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Abstract

Hamilton-Jacobi-Bellman (HJB) equations are nonlinear controlled partial differential
equations (PDEs). In this thesis, we propose various numerical methods for HJB equations
arising from three specific applications.

First, we study numerical methods for the HJB equation coupled with a Kolmogorov-
Fokker-Planck (KFP) equation arising from mean field games. In order to solve the nonlin-
ear discretized systems efficiently, we propose a multigrid method. The main novelty of our
approach is that we subtract artificial viscosity from the direct discretization coarse grid
operators, such that the coarse grid error estimations are more accurate. The convergence
rate of the proposed multigrid method is mesh-independent and faster than the existing
methods in the literature.

Next, we investigate numerical methods for the HJB formulation that arises from the
mass transport image registration model. We convert the PDE of the model (a Monge-
Ampère equation) to an equivalent HJB equation, propose a monotone mixed discretiza-
tion, and prove that it is guaranteed to converge to the viscosity solution. Then we propose
multigrid methods for the mixed discretization, where we set wide stencil points as coarse
grid points, use injection at wide stencil points as the restriction, and achieve a mesh-
independent convergence rate. Moreover, we propose a novel periodic boundary condition
for the image registration PDE, such that when two images are related by a combination
of a translation and a non-rigid deformation, the numerical scheme recovers the underlying
transformation correctly.

Finally, we propose a deep neural network framework for the HJB equations emerging
from the study of American options in high dimensions. We convert the HJB equation to an
equivalent Backward Stochastic Differential Equation (BSDE), introduce the least squares
residual of the BSDE as the loss function, and propose a new neural network architecture
that utilizes the domain knowledge of American options. Our proposed framework yields
American option prices and deltas on the entire spacetime, not only at a given point. The
computational cost of the proposed approach is quadratic in dimension, which addresses
the curse of dimensionality issue that state-of-the-art approaches suffer.
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Chapter 1

Introduction

1.1 Hamilton-Jacobi-Bellman (HJB) Equations

The objective of this thesis is to propose numerical methods for solving Hamilton-Jacobi-
Bellman (HJB) equations. An HJB equation is a nonlinear controlled partial differential
equation (PDE). HJB equations usually arise from optimal control theory. More specifi-
cally, consider a dynamical system in a continuous spacetime, where a controller, starting
at a state (x, t), controls the future evolution of the state through a control variable c,
and aims to optimize its cumulative objective function over the prospective trajectory.
For instance, consider the dynamical system of a competitive smartphone market. Each
company (controller) sets its smart phone price (control variable) based on its current
capacity (state) in order to maximize its long-term profit (objective function).

In such a dynamical system, we are particularly interested in two quantities. One is
the optimal objective function, called the value function u(x, t). The other is the control
variable that optimizes the objective function, called the optimal control c∗(x, t). An
HJB equation models such dynamical system by coupling the value function u(x, t) and
the optimal control c∗(x, t) as follows:

Lc∗(x,t) u(x, t) = 0, (1.1)

subject to c∗(x, t) ≡ arg max
c(x,t)

H(x, t; c(x, t);u(x, t)). (1.2)

Here L is a second order differential operator on u(x, t) where c∗(x, t) is treated as a
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parameter (i.e., contained in coefficients), for example,

Lc∗(x,t) u(x, t) = ut(x, t)−∆u(x, t) + c∗(x, t) · ∇u(x, t) + ru(x, t)− c
∗(x, t)2

2
− f(x, t);

and H is called the Hamiltonian, where optimizing the Hamiltonian as in (1.2) is equivalent
to optimizing the objective function under an optimization method called dynamic pro-
gramming [18]. An HJB equation couples two sub-problems. One sub-problem is a PDE
(1.1), where the solution is the value function u(x, t) given the optimal control c∗(x, t); the
other sub-problem is an optimization problem (1.2) with respect to the control variable
c(x, t) given the value function u(x, t). Solving an HJB equation would yield both the
value function u(x, t) and the optimal control c∗(x, t) simultaneously.

1.2 Applications

The study of HJB equations has been a field of great interest due to a wide range of
applications [18, 70, 30, 109, 110, 111, 66, 67, 15, 106]. In this thesis, we focus on three
important applications: mean field games, American options and image registration.

1.2.1 Mean field games

One of the most well-known applications of HJB equations is in game theory in continuous
spacetime [70, 30]. The competitive smartphone market mentioned in Section 1.1 is a
typical example of game theory in continuous spacetime.

In particular, this thesis is concerned with a subfield called mean field games [109,
110, 111]. To motivate mean field games, consider the competitive smartphone market
with N companies. Each company is modelled by one HJB equation that solves for its
value function. As a result, N companies can be modelled by a PDE system with N HJB
equations. Since each company tries to win the competition by adjusting its own control
in response to the other companies’ controls, the N HJB equations are coupled. When N
is large, the PDE system becomes extremely complicated.

Fortunately, when N → ∞, the model can be simplified. Each company’s impact
on the entire system is negligible. Also, since it is difficult to keep track of every single
opponent’s control, companies respond to each other’s control in a statistical sense. As
a result, an N -player game can be reduced to a less complicated model, called a “mean
field game”. Mathematically, a mean field game is modelled by a system of nonlinear
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PDEs that contains two equations. One equation is an HJB equation for the optimal
value function of all the players. The other equation is a Kolmogorov-Fokker-Planck
(KFP) equation for the distribution (or density function) of the players’ states. It is
shown in [111, 83, 42] that a mean field game model yields a good approximation of the
original N -HJB model when N is large.

There are numerous applications of mean field games, including, but not limited to,
micro or macro economics, sociology, engineering, urban planning, etc. [83, 56, 42] We
refer interested readers to [109, 110, 111, 83, 42] for an extensive introduction to mean
field games and the associated HJB equations.

1.2.2 American options

Another important application of HJB equations is to American option problems in finance.
An American option [97, 58, 67, 65] is a financial contract that gives a contract holder the
right, but not the obligation, to buy or sell underlying assets (such as stocks, commodities,
foreign currencies) at a preset price (called the strike price) at any time before the expiry
of the contract. The action of buying or selling the underlying assets at the preset price is
called “exercising (the right of) an American option.” An option holder would make the
best exercise decision during the life of the option contract in order to maximize the gain.
The expected maximal gain of an option holder is called the price of the American option.
American options are among the most common contracts in financial markets.

Derived from the famous Black-Scholes model [97], there are multiple mathematical
formulations for American options, including HJB formulations, linear complementarity
problems, free boundary problems, Monte Carlo formulations, variational formulations,
etc. We refer readers to [58, 139] for a substantial review of different formulations.

In this thesis, we study the HJB formulation [67, 66, 131]. Indeed, the HJB formu-
lation is very suitable for modeling American options. More specifically, the price of an
American option (i.e., the expected maximal gain) can be naturally formulated as the value
function of an HJB equation; meanwhile, the optimal exercise decision that maximizes the
gain can be naturally formulated as the optimal control of an HJB equation. The HJB
formulation couples both the option price and the optimal exercise decision together, and
solving it would yield both quantities simultaneously.
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1.2.3 Image registration

In many practical applications, one has to compare two images, T (template) and R (ref-
erence), that display the same object, but the object inside the two images is not spatially
aligned. An image registration problem is the task of finding a coordinate transforma-
tion φ that transforms the image T to another image Tφ, such that Tφ is close and thus
comparable to the image R.

One important application of image registration is to compare medical images of the
same patient, such as CT (computed tomography) and MRI (magnetic resonance imaging)
images of a damaged brain, which gives guidance for diagnosis and surgery [119, 92]. Image
registration can also be used for image fusion [98]. That is, multiple images of the same
object are taken, registered and then merged together, such that the integrated image is
clearer than the original ones. We refer readers to [81] for more discussion on applications
of image registration.

In [85, 86, 123], the coordinate transformation between the template and reference
images is obtained by solving a nonlinear PDE called the Monge-Ampère equation.
Significantly, a Monge-Ampère equation is equivalent to an HJB equation, as established
by [105] and [116]. Hence, we can solve the image registration problem by solving the HJB
formulation of the Monge-Ampère equation. It turns out that solving the HJB formulation
has several advantages over solving the original Monge-Ampère equation. One is that
the Monge-Ampère equation contains a convexity constraint, which is difficult to handle.
However, the convexity constraint can be removed in the equivalent HJB formulation. The
other is that the differential operator of the HJB formulation turns out to be linear under
a given control variable. These properties of the HJB formulation make numerical solution
more manageable.

1.3 Numerical Methods

An HJB equation (1.1)-(1.2) is a second-order nonlinear PDE. Finding analytical solutions
is usually impossible. Hence, HJB equations are typically solved by numerical methods.
There exist numerous numerical methods for HJB equations, including but not limited
to [66, 95, 55, 118, 25, 12, 11, 155]. However, there still exist a number of challenges
for numerical solutions of HJB equations. In this thesis, we propose several numerical
methods for addressing the existing challenges. Here we give an overview of these numerical
methods.
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1.3.1 Discretization

The standard approach to solving a PDE numerically is to discretize it using finite differ-
ence, finite volume, finite element methods, etc., and then to solve the discretized system.
In this thesis, we consider finite difference discretization, since it is relatively easier to
implement and analyze compared to the other approaches, and the spatial domains of the
applications we consider are hypercubic.

Similar to other nonlinear PDEs, an HJB equation may have multiple weak solutions,
among which only one solution, called the viscosity solution [53, 52], is the correct solu-
tion in practical applications. Finding the viscosity solution of an HJB equation numeri-
cally is challenging. The choice of the discretization scheme turns out to play a significant
role in obtaining the viscosity solution. More specifically, it is desirable for a discretization
to satisfy

• consistency: the truncation error of a discretized equation approaches zero as the
mesh size h→ 0 (i.e., a discretized equation of a PDE approaches the PDE as h→ 0);

• stability: the solution of a discretized system is bounded;

• monotonicity: the discretized equation at a grid point xi is non-decreasing in u(xi)
and non-increasing in {u(xj) | j 6= i};

• strong comparison principle: a subsolution is no greater than a supersolution on
the entire domain (including the boundary).

If all these properties are fulfilled, then the Barles-Souganidis Theorem [14] guarantees the
convergence of the discrete solution to the continuous viscosity solution as h → 0. In
this thesis, we will design discretization schemes for HJB equations (especially for image
registration problems) that satisfy these properties.

1.3.2 Policy iteration

Discretization of an HJB equation leads to a nonlinear discretized system. There are
two major difficulties in solving such a system. One is that, in an HJB equation, the
solution u(x, t) and the optimal control c∗(x, t) are coupled in a non-trivial fashion. In
order to compute the solution, both quantities must be obtained simultaneously. The
other difficulty is that the nonlinearity of the discretized HJB equation requires nonlinear
iterative solvers. In general, a nonlinear iterative solver is not necessarily convergent.
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We can take advantage of the feature that an HJB equation consists of two sub-
problems:

• fixing the control variables c∗ and solving the PDE (1.1) for the solution u;

• fixing the solution u and solving the optimization problem (1.2) for the optimal
control c∗.

We note that these sub-problems can be solved numerically on a discretized grid. Iterating
between solving these two sub-problems gives rise to a nonlinear solver for discretized HJB
equations, called policy iteration (or Howard’s algorithm) [95, 66].

To be more concrete, we put the discretized solution and discretized optimal control
under lexicographic order into vectors, denoted as uh and c∗h, respectively. Typically, the
discretization of (1.1) and (1.2) can be written in the following matrix form:

Ah(c
∗
h)uh = bh(c

∗
h), (1.3)

subject to c∗h ≡ arg max
ch

H(ch, uh), (1.4)

respectively. Here Ah and bh are the matrix and the right hand side vector arising from
the discretization of the differential operator Lc∗ , and thus depend on c∗h. We note that
when the discretized optimal control c∗h is fixed, the sub-problem (1.3) is a linear system
with respect to uh. Then the policy iteration can be described as Algorithm 1.1:

Algorithm 1.1 Policy iteration for solving discretized HJB equation (1.3)-(1.4)

1: Start with an initial guess of the control variable c
(0)
h .

2: for k = 1, 2, ... until convergence do
3: Solve the linearized HJB equation Ah(c

(k−1)
h )u

(k)
h = bh(c

(k−1)
h ) for the solution u

(k)
h .

4: Solve the optimization problem c
(k)
h ≡ arg max

ch

H(ch, u
(k)
h ) for the control c

(k)
h .

5: end for
6: Convergent solution: uh = u

(k)
h , c∗h = c

(k)
h .

Significantly, policy iteration is guaranteed to converge for any initial guess of the
solution (or the control), if an HJB equation is discretized by a monotone scheme and the
resulting discretized matrix Ah is an M-matrix under all admissible controls [25, 12, 11].
Once policy iteration converges, we obtain both the solution u and the optimal control c∗

on the discretized grid simultaneously.
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1.3.3 Multigrid methods

One of the major challenges of solving a discretized HJB system is the computational cost.
Consider using policy iteration, where each iteration requires solving a linear system. One
may consider using iterative solvers, such as the preconditioned conjugate gradient method
or the Gauss-Seidel iteration. However, the convergence rate (i.e., number of iterations for
convergence) grows as h→ 0, which is inefficient for problems with fine meshes.

Multigrid methods [153] are the optimally efficient iterative solvers for many elliptic
and parabolic problems. More specifically, the convergence rates of multigrid methods are
independent of the mesh size and remain approximately constant with mesh refinement.
In general, HJB equations are elliptic or parabolic, which suggests that multigrid methods
can potentially achieve mesh-independent convergence rates for HJB equations. Hence, in
this thesis, we will develop multigrid methods for HJB equations.

To introduce the basic idea of multigrid methods, consider a linear system arising from
discretization of an elliptic PDE

Ahuh = bh. (1.5)

Consider solving the linear system using relaxation methods (i.e., Gauss-Seidel iterations,
Jacobi iterations, etc.). In general, relaxation methods are slow to converge, or in other
words, a few steps of relaxation is far from sufficient for solving the linear system. How-
ever, due to the ellipticity, a few steps of relaxation is sufficient to make the error of the
approximate solution smooth. Significantly, such smoothness allows the error to be es-
timated on coarse grids accurately. Meanwhile, estimating the error on coarse grids can
be substantially cheaper than on the original fine grid. Motivated by these observations,
we can design an iterative solver for the linear system, where each iteration combines the
substeps of smoothing the error and estimating error on coarse grids (called coarse
grid correction). This iterative solver is called a multigrid method (or multigrid cycles,
multigrid iterations). As a result of the above desirable properties, multigrid cycles can
solve elliptic linear systems both efficiently and accurately.

Figure 1.1 illustrates an example of error evolution in one multigrid cycle. The linear
problem is a two-dimensional Poisson equation. The process of smoothing the error is
shown in Figure 1.1(i)–(ii), while the process of coarse grid correction is shown in Figure
1.1(iii)–(iv). More specifically, start with a random initial guess of the solution, where
the error is shown in Figure 1.1(i). Figure 1.1(ii) shows that, after only 2 Gauss-Seidel
iterations, the error immediately becomes smooth, even though the error reduction is slow.
Next we estimate the error by solving the corresponding linear system on a coarse grid,
which is computationally cheaper. The coarse grid estimated error is shown in Figure
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Figure 1.1: Evolution of error of in one multigrid cycle: (i) Initial error; (ii) Error after
2 Gauss-Seidel iterations; (iii) Estimated error on a coarse grid; (iv) Resulting error after
subtracting (iii) from (ii).

1.1(iii), which is very similar to the fine grid error in Figure 1.1(ii). Then from the fine
grid error we subtract the interpolated coarse grid estimated error, resulting in Figure
1.1(iv). As a result, the error is reduced very efficiently. By applying this multigrid cycle
iteratively, we would expect the approximate solution to converge to the exact solution
rapidly.

A fully-defined multigrid cycle consists of the following components: smoother, coars-
ening strategy, restriction, interpolation, and coarse grid problem. A smoother is a relax-
ation method that smooths the error. The default choice is Gauss-Seidel iteration. Other
choices include damped Jacobi iteration, block Gauss-Seidel iteration, etc. A coarsening
strategy is a definition of coarse grid configuration. Figure 1.2 shows an example of a fine
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fine grid
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full coarsening
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Figure 1.2: Fine grid, coarse grid, coarsening strategies (full-coarsening and semi-
coarsening).

grid, a coarse grid, and coarsening strategies such as full-coarsening and semi-coarsening.
The default choice is full-coarsening. An interpolation (or a restriction) is a linear oper-
ator that approximates a grid function from a coarse grid to a fine grid (or from a fine grid
to a coarse grid, respectively). More specifically, the estimated error is interpolated from a
coarse grid to a fine grid, where the default choice is the linear (or bilinear, trilinear)
interpolation. Additionally, the residual of the approximate solution is restricted from
a fine grid to a coarse grid, where the default choice is full-weighting restriction (the
transpose of the linear interpolation). A coarse grid problem defines how the error on
a fine grid is approximated on a coarse grid. The coarse grid matrix, denoted as A2h, can
be constructed in two ways. One is to use direct discretization, i.e., A2h comes from
exactly the same discretization scheme of the PDE as Ah, except that the mesh size h is
replaced by 2h. The other is to use Petrov-Galerkin coarse grid operator, defined as

APG2h ≡ RhAhPh, (1.6)

where Rh and Ph are the restriction and interpolation matrices. The right hand side of the
coarse grid problem is constructed from the restricted residual.

Eventually, each multigrid cycle assembles these components together in the following
order:

• pre-smoothing using a smoother;

• coarse grid correction, including:
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– defining a coarse grid based on a coarsening strategy;

– restricting the residual from the fine grid to the coarse grid;

– constructing a coarse grid problem using either direct discretization or the
Petrov-Galerkin coarse grid operator;

– solving the coarse grid problem, noting that the coarse grid problem itself is
also a linear system and can be recursively solved by the “smoothing – coarse
grid correction” process on even coarser grids, until on the coarsest grid, where
a linear system becomes very small, and can be solved easily by Gaussian elim-
ination;

– interpolating the estimated error from the coarse grid to the fine grid;

– subtracting the interpolated error from the fine grid approximate solution;

• post-smoothing using the same smoother.

A multigrid method iterates through this cycle until convergence. We refer interested
readers to Section 2.4 of [153] for further introduction to multigrid cycle and Algorithm
A.1 in the appendices for the corresponding pseudo-code.

Designing effective multigrid methods for HJB equations is challenging. One of the
main reasons is the nonlinearity of HJB equations. We note that multigrid methods were
originally developed to solve linear systems. For nonlinear systems, including HJB equa-
tions, there are two major multigrid approaches. The first approach is called the global
linearization method (or outer-inner linearization method) [8, 9]. The idea is to solve
the nonlinear system using a nonlinear iteration, such as policy iteration, where each it-
eration requires solving a linearized system. Then one can apply multigrid cycles to solve
each linearized system. This approach involves two layers of iterations, where the outer
iteration is the nonlinear iteration, while the inner iteration is the multigrid cycles.

The second approach is called the full approximation scheme (FAS) [153, 28, 87,
93, 23]. FAS is a family of multigrid methods that extends and generalizes linear multigrid
methods directly to nonlinear systems. Similar to the linear multigrid method, FAS also
iterates between smoothing error and coarse grid correction. Each FAS cycle follows the
same procedure as one linear multigrid cycle, except two specific multigrid components.
One is the smoother. In particular, a linear multigrid cycle uses linear relaxation methods,
whereas FAS uses nonlinear relaxation methods. The other difference is the coarse grid
problem. More specifically, linear coarse grid problems can be defined by either direct
discretization or the Petrov-Galerkin coarse grid operator. However, coarse grid problems
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of FAS is nonlinear. The nonlinearity of FAS is in general incompatible with the Petrov-
Galerkin coarse grid operator. Consequentially, coarse grid problems of FAS are (almost)
only defined by direct discretization. We refer readers to Section 5.3 of [153] for a further
introduction to FAS and Algorithm A.2 in the appendices for the corresponding pseudo-
code.

We note that designing an efficient FAS is usually more difficult than global lineariza-
tion methods, mainly because the choice of FAS coarse grid operators is limited to direct
discretization only. However, if an efficient FAS can be developed, it usually takes fewer
iterations to converge than global linearization methods with the same multigrid compo-
nents. This is because FAS is directly developed upon nonlinear discretized systems, and
involves only one layer of iterations. Conversely, global linearization methods carry not
only outer nonlinear but also inner multigrid iterations. The total number of iterations,
which is the product of outer and inner iteration counts, can be large.

Nonlinearity is not the only challenge for designing efficient multigrid methods for HJB
equations. We note that HJB equations may contain anisotropy, convection, singularity,
etc. If one simply chooses the standard multigrid components, then multigrid methods may
become inefficient or even non-convergent. In this thesis, we devise appropriate multigrid
components under either the global linearization framework or the FAS framework, such
that our multigrid methods can address the above issues and achieve mesh-independent
convergence rates for HJB equations.

1.3.4 Deep neural networks

In some practical applications of HJB equations (e.g., American options), the dimension of
the computational domain (e.g., the number of underlying assets of an American option)
could be as high as hundreds. The conventional approaches, including finite difference,
finite volume and finite element methods, become impractical if the dimension is greater
than 3. The reason, called “curse of dimensionality”, is that the number of mesh points, and
thus the complexity, grows exponentially with the dimensionality. Solving high-dimensional
HJB equations requires new techniques.

Deep learning approaches, or deep neural networks [80], are one of the most sought-
after and successful frameworks in the past decades. Deep neural networks have proved
successful in applications where the dimensions are extremely high, such as Google’s Al-
phaGo AI [141] and natural language processing [50, 51]. In this thesis, we will use deep
neural networks to solve high-dimensional HJB equations.
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Deep neural networks are a family of nonlinear parameterized functions. A simpler,
basic type of network, is called a one-layer feed-forward network. Such a network
is a function that maps a d-dimensional input x ∈ Rd to a scalar output y ∈ R using a
composition of the following transformations:

parameterized linear transformation Rd → Rχ : z = Wx+ b, (1.7)

nonlinear transformation Rχ → Rχ : h = f(z), (1.8)

parameterized linear transformation Rχ → R : y = wTh+ b, (1.9)

where W ∈ Rχ×d, b ∈ Rχ, ω ∈ Rχ and b ∈ R are parameters (or linear coefficients) in the
nonlinear function, and f is an element-wise nonlinear mapping, such as hi = max(zi, 0) for
i = 1, · · · , χ. The composition of these transformations yields a nonlinear parameterized
function

y(x; Ω) ≡ wTf(Wx+ b) + b, (1.10)

where Ω ≡ {W , b,w, b} is the set of parameters. In practical applications, it is common to
repeat and stack the transformations (1.7)-(1.8) multiple times before applying the output
transformation (1.9). This gives rise to a multi-layer feed-forward network, also known
as a deep feed-forward network, where each composition of (1.7)-(1.8) is called one
layer of the network. We note that deep neural networks are not limited to such feed-
forward architecture. Numerous architectures, such as convolutional networks, recurrent
and recursive networks, generative adversarial networks, have been proposed. We refer
interested readers to [80] for a substantial introduction to the topic of deep neural networks.

In order to sketch how a deep neural network framework solves a high-dimensional
PDE, consider a generic PDE

N u(x, t) = 0. (1.11)

One approach to solving the PDE is to write the solution as a parameterized function
y(x, t; Ω), where Ω is the parameter set of the function. Then the goal is to find the
parameter set that best fits the PDE, i.e., to find the optimal parameter set Ω∗ that
minimizes the residual of the PDE under the L2 norm:

Ω∗ ≡ arg min
Ω

‖N y(x, t; Ω) ‖L2
. (1.12)

Then y(x, t; Ω∗) is an approximation of the solution u(x, t). The main advantages of this
formulation are two-fold. One is that it is mesh-free, as opposed to the conventional ap-
proaches. As a result, its complexity does not necessarily grow exponentially with the
dimensionality. Instead, the complexity depends on the size of the parameter set, which
does not usually grow exponentially with the dimensionality. The other desirable property
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of this formulation is that a complicated high-dimensional PDE is converted to an opti-
mization problem with respect to a set of parameters, which allows us to apply various
well-developed optimization techniques, such as gradient descent, to solve the PDE.

Significantly, a deep neural network can be used as a parameterized solution of a PDE,
and can yield an accurate solution without suffering from curse of dimensionality; see a
very recent work [142] for a demonstration.

We note that deep neural networks are not the only choice for a parameterized solution.
Indeed, the well-known spectral methods and finite element methods use similar ideas.
More specifically, the solution is approximated by a linear combination of user-defined
static basis functions {ϕk(x) | k = 1, · · · , K}:

y(x; ω) =
K∑
k=1

ωkϕk(x) = ωTϕ(x). (1.13)

However, a set of user-defined static basis functions may not be the optimal choice for
each specific PDE. Remarkably, a deep neural network is essentially a linear combination
of dynamical basis functions. For instance, the one-layer network (1.10) is a linear combi-
nation of the dynamical basis parameterized by ϕ(x; W , b) ≡ f(Wx + b). The optimal
basis functions are learned during the minimization of the PDE residual. As a result, deep
neural networks can yield accurate solutions.

In this thesis, we study high-dimensional American option problems as an exemplary
application of high-dimensional HJB equations, and propose a deep neural network frame-
work. The HJB equations have the form:

Nu(x, t) = 0, (1.14)

where
Nu(x, t) ≡ min (Lu(x, t), u(x, t)− f(x)) , (1.15)

L is a second order linear differential operator, and f is a given function1. As deep neural
networks are a fairly new framework for solving PDEs, many challenges still require investi-
gation. For instance, the differential operator Lu(x, t) contains the Hessian of the solution
D2u(x, t). As a result, a neural network with the loss function (1.12) requires computation
of a Hessian tensor of size O(Md2), where M is the size of the dataset for the training and
evaluation process of the neural network. When d is large, the quadratic size of the Hessian
tensor could be cumbersome in both computational time and memory. Another challenge

1We will show in Section 6.2.2 that (1.14)-(1.15) can be written in the form of (1.1)-(1.2).

13



is that, in practical financial applications, it is crucial to solve not only the solution of
an HJB equation (i.e., American option price), but also the gradient of the solution (i.e.,
American option delta). To the best of our knowledge, no literature in deep neural net-
works has been dedicated to solving both prices and deltas of high-dimensional American
options accurately and efficiently. We will discuss how to address these challenges using
our deep neural network formulation.

We remark that, in the literature, American option problems are more usually formu-
lated as linear complementarity problems, i.e.,

Lu(x, t) ≥ 0,

u(x, t) ≥ f(x),

(u(x, t)− f(x)) · Lu(x, t) = 0.

(1.16)

One may consider using a neural network approach to solve the linear complementarity
problems. However, it is unclear how to directly handle the inequalities in (1.16) using
neural networks. Conversely, the HJB formulation (1.14)-(1.15) is an equation rather than
an inequality problem, which allows us to design a neural network approach based on the
paradigm (1.12).

1.4 Contributions

The central contribution of this thesis is that we propose various numerical methods for
HJB equations as introduced in Section 1.3, and we demonstrate the accuracy and efficiency
of these numerical methods by applying them to the three applications introduced in
Section 1.2. More specifically:

(I) When the spatial dimension of an HJB equation is less than 3, where we
study mean field games and image registration as exemplary problems, we propose general
finite difference frameworks for solving HJB equations in a convergence sense and in an
efficient manner. In particular:

• We develop finite difference schemes that satisfy consistency, stability, monotonicity
and the strong comparison principle. As a result, a discrete solution is guaranteed to
converge to the continuous viscosity solution as h → 0. We support our claim with
mathematical proofs.
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• We solve discretized HJB systems using nonlinear iterative solvers, including policy
iteration and the Levenberg-Marquardt algorithm [114, 120]. These iterative solvers
are convergent.

• We speed up solving discretized HJB systems by devising efficient multigrid meth-
ods under either the global linearization framework or the FAS framework. In order
to overcome difficulties such as nonlinearity, convection and singularity, we design
the multigrid components (i.e., smoother, coarsening strategy, restriction, interpo-
lation, and coarse grid problem) with special care. In particular, some multigrid
components we propose are novel, such as subtracting artificial viscosity from coarse
grid problems, and using injection as the restriction for wide stencil discretization.
Significantly, our multigrid methods yield mesh-independent convergence rates, and
achieve faster convergence rates than other existing solvers in the literature.

(II) When the spatial dimension of an HJB equation is as high as 200, where
we study high-dimensional American option problems as an exemplary problem, we pro-
pose a deep neural network framework. Our deep neural network framework has a new
architecture (sequence of neural networks with non-conventional connectivity). In addi-
tion, our framework uses a new loss function (least squares residual of backward stochastic
differential equation), which avoids the costly evaluation and storage of Hessian tensors,
and couples the solution u(x, t) and its gradient ∇u(x, t) in a single loss function. As
a result, our formulation yields not only accurate solutions, but also accurate gradients,
on the entire spacetime, which cannot be computed correctly by the state-of-the-art ap-
proaches (e.g., [117]) in high dimensions. Moreover, our deep neural network framework
addresses the curse of dimensionality issue, which is supported by the result that our ap-
proach solves the American option problems accurately in as high as 200 dimension, while
the state-of-the-art approaches fail to solve the problems due to the out-of-memory er-
ror and the exponentially (or high-degree polynomially) increasing computational cost in
above 20 dimension.

Our results appear in the following articles (or are submitted under review):

• Yangang Chen and Justin W. L. Wan. Multigrid methods for convergent mixed
finite difference scheme for Monge-Ampère equation. Computing and Visualization
in Science, pages 1–15, 2017

• Yangang Chen, Justin W. L. Wan, and Jessey Lin. Monotone mixed finite difference
scheme for Monge-Ampère equation. J. Sci. Comput., 76(3):1839–1867, 2018
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• Yangang Chen and Justin W. L. Wan. Numerical method for image registration
model based on optimal mass transport. Inverse Probl. Imaging, 12(2):401–432,
2018

• Yangang Chen and Justin W. L. Wan. Artificial viscosity joint spacetime multigrid
method for Hamilton-Jacobi-Bellman and Kolmogorov-Fokker-Planck system arising
from mean field games. (submitted, under review), 2019

• Yangang Chen and Justin W. L. Wan. Deep neural network framework based on
backward stochastic differential equations for pricing and hedging American options
in high dimensions. (submitted, under review), 2019

1.5 Outline

This thesis is organized by the three applications of HJB equations as follows:

First, in Chapter 2, we study numerical methods for HJB equations arising from mean
field games. In this application, an HJB equation is coupled with a KFP equation, which
forms a PDE system. By solving the HJB/KFP PDE system, we present a general pipeline
of numerically solving HJB equations, which involves finite difference discretization, solvers
for the discretized system, and moreover, efficient solvers for speeding up computation. The
focus of this chapter is to propose an efficient multigrid method for solving the discretized
HJB/KFP system, and to illustrate the mesh-independent convergence rates of the pro-
posed multigrid method.

Next, in Chapters 3-5, we investigate numerical methods for HJB formulation associated
with image registration problems. Considering the sophistication of image registration
problems, we break down this topic into three chapters:

Chapter 3 considers a simplified image registration problem, i.e., a Monge-Ampère
equation where the right hand side does not depend on the solution u. The focus of this
chapter is to establish the equivalence between a Monge-Ampère equation and an HJB
equation, and to propose a finite difference method for the equivalent HJB formulation
that converges in the viscosity sense. This chapter serves as a foundation for solving the
more complicated image registration problems. Chapter 4 proposes multigrid methods for
the discretized HJB system considered in Chapter 3, and demonstrates that our multigrid
methods achieve mesh-independent convergence rates. Chapter 5 comes back to the image
registration problems, where we apply the discretization scheme introduced in Chapter
3. The new challenge of Chapter 5 is that, in order to address the issue of registration
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quality in the literature, we propose imposing a novel periodic boundary condition, which
leads to a singular matrix. In order to solve the singular system, we propose using the
Levenberg-Marquardt algorithm.

Then, in Chapter 6, we study numerical methods for HJB equations arising from Amer-
ican option problems. Unlike the previous chapters, the HJB equation considered in this
chapter is high-dimensional. In order to address the curse of dimensionality, we propose a
deep neural network framework. We illustrate the accuracy and efficiency of the proposed
approach.

Finally, we conclude the thesis in Chapter 7.
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Chapter 2

Multigrid Method for HJB Equations
Arising from Mean Field Games

2.1 Introduction

This chapter studies the numerical solution of HJB equations arising from mean field
games. Let Ω be a space domain in Rd. Let Ω × [0, T ] be a spacetime domain. Let
x ∈ Ω be the d-dimensional state variable of the controllers (players), and let t ∈ [0, T ]
be the time. Let u : Ω × [0, T ] → R be the optimal value function of the players, and let
m : Ω× [0, T ]→ R be the distribution (or density function) of the players’ state variable.
Let c : Ω × [0, T ] → Rd be a d-dimensional control parameter. In [111, 83], mean field
games are formulated into a system of PDEs that contains two equations. One equation
is the HJB equation for the value function u(x, t):

−ut(x, t)− σ∆u(x, t) + c∗(x, t) · ∇u(x, t)− L(x, t; c∗(x, t))

+ru(x, t)− Φ(m(x, t)) = 0, in Ω× [0, T ),

u(x, T ) = uT (x), in Ω,

(2.1)

subject to the optimal control:

c∗(x, t) ≡ arg max
c(x,t)∈Rd

{c(x, t) · ∇u(x, t)− L(x, t; c(x, t))} . (2.2)

Here r is the discount factor, σ is the diffusion factor, Φ is the local cost function and L is
the Lagrangian. The function that (2.2) aims to maximize, denoted as

H(c;u) ≡ c · ∇u− L(c), (2.3)
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is called the Hamiltonian. We assume that, for any fixed u, the Hamiltonian is a concave
function of c, and the maximum can be achieved at the corresponding stationary point1.
We note that the HJB equation is solved backward from the terminal time t = T to the
initial time t = 0. Hence, the HJB equation has a terminal condition u(x, T ) = uT (x)
rather than an initial condition.

The other equation in the PDE system is the forward Kolmogorov-Fokker-Planck
(KFP) equation for the distribution m(x, t):

mt(x, t)− σ∆m(x, t)−∇ · (c∗(x, t)m(x, t)) = 0, in Ω× (0, T ],

m(x, 0) = m0(x), in Ω.
(2.4)

For simplicity, unless otherwise specified, we assume periodic boundary conditions for both
(2.1) and (2.4). We refer readers to [111, 2] for a discussion on the well posedness of the
problem (2.1)-(2.4).

A unique feature of the HJB/KFP system is that, while the HJB equation (2.1)-(2.2)
is backward from t = T to t = 0, the KFP equation (2.4) is forward from t = 0 to t = T .
Furthermore, the HJB equation is nonlinear, since the optimal control c∗ that maximizes
c · ∇u − L(c) is a functional of u. The two equations are coupled, because, in the HJB
equation, the cost function Φ(m) depends on the solution of the KFP equation m; and, in
the KFP equation, the optimal control c∗ depends on the solution of the HJB equation u.
As a result, the entire HJB/KFP system is nonlinear.

Numerical methods for the HJB/KFP system have been studied extensively in [2, 6,
10, 31, 3, 4, 5, 107, 40, 32]. We note that the nonlinearity and the size of the discretized
system pose major challenges for the numerical solution for the HJB/KFP system. To
address the challenges, effective and fast solvers are required.

However, only a few papers, such as [2, 6, 10, 31], have proposed effective and fast
solvers for the nonlinear discretized HJB/KFP systems. These solvers have two common
features. One is that they are all spacetime methods. Spacetime methods are numerical
methods where the unknowns for all the timesteps are solved simultaneously in a single
system, as opposed to timestepping where the unknowns are solved timestep by timestep.
The reason to consider spacetime methods is that the HJB equation is backward and the
KFP equation is forward, which makes it impossible to solve the system using the con-
ventional forward timestepping. The other common feature is that all of these methods
are global linearization (or outer-inner linearization) multigrid methods. More specifically,
in order to solve the nonlinear discretized problems, [2, 6] propose spacetime Newton’s

1In some applications, the Hamiltonian is convex in c. Then “max” in (2.2) is replaced by “min”.

19



iterations; [10] proposes ALG2 (i.e., Douglas-Rachford) iterations; [31] proposes primal-
dual (i.e., Chambolle-Pock) iterations. Each nonlinear iteration requires solving a large
spacetime linear system. In order to solve the linear system, they typically use BiCGStab
iterations, and use multigrid cycles as preconditioners for each BiCGStab iteration. The
common feature of these approaches is that they all involve two layers of iterations: outer
nonlinear iterations, and inner multigrid iterations (or inner BiCGStab iterations with
multigrid preconditioners) for each linearized system. As a result, the total number of it-
erations, which is approximately the product of the iteration counts of the outer and inner
iterations, can be large. To be more concrete, the approach in [10] typically requires more
than 1000 outer ALG2 iterations and 7 inner multigrid-preconditioned CG iterations per
ALG2 iteration, i.e., more than 7000 iterations in total; the approach in [31] typically re-
quires more than 20 outer Chambolle-Pock iterations and 4 inner multigrid-preconditioned
BiCGStab iterations per outer iteration, i.e., more than 80 iterations in total.

To address the issues of these existing multigrid methods, in this chapter, we propose
another spacetime multigrid solver for nonlinear discretized HJB/KFP systems. In partic-
ular, our multigrid method is a full approximation scheme (FAS) [153, 87]. Unlike the
other multigrid methods that are applied iteratively to the inner linearized systems nested
in outer nonlinear iterations, our FAS is directly applied to the nonlinear system itself and
thus involves only one layer of iterations.

In our FAS multigrid method, we consider a hybrid of full and semi coarsenings to
address the anisotropy arising from the time direction [94, 6]. We note that convections in
the HJB/KFP system pose a major challenge for multigrid methods, as standard multigrid
methods are ineffective for convection-diffusion equations [153]. In order to address this
difficulty, we consider adapting a stable and efficient multigrid method proposed in [13],
which uses a type of biased restriction, called a kernel preserving restriction, together with
Petrov-Galerkin coarse grid operators. However, the multigrid method in [13] is designed
for linear equations. It cannot be directly applied to the FAS framework, because the
nonlinearity of FAS is incompatible with Petrov-Galerkin operators. Direct discretization,
as the alternative of Petrov-Galerkin operators, is compatible with the FAS framework.
However, it is well-known that when convection is non-negligible, the convergence rate for
the direct discretization coarse grid operators is no better than 0.5 [27].

Our approach, which is the main novel component of this chapter, is to subtract arti-
ficial viscosity from the direct discretization coarse grid operators. Subtracting artificial
viscosity allows us to design an effective FAS solver under the direct discretization opera-
tors when convection is non-negligible. Our Local Fourier Analysis proves that subtracting
artificial viscosity improves the asymptotic convergence factor and the error reduction fac-
tor. We remark that a seemingly similar idea—adding artificial viscosity—is well-known

20



for stabilizing numerical solution for convection-diffusion equations [112, 96, 68]. However,
we emphasize that our approach is to subtract (rather than add) artificial viscosity, and
our purpose is to improve the coarse grid correction for multigrid methods. This is distinct
from the existing artificial viscosity approaches in the literature.

Significantly, our numerical simulations illustrate that our FAS multigrid method with
artificial viscosity subtraction yields mesh-independent convergence rates for the HJB/KFP
system. In particular, our approach typically converges in less than 10 iterations in total,
which is faster than the global linearization multigrid methods in [2, 6, 10, 31].

To the best of our knowledge, this chapter is the first proposal of a multigrid method
with the following two features: it is an FAS directly designed for the nonlinear discretized
HJB/KFP system (as opposed to the linearized version); and in particular, it subtracts
artificial viscosity from the direct discretization coarse grid operators. These two features
are critical for our proposed multigrid method to converge faster than the other methods.

To illustrate our proposed multigrid method, we first describe the finite difference dis-
cretization in Section 2.2. Section 2.3 introduces joint spacetime methods for solving the
nonlinear discretized system. Section 2.4 describes our proposed spacetime FAS multigrid
methods with artificial viscosity subtraction. Section 2.5 uses Local Fourier Analysis to
demonstrate the efficiency of the proposed multigrid method. Section 2.6 presents numer-
ical results. Section 2.7 is the conclusion.

2.2 Finite Difference Discretization

2.2.1 Notation

First, we introduce finite difference notation that will be used throughout the thesis. With-
out loss of generality, we assume that the spacetime is (2+1)-dimensional. Then the state
and the control variables can be denoted as (x, t) ≡ (x, y, t) and c(x, t) ≡ (c1(x, t), c2(x, t)).
Define an nx × ny × nt spacetime mesh {(xi,j, tn) ≡ (xi, yj, tn) | i = 1, ..., nx; j =
1, ..., ny; n = 0, ..., nt}. Denote the corresponding mesh sizes as ∆x, ∆y, ∆t. For sim-
plicity, unless otherwise specified, we assume that ∆x = ∆y, in which case we can de-
note both ∆x and ∆y as h. Denote the grid function of a continuous function f(x, t) as
{fni,j ≡ f(xi,j, tn) | 0 ≤ n ≤ nt, 1 ≤ i ≤ nx, 1 ≤ j ≤ ny}. Our goal is to solve the set of the
unknowns {uni,j}, {mn

i,j} together with the optimal control {(c∗)ni,j ≡ ((c∗1)ni,j, (c
∗
2)ni,j)}.

The first derivatives of the unknown, ux(xi,j, tn) and uy(xi,j, tn), are usually discretized
by either forward or backward differencing, which are represented by the following for-
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ward/backward difference operators:

D+
x u

n
i,j ≡

uni+1,j − uni,j
∆x

, D−x u
n
i,j ≡

uni,j − uni−1,j

∆x
,

D+
y u

n
i,j ≡

uni,j+1 − uni,j
∆y

, D−y u
n
i,j ≡

uni,j − uni,j−1

∆y
.

