
why it is a better choice. Due to time limitation, I am not able to prove its soundness,
while for a calculus to be interesting, the first requirement is to present its soundness proof.
I made an informal argument of why I believe this calculus is sound, by considering the
close relation between its definition and the usage of runtime information presented in
references [Rompf and Amin, 2016, Amin et al., 2016, Rapoport et al., 2017, Amin and
Rompf, 2017]. This discussion can be found in details in Section 7.2.

Therefore, being able to prove the soundness of jDOT is an important reason to justify
the definition of the calculus.

Problem 3. Is jDOT sound?

Again, I speculate it is true, because the adjustment of the calculus is motivated to sim-
ply capture only the runtime portion needed in the soundness proof. Following Rapoport
et al. [2017] should generate the desired proof.

8.3 Undecidability of jDOT

The next interesting problem is ask if jDOT is undecidable. I conjecture the answer is
yes. Notice that proving its undecidability might be related to the undecidability of bad
bounds and/or µ types, but I speculate that might not be necessary, if a normal form of
jDOT can be found.

Problem 4. Is jDOT (sub)typing undecidable?

Problem 5. What is jDOT normal form?

182

If jDOT normal form is discovered, then one should be able to show reduction from
one of the known undecidable calculi presented in this thesis, hypothetically F−<: or D<<:.

Recall that in the previous discussion in Section 3.11.2, I pointed out that the main
difficulty is how to unravel the mutual dependency between typing and subtyping rules,
due to µ types. One inspiration to approach this problem is to realized a recurring relation
in this thesis, convertibility.

Intuitively, a type S is convertible to another type U , if a variable x of type S can be
witnessed at type U . In languages without µ types, e.g. D<: and D∧, this relation coincides
with subtyping, but with µ types, they are no longer the same. I speculate that jDOT
normal form can no longer be a ternary predicate but a quaternary one, with convertibility
taken into account. Formally, I propose the following relation.

Definition 8.1. A sub-conversion relation Γ `jDOT S <:x? U is a quaternary predicate,
where x? means an optional variable.

1. If the variable is given, as indicated by Γ `jDOT S <:x U , then this is a convertibility
relation. The desired property of the convertibility relation is that if Γ `jDOT x : S
and Γ `jDOT S <:x U , then Γ `jDOT x : U .

2. If the variable is not given, indicated by Γ `jDOT S <:
�x
U , the concept should be

equivalent to the usual subtyping relation Γ `jDOT S <: U .

Moreover, a sub-conversion relation must not be mutually defined. I propose the fol-
lowing properties to test if a potential definition of sub-conversion can be used to establish
an undecidability proof.

1. If Γ `jDOT x : S and Γ `jDOT S <:x U , then Γ `jDOT x : U .

2. If Γ `jDOT x : T , then Γ `jDOT Γ(x) <:x T .

3. Γ `jDOT S <: U iff Γ `jDOT S <:
�x
U .

4. If Γ `jDOT S <:
�x
T and Γ `jDOT T <:

�x
U , then Γ `jDOT S <:

�x
U .

5. If Γ `jDOT S <:x T and Γ `jDOT T <:x U , then Γ `jDOT S <:x U .

The first property tests that sub-conversion indeed indicates convertibility when a vari-
able is given. The second property tests convertibility is strong enough. The third property
tests that if a variable is not given, indeed sub-conversion becomes the subtyping relation.

183

The remaining two properties are transitivity with the optional variable given or not. They
should be required when proving the third property.

I propose a tentative definition of sub-conversion in Figure 8.1.

To select some rules to discuss, in the Sc-Fld rule, when the member types are com-
pared, the optional variable in the premise is guaranteed not given. This is because even if
a variable x is given, it cannot influence the subtyping judgment just by using the typing
and subtyping rules.

On the other hand, in the Sc-Sel1 rule, the premise necessarily requires a variable
because Γ(x) surely is a type of the variable x. Moreover, this rule is very close to the
Sc-Sel3 rule. Their differences are (a) Sc-Sel1 requires no variable given as input while
Sc-Sel3 requires a variable, and (b) Sc-Sel1 has one less premise than Sc-Sel3. This
is because the given variable y in Sc-Sel3 might contribute to establishing the witness
of Γ `jDOT S ′ <:y S, while in Sc-Sel1, due to higher dimensional absorption, this extra
predicate is clearly redundant.

The same differences can be seen in the pairs of Sc-Sel2 and Sc-Sel4, and Sc-BB1
and Sc-BB2. Sc-Sel2 and Sc-Sel4 are the dual cases of Sc-Sel1 and Sc-Sel3 and
Sc-BB1 and Sc-BB2 are the bad bound generalization.

Sc-Rec-I and Sc-Rec-E are designed to replace Rec-I and Rec-E and therefore
they must require a variable.

Notice that rules like Sc-Sel2 are storing a type which is not found in the inputs, so
one might argue this definition is not a normal form. But if the focus is on the Γ `jDOT
S ∧U <:

�x
T fragment, then all the rules would satisfy the definition of normal form. After

all, the problem is about proving undecidability of subtyping, not about sub-conversion.

Clearly, this definition contains a large number of rules, and the proofs most likely
require case analysis on whether the variable is given or not, so there is a substantial
amount of technical work to do in order to understand this definition and potentially use it
to establish undecidability of subtyping and typing of jDOT . I further speculate that, in
the reduction from F−<: or D<<:, the images of the interpretation functions are restrictive
enough, so that all uses of variables in the convertibility relation are not substantial and
effectively turn the whole sub-conversion to subtyping relation. Formally,

If ⟪Γ⟫ `jDOT JSK <:x JUK, then ⟪Γ⟫ `jDOT JSK <:
�x

JUK.

If this statement can be shown, then the undecidability of jDOT is likely achievable,
but at the current stage, it is very difficult to judge whether this is the right direction to
pursue.

184

Γ `jDOT T <:x? >
Sc-Top

Γ `jDOT ⊥ <:x? T
Sc-Bot

Γ `jDOT T <:x? T
Sc-Refl

Γ `jDOT S2 <:
�x
S1 Γ `jDOT U1 <:

�x
U2

Γ `jDOT {A : S1..U1} <:x? {A : S2..U2}
Sc-Bnd

Γ `jDOT T1 <:
�x
T2

Γ `jDOT {a : T1} <:x? {a : T2}
Sc-Fld

Γ `jDOT S2 <:
�y
S1

Γ;x : S2 `jDOT U1 <:
�y
U2

Γ `jDOT ∀(x : S1)U1 <:y? ∀(x : S2)U2

Sc-All

Γ `jDOT Γ(x) <:x {A : S..>}
Γ `jDOT Γ(x) <:x {A : ⊥..U}

Γ `jDOT S <:
�y
U

Sc-BB1

Γ `jDOT Γ(x) <:x {A : S..>} Γ `jDOT Γ(x) <:x {A : ⊥..U}
Γ `jDOT S ′ <:y S Γ `jDOT U <:y U

′

Γ `jDOT S ′ <:y U
′ Sc-BB2

Γ `jDOT Γ(x) <:x {A : S..>}

Γ `jDOT S <:
�y
x.A

Sc-Sel1
Γ `jDOT Γ(x) <:x {A : ⊥..U}

Γ `jDOT x.A <:
�y
U

Sc-Sel2

Γ `jDOT Γ(x) <:x {A : S..>}
Γ `jDOT S ′ <:y S

Γ `jDOT S ′ <:y x.A
Sc-Sel3

Γ `jDOT Γ(x) <:x {A : ⊥..U}
Γ `jDOT U <:y U

′

Γ `jDOT x.A <:y U
Sc-Sel4

Γ `jDOT S <:x? T

Γ `jDOT S ∧ U <:x? T
Sc-And-E1

Γ `jDOT U <:x? T

Γ `jDOT S ∧ U <:x? T
Sc-And-E2

Γ `jDOT T <:x? S Γ `jDOT T <:x? U

Γ `jDOT T <:x? S ∧ U
Sc-And-I

Γ `jDOT Dx <:x T

Γ `jDOT µD <:x T
Sc-Rec-I

Γ `jDOT µD <:x T

Γ `jDOT Dx <:x T
Sc-Rec-E

Figure 8.1: Sub-conversion relation of jDOT

185

Chapter 9

Conclusion

In Chapter 1, I posed two questions on DOT .

Question 9. (restate Question 1) Is (sub)typing of DOT decidable?

Question 10. (restate Question 2) How should DOT programs be type checked?

To tackle the first question, in Chapter 3, I performed a decidability analysis on D<:,
the simplest calculus in the DOT family, and proposed the special focus on a special
kind of declarative form of subtyping, normal form. Through defining D<: normal form, I
succeeded in establishing the undecidability proofs of both typing and subtyping of D<:,
and extended the same idea to D∧ in Chapter 5 where I showed the undecidability of D∧
subtyping.

However, in Chapter 3, I also discussed why it is difficult to show the undecidability
of (sub)typing of DOT , and I attempted to give a definition of jDOT normal form in
Section 8.3, but to actually establish a rigorous proof, future work is needed.

To tackle the second question, in Chapter 4, I approached it by considering an existing
work, step subtyping, and borrowing ideas from the decidability analysis done previously.
I proposed a new algorithmic subtyping procedure, stare-at subtyping, and showed it to
be strictly stronger than step subtyping. Algorithmic analysis combined with decidability
analysis revealed two declarative decidable fragments of D<:, kernel and strong kernel D<:.
I established the proofs that step subtyping is sound and complete w.r.t. kernel D<: and
stare-at subtyping is sound and complete w.r.t. strong kernel D<:. This result gracefully
resolves the subtyping decision problem in D<:.

186

In Chapter 5, I showed the extension of stare-at sutbyping to intersection types. I
outlined in detail the execution of stare-at subtyping, by emphasizing the need for extensive
backtracking. I showed that D∧ also has a strong kernel form and stare-at subtyping is
still sound and complete w.r.t. it.

In Chapter 6, I investigated recursive types. To handle recursive types, I proposed to
consider types as resources, and stare-at subtyping was adapted in a way so that each path
dependent type can only be mentioned by Alice and Bob once respectively.

In Chapter 7, I briefly reviewed the methods preceding this chapter and Wadlerfest
DOT , and proposed jDOT as a better alternative than DOT . Stare-at subtyping was
refined, so that it is capable of handling all three features of path dependent types, inter-
section types and recursive types. Bi-directional type assignment of jDOT is also discussed
in detail. In this chapter, I have shown a bi-directional algorithm which is proven sound
and terminating, and strong enough to type check a covariant list example implemented
in jDOT .

This thesis has done an extensive investigation on the three important features in
DOT calculi and introduced various techniques to handle their type checking problem.
The technical work fills in the blank of decidability and algorithmic study of the DOT
calculi.

187

References

Dotty documentation, 2019.

Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Trans. Program.
Lang. Syst., 15(4):575–631, September 1993. ISSN 0164-0925. doi: 10.1145/155183.
155231. URL http://doi.acm.org/10.1145/155183.155231.

Nada Amin and Tiark Rompf. Type soundness proofs with definitional interpreters. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 2017, pages 666–679, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-
4660-3. doi: 10.1145/3009837.3009866. URL http://doi.acm.org/10.1145/3009837.

3009866.

Nada Amin, Adriaan Moors, and Martin Odersky. Dependent object types. In 19th
International Workshop on Foundations of Object-Oriented Languages, number EPFL-
CONF-183030, 2012.

Nada Amin, Tiark Rompf, and Martin Odersky. Foundations of path-dependent types. In
Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, pages 233–249, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2585-1. doi: 10.1145/2660193.2660216. URL http://

doi.acm.org/10.1145/2660193.2660216.

Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The
Essence of Dependent Object Types, pages 249–272. Springer International Pub-
lishing, Cham, 2016. ISBN 978-3-319-30936-1. URL https://doi.org/10.1007/

978-3-319-30936-1_14.

David Aspinall and Adriana Compagnoni. Subtyping dependent types. Theoreti-
cal Computer Science, 266(1):273 – 309, 2001. ISSN 0304-3975. doi: https://doi.
org/10.1016/S0304-3975(00)00175-4. URL http://www.sciencedirect.com/science/

article/pii/S0304397500001754.

188

http://doi.acm.org/10.1145/155183.155231
http://doi.acm.org/10.1145/3009837.3009866
http://doi.acm.org/10.1145/3009837.3009866
http://doi.acm.org/10.1145/2660193.2660216
http://doi.acm.org/10.1145/2660193.2660216
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1007/978-3-319-30936-1_14
http://www.sciencedirect.com/science/article/pii/S0304397500001754
http://www.sciencedirect.com/science/article/pii/S0304397500001754

Steve Awodey. Category Theory. Oxford University Press, Inc., New York, NY, USA, 2nd
edition, 2010. ISBN 0199237182, 9780199237180.

H.P. Barendregt. The lambda calculus: its syntax and semantics. Studies in logic and the
foundations of mathematics. North-Holland, 1984. ISBN 9780444867483. URL https:

//books.google.ca/books?id=eMtTAAAAYAAJ.