(2.5)

The second derivatives of the unknown, uxx(xi,j, tn) and uyy(xi,j, tn), are usually dis-
cretized by the following standard central differencing:

D+
xD

−
x u

n
i,j ≡

uni+1,j − 2uni,j + uni−1,j

∆x2
, D+

y D
−
y u

n
i,j ≡

uni,j+1 − 2uni,j + uni,j−1

∆y2
. (2.6)

2.2.2 Finite difference discretization

Consider numerical solution of (2.1)-(2.4). For the HJB equation (2.1)-(2.2), we use implicit
timestepping for ut, central differencing for ∆u, and upwinding discretization for c∗ ·∇u =
c∗1ux + c∗2uy. Define c+ = max(c, 0), and c− = min(c, 0). Then the discretization of HJB
equation reads

−
un+1
i,j − uni,j

∆t
− σD+

xD
−
x u

n
i,j − σD+

y D
−
y u

n
i,j + ((c∗1)ni,j)

+D−x u
n
i,j + ((c∗1)ni,j)

−D+
x u

n
i,j

+((c∗2)ni,j)
+D−y u

n
i,j + ((c∗2)ni,j)

−D+
y u

n
i,j − L((c∗)ni,j) + runi,j − Φ(mn

i,j) = 0,

n = nt − 1, · · · , 0, i = 1, · · · , nx, j = 1, · · · , ny,

(2.7)

subject to the optimal control:

(c∗)ni,j ≡ arg max
cni,j∈R2

{
((c1)ni,j)

+D−x u
n
i,j + ((c1)ni,j)

−D+
x u

n
i,j

+((c2)ni,j)
+D−y u

n
i,j + ((c2)ni,j)

−D+
y u

n
i,j − L((c∗)ni,j)

}
.

(2.8)

We note that the HJB equation is backward in time, i.e., n = nt − 1, · · · , 0. Hence, the
implicit timestepping is given by (un+1

i,j − uni,j)/∆t rather than the conventional (uni,j −
un−1
i,j )/∆t.

For the KFP equation (2.4), we also use implicit timestepping for mt. Notice that
the KFP equation is written into a conservation form [152]. A standard discretization for
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conservation laws is to use a numerical flux for f = c∗m. For instance, we can choose the
Engquist-Osher flux [152]:

f̂ni+1/2,j = ((c∗1)ni,j)
−mn

i,j + ((c∗1)ni+1,j)
+mn

i+1,j,

f̂ni,j+1/2 = ((c∗2)ni,j)
−mn

i,j + ((c∗2)ni,j+1)+mn
i,j+1.

(2.9)

This is essentially an upwind flux with an additional consideration for rarefactions and
shocks. As a result, the finite difference discretization for the KFP equation is given by

mn
i,j −mn−1

i,j

∆t
− σD+

xD
−
xm

n
i,j − σD+

y D
−
y m

n
i,j −

f̂ni+1/2,j − f̂ni−1/2,j

∆x
−
f̂ni,j+1/2 − f̂ni,j−1/2

∆y
= 0,

n = 1, · · · , nt, i = 1, · · · , nx, j = 1, · · · , ny.
(2.10)

Following the standard finite difference paradigm, we rewrite the nonlinear discrete
system (2.7)-(2.10) in matrix forms. Define the vector unh ≡ (un1,1, u

n
1,2, · · · , unnx,ny)

T ∈ Rnxny

as the vector of {uni,j | 1 ≤ i ≤ nx, 1 ≤ j ≤ ny} at the n-th timestep, where the elements are
arranged in lexicographical order. Similarly, define the vectors mn

h ∈ Rnxny , (c1)nh ∈ Rnxny ,
(c2)nh ∈ Rnxny and cnh ≡ ((c1)nh, (c2)nh)T ∈ R2nxny . Then the discretized HJB equation
(2.7)-(2.8) can be rewritten as

AnHJB((c∗)nh)unh =
1

∆t
· un+1

h + L((c∗)nh) + Φ(mn
h),

subject to (c∗)nh ≡ arg max
cnh∈R

2nxny

{AnHJB(cnh)unh − L(cnh)} , n = nt − 1, · · · , 0. (2.11)

Here AnHJB ∈ Rnxny×nxny is a matrix that assembles the coefficients of uni,j, u
n
i±1,j and uni,j±1

from (2.7). We have added the term uni,j/∆t − σD+
xD

−
x u

n
i,j − σD+

y D
−
y u

n
i,j + runi,j, which

does not depend on the control, to the constraint (2.8), such that both lines of (2.11) use
the same matrix AnHJB. One can see from (2.7) that AnHJB depends on the control vector
(c∗)nh. Similarly, the discretized KFP equation (2.10) can be rewritten as

AnKFP ((c∗)nh)mn
h =

1

∆t
·mn−1

h , n = 1, · · · , nt, (2.12)

where AnKFP is the corresponding coefficient matrix from (2.10).

2.3 Solving the Discretized System

Next we consider solving the nonlinear discretized HJB/KFP system (2.11)-(2.12). A
standard approach to solving a time-dependent system is timestepping. For the HJB/KFP
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system, timestepping needs to be implemented as a forward/backward fixed point iteration.
We leave the discussion of this standard approach to Appendix A.2.

In this chapter, we will instead focus on another approach, called the spacetime formu-
lation. The idea of the spacetime formulation is to treat the unknowns of the discretized
HJB/KFP system for all the timesteps as one entity, and solve them simultaneously. Our
motivation for using spacetime methods is to develop fast solvers for the HJB/KFP sys-
tem. The idea is that, in addition to the spatial dimensions, spacetime methods allow
computational speed-up in the time dimension as well. Some literature, such as [76, 77],
has also considered using spacetime methods to speed up the computation for time de-
pendent PDEs. These methods would not be more advantageous than the conventional
timestepping unless they are implemented in a parallel manner. However, we will show
that our approach achieves faster convergence than timestepping even without paralleliza-
tion. Spacetime methods have also been seen in the numerical solution for time dependent
PDEs on deforming domains [133], which is beyond the scope of this thesis.

Mathematically, introduce the spacetime unknown vectors uh ≡ (u0
h, ..., u

nt−1
h )T ∈

Rnxnynt , mh ≡ (m1
h, ...,m

nt
h )T ∈ Rnxnynt , and the corresponding spacetime control vec-

tor ch = (c0
h, ..., c

nt
h )T ∈ R2nxny(nt+1). Then the HJB/KFP system (2.11)-(2.12) can be

rewritten into the following spacetime matrix forms:

AHJB(c∗h)uh = bHJB(c∗h,mh),

subject to c∗h = arg max
ch

{AHJB(ch)uh − L(ch)} , (2.13)

AKFP (c∗h)mh = bKFP . (2.14)

Here

AHJB =


A0
HJB − 1

∆t
I

A1
HJB − 1

∆t
I

. . . . . .

Ant−1
HJB

 , AKFP =


A1
KFP

− 1
∆t
I A2

KFP
. . . . . .

− 1
∆t
I AntKFP


are nxnynt × nxnynt matrices, and

bHJB =


L((c∗)0

h) + Φ(m0
h)

L((c∗)1
h) + Φ(m1

h)
...

L((c∗)nt−1
h ) + Φ(mnt−1

h ) + 1
∆t
unth

 , bKFP =


1

∆t
m0
h

0
...
0
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are nxnynt vectors.

We can further rewrite the system (2.13)-(2.14) into a nonlinear discretized system for
the joint unknown variable (uh,mh) on the entire spacetime domain:(

AHJB(c∗h)

AKFP (c∗h)

)(
uh

mh

)
=

(
bHJB(c∗h,mh)

bKFP

)
,

subject to c∗h = arg max
ch

{AHJB(ch)uh − L(ch)} .
(2.15)

To emphasize that (uh,mh) are solved together, we call (2.15) a joint spacetime formulation.

One may argue that spacetime methods are usually more demanding than conventional
timestepping methods in terms of memory, as spacetime methods require storing solutions
on the entire spacetime and also the spacetime matrix. However, since the HJB equation
is backward and the KFP equation is forward, even the forward/backward timestepping
method requires storing both solutions uh and mh on the entire spacetime [2]. We can
avoid storing the spacetime matrix (2.15) by the full approximation scheme that will be
proposed in Section 2.4. Indeed, Section 5.3 of [153] explains that a full approximation
scheme does not require explicitly constructing matrices. Hence, for the HJB/KFP system
(2.15), the joint spacetime method does not increase memory requirement.

Regarding solving the joint spacetime system (2.15), we can use policy iteration intro-
duced in Algorithm 1.1. The only subtlety is that the right hand side of (2.15) contains
mh. Hence, merely fixing c∗h would not make the matrix form linear. However, we can
modify the policy iteration by fixing both c∗h and the right-hand-side mh simultaneously,
which makes (2.15) linear. This modified policy iteration is described in Algorithm 2.1.
Although there is no theoretical guarantee, Algorithm 2.1 converges in our numerical sim-
ulation. Line 5 of the algorithm involves solving an optimization problem. Since we have
assumed that the maximum of the Hamiltonian (2.3) is achieved at the stationary point
with respect to c, solving the optimization problem is reduced to using the first derivative
test to compute the stationary point of each discretized equation (2.8). The main challenge
of Algorithm 2.1 is then to solve the spacetime linear systems (Lines 3-4), which is typically
large and requires fast and effective solvers.

2.4 Multigrid Methods

In order to solve (2.15) efficiently, we will propose a multigrid method. In particular, the
proposed multigrid method is developed on the entire spacetime. There exist multigrid
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Algorithm 2.1 Modified policy iteration for solving the joint spacetime system (2.15)

1: Start with an initial guess of c
(0)
h .

2: for k = 1, 2, ... until convergence do
3: Solve the KFP block of (2.15), AKFP (c

(k−1)
h )m

(k)
h = bKFP , for the solution m

(k)
h .

4: Solve the HJB block of (2.15), AHJB(c
(k−1)
h )u

(k)
h = bHJB(c

(k−1)
h ,m

(k)
h ), for the solution

u
(k)
h .

5: Solve the optimization problem c
(k)
h ≡ arg max

ch

{
AHJB(ch)u

(k)
h − L(ch)

}
for the con-

trol c
(k)
h .

6: end for
7: Convergent solution: uh = u

(k)
h , mh = m

(k)
h , c∗h = c

(k)
h .

methods that are spacetime. For example, [77] considers spacetime multigrid methods
for solving discretized linear parabolic PDEs. The authors propose using a block Jacobi
iteration as smoother. We note that the block Jacobi smoother has two deficiencies. One
is that it is a block smoother, which requires solving multiple blocks of linear systems at
each smoothing step and is thus more expensive than standard pointwise smoothers. The
other is that it is a Jacobi smoother, which is less effective than widely-used Gauss-Seidel
smoothers in error smoothing [153]. In addition, the spacetime multigrid method in [77] is
only developed for linear systems and cannot be directly applied to the nonlinear system
(2.15).

Global linearization methods, such as [2, 6, 10, 31], have been proposed for (2.15).
They have been discussed in Section 2.1. We remark that other than [2, 6, 10, 31], the
modified policy iteration introduced in Algorithm 2.1 can also be a possible choice of the
outer nonlinear iteration. We emphasize, however, that all these schemes require multiple
layers of iterations: outer nonlinear iterations (Newton, ALG2, primal-dual, policy); and
inner multigrid cycles (or inner BiCGStab iterations with multigrid preconditioners). Due
to the outer-inner iterative structure of these algorithms, the total number of iterations can
be large. We also note that these multigrid schemes are not fully nonlinear, because the
inner multigrid cycles are applied to the linearization of (2.15), rather than (2.15) itself.

2.4.1 Full approximation scheme (FAS)

To address the issues of the global linearization multigrid methods, in this chapter, we
propose a full approximation scheme [153, 28, 87]. As introduced in Section 1.3.3, FAS is
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a family of multigrid schemes that is directly developed for nonlinear discretized systems,
and involves only one layer of iterations. Here we give a brief review on how a coarse grid
problem of FAS is constructed in general. Denote a nonlinear discretized system as

Nh(uh) = 0, (2.16)

where Nh(uh) is the direct discretization of a nonlinear PDE with mesh size h. Then the
FAS coarse grid problem is defined by

N2h(u2h) = b2h. (2.17)

Here the left hand side N2h(u2h) is the direct discretization of the same PDE with mesh
size 2h; the right hand side is b2h ≡ N2h(ū2h) +Rhrh, where Rh is the restriction operator,
ū2h is the injection of the current approximate solution ūh from fine grid to coarse grid (i.e.,
directly copying values onto coarse grid points from the corresponding fine grid points),
and rh is the residual of ūh. Solving (2.17) yields a coarse grid solution û2h. Then the
coarse grid error estimate is given by e2h = û2h − ū2h.

Now we apply the above definition of FAS coarse grid problem to the HJB/KFP system
(2.15). We rewrite (2.15) as

Nh(uh,mh) = 0, (2.18)

where

Nh(uh,mh) ≡

(
AHJB(c∗h(uh))

AKFP (c∗h(uh))

)(
uh

mh

)
−

(
bHJB(c∗h(uh),mh)

bKFP

)
subject to c∗h(uh) = arg max

ch

{AHJB(ch)uh − L(ch)} .

(2.19)
If we replace h in (2.19) by 2h, i.e., if we replace h in the left hand sides of (2.7) and (2.10)
by 2h, then we obtain the nonlinear operator on the coarse grid N2h(u2h,m2h), which
defines the FAS coarse grid problem.

2.4.2 Nonlinear smoother

In order to apply the FAS algorithm on the HJB/KFP system, we still need to define a
nonlinear smoother. We propose a nonlinear smoother based on the policy iteration. More
specifically, in one step nonlinear smoothing, we first fix the control c∗h in (2.15), obtain
the linearized HJB/KFP system and perform smoothing for the linearized problem; then
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we update the control by solving the nonlinear optimization problem in (2.15) under the
latest uh.

Regarding the smoother for the linearized problem of (2.15), we consider a spacetime
pointwise Gauss-Seidel smoother. That is, we perform forward timestepping for the KFP
equation (2.10) and backward timestepping for the HJB equation (2.7), where the pointwise
Gauss-Seidel smoother is applied at each timestep. We note that both (2.7) and (2.10)
are convection-diffusion problems. In some mean field games, where the convection is
guaranteed to be non-negative (such as the demand function in [42] or production quantity
in [42, 83], etc.), the smoother at each timestep is the downstream Gauss-Seidel smoother;
in other mean field games, where the sign of the convection may change at different grid
points, the smoother at each timestep is the four-direction Gauss-Seidel smoother [153].
We note that, if the four-direction smoother is applied, it is only applied in the spatial
dimensions; in the time dimension, the smoother remains one-directional.

The pseudo-code for the proposed smoother is given in Algorithm 2.2.

Algorithm 2.2 Joint spacetime pointwise Gauss-Seidel smoother

1: subroutine (ūh, m̄h) = SMOOTH (uh, mh)

2: for n = 1, · · · , nt do
3: Update the control: c̄nh = arg max

cnh

{AnHJB(cnh)unh − L(cnh)}.

4: Apply one step Gauss-Seidel smoother on the linearized KFP equation
AnKFP (c̄nh)mn

h = 1
∆t
· m̄n−1

h , which updates the solution mn
h → m̄n

h.
5: end for
6: for n = nt − 1, · · · , 0 do
7: Apply one step Gauss-Seidel smoother on the linearized HJB equation AnHJB(c̄nh)unh =

L(c̄nh) + Φ(m̄n
h) + 1

∆t
· ūn+1

h , which updates the solution unh → ūnh.
8: end for

2.4.3 Issues

Consider an FAS scheme for the HJB/KFP system, where the smoother is defined in Section
2.4.2, the coarse grid problem is defined in Section 2.4.1, and standard full coarsening,
trilinear interpolation, full-weighting restriction are used. It turns out that such a multigrid
method does not converge in general. The failure is caused by the following issues:
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Figure 2.1: Error of the one-dimensional KFP equation with zero convection, i.e., mt −
σmxx = 0. (i) Initial error; (ii) Error after 10 Gauss-Seidel iterations, where σ∆t/∆x2 =
1; (iii) Cross sections of the smoothed error (ii), where blue and red lines are the cross
sections along x and t axes respectively; (iv) Error after 10 Gauss-Seidel iterations, where
σ∆t/∆x2 = 32; (v) Cross sections of the smoothed error (iv).

• The pointwise Gauss-Seidel smoother does not smooth the error in the time direction,
if σ ∆t

∆x2
� 1. Consider the one-dimensional KFP equation with zero convection, i.e.,

mt − σmxx = 0. Figure 2.1 shows the error after 10 Gauss-Seidel iterations, where
σ ∆t

∆x2
= 1 and 32, respectively. We note that, when σ ∆t

∆x2
= 32, the error is not

smooth in the time dimension; see Figure 2.1(iv)-(v).

• The standard full-weighting restriction does not take into account the one-sided na-
ture of the information propagation in the time dimension.

• The standard full-weighting restriction does not take into account the one-sided na-
ture of the information propagation resulting from the convections in the spatial
dimensions. It is well-known that convergence of multigrid deteriorates as the con-
vections increase [153].

• The direct discretization coarse grid operator (2.19) results in a poor coarse grid
estimated error. It is shown in [27] that, if direct discretization is used, when the
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convection is not aligned with the grid, the convergence factor is no better than 0.5.

In the next few subsections, we will discuss how to address these issues in detail.

2.4.4 Hybrid coarsening

Section 2.4.3 has shown that the pointwise Gauss-Seidel smoother does not smooth the
error in the time direction when σ ∆t

∆x2
is large. To explain this, consider again the KFP

equation with zero convection, which is reduced to a heat equation mt− σ∆m = 0. When
σ ∆t

∆x2
� 1, the discretized heat equation is highly anisotropic. That is, it is strongly

connected in the spatial directions but weakly connected in the time direction. It is well-
known that pointwise smoothers do not smooth errors in the weakly connected direction
[153].

To address this issue, one may use block smoothers, where each block corresponds
to the 2-dimensional sub-mesh at each time step [77]. However, each block is a linear
system of size (nxny) × (nxny), and the cost of solving the linear system is as high as
O(min(n2

x, n
2
y)nxny). The problem is more severe if the dimension of the space is greater

than 2.

Alternatively, following the idea in [94, 6, 31], we stick to a pointwise smoother, where
the cost is only O(nxny). However, in order to use a pointwise smoother, the coarsening
strategy is changed to semi-coarsening. More specifically, the strongly connected dimen-
sions, namely the spatial dimensions, are fully coarsened; the weakly connected dimension,
namely the time dimension, remains uncoarsened.

We note that, if we perform semi-coarsening, then σ ∆t
∆x2

will decrease on the coarse grids.
When σ ∆t

∆x2
is no longer large, the pointwise Gauss-Seidel smoother can effectively smooth

the error in the time direction as well; see Figure 2.1(ii)-(iii). In this case, coarsening can
also be applied in the time direction. As a result, we can combine these two coarsening
strategies together. More specifically, when σ ∆t

∆x2
is larger than a threshold value (e.g., 1),

we use semi-coarsening in the spatial dimensions only; otherwise, we use full-coarsening
on the entire spacetime grid. This gives rise to a hybrid full-semi coarsening scheme. We
remark that even though semi-coarsening has been proposed in [6, 31] for the HJB/KFP
system, our strategy is a hybrid coarsening rather than a pure semi-coarsening.
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2.4.5 Interpolation

Under the proposed hybrid coarsening strategy, the errors are smooth along the coarsened
directions. As a result, to transfer the errors from coarse grids to fine grids, we use the
standard trilinear interpolation for full-coarsening and the standard bilinear interpolation
for semi-coarsening.

2.4.6 Restriction

We note that the KFP equation is forward in time, while the HJB equation is backward in
time. Hence, following [94], we use forward and backward restrictions in the time direction
for the residuals of KFP and HJB equations, respectively:

KFP: Rhrh(xi, yj, tn) =
1

2
rh(xi, yj, tn−1) +

1

2
rh(xi, yj, tn),

HJB: Rhrh(xi, yj, tn) =
1

2
rh(xi, yj, tn) +

1

2
rh(xi, yj, tn+1),

for any coarse grid point (xi, yj, tn).

(2.20)

In this thesis, we use the stencil notation introduced in Section 1.3.4 of [153], which arranges
the coefficients of a sparse linear operator in a compact array. Under the stencil notation,
the restriction operators are written as

KFP: Rh =

[
1

2

1

2
0

]
, HJB: Rh =

[
0

1

2

1

2

]
, (2.21)

where the elements are the coefficients of [rh(xi, yj, tn−1), rh(xi, yj, tn), rh(xi, yj, tn+1)].

The restriction in the spatial dimensions must take into account of the one-sided convec-
tional effect. Let us first consider the spatial restriction for the KFP equation. Following
[13], we consider a kernel preserving biased restriction. The idea is to capture the hyper-
bolic nature of the PDE. The restriction weights are biased towards the upwind side and
matched with the flow direction of the error. Such biased restriction may not be unique.
A kernel preserving scheme is one type of biased restriction that preserves the kernels of
the differential operator of the KFP equation, −σ∆m−∇ · (cm). In this case, the kernels
are the arbitrary constant and the exponential function exp(−σ−1c · x). To preserve the
kernels, [13] proposes the following restriction operator when c1c2 > 0

Rh(c) =
1

4

 0 1
1+exp(−σ−1c·(0,h))

1
1+exp(−σ−1c·(h,h))

1
1+exp(−σ−1c·(−h,0))

1 1
1+exp(−σ−1c·(h,0))

1
1+exp(−σ−1c·(−h,−h))

1
1+exp(−σ−1c·(0,−h))

0

 , (2.22)

31



where the elements are the restriction coefficients ofrh(xi−1, yj+1, tn) rh(xi, yj+1, tn) rh(xi+1, yj+1, tn)
rh(xi−1, yj, tn) rh(xi, yj, tn) rh(xi+1, yj, tn)
rh(xi−1, yj−1, tn) rh(xi, yj−1, tn) rh(xi+1, yj−1, tn)

 .
Similar operator can be derived for c1c2 < 0. We note that, when c1 = c2 = 0, the restric-
tion operator (2.22) is reduced to a 7-point constant restriction, which is an alternative of
the full-weighting restriction. Conversely, when |c1| and |c2| are very large, it becomes a
pure upwind biased constant restriction. For the HJB equation, the convection coefficient
has an opposite sign compared with the KFP equation. To obtain the restriction operator
of the HJB equation, we simply replace c in (2.22) by −c.

We note that, in [13], the kernel preserving biased restriction is combined with the
Petrov-Galerkin coarse grid operator A2h ≡ RhAhPh, where Rh is the restriction (2.22)
and Ph is the trilinear/bilinear interpolation.

As analyzed in [13], the kernel preserving biased restriction operator has several de-
sirable properties. One is that it captures the one-sided nature of the convections and
preserves the kernel of −σ∆m − ∇ · (cm). In addition, the resulting Petrov-Galerkin
coarse grid operators are nearly M-matrices, which is crucial for the stability of multigrid.
Conversely, Galerkin coarse grid operators under the standard full-weighting restriction
are not M-matrices [153, 13].

The restriction operator on the entire spacetime is the composition of the restriction
operator in the spatial dimensions and the one in the time dimension.

2.4.7 Direct discretization and artificial viscosity subtraction

Despite the advantage of the kernel preserving restriction in [13], it combines with the
Petrov-Galerkin coarse grid operator, which is incompatible with the nonlinearity of FAS.
More specifically, under the FAS framework, the Petrov-Galerkin coarse grid operator is
given by A2h(c) ≡ Rh(c)Ah(c)Ph, where each matrix entry of A2h(c) becomes a nonlinear
function that depends on the control c. This is much more complicated than the Petrov-
Galerkin coarse grid operator for the linear problems considered in [13], where each matrix
entry of A2h is a number. As a result, constructing the Petrov-Galerkin coarse grid operator
for nonlinear FAS is impractical.

In order to make FAS a practical approach, the FAS literature uses direct discretization
as the coarse grid operator; see Section 2.4.1. However, if the direct discretization coarse
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grid operator is used, then the kernel preserving restriction does not yield precise coarse
grid estimated errors any more.

In this chapter, we propose to modify the direct discretization coarse grid operator,
such that it becomes a good approximation to the Petrov-Galerkin coarse grid operator,
and thus yields accurate coarse grid estimated errors.

In order to achieve this, we investigate the difference between the Petrov-Galerkin and
the direct discretization coarse grid operators. For simplicity, we first consider the one
dimensional steady-state linear convection-diffusion equation

− σmxx − cmx = 0, (2.23)

where c is a positive constant. Under the stencil notation, the finite difference stencil is
given by

Ah(c) =

[
− σ

h2

2σ

h2
+
c

h
− σ

h2
− c

h

]
, (2.24)

where the elements are the stencil coefficients of [mh(xi−1),mh(xi),mh(xi+1)] . If we replace
h by 2h, we obtain the direct discretization coarse grid operator:

ADD2h (c) =

[
− σ

(2h)2

2σ

(2h)2
+

c

2h
− σ

(2h)2
− c

2h

]
. (2.25)

Meanwhile, under the standard linear interpolation Ph and the kernel preserving restriction

Rh(c) =
1

2

[
1

1 + exp(σ−1ch)
1

1

1 + exp(−σ−1ch)

]
, (2.26)

the Petrov-Galerkin coarse grid operator is given by

APG2h (c) = Rh(c)Ah(c)Ph

=

[
− σ

(2h)2
+

(1− η)c

8h

2σ

(2h)2
+

(1 + η)c

4h
− σ

(2h)2
− (3 + η)c

8h

]
,

(2.27)

where η ≡ tanh( ch
2σ

). Then the difference between the two coarse grid operators (2.27) and
(2.25) is

APG2h (c)− ADD2h (c) =
1

2
(1− η)ch ·

[
1

(2h)2
− 2

(2h)2

1

(2h)2

]
. (2.28)

Significantly, this turns out to be the stencil for an O(h) viscosity 1
2
(1 − η)ch mxx. Moti-

vated by this fact, we consider subtracting this O(h) “artificial viscosity” from the direct
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discretization coarse grid operator ADD2h (c). This yields the Petrov-Galerkin coarse grid
operator APG2h (c) and thus a more precise coarse grid error estimation.

To summarize, our multigrid scheme for (2.23) is to construct the direct discretization
coarse grid operator, but instead of using the original viscosity σ, we use the damped
viscosity

σ̂ = σ − 1

2
(1− η)|c|h, (2.29)

where

η ≡ tanh(
|c|h
2σ

). (2.30)

Here we put the absolute value on c to generalize the result from c > 0 to any c.

Next we consider the two dimensional linear convection-diffusion equation

− σ1mxx − σ2myy − c1mx − c2my = 0. (2.31)

We obtain the difference between the two coarse grid operators:

APG2h (c)− ADD2h (c) =
1

4
h
[

(2− η12 − η1)|c1|mxx + (2− η12 − η2)|c2|myy

−sign(c1c2)((η12 + η2)|c1|+ (η12 + η1)|c2|)mxy

−sign(c2)2σ1η2mxxy − sign(c1)2σ2η1mxyy +O(h)
]
,

(2.32)

where

η1 ≡ tanh(
|c1|h
2σ1

), η2 ≡ tanh(
|c2|h
2σ2

), η12 ≡ tanh(
|c1|h
2σ1

+
|c2|h
2σ2

). (2.33)

Notice that, when h→ 0, η1, η2 and η12 are also O(h). If we assume that |c1|h
2σ1

and |c2|h
2σ2

are
not much larger than 1, then (2.32) can be approximated by

APG2h (c)− ADD2h (c) ≈ 1

4
h
[

(2− η12 − η1)|c1|mxx + (2− η12 − η2)|c2|myy

]
, (2.34)

where we only keep the viscosity terms in (2.32).

Similar to the one dimensional convection-diffusion equation, for the two dimensional
case (2.31), our multigrid scheme is to construct the direct discretization coarse grid op-
erator, where we subtract O(h) artificial viscosity from the original σ1 and σ2 and damp
them to

σ̂1 = σ1 −
1

4
(2− η12 − η1)|c1|h, σ̂2 = σ2 −

1

4
(2− η12 − η2)|c2|h. (2.35)
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Figure 2.2: An example of the multigrid errors for the two-dimensional convection-diffusion
equation (2.31). (i) Pre-smoothed error. (ii) Coarse grid estimated error without
artificial viscosity subtraction. (iii) Coarse grid estimated error with artificial viscosity
subtraction. (iv) Cross sections of the pre-smoothed error (blue), coarse grid estimated
error (red) and post-smoothed error (black) along the x axis without artificial viscosity
subtraction. (v) Cross sections of the corresponding errors along the x axis with artificial
viscosity subtraction.

Figure 2.2 shows an example of the multigrid errors for the two-dimensional convection-
diffusion equation (2.31). By comparing Figures 2.2(iv) and 2.2(v), we observe that with
artificial viscosity subtraction, the coarse grid estimated error (red) becomes closer to the
pre-smoothed error (blue), and the post-smoothed error (black) becomes smaller. In other
words, subtracting artificial viscosity yields a more precise coarse grid estimated error and
a more efficient multigrid error reduction.

In this chapter, we extend the proposed idea of artificial viscosity subtraction from the
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linear convection-diffusion equations to the nonlinear HJB/KFP system (2.15). We will
demonstrate in Section 2.6 that, by subtracting artificial viscosity from direct discretiza-
tion coarse grid operators, we obtain a more efficient multigrid method for the nonlinear
HJB/KFP system.

One may argue that subtracting (rather than adding) artificial viscosity may make
the coarse grid problem unstable. However, straightforward algebra can show that the
decreased viscosity (2.29) or (2.35) is always non-negative. As a result, the direct dis-
cretization coarse grid problem, which uses upwinding discretization, remains stable. In
addition, we emphasize that this chapter is concerned with convection-diffusion equations
(rather than purely convection equations), where shock waves are not a major concern. In
such cases, the benefit of subtracting artificial viscosity, i.e., improving coarse grid correc-
tion for multigrid methods and ultimately the overall efficiency of the algorithm, becomes
more prominent.

We summarize the proposed artificial viscosity joint spacetime FAS multigrid method
in Algorithm 2.3.

2.5 Local Fourier Analysis

In this section, we use Local Fourier Analysis (LFA) [153, 156] to demonstrate the efficiency
of the proposed multigrid method. Let us consider the linearized KFP equation

mt − σ∆m+∇ · (cm) = 0. (2.36)

We assume that c is a positive constant.

2.5.1 Smoothing analysis

We first analyze the smoothing property of the joint spacetime Gauss-Seidel smoother
proposed in Section 2.4.2. Since we assume that c ≥ 0, in the spatial dimensions, it is
sufficient to consider the downstream (rather than four-direction) Gauss-Seidel smoother.
Define the spacetime Fourier modes as ϕh,∆t(κ;x, t) ≡ exp

[
i
(
κ1x
h

+ κ2y
h

+ κ0t
∆t

)]
, where

κ = (κ1, κ2, κ0) ∈ [−π, π)3. Significantly, Fourier modes are the eigenvectors of the smooth-
ing operator, where the corresponding eigenvalues are called the Fourier symbol of the
smoother. Following [153], we obtain the Fourier symbol of the smoother:

S̃h(κ) =
σ∆t
h2

(eiκ1 + eiκ2)

1 + σ∆t
h2

(4 + c1h
σ

+ c2h
σ

)− σ∆t
h2

(1 + c1h
σ

)e−iκ1 − σ∆t
h2

(1 + c2h
σ

)e−iκ2 − e−iκ0
.
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Algorithm 2.3 Artificial viscosity joint spacetime FAS multigrid method

1: Start with an initial guess (u
(0)
h ,m

(0)
h ).

2: for k = 1, 2, ... until convergence do
3: (u

(k+1)
h , m

(k+1)
h ) = FASCYC (u

(k)
h , m

(k)
h , 0, σ, σ, γ, ν1, ν2). See below for the subrou-

tine “FASCYC”.
4: end for

subroutine (u
(k+1)
h ,m

(k+1)
h ) = FASCYC (u

(k)
h , m

(k)
h , bh, (σ1)h, (σ2)h, γ, ν1, ν2)

5: Construct the nonlinear operator (2.19), Nh, using the viscosity (σ1)h and (σ2)h.
6: Perform ν1 smoothing steps (Algorithm 2.2) on Nh(uh,mh) = bh, which updates the

solution (u
(k)
h , m

(k)
h ) → (ū

(k)
h , m̄

(k)
h ).

7: Compute the residual: rh = bh −Nh(ū(k)
h , m̄

(k)
h ).

8: Determine whether to use full-coarsening or semi-coarsening according to Section 2.4.4.

9: Inject the solution: (ū
(k)
h , m̄

(k)
h )→ (ū

(k)
2h , m̄

(k)
2h ).

10: Restrict the residual: r2h = Rhrh, where Rh is the restriction in Section 2.4.6.
11: Inject the viscosity: (σ1)h → (σ1)2h, (σ2)h → (σ2)2h.
12: Subtract artificial viscosity: (σ1)2h ← (σ1)2h − 1

4
(2 − η12 − η1)|c1|h, (σ2)2h ←

(σ2)2h − 1
4
(2− η12 − η2)|c2|h, where η1, η2 and η12 are defined in (2.33).

13: Construct the coarse grid nonlinear operator N2h, using the viscosity (σ1)2h and (σ2)2h.

14: Compute the right hand side: b2h = N2h(ū
(k)
2h , m̄

(k)
2h ) +Rhrh.

15: if on the coarsest grid then
16: Solve N2h(û

(k)
2h , m̂

(k)
2h ) = b2h for (û

(k)
2h , m̂

(k)
2h ), using Algorithm 2.1 or Algorithm 2.2

repeatedly.
17: else
18: Solve N2h(û

(k)
2h , m̂

(k)
2h ) = b2h for (û

(k)
2h , m̂

(k)
2h ) approximately by γ-time recursions of

19: (û
(k)
2h , m̂

(k)
2h ) = FASCYC (ū

(k)
2h , m̄

(k)
2h , b2h, (σ1)2h, (σ2)2h, γ, ν1, ν2).

20: end if
21: Compute the coarse grid estimated error: e2h = (û

(k)
2h , m̂

(k)
2h )− (ū

(k)
2h , m̄

(k)
2h ).

22: Interpolate the estimated error: eh = Phe2h, where Ph is the trilinear or bilinear
interpolation.

23: Correct the fine grid solution: (ũ
(k)
h , m̃

(k)
h ) = (ū

(k)
h , m̄

(k)
h ) + eh.

24: Perform ν2 smoothing steps (Algorithm 2.2) on Nh(uh,mh) = bh, which updates the

solution (ũ
(k)
h , m̃

(k)
h ) → (u

(k+1)
h , m

(k+1)
h ).
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(i) Full coarsening

( c1hσ , c2hσ ) = (0.1, 0.1) ( c1hσ , c2hσ ) = (1, 1) ( c1hσ , c2hσ ) = (10, 10)
σ∆t
h2 = 10 0.951 0.951 0.951
σ∆t
h2 = 2 0.792 0.793 0.784

σ∆t
h2 = 0.4 0.499 0.411 0.433

(ii) Semi coarsening

( c1hσ , c2hσ ) = (0.1, 0.1) ( c1hσ , c2hσ ) = (1, 1) ( c1hσ , c2hσ ) = (10, 10)
σ∆t
h2 = 10 0.478 0.334 0.083
σ∆t
h2 = 2 0.483 0.339 0.084

σ∆t
h2 = 0.4 0.499 0.354 0.086

Table 2.1: The smoothing factor µloc for different combinations of σ∆t
h2

and ( c1h
σ
, c2h
σ

) and
for (i) full coarsening, and (ii) semi coarsening.

We define its smoothing factor as µloc ≡ supκ

{
|S̃h(κ)| : κ ∈ high frequency mode

}
.

The smoothing factor evaluates how effectively a smoother can make errors smooth. In
particular, a smoothing factor reaches its best value at 0 and worst at 1. One can see that
the smoothing factor is determined by three ratios: σ∆t

h2
, c1h

σ
and c2h

σ
.

Table 2.1 reports the smoothing factor µloc under different combinations of σ∆t
h2

and

( c1h
σ
, c2h
σ

). We can see that, if full-coarsening is used, then the smoothing factor depends
on the ratio σ∆t

h2
. When σ∆t

h2
is large, the smoothing factor is close to 1. When σ∆t

h2
is small,

the smoothing factor is much smaller than 1. This means that it is desirable to use full-
coarsening if and only if σ∆t

h2
is small. In addition, if semi-coarsening is applied, then the

smoothing factor is basically determined by the ratios between convection and diffusion,
( c1h
σ
, c2h
σ

). The smoothing factor decreases as the ratios increase. Indeed, when the ratios
are infinity, or, when the linear problem (2.36) becomes purely hyperbolic, the smoothing
factor becomes 0, which seems to suggest that purely hyperbolic problems can be solved
by one single Gauss-Seidel iteration. However, this is only true for linear problems. The
original KFP equation (2.4) would not be solved by one single Gauss-Seidel iteration due
to the nonlinearity and the coupling with the HJB equation (2.1)-(2.2), even when the
problem becomes hyperbolic.

2.5.2 Two-grid analysis

In this subsection, we follow [156] and consider a two-grid analysis for the full and semi
coarsenings. We note that each individual Fourier mode is no longer an eigenvector of
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the two-grid operator. However, given a low frequency mode κ000 ≡ κ ∈
[
−π

2
, π

2

)3
, the

8-dimensional subspace of span{ϕh,∆t(κα; ·) : α = (α1, α2, α0), α1, α2, α0 ∈ {0, 1} }, where
κα ≡ κ000−(α1sign(κ1), α2sign(κ2), α0sign(κ0))·π, is invariant under the two-grid operator.
As a result, the Fourier symbol of the two grid operator, M2h

h (κ) ∈ C8×8, is not a scalar,
but rather an 8× 8 matrix. We refer readers to Appendix A.3 for technical details.

Based on M2h
h (κ), we define the asymptotic convergence factor and the error

reduction factor as

ρloc(M
2h
h ) ≡ sup

κ

{
ρ(M2h

h (κ)) : κ ∈ low frequency mode
}
,

σloc(M
2h
h ) ≡ sup

κ

{
‖M2h

h (κ)‖2 : κ ∈ low frequency mode
}
.

As suggested by their names, these two factors evaluate how effective a two-grid method
reduces errors, or equivalently, how fast the method converges to the solution. Similar
to the smoothing factor, the asymptotic convergence factor and the error reduction factor
reach their best values at 0 and worst at 1, and are determined by the three ratios σ∆t

h2
, c1h

σ

and c2h
σ

.

Table 2.2 reports the two-grid convergence factor ρloc(M
2h
h ) and error reduction factor

σloc(M
2h
h ) under different combinations of σ∆t

h2
and ( c1h

σ
, c2h
σ

). Table 2.2(i) shows that, if
full-coarsening is used, then the factors depend on the ratio σ∆t

h2
. When σ∆t

h2
is large, the

(i) Full coarsening

( c1hσ , c2hσ ) = (0.1, 0.1) ( c1hσ , c2hσ ) = (1, 1) ( c1hσ , c2hσ ) = (10, 10)

ρloc(M
2h
h ) σloc(M

2h
h ) ρloc(M

2h
h ) σloc(M

2h
h ) ρloc(M

2h
h ) σloc(M

2h
h )

σ∆t
h2 = 10 0.89 0.97 0.89 0.97 0.89 0.97
σ∆t
h2 = 2 0.54 0.67 0.59 0.67 0.51 0.67

σ∆t
h2 = 0.4 0.50 0.52 0.56 0.60 0.50 0.52

(ii) Semi coarsening

( c1hσ , c2hσ ) = (0.1, 0.1) ( c1hσ , c2hσ ) = (1, 1) ( c1hσ , c2hσ ) = (10, 10)

ρloc(M
2h
h ) σloc(M

2h
h ) ρloc(M

2h
h ) σloc(M

2h
h ) ρloc(M

2h
h ) σloc(M

2h
h )

σ∆t
h2 = 10 0.22 0.29 0.22 0.28 0.18 0.19
σ∆t
h2 = 2 0.23 0.29 0.22 0.28 0.18 0.19

σ∆t
h2 = 0.4 0.26 0.30 0.22 0.34 0.18 0.19

Table 2.2: The two-grid convergence factor ρloc(M
2h
h ) and error reduction factor σloc(M

2h
h )

for different combinations of σ∆t
h2

and ( c1h
σ
, c2h
σ

) and for (i) full coarsening, and (ii) semi
coarsening.
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factors are close to 1. When σ∆t
h2

is small, the factors are much smaller than 1. Again, this
suggests an efficient error reduction under full-coarsening if and only if σ∆t

h2
is small. Table

2.2(ii) shows that, if semi-coarsening is applied, then the factors are mainly determined by
the ratios ( c1h

σ
, c2h
σ

). The factors decrease as ( c1h
σ
, c2h
σ

) increase. However, similar to the
discussion at the end of Section 2.5.1, this does not imply a more efficient error reduction in
a convection-dominant regime than in a diffusion-dominant regime, due to the nonlinearity
of the HJB/KFP system. Interested readers are referred to [69] for more discussions on
the relation between spacetime multigrid convergence results and the corresponding LFA
estimate.

2.5.3 The effect of subtracting artificial viscosity

Our proposed multigrid method considers subtracting artificial viscosity. For simplicity,
here we consider the steady-state version of (2.36), or equivalently, −σ∆m+∇· (cm) = 0.
In this subsection, we will use multigrid (i.e., three-grid, four-grid, etc) analysis to illus-
trate the improvement due to subtracting artificial viscosity. An introduction to multigrid
analysis can be found in [156].