L. Cardelli, S. Martini, J.C. Mitchell, and A. Scedrov. An extension of system f with
subtyping. Information and Computation, 109(1):4 – 56, 1994. ISSN 0890-5401.
doi: https://doi.org/10.1006/inco.1994.1013. URL http://www.sciencedirect.com/

science/article/pii/S0890540184710133.

Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and poly-
morphism. ACM Comput. Surv., 17(4):471–523, December 1985. ISSN 0360-0300. doi:
10.1145/6041.6042. URL http://doi.acm.org/10.1145/6041.6042.

Pierre Casteran and Matthieu Sozeau. A gentle introduction to type classes and relations
in coq. 05 2012.

Arthur Charguéraud. The locally nameless representation. Journal of Automated Reason-
ing, 49(3):363–408, Oct 2012. ISSN 1573-0670. doi: 10.1007/s10817-011-9225-2. URL
https://doi.org/10.1007/s10817-011-9225-2.

Adam Chlipala. Certified Programming with Dependent Types: A Pragmatic Introduction
to the Coq Proof Assistant. The MIT Press, 2013. ISBN 0262026651, 9780262026659.

M. Coppo and M. Dezani-Ciancaglini. A new type assignment for λ-terms. Archiv für
mathematische Logik und Grundlagenforschung, 19(1):139–156, Dec 1978. ISSN 1432-
0665. doi: 10.1007/BF02011875. URL https://doi.org/10.1007/BF02011875.

M. Coppo, M. Dezani-Ciancaglini, and P. Salle’. Functional characterization of some se-
mantic equalities inside λ-calculus. In Hermann A. Maurer, editor, Automata, Languages
and Programming, pages 133–146, Berlin, Heidelberg, 1979. Springer Berlin Heidelberg.
ISBN 978-3-540-35168-9.

Vincent Cremet, François Garillot, Serguëı Lenglet, and Martin Odersky. A core calculus
for scala type checking. In Rastislav Královič and Pawe l Urzyczyn, editors, Mathematical
Foundations of Computer Science 2006, pages 1–23, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg. ISBN 978-3-540-37793-1.

189

https://books.google.ca/books?id=eMtTAAAAYAAJ
https://books.google.ca/books?id=eMtTAAAAYAAJ
http://www.sciencedirect.com/science/article/pii/S0890540184710133
http://www.sciencedirect.com/science/article/pii/S0890540184710133
http://doi.acm.org/10.1145/6041.6042
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/BF02011875

Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption. In A. Arnold, editor,
CAAP ’90, pages 132–146, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg. ISBN
978-3-540-47042-7.

Rowan Davies. Practical Refinement-type Checking. PhD thesis, Pittsburgh, PA, USA,
2005. AAI3168521.

Yannick Forster and Dominique Larchey-Wendling. Certified undecidability of intuitionistic
linear logic via binary stack machines and minsky machines. In Proceedings of the
8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2019, pages 104–117, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6222-1. doi:
10.1145/3293880.3294096. URL http://doi.acm.org/10.1145/3293880.3294096.

Yannick Forster and Gert Smolka. Weak call-by-value lambda calculus as a model of
computation in coq. In Mauricio Ayala-Rincón and César A. Muñoz, editors, Interactive
Theorem Proving, pages 189–206, Cham, 2017. Springer International Publishing. ISBN
978-3-319-66107-0.

Yannick Forster, Edith Heiter, and Gert Smolka. Verification of pcp-related computational
reductions in coq. In Interactive Theorem Proving - 9th International Conference, ITP
2018, Oxford, UK, July 9-12, 2018, LNCS 10895, pages 253–269. Springer, Jul 2018.
Preliminary version appeared as arXiv:1711.07023.

Ben Greenman, Fabian Muehlboeck, and Ross Tate. Getting f-bounded polymorphism into
shape. SIGPLAN Not., 49(6):89–99, June 2014. ISSN 0362-1340. doi: 10.1145/2666356.
2594308. URL http://doi.acm.org/10.1145/2666356.2594308.

Radu Grigore. Java generics are turing complete. In Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages, POPL 2017, pages 73–85,
New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4660-3. doi: 10.1145/3009837.
3009871. URL http://doi.acm.org/10.1145/3009837.3009871.

J. Roger Hindley, Jonathan P. Seldin, and Garrel Pottinger. A type assignment for the
strongly normalizabile -terms. 2013.

R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions
of the American Mathematical Society, 146:29–60, 1969. ISSN 00029947. URL http:

//www.jstor.org/stable/1995158.

Andrew J. Kennedy and Benjamin C. Pierce. On decidability of nominal subtyping with
variance. 2006.

190

http://doi.acm.org/10.1145/3293880.3294096
http://doi.acm.org/10.1145/2666356.2594308
http://doi.acm.org/10.1145/3009837.3009871
http://www.jstor.org/stable/1995158
http://www.jstor.org/stable/1995158

Daniel Leivant. Discrete polymorphism. In Proceedings of the 1990 ACM Conference on
LISP and Functional Programming, LFP ’90, pages 288–297, New York, NY, USA, 1990.
ACM. ISBN 0-89791-368-X. doi: 10.1145/91556.91675. URL http://doi.acm.org/10.

1145/91556.91675.

Zhaohui Luo. Computation and reasoning: A type theory for computer science. 04 2019.

Cyprien Mangin and Matthieu Sozeau. Equations reloaded. working paper or preprint,
December 2017. URL https://hal.inria.fr/hal-01671777.

J. Martin. Introduction to Languages and the Theory of Computation. McGraw-Hill
Education, 2010. ISBN 9780073191461. URL https://books.google.ca/books?id=

arluQAAACAAJ.

Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Lecture
Notes. Bibliopolis, Naples, 1984. ISBN 88-7088-105-9. Notes by Giovanni Sambin.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3):348 – 375, 1978. ISSN 0022-0000. doi: https://doi.org/10.1016/
0022-0000(78)90014-4. URL http://www.sciencedirect.com/science/article/pii/

0022000078900144.

Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML. MIT
Press, Cambridge, MA, USA, 1997. ISBN 0262631814.

Adriaan Moors, Frank Piessens, and Martin Odersky. Safe type-level abstraction in scala
adriaan moors. 2007.

Abel Nieto. Towards algorithmic typing for dot (short paper). In Proceedings of the 8th
ACM SIGPLAN International Symposium on Scala, SCALA 2017, pages 2–7, New York,
NY, USA, 2017. ACM. ISBN 978-1-4503-5529-2. doi: 10.1145/3136000.3136003. URL
http://doi.acm.org/10.1145/3136000.3136003.

Ulf Norell. Towards a practical programming language based on dependent type theory.
PhD thesis, Department of Computer Science and Engineering, Chalmers University of
Technology, SE-412 96 Göteborg, Sweden, September 2007.

Martin Odersky, Matthias Zenger, and Christoph Zenger. Colored local type inference. In
Proc. ACM Symposium on Principles of Programming Languages, pages 41–53, 2001.

Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A nominal theory
of objects with dependent types. In Proc. ECOOP’03, Springer LNCS, 2003.

191

http://doi.acm.org/10.1145/91556.91675
http://doi.acm.org/10.1145/91556.91675
https://hal.inria.fr/hal-01671777
https://books.google.ca/books?id=arluQAAACAAJ
https://books.google.ca/books?id=arluQAAACAAJ
http://www.sciencedirect.com/science/article/pii/0022000078900144
http://www.sciencedirect.com/science/article/pii/0022000078900144
http://doi.acm.org/10.1145/3136000.3136003

Christine Paulin-Mohring. Introduction to the calculus of inductive constructions, 2015.

Frank Pfenning. Structural cut elimination: I. intuitionistic and classical logic. Information
and Computation, 157(1):84 – 141, 2000. ISSN 0890-5401. doi: https://doi.org/10.
1006/inco.1999.2832. URL http://www.sciencedirect.com/science/article/pii/

S0890540199928328.

Benjamin C Pierce. Programming with intersection types and bounded polymorphism. PhD
thesis, Carnegie Mellon University, 1991.

Benjamin C. Pierce. Bounded quantification is undecidable. In Proceedings of the 19th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’92, pages 305–315, New York, NY, USA, 1992. ACM. ISBN 0-89791-453-8. doi: 10.
1145/143165.143228. URL http://doi.acm.org/10.1145/143165.143228.

Benjamin C. Pierce. Bounded quantification with bottom. Technical Report 492, Computer
Science Department, Indiana University, 1997.

Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition,
2002. ISBN 0262162091, 9780262162098.

Benjamin C. Pierce. Advanced Topics in Types and Programming Languages. The MIT
Press, 2004. ISBN 0262162288.

Benjamin C Pierce and David N Turner. Local type inference. ACM Transactions on
Programming Languages and Systems (TOPLAS), 22(1):1–44, 2000.

Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták. A simple soundness proof for
dependent object types. Proc. ACM Program. Lang., 1(OOPSLA):46:1–46:27, October
2017. ISSN 2475-1421. doi: 10.1145/3133870. URL http://doi.acm.org/10.1145/

3133870.

Tiark Rompf and Nada Amin. Type soundness for dependent object types (dot). In
Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2016, pages 624–641,
New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4444-9. doi: 10.1145/2983990.
2984008. URL http://doi.acm.org/10.1145/2983990.2984008.

Matthieu Sozeau and Nicolas Oury. First-class type classes. In Otmane Ait Mohamed,
César Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics, pages
278–293, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-71067-7.

192

http://www.sciencedirect.com/science/article/pii/S0890540199928328
http://www.sciencedirect.com/science/article/pii/S0890540199928328
http://doi.acm.org/10.1145/143165.143228
http://doi.acm.org/10.1145/3133870
http://doi.acm.org/10.1145/3133870
http://doi.acm.org/10.1145/2983990.2984008

Agda Team. Agda 2.5.4.2, 2019.

The Coq Development Team. The coq proof assistant, version 8.8.0, April 2018. URL
https://doi.org/10.5281/zenodo.1219885.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study,
2013.

Stefan Wehr and Peter Thiemann. On the decidability of subtyping with bounded ex-
istential types. In Proceedings of the 7th Asian Symposium on Programming Lan-
guages and Systems, APLAS ’09, pages 111–127, Berlin, Heidelberg, 2009. Springer-
Verlag. ISBN 978-3-642-10671-2. doi: 10.1007/978-3-642-10672-9 10. URL http:

//dx.doi.org/10.1007/978-3-642-10672-9_10.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. IN-
FORMATION AND COMPUTATION, 115:38–94, 1992.

193

https://doi.org/10.5281/zenodo.1219885
https://homotopytypetheory.org/book
http://dx.doi.org/10.1007/978-3-642-10672-9_10
http://dx.doi.org/10.1007/978-3-642-10672-9_10

APPENDICES

194

Appendix A

Various Operations in µDART

This appendix defines various operations that are not defined in the thesis. These
operations are verbose to define while not too difficult to understand once the specification
is listed. So I consider them a distraction from the actual content. Also note that the work
in µDART is completely revised and is entirely superseded by the work in jDOT . The
definitions are here just to ensure the completeness of the document.

A.1 Exposure

Definition A.1. The definition of Exposure can be found in Figure A.1.

An Exposure judgment Γ `µDARTS S ⇑ U has Γ and S as inputs and U as output.

Lemma A.1. If Γ `µDARTS S ⇑ U , Following holds.

1. Γ `µDART S <: U .

2. U is not a path.

A.2 Imposure

Imposure is the dual operation of Exposure.

195

T is not a path

Γ `µDARTS T ⇑ T
Ep-Stop

Γ `µDARTS T ⇑ >
Ep-Top*

Γ1 `µDARTS T ⇑ ⊥

Γ1;x : T ; Γ2 `µDARTS x.A ⇑ ⊥
Ep-Bot

Γ1 `µDARTS T ⇑ {DS} {A : S..U} ∈ {DS} Γ1 `µDARTS U ⇑ U ′

Γ1;x : T ; Γ2 `µDARTS x.A ⇑ U ′
Ep-Rcd

Γ1 `µDARTS T ⇑ µ(z : DSz)
DSx `µDARTS x.A ⇑µ U a DS ′x Γ1 `µDARTS U ⇑ U ′

Γ1;x : T ; Γ2 `µDARTS x.A ⇑ U ′
Ep-Mu

Figure A.1: The definition of Exposure in µDART

Definition A.2. The definition of Imposure can be found in Figure A.2.

An Imposure judgment Γ `µDARTS S ⇓ U has Γ and S as inputs and U as output.

Notice that Imposure uses Exposure to resolve x’s type, T . This is correct, because
if two types have subtype relation, then the types in their corresponding contra-variant
position have supertype relation.

In the Ip-Mu rule, it has the premise DSx `µDARTS x.A ⇓µ S a DS ′x, which is called
Imposureµ and is the dual operation of Exposureµ to be defined in the next section.

Lemma A.2. If Γ `µDARTS S ⇓ U , Following holds.

1. Γ `µDART U <: S.

2. U is not a path.

A.3 Imposureµ

Definition A.3. The definition of Imposureµ is defined in Figure A.3.