Table 2.3 reports the multigrid asymptotic convergence factors and error reduction
factors for the linearized KFP equation. Figure 2.3 illustrates the multigrid asymptotic
convergence factors ρloc(M) versus the convection coefficient c. We compare the results
with and without artificial viscosity subtraction. To summarize, the improvements of
subtracting artificial viscosity include the following:

(i) h = 1
64 , four-grid

c = (20, 20)T c = (30, 30)T

ρloc(M
8h
h ) σloc(M

8h
h ) ρloc(M

8h
h ) σloc(M

8h
h )

Without artificial viscosity subtraction 0.34 0.40 0.43 0.47

With artificial viscosity subtraction 0.20 0.32 0.33 0.39

(ii) h = 1
128 , five-grid

c = (20, 20)T c = (30, 30)T

ρloc(M
16h
h ) σloc(M

16h
h ) ρloc(M

16h
h ) σloc(M

16h
h )

Without artificial viscosity subtraction 0.39 0.44 0.48 0.51

With artificial viscosity subtraction 0.23 0.35 0.38 0.43

Table 2.3: Multigrid asymptotic convergence factors and error reduction factors for
−σ∆m+∇ · (cm) = 0, where σ = 1.
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Figure 2.3: The multigrid asymptotic convergence factors ρloc(M) versus the convection
coefficient c for the two-dimensional convection-diffusion equation −σ∆m + ∇ · (cm) =
0, where σ = 1 and c = (0, 0), (5, 5), (10, 10), · · · . The blue lines are the convergence
factors without artificial viscosity subtraction, while the red lines are the corresponding
convergence factors with artificial viscosity subtraction.

• The significant improvement of the multigrid convergence factors occurs approxi-
mately between c = (10, 10)T and (30, 30)T . By subtracting artificial viscosity, the
multigrid factors are significantly reduced by 20%-40%.

• When c is close to (0, 0)T , or when the problem is diffusion dominant, subtracting
artificial viscosity does not have a significant impact on the multigrid factors, because
the original direct discretization already yields good error estimations.

• When c is greater than (40, 40)T , or when the problem is convection dominant, the
multigrid factors have modest improvements if artificial viscosity is subtracted. We
note that as the convection increases, the ratios ( |c1|h

σ
, |c2|h

σ
) also increase. The terms

dropped out of (2.32) are no longer negligible.

• For h = 1
64

and h = 1
128

, subtracting artificial viscosity yields approximately the same
amount of improvement on the convergence factors.

The LFA provides an estimate on how many iterations are saved by subtracting artificial
viscosity. Denote the convergence (or error reduction) factors with and without artificial
viscosity subtraction as ρyes and ρno (or σyes and σno), respectively. Using the reported
numbers in Table 2.3, the ratio of the numbers of iterations with and without artificial
viscosity subtraction is given by log ρno/ log ρyes ≈ 70% (or log σno/ log σyes ≈ 80%). That
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is, subtracting artificial viscosity may save 2-3 iterations per 10 iterations, or 20%-30% of
computational cost. We will show in Section 2.6 that the numerical simulation agrees with
this LFA estimate.

2.6 Numerical Results

In this section, we apply our proposed spacetime multigrid method to the joint HJB/KFP
system (2.1)-(2.4), or equivalently, its discretization (2.15). We illustrate the fast and
mesh-independent convergence rates.

Unless otherwise specified, we use the V(1,1)-cycle [153]. That is, we choose ν1 =
ν2 = γ = 1 in Algorithm 2.3, or equivalently, we perform one pre and post smoothings
respectively, and perform multigrid recursion only once on each coarse grid. We termi-
nate the multigrid iterations at the residual norm ‖rh‖ ≤ 10−6. The initial guesses for
the grid size (nx, ny, nt) are the trilinear interpolation of the solutions from the grid size
(nx/2, ny/2, nt/2).

In our numerical examples, we compare the following multigrid schemes:

Scheme I (our proposed scheme) is the spacetime FAS scheme for the HJB/KFP
system (2.15), where artificial viscosity is subtracted from the direct discretization coarse
grid operators. The number of iterations is counted.

Scheme II is the same as Scheme I, except that no artificial viscosity is subtracted
from the direct discretization coarse grid operators.

Scheme III is the spacetime FAS scheme, where we use the multigrid components
proposed in [77]. More specifically, we apply the block Jacobi smoother and the coarsening
strategy proposed in [77], with the full-weighting restriction and the trilinear interpolation.
We note that the scheme in [77] is developed for linear problems and cannot be directly
applied to nonlinear problems. We use FAS with direct discretization operators to adapt
this scheme for the nonlinear HJB/KFP system. The number of iterations is counted.

Scheme IV is the global linearization spacetime multigrid method, where the outer
loop is the modified policy iteration described in Algorithm 2.1, and the inner loop is multi-
grid V(1,1)-cycle for each linearized problem. We use the proposed multigrid components
described in Section 2.4. The only exception is that we use Petrov-Galerkin coarse grid
operator. The reason is that the inner loop is linear, which allows us to use the Petrov-
Galerkin operator, and it is generally accurate. The number of iterations is defined as the
sum of the numbers of inner loops.
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Scheme V is the forward/backward timestepping fixed point iteration described in
Algorithm A.3. Each timestep (Lines 6 and 9) is solved by the FAS scheme using our
proposed multigrid components described in Section 2.4. We note that the FAS here is
applied on each timestep rather than on the entire spacetime domain. In order to make a
fair comparison between Scheme V and the spacetime Schemes I-IV, we define the number
of iterations for Scheme V as the average number of iterations per timestep, namely, 1/nt×
sum of the FAS V-cycle counts over all the nt timesteps.

For all these five multigrid schemes, we note that the computational costs per iteration
are dominated by the costs of pre and post smoothings. In other words, the computational
costs of restrictions and interpolations are negligible. Hence, the complexities per iteration
are the same for Schemes I, II, IV and V. As a result, the number of iterations is a good
measure for the complexity of each multigrid scheme. We note that, for Scheme III, since
a block smoother is used, the complexity per iteration is greater than the other schemes.

Example 2.1. Consider solving the (2+1)-dimensional mean field games in Section 5 of
[83]. That is, we solve (2.1)-(2.4), where the spacetime domain is T = 1, Ω = [0, 1]2, the

cost function is Φ(m) = ln(m), and the Lagrangian is L(c) = −‖c‖
2

2
. Section 5 of [83]

derives the following exact solution:

u = −a(x2 + y2) + b, m =
a

πσ
exp

(
−a(x2 + y2)

σ

)
, (2.37)

where a = 1
2σ
− r

2
, b = 1

r

(
ln a

πσ
− 4aσ

)
. Here we impose Dirichlet boundary conditions

for both u and m, and let the terminal, initial and boundary conditions be given by
(2.37). We set the discount factor as r = 0.1. We note that the convection, given by
c∗ = −∇u = 2a(x, y)T , is proportional to a. We test the following two cases.

Case 1: (σ, a) = (1, 0.45), which is diffusion dominant. The first two columns of Table
2.4 report the convergence rates of the numerical solutions towards the exact solution
(2.37). The convergence rates of ‖u− uh‖ and ‖m−mh‖ are first order, namely, O(h).

We then investigate the convergence rates of the five multigrid schemes; see the last
five columns of Table 2.4. Scheme I takes only 4 iterations to converge. In addition,
the CPU time for Scheme I is approximately linear in the grid size, namely O(nxnynt).
The convergence rates of Scheme II are basically the same as Scheme I. The reason is that
the problem is diffusion dominant, and thus direct discretization without artificial viscosity
subtraction yields sufficiently good coarse grid error estimations. Scheme I converges faster
than Scheme III. Figure 2.5 explains the reason. Starting with the same initial error
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(i) (σ, a) = (1, 0.45) (ii) (σ, a) = (0.2, 2.45)

x
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Figure 2.4: Example 2.1: Numerical solutions mh(x, y, T ). (i) (σ, a) = (1, 0.45). (ii)
(σ, a) = (0.2, 2.45).

(σ, a) = (1, 0.45)

nx × ny × nt
Error of HJB/KFP Number of iterations (CPU time)

‖u− uh‖ ‖m−mh‖ Scheme I Scheme II Scheme III Scheme IV Scheme V

16× 16× 16 1.11× 10−3 2.88× 10−4 4 (3.0s) 4 (2.9s) 12 (18s) 28 (8.3s) 21 (8.4s)

32× 32× 32 5.73× 10−4 1.49× 10−4 4 (23s) 4 (24s) 11 (219s) 28 (74s) 21 (42s)

64× 64× 64 2.91× 10−4 7.61× 10−5 4 (193s) 4 (188s) 11 (3404s) 21 (491s) 19 (245s)

128× 128× 128 1.47× 10−4 3.84× 10−5 3 (1104s) 4 (1686s) 11 (39616s) 15 (3507s) 19 (2125s)

Table 2.4: Example 2.1: Convergence of the five multigrid schemes. (σ, a) = (1, 0.45).

(yellow lines) for both schemes, we observe that Scheme I’s pre-smoothed error (blue lines)
is smoother than Scheme III’s, which leads to a more precise coarse grid estimate (red
lines), a smaller post-smoothed error (purple lines), a more efficient error reduction, and
eventually a faster convergence. In addition, the cost of Scheme I’s pointwise smoother is
only O(nxnynt), while the cost of Scheme III’s block smoother is O(min(n2

x, n
2
y)nxnynt). We

note that Schemes IV and V are both outer-inner iterations, where the total iteration count
is the number of outer iterations times the average number of inner iterations; conversely,
Scheme I is a single-layer iteration, where the total iteration count is the FAS iteration
count itself. The inner iteration counts of Schemes IV and V are approximately equal to
the iteration count of Scheme I. As a result, the total iteration counts of Schemes IV and
V are much higher than Scheme I. Comparing with Schemes III-V, we conclude that the
proposed Scheme I has the fastest convergence rates.

Case 2: (σ, a) = (0.2, 2.45), which is convection dominant. The first two columns of
Table 2.5 show that the numerical solutions converge to the exact solution as h → 0. We
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(i) Scheme I, errors on the y and t axes
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(ii) Scheme III, errors on the y and t axes
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Figure 2.5: Comparison of the error reductions between Scheme I and Scheme III. Here
we consider the errors of the HJB equation in Example 2.1 under one multigrid V-cycle,
and plot the cross sections of the errors along the y and t axes.

(σ, a) = (0.2, 2.45)

nx × ny × nt
Error of HJB/KFP Number of iterations (CPU time)

‖u− uh‖ ‖m−mh‖ Scheme I Scheme II Scheme III Scheme IV Scheme V

16× 16× 16 3.68× 10−2 4.17× 10−2 6 (5.0s) 7 (5.9s) 18 (29s) 64 (32s) 69 (24s)

32× 32× 32 2.65× 10−2 2.46× 10−2 7 (45s) 10 (66s) 23 (474s) 75 (340s) 78 (137s)

64× 64× 64 1.70× 10−2 1.35× 10−2 7 (349s) ∞ ∞ 86 (3145s) 80 (1032s)

128× 128× 128 9.73× 10−3 7.04× 10−3 7 (2554s) ∞ ∞ 96 (29381s) 77 (9400s)

Table 2.5: Example 2.1: Convergence of the five multigrid schemes. (σ, a) = (0.2, 2.45).
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note that m(1, 1, t) ≈ 0; see Figure 2.4(ii). Hence in (2.1), ln(m(1, 1, t)) ≈ −∞. Due to
this singularity, the convergence rates of ‖u− uh‖ and ‖m−mh‖ are slightly slower than
O(h).

The last five columns of Table 2.5 report the convergence rates of the five multigrid
schemes. The numbers of iterations for (σ, a) = (0.2, 2.45) are larger than those for (σ, a) =
(1, 0.45). The reason is that multigrid is usually less efficient when the problem becomes
more hyperbolic. Significantly, Scheme I converges in 6-7 iterations, independent of the
mesh size. The total complexity (reflected by the total CPU time) is linear in the grid
size, namely O(nxnynt). By comparing Schemes I and II, we see that subtracting artificial
viscosity saves 14% and 30% of the iterations when the mesh size is 16 × 16 × 16 and
32 × 32 × 32, respectively. This agrees with the LFA estimate, which is around 20%-
30% (see the end of Section 2.5.3). More importantly, Scheme II fails to converge when
the mesh size is larger than 64 × 64 × 64. However, Scheme I successfully converges in
only 7 iterations, and the convergence rate is mesh-independent. Scheme III also fails to
converge. The reason, which has been explained in Figure 2.5, is that Scheme III’s errors
are oscillatory. The oscillation grows quickly as the iteration proceeds. Due to the outer-
inner structure of the iterations, the iteration counts for Schemes IV and V are above 64,
much larger than Scheme I. In addition, the number of iterations for Scheme IV grows as
the grid becomes finer.

Example 2.2. In this example, we compare the numerical results given by our proposed
multigrid method with the results given by the numerical scheme in [2]. Consider solv-
ing the HJB/KFP system in Section 4.2 of [2]. That is, we solve (2.1)-(2.4), where the
spacetime domain is T = 1, Ω = [−0.5, 0.5]2, the cost function is Φ(m) = m, the ter-
minal condition is u(x, y, T ) = 0, the initial condition is m(x, y, 0) = 1, the boundary

conditions for both u and m are periodic, and the Lagrangian is L(c) = 2
√

3
9
‖c‖3/2 −

sin(2πx) − sin(2πy) − cos(4πx). Straightforward algebra can show that under this La-
grangian, the optimal control is c∗ = 3‖∇u‖∇u. This yields the same Hamiltonian
H(x,∇u) = ‖∇u‖3 + sin(2πx) + sin(2πy) + cos(4πx) as the one in [2].

We test our proposed multigrid method under different diffusion parameters; see Table
2.6. When σ = 0.12, 0.046, the problem is convection dominant and poses a challenge
to multigrid methods. When the spatial grid is coarser than 8 × 8, i.e., h ≥ 1

8
, the

convection-diffusion ratios ( |c1|h
σ
, |c2|h

σ
) are much larger than 1. As discussed in Section

2.4.7, subtracting artificial viscosity is efficient under the assumption that ( |c1|h
σ
, |c2|h

σ
) are
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nx × ny × nt
Total number of iterations

σ = 0.6 σ = 0.36 σ = 0.2 σ = 0.12 σ = 0.046

32× 32× 32 4 4 5 6 6

64× 64× 64 4 5 5 7 8

128× 128× 128 4 5 5 7 8

Table 2.6: Example 2.2: Convergence of our proposed multigrid schemes. Total number
of iterations is counted.

nx × ny × nt
Average numbers of BiCGStab iterations per Newton loop

σ = 0.6 σ = 0.36 σ = 0.2 σ = 0.12 σ = 0.046

32× 32× 32 2 2 3.5 6 10

64× 64× 64 2 2 3.5 6 10

128× 128× 64 2 2 4 6.1 10

Table 2.7: Average (on the Newton loop) numbers of BiCGStab iterations given by the
algorithm in [2]. We note that the total numbers of iterations of the algorithm = the
numbers of Newton loops × the average numbers of BiCGStab iterations per Newton loop,
which can be much higher than the numbers listed in the table.

not much larger than 1. To further improve the error estimations, we consider using W-
cycles (i.e., γ = 2 in Algorithm 2.3) on the coarsest grids where nx × ny is coarser than
8 × 8. W-cycles are more expensive than V-cycles. However, we emphasize that, for the
grids where nx × ny is finer than 8 × 8, we still apply V-cycles. Since W-cycles are only
applied on the very coarsest grids, the extra computational cost is negligible.

Table 2.6 shows that our proposed multigrid method converges in around 4-8 iterations
in total; the convergence rates are approximately mesh-independent.

Table 2.7 shows the numbers of inner multigrid preconditioned BiCGStab iterations per
outer Newton’s iteration, as reported in [2]. However, the number of Newton’s iterations
is not reported in [2]. We note that the total number of iterations, which is the product of
the outer Newton’s iteration counts and the inner BiCGStab iteration counts, can be much
higher than the numbers listed in the table. If the number of Newton’s iterations is greater
than 2, then the total number of iterations by the method in [2] can be higher than our
proposed method. Another observation of Table 2.7 is that as the diffusion decreases, the
convergence rates of the algorithm in [2] deteriorate quickly from 2 to 10. However, using
our proposed multigrid method (Table 2.6), the increase of iteration counts is modest, from
4 to 8.
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Example 2.3. We note that (2.1)-(2.4) only involves local coupling. In this example, we
extend our method to an HJB/KFP system with nonlocal coupling, which arises from the
Bertrand mean field games proposed in [42]. To give a quick review on the mathematical
formulation, consider again a competitive market with a large number of companies. Each
company, distinguished by its capacity x ∈ [0,∞), evolves over time t ∈ [0, T ]. Let u(x, t)
be the optimal expected profit (value function) of each company over the period [t, T ]. Let
p(x, t) be the price of each company’s product (control). Let m(x, t) be the distribution of
the companies. The HJB equation reads

−ut − σuxx −D(p∗, p̄(m), η(m))(p∗ − ux) + ru = 0,

u(x, T ) = 0, u(0, t) = 0, ux(∞, t) = 0,
(2.38)

subject to the optimal control

p∗ = arg max
p≥0

{D(p, p̄, η)(p− ux)} . (2.39)

Here r is the interest rate, and σ is the randomness of the demand in the market. In this
HJB equation, the total number of companies η : t → η(m)(t), the market average price
p̄ : t→ p̄(m)(t) and the demand function D : (x, t)→ D(p, p̄(m), η(m))(x, t) are given by

η(t) =

∫ ∞
0

m(x, t)dx, p̄(t) =
1

η(t)

∫ ∞
0

p∗(x, t)m(x, t)dx,

D(x, t) = s

(
1

1 + εη(t)
− p(x, t) +

εη(t)

1 + εη(t)
p̄(t)

)
,

(2.40)

where ε and s are constants. The corresponding KFP equation reads

mt − σmxx − [D(p∗, p̄(m), η(m))m]x = 0,

m(x, 0) = m0(x), mx(0, t) = 0, m(∞, t) = 0,
(2.41)

where m0(x) is the initial distribution (e.g. m0(x) = 1− B(x; 2, 4), where B is the cumu-
lative beta distribution function). We refer readers to [82] for the well posedness of the
problem (2.38)-(2.41). We note that the coupling between the HJB equation (2.38)-(2.39)
and the KFP equation (2.41) is more complicated than Equations (2.1)-(2.4). More specif-
ically, (2.1)-(2.4) only involves local couplings, i.e., the convection coefficient is the local
optimal control c∗ and the cost function Φ is also local. However, in (2.38)-(2.41), the
convection coefficient D is a functional of both p∗ and m in the form of nonlocal integrals.

We consider numerically solving (2.38)-(2.41). We first verify the correctness of our
nonlinear solver by a simulation under the parameters2 in [42], i.e., r = 0.2, s = 1, σ = 0

2σ = 0.005 in Equation (2.38)-(2.41) corresponds to σ = 0.1 (namely σ2/2 = 0.005) in [42].
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Figure 2.6: Example 2.3: Initial value function u(x, 0) and number of remaining players
η(t) for different (σ, ε).

(i) (r, s) = (0.2, 1)

nx × nt
Number of iterations

Scheme I Scheme II Scheme III Scheme IV Scheme V

64× 64 6 7 12 29 17

128× 128 7 7 12 35 19

256× 256 7 8 13 40 20

512× 512 7 8 14 46 20

(ii) (r, s) = (0.02, 10)

nx × nt
Number of iterations

Scheme I Scheme II Scheme III Scheme IV Scheme V

64× 64 9 11 ∞ (11) 38 19

128× 128 9 11 ∞ (11) 44 21

256× 256 9 12 ∞ (11) 50 21

512× 512 9 13 ∞ (11) 54 22

Table 2.8: Example 2.3: Convergence of the five multigrid schemes. σ = 0.005, ε = 0.3,
T = 5. (i) (r, s) = (0.2, 1). (ii) (r, s) = (0.02, 10). Note that, for Scheme III, the numbers
in the parentheses are the iteration counts if the numbers of pre and post smoothings are
increased from (1, 1) to (2, 2).

or 0.005, ε = 0 or 0.3, T = 5. Figure 2.6 shows the plots of the initial value function u(x, 0)
and the number of remaining players η(t). The plots given by our numerical results are
the same as those in [42].

Reference [42] does not discuss fast and efficient solvers for (2.38)-(2.41). Here we test
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the five multigrid schemes. We restrict the choice of parameters to σ = 0.005, ε = 0.3, T =
5. As the convection coefficient D is approximately proportional to s, the size of s indicates
the amount of convection. We test the cases of (r, s) = (0.2, 1) and (r, s) = (0.02, 10), which
are relatively diffusive and convective, respectively. We also note that since the demand
function D is always non-negative, we simply use the low-cost one-direction downstream
Gauss-Seidel smoother rather than multi-direction smoother for our proposed Scheme I.
The convergence rates are reported in Table 2.8. All the methods have mesh-independent
convergence rates. However, our proposed Scheme I has the fastest convergence rates,
which is around 7 iterations for the diffusive case and 9 iterations for the convective case.
The comparison between Schemes I and II in Table 2.8(ii) shows that subtracting artificial
viscosity saves 2-4 iterations, which is consistent with the LFA estimate in Section 2.5.3.
We note that, to make Scheme III converge for the convective case, we change the numbers
of pre and post smoothings from (1, 1) to (2, 2), as shown in Table 2.8(ii). However, this
doubles the computational cost per iteration and yet the convergence rate is still slower
than Scheme I.

2.7 Conclusion

We propose a joint spacetime multigrid method for the HJB and KFP system arising from
mean field games. We propose a nonlinear FAS scheme, which requires only one layer
of iteration (as opposed to outer-inner iterations). We use a hybrid full-semi coarsening
and kernel preserving biased restriction operator to treat the anisotropy in time and the
convection in space properly. We propose subtracting artificial viscosity to improve the
precision of the coarse grid error estimation using direct discretization. These properties
are supported by our Fourier analysis. The resulting multigrid method converges at the
mesh-independent rate and at a faster rate than the other approaches considered in Section
2.6.
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Chapter 3

Finite Difference Method for HJB
Formulation of Monge-Ampère
Equation

3.1 Introduction

In Chapters 3-5, we will study numerical methods for HJB formulation of image registration
problems. As introduced in Section 1.2.3, an image registration problem requires solving
a PDE called the Monge-Ampère equation, which is equivalent to an HJB equation. Since
image registration problems are non-trivial, in this chapter, we start with a simplified
problem, i.e., the following two-dimensional Monge-Ampère equation with a Dirichlet
boundary condition and a convexity constraint:

det[D2u(x)] = f(x), in Ω, (3.1)

u(x) = g(x), on ∂Ω, (3.2)

u is convex, (3.3)

where Ω is a bounded convex open set in R2, ∂Ω is its boundary, Ω = Ω∪∂Ω, x = (x, y) ∈ Ω
is the spatial coordinates, u : Ω → R is the unknown function, D2u is the Hessian of u,
f : Ω → R is a given non-negative right hand side, and g : ∂Ω → R is a given Dirichlet
boundary condition. We remark that the difference between (3.1)-(3.3) and the image
registration problem is that, while the right hand side of (3.1) does not depend on the
solution u, the right hand side of the image registration Monge-Ampère equation depends
on u, which will be shown in Chapter 5.
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The Monge-Ampère equation is a nonlinear PDE, since the left hand side, det(D2u) =
uxxuyy − u2

xy, consists of products of the second derivatives. As a result, it may have
multiple weak solutions. Among all these weak solutions, we are interested in computing
the viscosity solution [53, 52], since it is often considered the correct one [72] in practical
applications, including the application of image registration that will be studied in Chapter
5. In particular, the viscosity solution of the Monge-Ampère equation is globally convex
and satisfies the convexity constraint (3.3), while the other solutions may not be convex
[72].

The sufficient conditions for a numerical scheme to converge to the viscosity solution
are consistency, stability, monotonicity and the strong comparison principle [14]. Due to
the nonlinearity of the Monge-Ampère equation with the additional convexity constraint,
it is challenging to design a numerical scheme that satisfies these conditions.

Numerical schemes have been proposed for the Monge-Ampère equation. We first re-
view finite difference methods. For instance, [21] uses the standard central differencing
to discretize uxy, and is thus not monotone. Few existing finite difference schemes are
monotone and thus convergent in the viscosity sense. For instance, [127] achieves mono-
tonicity by exploiting the geometrical interpretation of the Monge-Ampère equation, but
their grid structure is more complicated than rectangular or triangular. Another scheme,
proposed in [126, 72] and further improved in [73, 74], uses wide stencils to achieve mono-
tonicity. However, in order for the scheme to converge, the number of the stencil points
must increase towards infinity when the mesh size h decreases towards 0, thus resulting
in high computational costs for solving problems on fine grids. Recently, [20] improves on
the previous wide stencil approach so that the number of stencil points does not grow to
infinity as h→ 0, but it still grows and can reach as high as 48. There also exist Galerkin-
type methods, including [24, 29, 108, 54, 63], etc. A common issue for these Galerkin-type
methods is that convergence to the viscosity solutions remains unclear.

Our approach, which is distinct from many of the existing methods, is to first convert
(3.1)-(3.3) into an equivalent HJB equation [105, 116], and then numerically solve the
equivalent HJB equation. Applying the HJB formulation to the numerical computation of
the Monge-Ampère equation was first investigated by my coauthors in [115], and further
investigated in [62]. There are some important benefits of using the HJB formulation.
One is that the differential operator of the HJB equation under fixed control parameters
is linear. Another benefit is that the convexity constraint (3.3) is automatically satisfied
by the solution of the HJB equation. In other words, there is no need to impose the
convexity constraint in the HJB formulation [62]. In addition, many convergent numerical
schemes for HJB equations or HJB differential operators have been developed, such as
[66, 95, 55, 118, 25, 12, 155]. As a result, it is more tractable to use the equivalent HJB
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formulation to design a numerical scheme that converges in the viscosity sense.

It turns out that the cross derivative uxy is still present in the HJB equation, and the
standard central differencing or the standard 7-point stencil discretization for uxy may be
non-monotone. In order to achieve monotonicity, reference [62] follows the idea in [55, 118]
and applies a semi-Lagrangian scheme1, which is a central differencing with a stencil
length

√
h on the locally rotated coordinates where the cross derivative vanishes. This

discretization results in at most 17 stencil points for any h. However, monotonicity is
achieved at the expense of a large truncation error and slow convergence. In particular,
the convergence rate is no better than O(h). In addition, reference [62] applies the semi-
Lagrangian scheme to the entire computational domain, which may not be necessary.

In order to improve the accuracy and also strictly maintain monotonicity, our approach
is to apply a mixed standard 7-point stencil and a semi-Lagrangian wide stencil
discretization to the equivalent HJB equation. More specifically, the standard 7-point
stencil discretization, which is second order accurate, is applied to discretize uxy at a grid
point if monotonicity is fulfilled. Otherwise, the semi-Lagrangian wide stencil scheme,
which is less accurate but guaranteed to be monotone, is implemented. We emphasize
that our discretization scheme is designed such that consistency, stability, monotonicity
and the strong comparison principle are fulfilled on the entire computational domain. As
a result, our numerical scheme is guaranteed to converge to the viscosity solution of the
Monge-Ampère equation [14]. Meanwhile, by maximal use of the standard 7-point stencil
discretization, the discretization error of the numerical solution is significantly reduced,
compared to using the pure semi-Lagrangian wide stencil scheme in [62]. Moreover, our
numerical scheme yields a convergence rate of O(h2) whenever the standard 7-point stencil
discretization can be applied monotonically on the entire computation domain, and up
to O(h) otherwise. The second order convergence rate in the optimal cases is another
significant improvement over the numerical scheme in [62].

To solve the resulting nonlinear discretized system, we use policy iteration. One of the
most expensive steps is to optimize two control parameters at every grid point. Reference
[62] does not discuss the computational cost of the optimization problem. Typically a
bilinear search is implemented on an m × m discretized control set, resulting in O(m2)
computational complexity. We propose an approach that reduces the computational cost
for the optimization problem to O(1) whenever the standard 7-point stencil discretization
is applied, and at most O(m) otherwise.

Finally, we want to emphasize that our method is the only method that fulfills all the

1In the literature, such a semi-Lagrangian scheme is sometimes called a wide stencil scheme, but this
should not be confused with the previously mentioned wide stencil scheme in [126, 72, 73, 74].
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following properties: monotone and thus convergent to the viscosity solution, second order
accurate in the optimal cases, and having at most 17 stencil points independent of the
mesh size h. None of the references in this chapter have all these properties.

To illustrate our numerical scheme, we review the notion of viscosity solution in Section
3.2. In Section 3.3, we establish the equivalent HJB formulation for the Monge-Ampère
equation. Section 3.4 describes our mixed standard 7-point stencil and semi-Lagrangian
wide stencil finite difference discretization. Section 3.5 discusses solving the nonlinear
discretized system using policy iteration, and speeding up the computation for the op-
timization problem. Section 3.6 proves that our numerical scheme satisfies consistency,
stability, monotonicity and the strong comparison principle, and thus converges to the
viscosity solution. Section 3.7 shows numerical results. Section 3.8 is the conclusion.

3.2 Viscosity Solution

The objective of this chapter is to compute the viscosity solution of the Monge-Ampère
equation (3.1)-(3.3). An overview on the topic of the viscosity solution can be found in
[53, 52].

Before defining the viscosity solution, we rewrite (3.1)-(3.2) as

N
(
x, u(x), D2u(x)

)
= 0, (3.4)

where N represents the Monge-Ampère differential operator, defined as

N
(
x, u(x), D2u(x)

)
≡
{
− det [D2u(x)] + f(x), x ∈ Ω,
u(x)− g(x), x ∈ ∂Ω.

(3.5)

We also rewrite (3.3) as

u is convex ⇒ D2u(x) is positive semi-definite. (3.6)

We also define the upper (respectively lower) semi-continuous envelope of a function z :
C → R on a closed set C as

z∗(x) ≡ lim sup
y→x, y∈C

z(y)

(
respectively z∗(x) ≡ lim inf

y→x, y∈C
z(y)

)
. (3.7)

Definition 3.1 (Viscosity solution). A convex upper (respectively lower) semi-continuous
function u : Ω → R is a viscosity subsolution (respectively supersolution) of the Monge-
Ampère equation N (x, u(x), D2u(x)) = 0, if for all smooth test functions ϕ(x) ∈ C2(Ω)
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and all x ∈ Ω, such that u∗ − ϕ (respectively u∗ − ϕ) has a local maximum (respectively
minimum) at x, we have

N∗(x, u∗(x), D2ϕ(x)) ≤ 0
(

respectively N ∗(x, u∗(x), D2ϕ(x)) ≥ 0
)
. (3.8)

Furthermore, the function u is a viscosity solution if it is both a viscosity sub-solution and
super-solution.

We note that Definition 3.1 can be used to define the viscosity solution of not only
the Monge-Ampère equation, but also a generic scalar nonlinear PDE (with some adapta-
tions). We also note that (3.6) implies the degenerate ellipticity of the differential operator
(3.5). Degenerate ellipticity, plus Ω being bounded and convex, ensures the existence and
uniqueness of the viscosity solution of (3.4). We refer readers to [52, 84] for more details.

3.3 HJB Formulation

Our approach to solving the Monge-Ampère equation is to convert it into an equivalent
HJB equation. The equivalence of the two PDEs was first established in [105] and [116] for
classical solutions. Recently, reference [62] extended the equivalence to viscosity solutions.
Here we state the equivalence of the two PDEs as the following theorem:

Theorem 3.1 (HJB formulation). Let Ω be a convex open set in R2. Let f ∈ C(Ω) be a
non-negative function. Let a convex function u be the viscosity solution of the following
HJB equation,

− tr
[
Σ∗(x)D2u(x)

]
+ 2
√

det(Σ∗(x)) f(x) = 0,

subject to Σ∗(x) ≡ arg max
Σ(x)∈S+

1

{
− tr

[
Σ(x)D2u(x)

]
+ 2
√

det(Σ(x)) f(x)
}
, (3.9)

where S+
1 ≡ {Σ(x) ∈ R2×2 : Σ(x) is symmetric positive semi-definite, tr(Σ(x)) = 1}.

Then u is the viscosity solution of the Monge-Ampère equation (3.4)-(3.6).

Proof. We refer interested readers to the proof in [143] when u is a classical solution, and
the proof in [62] for the extension to the viscosity solution.

We notice that due to the symmetric positive semi-definite property of the matrix Σ(x),
it can be diagonalized by a 2× 2 orthogonal matrix as follows:

Σ(x) =

(
cos θ(x) sin θ(x)
− sin θ(x) cos θ(x)

)(
c(x) 0

0 1− c(x)

)(
cos θ(x) − sin θ(x)
sin θ(x) cos θ(x)

)
,

c(x) ∈ [0, 1], θ(x) ∈ [−π, π).
(3.10)
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This parameterization yields an HJB equation with more concrete coefficients and control
variables, as follows:

Corollary 3.1 (HJB formulation). Under the parameterization (3.10), the HJB equation
(3.9) becomes

Lc∗(x),θ∗(x) u(x) = 0, (3.11)

subject to (c∗(x), θ∗(x)) ≡ arg max
(c(x),θ(x))∈Γ

Lc(x),θ(x) u(x), (3.12)

where (c(x), θ(x)) is the pair of control at point x, Γ = [0, 1] ×
[
−π

4
, π

4

)
2 is the set of

admissible control, and

Lc(x),θ(x) u(x) ≡ −σ11(c(x), θ(x))uxx(x)− 2σ12(c(x), θ(x))uxy(x)

−σ22(c(x), θ(x))uyy(x) + 2
√
c(x)(1− c(x))f(x)

(3.13)

is a linear differential operator with the coefficients

σ11(c(x), θ(x)) =
1

2
[1− (1− 2c(x)) cos 2θ(x)],

σ22(c(x), θ(x)) =
1

2
[1 + (1− 2c(x)) cos 2θ(x)],

σ12(c(x), θ(x)) =
1

2
(1− 2c(x)) sin 2θ(x).

(3.14)

As discussed in Section 3.1, the HJB formulation introduces some favorable properties
over the Monge-Ampère equation. We first note that the convexity constraint of the Monge-
Ampère equation poses a major difficulty in designing a convergent numerical scheme.
However, the convexity constraint is already implicitly enforced in the equivalent HJB
formulation (3.11)-(3.12), and thus can be removed from the HJB formulation [72, 62],
which makes the numerical computation more manageable. Another useful property of the
HJB formulation is that, for a fixed given control (c, θ), the differential operator (3.13) is
linear, which allows us to develop finite difference schemes based on numerical methods
for linear PDEs. In addition, many papers have been devoted to convergent numerical
schemes for HJB equations [66, 95, 55, 118, 25, 12, 155]. Considering these advantages,
our approach is to solve the HJB equation (3.11)-(3.12) instead of the Monge-Ampère
equation (3.4)-(3.6).

2Although (3.10) defines the admissible control set to be in the range of [0, 1] × [−π, π), the optimal
control (c∗, θ∗) that maximizes (3.12) may not be unique in [0, 1] × [−π, π). Since Lc,θ u = Lc,θ+π u, and
Lc,θ u = L1−c,θ+ π

2
u, the admissible control set can be reduced to [0, 1] × [−π4 ,

π
4 ). Such removal of the

redundancy ensures the uniqueness of the optimal control (c∗, θ∗) in Γ, except when c∗ = 1
2 or when f = 0.
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3.4 Finite Difference Discretization

In this section, we will propose a finite difference discretization for the HJB equation (3.11)-
(3.12). In particular, our goal is to make sure that the discretization is monotone, since [14]
proves that monotonicity, together with consistency and stability, are sufficient conditions
for a numerical scheme to converge to the viscosity solution. The finite difference notation
follows Section 2.2.1. The only exception is that there is no time coordinate. Also, under
the Dirichlet boundary condition, xi,j ∈ Ω when 1 ≤ i ≤ nx, 1 ≤ j ≤ ny, and xi,j ∈ ∂Ω
when i = 0 or i = nx + 1 or j = 0 or j = ny + 1.

3.4.1 Standard 7-point stencil discretization

Consider discretizing the differential operator (3.13) at a grid point xi,j. We use the
standard central differencing (2.6) to approximate uxx(xi,j) and uyy(xi,j). Regarding the
cross derivative uxy(xi,j), it can be shown that the standard 7-point stencil discretization
leads to a monotone scheme in the following two cases:

• Case 1. When the coefficients (3.14) at a grid point xi,j satisfy

σ11(ci,j, θi,j) ≥ |σ12(ci,j, θi,j)|, σ22(ci,j, θi,j) ≥ |σ12(ci,j, θi,j)|, σ12(ci,j, θi,j) ≥ 0, (3.15)

we approximate uxy(xi,j) using

1

2
(D+

xD
+
y +D−xD

−
y )ui,j ≡

2ui,j + ui+1,j+1 + ui−1,j−1 − ui+1,j − ui−1,j − ui,j+1 − ui,j−1

2h2
.

(3.16)

• Case 2. When the coefficients (3.14) at a grid point xi,j satisfy

σ11(ci,j, θi,j) ≥ |σ12(ci,j, θi,j)|, σ22(ci,j, θi,j) ≥ |σ12(ci,j, θi,j)|, σ12(ci,j, θi,j) ≤ 0, (3.17)

we approximate uxy(xi,j) using

1

2
(D+

xD
−
y +D−xD

+
y )ui,j ≡

−2ui,j − ui+1,j−1 − ui−1,j+1 + ui+1,j + ui−1,j + ui,j+1 + ui,j−1

2h2
.

(3.18)

Figure 3.1 shows the stencil points of the 7-point stencil discretizations (3.16) and (3.18).

As a result, the discretization of the differential operator (3.13) at xi,j reads

Li,j(ci,j, θi,j;uh) ≡ −σ11(ci,j, θi,j)D
+
xD

−
x ui,j − σ12(ci,j, θi,j)(D

+
xD

±
y +D−xD

∓
y )ui,j

−σ22(ci,j, θi,j)D
+
y D

−
y ui,j + 2

√
ci,j(1− ci,j)fi,j.

(3.19)
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Figure 3.1: (i) 7-point stencil of (3.16); (ii) 7-point stencil of (3.18).

3.4.2 Semi-Lagrangian wide stencil discretization

However, if neither of Conditions (3.15) and (3.17) is fulfilled at the grid point xi,j, then it
is unclear how to directly discretize the cross derivative uxy(xi,j) in (3.13) monotonically.
Our approach is to consider a semi-Lagrangian wide stencil discretization [55, 118].
Figure 3.2 illustrates the discretization process. More specifically, we consider eliminating
the cross derivative uxy(xi,j) by a local coordinate transformation. Let {(ez)i,j, (ew)i,j} be a
local orthogonal basis obtained by a clockwise rotation of the standard axes {(ex)i,j, (ey)i,j},
as represented by the grey axes in Figure 3.2. By straightforward algebra, one can show
that if the rotation angle is

1

2
arctan

2σ12 (ci,j, θi,j)

σ22 (ci,j, θi,j)− σ11 (ci,j, θi,j)
= θi,j,

then the cross derivative vanishes under the basis {(ez)i,j, (ew)i,j}. As a result, (3.13)
becomes

− ci,j uzz(xi,j)− (1− ci,j) uww(xi,j) + 2
√
ci,j (1− ci,j) fi,j (3.20)

Here uzz(xi,j) and uww(xi,j) are the directional derivatives along the basis (ez)i,j and (ew)i,j.
We note that (3.20) still depends on θi,j, as the basis (ez)i,j and (ew)i,j depend on θi,j.

To discretize (3.20), one may consider applying the standard central differencing to
uzz(xi,j) and uww(xi,j). For instance, we approximate uzz(xi,j) by

1

h2
[u(xi,j + h(ez)i,j)− 2ui,j + u(xi,j − h(ez)i,j)] . (3.21)

However, since the stencil is rotated, the stencil points xi,j±h(ez)i,j may no longer coincide
with any grid points. In such cases, we consider approximating u(xi,j ± h(ez)i,j) using
bilinear interpolation from the neighboring grid points. However, a consequence of the
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xi , j−√h(ew)i , j

Figure 3.2: Semi-Lagrangian wide stencil discretization at a grid point xi,j inside the
computational domain.

bilinear interpolation is that the truncation error of (3.21) turns out to be O(1), which is
not consistent. In order to maintain consistency, we choose the stencil length

√
h, which

yields O(h) truncation error. We note that the stencil length
√
h is greater than h, which

gives rise to a “wide” stencil.

Under the stencil length
√
h, the new stencil points are xi,j ±

√
h(ez)i,j and xi,j ±√

h(ew)i,j, as represented by the grey stars in Figure 3.2. The unknown values at these
stencil points are approximated by the bilinear interpolation from their neighboring points,
as represented by the black dots in Figure 3.2. We denote these interpolated unknown val-
ues as Ihu|xi,j±√h(ez)i,j

and Ihu|xi,j±√h(ew)i,j
. As a result, the finite difference discretizations

for uzz(xi,j) and uww(xi,j) are given by

D+
z D

−
z ui,j ≡

Ihu|xi,j+√h(ez)i,j
− 2ui,j + Ihu|xi,j−√h(ez)i,j

h
, (3.22)

D+
wD

−
wui,j ≡

Ihu|xi,j+√h(ew)i,j
− 2ui,j + Ihu|xi,j−√h(ew)i,j

h
. (3.23)

As a result, the discretization of the differential operator (3.13) at xi,j reads

Li,j(ci,j, θi,j;uh) ≡ −ci,j D+
z D

−
z ui,j − (1− ci,j) D+

wD
−
wui,j + 2

√
ci,j(1− ci,j)fi,j. (3.24)

We remark that here we have only discussed the scenario where xi,j is well inside the
computational domain. In Appendix A.4, we also discuss the scenario where xi,j is near
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the boundary. In addition, since each bilinear interpolation introduces 4 stencil points (or
4 unknowns), there are at most 17 stencil points (or 17 unknowns) in (3.24). For interested
readers, we also show this result explicitly in Appendix A.4.

3.4.3 Mixed discretization

The advantage of the semi-Lagrangian wide stencil discretization (3.24) is that it is uncon-
ditionally monotone. Reference [62] applies the semi-Lagrangian wide stencil discretization
at every grid point. However, we will prove in Section 3.6 that this is only first order ac-
curate. Conversely, the standard 7-point stencil discretization is second order accurate.
In order to combine the advantages of both discretization schemes, we will only apply
the semi-Lagrangian wide stencil discretization at the grid points where neither (3.15) nor
(3.17) is satisfied. Otherwise, the standard 7-point stencil discretization is applied. Hence,
we propose discretizing the HJB equation at each grid point xi,j by the following mixed
discretization:

Algorithm 3.1 Mixed discretization for the HJB equation (3.11)-(3.12)

1: for i = 1, , ..., nx do
2: for j = 1, , ..., ny do
3: if (ci,j, θi,j) satisfies Conditions (3.15) or (3.17) then
4: The discrete equation at (i, j), Li,j(ci,j, θi,j;uh), is given by the standard 7-

point stencil discretization (3.19)
5: else
6: The discrete equation at (i, j), Li,j(ci,j, θi,j;uh), is given by the semi-

Lagrangian wide stencil discretization (3.24)
7: end if
8: end for
9: end for

The significance of this mixed discretization is that monotonicity is strictly maintained
at every grid point, and meanwhile, by using the standard 7-point stencil discretization as
much as possible, the numerical scheme is as accurate as possible.

The mixed discretization scheme gives rise to a nonlinear discrete system that contains
nxny discrete equations. Similar to Section 2.2.2, we can write the entire nonlinear discrete
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system in the following matrix form:

Ah(c
∗
h, θ
∗
h)uh = bh(c

∗
h, θ
∗
h), (3.25)

subject to (c∗h, θ
∗
h) ≡ arg max

(ch,θh)∈Γ

{Ah(ch, θh)uh − bh(ch, θh)} , (3.26)

where the matrix Ah ∈ Rnxny×nxny and the vectors uh, ch, θh, bh ∈ Rnxny . We note that
Ah (and bh respectively) are obtained by splitting (3.19) and (3.24) into the sections that
contain (and do not contain, respectively) the unknowns u, i.e.,

Li,j(ci,j, θi,j;uh)→ [Ah(ch, θh)uh − bh(ch, θh)]〈i,j〉 , 1 ≤ i ≤ nx, 1 ≤ j ≤ ny. (3.27)

where
〈i, j〉 ≡ ny · (i− 1) + j (3.28)

maps a grid point (i, j) to its corresponding lexicographical matrix/vector index.

3.5 Solving the Discretized System

After setting up the complete nonlinear discrete system (3.25)-(3.26), the next objective is
to solve it. We apply policy iteration. For concreteness, we write down the policy iteration
for (3.25)-(3.26) in Algorithm 3.2.

Algorithm 3.2 consists of two sub-steps. One sub-step is to solve the linear system
under a given control; see Line 3. In this chapter, we use Krylov subspace methods, such
as the GMRES with the incomplete LU preconditioner. We will leave the discussion of
speeding up this sub-step using multigrid methods to Chapter 4. The other sub-step is
to solve the optimization problem at each grid point xi,j; see Line 6. Here we focus our
discussion on speeding up the computation of the optimization problem.

Consider solving the optimization problem at a grid point xi,j (Line 6) where the semi-
Lagrangian wide stencil discretization (3.24) is applied. As the discretization of D+

z D
−
z ui,j

andD+
wD

−
wui,j depends on the control θi,j, there is no simple closed-form formula to evaluate

the optimal (c
(k)
i,j , θ

(k)
i,j ) directly. In this case, one typical approach is to use a bilinear search

algorithm for the optimization problem. More specifically, we discretize the continuous
admissible control set Γ = [0, 1] × [−π

4
, π

4
) into an m × m discrete set, denoted as Γh.

The discretization of the admissible control set introduces additional truncation error. In
order to maintain consistency, we must let m → ∞ as h → 0. A typical choice of m is
m =

√
nxny (or simply m = nx if we assume nx = ny). Then we compute the m × m
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Algorithm 3.2 Policy iteration for solving the discretized HJB equation (3.25)-(3.26)

1: Start with an initial guess of the control variable (c
(0)
h , θ

(0)
h ).

2: for k = 1, 2, ... until convergence do
3: Solve the linearized HJB equation Ah(c

(k−1)
h , θ

(k−1)
h )u

(k)
h = bh(c

(k−1)
h , θ

(k−1)
h ) for the

solution u
(k)
h .

4: for i = 1, , ..., nx do
5: for j = 1, , ..., ny do

6: Solve the optimization problem (c
(k)
i,j , θ

(k)
i,j ) ≡ arg max

(ci,j ,θi,j)∈Γ

Li,j(ci,j, θi,j;u(k)
h ) for the

control (c
(k)
i,j , θ

(k)
i,j ).

7: end for
8: end for
9: end for

10: Convergent solution: uh = u
(k)
h , c∗h = c

(k)
h , θ∗h = θ

(k)
h .

values of the objective function {Li,j(ci,j, θi,j;u(k)
h ) | (ci,j, θi,j) ∈ Γh} and then find the global

maximal value, which gives the optimal (c
(k)
i,j , θ

(k)
i,j ). However, the computational cost of the

bilinear search is O(m2). Furthermore, if we consider applying such bilinear search on all
the grid points {xi,j | 1 ≤ i ≤ nx, 1 ≤ j ≤ ny}, then the total computational cost on the
entire computational domain is as high as O(m2nxny), or O((nxny)

2).

In order to speed up the computation for the optimal control, we divide the continuous
admissible control set Γ = [0, 1]× [−π

4
, π

4
) into six regions, as shown in Figure 3.33. The six

regions are identified by whether the control (ci,j, θi,j) satisfies (3.15), or (3.17), or neither.
Our approach is to first find the optimal control within each of the six regions. Regarding
how to solve the optimization problem within each region, Appendix A.5 describes the
technical details, and Figure 3.3 provides a table summarizing the approach. Once we
obtain the six regional optimal controls, we search within them for the global optimal
control. This approach enables us to make full use of the analytical property of each
region, and to improve the optimization algorithm within each region and eventually on
the entire admissible control set Γ.

Using our approach, the computational cost of solving the optimization problem on Γ
can be significantly reduced. More specifically, if the standard 7-point stencil discretization

3It is unnecessary to consider the line ci,j = 1
2 , since the objective function is a constant on this line.

Also it is unnecessary to consider the line θi,j = ±π4 , since Lc,θ u = L1−c,θ+ π
2
u indicates that θi,j = ±π4 is

indeed an interior part of Γ1 and Γ2.
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θi,j

c i
,j

Region Definition Discretization
Optimization

algorithm
in each region

Cost

Extra
truncation

error
introduced?

Γ1 The region where
(3.15) is satisfied

Standard 7-point
stencil with (3.16)

Closed-form
formula from the

first derivative test

O(1) No

Γ2 The region where
(3.17) is satisfied

Standard 7-point
stencil with (3.18)

Γ3
The region where
neither (3.15) nor
(3.17) is satisfied

Semi-Lagrangian
wide stencil

Linear search over
a single control
θi,j ∈ [−π

4 ,
π
4 )

O(m) Yes

∂Γ0 The line θi,j = 0
Standard 7-point
stencil with (3.16)

or (3.18)
Closed-form

formula from the
first derivative test

O(1) No

∂Γ13 The boundary
between Γ1 and Γ3

Standard 7-point
stencil with (3.16)

∂Γ23 The boundary
between Γ2 and Γ3

Standard 7-point
stencil with (3.18)

Figure 3.3: Division of the admissible control set Γ = [0, 1]× [−π
4
, π

4
) into regions.

can be applied monotonically on all or most of the grid points, then the computational cost
is O(1) per grid point and O(nxny) on the entire computational domain. In general, the
computational cost is at most O(m) per grid point and at most O(mnxny) on the entire
computational domain. For the typical choice m =

√
nxny, the total computational cost
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of solving the optimization problem is O((nxny)
3/2).

As a side remark, in Section 8 of [62], the authors discretize θ with m = 64 different
angles, regardless of the mesh size h. Indeed, if m is constant, then the numerical scheme
in [62] is no longer consistent in theory. This is different from our scheme, where θ is
discretized with m =

√
nxny angles, such that consistency is still maintained.

3.6 Convergence Analysis

As proved by Barles and Souganidis [14], consistency, stability, monotonicity and the strong
comparison principle are the four sufficient conditions for the numerical scheme of a non-
linear PDE to converge in the viscosity sense. In this section, we will prove that our
numerical scheme fulfills all the four requirements and is therefore guaranteed to converge
to the viscosity solution of (3.4)-(3.6).

Before moving on to the analysis, we introduce some notation. First, we consider
rewriting the HJB equation (3.11)-(3.12) as N (x, u(x), D2u(x)) = 0, where the complete
nonlinear differential operator is

N
(
x, u(x), D2u(x)

)
≡ Lc∗(x),θ∗(x) u(x),

subject to (c∗(x), θ∗(x)) ≡ arg max
c(x),θ(x)∈Γ

Lc(x),θ(x) u(x). (3.29)

For compactness, we can rewrite it as

N
(
x, u(x), D2u(x)

)
≡ max

c(x),θ(x)∈Γ
Lc(x),θ(x) u(x). (3.30)

We note that here we use the same symbol N as the one for the Monge-Ampère equation
(3.5), since the HJB equation and the Monge-Ampère equation are equivalent.

Similarly, we denote the correspondingly nonlinear discretized system (3.25)-(3.26) as
Nh(uh) = 0, where

Nh(uh) ≡ max
(ch,θh)∈Γ

Lh(ch, θh;uh) (3.31)

is the discrete nonlinear operator, while

Lh(ch, θh;uh) ≡ Ah(ch, θh)uh − bh(ch, θh), (3.32)

is the discrete linear operator. We note that (3.32) uses the notation established in (3.27).
As a remark, here we choose the symbols Nh and Lh, as they are essentially the discretiza-
tion of N and L, respectively.
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3.6.1 Consistency

In this subsection, we prove that our numerical scheme is consistent in the viscosity sense.

Lemma 3.1 (Consistency). For the Monge-Ampère equation (or equivalently, the HJB
equation) N (x, u(x), D2u(x)) = 0, the numerical scheme Nh (xi,j, uh) = 0 given in (3.25)-
(3.26) is consistent in the viscosity sense. More specifically, for any smooth test function
ϕ(x) ∈ C∞(Ω) with ϕi,j ≡ ϕ(xi,j) and ϕh ≡ (ϕ1,1, ϕ1,2, · · · , ϕnx,ny)T ∈ Rnxny , for any

x̂ ∈ Ω, and for h and ξ that are arbitrary small constants independent of x, we have

lim sup
h→0, ξ→0
xi,j→x̂

Nh(xi,j, ϕh + ξ) ≤ N ∗(x̂, ϕ(x̂), D2ϕ(x̂)), (3.33)

lim inf
h→0, ξ→0
xi,j→x̂

Nh(xi,j, ϕh + ξ) ≥ N∗(x̂, ϕ(x̂), D2ϕ(x̂)). (3.34)

In practice, we prove a sufficient condition called local consistency, as follows:

Lemma 3.2 (Local consistency). Under the assumptions in Lemma 3.1, we have

N (xi,j, ϕ(xi,j), D
2ϕ(xi,j))−Nh(xi,j, ϕh + ξ)

=


O(h2) +O(ξ), standard 7-point stencil,
O(h) +O(ξ), semi-Lagrangian wide stencil, with all the 4

wide stencil points ∈ Ω,

O(
√
h) +O(ξ), semi-Lagrangian wide stencil, otherwise.

(3.35)

Proof. We note that the proof with ξ = 0 is equivalent to the proof with a general ξ. Such
equivalence can be easily verified if we substitute ϕ by ϕ+ ξ in the following proof. Hence,
we will only prove the case where ξ = 0.

Case 1. Truncation error of the standard 7-point stencil discretization. Suppose the
standard 7-point stencil discretization is applied at xi,j. Using Taylor expansion, we obtain
the following truncation errors:

|ϕxx(xi,j)−D+
xD

−
x ϕi,j| ≤ Cxxh2, |ϕyy(xi,j)−D+

y D
−
y ϕi,j| ≤ Cyyh2,

|ϕxy(xi,j)− 1
2
(D+

xD
±
y +D−xD

∓
y )ϕi,j| ≤ Cxyh2,

where the coefficients Cxx, Cyy and Cxy are uniformly bounded. Here “uniformly bounded”
means that the coefficients are bounded for any h and for any (ci,j, θi,j) ∈ Γ. To see this
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explicitly, we check the following:

ϕxy(xi,j)− 1
2
(D+

xD
+
y +D−xD

−
y )ϕi,j

= 1
24
h2[ (ϕxxxx)i+r1,j − (ϕxxxx)i+r2,j+s2 + (ϕyyyy)i,j+s3 − (ϕyyyy)i+r4,j+s4
−4(ϕxxxy)i+r5,j+s5 − 6(ϕxxyy)i+r6,j+s6 − 4(ϕxyyy)i+r7,j+s7 ],

where ϕi+r,j+s = ϕ(x+ rh, y + sh) with r, s ∈ [−1, 1]. Hence,

|ϕxy(xi,j)−
1

2
(D+

xD
+
y +D−xD

−
y )ϕi,j | ≤ Cxyh2,

where the coefficient

Cxy ≡ 1
12

(
max
x∈Ω
|ϕxxxx(x)|+ max

x∈Ω
|ϕyyyy(x)|

+2 max
x∈Ω
|ϕxxxy(x)|+ 3 max

x∈Ω
|ϕxxyy(x)|+ 2 max

x∈Ω
|ϕxyyy(x)|

)
is bounded independent of h, since the test function ϕ ∈ C∞(Ω).

Then, the local truncation error of the discrete linear operator at xi,j is

| Lc(xi,j),θ(xi,j)ϕ(xi,j)− Lh(xi,j; ci,j, θi,j;ϕh) | ≤ C(ci,j, θi,j)h
2,

where the coefficient is

C(ci,j, θi,j) ≡ |σ11(ci,j, θi,j)|Cxx + 2|σ12(ci,j, θi,j)|Cxy + |σ22(ci,j, θi,j)|Cyy.

We note that σ11, σ22 and σ12 are uniformly bounded, and in particular, the bounds are
independent of (ci,j, θi,j) ∈ Γ. As a result, C is uniformly bounded.

Then, the local truncation error of the discrete nonlinear operator at xi,j is

| N (xi,j, ϕ(xi,j), D
2ϕ(xi,j))−Nh(xi,j, ϕh) |

=

∣∣∣∣ max
(c(xi,j),θ(xi,j))∈Γ

Lc(xi,j),θ(xi,j)ϕ(xi,j)− max
(ci,j ,θi,j)∈Γ

Lh(xi,j; ci,j, θi,j;ϕh)
∣∣∣∣

≤ max
(ci,j ,θi,j)∈Γ

∣∣Lc(xi,j),θ(xi,j)ϕ(xi,j)− Lh(xi,j; ci,j, θi,j;ϕh)
∣∣

= max
(ci,j ,θi,j)∈Γ

C(ci,j, θi,j)h
2,

(3.36)

where we have applied the inequality
∣∣∣max

x
f(x)−max

x
g(x)

∣∣∣ ≤ max
x
|f(x)− g(x)|. Due to

the uniform boundedness of C(ci,j, θi,j) for any (ci,j, θi,j) ∈ Γ, we conclude that∣∣ N (xi,j, ϕ(xi,j), D
2ϕ(xi,j))−Nh(xi,j, ϕh)

∣∣ = O(h2). (3.37)
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Case 2. Truncation error of the semi-Lagrangian wide stencil discretization. Suppose
the semi-Lagrangian wide stencil discretization is applied at xi,j. Before going into details,
we note that the truncation error of the linear interpolation at a point x is given by

ϕ(x)− Ihϕ|x = Cinterp
x h2,

where Cinterp
x is uniformly bounded, as all the derivatives of ϕ are uniformly bounded.

We focus on the truncation error for D+
z D

−
z ϕi,j only, and analyze three cases. The

first case is that both stencil points of D+
z D

−
z ϕi,j are in the computational domain. The

expression for D+
z D

−
z ϕi,j is given by (3.22). The truncation error for D+

z D
−
z ϕi,j is then

ϕzz(xi,j)−D+
z D

−
z ϕi,j

= ϕzz(xi,j)−
Ihϕ|xi,j+√h(ez)i,j

− 2ϕi,j + Ihϕ|xi,j−√h(ez)i,j

h

= ϕzz(xi,j)−
1

h

[(
ϕ(xi,j +

√
h(ez)i,j) + Cinterp

xi,j+
√
h(ez)i,j

h2
)
− 2ϕ(xi,j)

+
(
ϕ(xi,j −

√
h(ez)i,j) + Cinterp

xi,j−
√
h(ez)i,j

h2
)]

= −
(

1

12
uzzzz(xi,j + s

√
h(ez)i,j) + Cinterp

xi,j+
√
h(ez)i,j

+ Cinterp

xi,j−
√
h(ez)i,j

)
h,

where s ∈ [−1, 1]. Hence,

|ϕzz(xi,j)−D+
z D

−
z ϕi,j| ≤ Czzh,

where the coefficient

Czz ≡ 1

12
max
x∈Ω,ez

|uzzzz(x)|+ 2 max
x∈Ω

Cinterp
x

is uniformly bounded, independent of h and (ci,j, θi,j) ∈ Γ. In other words, the truncation
error for D+

z D
−
z ϕi,j is O(h).

Now we consider another case, where one of the stencil points of D+
z D

−
z ϕi,j falls outside

the computational domain and is thus relocated; see Appendix A.4. Without loss of
generality, let us assume again that xi,j + η1(ez)i,j ∈ ∂Ω is the relocated point. The
expression for D+

z D
−
z ϕi,j is given by (A.3). The truncation error for D+

z D
−
z ϕi,j is then

ϕzz(xi,j)−D+
z D

−
z ϕi,j

= ϕzz(xi,j)−
ϕ(xi,j+η1(ez)i,j)−ϕi,j

η1
−

ϕi,j−Ihϕ|xi,j−
√
h(ez)i,j√

h

η1+
√
h

2
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= ϕzz(xi,j)−
ϕ(xi,j+η1(ez)i,j)−ϕ(xi,j)

η1
−

ϕ(xi,j)−
(
ϕ(xi,j−

√
h(ez)i,j)+C

interp

xi,j−
√
h(ez)i,j

h2
)

√
h

η1+
√
h

2

= 1
3
(
√
h− η1)uzzz(xi,j) +

η31
12(η1+

√
h)
uzzzz(xi,j + s1

√
h(ez)i,j) + h3/2

12(η1+
√
h)
uzzzz(xi,j − s2

√
h(ez)i,j)

+ 2h3/2

η1+
√
h
Cinterp

xi,j−
√
h(ez)i,j

,

where s1, s2 ∈ [0, 1]. Hence,

|ϕzz(xi,j)−D+
z D

−
z ϕi,j| ≤ Ĉzz

√
h+ D̂zzh,

where the coefficients

Ĉzz ≡ 1

3
max
x∈Ω,ez

|uzzz(x)|, D̂zz ≡ 1

6
max
x∈Ω,ez

|uzzzz(x)|+ 2 max
x∈Ω

Cinterp
x ,

are uniformly bounded, independent of h and (ci,j, θi,j) ∈ Γ. In other words, the truncation

error for D+
z D

−
z ϕi,j is O(

√
h).

There is one more case, where xi,j + η1(ez)i,j ∈ ∂Ω and xi,j − η2(ez)i,j ∈ ∂Ω are both
relocated points. Using the similar argument, one can show that the truncation error for
D+
z D

−
z ϕi,j is again O(

√
h).

Then, similar to Case 1, one can show that the local truncation error of the finite
difference scheme at xi,j, where the semi-Lagrangian wide stencil discretization is applied,
is given by

| N (xi,j, ϕ(xi,j), D
2ϕ(xi,j))−Nh(xi,j, ϕh) |

=


O(h), semi-Lagrangian wide stencil, with all the 4

wide stencil points ∈ Ω,

O(
√
h), semi-Lagrangian wide stencil, otherwise.

(3.38)

Finally, we note that the previous proof has assumed that the optimal control is solved
exactly, or does not introduce additional truncation error. In Section 3.5, we mentioned
that using linear search for the optimal control under the semi-Lagrangian wide stencil dis-
cretization introduces truncation error. If we choose m = O(

√
nxny), then O(h) truncation

error is introduced [155]. As a result, (3.38) holds.
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3.6.2 Stability

Stability means that the discrete system has a bounded solution uh. The stability condition
is very closely related to the matrix Ah(ch, θh) being an M-matrix [135]. We will prove that
Ah(ch, θh) is indeed an M-matrix. For convenience, given vectors uh and vh, we use uh ≥ 0
and uh ≥ vh to denote (uh)i ≥ 0 and (uh)i ≥ (vh)i for all i. Similarly, given a matrix A,
we use A ≥ 0 to denote Aij ≥ 0 for all i, j. In other words, the inequalities for vectors and
matrices hold for all the elements.

Lemma 3.3 (M-matrix). Suppose an n× n matrix A satisfies the following:

1. A is an L-matrix: Aii > 0 for all i, and Aij ≤ 0 for all i 6= j;

2. A is weakly diagonally dominant: |Aii| ≥
∑

j 6=i |Aij|; and

3. A has the following connectivity property: Let G(A) =
{
i
∣∣∣|Aii| >∑j 6=i |Aij|

}
6= ∅

be the set of rows where strict inequality is achieved. For any i /∈ G(A), there exists
a sequence i0, i1, · · · , ik with Air,ir+1 6= 0, 0 ≤ r ≤ k − 1, such that i0 = i and
ik ∈ G(A).

Then A is an M-matrix, and has the following properties:

1. A is non-singular; and

2. A−1 ≥ 0, namely, (A−1)ij ≥ 0 for all i, j.

Proof. We refer the readers to [140, 12, 135].

Lemma 3.4. The matrix Ah(ch, θh), defined in (3.25), is an M-matrix, given an arbitrary
control under the admissible control set, i.e., (ch, θh) ∈ Γ.

Proof. The L-matrix condition and the weakly diagonal dominance condition for the matrix
Ah(ch, θh) can be easily verified. For instance, one can verify these conditions for the
wide stencil discretization (A.5), using the fact that the neighboring bilinear interpolation
weights must sum up to 1 (i.e.,

∑1
k=0

∑1
k′=0 pr+k,s+k′ = 1). The strictly diagonally dominant

rows correspond to the grid points near the boundary ∂Ω, while the weakly diagonally
dominant rows correspond to those inside the computation domain Ω.

The connectivity property of Ah(ch, θh) is yet to be verified. For the grid points xi,j
that are near the boundary, the lexicographical index 〈i, j〉, as defined in (3.28), satisfies
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〈i, j〉 ∈ G(Ah). For those points that are inside the computational domain, or 〈i, j〉 /∈
G(Ah), there must exist non-zero entries A〈i,j〉,〈i′,j′〉 6= 0, where i′ ≥ i, j′ ≥ j, with at lease
one strict inequality satisfied. Hence, given any xi0,j0 , where 〈i0, j0〉 /∈ G(Ah), there exist
monotonically increasing sequences i0 ≤ i1 ≤ ... ≤ ik ≤ nx and j0 ≤ j1 ≤ ... ≤ jk ≤ ny,
such that 〈ik, jk〉 ∈ G(Ah).

Before investigating the stability for the nonlinear problem (3.25)-(3.26), we first prove
the stability for the corresponding linear problem (3.25).

Lemma 3.5. Define a circle BR(0) : {(x, y)|x2 + y2 ≤ R2}, where the radius R =

max
(x,y)∈Ω

√
x2 + y2, such that BR(0) covers the entire computational domain Ω. Let ϕ(x) ≡

−1
2
‖
√
f‖∞(R2 − x2 − y2) be a lower-bound estimate function that is smooth and non-

positive in Ω. Denote its corresponding grid function as ϕh ∈ Rnxny . Then the vector
Ahϕh ∈ Rnxny satisfies

Ahϕh ≤ −‖
√
f‖∞, for all h. (3.39)

Proof. Without loss of generality, let us consider a grid point xi,j where the semi-Lagrangian

wide stencil discretization is applied and boundary terms occur with xi,j +
√
h(ez)i,j relo-

cated to xi,j + η1(ez)i,j; see Appendix A.4. Then

(Ahϕh)〈i,j〉 = 2

(
ci,j

η1

√
h

+
1− ci,j
h

)
ϕ(xi,j)−

ci,j√
hη1+

√
h

2

Ihϕ|xi,j−√h(ez)i,j

− 1− ci,j
h

Ihϕ|xi,j+√h(ew)i,j
− 1− ci,j

h
Ihϕ|xi,j−√h(ew)i,j

≤ 2

(
ci,j

η1

√
h

+
1− ci,j
h

)
ϕ(xi,j)−

ci,j

η1
η1+
√
h

2

ϕ(xi,j + η1(ez)i,j)

− ci,j√
hη1+

√
h

2

ϕ(xi,j −
√
h(ez)i,j)−

1− ci,j
h

ϕ(xi,j +
√
h(ew)i,j)

− 1− ci,j
h

ϕ(xi,j −
√
h(ew)i,j)

= −‖
√
f‖∞,

where we have used ϕ(xi,j + η1(ez)i,j) ≤ 0, and Ihϕ|xi,j−√h(ez)i,j
≥ ϕ(xi,j −

√
h(ez)i,j) and

similarly for the other stencil points. Interested readers can prove the other cases in the
same fashion.
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Lemma 3.6 (Stability for the linear problem). Assume that an arbitrary control under
the admissible control set, i.e., (ch, θh) ∈ Γ, is given for the linearized problem (3.25). Then
the solution uh is bounded as follows:

1. If g = 0 (homogeneous boundary condition) and f ≥ 0 is a bounded function,

− 1

2
‖
√
f‖∞R2 ≤ uh ≤ 0, independent of h. (3.40)

2. If f = 0 (homogeneous PDE) and g is a bounded function,

‖uh‖∞ ≤ ‖g‖∞, independent of h. (3.41)

3. In general, if f ≥ 0 and g are bounded functions,

‖uh‖∞ ≤
1

2
‖
√
f‖∞R2 + ‖g‖∞, independent of h. (3.42)

Proof. 1. The proof follows the idea in [136]. In this case, the vector bh is simply given by
b〈i,j〉 = −2

√
ci,j(1− ci,j)fi,j. Since ci,j ∈ [0, 1], we have −‖

√
f‖∞ ≤ bh ≤ 0.

Lemma 3.4 has proved that Ah is an M-matrix, and thus A−1
h ≥ 0. Also, we note that

bh ≤ 0. Hence, the upper bound of uh is given by uh = A−1
h bh ≤ 0.

Lemma 3.5 has proved that Ahϕh ≤ −‖
√
f‖∞. Since −‖

√
f‖∞ ≤ bh = Ahuh, we have

Ahϕh ≤ Ahuh. Since A−1
h ≥ 0, we have ϕh ≤ uh. Hence, the lower bound of uh is given by

uh ≥ ϕh ≥ −‖ϕ‖∞ = −1
2
‖
√
f‖∞R2.

2. By Lemma 3.4, Ah is an M-matrix. Then following the proof in [49], the solu-
tion uh under the M-matrix discretization satisfies the discrete comparison principle, and
furthermore, (3.41).

3. This can be obtained by applying the linear superposition principle on 1 and 2.

Now, we come back to our original nonlinear problem (3.25)-(3.26).

Lemma 3.7 (Stability for the nonlinear problem). Assume that f and g are bounded in
the L∞ norm. The solution of the discrete system (3.25)-(3.26), uh, is bounded by

‖uh‖∞ ≤
1

2
‖
√
f‖∞R2 + ‖g‖∞, (3.43)

where the bound is independent of the mesh size h and the control (ch, θh).
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Proof. Given that the linear stability (Lemma 3.6) is proved, the proof of nonlinear stability
follows [62]. We note that (3.26) suggests that (c∗h, θ

∗
h) depends on uh. However, regardless

of uh, (c∗h, θ
∗
h) must fall into the admissible control set Γ = [0, 1] × [−π

4
, π

4
), i.e., each

component (c∗〈i,j〉, θ
∗
〈i,j〉) must fall into Γ. Hence, (c∗h, θ

∗
h) is always bounded by Γ; the bound

of (c∗h, θ
∗
h) is independent of uh; and, whether uh is bounded or not is irrelevant to the

boundedness of (c∗h, θ
∗
h).

By Lemma 3.6, given any (ch, θh) in the admissible control set Γ, we have ‖uh‖∞ ≤
1
2
‖
√
f‖∞R2 + ‖g‖∞, where the bound is independent of the mesh size h and the control

(ch, θh). The solution of the nonlinear problem (3.25)-(3.26) is equivalent to the solution
of a linearized problem where the control (c∗h, θ

∗
h) is optimal. Since the optimal control

(c∗h, θ
∗
h) must fall into the admissible control set Γ, the same bound for ‖uh‖∞ applies to

the solution of the nonlinear problem.

3.6.3 Monotonicity

Monotonicity of our numerical scheme (3.25)-(3.26) is inherited from the M-matrix property
(or more precisely, L-matrix property) defined in Lemma 3.3.

Lemma 3.8 (Monotonicity). The mixed discretization

Nh(xi,j, uh) = Nh(xi,j, ui,j, {up,q|(p,q)6=(i,j)}) = 0,

given in (3.25)-(3.26), is monotone. More specifically, for all uh ≤ vh, we have

Nh(xi,j, ui,j, {up,q|(p,q)6=(i,j)}) ≤ Nh(xi,j, vi,j, {up,q|(p,q)6=(i,j)}),
Nh(xi,j, ui,j, {up,q|(p,q)6=(i,j)}) ≥ Nh(xi,j, ui,j, {vp,q|(p,q)6=(i,j)}).

(3.44)

Proof. The proof follows [66]. Without loss of generality, let us analyze one example:
uh ≤ vh with ui,j = vi,j. Then

Nh(xi,j, ui,j, {up,q|(p,q)6=(i,j)})−Nh(xi,j, ui,j, {vp,q|(p,q)6=(i,j)})
= max

(ci,j ,θi,j)∈Γ

{
(Ah(ci,j, θi,j)uh)〈i,j〉 − b〈i,j〉(ci,j, θi,j)

}
− max

(ci,j ,θi,j)∈Γ

{
(Ah(ci,j, θi,j) vh)〈i,j〉 − b〈i,j〉(ci,j, θi,j)

}
≥ min

(ci,j ,θi,j)∈Γ
{Ah(ci,j, θi,j)(uh − vh)}〈i,j〉 ≥ 0,

where the first inequality uses max
x

f(x) − max
x

g(x) ≥ min
x

[f(x)− g(x)], and the last

inequality considers that uh − vh ≤ 0 and that all the off-diagonal entries of Ah are non-
positive under all admissible control (i.e., Ah is an L-matrix).
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3.6.4 Strong comparison principle

The strong comparison principle holds if the boundary condition is satisfied in the viscosity
sense. Unfortunately, there is no proof in the literature that this necessarily holds for the
Dirichlet problem (3.4)-(3.6). Hence, we provide a proof in the setting of our proposed
numerical scheme.

Lemma 3.9. Let ζ(x;p) ≡ 1
2
‖
√
f‖∞‖x − p‖2

2, where p is an arbitrary vector in R2. Let

û(x) : {xi,j ∈ Ω} ∪ ∂Ω→ R, where û(x) ≡
{
uh(xi,j), if x ∈ {xi,j ∈ Ω},
g(x), if x ∈ ∂Ω.

Then Ihζ ± û

achieves its maximum on ∂Ω.

Proof. Without loss of generality, let us consider again a grid point xi,j /∈ ∂Ω where the
semi-Lagrangian wide stencil discretization is applied and the boundary terms occur with
xi,j +

√
h(ez)i,j relocated to xi,j + η1(ez)i,j. Assume that the control is fixed. Define a

linear stencil operator on an arbitrary function u at xi,j as

S[u](xi,j) ≡ 2
(

ci,j

η1
√
h

+
1−ci,j
h

)
u|xi,j −

ci,j
√
h
η1+
√
h

2

u|xi,j−√h(ez)i,j

− ci,j

η1
η1+
√
h

2

u|xi,j+η1(ez)i,j −
1−ci,j
h

u|xi,j+√h(ew)i,j
− 1−ci,j

h
u|xi,j−√h(ew)i,j

.

We note that the relocated stencil point is also included in the operator. Then we have
S[Ihζ](xi,j) ≤ S[ζ](xi,j) = −‖

√
f‖∞, and S[û](xi,j) = −2

√
ci,j(1− ci,j)fi,j. As a result,

we have S[Ihζ ± û](xi,j) = −‖
√
f‖∞ ± 2

√
ci,j(1− ci,j)fi,j ≤ 0.

Now assume that Ihζ ± û achieves its maximum at this grid point xi,j. Next we prove
that (Ihζ ± û)|y = (Ihζ ± û)|xi,j for any stencil point y connected to xi,j, namely, for any

y ∈ {xi,j+η1(ez)i,j,xi,j−
√
h(ez)i,j,xi,j±

√
h(ew)i,j}. This can be proved by contradiction.

Assume that there exists at least one stencil point where the strict inequality holds, namely,
(Ihζ ± û)|y < (Ihζ ± û)|xi,j . Then

S[Ihζ ± û](xi,j) >
[
2
(

ci,j

η1
√
h

+
1−ci,j
h

)
− ci,j
√
h
η1+
√
h

2

− ci,j

η1
η1+
√
h

2

− 1−ci,j
h
− 1−ci,j

h

]
(Ihζ ± û)|xi,j = 0,

which contradicts with S[Ihζ ± û](xi,j) ≤ 0. The key point of this result is that (Ihζ ±
û)|xi,j+η1(ez)i,j = (Ihζ ± û)|xi,j . That is, Ihζ ± û achieves its maximum at the boundary
point xi,j + η1(ez)i,j ∈ ∂Ω.
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In general, consider any grid point xi,j /∈ ∂Ω. Assume that Ihζ±û achieves its maximum
at xi,j. One can prove in the same fashion that (Ihζ ± û)|y = (Ihζ ± û)|xi,j for any stencil
point y connected to xi,j. Then by the connectivity property (see the proof of Lemma
3.4), there exists a boundary point z ∈ ∂Ω, such that (Ihζ ± û)|z = (Ihζ ± û)|xi,j . Hence,
Ihζ ± û achieves its maximum at the boundary point z ∈ ∂Ω.

Lemma 3.10. Let Ω be a strictly convex domain. Assume that Lemma 3.9 holds. Define

u(x) ≡ lim sup
h→0,y→x

uh(y), u(x) ≡ lim inf
h→0,y→x

uh(y).

Then u(x) = u(x) = g(x) for all x ∈ ∂Ω.

Proof. Given Lemma 3.9, the proof follows Lemma 6.4 in [62].

Lemma 3.10 is essentially the comparison result on the boundary ∂Ω. Now we are
ready to extend the comparison result to the entire computational domain Ω.

Lemma 3.11. Given that the mixed discretization (3.25)-(3.26) satisfies consistency, sta-
bility and monotonicity, u(x) and u(x) are respectively the viscosity subsolution and su-
persolution of the Dirichlet problem (3.4)-(3.6).

Proof. See the proof of Theorem 2.1 in [14].

Lemma 3.12 (Strong comparison principle). Let Ω be a strictly convex domain. Then
the mixed discretization (3.25)-(3.26) satisfies u ≤ u in Ω.

Proof. Since u and u are respectively the viscosity subsolution and supersolution (Lemma
3.11), and u ≤ u on ∂Ω (Lemma 3.10), by Theorem 3.3 in [52], we conclude that u ≤ u in
Ω.

3.6.5 Convergence

Once consistency, stability, monotonicity and the strong comparison principle are proved,
the Barles-Souganidis theorem [14] guarantees the convergence of the numerical solution
to the viscosity solution.

Theorem 3.2 (Barles-Souganidis theorem). Let Ω be a strictly convex domain. Given that
the mixed discretization (3.25)-(3.26) satisfies consistency, stability, monotonicity and the
strong comparison principle, the numerical solution converges to the viscosity solution of
the Dirichlet problem (3.4)-(3.6).

Proof. See Barles and Souganidis’s proof of Theorem 2.1 in [14].
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3.7 Numerical Results

In this section, we will present numerical results for the Monge-Ampère equation (3.1)-(3.3),
or equivalently, its HJB formulation (3.11)-(3.12), using our proposed mixed standard 7-
point stencil and semi-Lagrangian wide stencil scheme. The examples in this section come
from [72, 21]. We set the tolerance of the residual for the policy iteration (Algorithm 3.2)

as 10−6. We let the initial guess of Algorithm 3.2 be (c
(0)
h , θ

(0)
h ) = (1

2
, 0). In other words,

we let the initial guess of the numerical solution of (3.1)-(3.3) be the solution of

uxx + uyy = 2
√
f, in Ω,

u = g, on ∂Ω.

We choose the grid size nx = ny = 32, 64, · · · , 512, and define the numerical convergence

rate as log2
‖u−uh(nx/2,ny/2)‖
‖u−uh(nx,ny)‖ , where uh(nx, ny) is the numerical solution on an nx × ny grid.

Example 3.1. Consider solving (3.1)-(3.3), where

f(x, y) = (1 + x2 + y2)ex
2+y2 , g(x, y) = e

1
2

(x2+y2), Ω = [−1, 1]× [−1, 1].

The exact solution u(x, y) = e
1
2

(x2+y2) is smooth. For this example, it turns out that the
standard 7-point stencil discretization can be applied on the entire computational domain
and still results in a monotone scheme. Consequentially, the numerical solution converges
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Figure 3.4: Example 3.1, where the exact solution is u(x, y) = e
1
2

(x2+y2). (i) Numerical
solution. (ii) Norms of the errors ‖u− uh‖.
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(i) Proposed mixed stencil scheme

nx × ny ‖u− uh‖2
Numerical

convergence
rate

‖u− uh‖∞
Numerical

convergence
rate

Number of
policy

iterations
32× 32 1.201×10−3 9.598×10−4 3
64× 64 3.009×10−4 2.00 2.404×10−4 2.00 3

128× 128 7.526×10−5 2.00 6.013×10−5 2.00 3
256× 256 1.882×10−5 2.00 1.504×10−5 2.00 3
512× 512 4.705×10−6 2.00 3.759×10−6 2.00 3

(ii) Pure semi-Lagrangian wide stencil scheme

nx × ny ‖u− uh‖2
Numerical

convergence
rate

‖u− uh‖∞
Numerical

convergence
rate

Number of
policy

iterations
32× 32 1.868×10−2 1.557×10−2 5
64× 64 1.020×10−2 0.87 8.364×10−3 0.90 5

128× 128 5.263×10−3 0.95 4.240×10−3 0.98 6
256× 256 2.801×10−3 0.91 2.259×10−3 0.91 5
512× 512 1.600×10−3 0.81 1.268×10−3 0.83 5

Table 3.1: Numerical results of Example 3.1, where the exact solution is u(x, y) = e
1
2

(x2+y2).
(i) Proposed mixed stencil scheme. (ii) Pure semi-Lagrangian wide stencil scheme.

at the optimal theoretical convergence rate O(h2). More specifically, the red-solid lines
in Figure 3.4(ii) show that, for the proposed mixed stencil scheme, the convergence rates,
indicated by the slopes, are O(h2) in both the L2 and L∞ norms. Table 3.1(i) demonstrates
the same second order convergence rates. In addition, we observe that the computation is
efficient, in the sense that the number of policy iterations remains a small constant 3 as
nx increases.

We compare the proposed mixed scheme with the pure semi-Lagrangian wide stencil
scheme in [62], where the wide stencils are applied on the entire computation domain. The
blue-dashed lines in Figure 3.4(ii) show that, for the pure semi-Lagrangian wide stencil
scheme, the convergence rates are approximately O(h) in both the L2 and L∞ norms.
Table 3.1(ii) also indicates such first order convergence rates. We note that order one is
the optimal theoretical convergence rate for the pure wide stencil scheme; see Lemma 3.2.
The convergence rate using the proposed mixed scheme is significantly faster than the rate
using the pure semi-Lagrangian wide stencil scheme.

Example 3.2. Consider

f(x, y) =
2

(2− x2 − y2)2
, g(x, y) = −

√
2− x2 − y2, Ω = [0, 1]× [0, 1],
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where f is singular at (1, 1). The exact solution is u(x, y) = −
√

2− x2 − y2. Similar to
Example 3.1, we can apply the standard 7-point stencil discretization monotonically on
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Figure 3.5: Example 3.2, where the exact solution is u(x, y) = −
√

2− x2 − y2. (i)
Numerical solution. (ii) Norms of the errors ‖u− uh‖.