For a Imposureµ judgment DSx `µDARTS x.A ⇓µ T a DS ′x, declarations DSx, variable
x and type member label A are inputs and type T and declaations DS ′x are outputs.

196

T is not a path

Γ `µDARTS T ⇓ T
Ip-Stop

Γ `µDARTS T ⇓ ⊥
Ip-Bot*

Γ1 `µDARTS T ⇑ ⊥

Γ1;x : T ; Γ2 `µDARTS x.A ⇓ >
Ip-Top

Γ1 `µDARTS T ⇑ {DS} {A : S..U} ∈ {DS} Γ1 `µDARTS S ⇓ S ′

Γ1;x : T ; Γ2 `µDARTS x.A ⇓ S ′
Ip-Rcd

Γ1 `µDARTS T ⇑ µ(z : DSz) DSx `µDARTS x.A ⇓µ S a DS ′x Γ1 `µDARTS S ⇓ S ′

Γ1;x : T ; Γ2 `µDARTS x.A ⇓ S ′
Ip-Mu

Figure A.2: The definition of Imposure in µDART

A /∈ dom(DSx)

DSx `µDARTS x.A ⇓µ ⊥ a DSx
Im-Bot

{A : y.B..U} ∈ DSx x 6= y

DSx `µDARTS x.A ⇓µ y.B a DSx\A
Im-Sel

{A : S..T} ∈ DSx S is not a path

DSx `µDARTS x.A ⇓µ S a DSx\A
Im-Stop

{A : x.B..U} ∈ DSx DSx\A `µDARTS x.B ⇓µ T a DS ′x
DSx `µDARTS x.A ⇓µ T a DS ′x

Im-Recur

Figure A.3: Definition of Imposureµ

Lemma A.3. (soundness) If Γ `µDART x : {DSx} and DSx `µDARTS x.A ⇓µ T a DS ′x,
then Γ `µDART T <: x.A.

Lemma A.4. Imposureµ returns either a non-path type or a path type that does not refer
to the self reference of the µ type.

Lemma A.5. Returned declarations {DS ′x} are a subset of the input declarations {DSx}.
To use set theoretic notation {DS ′x} ⊆ {DSx}.

197

A.4 Promotion and Demotion

Promotion and Demotion are responsible for finding supertype / subtype of a given
type so that a given set of free variables do not occur free in the returned type. These
operations are used in the type synthesis rules to ensure the returned type remains closed
in the context.

Definition A.4. The Promotion and Demotion operations are defined in Figure A.4.

For a judgment of Promotion Γ `µDARTS S ⇑V U , Γ, S and V are the inputs and U
is the output. A Demotion judgment Γ `µDARTS S ⇓V U works similarly.

In the P-Sel3 rule, a judgment DSx `µDARTS x.A ⇑µx U is used. This operation is
called Promotionµ. Its relation to Promotion is similar to Exposureµ to Exposure.
Similarly, in the D-Sel3 rule, a Demotionµ judgment DSx `µDARTS x.A ⇓µx U is used.
These two operations are to be defined in the next section. In the PD-Rcd rule, another
judgment Γ `µDARTSD {DS} ⇓V (⇑V){DS ′} is used. This is the variant of Promotion
and Demotion to loop over the record types, which is defined in Figure A.5.

Lemma A.6. If Γ `µDARTS S ⇑V (⇓V)U , the following hold.

1. (soundness) Γ `µDART S <: U .

2. U is closed in Γ.

3. U doesn’t have any variables in V occur free.

This justifies this set of operations.

A.5 Promotionµ and Demotionµ

Similar to Exposureµ and Imposureµ, Promotion and Demotion also need their
variants to traverse the declarations as a cyclic context, which motivates Promotionµ and
Demotionµ.

Definition A.5. The Promotionµ and Demotionµ operations are defined in Figure A.6.

For a judgment of Promotionµ DSx `µDARTS S ⇑µx U , DSx, S and x are the inputs
and U is the output. A Demotion judgment DSx `µDARTS S ⇓µx U works similarly.

198

Γ `µDARTS > ⇑V (⇓V)>
PD-Top

Γ `µDARTS ⊥ ⇑V (⇓V)⊥
PD-Bot

Γ `µDARTS T ⇑V >
P-Top*

Γ `µDARTS T ⇓V ⊥
D-Bot*

x /∈ V

Γ `µDARTS y.A ⇑V (⇓V)y.A
PD-Var

Γ1 `µDARTS T ⇑ ⊥

Γ1;x : T ; Γ2 `µDARTS x.A ⇑V ⊥
P-Sel1

Γ1 `µDARTS T ⇑ ⊥

Γ1;x : T ; Γ2 `µDARTS x.A ⇓V >
D-Sel1

Γ1 `µDARTS T ⇑ {DS} {A : S..U} ∈ {DS} Γ1 `µDARTS U ⇑V U ′

Γ1;x : T ; Γ2 `µDARTS x.A ⇑V U ′
P-Sel2

Γ1 `µDARTS T ⇑ {DS} {A : S..U} ∈ {DS} Γ1 `µDARTS S ⇓V S ′

Γ1;x : T ; Γ2 `µDARTS x.A ⇓V S ′
D-Sel2

Γ1 `µDARTS T ⇑ µ(z : DSz) DSx `µDARTS x.A ⇑µx U Γ1 `µDARTS U ⇑V U ′

Γ1;x : T ; Γ2 `µDARTS x.A ⇑V U ′
P-Sel3

Γ1 `µDARTS T ⇑ µ(z : DSz) DSx `µDARTS x.A ⇓µx U Γ1 `µDARTS S ⇓V S ′

Γ1;x : T ; Γ2 `µDARTS x.A ⇓V S ′
D-Sel3

Γ `µDARTS S ⇓V (⇑V)S ′ Γ `µDARTS U ⇑V (⇓V)U ′

Γ `µDARTS ∀(z : S)U ⇑V (⇓V)∀(z : S ′)U ′
PD-All

Γ `µDARTSD {DS} ⇑V (⇓V){DS ′}

Γ `µDARTS {A : S..U} ⇑V (⇓V){A : S ′..U ′}
PD-Rcd

fv(DS) ∩ V = ∅

Γ `µDARTS µ(z : DSz) ⇑V (⇓V)µ(z : DSz)
PD-Mu

Figure A.4: Definitions of Promotion and Demotion

199

Γ `µDARTSD {} ⇑V (⇓V){}
PDR-Nil

Γ `µDARTS T ⇑V (⇓V)T ′ Γ `µDARTSD {DS} ⇑V (⇓V){DS ′}

Γ `µDARTSD {a : T ;DS} ⇑V (⇓V){a : T ′;DS ′}
PDR-Fld

Γ `µDARTS S ⇓V (⇑V)S ′

Γ `µDARTS U ⇑V (⇓V)U ′ Γ `µDARTSD {DS} ⇑V (⇓V){DS ′}

Γ `µDARTSD {A : S..U ;DS} ⇑V (⇓V){A : S ′..U ′;DS ′}
PDR-Bnd

Figure A.5: Promotion and Demotion for record types

In the PDM-Rcd rule, judgment DSx `µDARTSD {DS1} ⇑µx (⇓µx){DS2} is used. This
is the variant of Promotionµ and Demotionµ that loops over the record types, which is
defined in Figure A.7.