(i) Proposed mixed stencil scheme

nx × ny ‖u− uh‖2
Numerical

convergence
rate

‖u− uh‖∞
Numerical

convergence
rate

Number of
policy

iterations
32× 32 6.450×10−5 2.359×10−4 4
64× 64 1.628×10−5 1.99 8.211×10−5 1.52 5

128× 128 4.084×10−6 2.00 2.882×10−5 1.51 5
256× 256 1.022×10−6 2.00 1.015×10−5 1.51 5
512× 512 2.557×10−7 2.00 3.583×10−6 1.50 5

(ii) Pure semi-Lagrangian wide stencil scheme

nx × ny ‖u− uh‖2
Numerical

convergence
rate

‖u− uh‖∞
Numerical

convergence
rate

Number of
policy

iterations
32× 32 1.493×10−3 5.799×10−3 5
64× 64 9.634×10−4 0.63 4.394×10−3 0.40 4

128× 128 5.166×10−4 0.90 2.697×10−3 0.70 5
256× 256 3.153×10−4 0.71 1.824×10−3 0.56 5
512× 512 1.583×10−4 0.99 1.120×10−3 0.70 5

Table 3.2: Numerical results of Example 3.2, where the exact solution is u(x, y) =
−
√

2− x2 − y2. (i) Proposed mixed stencil scheme. (ii) Pure semi-Lagrangian wide
stencil scheme.
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the entire Ω. Both the red-solid lines in Figure 3.5(ii) and the reported numbers in Table
3.2(i) show that, for the proposed mixed stencil scheme, the convergence rates are O(h2)
in the L2 norm and O(h1.5) in the L∞ norm, respectively. As a comparison, if we applied
the pure semi-Lagrangian wide stencil scheme, then the convergence rates are worse than
O(h); see the blue-dashed lines in Figure 3.5(ii) and the reported numbers in Table 3.2(ii).

Example 3.3. Consider

f(x, y) = max

(
1− 0.1√

x2 + y2
, 0

)
, g(x, y) =

1

2
(
√
x2 + y2 − 0.1)2,

Ω = [−0.5, 0.5]× [−0.5, 0.5].

The exact solution is given by u(x, y) = 1
2

max
(√

x2 + y2 − 0.1, 0
)2

. This is a C1 function

where the singularity occurs at the ring x2 + y2 = 0.12.

First we consider the proposed mixed scheme. Semi-Lagrangian wide stencils need to
be applied near the ring x2 + y2 = 0.12. The red-solid lines in Figure 3.6(ii) show that the
convergence rates are approximately O(h) in both the L2 and L∞ norms. Table 3.3(i) also
reports such convergence rates. We note that the error reduction rates for the sequence
of nx = 32, 64, · · · , 512 do not look as regular as the previous examples. The reason is
that wide stencils introduce interpolation errors, which fluctuate as nx increases, despite
converging towards 0. However, a clear error reduction, and thus convergence, can be
observed.

−0.5 0 0.5−0.500.5
0

0.05

0.1

0.15

0.2

xy

u
h

25 50 100 200 400 800
10

−6

10
−5

10
−4

10
−3

10
−2

N

|| 
u 

−
 u

h ||

 

 

Mixed stencil scheme
||u−u

h
||

2
, slope = −1.19

||u−u
h
||∞, slope = −1.10

Wide stencil scheme
||u−u

h
||

2
, slope = −0.67

||u−u
h
||∞, slope = −0.95

nx

‖u
−
u
h
‖

(i) (ii)

Figure 3.6: Example 3.3, where the exact solution is 1
2

max(
√
x2 + y2 − 0.1, 0)2. (i)

Numerical solution. (ii) Norms of the error ‖u− uh‖.
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(i) Proposed mixed stencil scheme

nx × ny ‖u− uh‖2
Numerical

convergence
rate

‖u− uh‖∞
Numerical

convergence
rate

Number of
policy

iterations
32× 32 1.270×10−4 4.298×10−4 4
64× 64 4.273×10−5 1.57 1.520×10−4 1.50 6

128× 128 1.835×10−5 1.22 6.907×10−5 1.14 7
256× 256 1.544×10−5 0.25 5.959×10−5 0.21 9
512× 512 3.396×10−6 2.18 1.513×10−5 1.98 20

(ii) Pure semi-Lagrangian wide stencil scheme

nx × ny ‖u− uh‖2
Numerical

convergence
rate

‖u− uh‖∞
Numerical

convergence
rate

Number of
policy

iterations
32× 32 1.337×10−3 6.604×10−3 5
64× 64 9.084×10−4 0.56 3.304×10−3 1.00 6

128× 128 6.940×10−4 0.39 1.901×10−3 0.80 7
256× 256 3.815×10−4 0.86 9.335×10−4 1.03 7
512× 512 1.998×10−4 0.93 4.563×10−4 1.03 9

Table 3.3: Numerical results for Example 3.3, where the exact solution is
1
2

max(
√
x2 + y2− 0.1, 0)2. (i) Proposed mixed stencil scheme. (ii) Pure semi-Lagrangian

wide stencil scheme.

For comparison, we also test the pure semi-Lagrangian wide stencil scheme. The blue-
dashed lines in Figure 3.6(ii) and the numbers in Table 3.3(ii) show that the convergence
rates are worse than O(h) in both the L2 and L∞ norms. In addition, the errors ‖u− uh‖
by the pure semi-Lagrangian wide stencil scheme (Table 3.3(ii)) are larger than the corre-
sponding errors by our mixed scheme (Table 3.3(i)). Hence, our proposed mixed scheme
performs better than the pure wide stencil scheme, in the sense that the errors ‖u− uh‖ by
the proposed mixed scheme are significantly smaller, and the convergence rates are faster.

Example 3.4. In practice, our numerical scheme can converge to not only viscosity solu-
tions, but also a type of more general weak solutions, called Aleksandrov solutions [84]. In
this example, the corresponding f is a delta function at the origin and is zero elsewhere:

f(x, y) = πδ(0, 0), g(x, y) =
√
x2 + y2, Ω = [−0.5, 0.5]× [−0.5, 0.5].

The exact solution u(x, y) =
√
x2 + y2 is an Aleksandrov solution. It is a C0 function and

is singular at the origin. Figure 3.7(i) shows that our proposed mixed scheme converges to
the cone-shaped Aleksandrov solution. Conversely, Figure 3.7(ii) shows that the pure semi-
Lagrangian wide stencil scheme in [62] fails to converge to the cone-shaped Aleksandrov
solution. Figure 3.7(iii) and Table 3.4 report the convergence results by the proposed
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Figure 3.7: Example 3.4, where the exact solution is u(x, y) =
√
x2 + y2. (i) Numerical

solution by the proposed mixed stencil scheme. (ii) Numerical solution by the pure semi-
Lagrangian wide stencil scheme. (iii) Norms of the error ‖u− uh‖ for the proposed mixed
stencil scheme.

mixed scheme. The convergence rates are around O(h0.8) in the L2 norm and O(h0.5) in
the L∞ norm, respectively.

Example 3.5. In order to make a case for designing a monotone numerical scheme that
converges to the viscosity solution (which is convex), we show explicitly that a non-
monotone numerical scheme may converge to a non-viscosity solution (which may be non-
convex). More analysis on this issue can be found in [72, 21]. We consider

f(x, y) = 1, g(x, y) = 0, Ω = [−0.5, 0.5]× [−0.5, 0.5].

For this example, the exact solution u is not smooth near ∂Ω [21]. Since a closed-form
expression for u is not available, we follow [21] and study the convergence behavior of
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Proposed mixed stencil scheme

nx × ny ‖u− uh‖2
Numerical

convergence
rate

‖u− uh‖∞
Numerical

convergence
rate

Number of
policy

iterations
32× 32 1.156×10−3 3.868×10−3 9
64× 64 6.484×10−4 0.83 2.583×10−3 0.58 15

128× 128 3.803×10−4 0.77 1.848×10−3 0.48 17
256× 256 2.159×10−4 0.82 1.305×10−3 0.50 23
512× 512 1.148×10−4 0.91 9.203×10−4 0.50 27

Table 3.4: Numerical results of Example 3.4, where the exact solution is u(x, y) =√
x2 + y2. The proposed mixed stencil scheme is used.

uh towards u by checking the values of uh(0, 0) as h → 0. The numerical solution using
our monotone mixed scheme converges to the convex viscosity solution as h → 0; see
Figure 3.8(i) and the left column of Table 3.5. Alternatively, we consider a possible non-
monotone discretization for uxxuyy−u2

xy = f , which is the direct application of the standard
central differencing on uxx, uyy and the standard 4-point central differencing on uxy. In
our numerical experiment, the numerical solution under the non-monotone discretization
converges to a concave function as h→ 0; see Figure 3.8(ii) and the right column of Table
3.5. We note that [21] considered the same example using a non-monotone discretization,
and obtained another non-viscosity solution that is non-convex near ∂Ω.
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Figure 3.8: Example 3.5: (i) The solution given by the monotone mixed scheme, which
is convex and is convergent in the viscosity sense. (ii) One possible solution given by a
non-monotone scheme, which is concave and is not a viscosity solution.
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nx × ny
uh(0, 0) by

monotone scheme
uh(0, 0) by

non-monotone scheme
32× 32 -0.18380 0.18063
64× 64 -0.18444 0.18312

128× 128 -0.18461 0.18436
256× 256 -0.18485 0.18499
512× 512 -0.18507 0.18530

Table 3.5: Example 3.5: The numerical solution at (0, 0), i.e., uh(0, 0), given by the
proposed monotone mixed scheme and a non-monotone scheme, respectively.

3.8 Conclusion

In this chapter, we convert the Monge-Ampère equation into the equivalent HJB equation,
and propose a mixed finite difference discretization for solving the equivalent HJB equation.
The discretization satisfies consistency, stability, monotonicity and the strong comparison
principle, and hence converges to the viscosity solution. Numerical results show that our
proposed mixed scheme can achieve a second order convergence rate whenever the standard
7-point stencils can be applied monotonically on the entire computational domain, and up
to an order one convergence rate otherwise. Our proposed mixed scheme significantly
improves the accuracy over the pure semi-Lagrangian scheme in [62], in the sense that
our proposed mixed scheme yields a smaller discretization error ‖u − uh‖ and a faster
convergence rate.

82



Chapter 4

Multigrid Method for HJB
Formulation of Monge-Ampère
Equation

4.1 Introduction

In Chapter 3, we propose a mixed finite difference method for solving the HJB formulation
of a Monge-Ampère equation, which gives rise to a nonlinear discretized system (3.25)-
(3.26). In this chapter, we consider multigrid methods for speeding up the solution of
the discretized system. As explained in Chapters 1 and 2, either global linearization (i.e.,
outer-inner linearization) multigrid methods or FAS multigrid methods can be considered
for solving the nonlinear discretized system (3.25)-(3.26).

We first develop FAS for the mixed discretization where the standard 7-point stencil
discretization can be applied monotonically on the entire computational domain. The
major issue is the anisotropy along various directions. Standard pointwise smoothers fail
to smooth errors along weakly connected directions. To address this, we propose using an
alternating line smoother along with a 7-point restriction and interpolation. We show that
such FAS yields a more effective multigrid solver than the corresponding global linearization
method with the same multigrid components.

However, when the semi-Lagrangian wide stencil discretization is also applied in the
mixed discretization, designing an efficient multigrid method becomes very challenging.
One challenge is that standard pointwise smoothers and line smoothers do not smooth
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errors at the grid points where wide stencils are applied. In other words, after smoothing,
the errors are still locally oscillatory around wide stencils.

The other challenge associated with the wide stencil discretization is that the resulting
matrix Ah turns out to be non-symmetric. We note that most multigrid theories are
developed for symmetric matrices. The standard multigrid methods may not be effective for
non-symmetric matrices. The existing literature of multigrid methods for non-symmetric
matrices are mostly restricted to convection-diffusion equations [13, 27, 22, 99]. Only a few
investigations, such as [138, 130], are related to non-symmetric matrices beyond convection-
diffusion equations. In particular, to the best of our knowledge, [130] is the only reference
that investigates multigrid methods in the context of a semi-Lagrangian discretization.

Both [138] and [130] use existing algebraic multigrid (AMG) methods [134, 147, 146,
125, 124] as preconditioners. We refer readers to [153, 146, 157] for substantial reviews
of AMG. The basic idea of AMG is to come up with the multigrid components based on
the matrix entries Ai,j. More specifically, one performs coarsening along the strongly con-
nected grid points, where the strength of connections are proportional to the magnitude of
the corresponding matrix entries; then one defines interpolation weights, which are again
proportional to the magnitude of the corresponding matrix entries. Unfortunately, AMG
has a few drawbacks. One is that the interpolation matrices, and furthermore the coarse
grid matrices, can be dense, and the density keeps growing as the grid coarsens. Hence,
it is expensive to both construct and solve the matrices, and the computational cost per
MG iteration may be higher than linear in the system size, i.e., higher than O(nxny). The
other issue is that geometric information (such as square grid structure) may be overlooked
or even destroyed by AMG. The consequence is that the AMG coarsening strategy and
restriction/interpolation are not the optimal choice for the mixed discretization on a square
grid. In addition, as pointed out in [130], although AMG methods used as precondition-
ers give approximately mesh-independent convergence, AMG methods themselves are not
efficient if used as stand-alone solvers.

Our contribution is that we propose a fast stand-alone multigrid method for mixed
discretization that involves semi-Lagrangian wide stencils. The proposed multigrid method
is a global linearization method. To address the challenge from the error smoothing, we
propose setting wide stencil points as coarse grid points. The idea is to directly use the
coarse grid points to capture the oscillations that cannot be eliminated by smoothing.
We note that the resulting grid structure remains approximately square. To address the
asymmetry of the matrix Ah, we propose a restriction that is different from the transpose
of interpolation. In particular, we propose using injection as the restriction, which yields
sparse coarse grid matrices, and hence a more efficient multigrid method than AMG. In
our numerical experiments, we illustrate that the proposed multigrid method has a mesh-
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independent convergence rate even as a standalone solver.

This chapter is organized as follows. In Sections 4.2 and 4.3, we propose multigrid meth-
ods for the standard 7-point stencil discretization and the more general mixed discretization
separately. Section 4.4 includes smoothing analysis on the four-direction alternating line
smoother. Section 4.5 shows that the proposed multigrid method as a standalone solver
can achieve mesh-independent convergence. Section 4.6 is the conclusion.

4.2 Multigrid Methods for Standard 7-point Stencil

Discretization

We start with designing FAS multigrid methods for the standard 7-point stencil discretiza-
tion, or more precisely, the case where the standard 7-point stencil discretization can be
applied on the entire computational domain and still results in a monotone scheme.

For FAS, the discretized nonlinear operator Nh is given by (3.31)-(3.32), where the
corresponding linear operator Lh is given by the standard 7-point stencil discretization
(3.19). To obtain N2h, one can use direct discretization, i.e., simply replacing h by 2h
when performing the discretization (3.19). Then the construction of the coarse grid problem
follows (2.17).

4.2.1 Nonlinear smoother

Next we discuss smoothers. First consider the linearized HJB equation (3.11). It turns out
that (3.11) may become anisotropic. For instance, when c∗ = ε is a small constant close to
0 and θ∗ = 0, Equation (3.11) becomes

−εuxx − (1− ε)uyy + 2
√
ε(1− ε)f = 0,

which is an anisotropic Poisson equation. It is well-known that when solving anisotropic
equations, the standard pointwise smoothers do not smooth errors along the weakly con-
nected axis, which causes poor convergence rates [153].

To address anisotropy, we follow Section 5.1.3 of [153] and consider using line smoothers.
More specifically, instead of updating the unknowns point by point, we update strongly-
connected grid points collectively. In general, the strongly-connected direction of the 7-
point discretization can change alignment to either the x-axis, or the y-axis, or the di-
agonal axes, in different parts of the computational domain. Considering this, we apply

85



four-direction alternating Gauss-Seidel line smoother. More specifically, the line
smoother is applied four times: along the x-axis (left to right), the y-axis (top to bottom),
the diagonal axis (top left to bottom right) and the transpose diagonal axis (top right to
bottom left).

So far we have only described a linear smoother. FAS scheme requires a nonlinear
smoother that can directly solve the nonlinear system. Similar to Section 2.4.2, we propose
a nonlinear smoother based on policy iteration, where the step of solving the linear system
is replaced be applying a one-step linear smoother. We summarize the nonlinear smoother
in Algorithm 4.1.

Algorithm 4.1 Nonlinear four-direction alternating Gauss-Seidel line smoother

1: subroutine ūh = SMOOTH (uh)

2: for i = 1, , ..., nx do
3: for j = 1, , ..., ny do
4: Update the control: (c̄i,j, θ̄i,j) = arg max

(ci,j ,θi,j)∈Γ

Li,j(ci,j, θi,j;uh).

5: end for
6: end for
7: Apply the one-step four-direction alternating Gauss-Seidel line smoother to the lin-

earized system Ah(c̄h, θ̄h)uh = bh(c̄h, θ̄h), which updates the solution uh → ūh.

4.2.2 Restriction and interpolation

Once the error becomes smooth along the x, y and diagonal axes after using the four-
direction alternating line smoother, the standard full-coarsening can be applied. In order
to capture the directional feature of the 7-point discretization, we follow [153] and apply
7-point restriction operators to (3.19). If we use again the stencil notation introduced
in Section 1.3.4 of [153], or equivalently, the stencil notation for (2.22), then under the
Conditions (3.15) and (3.17), the corresponding 7-point restriction operators are given by

R[1] =
1

8

0 1 1
1 2 1
1 1 0

 , R[2] =
1

8

1 1 0
1 2 1
0 1 1

 , (4.1)

respectively. The interpolation operator is the scaled transpose of the restriction operator:

P = 4RT . (4.2)
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4.3 Multigrid Methods for Mixed Discretization with

Wide Stencils

In this section, we will discuss multigrid methods for the more general mixed discretization,
where the semi-Lagrangian wide stencil discretization is applied to part of the computa-
tional domain. We will propose global linearization multigrid methods instead of FAS
methods. One reason is that mixed discretization with wide stencils is a more difficult
problem than the pure standard 7-point stencil discretization. We would like to use the
Petrov-Galerkin coarse grid operators, which is more robust in terms of the accuracy of
the error estimate but is incompatible with the nonlinearity of FAS. Another reason, which
will be shown, is that the coarse grids of our proposed approach are no longer square grids,
which poses difficulties in defining an FAS coarse grid problem using direct discretization.

4.3.1 Issues

We apply a global linearization method with the components described in Section 4.2 to
the mixed discretization. To start with a simple scenario, we consider solving the mixed
discretization of the following linearized HJB equation:

1

2
uxx +

1

2
uyy =

√
f, in Ω\{(0, 0)},

2 +
√

2

4
uxx +

2−
√

2

4
uyy +

1√
2
uxy = 0, at (0, 0),

u = g, on ∂Ω.

(4.3)

In other words, we assume that the control is given as (c∗, θ∗) = (1
2
, 0) on the entire com-

putational domain Ω, where the standard 7-point stencil discretization is applied, except
that the control is (c∗, θ∗) = (1, π

8
) at the origin (the center of Ω), where wide stencil

discretization is applied. Figure 4.1(ii) shows the error after applying the four-direction
alternating line smoother. In particular, the cross section of the smoothed error shows
that a kink appears at the origin (0,0). In general, wherever the wide stencil discretization
is applied at a grid point, a kink appears in a smoothed error. Unfortunately, such kinks
cannot be eliminated by the other types of smoothers either.
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(i) Initial error
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Figure 4.1: The error after one step four-direction alternating Gauss-Seidel line smoothing.
(i) Initial error and its cross section along the x-axis. (ii) Smoothed error and its cross
section along the x-axis. A kink appears at the origin (0,0).

4.3.2 Coarsening strategy

Despite kink(s), Figure 4.1(ii) shows that, after smoothing, kink(s) are restricted to the
wide stencil point(s), and the error at the other grid points (i.e., the standard 7-point
stencil points) is still smooth. This motivates us to apply full-coarsening to the standard
7-point stencil points, and consider a special type of coarsening strategy at the wide stencil
points.

To motivate our coarsening strategy for wide stencils, we define a C-point as a fine grid
point that is kept in its corresponding coarse grid; and an F -point otherwise. Let us first
consider a one-dimensional cross section of a smoothed error; see Figure 4.2(i). Black dots
are C-points, while hollow dots are F -points. Assume that the standard full-coarsening
assigns a wide stencil point (indicated by the red arrow) as an F -point. Let the black
curves represent the underlying fine grid error. On the coarse grid, let its estimated error
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(i) (ii)

linear    interp

Coarse grid

Fine grid

linear    interp

Fine grid

Coarse grid

mismatch match

Figure 4.2: Coarsening strategy at a wide stencil point. (i) Standard coarsening with
linear interpolation at a wide stencil F -point (red arrow). (ii) Setting the wide stencil
point as a coarse grid C-point (green arrow).

match the underlying fine grid error exactly, i.e., let the values of the black dots sit on the
black curve. After linear interpolation of the coarse grid error, we obtain the interpolated
error (grey curve) on the fine grid. Ideally, the interpolated error (grey curve) should
match the underlying fine grid error (black curve) as closely as possible. However, since
the underlying fine grid error has a kink at the wide stencil point, the resulting interpolated
error turns out to have a mismatch, as indicated by the red arrow. In other words, if the
wide stencil point is an F -point, a linearly interpolated error will fail to capture the kink
accurately.

Instead, our approach is simply setting the wide stencil F -point as a coarse grid point,
i.e., a C-point; see Figure 4.2(ii). As a result, interpolation at the wide stencil point is no
longer needed. The error at the wide stencil point is simply copied from the coarse grid
to the fine grid. This yields a more accurate fine grid estimated error, as indicated by the
green arrow.

The proposed coarsening strategy can be extended to two dimensions. Figure 4.3
illustrates the coarsening process. On the fine grid, the black dots are selected as C-points,
and the hollow dots are selected as F -points. Suppose wide stencils are applied to the three
red dots. Then these three dots are all assigned as C-points. The resulting first coarse
grid is a combination of a square grid that comes from geometric coarsening, and some
additional coarse grid points that come from wide stencils. We can continue to coarsen
the square sub-grid and meanwhile keep all the wide stencil points as C-points, which
generates the second coarse grid. Such a coarsening strategy can be applied recursively
until the coarsest level.

One may argue that by setting all the wide stencil points as coarse grid points, the num-
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Fine grid 1st coarse grid 2nd coarse grid

Figure 4.3: Proposed coarsening strategy. Wide stencil grid points (red) are kept as
C-points as the grid is coarsened from a fine grid to a coarse grid.

ber of coarse grid points, and thus the computational complexity, will increase. However,
it is observed in numerical simulations that wide stencils typically account for a negligible
proportion of the total grid points in practical applications (such as image registration).
Setting wide stencil points as coarse grid points would not result in a significant increase of
the number of coarse grid points, and would still approximately maintain the square grid
structure as the grid coarsens.

4.3.3 Interpolation

Under the proposed coarsening strategy, all the wide stencil points are excluded from the
set of F -points. In other words, F -points must be the standard 7-point stencils. Hence,
the 7-point interpolation, as described in Section 4.2.2, can be used for interpolating the
errors at these F -points.

We note that the coarse grids are no longer square grids; see Figure 4.3. However, each
of these coarse grids can be seen as a combination of a square grid and some additional
wide-stencil C-points. Then all the F -points can still be interpolated from the C-points
on the square grid. The arrows in Figure 4.3 show how an F -point can be interpolated.

4.3.4 Restriction

In both the standard geometric and algebraic multigrid methods, restriction is simply the
transpose of interpolation. However, it does not result in mesh-independent convergence
rates for the non-symmetric matrices Ah arising from the mixed discretization. We will
show such poor convergence in Section 4.5.2. Instead, we propose a restriction operator R
that is different from the transpose of the interpolation P .
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Our approach is simply to use injection on wide stencil points. To motivate the use of
injection, let us simplify our problem and start with the one-dimensional Poisson equation

− uxx = 0, x ∈ [−0.5, 0.5]. (4.4)

We apply the wide stencil discretization at x = 0 and the standard finite difference dis-
cretization on the rest of the computational domain. Figure 4.4 shows that under our
coarsening strategy (which in this case is the same as the standard full coarsening), the
fine grid points with even indices are C-points (black points), and the ones with odd indices
are F -points (hollow points). The wide stencil point is i = 0. A naive choice of restriction
at i = 0 would be the transpose of the linear interpolation, i.e., the standard full-weighting
restriction:

rH0 =
1

4
r−1 +

1

2
r0 +

1

4
r1, (4.5)

where r−1, r0, r1 are the fine grid residuals at i = −1, 0, 1, respectively, and rH0 is the
restricted residual at the coarse grid point. However, this leads to a poor coarse grid
estimated error. In order to find a better restriction, we investigate two cases.

Case 1: h = 1
36

and
√
h = 6h. Figure 4.4(i) shows that on the fine grid, the stencil

points of i = 0 fall onto i = ±6. In this case, the wide stencil discretization at i = 0 reads

−u−6 + 2u0 − u6

(6h)2
= 0. (4.6)

The residual at i = 0 is then given by

r0 =
−e−6 + 2e0 − e6

(6h)2
. (4.7)

We notice that i = 0, i = −6 and i = 6 are all C-points. Then a natural construction of
the coarse grid problem at i = 0 is to discretized the Poisson equation using these three

0-6 6

Coarse grid

Fine grid

0-7 7

Fine grid

Coarse grid

(i) (ii)

Figure 4.4: Restriction for one-dimensional Poisson equation. (i) h = 1
36

and
√
h = 6h.

(ii) h = 1
49

and
√
h = 7h.
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points, or more precisely,
−eH−6 + 2eH0 − eH6

(6h)2
= rH0 , (4.8)

where the left hand side is a discretization of the Poisson equation on the coarse grid with
the stencil length 6h, and the right hand side is the coarse grid residual rH0 . Comparing
(4.7) and (4.8), we can see that the restriction at i = 0 is a simple injection:

rH0 ≡ r0. (4.9)

Case 2: h = 1
49

and
√
h = 7h. Figure 4.4(ii) shows that on the fine grid, the stencil

points of i = 0 fall onto i = ±7. Unlike the previous case, here the two points i = ±7 are
both F -points. To discretize the Poisson equation on the coarse grid, we interpolate the
errors at i = 7 and i = −7 from their neighboring C-points, which gives

−1
2
(eH−8 + eH−6) + 2eH0 − 1

2
(eH6 + eH8 )

(7h)2
= rH0 . (4.10)

We want to find a restriction, i.e., to rewrite rH0 as a linear combination of fine grid
residuals, such that it matches the left hand side of (4.10). One scheme is to use the linear
combination of the following fine grid residuals:

r0 =
−e−7 + 2e0 − e7

(7h)2
, r7 =

−e6 + 2e7 − e8

h2
, r−7 =

−e−6 + 2e−7 − e−8

h2
. (4.11)

If we combine r0, r7 and r−7 as follows

r0 +
1

98
r7 +

1

98
r−7 =

−1
2
(e−8 + e−6) + 2e0 − 1

2
(e6 + e8)

(7h)2
, (4.12)

then (4.12) matches the left hand side of (4.10) in the exact sense. Equation (4.12) defines
a possible restriction, i.e.,

rH0 ≡ r0 +
1

98
r7 +

1

98
r−7. (4.13)

We note that the restriction (4.12) makes use of the residuals r7 and r−7, which are the
points that the wide stencil point i = 0 connects to. This is different from the standard
full weighting restriction (4.5), which uses the neighboring points r1 and r−1. Since the
coefficients of r7 and r−7 are small, we simply drop them from (4.13) and yield again an
injection:

rH0 ≡ r0. (4.14)
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More generally, given a wide stencil C-point i ∈ C with a stencil length
√
h, the non-

zero restriction weights occur at the set of the F -points that it connects to, denoted as
{j | j ∈ F,Ai,j 6= 0}. We can show that the restriction weights are

wi,j = −Ai,j
Aj,j

= −
− 1

(
√
h)2

2
h2

=
h

2
. (4.15)

When h is small, the restriction (4.15) can be left out. In other words, injection is sufficient
for a good coarse grid problem.

We extend the proposed injection at wide stencil C-points from the one-dimensional
Poisson equation to the two-dimensional HJB equation. Once the restriction operator is
specified, we construct the Petrov-Galerkin coarse grid operator by

A2h ≡ RhAhPh. (4.16)

The benefits of injection at wide stencil C-points are mainly two-fold. One is that the
resulting restriction operator and Petrov-Galerkin operator (4.16) are significantly sparser
than their counterparts if other types of restriction operators are used (such as AMG
restriction). This reduces the computational complexity. The other benefit is that such
restriction would lead to an accurate coarse grid error estimate and eventually a mesh-
independent convergence rate for the proposed multigrid method, which will be shown in
Section 4.5.2.

4.4 Local Fourier Analysis

In this section, we use Local Fourier Analysis (LFA) to analyze the smoothing property of
the four-direction alternating line smoother for the standard 7-point stencil discretization.
First consider the x-line smoother. For simplicity, we assume that the control (c, θ) is
constant on the entire computational domain and satisfies Condition (3.15). Following the
notation in Section 2.5 and the analysis in [153], we obtain the Fourier symbol of the x-line
smoother as

S̃h(c, θ;κ) =
(σ22 − σ12)eiκ2 + σ12e

i(κ1+κ2)

2(σ11 + σ22 − σ12)− (σ11 − σ12)(e−iκ1 + eiκ1)− (σ22 − σ12)e−iκ2 − σ12e−i(κ1+κ2)
.

One can also derive the symbol when the control (c, θ) satisfies Condition (3.17) in-
stead. As defined in Section 2.5, the corresponding smoothing factor is µloc(c, θ) ≡
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Figure 4.5: Smoothing factor µloc(c, θ) for (i) x-line smoother, (ii) y-line smoother, (iii)
first diagonal line smoother, (iv) second diagonal line smoother, (v) four-direction alter-
nating line smoother.

supκ

{
|S̃h(c, θ;κ)| : κ ∈ high frequency mode

}
. A smoother is effective if µloc(c, θ) � 1

and ineffective if µloc(c, θ) ≈ 1.

We evaluate the smoothing factors of different line smoothers. Figure 4.5 shows the
following:

• x-line smoother is effective except at c ≈ 0, or at (c, θ) ≈ (1, π
4
), (1,−π

4
).

• y-line smoother is effective except at c ≈ 1, or at (c, θ) ≈ (0, π
4
), (0,−π

4
).

• First-diagonal line smoother (sweeping from top left to bottom right) is ineffective
at c ≈ 0 or c ≈ 1, but effective at (c, θ) ≈ (0,−π

4
), (1, π

4
).

• Second-diagonal line smoother (sweeping from top right to bottom left) is ineffective
at c ≈ 0 or c ≈ 1, but effective at (c, θ) ≈ (0, π

4
), (1,−π

4
).

Four-direction alternating line smoother combines these four smoothers together so that
the ineffective part of each individual smoother can be compensated by the others. Figure
4.5 shows that the smoothing factor of the combined smoother is bounded by 0.5 for any
(c, θ) ∈ [0, 1]×

[
−π

4
, π

4

)
. Hence, the combined smoother has a good smoothing property.
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4.5 Numerical Results

In this section, we demonstrate the mesh-independent convergence rates of the proposed
multigrid methods for solving the discretized system (3.25)-(3.26) that arises from the
Dirichlet problem (3.1)-(3.3).

4.5.1 Multigrid for standard 7-point stencil discretization

In Examples 4.1–4.2, the standard 7-point stencil discretization can be applied monotoni-
cally on the entire computational domain. We compare the performance of two families of
multigrid methods - global linearization methods and FAS. For global linearization meth-
ods, the residual tolerances for the outer policy iteration and the inner multigrid V-cycle
are 10−6 and 10−7, respectively. The Gauss-Seidel smoother, the standard full coarsen-
ing and the 7-point restriction and interpolation described in Section 4.2 are applied. The
Petrov-Galerkin coarse grid operators are used to construct coarse grid problems. For FAS,
the multigrid components are the same as the global linearization methods, except that we
use the nonlinear version of the smoothers and direct discretization coarse grid operators.

Example 4.1. We consider again Example 3.1. This example is isotropic, so it suffices to
apply the less expensive pointwise Gauss-Seidel smoother. First we show the convergence
rates of the global linearization method; see the first and second columns of Table 4.1. To
understand the reported numbers, we take the grid size of 32 × 32 as an example. The
numbers “8, 7, 2” mean that it takes 3 policy iterations to converge to the solution of
the nonlinear problem, where the 1st policy iteration takes 8 V-cycles to converge to the
solution of the linearized problem, the 2nd policy iteration takes 7 V-cycles, and the 3rd
policy iteration takes 2 V-cycles. The table shows that the number of multigrid V-cycles
within each policy iteration ranges from 2-9. The total number of multigrid V-cycles for
solving the nonlinear problem is 17-19, independent of mesh size. As a side remark, we use

nx × ny
Global linearization method FAS

Number of multigrid V-cycles
within each policy iteration

Total number of
multigrid V-cycles

Total number of
multigrid V-cycles

32× 32 8, 7, 2 17 8
64× 64 9, 7, 3 19 8

128× 128 9, 7, 3 19 9
256× 256 9, 7, 3 19 9

Table 4.1: Convergence of the global linearization method and the FAS for Example 4.1.
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the solution of the k-th policy iteration, u
(k)
h , as the initial guess of the multigrid V-cycles

at the (k + 1)-th policy iteration. Hence, as policy iteration converges, the initial guess of
multigrid V-cycles becomes more and more precise, and the number of multigrid V-cycles
within each policy iteration decreases.

We compare the global linearization method with the FAS iteration. The last column
of Table 4.1 shows that the total number of the FAS iterations is 8-9 and is independent of
mesh size. We note that for both the global linearization method and the FAS iteration,
the computational cost per multigrid iteration is approximately the same. Hence, the FAS
iteration is less expensive and converges faster.

Example 4.2. We consider multigrid method for solving (3.1)-(3.3), where

f(x, y) = 1 + 24(x+ y)2, g(x, y) =
1

2
(x2 + y2) + (x+ y)4, Ω = [−1, 1]× [−1, 1].

The exact solution is u(x, y) = 1
2
(x2 + y2) + (x+ y)4. Table 4.2 reports the convergence of

the global linearization method using alternating line smoother and pointwise smoother.
The multigrid V-cycle with the alternating line smoother converges at 20-32 iterations
in total, which is approximately independent of mesh size. Conversely, the multigrid V-
cycle with a pointwise smoother converges with more than 70 iterations, and the number

nx × ny
MG with alternating line smoother MG with pointwise smoother

Number of multigrid V-cycles
within each policy iteration

Total number of
multigrid V-cycles

Total number of
multigrid V-cycles

32× 32 5,5,5,3,2 20 73
64× 64 5,6,6,4,2,1 24 94

128× 128 6,6,7,5,3,1 28 129
256× 256 7,7,7,6,3,1 32 161

Table 4.2: Convergence of the global linearization method for Example 4.2 using alternat-
ing line smoother and pointwise smoother.

nx × ny Global linearization method FAS
32× 32 20 5
64× 64 24 6

128× 128 28 6
256× 256 32 6

Table 4.3: Total number of multigrid V-cycles of the global linearization method and the
FAS for Example 4.2 using the alternating line smoother.
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of iterations is more than doubled as nx increases from 32 to 256. This is because the
example is anisotropic, and a pointwise smoother is not efficient in smoothing errors along
weakly connected directions.

Similar to Example 4.1, we also compare the total numbers of multigrid V-cycles given
by the global linearization method with the numbers given by the FAS. The alternating
line smoother is used. Table 4.3 shows that the global linearization method converges in
20-32 iterations, whereas the FAS converges in 5-6 iterations, which is significantly faster.

4.5.2 Multigrid for mixed discretization with wide stencils

In this section, we illustrate the multigrid convergence rates for the mixed discretization.
The examples are solved by the global linearization methods introduced in Section 4.3.
More specifically, we apply four-direction alternating line smoother. At standard 7-point
stencil points, we apply the standard full coarsening and the 7-point restriction and inter-
polation. At wide stencil points, we set them as coarse grid points, and use injection as
the restriction. The Petrov-Galerkin coarse grid operators are used for constructing coarse
grid problems.

Example 4.3. We consider solving the linearized HJB equation (4.3), where f and g
are the same as in Example 3.1. Consider applying the wide stencil at the origin and
the standard 5-point stencil discretization everywhere else. We compare the performance
of the proposed multigrid method (Scheme I), the standard multigrid with four-direction
alternating line smoother (Scheme II), and the standard multigrid with pointwise Gauss-
Seidel smoother (Scheme III). For this example, the only difference between Schemes I and
II is that injection is applied at the wide stencil point for Scheme I, while full-weighting
restriction is applied at the same point for Scheme II. Table 4.4 shows that Scheme III
has poor convergence. Scheme II converges in less than 20 iterations, but the convergence
rate grows as nx increases. Our proposed Scheme I converges in 5-6 iterations, and the
convergence rate is independent of mesh size.

Figure 4.6 explains the convergence observed in Table 4.4 by examining the evolution
of errors during one two-grid cycle. Only the cross sections along the x-axis are plotted.
Start with the same initial error (green lines) for both the proposed and the standard
schemes. The pre-smoothed error (blue lines) is smooth everywhere, except that a kink
appears at the wide stencil point x = 0. Figure 4.6(i) uses the proposed algorithm, where
injection is applied at the wide stencil point x = 0. The resulting coarse grid problem
yields an accurate coarse grid estimated error, i.e., the red line matches the blue line
well. Such accurate coarse grid estimate eliminates the error effectively, and yields a small
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nx × ny
Scheme I:

Proposed MG
Scheme II: Standard MG with

alternating line smoother
Scheme III: Standard MG
with pointwise smoother

32× 32 5 7 23
64× 64 5 9 46

128× 128 6 12 198
256× 256 6 17 more than 200

Table 4.4: Convergence of linear multigrid V-cycles for Example 4.3.
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Figure 4.6: Cross sections of errors along the x-axis. (i) Proposed algorithm, where
injection is used at the wide stencil point x = 0. (ii) Standard algorithm, where full-
weighting restriction is used.

post-corrected error (black line). Conversely, under the same smoother, if the standard
full-weighting is used at the wide stencil, then Figure 4.6(ii) shows that the coarse grid
estimated error (red line) is no longer a good approximation of the pre-smoothed error
(blue line).

Example 4.4. We use the proposed global linearization method to solve (3.1)-(3.3), where

f(x, y) = max

(
1− 0.15√

x2 + y2
, 0

)
, g(x, y) =

1

2
(
√
x2 + y2 − 0.15)2

on Ω = [−0.5, 0.5]×[−0.5, 0.5]. The viscosity solution is given by u(x, y) = 1
2

max(
√
x2 + y2−

0.15, 0)2. This is a C1 function where the solution is not smooth at the ring x2 +y2 = 0.152.
Semi-Lagrangian wide stencils are applied near the ring.

Table 4.5 reports the convergence of the global linearization method. The number of
outer policy iterations increases from 5 to 10 as nx increases from 32 to 256. Such increase
of outer iteration is related to nonlinearity and the singularity on the ring.
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nx × ny
Number of multigrid V-cycles
within each policy iteration

Average number of multigrid
V-cycles per policy iteration

32× 32 4,5,3,2,1 3.0
64× 64 4,6,3,2,1 3.2

128× 128 5,6,4,3,3,2 3.8
256× 256 6,6,6,6,5,4,3,3,2,1 4.2

Table 4.5: Convergence of the global linearization multigrid method for Example 4.4.

nx × ny
Number of multigrid V-cycles
within each policy iteration

Average number of multigrid
V-cycles per policy iteration

32× 32 4,5,5,4,4,4,2 4.0
64× 64 5,6,6,7,5,4,4,3,2,1 4.3

128× 128 5,7,8,7,7,6,5,5,4,2,1,1 4.8
256× 256 6,7,8,8,8,9,8,7,6,5,5,4,4,4,2,1,1 5.5

Table 4.6: Convergence of the global linearization multigrid method for Example 4.5.

To compare the number of multigrid V-cycles across different mesh sizes fairly, we
compute the average number of multigrid V-cycles per policy iteration. Table 4.5 shows
that the average V-cycle count is approximately a constant ranging from 3.0 to 4.2 as nx
increases from 32 to 256. Hence, the inner multigrid V-cycle for solving linearized systems
is nearly mesh-independent.

Example 4.5. We use the proposed global linearization method to solve Example 3.5.
Table 4.6 shows that the average number of multigrid V-cycles per policy iteration is
approximately a constant ranging from 4.0 to 5.5 as nx increases from 32 to 256, which is
approximately mesh-independent.

4.6 Conclusion

We propose multigrid methods for solving the mixed discretization of the Monge-Ampère
equation. We investigate two scenarios. One scenario is when the standard 7-point stencil
discretization is applied on the entire computational domain. FAS gives the optimal mesh-
independent convergence. The other scenario is the general mixed discretization. Global
linearization method is used. We set all wide stencil points as coarse grid points and
propose injection of residuals at wide stencil points. The resulting multigrid methods
converge at mesh-independent rates.
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Chapter 5

Numerical Method for HJB
Formulation of Image Registration
Model

5.1 Introduction

In Chapters 3-4, we have studied the HJB formulation of the Monge-Ampère equation that
is a simplified version of an image registration problem. In this chapter, we return to the
image registration problem, and propose a numerical scheme for its HJB formulation. Op-
timal mass transport image registration model (also known as Monge-Kantorovich
image registration model) [85, 86, 71, 137, 43, 123] is a non-rigid image registration method.
The model treats two images R and T as two mass densities. The goal is to find a map-
ping which transforms one mass density T to the other R with mass conservation. Such a
transformation is non-unique. By defining a transformation-dependent cost function and
minimizing it, we can obtain a unique optimal1 transformation. This optimal transfor-
mation has desirable properties. For instance, it is usually diffeomorphic and does not
introduce foldings and crossings.

It turns out this image registration model gives rise to a Monge-Ampère equation,
where the left hand side is the determinant of the Hessian det(D2u), and the right hand
side depends on the solution u. The Monge-Ampère equation may have multiple weak

1Although the optimality of “optimal transformation” may have various meanings, in this chapter,
unless otherwise specified, optimality refers to the minimization of the cost function in the mass transport.
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solutions, among which there exists a unique globally convex solution, called the scalar
potential. The gradient of this solution yields the optimal transformation between R and
T [85, 102].

Numerical methods have been proposed for the optimal mass transport model. The first
numerical approach, proposed in [85] and [86], is not based on the Monge-Ampère equation.
It involves many intermediate steps and requires solving multiple nonlinear PDEs. The
nonlinear PDEs in [85] and [86] may give multiple solutions, which correspond to multiple
transformations between R and T . To the best of our knowledge, it is unclear whether the
numerical scheme in [85] and [86] gives the optimal transformation.

Some authors have investigated numerical schemes for the Monge-Ampère equation
arising from the image registration model [71, 137, 43, 36, 37]. In [71], the author proposes
a finite difference scheme for the Monge-Ampère equation, and proves that the resulting
transformation between R and T is optimal. However, in order to guarantee the optimality,
the computational cost per pixel must increase to infinity as the image size increases [61],
which is not practical for large images. Other numerical schemes based on the Monge-
Ampère equation can be found in [137, 43, 36, 37]. Whether the transformations given in
[137, 43, 36, 37] are optimal remains an open question.

Another issue in the existing literature is the choice of boundary conditions. We note
that the transformation on the boundary of R and T cannot be determined from the mass
transport model and thus needs to be specified by model users. Since the transformation
on the boundary influences the transformation inside the images, it is crucial to specify
an appropriate boundary condition, such that the resulting transformation reflects the
physical movement of the object inside R and T . For instance, if the object inside R and
T is related by a translation, then the resulting transformation should be able to recover
the underlying translation.

A common boundary condition considered in the literature, such as in [71], is a Neu-
mann boundary condition. Alternatively, the authors in [137] use a periodic boundary
condition. However, when R and T are related by a translation, or by a combination of a
translation and a non-rigid deformation, the resulting transformation under either of these
boundary conditions may not be equal to the underlying transformation. To the best of our
knowledge, no existing methods using the optimal mass transport model have registered
translated images.

In this chapter, we develop a numerical scheme for the Monge-Ampère equation arising
from the optimal mass transport image registration model. Our main contributions are
the following:
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• We propose a new boundary condition where the gradient of the solution is peri-
odic2. In contrast to the commonly used Neumann boundary condition, our periodic
boundary condition can recover the underlying transformation for the images that
are related by a translation or by a combination of a translation and a non-rigid
deformation.

• We ensure that our numerical scheme yields the optimal transformation between R
and T . In order to achieve this, we follow Chapter 3 and design a finite difference
scheme based on the HJB formulation of the Monge-Ampère equation. As proved
in Chapter 3, our numerical solution is guaranteed to converge to the globally convex
viscosity solution. Notably, the globally convex solution corresponds to the opti-
mal transformation between R and T [71, 72]. Hence, the resulting transformation
computed by our numerical scheme is the optimal one.

• In addition, our numerical scheme can automatically decompose the transformation
between R and T into translation and non-rigid deformation components. This extra
information is useful in visualizing and understanding the underlying transformation.

This chapter is organized as follows. In Section 5.2, we describe the image registration
model based on optimal mass transport. In particular, we have a detailed discussion of
boundary conditions. Section 5.3 describes our finite difference discretization based on the
HJB formulation. In addition, we propose a modified Levenberg-Marquardt algorithm to
solve the discretized system. Experimental results in Section 5.4 show that our numerical
scheme gives the optimal transformations, and the results under our periodic boundary
condition outperform those under the commonly used Neumann boundary condition. Sec-
tion 5.5 concludes the chapter.

5.2 Optimal Mass Transport Image Registration Model

In this chapter, we use the following notation:

T Template image.
R Reference image.
ΩT Domain of template image. For simplicity, assume that ΩT = [0, 1]× [0, 1].
ΩR Domain of reference image. For simplicity, assume that ΩR = [0, 1]× [0, 1].

2This is different from the previously mentioned [137] where periodicity is imposed on the solution
itself.
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ρT Intensity of template image T on its domain ΩT ⊂ R2. Must be positive and bounded.
ρR Intensity of reference image R on its domain ΩR ⊂ R2. Must be positive and bounded.
φ Coordinate transformation φ : ΩR → ΩT .
φ∗ Optimal coordinate transformation.
Tφ Transformed image under the transformation φ.
ρTφ Intensity of transformed image Tφ on domain ΩR.
u Convex scalar potential. u ∈ C(ΩR).

5.2.1 Optimal mass transport image registration model

Consider registering two images T and R. If we view them as two piles of soil with the
densities ρT and ρR, then an image registration problem can be interpreted as a mass
transport problem [85, 86, 123]. That is, we consider two piles of soil ρT and ρR with the
same total mass: ∫

x̂∈ΩT
ρT (x̂)d2x̂ =

∫
x∈ΩR

ρR(x)d2x. (5.1)

Our goal is to find a coordinate transformation φ : ΩR → ΩT , or x̂ = φ(x) ∈ R2, such that
ρT is transformed to ρR while the total mass is conserved:∫

x∈ΩR
ρT (φ(x))d2φ(x) =

∫
x∈ΩR

ρR(x)d2x, (5.2)

or equivalently,
ρT (φ(x)) det[Dφ(x)] = ρR(x), (5.3)

where Dφ(x) ∈ R2×2 is the Jacobian of the transformation φ(x).

Under the transformation φ, define the intensity of the transformed image Tφ as

ρTφ(x) ≡ ρT (φ(x)) det[Dφ(x)]. (5.4)

Then the transformed template image is equal to the reference image:

ρTφ(x) = ρR(x). (5.5)

As a result, the mass transport model can transform any template image T to any reference
image R [123].

According to (5.4), the mass transport image registration consists of two components.
One component is the movement of pixels from x to φ(x), which transforms the image
to ρT (φ(x)). The other component, called the morphing effect, changes the intensity at
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each moved pixel φ(x) by a factor det[Dφ(x)], or more specifically, changes the intensity
from ρT (φ(x)) to det[Dφ(x)]ρT (φ(x)). We note that the morphing effect is an essential
part of the mass transport model for two reasons. One is that if pixels can be treated as
masses, then after a movement of masses, the accumulation/dissipation of mass in certain
regions will inevitably cause an increase/decrease of the intensity. The other reason is that,
although the movement of pixels alone makes T close to R, it is the morphing effect that
further makes Tφ equal R.

The mass transport registration (5.4) is ill-posed. More specifically, there exist multiple
transformations that move the soil ρT to ρR. Among all possible transformations, one of
them requires the “least cost”, which is desirable. Following [85, 86, 19], we aim to find
the optimal transformation φ∗(x) that minimizes the following cost function:

φ∗(x) ≡ arg min
φ(x)

∫
R2

‖x− φ(x)‖2ρR(x)d2x, (5.6)

which is the weighted least squares displacement of the mass. In essence, (5.6) regularizes
the mass transport registration and makes the transformation between ρT and ρR unique.

5.2.2 Monge-Ampère equation

It has been proved in [102] that the optimal transformation that minimizes the cost function
(5.6) can be written as

φ∗(x) = ∇u(x), (5.7)

where u ∈ C(ΩR) is a strictly convex scalar potential field, and its gradient ∇u generates
the optimal transformation φ∗. Substituting (5.7) into (5.3), we have

det[D2u(x)] =
ρR(x)

ρT (∇u(x))
, (5.8)

u is strictly convex. (5.9)

Equations (5.8)-(5.9) is a Monge-Ampère equation. We note that (5.8) is the same as
(3.1), except that the right hand side contains the gradient of the solution ∇u.

Due to the nonlinearity, the equation (5.8) itself, without the convexity constraint
(5.9), can have multiple solutions [61, 21]. However, the solution of (5.8) that satisfies the
convexity constraint (5.9) is unique [71], which we will denote as u∗ whenever we need to
distinguish it from the other solutions. We emphasize that the convexity of u∗ is equivalent
to the optimality of the transformation φ∗ = ∇u∗ [85, 71].

The convexity of u∗ implies two desirable properties for the optimal transformation φ∗:
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• φ∗ does not introduce foldings or invert the order of pixels.

• φ∗ is diffeomorphic under the assumption that ρT , ρR are α-Hölder continuous and
φ∗ is bijective.

Here we provide an explanation (rather than a proof) of these two properties. Regarding
the first property, take one-dimensional images as an example. The solution u∗ being
convex means φ∗x = u∗xx > 0 on the entire computational domain. Then for any x1 < x2,
their corresponding new coordinates satisfy φ∗(x1) < φ∗(x2). This implies no foldings or
inversion of pixel order.

Regarding the second property, since u∗ is strictly convex, the Jacobian of the trans-
formation Dφ∗ = D2u∗ is positive definite and non-singular on the entire computational
domain. Hence, φ∗ is invertible. Meanwhile, if ρT , ρR are α-Hölder continuous, then
u∗ ∈ C2(Ω)[71, 39], which implies that φ∗ = ∇u∗ is differentiable. As a result, φ∗ is
diffeomorphic.

5.2.3 Boundary conditions

Up to this point, the image registration model is still incomplete. A boundary condition
for the Monge-Ampère equation (5.8)-(5.9) cannot be derived from the mass transport
formulation, and is yet to be specified by model users. A natural attempt is to specify
a Dirichlet boundary condition. However, in the image registration context, u is a scalar
potential, and it is not clear what value of scalar potential to specify on the boundary.

Alternatively, one can specify the value of the transformation φ∗ on the boundary. For
instance, [71] assumes that

for any x ∈ ∂ΩR, the new coordinate φ∗(x) ∈ ∂ΩT ,

where ∂ΩR and ∂ΩT are the boundaries of ΩR and ΩT , respectively. This means that any
pixels that are on the boundary of R must stay on the boundary of T under the mapping.
Since φ∗ = ∇u, and we have assumed that ΩR = ΩT = [0, 1] × [0, 1], this boundary
condition can be rewritten as

ux|x=0 = 0, ux|x=1 = 1, uy|y=0 = 0, uy|y=1 = 1. (5.10)

Equation (5.10) is a Neumann boundary condition.

However, under the Neumann boundary condition (5.10), the quality of the resulting
transformation φ∗ may not be good. More specifically, letR be a translation of T ; see Figure
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5.1(i)-(ii). We expect the resulting φ∗ to equal the underlying translation, as shown in
Figure 5.1(iii). However, Figure 5.1(iv) shows that in numerical experiments, the resulting
φ∗ is not a translation. The reason is that under a translation, the boundary of ΩR =
[0, 1]× [0, 1] cannot be the boundary of ΩT = [0, 1]× [0, 1], which violates the assumption
of (5.10). More generally, when R and T are related by a combination of a translation and
a non-rigid deformation, the resulting φ∗ under the Neumann boundary condition may not
reflect the underlying transformation, which will be shown in Section 5.4.

It seems that specifying non-zero values in (5.10) might recover the underlying trans-
formation between T and R. However, feeding correct non-zero values to (5.10) requires
knowing in advance what the underlying transformation is, and normally we do not know
the answer (this is exactly what image registration tries to find).

We remark that [137] considers another boundary condition “u(x) − 1
2
|x|2 is periodic

on ∂Ω”. Similar to (5.10), this boundary condition does not recover the underlying trans-
formations mentioned in the previous paragraphs.

Our goal is to impose an appropriate boundary condition that will recover the under-
lying transformation when R and T are related by a translation or by a combination of a
translation and a non-rigid deformation. We note that the backgrounds of many images,
especially medical images, display only one single color (black or white). Such images can
be viewed as periodic density functions, if the domain of the images are extended to R2.
Motivated by this fact and a brief discussion in [85] and [86], we assume that

the displacement of a pixel, φ∗(x)− x, is periodic on ∂Ω.

(i) (ii) (iii) (iv)

Figure 5.1: An example of image registration using the Neumann boundary condition. (i)
Template image T . (ii) Reference image R. (iii) Underlying transformation between T
and R, which is a pure translation. (iv) Transformation given by the Neumann boundary
condition.
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To take one step further, we substitute φ∗ = ∇u and obtain

(ux − x)x=0 = (ux − x)x=1, (ux − x)y=0 = (ux − x)y=1,

(uy − y)x=0 = (uy − y)x=1, (uy − y)y=0 = (uy − y)y=1.
(5.11)

Equation (5.11) is a periodic boundary condition with respect to the gradient of u. To
the best of our knowledge, this is the first investigation of gradient-like periodic boundary
condition in the context of solving the Monge-Ampère equation for the image registration
model.

5.3 Numerical Scheme

In Chapter 3, we have proposed a numerical scheme for a Monge-Ampère equation where
the discrete solution is guaranteed to converge to the globally convex viscosity solution. For
image registration, the globally convex solution corresponds to the optimal transformation.
Hence, it is desirable to extend the numerical scheme proposed in Chapter 3 to the image
registration problem (5.7)-(5.9). More specifically, our approach is:

• Step 1: converting the Monge-Ampère equation (5.8)-(5.9) into an equivalent HJB
equation;

• Step 2: performing a mixed standard 7-point stencil and wide stencil finite difference
discretization on the equivalent HJB equation; and

• Step 3: solving the discretized system.

Steps 1-2 follow Chapter 3. However, Step 3 requires significant modifications. The reason
is that, in Chapter 3, the right hand side of (3.1) depends only on x and the boundary
condition is Dirichlet; however, for the image registration problem, the right hand side of
(5.8) depends on both x and ∇u(x), and the boundary condition is periodic in ∇u. Next
we describe the three steps of our numerical scheme.

5.3.1 HJB formulation

Start with Corollary 3.1. We replace f(x) in the differential operator (3.13) by ρR(x)
ρT (∇u(x))

.

This converts the Monge-Ampère equation (5.8)-(5.9) into an equivalent HJB equation:
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Corollary 5.1 (HJB formulation). Let u ∈ C2(ΩR) be convex, and let ρT ∈ C(ΩT ) and
ρR ∈ C(ΩR) be two positive functions. Then the Monge-Ampère equation (5.8)-(5.9) is
equivalent to the following HJB equation

L̂c∗(x),θ∗(x) u(x) = 0, (5.12)

subject to (c∗(x), θ∗(x)) ≡ arg max
(c(x),θ(x))∈Γ

L̂c(x),θ(x) u(x), (5.13)

where the differential operator is

L̂c(x),θ(x) u(x) ≡ −σ11(c(x), θ(x))uxx(x)− 2σ12(c(x), θ(x))uxy(x)

−σ22(c(x), θ(x))uyy(x) + 2

√
c(x)(1− c(x))

ρR(x)

ρT (∇u(x))
,

(5.14)

and (c(x), θ(x)), Γ, σ11, σ22 and σ12 are defined in Corollary 3.1.

We remark that unlike the differential operator (3.13), the revised differential operator

(5.14) is no longer linear, because the revised term 2
√
c(x)(1− c(x)) ρR(x)

ρT (∇u(x))
depends on

∇u.

5.3.2 Finite difference discretization

Next, we discretize the HJB equation (5.12)-(5.14) using the mixed discretization described
in Section 3.4. Regarding the discretization of the gradient term ρT (ux(xi,j), uy(xi,j)),
we consider using the standard upwinding scheme [152], or more generally, the Godunov
scheme [79, 152, 128], which is monotone.

A complete finite difference discretization of (5.12)-(5.14) gives rise to a discrete system.
Following Section 3.4.3, we can write the discretized system in the following matrix form:

Ah(c
∗
h, θ
∗
h)uh = bh(c

∗
h, θ
∗
h; uh), (5.15)

subject to (c∗h, θ
∗
h) ≡ arg max

(ch,θh)∈Γ

{Ah(ch, θh)uh − bh(ch, θh; uh)} . (5.16)

Compared to (3.25)-(3.26), the major difference in (5.15)-(5.16) is that the right hand side
vector bh not only depends on the control (ch, θh), but also depends on the solution uh.

This is because bh comes from the discretization of 2
√
c(xi,j)(1− c(xi,j)) ρR(xi,j)

ρT (∇u(xi,j))
, which

depends on ∇u. As a result, (5.15) is not a linear system.
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5.3.3 Solving the discretized system

Next, we solve the nonlinear discretized system (5.15)-(5.16). The nonlinearity of (5.15)
poses difficulty in using policy iteration. Instead, we consider using more general iterative
methods for solving (5.15)-(5.16).

To motivate a general iterative method, we denote the nonlinear discretized system as
Nh(uh) = 0, where

Nh(uh) ≡ max
(ch,θh)∈Γ

{Ah(ch, θh)uh − bh(ch, θh; uh)} . (5.17)

Denote the approximate solution at the k-th iteration as u
(k)
h . Denote the corresponding

optimal control as

(c
(k)
h , θ

(k)
h ) ≡ arg max

(ch,θh)∈Γ

{
Ah(ch, θh)u

(k)
h − bh(ch, θh; u

(k)
h )
}
. (5.18)

Then the k-th nonlinear discrete operator can be written as

N (k)
h ≡ Nh(u(k)

h ) = Ah(c
(k)
h , θ

(k)
h )u

(k)
h − bh(c

(k)
h , θ

(k)
h ; u

(k)
h ). (5.19)

Furthermore, we obtain the Jacobian matrix of the nonlinear discrete operator as

J
(k)
h ≡ Jh(u

(k)
h ) =

dN (k)
h

du
(k)
h

=
∂N (k)

h

∂u
(k)
h

+
∂N (k)

h

∂c
(k)
h

∂c
(k)
h

∂u
(k)
h

+
∂N (k)

h

∂θ
(k)
h

∂θ
(k)
h

∂u
(k)
h

. (5.20)

Since (c
(k)
h , θ

(k)
h ) are the optimal control with respect to u

(k)
h , which implies that

∂N (k)
h

∂c
(k)
h

=

∂N (k)
h

∂θ
(k)
h

= 0, we can simplify the Jacobian as

J
(k)
h =

∂N (k)
h

∂u
(k)
h

= Ah(c
(k)
h , θ

(k)
h )− δubh(c(k)

h , θ
(k)
h ;u

(k)
h ), (5.21)

where δubh(c
(k)
h , θ

(k)
h ;u

(k)
h ) represents the Fréchet derivative of bh with respect to the vector

u
(k)
h , given the fixed control (c

(k)
h , θ

(k)
h ).

A standard iterative method for solving (5.15)-(5.16) is to apply Newton’s method,
which reads

e
(k)
h ≡ −(J

(k)
h )−1N (k)

h , i.e., solve J
(k)
h e

(k)
h = −N (k)

h for e
(k)
h ,

u
(k+1)
h = u

(k)
h + e

(k)
h .

(5.22)
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It turns out that Newton’s method fails to converge, since the Jacobian is singular.

To explain the reason behind the singular Jacobian, we note that the differential op-
erator −σ11uxx − 2σ12uxy − σ22uyy under the periodic boundary condition (5.11) has two
linearly-independent zero kernels ū1(x, y) ≡ x and ū2(x, y) ≡ y, where ∇ū1 = (1, 0)T and
∇ū2 = (0, 1)T correspond to the translations along x and y directions respectively. These
two translation kernels are desirable, since they allow translation to be a solution of the
image registration problem when R and T are related by a translation. Consequentially,
on the discrete level, the matrix Ah inherits two zero kernels ū1

h and ū2
h, where

(ū1
h)〈i,j〉 ≡ xi, (ū2

h)〈i,j〉 ≡ yj, (5.23)

and where 〈i, j〉 ≡ ny(i − 1) + j is the lexicographical index of the vectors. As suggested
by (5.21), the Jacobian Jh is a perturbation of Ah by the Fréchet derivative of bh. It turns
out that Jh also has two zero kernels, which are small perturbation of ū1

h and ū2
h. As a

result, the Jacobian is singular.

In the event of a singular Jacobian, one may consider replacing the inverse of the
Jacobian in (5.22) by its pseudo-inverse. Then the iteration becomes

Solve (J
(k)
h )TJ

(k)
h e

(k)
h = −(J

(k)
h )TN (k)

h for e
(k)
h ,

u
(k+1)
h = u

(k)
h + e

(k)
h .

(5.24)

More generally, we may consider introducing a regularizer:

Solve [λI + (J
(k)
h )TJ

(k)
h ]e

(k)
h = −(J

(k)
h )TN (k) for e

(k)
h ,

u
(k+1)
h = u

(k)
h + e

(k)
h ,

(5.25)

where λ is a non-negative number specified by users. This indeed leads to a known algo-
rithm, called the Levenberg-Marquardt algorithm [114, 120].

One advantage of using the Levenberg-Marquardt algorithm (5.25) is that convergence
of this iterative solver has been proved [120]. In practice, the parameter λ is changed
dynamically to make the algorithm not only convergent, but also more efficient. More
specifically, when the approximate solution u

(k)
h is not close to the exact solution, λ can

be increased, such that the algorithm behaves like a gradient descent and is less likely to
diverge. Conversely, when u

(k)
h is close to the exact solution, λ can be decreased, such that

the algorithm behaves like Newton’s method and converges rapidly [120]. In particular,
the Levenberg-Marquardt algorithm is able to converge even when the Jacobian becomes
singular.
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Despite the fact that the Levenberg-Marquardt algorithm (5.25) converges, it may not
converge to the solution of the discretized system (5.15)-(5.16). To explain this, we note
that in practice, the algorithm is essentially solving the following nonlinear least squares
problem

uh = arg min
wh

‖Nh(wh)‖2. (5.26)

Its global minimum, which satisfies Nh(uh) = 0, is the solution of (5.15)-(5.16). However,
it is known that the Levenberg-Marquardt algorithm may converge to a local minimum
rather than the global minimum.

The local minimum issue is observed in image registration. For instance, when the
two images are related by a translation, the algorithm may be stuck in a local minimum
solution that does not correspond to the underlying translation. To be more precise, define
the “translation components” of a vector uh as the projections of uh to the two translation
kernels ū1

h and ū2
h. An initial guess u

(0)
h and the exact solution uh usually have different

translation components. The Levenberg-Marquardt algorithm may get stuck in a local
minimum before it can fully correct the translation components of u

(0)
h to the translation

components of uh.

In order to address the local minimum issue, we add an additional step before each
Levenberg-Marquardt iteration. In this additional step, we explicitly correct the translation
components of the approximate solution u

(k)
h . The amount of correction is added such that

the corrected solution, denoted as u
(k+ 1

2
)

h , minimizes the residual Nh(uh). This gives rise to
Algorithm 5.1, which is our final algorithm for solving the discretized system (5.15)-(5.16).

Algorithm 5.1 can be split into two parts: (i) corrections of translation kernels (Lines

4–7), and (ii) the primary nonlinear solver (Lines 8–12). We note that (ε
(k)
1 , ε

(k)
2 ) is the

amount of corrected translation components along the x and y directions. We can use
simple search to solve Line 5. That is, we discretize [−1

2
, 1

2
]× [−1

2
, 1

2
] into a discrete set and

then directly search for the minimum on the discrete set. Also, whenever (ε
(k)
1 , ε

(k)
2 ) = (0, 0)

at the k-th iteration, which means that the correction for the translation components of
the approximate solution is completed, then Lines 4–7 can be skipped for future iterations.
It turns out that Lines 4–7 only need to be executed for very few iterations (typically,
around 1-3 iterations in our experiments).

An additional benefit of Algorithm 5.1 is that it decomposes the resulting transforma-
tion φ∗ = ∇u into a pure translation component and a non-rigid deformation component.
The pure translation component is given by the accumulation of the corrections of the
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Algorithm 5.1 Modified Levenberg-Marquardt algorithm for solving (5.15)-(5.16)

1: Start with an initial guess u
(0)
h = 1

2
(x2 + y2).

2: Set (ε
(−1)
1 , ε

(−1)
2 ) = (∞,∞).

3: for k = 0, 1, ... until convergence do
4: if (ε

(k−1)
1 , ε

(k−1)
2 ) 6= (0, 0) then

5: (ε
(k)
1 , ε

(k)
2 ) = arg min

(ε1,ε2)∈[− 1
2
, 1
2

]×[− 1
2
, 1
2

]

‖Nh(u(k)
h + ε1ū

1
h + ε2ū

2
h)‖.

6: u
(k+ 1

2
)

h = u
(k)
h + ε

(k)
1 ū1

h + ε
(k)
2 ū2

h.
7: end if
8: Solve the optimization (5.18) for (c(k+ 1

2
), θ(k+ 1

2
)) based on Section 3.5.

9: Compute N (k+ 1
2

)

h ≡ Nh(u
(k+ 1

2
)

h ) by (5.19).

10: Compute J
(k+ 1

2
)

h ≡ Jh(u
(k+ 1
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translation kernels, or more precisely, the accumulation of (ε
(k)
1 , ε

(k)
2 ):

φtran ≡
∑
k≥0

(ε
(k)
1 , ε

(k)
2 )T . (5.27)

Subtracting φtran from the resulting transformation φ∗ yields the remaining non-rigid de-
formation component.

Eventually, to link the theory with the experiments, we summarize the complete im-
plementation of our numerical scheme in Algorithm 5.2.

5.4 Numerical Results

In this section, we present experimental results for image registration using our proposed
Algorithm 5.2. One criteria of evaluating the quality of registration is the quality of
the resulting transformation φ∗. We expect φ∗ to reflect the underlying transformation
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Algorithm 5.2 Numerical solution of image registration problem (5.7)-(5.9)

1: Normalize ρR and ρT to ‖ρR‖ = ‖ρT‖ = 1, which satisfies (5.1).
2: Discretize (5.8)-(5.9) as described in Sections 5.3.1–5.3.2, yielding the discrete system

(5.15)-(5.16).
3: Solve (5.15)-(5.16) by Algorithm 5.1, yielding the convex scalar potential u.
4: Compute the transformation φ∗ = ∇u.
5: Decompose the transformation φ∗ into the translation component φtran and the non-

rigid deformation component.
6: Compute the transformed image (5.4).

between the two images T and R, especially when they are related by a translation, or by
a combination of a translation and a non-rigid deformation. We will evaluate the resulting
transformations qualitatively in Sections 5.4.1–5.4.3, and quantitatively in Section 5.4.4.

An additional criteria to consider is the morphing effect, which is the change of intensity
at each moved pixel. We refer readers to Section 5.2.1 for a description of the morphing
effect. Although the morphing effect is an essential component of the mass transport reg-
istration, in some image registration applications, where the physical object inside the two
images is (nearly) incompressible, the morphing effect may be undesirable [123]. Consider-
ing this, it is good to suppress the morphing effect under the framework of mass transport.
We will see that this can be achieved by imposing our periodic boundary condition (5.11).

To quantify the morphing effect, we define the morphing magnitude:

µ(x) ≡ log10 det[Dφ∗(x)], (5.28)

which is the (logarithmic) ratio of the intensity before and after morphing at a moved
pixel x→ φ∗(x). We will visualize the morphing magnitude µ(x) using color scale in the
deformed mesh images in Figures 5.3–5.9. We note that µ(x) = 0, i.e., white color at a
local pixel x, means no morphing effect; the larger |µ(x)| is, i.e., the more intense the
red/blue color is, the more severe the morphing effect is. Table 5.1 summarizes how to
interpret the morphing magnitude. Note that “area of pixel” is represented by the area of
each tiny mesh element in the deformed mesh images.

5.4.1 Optimal versus non-optimal transformations

Example 5.1 (Figure 5.2). In this example, we assume that the template and reference
images are the same constant image, where ρT = ρR = 1 on the entire domain Ω =
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morphing magnitude color scale net flow of masses area of pixel intensity of pixel

µ(x) = 0 white zero invariant invariant

µ(x) > 0 red inflow compressed increased

µ(x) < 0 blue outflow expanded decreased

Table 5.1: Interpretation of the morphing magnitude at a pixel x.

(i) (ii) (iii)

Figure 5.2: Optimal versus non-optimal transformations. (i) Constant images R and T .
(ii) The optimal transformation φ∗ obtained by our monotone scheme, which is the identity
mapping. (iii) A non-optimal transformation φ obtained by a non-monotone scheme.

[0, 1]×[0, 1]; see Figure 5.2(i). We compute a transformation using our monotone numerical
scheme, and another transformation using the non-monotone finite difference scheme in
[21]. To visualize the two computed transformations, we apply them to a square mesh
and obtain two deformed meshes, as plotted in Figure 5.2(ii)–(iii). Figure 5.2(ii) shows
that the transformation given by our monotone numerical scheme is the identity mapping
φ∗(x) = x and maps a square mesh to itself. The identity mapping is indeed the optimal
transformation for this example. Conversely, Figure 5.2(iii) shows that the non-monotone
scheme gives a non-optimal transformation, which severely deforms a square mesh.

5.4.2 Periodic versus Neumann boundary conditions

Example 5.2 (Figure 5.3). We revisit the case where R is a translation of T . Here we let
the true underlying translation φ∗true be

(φ∗true)
−1(x) ≡ x+ (0.05, 0.05)T , x ∈ ΩT .

The reason to define φ∗true in terms of (φ∗true)
−1 is that it is more intuitive to express the

mapping from ΩT to ΩR, noting that φ is originally defined as a mapping from ΩR to ΩT .
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(e) Periodic: Deformed mesh

(f) Neumann: Displacement
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(g) Neumann: Deformed mesh

Figure 5.3: Example 5.2: (a) Template image T . (b) Reference image R, where T and R are
related by a translation. (c) Transformed image Tφ∗ under the periodic boundary condition. (d)
Displacement of pixels from T to Tφ∗ under the periodic boundary condition, which is a pure
translation. (e) A deformed mesh obtained by applying the transformation (φ∗)−1 on a square
mesh. (φ∗)−1 is computed under the periodic boundary condition. The thick black lines show
where the boundary of Ω = [0, 1]× [0, 1] is moved to under (φ∗)−1. The color bar is the morphing
magnitude µ. The intensity of the color shows the degree of morphing effect under (φ∗)−1. (f)
Displacement of pixels from T to Tφ∗ under the Neumann boundary condition. (g) A deformed
mesh obtained by applying the transformation (φ∗)−1 on a square mesh. (φ∗)−1 is computed
under the Neumann boundary condition.

As expected, the periodic boundary condition (5.11) yields a constant translation on the
entire image; see Figure 5.3(d). Figure 5.3(e) shows that a square mesh is translated under
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(φ∗)−1 and remains a square mesh. In particular, we observe a translation of the original
boundary lines x = 0 and y = 0 to the thick vertical line x = 0.05 and the thick horizontal
line y = 0.05, respectively. These suggest that the resulting φ∗ is a pure translation.

On the contrary, under the Neumann boundary condition (5.10), the resulting trans-
formation is not a constant translation; see Figure 5.3(f). In Figure 5.3(g), we observe
that in some regions, red/blue color is intense and parts of the mesh are severely com-
pressed/expanded. This indicates that the registration under the Neumann boundary
condition relies heavily on the morphing effect.

Example 5.3 (Figure 5.4). We consider two images R and T that are related by a com-
bination of a translation and a dilation. We specify the true underlying transformation
as

(φ∗true)
−1(x) ≡ λ

[
x−

(
0.45
0.45

)]
+

(
0.5
0.5

)
, x ∈ ΩT ,

with the scaling (or dilating) factor

λ ≡
{

1.12, if ‖(φ∗true)−1(x)− (0.5, 0.5)T‖2 ≤ 0.332,
1, otherwise.

Under the periodic boundary condition, the resulting transformation is shown in Figure
5.4(d1). To better understand this resulting transformation, we use (5.27) to decompose it
into translation and non-rigid deformation components, represented by green and red ar-
rows respectively in Figure 5.4(d2). We observe that the non-rigid deformation component
(red arrows) is clearly a dilation. Figure 5.4(e) shows once again that the boundary lines
x = 0 and y = 0 are translated under (φ∗)−1 to x = 0.05 and y = 0.05. Also, the deformed
mesh is a symmetric and isotropic dilation with respect to the center of the circle.

However, if we use the Neumann boundary condition, then we cannot identify the
underlying combination of a translation and a dilation in Figures 5.4(f) and 5.4(g). In
addition, by a comparison between Figures 5.4(e) and 5.4(g), we observe that the morphing
effect under the periodic boundary condition is mild compared to the Neumann boundary
condition.

Example 5.4 (Figure 5.5). We consider two images R and T where the true underlying
transformation

(φ∗true)
−1(x) ≡

(
cos π

20
sin π

20

− sin π
20

cos π
20

)[
x−

(
0.45
0.45

)]
+

(
0.5
0.5

)
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(d1) Periodic: Displacement (d2) Decomposition of (d1)

morphing
µ

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(e) Periodic: Deformed mesh

(f) Neumann: Displacement
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(g) Neumann: Deformed mesh

Figure 5.4: Example 5.3: (a) Template image T . (b) Reference image R, where T and R
are related by a combination of a translation and a dilation. (c) Transformed image Tφ∗ under
the periodic boundary condition. (d1) Displacement of pixels from T to Tφ∗ under the periodic
boundary condition. (d2) Decomposition of the displacement into a combination of the translation
component (green) and the dilation component (red). (e) A deformed mesh obtained by applying
the transformation (φ∗)−1 on a square mesh. (φ∗)−1 is computed under the periodic boundary
condition. The thick black lines show where the boundary of Ω = [0, 1]× [0, 1] is moved to under
(φ∗)−1. The color bar is the morphing magnitude µ. The intensity of the color shows the degree
of morphing effect under (φ∗)−1. (f) Displacement of pixels from T to Tφ∗ under the Neumann
boundary condition. (g) A deformed mesh obtained by applying the transformation (φ∗)−1 on a
square mesh. (φ∗)−1 is computed under the Neumann boundary condition.
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(e) Periodic: Deformed mesh
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Figure 5.5: Example 5.4: (a) Template image T . (b) Reference image R, where T and R
are related by a combination of a translation and a rotation. (c) Transformed image Tφ∗ under
the periodic boundary condition. (d1) Displacement of pixels from T to Tφ∗ under the periodic
boundary condition. (d2) Decomposition of the displacement into a combination of the translation
component (green) and the local rotation component (red). (e) A deformed mesh obtained by
applying the transformation (φ∗)−1 on a square mesh. (φ∗)−1 is computed under the periodic
boundary condition. The thick black lines show where the boundary of Ω = [0, 1]× [0, 1] is moved
to under (φ∗)−1. The color bar is the morphing magnitude µ. The intensity of the color shows
the degree of morphing effect under (φ∗)−1. (f) Displacement of pixels from T to Tφ∗ under the
Neumann boundary condition. (g) A deformed mesh obtained by applying the transformation
(φ∗)−1 on a square mesh. (φ∗)−1 is computed under the Neumann boundary condition.
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is a combination of a translation and a global rotation.

Start again with the periodic boundary condition. Figure 5.5(d2) decomposes the result-
ing transformation into translation and non-rigid deformation components. The non-rigid
deformation (red arrows) is a local rotation. More explicitly, these red arrows rotate the
pixels from p1 to p2 and from p3 to p4 around the center of rotation O. We note that the
non-rigid deformation component is not a global rotation. More precisely, rotation does
not occur in the black background area. Since the mass accumulates at p2 and p4, the
intensity will further increase after the pixels are moved toward them. Conversely, the
intensity at p1 and p3 will further decrease after the pixels are moved away from them.
The color in Figure 5.5(e) illustrates this morphing effect.

As a comparison, for the Neumann boundary condition, Figures 5.5(f) and 5.5(g) do not
reflect the underlying combination of a translation and a rotation. Once again, the mor-
phing effect under the periodic boundary condition is much less severe than the Neumann
boundary condition.

5.4.3 Mass transport registration versus empirical two-step reg-
istration

In this section, we apply mass transport image registration on medical images and com-
pare it with the empirical two-step registration, which consists of a pre-registration (rigid
transformation) followed by an elastic registration.

Example 5.5 (Figure 5.6). To evaluate the performance of our approach, we perform
the following test: We first specify a certain underlying transformation φ∗true; see Figure
5.6(e). Then we apply this underlying transformation to an image T (Figure 5.6(a)), which
generates the reference image R (Figure 5.6(b)). Once obtaining T and R, we register these
two images using mass transport registration with the periodic boundary condition. We
expect the numerical scheme to produce a transformed image Tφ∗ that equals R and recover
the pre-specified underlying transformation. As expected, the resulting transformed image
Tφ∗ almost equals R, where the magnitude of the error is 10−4; see Figure 5.6(c)-(d). We
remark that the error is not exactly zero since we let the Levenberg-Marquardt algorithm
(Algorithm 5.1) stop at a tolerance of 10−4. Moreover, the resulting transformation given
by our numerical scheme, as shown in Figure 5.6(f), is approximately the same as the pre-
specified underlying transformation. Figure 5.6(g) visualizes the resulting transformation
again on a deformed mesh, which shows the compression and expansion at the right and
left semi-circles due to the mass inflow and outflow, respectively. We note that some mesh
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(a) T (b) R

(c) Tφ∗

‖ρTφ∗ − ρR‖
(d) Tφ∗ −R

‖ρTφ∗ − ρR‖ = 7× 10−4

(e) Underlying displacement (f) Numerical displacement (g) Numerical deformed mesh

Figure 5.6: Example 5.5: mass transport registration under periodic boundary condition.
(a) Template image T . (b) Reference image R. (c) Transformed image Tφ∗ . (d) Difference
between the transformed image Tφ∗ and the reference R. (e) Pre-specified underlying
transformation between T and R. (f) Transformation given by the numerical scheme,
which is a good approximation to the pre-specified underlying transformation in (e). (g)
A deformed mesh obtained by applying the transformation (φ∗)−1 on a square mesh.
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(a) Tφ
‖ρTφ − ρR‖

(b) Tφ −R
‖ρTφ − ρR‖ = 0.05

(c) Numerical displacement (d) Deformed mesh

Figure 5.7: Example 5.5: empirical two-step registration implemented by the FAIR pack-
age [121], where T and R are the same as Figure 5.6(a)-(b). (a) Transformed image Tφ.
(b) Difference between the transformed image Tφ and the reference R. (c) Transformation
given by the empirical approach, consisting of a rigid pre-registration (green arrows) and
a non-rigid elastic deformation (red arrows). (d) A deformed mesh obtained by applying
the transformation φ−1 on a square mesh.

lines appear squiggly due to the limited numerical resolution. However, the deformed mesh
is overall diffeomorphic and does not have foldings.

We also register T and R using the empirical two-step registration. The experiment is
implemented by the FAIR package [121]. The results are shown in Figure 5.7. The error
between the transformed image Tφ and the reference image R by the empirical approach
(Figure 5.7(b)) is 0.05, which is larger than the mass transport error. The transformation
computed by the empirical approach (Figure 5.7(c)) appears slightly different from the
underlying transformation (Figure 5.6(e)), especially for the non-rigid component. One
possible explanation is that the elastic registration used by the empirical approach may
be too restrictive to recover large localized non-rigid deformations; conversely, the mass

121



transport registration is generally able to capture large localized non-rigid deformations
[123].

Compared to the empirical approach, our approach does not require a two-step process.
In addition, our approach makes the non-rigid model more universal (capable of handling
both translation and non-rigid deformation) than the individual method employed in each
step of the empirical approach.

5.4.4 Quantitative evaluation of the transformations

To quantitatively measure the accuracy of the resulting transformations, we compute

‖φ∗(x)− φ∗true(x)‖L2(Ω), (5.29)

which is the difference between the computed transformation φ∗ and the true underlying
transformation φ∗true in the L2 norm. We note that the evaluation of (5.29) requires a
prior knowledge of the true underlying transformation, which is unavailable in practice.
However, in Examples 5.2–5.5, we pre-specify the underlying transformations between T
and R, which allows us to perform such an evaluation. Table 5.2 reports the errors of the
transformations (5.29). In each example, the error given by the mass transport registration
under the periodic boundary condition is compared against the error either under the
Neumann boundary condition or by the two-step empirical registration. Table 5.2 shows
that the errors of the mass transport registration under the periodic boundary condition
are smaller. We note that the error for Example 5.4 is relatively large even under the
periodic boundary condition, since the mass transport model only recovers rotation locally
rather than globally.

5.4.5 More examples

Example 5.6 (Figure 5.8). We register two images taken from a brain of a patient under
the periodic boundary condition. The transformed image Tφ∗ (Figure 5.8(c)) is the same as

Example 5.2 Example 5.3 Example 5.4 Example 5.5

Periodic: 0 Periodic: 0.0053 Periodic: 0.066
Mass transport,
periodic: 0.0055

Neumann: 0.056 Neumann: 0.056 Neumann: 0.088
Two-step empirical:
0.011

Table 5.2: The errors of the motion fields (5.29) for Examples 5.2–5.5.
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the reference image R (Figure 5.8(b)). Regarding the resulting transformation, the numer-
ical scheme can automatically translate T toward R, followed by a non-rigid deformation;
see Figures 5.8(d)-(e). The two figures also indicate that around the pixels where T and
R look different, the non-rigid deformation and the morphing effect are relatively large.