The following are properties of Promotionµ and Demotionµ.

Lemma A.7. If DSx `µDARTS S ⇑µx (⇓µx)U , then x /∈ fv(U).

Lemma A.8. 1. If Γ `µDART x : {DSx} and DSx `µDARTS T ⇑µx U , then Γ `µDART
T <: U .

2. If Γ `µDART x : {DSx} and DSx `µDARTS T ⇓µx U , then Γ `µDART U <: T .

A.6 Bi-directional type assignment

With all those operations defined, bi-directional type assignment for general terms can
be defined. Clearly, variable typing is necessary and has been discussed in Section 6.12.

Definition A.6. The definition of type synthesis is defined in Figure A.8 and type checking
is defined in Figure A.9.

For a type synthesis judgment Γ `µDARTS t/V−→: T , Γ, t and V are inputs and T is
output.

For a type checking judgment Γ `µDARTS t←−: T , Γ, t and T are inputs and the algorithm
returns true if the derivation satisfies the definition.

200

DSx `µDARTS > ⇑µx (⇓µx)>
PDM-Top

DSx `µDARTS ⊥ ⇑µx (⇓µx)⊥
PDM-Bot

DSx `µDARTS T ⇑µx >
PM-Top*

DSx `µDARTS T ⇓µx ⊥
DM-Bot*

x 6= y

DSx `µDARTS y.A ⇑µx (⇓µx)y.A
PDM-Var

A ∈ dom(DSx) DSx `µDARTS x.A ⇑µ T a DS ′x DSx `µDARTS T ⇑µx T ′

DSx `µDARTS x.A ⇑µx T ′
PM-Sel

A ∈ dom(DSx) DSx `µDARTS x.A ⇓µ T a DS ′x DSx `µDARTS T ⇓µx T ′

DSx `µDARTS x.A ⇓µx T ′
DM-Sel

DSx `µDARTS S ⇓µx (⇑µx)S ′ DSx `µDARTS U ⇑µx (⇓µx)U ′

DSx `µDARTS ∀(z : S)U ⇑µx (⇓µx)∀(z : S ′)U ′
PDM-All

DSx `µDARTSD {DS1} ⇑µx (⇓µx){DS2}

DSx `µDARTS {DS1} ⇑µx (⇓µx){DS2}
PDM-Rcd

x /∈ fv(DS ′y)

DSx `µDARTS µ(y : DS ′y) ⇑µx (⇓µx)µ(y : DS ′y)
PDM-Mu

Figure A.6: Definitions of Promotionµ and Demotionµ

Lemma A.9. (soundness) If Γ `µDARTS t←−: T , then Γ `µDART t : T .

Lemma A.10. (soundness) If Γ `µDARTS t/V−→: T , then Γ `µDART t : T .

Lemma A.11. If Γ `µDARTS t/V−→: T , then fv(T) ∩ V = ∅.

201

DSx `µDARTSD {} ⇑µx (⇓µx){}
PDMR-Nil

DSx `µDARTS T ⇑µx (⇓µx)T ′ DSx `µDARTSD {DS} ⇑µx (⇓µx){DS ′}

DSx `µDARTSD {a : T ;DS} ⇑µx (⇓µx){a : T ′;DS ′}
PDNR-Fld

DSx `µDARTS S ⇓µx (⇑µx)S ′

DSx `µDARTS U ⇑µx (⇓µx)U ′ DSx `µDARTSD {DS} ⇑µx (⇓µx){DS ′}

DSx `µDARTSD {A : S..U ;DS} ⇑µx (⇓µx){A : S ′..U ′;DS ′}
PDMR-Bnd

Figure A.7: Promotion and Demotion for record types

202

Γ;x : µ(z : DSz) `µDARTS {dsx}←−: {DSx}
dom(dsx) unique Γ `µDARTS µ(z : DSz) ⇑V T

Γ `µDARTS ν(z : DSz){dsz}/V−→: T
Syn-Obj

Γ;x : T `µDARTS t/V−→: U
Γ `µDARTS T ⇓V T ′

Γ `µDARTS λ(x : T).t/V−→: ∀(x : T ′)U
Syn-All-I

Γ `µDARTS Γ(x) ⇑ ⊥

Γ `µDARTS x.a/V−→: ⊥
Syn-Obj-E1

Γ `µDARTS Γ(x) ⇑ {DS} {a : T} ∈ {DS} Γ `µDARTS U ⇑V U ′

Γ `µDARTS x.a/V−→: U ′
Syn-Obj-E2

Γ `µDARTS Γ(x) ⇑ µ(z : DSz) {a : T} ∈ {DSx} Γ `µDARTS U ⇑V U ′

Γ `µDARTS x.a/V−→: U ′
Syn-Obj-E3

Γ `µDARTS Γ(x) ⇑ ⊥ y ∈ dom(Γ)

Γ `µDARTS x y/V−→: ⊥
Syn-All-E1

Γ `µDARTS Γ(x) ⇑ ∀(z : S)Uz Γ `µDARTS y←−: S Γ `µDARTS Uy/V−→: U ′

Γ `µDARTS x y/V−→: U ′
Syn-All-E2

Γ `µDARTS t/∅−→: T Γ;x : T `µDARTS ux/V ∪ x−→: U

Γ `µDARTS let x = t in u/V−→: U
Syn-Let1

Γ `µDARTS t←−: T Γ;x : T `µDARTS ux/V ∪ x−→: U

Γ `µDARTS let x : T = t in u/V−→: U
Syn-Let2

Figure A.8: The definition of type synthesis of terms

203

Γ;x : µ(z : DSz) `µDARTS {dsx}←−: {DSx}
dom(dsx) unique Γ� µ(z : DSz) <: T � Γ

Γ `µDARTS ν(z : DSz){dsz}←−: T
Chk-Obj

Γ `µDARTS S ⇓∀(x:T ′)Ux Γ� T ′ <: T � Γ Γ;x : T `µDARTS tx←−: Ux
Γ `µDARTS λ(x : T).tx