Example 5.7 (Figure 5.9). We register two distinct medical images under the periodic
boundary condition. The registration between them requires a large non-rigid deformation
and a large morphing effect. This can be seen in Figures 5.9(d)-(e). We note that under the

(a) T (b) R (c) Tφ∗

(d) Displacement

morphing
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−0.2

0
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0.4

0.6

(e) Deformed mesh

Figure 5.8: Example 5.6: medical image registration under the periodic boundary con-
dition. (a) Template image T . (b) Reference image R. (c) Transformed image Tφ∗ .
(d) Decomposition of the displacement into a combination of the translation component
(green) and the non-rigid deformation component (red). (e) A deformed mesh obtained
by applying the transformation (φ∗)−1 on a square mesh.
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Figure 5.9: Example 5.7: medical image registration under the periodic boundary con-
dition. (a) Template image T . (b) Reference image R. (c) Transformed image Tφ∗ .
(d) Decomposition of the displacement into a combination of the translation component
(green) and the non-rigid deformation component (red). (e) A deformed mesh obtained
by applying the transformation (φ∗)−1 on a square mesh.

transformation, the boundary lines of the domain, marked by the thick black lines in Figure
5.9(e), are not only translated, but also curved. Such curvature allows the transformation
between the actual objects inside R and T free from the influence of the dark background.
This is different from the Neumann boundary condition, where the transformation between
the actual objects is affected by the transformation imposed artificially on the boundary.
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5.5 Conclusion

In this chapter, we propose a numerical scheme together with a boundary condition for
the mass transport registration model. The main contributions include the following:

• Our periodic boundary condition incorporates both translation and non-rigid defor-
mation into the mass transport model. We note that the standard mass transport
model using the conventional boundary conditions can only do non-rigid registration,
whereas our method can also provide the translation component as a by-product.

• Our mixed finite difference discretization gives a convex solution and hence an optimal
transformation for the mass transport image registration.

• To handle singular Jacobians, we propose a modified Levenberg-Marquardt algorithm
where translation kernels are explicitly corrected.

In the numerical results, we first show that our numerical scheme yields the optimal
transformation, whereas a non-monotone finite difference scheme gives a non-optimal trans-
formation. In addition, the deformed mesh images across all the examples (i.e., Figures
5.3(e), 5.4(e), 5.5(e), 5.6(g), 5.8(e) and 5.9(e)) are smooth and do not contain foldings or
crossings, which provides evidences that the computed transformations are optimal (see
the discussion in Section 5.2.2). We also show that under the periodic boundary condition,
φ∗ recovers the underlying combination of a translation and a non-rigid deformation. The
periodic boundary condition outperforms the Neumann boundary condition.

Regarding the efficiency of the numerical scheme, we attach the computational cost of
the simulations in Appendix A.6. It would be desirable to speed up the computation by
multilevel approaches [150, 121] or multigrid algorithms [153], which we leave as future
work.
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Chapter 6

Deep Neural Network Framework for
HJB Equations Arising from
American Option Problems

6.1 Introduction

In Chapters 2-5, we have investigated HJB equations where the spatial dimension is less
than three. In this chapter, we study HJB equations where the spatial dimension is higher
than three (e.g., as high as 200). Such high-dimensional HJB equations appear in the ap-
plication of American options, where the spatial coordinate x ∈ Rd contains the prices
of the underlying assets, the dimension d is the number of the underlying assets, and the so-
lution u(x, t) is an American option price1. In practical applications of hedging, we are
required to compute not only an American option price u(x, t), but also the derivatives of

the price with respect to the underlying asset prices ∇u(x, t) ≡
(
∂u
∂x1

(x, t), · · · ∂u
∂xd

(x, t)
)T

,

called American option delta [97]. In addition, hedging requires computing their values
on the entire spacetime, not only at a particular point (x, t); see [97, 90, 100] for expla-
nations and concrete examples. Hence, our objective is to solve for both the price u(x, t)
and the delta ∇u(x, t) on the entire spacetime accurately.

As mentioned in Section 1.2.2, in addition to HJB equations, American option problems
have other various formulations [58, 139, 67, 66, 131]. Numerous approaches have been

1Unless otherwise specified, “price” in this chapter refers to American option price, rather than under-
lying asset price.
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proposed for solving American option problems under all these different formulations; see
[97, 7, 58, 67, 131, 117, 154, 103, 35, 38, 132, 113] for typical approaches. When the
dimension d is greater than 3, numerical solution of HJB equations (or other equivalent
PDEs) using conventional discretization (e.g., finite difference, finite element) becomes
infeasible, as its complexity grows exponentially with the dimension. Approaches that
mitigate (although do not address) the curse of dimensionality issue include regression-
based methods [117, 154, 103], stochastic mesh methods [35], sparse grids methods [38, 132,
113], etc. In particular, when the dimension d is moderate (e.g., d ≤ 20), the regression-
based Longstaff-Schwartz method [117] based on a Monte Carlo formulation is widely
considered as the state-of-the-art approach for computing option prices. In addition, one
can combine the Longstaff-Schwartz method with the methods proposed in [33, 26, 151] to
compute corresponding option deltas. We note that these approaches only compute option
prices and deltas at a given point (e.g., t = 0)2. However, we emphasize that a complete
hedging process requires computing prices and deltas on the entire spacetime. Furthermore,
for the Longstaff-Schwartz method, a set of χ-th degree polynomials is normally used as
the basis for regression, which leads to χ-th degree complexity (rather than exponential
complexity). However, χ is required to go to infinity for convergence [117, 145], which still
results in a high complexity.

In this chapter, we propose a deep neural network framework for solving high-
dimensional American option problems. The major contributions of the proposed neural
network framework are summarized as follows:

• We convert the HJB equation into an equivalent backward stochastic differential
equation (BSDE). Furthermore, we introduce the least squares residual of the
BSDE as the loss function of neural networks. BSDE couples prices and deltas in
one single equation, and thus evaluates both prices and deltas accurately. Moreover,
as discussed in Section 1.3.4, constructing Hessian tensors for an HJB equation is
expensive in both computational time and memory. Unlike the HJB equation, the
equivalent BSDE does not contain a Hessian, and thus gives rise to a less expensive
neural network formulation.

• Our neural network architecture is new. Assuming that there areN discrete timesteps,

2Although one may consider using the Longstaff-Schwartz regressed values as an estimate of the space-
time prices, Figure 1 in [26] shows that using such regressed values as the spacetime solution is inaccurate.
Alternatively, one may consider applying the Longstaff-Schwartz method repeatedly on all the spacetime
points, where every point requires M →∞ samples. However, this is expensive.
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we design a sequence of N recursively-defined feedforward neural networks3, where
each network extracts the difference between the price functions of adjacent timesteps.

• Our neural network formulation utilizes domain knowledge of American options, in-
cluding smoothing the payoff at t = T , adding the payoff and the previous continua-
tion price as features, etc.

• Our proposed approach can evaluate both option prices and option deltas on the
entire spacetime, not only at a given point (x, t).

• The computational cost of the proposed neural network framework grows quadrat-
ically with the dimension d, in contrast to exponential growth as in the Longstaff-
Schwartz method. In particular, our approach outperforms the Longstaff-Schwartz
method when d ≥ 20, in the sense that our proposed approach solves American
option prices and deltas in as high as 200 dimension, while the Longstaff-Schwartz
method fails to solve the problems due to the out-of-memory error and the worse-
than-quadratic cost.

We note that our proposed approach is not the only neural network framework for
American option problems. Early research of neural networks in American options can be
found in [104, 89]. They consider using one-hidden-layer feedforward neural networks for
option pricing. However, the highest dimension considered in their numerical simulations
is 10. Very recently, deep neural network approaches were proposed in [142, 59, 16, 88,
75, 129, 17]. They suggest that increasing the depth of neural networks is important in
pushing the solutions to higher dimensions. Similar to these approaches, our proposed
framework is also a deep neural network approach. However, we emphasize that there are
a few key differences between our proposed approach and the other deep neural network
approaches.

• Different computed quantities: Our approach computes American option prices and
deltas on the entire spacetime. The approach in [142] computes prices but not deltas.
The approaches in [59, 16, 88, 129] only consider European option prices, noting
that European options are easier to price than American options. Although [75, 17]
extends their methods to American options, the authors only compute the price at
a given point. In particular, we emphasize that only our approach discusses and
simulates hedging options, which is beyond merely pricing options.

3Here the proposed “recursively-defined” feedforward network is not the same as the Recurrent Neural
Network (RNN) in the literature, which will be explained in Section 6.4.1.
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• Different network architectures: Our network architecture is a chain of recursively-
defined networks that learn the difference of the price functions between adjacent
timesteps; the approach in [142] uses a long short-term neural network that learns
the price function itself; the approaches in [59, 16, 88, 75] consider a chain of isolated,
independent feedforward networks.

• Different loss functions: The approach in [142] defines the loss function by the residual
of the HJB equation. It involves computing the Hessian of the output price function,
which is expensive and difficult to implement. Our framework uses the residual of
one single BSDE as the loss function, which avoids computing the Hessian. The
approaches in [59, 16, 88, 75] involve the integral form of multiple BSDEs, which is
redundant for option pricing. In addition, their BSDEs are not used as loss functions.

The chapter is organized as follows. Section 6.2 introduces the American option prob-
lems and the corresponding HJB formulation. Section 6.3 introduces the BSDE formation
and the least squares residual loss function. Section 6.4 describes the architecture and
components of the proposed neural network model. Section 6.5 discusses the techniques
that improve the performance of the framework. Section 6.6 analyzes the computational
cost. In Section 6.7, we present numerical solutions of option prices and deltas to illustrate
the advantage of our deep neural network framework. Section 6.8 concludes the chapter.

6.2 American Options

6.2.1 American options

Section 1.2.2 introduced American options. In this chapter, we first review the mathe-
matical formulation of American option problems. Suppose an American option contains
a basket of d underlying assets (such as stocks, commodities, foreign currencies). Let
X = (X1, · · · , Xd)

T ∈ Rd be the prices of the underlying assets. Note that X is a random
variable. In order to distinguish random and deterministic variables, we will use capital
and lowercase letters respectively. Let t ∈ [0, T ] be the time up to the expiry date T of the
option contract. Let r be the interest rate. Let δi and σi (i = 1, · · · , d) be the dividend
and volatility of each underlying asset. Let ρ ∈ Rd×d be a correlation matrix where all the
diagonal entries are 1. Define d correlated random variables

dWi(t) =
d∑
j=1

Lijφj(t)
√
dt, (6.1)
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where φi(t) ∼ N (0, 1) are independent standard normal random variables, and L is the
Cholesky factorization of the correlation matrix, i.e., ρ = LLT . Given an initial state
x0 ∈ Rd, the prices of the underlying assets X evolve under the following stochastic
differential equations (SDEs):

dXi(t) = (r − δi)Xi(t)dt+ σiXi(t)dWi(t), i = 1, · · · , d,
X(0) = x0.

(6.2)

Let f(x) be the payoff function of the option at the state x, which usually takes the form
of

f(x) = max(g(x), 0). (6.3)

For instance, the commonly-seen “max call options” have the payoff function of

f(x) = max

(
max
i=1,...,d

(xi) −K, 0

)
, (6.4)

where K is the strike price (i.e., the preset price at which an option holder can buy/sell
underlying assets). Let q(x, t) be the “continuation price” of an American option, i.e., the
discounted option payoff provided that the option is not exercised at time t and state x:

q(x, t) = max
τ∈[t,T ]

E
[
e−r(τ−t)f(X(τ))

∣∣ X(t) = x
]
, (6.5)

where τ is the stopping time. Then the American option price u(x, t) is defined as

u(x, t) = max [q(x, t), f(x)]

=

{
q(x, t), if q(x, t) > f(x), i.e., the option is continued at (x, t),
f(x), if q(x, t) ≤ f(x), i.e., the option is exercised at (x, t).

(6.6)

6.2.2 HJB formulation

An equivalent formulation of the American option problem (6.2)-(6.6) is the HJB formula-
tion [131, 67, 66]. Introduce the differential operator arising from the famous Black-Scholes
model [97]:

Lu(x, t) ≡ −∂u
∂t

(x, t)− 1

2

d∑
i,j=1

σiσjρijxixj
∂2u

∂xi∂xj
(x, t)−

d∑
i=1

(r − δi)xi
∂u

∂xi
(x, t) + ru(x, t).

(6.7)
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Then the HJB equation for the American option problem reads:

min (Lu(x, t), u(x, t)− f(x) ) = 0, in Ω× [0, T ); (6.8)

u(x, T ) = f(x), in Ω. (6.9)

Similar to (2.1), the HJB equation (6.7)-(6.9) is backward. We note that (6.8) can be
written in an equivalent form that is consistent with the rest of the thesis:

(1− c∗(x, t)) Lu(x, t) + c∗(x, t) (u(x, t)− f(x)) = 0, (6.10)

subject to c∗(x, t) ≡ arg min
c(x,t)∈{0,1}

{(1− c(x, t)) Lu(x, t) + c(x, t) (u(x, t)− f(x))} . (6.11)

Unlike the previous chapters where the control set is continuous, here the control set {0, 1}
is discrete, and more precisely, binary. Indeed, the control c(x, t) = 1 (or 0) means that
an option holder decides to exercise (or not to exercise) the American option at the state
(x, t). Correspondingly, the optimal control c∗(x, t) means the best decision at (x, t) that
will maximize the option holder’s gain.

When the dimension is less than 3, computing the solution of the HJB formulation
using conventional discretization yields as accurate as O(h2) prices and deltas [131, 67, 66].
However, when the dimension is high, such as 200, conventional discretization is infeasible.
As introduced in Section 1.3.4, one may consider using a neural network formulation to
solve high dimensional HJB equations, such as the approach in [142]. Since the HJB
equation (6.7)-(6.9) contains the Hessian D2u(x, t), i.e., { ∂2u

∂xi∂xj
| ∀i, j}, the corresponding

neural network approach involves computing Hessian tensors. Unfortunately, a Hessian
tensor is an O(Md2) tensor, where M is the number of samples for a neural network.
When d is high, a Hessian tensor can be expensive to compute and store. In addition,
given a neural network, the automatic differentiation of a Hessian is nearly impossible to
derive, which makes it difficult to implement using existing deep learning libraries.

6.3 Backward Stochastic Differential Equation (BSDE)

Formulation

6.3.1 BSDE formulation

Instead of solving the HJB formulation (6.7)-(6.9), our approach is to first convert the HJB
formulation into an equivalent BSDE using the following theorem:
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Theorem 6.1 (BSDE formulation). A linearized HJB equation where the option is not
exercised at the time t, i.e.,

L q(x, t) = 0, (6.12)

is equivalent to the following BSDE:

dq(X, t) = rq(X, t)dt+
d∑
i=1

σiXi(t)
∂q

∂xi
(X, t)dWi(t), (6.13)

where X satisfies the SDE (6.2), and r, σi and dWi(t) are the same as in (6.2).

Proof. We refer interested readers to the proof in [60, 113], which uses Ito’s lemma.

We note that, although the BSDE formulation (6.13) only applies to the linearized
HJB equation, we will soon discuss how to incorporate the nonlinearity and the terminal
condition into the formulation. The significance of the BSDE formulation (6.13) is two-
fold. One is that it correlates the price q(x, t) with the delta ∇q(x, t). If the price is
solved correctly, then (6.13) simultaneously yields the correct delta. A simultaneously
correct evaluation of the price and the delta is essential for performing a complete hedging
process. The other significance is that, unlike the HJB formulation, the BSDE formulation
(6.13) does not contain the Hessian, which avoids the computation and storage of Hessian
tensors. Instead, it only requires computing price tensors of size O(M) and delta tensors
of size O(Md). In addition, delta tensors can be easily evaluated by the built-in automatic
differentiation of Tensorflow [1], i.e., “tf.gradients”.

In this chapter, we use an Euler timestepping Monte Carlo method to simulate the
SDEs (6.2) and the BSDE (6.13). Let m = 1, · · · ,M be the indices of simulation paths,
n = 0, · · · , N be the indices of discrete timesteps from 0 to T , ∆t = T

N
, tn = n∆t be the

timesteps, and (∆Wi)
n
m =

∑d
j=1 Lij(φj)

n
m

√
∆t. We discretize (6.2) as

(Xi)
0
m = x0

i , m = 1, ...,M, i = 1, ..., d; (6.14)

(Xi)
n+1
m = (1 + (r − δi)∆t)(Xi)

n
m + σi(Xi)

n
m(∆Wi)

n
m,

m = 1, ...,M, i = 1, ..., d, n = 0, ..., N − 1.
(6.15)

We also discretize (6.13) as

q(Xn+1
m , tn+1) = (1 + r∆t)q(Xn

m, t
n) +

d∑
i=1

σi(Xi)
n
m

∂q

∂xi
(Xn

m, t
n)(∆Wi)

n
m,

m = 1, ...,M, n = N − 1, ..., 0.

(6.16)

132



Next we incorporate the nonlinearity of the HJB equation into the BSDE formula-
tion. More specifically, if we allow the option to be exercised at any time after tn,
then we can replace q(Xn+1

m , tn+1) on the left hand side of (6.16) by u(Xn+1
m , tn+1) =

max [q(Xn+1
m , tn+1), f(Xn+1

m )]. This incorporation of the nonlinearity is essentially the
“implicit timestepping using an explicit evaluation of the American constraint” described
in [66]. In addition, we add the terminal condition (6.9) into the discretization. This yields
a complete discretized system for the BSDE:

u(XN
m , t

N) = f(XN
m ), m = 1, ...,M. (6.17)

Solve (1 + r∆t)q(Xn
m, t

n) +
d∑
i=1

σi(Xi)
n
m

∂q

∂xi
(Xn

m, t
n)(∆Wi)

n
m = u(Xn+1

m , tn+1)

for q(Xn
m, t

n),

(6.18)

and then compute u(Xn
m, t

n) = max [q(Xn
m, t

n), f(Xn
m)] ,

m = 1, ...,M, n = N − 1, ..., 0.
(6.19)

To sketch the idea of solving the discretized BSDE, let (6.14)-(6.15) generate samples of
underlying asset prices {Xn

m} for all n’s and m’s. Then one starts with n = N , computes
the terminal condition (6.17), and then performs backward timestepping from n = N − 1
to n = 0 using (6.18)-(6.19), which yields {u(Xn

m, t
n)} for all n’s and m’s. Eventually, at

n = 0, noting that X0
m = x0 for all m’s by (6.14), we obtain the option price u(x0, 0) and

the option delta ∇u(x0, 0).

6.3.2 Least squares solution for the discretized BSDE

Consider only the n-th timestep tn, and introduce a short notation for the corresponding
price and delta functions as un(x) ≡ u(x, tn) and ∇un(x) ≡ ∇u(x, tn). Solving (6.18)
requires finding a d-dimensional function qn(x) where both the function qn(x) itself and
its derivative ∇qn(x) satisfy (6.18), which is challenging.

In this chapter, we consider finding an approximation of the continuous price function.
We let the approximation satisfy (6.18) in a least squares sense. More specifically, define
the residual of (6.18) as the difference between the left and right hand sides:

R[qn]m ≡ (1 + r∆t)qn(Xn
m) +

d∑
i=1

σi(Xi)
n
m

∂qn

∂xi
(Xn

m)(∆Wi)
n
m − un+1(Xn+1

m ),

m = 1, · · · ,M.

(6.20)
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Then our goal is to find an approximation yn to the actual continuation function qn which
minimizes the least squares residual:

qn ≈ (yn)∗ ≡ arg min
yn

(
M∑
m=1

R[yn]2m

)
. (6.21)

6.4 Neural Network Formulation

Finding the optimal approximate function in the least squares sense (6.21) is non-trivial.
One approach is to use a parameterized function to represent the approximate function yn.
Then the optimization problem in terms of function space is converted to the optimization
problem in terms of parameter space, which is more manageable.

6.4.1 Sequence of neural networks

Our approach is to use neural networks to represent the approximate continuation price
function yn. As introduced in Section 1.3.4, a neural network is a nonlinear parameteri-
zation where the basis is dynamic, i.e., the optimal basis is found during the optimization
process, or in the language of deep learning community, the optimal basis is learned during
the training process [80]. The main advantage of neural network formulation is that the
complexity does not grow exponentially with the dimension d.

There exist many neural network architectures, such as feedforward, convolutional, or
recurrent networks. We refer interested readers to [80] for a review of these standard
network architectures. However, these standard networks are not designed for solving
American option problems.

In this chapter, we propose a sequence of N networks {yn(x; Ωn) |n = N −1, · · · , 1, 0},
where Ωn is the trainable parameter set of the n-th network. Each individual network
yn(x; Ωn) approximates the price function at the n-th timestep qn(x). The design of each
individual network is motivated by the fact that the approximate function of the n-th
timestep, yn(x; Ωn), should differ from yn+1(x; Ωn+1) by a function of magnitude O(∆t).
Mathematically, it means that

yN(x) = f(x), n = N ; (6.22)

yn(x; Ωn) = yn+1(x; Ωn+1) + ∆t · F(x; Ωn), n = N − 1, · · · , 0; (6.23)
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where F(x; Ωn) is the difference between the approximate functions at the two adjacent
timesteps, or the “remainder” that we aim to find. We note that the sequence of networks
(6.23) is defined in a recursive sense. In addition, the sequence of networks is backward in
time, i.e., the timestep n decreases from N − 1 to 0. Hence, in this chapter, we use the
“previous”, “current” and “next” timesteps to refer to the (n+ 1)-th, n-th and (n− 1)-th
timesteps, respectively.

Regarding each remainder function F(x; Ωn), we parameterize it by an L-layer feedfor-
ward network with batch normalizations. In the following part, we drop the timestep index
n temporarily, and use superscript with square brackets for the layer index l = 0, · · · , L.
Let the dimensions of the layers be {d[l] | l = 0, · · · , L}. Let the input of the neural network

be x[0] = x ∈ Rd[0] , where the input dimension is d[0] = d. Then we construct an L-layer
feedforward neural network as follows:

• For the hidden layers, l = 1, · · · , L:

linear transformation: z[l] = W [l] · x[l−1], (6.24)

batch normalization: h[l] = bnorm(z[l];β[l],γ [l],µ[l],σ[l]), (6.25)

rectified linear unit activation: x[l] = max(h[l], 0), (6.26)

where

bnorm(x;β,γ,µ,σ) ≡ γ · x− µ
σ

+ β (6.27)

is the batch normalization operator, x[l], z[l],h[l] ∈ Rd[l] are hidden layer variables,
W [l] ∈ Rd[l]×d[l−1]

are trainable weights, µ[l],σ[l] ∈ Rd[l] are moving averages of batch
means and standard deviations, and γ [l],β[l] ∈ Rd[l] are trainable scales and off-
sets. The operations in (6.25)-(6.27) are evaluated element-wise. For instance, (6.26)

means x
[l]
i = max(h

[l]
i , 0) for all i = 1, · · · , d[l].

• For the output layer:
F(x; Ωn) = ω · x[L] + b, (6.28)

where ω ∈ Rd[L]
, b ∈ R are trainable weight and bias.

In addition, we propose adding a scaling parameter αn to each neural network and
revise (6.23) as

yn(x; Ωn) = αn
[
yn+1(x; Ωn+1) + ∆t · F(x; Ωn)

]
, n = N − 1, · · · , 0. (6.29)
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We let αn be trainable, or equivalently, αn ∈ Ωn. αn is initialized as 1 before training, and
is close to 1 during and after training. Introducing the trainable parameter αn expands the
function space the neural network can represent. A neural network with a larger function
space is less likely to underfit, and thus more likely to have an accurate training result [80].

We remark that our proposed recursive architecture (6.29) is different from the other
architectures in the literature, particularly [142], where one single neural network is used to
represent the spacetime price function. To justify our choice of the recursive architecture,
we note that the true price functions qn+1(x) and qn(x) differ by a function of magnitude
O(∆t). In (6.29), if we let yn+1(x; Ωn+1) ≈ qn+1(x) and αn ≈ 1, then regardless of the value
of F(x; Ωn), yn(x; Ωn) will only differ from the true price function qn(x) by a magnitude of
O(∆t). Hence, before training starts, yn(x; Ωn) is already a good approximation of qn(x).
This makes it more likely for the training to find the optimal solution that (almost) equals
qn(x). Therefore, the recursive architecture is critical to the accuracy of the resulting
prices and deltas.

6.4.2 Computation of derivatives

Using the BSDE formulation (6.20)-(6.21) requires computation of the derivatives ∇qn(x),
which is approximated by the gradient of the neural network output, i.e., ∇yn(x; Ωn). We
use Tensorflow [1] to implement the neural network model. The gradient∇yn(x; Ωn) can be
easily evaluated by Tensorflow’s built-in automatic differentiation, “tf.gradients”. Later we
will describe how to train the neural network using both yn(x; Ωn) and ∇yn(x; Ωn) under
the BSDE loss function (6.20)-(6.21).

6.4.3 Smoothing payoff functions

We note that most of the payoff functions in practical applications have the form of (6.3),
which is not differentiable at g(x) = 0. In other words, yN(x) in (6.22) is not differen-
tiable. However, yN−1(x; ΩN−1) as an approximation of the continuation price function is
differentiable. Consequentially, the left and right hand sides of

yN−1(x; ΩN−1) = αN−1
[
yN(x) + ∆t · F(x; ΩN−1)

]
, (6.30)

are inconsistent in terms of differentiability. Such inconsistency makes it difficult to learn an
accurate F(x; ΩN−1), which negatively affects the accuracy of the trained yN−1(x; ΩN−1),
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and furthermore, the accuracy of the trained yn(x; Ωn) in the subsequent timesteps. In
this chapter, we propose smoothing the function yN(x) in (6.22) as follows:

yN(x) = fκ(x) ≡ 1

κ
ln
(
1 + eκg(x)

)
, (6.31)

where κ is a user-defined parameter. The operations in (6.31) are evaluated element-wise.
fκ(x) converges to f(x) when κ → ∞, and is a good approximation of f(x) when κ is
large. The significance of (6.31) is that fκ(x) is differentiable, which makes it easier to
train an accurate F(x; ΩN−1). In practice, we choose κ = 2

∆t
. We note that smoothing

payoff functions is a standard technique in the literature of binomial trees for option pricing
[91]. However, to the best of our knowledge, this is the first proposal of smoothing payoff
functions among the literature of neural networks for option pricing.

6.4.4 Feature selection

Feature selection, i.e., choosing the correct input features based on domain knowledge, has
a great impact on the accuracy of neural network models [80]. Naively one can simply set
the input as the underlying asset prices x[0] = x. In this chapter, we consider adding two
new features.

One new feature is the payoff function. It is suggested in [103, 64] that including the
payoff in the nonlinear basis can improve the accuracy of the regression-based algorithms.

F(ΩΩn+1) F(ΩΩn)

Δtt Δtt

αn+1 αn

yn+1(Ωx,Ωn+1) yn(Ωx,Ωn)

yn+1(Ωx,Ωn+1) yn(Ωx,Ωn)yn+2(Ωx,Ωn+2)

・・・

・・・

x, g(Ωx)
・・・・・・

F(ΩΩn)

bnorm[0]

W[1]

bnorm[1]

ReLU[1]

concat

ReLU[L]

ω

・・・

b

x g(Ωx) yn+1(Ωx)

F(Ωx; Ωn)

Input layer

Hidden layers

Output layer

Figure 6.1: The architecture of the proposed neural network framework defined by (6.29)
and (6.31), where the remainder network at each timestep F(x; Ωn) is defined by the input
layer (6.32)-(6.33), the hidden layers (6.24)-(6.26) and the output layer (6.28). The symbols
⊗ and ⊕ represent multiplication and addition, respectively.
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In this chapter, we consider using g(x) in (6.3) as an input feature. The reason of using
g(x) rather than f(x) is that the maximum operator in (6.3) is irreversible. In other words,
f(x) can be computed by g(x) but not conversely. Hence, using g(x) as the input contains
more information than f(x). The additional maximum operator in (6.3) can be learned
by the activation function (6.26) in the network.

The other new feature we consider adding is the output price function from the previous
timestep, i.e., yn+1(x; Ωn+1) in (6.29). The intuition is that the solution at the n-th step
should look similar to the solution at the (n+ 1)-th step.

The accuracy of neural network models can be further improved by input normaliza-
tion [144]. Effectively, we can combine the implementation of feature selection and input
normalization by adding the following “input layer” (denoted as l = 0) before the hidden
layer l = 1:

feature concatenation: z[0] =
(
x, g(x), yn+1(x; Ωn+1)

)T ∈ Rd[0] , (6.32)

input normalization: x[0] = bnorm(z[0];β[0],γ [0],µ[0],σ[0]), (6.33)

where the input dimension is changed to d[0] = d+2 after the concatenation. We note that
µ[0] and σ[0] can be pre-computed from the entire training dataset, unlike µ[l] and σ[l] in
the hidden layers that are computed by moving averages of training batches.

To summarize Sections 6.4.1-6.4.4, the architecture of the proposed neural network
framework is defined by (6.29) and (6.31), where the remainder network at each timestep
F(x; Ωn) is defined by the input layer (6.32)-(6.33), the hidden layers (6.24)-(6.26) and
the output layer (6.28). The trainable parameters of the neural network framework are
{Ωn |n = N − 1, · · · , 0}, where

Ωn ≡ {(W [l])n, (γ [l])n, (β[l])n, (γ [0])n, (β[0])n,ωn, bn, αn |L = 1, · · · , L}. (6.34)

Figure 6.1 illustrates the architecture of the proposed neural network framework.

6.4.5 More efficient neural network sequence

We discussed the advantage of the recursive architecture (6.29) at the end of Section 6.4.1.
However, the recursive architecture is expensive whenN is large. More specifically, consider
the 0-th timestep, and consider using the sequence of the neural networks to compute the
value of y0(x). By applying the recursive relation (6.29), we have

y0(x) = yN(x) + ∆t ·
N∑
ν=1

F(x; ΩN−ν), (6.35)
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where for simplicity we set αn = 1 for all timesteps. Equation (6.35) shows that the
computation of y0(x) requires going through N feedforward networks.

Here we propose a modified neural network architecture to reduce the computational
cost. In Section 6.4.1, we motivate the recursive relation (6.29) based on the fact that
the outputs of the two adjacent timesteps, yn(x) and yn+1(x), should differ by a function
of magnitude O(∆t). In fact, we can generalize this relation to any two timesteps n and
n + j where j � N . That is, the outputs yn(x) and yn+j(x) should differ by a function
of magnitude O(∆t). Similar to (6.29), we formulate this idea into the following recursive
relation:

yn(x; Ωn) = αn
[
yn+j(x; Ωn+j) + j∆t · F(x; Ωn)

]
. (6.36)

This generalization allows us to recur the feedforward networks at every few timesteps,
rather than at every single timestep, and thus reduces the computational cost.

To be more precise, if we recur the feedforward networks at every J timesteps (J � N),
then we modify the sequence of the neural networks (6.29) as follows:

yn(x; Ωn) = αn [yn+η(x; Ωn+η) + η∆t · F(x; Ωn)] ,
where η ≡ [(N − n− 1) mod J ] + 1, n = N − 1, · · · , 0. (6.37)

We remark that (6.29) is simply a special case of (6.37) with J = 1. Figure 6.2 illustrates
the modified architecture with J = 3. Readers can generalize the idea of Figure 6.2 to any
J � N .

Regarding the choice of J , smaller J yields more precise trained yn with higher com-
putational cost; larger J is computationally cheaper but the trained yn is less precise. In
our numerical simulations, we choose N = 100 and J = 4.

To give an example on how the modified architecture reduces the computational cost,
let us reconsider evaluating y0(x). By applying the recursive relation (6.37), we have

y0(x) = yN(x) + J∆t ·
bN/Jc∑
ν=1

F(x; ΩN−νJ) + (N mod J)∆t · F(x; Ω0), (6.38)

where for simplicity we set αn = 1 for all timesteps. Compared to (6.35), using (6.38) to
compute y0(x) only requires going through dN/Je feedforward networks. In other words,
the computation is J times cheaper.
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Figure 6.2: The modified architecture of the proposed neural network framework defined
by (6.31) and (6.37), where J = 3. Similar to Figure 6.1, the remainder network at each
timestep F(x; Ωn) is defined by the input layer (6.32)-(6.33), the hidden layers (6.24)-(6.26)
and the output layer (6.28).

6.4.6 Training neural networks

Consider training the network at the n-th timestep for solving (6.20)-(6.21). The training
inputs are

{Xn
m, ∆W n

m, u
n+1(Xn+1

m ), g(Xn
m), yn+η(Xn

m; (Ωn+η)∗), ∇yn+η(Xn
m; (Ωn+η)∗) |

m = 1, · · · ,M}, (6.39)

where the blue inputs are the required inputs of (6.20), the red inputs are the features intro-
duced in Section 6.4.4, yn+η is defined in (6.37), and (Ωn+η)∗ is the trained parameters from
the previous timestep n + η. The training output is {yn(Xn

m; Ωn), ∇yn(Xn
m; Ωn) | ∀m}.

The loss function of the network is given by (6.20)-(6.21), i.e., the least squares BSDE
residual, which we rewrite as a function of the trainable parameters Ωn:

L[Ωn] ≡
M∑
m=1

[
(1 + r∆t)yn(Xn

m; Ωn)

+
d∑
i=1

σi(Xi)
n
m

∂yn

∂xi
(Xn

m; Ωn)(∆Wi)
n
m − un+1(Xn+1

m )

]2

.

(6.40)

We consider using the popular Adam optimizer [101] to minimize the loss function (6.40),
which yields the set of optimal trainable parameters

(Ωn)∗ ≡ arg min
Ωn

L[Ωn]. (6.41)
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Then, using the trained neural network, we can compute the estimated option price
yn(x; (Ωn)∗) and delta ∇yn(x; (Ωn)∗). In addition, we use the estimated option price
to determine the exercise boundary as

cn(x) =

{
1 (exercised), if yn(x; (Ωn)∗) ≤ f(x),
0 (continued), otherwise.

(6.42)

In order to ensure the accuracy of training, we follow suggested good practices in the
deep learning community [80]. For instance, mini-batch optimization is used; the learning
rate of the Adam optimizer is decayed to ensure convergence; gradient clipping is applied
to avoid exploding gradients. In particular, we let the number of training steps be 600.
At the s-th training step (0 ≤ s ≤ 600), we let the moving average rate for µ[l] and σ[l] in
(6.25) be 1

0.99
(0.01max(min(s/350,1),0)−0.01), and let the learning rate for the Adam optimizer

be 0.01× 0.001max(min((s−150)/350,1),0).

At this point, it becomes clear that our proposed framework indeed fits into the gen-
eral framework introduced in Section 1.3.4. There are two major differences between our
proposed framework and the general framework. One is that the network architecture is
different. The other distinction is that, while Section 1.3.4 minimizes the residual norm of
an HJB equation, this chapter minimizes the residual norm of the equivalent BSDE, such
that the computation and storage of Hessian tensors can be avoided.

6.5 Improving the Algorithm

Sections 6.3-6.4 describe the foundation of our algorithm. This section introduces a few
techniques that improve the accuracy of resulting prices and deltas and the efficiency of
the algorithm.

6.5.1 The training input un+1

Consider the n-th timestep. The definition of un+1(Xn+1
m ) in the training input (6.39)

turns out to play a significant role in the accuracy of the trained continuation price yn.
More specifically, if the training input un+1(Xn+1

m ) is incorrectly defined, which means that
we feed incorrect values to the right hand side of (6.18), then the trained network yn would
not represent the correct qn.
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Finding the correct definition of un+1(Xn+1
m ) turns out to be non-trivial. One natural

way of defining un+1(Xn+1
m ) is to use the output prices of the trained network. More

specifically, suppose yn+1(x; (Ωn+1)∗) is already trained. Then

un+1(Xn+1
m ) =

{
yn+1(Xn+1

m ; (Ωn+1)∗), if cn+1(Xn+1
m ) = 0 (continued),

f(Xn+1
m ), if cn+1(Xn+1

m ) = 1 (exercised),
(6.43)

where cn+1 is defined in (6.42). However, in practice, due to the finite number of samples
and training steps, training error in the network yn+1 is inevitable, which means that
un+1(Xn+1

m ) might contain error after applying (6.43). Consequentially, the error of the
training input un+1(Xn+1

m ) will propagate into yn after training the n-th network, and
propagate into un(Xn

m) after applying (6.43) again, and propagate into yn−1, un−1(Xn−1
m ),

yn−2, ..., after further backward timestepping. In other words, (6.43) is not robust against
the accumulation of training errors over timesteps and may result in bias.

In fact, such bias can be quantified using the following lemma:

Lemma 6.1 (Quantifying bias). Assume that {Xν
m | 0 ≤ ν ≤ n,∀m} are known and

fixed, i.e., assume that the stochastic process {Xn} is adapted to the filtration {Fn}. Let
{Xn+1

m | ∀m} be another set generated under (6.15). Then the prices qn and un+1 must
satisfy

qn(Xn
m) = E[e−r∆tun+1(Xn+1

m ) |Xn
m] +O(

√
∆t), (6.44)

where ∆t is the same as in (6.18).

Proof. Consider taking the conditional expectation of (6.18):

(1+r∆t)qn(Xn
m)+

d∑
i=1

σi(Xi)
n
m

∂qn

∂xi
(Xn

m)E[(∆Wi)
n
m |Xn

m] = E[un+1(Xn+1
m ) |Xn

m]+O(
√

∆t),

where we add the term O(
√

∆t) at the end of the equation to reflect the discretization
error of (6.18). We note that {Xn

m}, {qn(Xn
m)} and {∂qn

∂xi
(Xn

m)} are not random variables

due to the filtration, and hence the only random variables are {Xn+1
m } and {(∆Wi)

n
m}.

Since E[(∆Wi)
n
m |Xn

m] = 0 and 1 + r∆t = er∆t +O(∆t2), we have er∆tqn(Xn
m) +O(∆t2) =

E[un+1(Xn+1
m ) |Xn

m] +O(
√

∆t), which gives (6.44).

Lemma 6.1 indicates that if un+1(Xn+1
m ) is correctly evaluated, then E[e−r∆tun+1(Xn+1

m )]
should match the true underlying continuation function qn(Xn

m). After a few timesteps, if
E[e−r∆tun+1(Xn+1

m )] deviates from qn(Xn
m), then it indicates an accumulation of training

errors from the previous timesteps.
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Figure 6.3: The values of qn(Xn
m) (black line), e−r∆tun+1(Xn+1

m ) (red dots) and
E[e−r∆tun+1(Xn+1

m )] (blue line) under different definitions of un+1(Xn+1
m ). (i) The val-

ues under the definition of (6.43), which shows a bias; (ii) The values under the definition
of (6.45), which shows a variance; (iii) The values under the definition of (6.46) with
θ = 0.5, where both bias and variance are reduced.

Figure 6.3(i) shows a concrete example of the bias. Consider a simulation of a one-
dimensional American option, where T = 0.5, N = 100 and the true continuation function
qn can be computed by finite difference methods. Consider using (6.43) to define the train-
ing input un+1(Xn+1

m ) at every timestep. As shown in Figure 6.3(i), when the simulation
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proceeds to n = 33, there is a clear deviation of E[e−r∆tun+1(Xn+1
m )] (blue line)4 from

qn(Xn
m) (black line) around Xn

m = 80.

In fact, we can use the relation (6.44) to avoid the bias caused by the definition (6.43).
More specifically, let Xn+1

m be a continued point. Then un+1(Xn+1
m ) = qn+1(Xn+1

m ) =
E[e−r∆tun+2(Xn+2

m )]. This motivates us to redefine the training input un+1(Xn+1
m ) as fol-

lows:

un+1(Xn+1
m ) =

{
e−r∆t un+2(Xn+2

m ), if cn+1(Xn+1
m ) = 0 (continued),

f(Xn+1
m ), if cn+1(Xn+1

m ) = 1 (exercised).
(6.45)

We note that (6.45) is actually the “discounted payoffs” used in Longstaff and Schwartz’s
approach [117]. They use (6.45) as target prices for regression.

Figure 6.3(ii) considers again the same simulation, where the definition of un+1(Xn+1
m )

is changed to (6.45). The deviation of E[e−r∆tun+1(Xn+1
m )] (blue line) from qn(Xn

m) (black
line) around Xn

m = 80 disappears. The blue and black lines agrees well with each other.
This shows that using the definition (6.45) does not introduce bias as does the definition
(6.43). However, the noisy red dots show that using the definition (6.45) results in a big
variance of e−r∆tun+1(Xn+1

m ). This poses a risk for the model to fit the noise, which may
still result in an inaccurate trained yn.

In this chapter, we define un+1(Xn+1
m ) as the linear combination of the two definitions

(6.43) and (6.45):

un+1(Xn+1
m ) =


θ yn+1(Xn+1

m ; (Ωn+1)∗) + (1− θ)e−r∆t un+2(Xn+2
m ),

if cn+1(Xn+1
m ) = 0 (continued),

f(Xn+1
m ), if cn+1(Xn+1

m ) = 1 (exercised),
(6.46)

where θ ∈ [0, 1] is a user-defined hyperparameter. This linear combination mitigates both
the bias caused by the definition (6.43) and the variance caused by the definition (6.45).
That is, the resulting un+1(Xn+1

m ) would accumulate less training error over multiple
timesteps, and meanwhile contain less noise. Figure 6.3(iii) considers the same simula-
tion, where the definition of un+1(Xn+1

m ) is (6.46) with θ = 0.5. We observe almost no
deviation of E[e−r∆tun+1(Xn+1

m )] (blue line) from qn(Xn
m) (black line), and a small vari-

ance of e−r∆tun+1(Xn+1
m ) (red dots), as expected. Hence, the definition (6.46) can improve

the accuracy of the trained networks.