←−: S
Chk-All-I1

Γ;x : T `µDARTS tx/∅−→: Ux
Γ� ∀(x : T)U <: S � Γ

Γ `µDARTS λ(x : T).tx
←−: S

Chk-All-I2
Γ `µDARTS Γ(x) ⇑ ⊥

Γ `µDARTS x.a←−: U
Chk-Obj-E1

Γ `µDARTS Γ(x) ⇑ {DS} {a : T} ∈ {DS} Γ� U <: U ′ � Γ

Γ `µDARTS x.a←−: U ′
Chk-Obj-E2

Γ `µDARTS Γ(x) ⇑ µ(z : DSz) {a : T} ∈ {DSx} Γ� U <: U ′ � Γ

Γ `µDARTS x.a←−: U ′
Chk-Obj-E3

Γ `µDARTS Γ(x) ⇑ ⊥
y ∈ dom(Γ)

Γ `µDARTS x y←−: U
Chk-All-E1

Γ `µDARTS Γ(x) ⇑ ∀(z : S)Uz
Γ `µDARTS y←−: S Γ� Uy <: U ′ � Γ

Γ `µDARTS x y←−: U ′
Chk-All-E2

Γ `µDARTS t/∅−→: T
Γ;x : T `µDARTS ux←−: U

Γ `µDARTS let x = t in u←−: U
Chk-Let1

Γ `µDARTS t←−: T
Γ;x : T `µDARTS ux←−: U

Γ `µDARTS let x : T = t in u←−: U
Chk-Let2

Figure A.9: The definition of type checking of terms

204

Appendix B

Promotion and Demotion in jDOT

Definition B.1. The definitions of Promotion and Demotion are shown in Figure B.1
and Figure B.2.

For a judgment of Promotion Γ `jDOTS S ⇑V U , Γ, S and V are the inputs and U is
the output. A Demotion judgment Γ `jDOTS S ⇓V U works similarly.

205

Γ `jDOTS > ⇑V (⇓V)>
PD-Top

Γ `jDOTS T ⇑V >
P-Top*

Γ `jDOTS ⊥ ⇑V (⇓V)⊥
PD-Bot

Γ `jDOTS T ⇓V ⊥
D-Bot*

x /∈ V

Γ `jDOTS y.A ⇑V (⇓V)y.A
PD-Var

fv(D) ∩ V = ∅

Γ `jDOTS µD ⇑V (⇓V)µD
PD-Mu

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1 T3 7→ ⊥ & T4

Γ1;x : T ; Γ2 `jDOTS x.A ⇑V ⊥
PD-Sel1

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1 T3 7→ ⊥ & T4

Γ1;x : T ; Γ2 `jDOTS x.A ⇑V ⊥
P-Sel1

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1 T3 7→ ⊥ & T4

Γ1;x : T ; Γ2 `jDOTS x.A ⇓V >
D-Sel1

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1
T3 7→ {A : S..U} & T4 Γ′1 `jDOTS U ⇑V U ′

Γ1;x : T ; Γ2 `jDOTS x.A ⇑V U ′
P-Sel2

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1
T3 7→ {A : S..U} & T4 Γ′1 `jDOTS S ⇓V S ′

Γ1;x : T ; Γ2 `jDOTS x.A ⇓V S ′
D-Sel2

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1
T3 7→ µ{w.A : S..Uw} & T4 Γ′1;x : T2 ∧ T4 `jDOTS Ux ⇑V U ′

Γ1;x : T ; Γ2 `jDOTS x.A ⇑V U ′
P-Sel3

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1
T3 7→ µ{w.A : Sw..U} & T4 Γ′1;x : T2 ∧ T4 `jDOTS Sx ⇑V S ′

Γ1;x : T ; Γ2 `jDOTS x.A ⇓V S ′
D-Sel3

Figure B.1: Definitions of Promotion and Demotion (Part 1)

206

Γ `jDOTS S ⇓V (⇑V)S ′ Γ `jDOTS U ⇑V (⇓V)U ′

Γ `jDOTS ∀(z : S)U ⇑V (⇓V)∀(z : S ′)U ′
PD-All

Γ `jDOTS S ⇓V (⇑V)S ′ Γ `jDOTS U ⇑V (⇓V)U ′

Γ `jDOTS {A : S..U} ⇑V (⇓V){A : S ′..U ′}
PD-Bnd

Γ `jDOTS T ⇑V (⇓V)T ′

Γ `jDOTS {a : T} ⇑V (⇓V){a : T ′}
PD-Fld

Γ `jDOTS S ⇑V (⇓V)S ′ Γ `jDOTS U ⇑V (⇓V)U ′

Γ `jDOTS S ∧ U ⇑V (⇓V)S ′ ∧ U ′
PD-And

Figure B.2: Definitions of Promotion and Demotion (Part 2)

207

Appendix C

General Term Typing Rules of jDOT

Definition C.1. The definition of type synthesis is defined in Figure C.1, type checking is
defined in Figure C.2 and type checking of definitions is defiend in Figure C.3.

For a type synthesis judgment Γ `jDOTS t/V−→: T , Γ, t and V are inputs and T is output.

For a type checking judgment Γ `jDOTS t←−: T , Γ, t and T are inputs and the algorithm
returns true if the derivation satisfies the definition.

For a type checking judgment Γ `jDOTS t←−:x T , Γ, t, x and T are inputs and the algorithm
returns true if the derivation satisfies the definition.

208

Γ;x : T `jDOTS {dx}←−:x T dom(dx) unique Γ `jDOTS T ⇑V T ′

Γ `jDOTS ν(z : T){dz}/V−→: T ′
Syn-Obj

Γ;x : T `jDOTS t/V−→: U Γ `jDOTS T ⇓V T ′

Γ `jDOTS λ(x : T).t/V−→: ∀(x : T ′)U
Syn-All-I

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1 T3 7→ ⊥ & T4

Γ1;x : T ; Γ2 `jDOTS x.a/V−→: ⊥
Syn-Obj-E1

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1
T3 7→ {a : U} & T4 Γ1;x : T ; Γ2 `jDOTS U ⇑V U ′

Γ1;x : T ; Γ2 `jDOTS x.a/V−→: U ′
Syn-Obj-E2

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1
T3 7→ µ{w.a : Uw} & T4 Γ1;x : T ; Γ2 `jDOTS Ux ⇑V U ′

Γ1;x : T ; Γ2 `jDOTS x.a/V−→: U ′
Syn-Obj-E3

T 7→ T1 & T2

Γ1 `jDOTS T1 V T3 a Γ′1 T3 7→ ⊥ & T4 y ∈ dom(Γ2;x : T ; Γ1)

Γ2;x : T ; Γ1 `jDOTS x y/V−→: ⊥
Syn-All-E1

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1 T3 7→ ∀(z : S)Uz & T4

Γ2;x : T ; Γ1 `jDOTS y←−: S Γ2;x : T ; Γ1 `jDOTS U ⇑V U ′

Γ2;x : T ; Γ1 `jDOTS x y/V−→: U ′
Syn-All-E2

Γ `jDOTS t/∅−→: T
Γ;x : T `jDOTS ux/V ∪ x−→: U

Γ `jDOTS let x = t in u/V−→: U
Syn-Let1

Γ `jDOTS t←−: T
Γ;x : T `jDOTS ux/V ∪ x−→: U

Γ `jDOTS let x : T = t in u/V−→: U
Syn-Let2

Figure C.1: The definition of type synthesis of terms

209

Γ;x : T `jDOTS {dx}←−:x T dom(dsx) unique Γ� T <: T ′ � Γ

Γ `jDOTS ν(z : T){dz}/V−→: T ′
Chk-Obj

Γ;x : T `jDOTS tx/∅−→: Ux
Γ� ∀(x : T)U <: S � Γ

Γ `jDOTS λ(x : T).tx
←−: S

Chk-All-I1

Γ� S <: T � Γ
Γ;x : T `jDOTS tx←−: Ux

Γ `jDOTS λ(x : T).tx
←−: ∀(x : S)U

Chk-All-I2

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1 T3 7→ ⊥ & T4

Γ1;x : T ; Γ2 `jDOTS x.a←−: V U
Chk-Obj-E1

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1
T3 7→ {a : U} & T4 Γ1;x : T ; Γ2 � U <: U ′ � Γ1;x : T ; Γ2

Γ1;x : T ; Γ2 `jDOTS x.a←−: V U ′
Chk-Obj-E2

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1
T3 7→ µ{w.a : Uw} & T4 Γ1;x : T ; Γ2 � Ux <: U ′ � Γ1;x : T ; Γ2

Γ1;x : T ; Γ2 `jDOTS x.a←−: V U ′
Chk-Obj-E3

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1 T3 7→ ⊥ & T4 y ∈ dom(Γ)

Γ2;x : T ; Γ1 `jDOTS x y←−: U
Chk-All-E1

T 7→ T1 & T2 Γ1 `jDOTS T1 V T3 a Γ′1 T3 7→ ∀(z : S)Uz & T4

Γ `jDOTS y←−: S Γ2;x : T ; Γ1 � Uy <: U ′ � Γ2;x : T ; Γ1

Γ2;x : T ; Γ1 `jDOTS x y←−: U ′
Chk-All-E2

Γ `jDOTS t/∅−→: T
Γ;x : T `jDOTS ux←−: U

Γ `jDOTS let x = t in u←−: U
Chk-Let1

Γ `jDOTS t←−: T
Γ;x : T `jDOTS ux←−: U

Γ `jDOTS let x : T = t in u←−: U
Chk-Let2

Figure C.2: The definition of type checking of terms

210

Γ `jDOTS tx←−: Tx
Γ `jDOTS {a = tw}←−:x µ{w.A : Tw}

Def-Trm

Γ `jDOTS {A = Tw}←−:x µ{w.A : Tw..Tw}
Def-Typ

Γ `jDOTS dw←−:x S Γ `jDOTS d′w←−:xU

Γ `jDOTS dw ∧ d′w←−:x S ∧ U
Def-And

Figure C.3: The definition of definitions checking

211

	List of Tables
	List of Figures
	Introduction
	Motivation
	Decidability
	Type checking

	Methodologies
	Organization
	Contributions

	Background
	Conventions
	Full F<: and Kernel F<:
	Undecidability of Full F<:
	Bi-directional Type Assignment
	Scala and DOT Calculi
	Path Dependent Types
	Intersection Types
	Wadlerfest DOT
	Other DOT Calculi

	Related Work
	Formalizations of Scala
	Undecidability of subtyping
	Algorithmic (sub)typing
	Formalization of undecidability proofs

	The Undecidability of D<:
	Definition of D<:
	Definition of Undecidability
	The Incomplete Proof
	F<:- as Q
	An Attempt at An Undecidability Proof
	How Was Undecidability of F<: Proved?
	Small-step Subtyping
	An example
	Rearranging universal types
	Proofs of transitivity and narrowing in normal form

	Undecidability of F<:>-
	Small-step Analysis of D<:
	Undecidability of Type Assignment of D<:
	Discussions
	D<<:
	What about DOT?
	Calculi in Normal Forms

	Algorithmic Typing of D<: Fragments
	Kernel D<:
	Step Subtyping
	Step Typing
	A Note on Execution of Step Subtyping
	Kernel D<: and Step Subtyping
	Strong Kernel D<:
	Stare-at Subtyping
	Limitations of Step Subtyping
	Definition

	Properties of Operations in Stare-at Subtyping
	Strong Kernel D<: and Stare-at Subtyping
	Discussions
	Convergence of Theories
	Properties of Kernel Calculi

	D
	Definition of D
	Strong Kernel D
	Revealing in D
	Stare-at Subtyping
	Properties of Stare-at Subtyping and Properties
	Strong Kernel D and Stare-at Subtyping

	DART
	Definition of DART
	Difficulties of Types
	Stare-at Subtyping for DART
	Revealing Reconsidered
	 Types as Cyclic Contexts
	Types Are Resources!
	Revealing in DART
	An Example of Revealing
	Properties of Operations and Stare-at Subtyping
	How Large Is the Decidable Fragment?
	What is the language?
	How does removal impact the decidable fragment?

	An Alternative Treatment
	Variable Typing

	jDOT
	A Step Back: Algorithmic (Sub)typing Reconsidered
	Subtyping as communication
	Backtracking due to -Traversal
	Types as resources

	A Second Step Back: A Short Review of DOT
	Uninterpretable types with
	How are objects encoded?
	Unexpected recursive path types
	Soundness proof guided definition

	The Definition of jDOT
	Refining Revealing
	Examples of Revealing
	Maintenance of well-formedness
	Handling object types

	Properties of Operations
	Stare-at Subtyping
	Variable Typing
	Variable type check
	Variable type synthesis
	Promotion and Demotion

	Bi-directional General Term Typing
	Encoding into jDOT

	Discussion and Future Work
	Decidability Analysis on Language Features
	Soundness of jDOT
	Undecidability of jDOT

	Conclusion
	References
	APPENDICES
	Various Operations in DART
	Exposure
	Imposure
	Imposure
	Promotion and Demotion
	Promotion and Demotion
	Bi-directional type assignment

	Promotion and Demotion in jDOT
	General Term Typing Rules of jDOT