4To assess E[e−r∆tun+1(Xn+1
m )], we start with a fixed set of {Xn

m}. For each point of Xn
m, we generate

multiple Xn+1
m ’s by (6.15), denoted as {Xn+1

m;m′ |m′ = 1, · · · ,M ′}; compute {u(Xn+1
m;m′)}; and then compute

the imperial average: E[e−r∆tun+1(Xn+1
m )] ≈ e−r∆t 1

M ′

∑
m′ u(Xn+1

m;m′).
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6.5.2 Weight reuse

The trainable parameters Ωn need to be initialized for each individual network from n =
N − 1 to n = 0. Starting from the network at n = N − 1, we initialize (β[l])N−1 and bN−1

by zeros; (γ [l])N−1 and αN−1 by ones; and (W [l])N−1 and ωN−1 by uniformly distributed
random numbers in (−1/

√
d[l] + d[l−1], 1/

√
d[l] + d[l−1]), as suggested in [80]. Move on to

the consecutive networks at n < N − 1. One can use the same idea to initialize their
trainable parameters. However, we notice that when ∆t is sufficiently small, the networks
at the n-th and (n+1)-th timesteps should be close. In other words, their optimal trainable
parameters should be close, i.e., (Ωn+1)∗ ≈ (Ωn)∗. We can take advantage of this fact and
use the values of the trained parameters (Ωn+1)∗ as the initial values of the corresponding
trainable parameters Ωn. Such “weight reuse” provides a good initial guess before the
training starts at the n-th timestep. Hence, the training results will be more accurate.

Figure 6.4 demonstrates a concrete example on how weight reuse improves the training
accuracy. Consider again a simulation of a one-dimensional American option with T = 0.5,
N = 50. Consider a particular timestep n = 47. We computed the delta dyn

dx
(Xn

m) of 180000
sample points. Figure 6.4(i) shows the evolution of the L1 norm error of the computed
delta over 600 training steps. The error with weight reuse (red line) is significantly lower
than the error without weight reuse (blue line). Figure 6.4(ii) shows that after 600 training
steps, the computed delta with weight reuse (red dots) agrees with the exact delta (black
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Figure 6.4: Example of the computed deltas with or without weight reuse. (i) The L1

norm error of the computed delta over 600 training steps. Blue: the error with no weight
reuse. Red: the error with weight reuse. (ii) The computed delta with weight reuse after
600 training steps. Black line: the exact delta computed by finite difference. Red dots:
the sample values of the delta obtained from the neural network yn. (iii) The computed
delta without weigh reuse after 600 training steps.
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line). As a comparison, Figure 6.4(iii) shows that after 600 training steps, the computed
delta without weight reuse (red dots) does not match the exact delta (black line) well.

6.5.3 Final algorithm

The final version of the proposed algorithm is summarized in Algorithm 6.1. We remark
that the algorithm uses “ensemble of neural networks”, which is a combination and aver-
age of multiple neural networks. The reason is that ensemble learning usually outperforms
individual models [80]. Interested readers are referred to Appendix A.7 for details. We also
note that in Algorithm 6.1, we store {yn(Xn

m),∇yn(Xn
m) | ∀n,∀m} on the entire spacetime

(i.e., for all m’s and n’s). The reason is that we are interested in a complete delta hedging
simulation, which requires sample values of both prices and deltas on the entire spacetime.
The implementation of Algorithm 6.1 uses an overwriting strategy for more efficient mem-
ory. We note, however, that if an algorithm user does not need sample values from the
entire spacetime, then only the storage of the training outputs {yn(Xn

m),∇yn(Xn
m) | ∀m}

and the training inputs {yn+η(Xn
m),∇yn+η(Xn

m) | ∀m} at the current timestep (i.e., for all
m’s and for a given n) is necessary.

6.6 Computational Cost and Errors

In this section, we analyze the computational cost and the errors of the proposed algorithm,
and make a comparison with the Longstaff-Schwartz algorithm. For the Longstaff-Schwartz
algorithm, consider degree-χ monomial basis [117, 103]

ϕχ(x) ≡ {xa11 x
a2
2 · · ·x

ad
d | a1 + a2 + · · ·+ ad ≤ χ}. (6.47)

In practice, we choose χ� d. Then the number of the monomial basis is
(
d+χ
d

)
≈ 1

χ!
dχ.

6.6.1 Memory

The proposed algorithm requires storing

• the underlying asset prices {Xn
m | ∀n,∀m} on the entire spacetime, requiring NMd

floating point numbers;

• the training outputs {yn(Xn
m),∇yn(Xn

m) | ∀m} and the training inputs {yn+η(Xn
m),

∇yn+η(Xn
m) | ∀m} at the current timestep, requiring 2(M +Md) floating point num-

bers.
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Algorithm 6.1 Neural network pricing and hedging under BSDE formulation

1: Parameters
2: C: the number of networks in a network ensemble
3: M : the number of samples per ensemble
4: N : the number of timesteps
5: J : the number of timesteps between the network recurrence
6:

7: Initialize the underlying asset prices {X0
m ≡ x0 | ∀m (i.e., m = 1, · · · , CM)}.

8: for n = 1, · · · , N do
9: Use (6.14)-(6.15) to generate CM trajectories of the underlying asset prices {Xn

m | ∀m}.
10: end for
11:

12: Use (6.31) to compute the expiry option prices and option deltas
{Y ν

m = yN (Xν
m) | 0 ≤ ν ≤ N, ∀m} and {Zν

m = ∇yN (Xν
m) | 0 ≤ ν ≤ N, ∀m}.

13: Initialize {uN (XN
m ) = f(XN

m ) | ∀m} by (6.17).
14: for n = N − 1, · · · , 0 do
15: for c = 1, · · · , C do
16: Initialize the neural network yn(x; Ωn

c ) defined by (6.37), where the input layer is (6.32)-
(6.33), the hidden layers are (6.24)-(6.26) and the output layer is (6.28).

17: Training: minimize the least squares residual (6.40)-(6.41), using the training input
(6.39).

18: Result: the trained neural network yn(x; (Ωn
c )∗).

19: end for
20:

21: if (N − n) mod J = 0 then
22: Ensemble evaluation (all future timesteps): overwrite the option prices and deltas

{Y ν
m = 1

C

∑C
c=1 y

n(Xν
m; (Ωn

c )∗) | 0 ≤ ν ≤ n,∀m},
{Zν

m = 1
C

∑C
c=1∇yn(Xν

m; (Ωn
c )∗) | 0 ≤ ν ≤ n, ∀m}.

23: else
24: Ensemble evaluation (current timestep): overwrite the option prices and deltas

{Y n
m = 1

C

∑C
c=1 y

n(Xn
m; (Ωn

c )∗) | ∀m},
{Zn

m = 1
C

∑C
c=1∇yn(Xn

m; (Ωn
c )∗) | ∀m}.

25: end if
26: Determine whether Xn

m is continued or exercised using (6.42) for all m’s.
27: Update {un(Xn

m) | ∀m} by (6.46).
28: end for
29:

30: Result: samples of option price and delta functions on the entire spacetime
{Y n

m ← max(Y n
m, f(Xn

m)) | ∀n, ∀m} and {Zn
m | ∀n, ∀m}.

31: Optional: Recompute the option price and the option delta at t = 0 using (A.12) and (A.13);
see Appendix A.8 for details.
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Hence, the entire process requires a total memory of NMd + 2(M + Md) ≈ NMd float-
ing point numbers. As a comparison, the Longstaff-Schwartz method requires storing
{Xn

m | ∀n,∀m} on the entire spacetime and storing {ϕχ(Xn
m), yn(Xn

m) | ∀m} at the current
timestep. This requires a total memory of NMd+M · 1

χ!
dχ +M ≈ NMd+ 1

χ!
Mdχ floating

point numbers. We remind readers that convergence of the Longstaff-Schwartz method
to the exact American option prices requires χ → ∞. As a result, the proposed neural
network method is more memory efficient than the Longstaff-Schwartz method.

6.6.2 Time

Consider a given timestep n. The computational time is dominated by two stages:

• Stage 1: Computing the training inputs (6.39), in particular, {yn+η(Xn
m; (Ωn+η)∗),

∇yn+η(Xn
m; (Ωn+η)∗) | ∀m}, using the trained networks {(Ων)∗ | ν ≥ n+ η}.

• Stage 2: Training, using the training inputs (6.39).

To derive the computational time of each stage, denote the maximal width of the L-
layer neural network F as dmax ≡ maxl=0,··· ,L d

[l]. We note that matrix multiplication is
the dominant operation in (6.24)-(6.26). Hence, for each stage, the computational time
per neural network is given by c1MLd2

max and c2MLd2
max, where c1 and c2 are constants.

Typically c1 � c2, because Stage 1 only involves computing the outputs of neural networks,
while Stage 2 involves training. This seems to suggest that Stage 2 dominates Stage 1.
However, we note that Stage 2 involves only one single network (i.e., the n-th network),
while Stage 1 involves multiple networks from the previous timesteps. More specifically,
following the same analysis as (6.38), one can show that the computation of training input
yn+η(Xn

m; (Ωn+η)∗), given by

yn+η(x) = yN(x) + J∆t ·
(N−n−η)/J∑

ν=1

F(x; ΩN−νJ), (6.48)

requires going through (N −n− η)/J ≈ (N −n)/J feedforward networks. As a result, the
actual computational time for Stage 1 is c1MLd2

max · N−nJ .

Furthermore, if we consider all the N timesteps, then the total computational time is

Stage 1:
N∑
n=0

c1MLd2
max ·

N − n
J

=
c1N

2

2J
MLd2

max,

Stage 2:
N∑
n=0

c2MLd2
max = c2NMLd2

max.

(6.49)
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Equation (6.49) suggests that when N is large, Stage 1 is dominant. However, we can sig-
nificantly reduce the computational time of Stage 1 by increasing J , as discussed in Section
6.4.5. In our numerical simulation, we chose dmax = d + 5. Then the total computational
time of the proposed algorithm is approximately ( c1N

2J
+ c2)NMLd2, which is quadratic in

the dimension d.

Regarding the Longstaff-Schwartz method, if we assume that the standard normal equa-
tion or QR factorization is used for solving regression problems, then the computational

time is O
(
NM( 1

χ!
dχ)2

)
= O(NMd2χ), which is worse-than-quadratic in d. Hence, the pro-

posed neural network method is asymptotically more efficient than the Longstaff-Schwartz
method in high dimensions.

6.6.3 Errors

The errors of the computed option prices and deltas come from the following sources:

• the sampling error, resulting from the finite (rather than infinite) number of samples;

• the O(
√

∆t) truncation error, resulting from the timestepping of BSDE (6.18);

• the parameterization error, i.e., the difference between the true underlying solution
of the discretized BSDE and the optimal parameterized solution that minimizes the
least squares residual of the BSDE; and

• the training error, i.e., the difference between the optimal parameterized solution and
the trained parameterized solution.

One may argue that the O(
√

∆t) truncation error using our BSDE formulation is not as
accurate as the truncation error of some other American option approaches, particularly the
Longstaff-Schwartz method. However, we note that the dominant error of the Longstaff-
Schwartz method is the parameterization error. Even when the other sources of errors are
minimized, the total error of the Longstaff-Schwartz method is still large. This is because
the function space that the Longstaff-Schwartz parameterization can represent is limited by
the degree χ of the polynomials, and may not cover the true solution. Conversely, we will
show in our numerical simulation (e.g., Tables 6.1-6.2) that our proposed neural network
approach yields a much smaller total error (which includes parameterization error). This
agrees with the knowledge in the literature that deep neural networks have a desirable
capacity and expressiveness, i.e., deep neural networks can represent a very large function
space that is likely to include the true underlying solution [80].
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6.7 Numerical Results

In this section, we solve the American option problem (6.2)-(6.6) using our neural network
described in Algorithm 6.1. We compute the price u(x0, 0) and the delta ∇u(x0, 0) at t = 0
for given x0 = (x0

1, · · · , x0
d) where x0

1 = · · · = x0
d = 0.9K,K or 1.1K. We also compute

the prices u(x, t) and the deltas ∇u(x, t) for sample paths of (x, t) spread over the entire
spacetime.

In our experiments, we set the strike price K = 100, the number of the timesteps
N = 100, the number of timesteps between the network recurrence J = 4, the smoothing
parameter in (6.31) κ = 2

∆t
, the coefficient in (6.46) θ = 0.5. At each timestep, we train

an ensemble of C = 3 neural networks, where each neural network has a depth of L = 7
and a uniform width of d[l] = d + 5 across all the hidden layers. We let the number of
samples per network be M = 240000 (or the total number of samples be CM = 720000),
and let the batch size and the number of training steps be 400 and 600 respectively. Each
numerical experiment is implemented on one Cedar5 base-GPU node, which contains 4
NVIDIA P100-PCIE-12GB GPUs, 24 CPUs and 128GB memory.

We compare the numerical results computed by our proposed method with those com-
puted by the finite difference method, the Longstaff-Schwartz method and the method
proposed in [142]. For the Longstaff-Schwartz method, we choose degree-χ monomial ba-
sis (6.47) with χ = 4. Finite difference solutions with very fine grids are used as exact
solutions. We note that this is feasible only if d ≤ 3.

We note that when finite difference solutions are available, we can evaluate the absolute
and percent errors of computed prices and deltas. More specifically, denote the finite
difference solutions as uexact. Then the percent errors of the price and the delta at t = 0
are

|u(x0, 0)− uexact(x0, 0)|
|uexact(x0, 0)|

× 100%,
‖∇u(x0, 0)−∇uexact(x0, 0)‖L2

‖∇uexact(x0, 0)‖L2

× 100%; (6.50)

and the percent errors of the spacetime price and the spacetime delta are∑
m,n |u(Xn

m, t
n
m)− uexact(Xn

m, t
n
m)|∑

m,n |uexact(Xn
m, t

n
m)|

× 100%,∑
m,n ‖∇u(Xn

m, t
n
m)−∇uexact(Xn

m, t
n
m)‖L2∑

m,n ‖∇uexact(Xn
m, t

n
m)‖L2

× 100%.

(6.51)

5Cedar is a Compute Canada’s cluster. See https://docs.computecanada.ca/wiki/Cedar and
https://docs.computecanada.ca/wiki/Using GPUs with Slurm for details.
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In addition, we can evaluate the quality of the computed exercise boundaries. More
specifically, each sample point (Xn

m, t
n) is classified as “exercised” or “continued” by either

the proposed algorithm or other algorithms that we compare with. Meanwhile, the true
“exercised” or “continued” class of each sample point can be determined by the finite
difference method. Let “exercised” class be the positive class, and denote the numbers of
true positive, true negative, false positive and false negative samples as TP, TN, FP, FN,
respectively. Then the quality of the exercise boundaries can be evaluated by the f1-score:

f1-score ≡ 2TP

2TP + FP + FN
. (6.52)

The best (or worst) case of the f1-score is 1 (or 0), respectively. We note that another
common metric to evaluate the quality of classification problems is the accuracy. Since in
all our experiments, the positive class is skewed (around 3-17%), the f1-score would be a
better metric than the accuracy; see [122] for explanations.

6.7.1 Multi-dimensional geometric average options

Consider a d-dimensional “geometric average” American call option, where ρij = ρ for i 6=

j, σi = σ for all i’s, and the payoff function is given by f(x) = max

[(∏d
i=1 xi

)1/d

−K, 0
]
.

Although such options are rarely seen in practical applications, they have semi-analytical
solutions for benchmarking the performance of our algorithm in high dimensions. More
specifically, it is shown in [78, 142] that such a d-dimensional option can be reduced to a
one-dimensional American call option in the variable

s′ ≡

(
d∏
i=1

xi

)1/d

, (6.53)

where the effective volatility is σ′ =
√

1+(d−1)ρ
d

σ and the effective drift is r−δ+ 1
2
(σ′2−σ2).

Hence, by solving the equivalent one-dimensional option using finite difference methods,
one can compute the d-dimensional option prices and (sometimes) deltas6 accurately.

In the following Examples 6.1-6.5, we consider the geometric average option in Section
4.3 of [142], where ρi,j = 0.75, σ = 0.25, r = 0, δ = 0.02, T = 2.

6We note that solving the equivalent one-dimensional option is not sufficient for computing the d-
dimensional delta except at the symmetric points x1 = · · · = xd. Interested readers can verify this by
straightforward algebra.
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Example 6.1 (Comparison between our proposed method and the Longstaff-Schwartz
method). First we compare the computed prices at t = 0; see Table 6.1. Each sub-table
includes the following:

• the exact prices computed by the Crank-Nicolson finite difference method with 1000
timesteps and 16385 space grid points,

• the prices and the corresponding percent errors computed by our proposed method,

• the prices and the corresponding percent errors computed by the Longstaff-Schwartz
method.

(i) 7-dimensional geometric average call option

x0
i

exact price
u(x0, 0)

proposed method Longstaff-Schwartz
computed price

u(x0, 0)
percent
error

computed price
u(x0, 0)

percent
error

90 5.9021 5.8822 0.34% 5.8440 0.98%
100 10.2591 10.2286 0.30% 10.1736 0.83%
110 15.9878 15.9738 0.09% 15.8991 0.55%

(ii) 13-dimensional geometric average call option

x0
i

exact price
u(x0, 0)

proposed method Longstaff-Schwartz
computed price

u(x0, 0)
percent
error

computed price
u(x0, 0)

percent
error

90 5.7684 5.7719 0.06% 5.5962 3.0%
100 10.0984 10.1148 0.16% 9.9336 1.6%
110 15.8200 15.8259 0.04% 15.6070 1.4%

(iii) 20-dimensional geometric average call option

x0
i

exact price
u(x0, 0)

proposed method Longstaff-Schwartz
computed price

u(x0, 0)
percent
error

computed price
u(x0, 0)

percent
error

90 5.7137 5.7105 0.06% 5.2023 9.0%
100 10.0326 10.0180 0.15% 9.5964 4.4%
110 15.7513 15.7425 0.06% 15.2622 3.1%

(iv) 100-dimensional geometric average call option

x0
i

exact price
u(x0, 0)

proposed method Longstaff-Schwartz
computed price

u(x0, 0)
percent
error

computed price
u(x0, 0)

percent
error

90 5.6322 5.6154 0.30% OOM OOM
100 9.9345 9.9187 0.16% OOM OOM
110 15.6491 15.6219 0.17% OOM OOM

Table 6.1: Multi-dimensional geometric average call options: Computed prices at t = 0,
i.e., u(x0, 0). OOM means “out-of-memory”.
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For the proposed method, the computed prices are accurate up to 2 decimal places; the
percent errors are bounded by 0.34%, and remain approximately the same as the dimension
increases. As a comparison, for the Longstaff-Schwartz method, the percent errors deteri-
orate from 1% to 9% as the dimension increases from 7 to 20. If we keep increasing the
dimension towards 100, the Longstaff-Schwartz method encounters an out-of-memory er-
ror, because, at d = 100, it requires storing

(
d+χ
d

)
CM = 3.3×1012 floating point numbers,

or around 23TB of memory.

The Longstaff-Schwartz algorithm combined with the approaches in [151, 33] can be
used to compute the deltas at t = 0. Table 6.2 compares the deltas at t = 0 computed
by our proposed approach with the ones computed by the Longstaff-Schwartz algorithm.

(i) 7-dimensional geometric average call option

x0
i

exact delta
∇u(x0, 0)

proposed method Longstaff-Schwartz
computed delta ∇u(x0, 0) percent error percent error

90 (0.0523,· · · ,0.0523) (0.0516,· · · ,0.0516) 1.2% 1.2%
100 (0.0722,· · · ,0.0722) (0.0710,· · · ,0.0710) 1.7% 1.6%
110 (0.0912,· · · ,0.0912) (0.0901,· · · ,0.0901) 1.2% 1.4%

(ii) 13-dimensional geometric average call option

x0
i

exact delta
∇u(x0, 0)

proposed method Longstaff-Schwartz
computed delta ∇u(x0, 0) percent error percent error

90 (0.0279,· · · ,0.0279) (0.0277,· · · ,0.0277) 0.76% 5.4%
100 (0.0387,· · · ,0.0387) (0.0384,· · · ,0.0384) 0.83% 3.7%
110 (0.0492,· · · ,0.0492) (0.0486,· · · ,0.0486) 1.1% 2.6%

(iii) 20-dimensional geometric average call option

x0
i

exact delta
∇u(x0, 0)

proposed method Longstaff-Schwartz
computed delta ∇u(x0, 0) percent error percent error

90 (0.0180,· · · ,0.0180) (0.0179,· · · ,0.0179) 0.70% 12.7%
100 (0.0251,· · · ,0.0251) (0.0248,· · · ,0.0248) 1.2% 8.3%
110 (0.0320,· · · ,0.0320) (0.0316,· · · ,0.0316) 1.2% 6.8%

(iv) 100-dimensional geometric average call option

x0
i

exact delta
∇u(x0, 0)

proposed method Longstaff-Schwartz
computed delta ∇u(x0, 0) percent error percent error

90 (0.00359,· · · ,0.00359) (0.00357,· · · ,0.00357) 0.58% OOM
100 (0.00502,· · · ,0.00502) (0.00495,· · · ,0.00495) 1.3% OOM
110 (0.00639,· · · ,0.00639) (0.00631,· · · ,0.00631) 1.3% OOM

Table 6.2: Multi-dimensional geometric average call options: Computed deltas at t = 0,
i.e., ∇u(x0, 0). Note that all the reported deltas in the table are length-d vectors where
all the elements are the same. The column “Longstaff-Schwartz” is the Longstaff-Schwartz
method combined with [151, 33]. OOM means “out-of-memory”.
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Geometric average call option

x0
i

proposed method Longstaff-Schwartz
d = 7 d = 13 d = 20 d = 100 d = 7 d = 13 d = 20 d = 100

90 0.96 0.95 0.96 0.95 0.72 0.56 0.42 OOM
100 0.95 0.95 0.97 0.97 0.75 0.61 0.47 OOM
110 0.98 0.96 0.96 0.97 0.78 0.65 0.51 OOM

Table 6.3: Multi-dimensional geometric average call options: The f1-score of the exercise
boundary classification. OOM means “out-of-memory”.

For the Longstaff-Schwartz algorithm, as the dimension increases from 7 to 20, the percent
errors of the deltas worsen from 1.6% to 12.7%; as the dimension continues to increase
towards 100, an out-of-memory error occurs. However, for our proposed method, the
computed deltas are accurate up to 3 decimal places; the percent errors do not increase
with the dimension and stay below 1.7%.

Furthermore, we compare the exercise boundaries computed by the proposed neural
network approach with the ones computed by the Longstaff-Schwartz approach. Table 6.3
evaluates the f1-score of the exercise boundary classification, as defined in (6.52). For the
proposed method, the f1-score remains around 0.95-0.98 as the dimension increases from
7 to 100. For the Longstaff-Schwartz algorithm, the f1-score drops from 0.78 to 0.42 as
the dimension increases from 7 to 20. This illustrates a more precise exercise boundary
determined by our proposed algorithm.

Figure 6.5 visualizes the exercise boundaries computed by both algorithms. In order to
visualize this, we start with (x0, t0) = (1.1K, 0) and use the SDE (6.14)-(6.15) to generate
sample points on the entire spacetime, i.e., {(Xn

m, t
n) |n = 0, ..., N ;m = 1, ...,M}; we

classify each sample point using either our proposed method, i.e., (6.42), or the Longstaff-
Schwartz method; then we project these (d+ 1)-dimensional points onto the 2-dimensional

points {(s′nm, tn)}, where s′nm =
(∏d

i=1(Xi)
n
m

)1/d

is the geometric average of the underlying

asset pricesXn
m. We use bold dark blue to mark the sample points that should be exercised

but are misclassified as continued, and bold dark red to mark the ones that should be
continued but are misclassified as exercised. The plots show that the proposed neural
network approach (top left and bottom left) has fewer misclassified sample points than the
Longstaff-Schwartz approach (top right and bottom right). In other words, the proposed
neural network approach yields more precise exercise boundaries.

Example 6.2 (Confidence intervals by the proposed method). We repeat the experiments
of computing the prices and deltas at t = 0 (Tables 6.1-6.2) for 9 times. Tables 6.4-6.5

154



report the mean values of the computed prices and deltas, and the corresponding 95%
T-statistic confidence intervals. The last columns of the tables show that, for both the
prices and the deltas, the deviations from the mean values remain a constant of ±0.2% as

(i) 7-dimensional geometric average call option

geometric average of underlying asset prices (s′)

ti
m

e
(t

)

neural network

geometric average of underlying asset prices (s′)

ti
m

e
(t

)

Longstaff-Schwartz

(ii) 20-dimensional geometric average call option

geometric average of underlying asset prices (s′)

ti
m

e
(t

)

neural network

geometric average of underlying asset prices (s′)

ti
m

e
(t

)

Longstaff-Schwartz

Figure 6.5: Multi-dimensional geometric average call options: Comparison of exercise
boundaries between the proposed neural network approach (top left and bottom left) and
the Longstaff-Schwartz approach (top right and bottom right). All blue points: sample
points that should be exercised; all red points: sample points that should be continued; bold
dark blue points: sample points that should be exercised but are misclassified as continued;
bold dark red points: sample points that should be continued but are misclassified as
exercised.
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geometric average call option, x0
i = 100

d exact price u(x0, 0) mean of computed prices percent error 95% CI
7 10.2591 10.2468 0.12% ±0.0161 (±0.16%)
13 10.0984 10.0822 0.16% ±0.0201 (±0.20%)
20 10.0326 10.0116 0.21% ±0.0173 (±0.17%)
100 9.9345 9.9163 0.18% ±0.0038 (±0.04%)

Table 6.4: Multi-dimensional geometric average call options: mean values and 95% T-
statistic confidence intervals (CIs) of the computed prices at t = 0, i.e., u(x0, 0), using the
proposed neural network method.

geometric average call option, x0
i = 100

d exact delta ∇u(x0, 0) mean of computed deltas percent error 95% CI of ∂u
∂x1

(x0, 0)

7 (0.0722,· · · ,0.0722) (0.0717,· · · ,0.0717) 0.67% ±1.8× 10−4 (±0.25%)
13 (0.0387,· · · ,0.0387) (0.0384,· · · ,0.0384) 0.70% ±7.3× 10−5 (±0.19%)
20 (0.0251,· · · ,0.0251) (0.0249,· · · ,0.0249) 0.78% ±4.2× 10−5 (±0.17%)
100 (0.00502,· · · ,0.00502) (0.00498,· · · ,0.00498) 0.76% ±8.9× 10−6 (±0.18%)

Table 6.5: Multi-dimensional geometric average call options: mean values of the com-
puted deltas at t = 0, i.e., ∇u(x0, 0), using the proposed neural network method, and the
corresponding 95% T-statistic confidence intervals (CIs) of the first elements of deltas, i.e.,
∂u
∂x1

(x0, 0).

the dimension increases.

Example 6.3 (Evaluation of computed spacetime prices and deltas by the proposed
method). Our proposed algorithm yields not only the prices and deltas at t = 0, but
also the prices and deltas on the entire spacetime, which are directly extracted from the
output of the neural networks. We emphasize that the computation of spacetime prices
and deltas using the Longstaff-Schwartz method is infeasible. The reason is that using the
Longstaff-Schwartz method to compute prices and deltas on the entire spacetime would
require repeating the algorithm at every sample point, noting that the Longstaff-Schwartz
method at one sample point is already non-trivial. We also remark that although one may
consider using the Longstaff-Schwartz regressed values as an estimate of the spacetime
prices, Figure 1 in [26] shows that using such regressed values as the spacetime solution is
inaccurate.

First we evaluate the absolute and percent errors of the spacetime price u(x, t) and the
derivative ∂u

∂s′
(s′, t) computed by our proposed method, where s′ is defined in (6.53). Here

we evaluate the errors of the derivative ∂u
∂s′

(s′, t) instead of the delta ∇u(x, t), because the
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exact values of the former can be computed by finite difference method spacetime-wise,
but not the latter. Table 6.6 shows that the absolute errors of the spacetime prices and
derivatives are around 0.04-0.07 and 0.01 respectively, or in other words, the spacetime
prices and derivatives are accurate up to 2 decimal places; the percent errors are less than
1.2% and 3.8%, respectively.

To visualize the spacetime solutions, we consider the 100-dimensional case, select three
time slices t = 0.5, 1.0, 1.5, and project the 100-dimensional sample points of u(x, t) and
∇u(x, t) to 1-dimensional points of u(s′, t) and ∂u

∂s′
(s′, t), as shown in Figure 6.6. The

spacetime option prices and deltas computed by the proposed neural network approach
(the blue/red dots) agree well with the exact solutions by finite difference methods (black
lines). We note that small fluctuations exist for the computed spacetime deltas (right
subfigures), especially near the strike price K = 100. This is expected, as the deltas of the

(i) 7-dimensional geometric average call option

x0
i

spacetime price u(x, t) spacetime derivative ∂u
∂s′ (s

′, t)
absolute error percent error absolute error percent error

90 0.0688 1.2% 0.0102 3.3%
100 0.0545 0.54% 0.0102 2.3%
110 0.0450 0.29% 0.0092 1.6%

(ii) 13-dimensional geometric average call option

x0
i

spacetime price u(x, t) spacetime derivative ∂u
∂s′ (s

′, t)
absolute error percent error absolute error percent error

90 0.0540 0.94% 0.0101 3.3%
100 0.0475 0.48% 0.0106 2.4%
110 0.0465 0.30% 0.0093 1.6%

(iii) 20-dimensional geometric average call option

x0
i

spacetime price u(x, t) spacetime derivative ∂u
∂s′ (s

′, t)
absolute error percent error absolute error percent error

90 0.0567 1.00% 0.0115 3.7%
100 0.0455 0.46% 0.0111 2.5%
110 0.0397 0.26% 0.0090 1.6%

(iv) 100-dimensional geometric average call option

x0
i

spacetime price u(x, t) spacetime derivative ∂u
∂s′ (s

′, t)
absolute error percent error absolute error percent error

90 0.0534 0.96% 0.0117 3.8%
100 0.0458 0.47% 0.0107 2.4%
110 0.0480 0.31% 0.0099 1.7%

Table 6.6: Multi-dimensional geometric average call options: Spacetime prices and deltas
(in terms of absolute and percent errors) computed by our proposed method.
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100-dimensional geometric average call option
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Figure 6.6: 100-dimensional geometric average call option: Prices (left subfigures) and
deltas (right subfigures) computed by the proposed neural network approach at t =0.5, 1.0,
1.5. The blue/red dots are neural network output values of the exercised/continued sample
points. The black lines are the exact solutions computed by finite difference methods.
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payoff functions are discontinuous at the strike price. Smoothing the payoff, as described
in Section 6.4.3, can mitigate this issue, although it does not eliminate the fluctuations.

Example 6.4 (Comparison between our proposed method and the method in [142]). First
we compare the computed prices at t = 0; see Table 6.7. Up to 200 dimension is tested.
In particular, by comparing the last two columns of the table, we observe that the percent
errors computed by our method are bounded by 0.17%, while the ones computed by [142]
are bounded by 0.22%.

Next we compare the computed spacetime prices by the two approaches. Figure 6.7
compares the absolute errors of the spacetime prices. To plot the figure, we start with
(x0, t0) = (K, 0) and use the SDE (6.14)-(6.15) to generate sample points on the entire
spacetime, i.e., {(Xn

m, t
n) |n = 0, ..., N ;m = 1, ...,M}. We compute the error at each

sample point, e(Xn
m, t

n) ≡ |u(Xn
m, t

n) − uexact(X
n
m, t

n)|. Then we project {e(Xn
m, t

n)}
from (d + 1)-dimensional to 2-dimensional space and get the sample points {e(s′nm, tn)},
where s′nm is the geometric average of Xn

m. From the discrete data points {e(s′nm, tn)},
we use interpolation to obtain a continuous error function e(s′, t) and represent it by a
heatmap (also known as filled contour plot), where the x and y axes are the time t and
the geometric average s′, and the color represents the magnitude of e(s′, t). The red, green
and blue areas represent the areas where the samples have large, median and small errors,
respectively. The white areas are the areas outside the convex hull of the sampled points,
where no value of e(s′, t) can be interpolated from the sampled {e(s′nm, tn)}. We remark
that this plotting procedure is the same as [142]. Indeed, Figure 6.7(ii) is directly taken
from [142]. In addition, we note that the colored areas of Figure 6.7 (i) and (ii) are not
exactly the same. This is because the points on (or near) the boundary of the convex hull
are only sampled with a small probability and would have a large variation under the two
independent stochastic sampling processes that generate the two subplots.

geometric average call option, x0
i = 100

d
exact price
u(x0, 0)

proposed method method in [142]
computed price u(x0, 0) percent error percent error

3 10.7185 10.7368 0.17% 0.05%
20 10.0326 10.0180 0.15% 0.03%
100 9.9345 9.9187 0.16% 0.11%
200 9.9222 9.9088 0.14% 0.22%

Table 6.7: Multi-dimensional geometric average call options: Computed prices at t = 0,
i.e., u(x0, 0). x0

i = 100. The percent errors reported in Table 1 of [142] are also included
in the last column of this table.
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(i) proposed method (ii) method in [142]
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Fig. 2. Top: Absolute error. Bottom: Percent error. For reference, the price at time 0 is 0.1003 and the solution at time T is max(geometric average of x −
1, 0).

4.4. A high-dimensional free boundary PDE without a semi-analytic solution

We now consider a case of the American option PDE which does not have a semi-analytic solution. The American option 
PDE has the special property that it is possible to calculate error bounds on an approximate solution. Therefore, we can 
evaluate the accuracy of the deep learning algorithm even on cases where no semi-analytic solution is available.

We previously only considered a symmetrical case where ρi, j = 0.75 and σ = 0.25 for all stocks. This section solves a 
more challenging heterogeneous case where ρi, j and σi vary across all dimensions i = 1, 2, . . . , d. The coefficients are fitted 
to actual data for the stocks IBM, Amazon, Tiffany, Amgen, Bank of America, General Mills, Cisco, Coca-Cola, Comcast, Deere, 
General Electric, Home Depot, Johnson & Johnson, Morgan Stanley, Microsoft, Nordstrom, Pfizer, Qualcomm, Starbucks, and 
Tyson Foods from 2000–2017. This produces a PDE with widely-varying coefficients for each of the d2+d

2 second derivative 
terms. The correlation coefficients ρi, j range from −0.53 to 0.80 for i �= j and σi ranges from 0.09 to 0.69.

Let f (t, x; θ) be the neural network approximation. [45] derived that the PDE solution u(t, x) lies in the interval:

u(t, x) ∈ [u(t, x), u(t, x)
]
,

u(t, x) = E

[
g(Xτ )|Xt = x, τ > t

]
,

u(t, x) = E

[
sup

s∈[t,T ]
[
e−r(s−t)g(Xs) − Ms

]]
, (4.6)

where τ = inf{t ∈ [0, T ] : f (t, Xt; θ) < g(Xt)} and Ms is a martingale constructed from the approximate solution f (t, x; θ)

Figure 6.7: 20-dimensional geometric average call options: Heatmaps of the absolute errors
of the computed spacetime prices. (i) absolute error computed by the proposed approach;
(ii) absolute error computed by [142].
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Fig. 2. Top: Absolute error. Bottom: Percent error. For reference, the price at time 0 is 0.1003 and the solution at time T is max(geometric average of x −
1, 0).

4.4. A high-dimensional free boundary PDE without a semi-analytic solution

We now consider a case of the American option PDE which does not have a semi-analytic solution. The American option 
PDE has the special property that it is possible to calculate error bounds on an approximate solution. Therefore, we can 
evaluate the accuracy of the deep learning algorithm even on cases where no semi-analytic solution is available.

We previously only considered a symmetrical case where ρi, j = 0.75 and σ = 0.25 for all stocks. This section solves a 
more challenging heterogeneous case where ρi, j and σi vary across all dimensions i = 1, 2, . . . , d. The coefficients are fitted 
to actual data for the stocks IBM, Amazon, Tiffany, Amgen, Bank of America, General Mills, Cisco, Coca-Cola, Comcast, Deere, 
General Electric, Home Depot, Johnson & Johnson, Morgan Stanley, Microsoft, Nordstrom, Pfizer, Qualcomm, Starbucks, and 
Tyson Foods from 2000–2017. This produces a PDE with widely-varying coefficients for each of the d2+d

2 second derivative 
terms. The correlation coefficients ρi, j range from −0.53 to 0.80 for i �= j and σi ranges from 0.09 to 0.69.

Let f (t, x; θ) be the neural network approximation. [45] derived that the PDE solution u(t, x) lies in the interval:

u(t, x) ∈ [u(t, x), u(t, x)
]
,

u(t, x) = E

[
g(Xτ )|Xt = x, τ > t

]
,

u(t, x) = E

[
sup

s∈[t,T ]
[
e−r(s−t)g(Xs) − Ms

]]
, (4.6)

where τ = inf{t ∈ [0, T ] : f (t, Xt; θ) < g(Xt)} and Ms is a martingale constructed from the approximate solution f (t, x; θ)

Figure 6.8: 20-dimensional geometric average call options: Heatmaps of the percent errors
of the computed spacetime prices. (i) percent error computed by the proposed approach;
(ii) percent error computed by [142].

Figure 6.7(i) shows that the absolute error computed by our proposed approach is
close to zero almost on the entire spacetime domain. The error is slightly larger near
(t, s′/K) ≈ (0.2, 0.7) and bounded by 0.0072. The reason why the error is slightly larger
near t = 0 is that our proposed approach computes the price in a backward manner, and
hence the error may accumulate near t = 0. As a comparison, Figure 6.7(ii) shows that the
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error computed by [142] has a larger error in most of the spacetime domain. In particular,
the error reaches 0.0126 near (t, s′/K) ≈ (2.0, 2.7), which is larger than the upper bound
of our error, 0.0072.

Figure 6.8 compares the heatmaps of the corresponding percent errors. Following [142],
the percent errors are only plotted for the areas where |uexact(s′, t)| > 0.05. Similar to
Figure 6.7, Figure 6.8(i) shows that our proposed approach yields zero error almost every-
where, except that near (t, s′/K) ≈ (0.05, 0.9) the error reaches 5.6%; Figure 6.8(ii) shows
that the approach in [142] results in a larger error, particularly near (t, s′/K) ≈ (2.0, 1.05),
where the error reaches 7.2%.

We emphasize that [142] does not compute deltas, whereas our proposed method does
yield the deltas. Table 6.8 reports the deltas at t = 0 computed by our proposed method.
The percent errors are bounded by 1.3%, and remain approximately the same as the dimen-
sion increases. Our approach also computes spacetime deltas, which has been discussed in
Example 6.3 and is thus skipped here.

Example 6.5 (Delta hedging). We perform delta hedging simulations over the period [0, T ]
with our proposed method. We evaluate the quality of the approach using the distribution

geometric average call option, x0
i = 100

d
exact delta
∇u(x0, 0)

proposed method
computed delta ∇u(x0, 0) percent error

3 (0.1702,· · · ,0.1702) (0.1683,· · · ,0.1683) 1.1%
20 (0.0251,· · · ,0.0251) (0.0248,· · · ,0.0248) 1.2%
100 (0.00502,· · · ,0.00502) (0.00495,· · · ,0.00495) 1.3%
200 (0.00251,· · · ,0.00251) (0.00250,· · · ,0.00250) 0.53%

Table 6.8: Multi-dimensional geometric average call options: Computed deltas at t = 0,
i.e., ∇u(x0, 0). x0

i = 100.

geometric average call option

x0
i

d = 7 d = 13 d = 20 d = 100
mean std mean std mean std mean std

90 -0.0023 0.1788 0.0017 0.1827 -0.0003 0.1877 -0.0021 0.1908
100 -0.0016 0.1159 0.0021 0.1170 -0.0007 0.1184 -0.0010 0.1184
110 -0.0001 0.0757 0.0013 0.0755 0.0005 0.0751 -0.0009 0.0763

Table 6.9: Multi-dimensional geometric average call options: computed means and stan-
dard deviations of the relative P&Ls, subject to 100 hedging intervals.
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Figure 6.9: Multi-dimensional geometric call options: Distributions of the relative P&Ls
computed by the proposed neural network approach, subject to 100 hedging intervals.

of the relative profit and loss [65, 90]:

Relative P&L ≡ e−rTΠT

u(x0, 0)
, (6.54)

where ΠT is the balance of an initially-zero hedging portfolio at the expiry T . For perfect
hedging, the relative P&L should be a Dirac delta function. Due to the discretization of
time, the relative P&L would be close to a normal distribution, where the mean is zero and
the standard deviation is a small value depending on ∆t. We emphasize that the compu-
tation of the relative P&L must use both prices and deltas on the entire spacetime. Hence,
none of the existing methods referenced in this chapter, except our proposed method, are
designed to compute the relative P&L.

Table 6.9 shows the means and the standard deviations of the relative P&Ls for all
the 720000 simulation paths, computed by our proposed method. The reported values are
indeed close to zero. Figure 6.9 illustrates the distributions of the relative P&Ls. The re-
sulting distributions are indeed approximately normal distributions with zero means. These
results confirm the accuracy of the spacetime prices and the spacetime deltas computed
by the proposed method.

6.7.2 Multi-dimensional max and basket options

Multi-dimensional max options and basket options are common in practical applications.
In this section, we report simulation results for these types of options.

162



Example 6.6 (2-dimensional max call option). Consider the 2-dimensional max call option
from Table 3 of [34], where the payoff function is (6.4), and the parameters are ρ = 0.3,
σ = 0.2, r = 0.05, δ = 0.1, T = 1. The reason to consider this example is that the exact
prices and deltas are available spacetime-wise. More specifically, we approximate the exact
prices and deltas by the Crank-Nicolson finite difference method with 1000 timesteps and

2-dimensional max call option

x0
i

exact price
u(x0, 0)

proposed method Longstaff-Schwartz
computed price

u(x0, 0)
percent
error

computed price
u(x0, 0)

percent
error

90 4.2122 4.1992 0.31% 4.1748 0.89%
100 9.6333 9.6080 0.26% 9.5646 0.71%
110 17.3487 17.3313 0.10% 17.2751 0.42%

Table 6.10: 2-dimensional max call option: Computed prices at t = 0, i.e., u(x0, 0).

2-dimensional max call option

x0
i

exact delta
∇u(x0, 0)

proposed method Longstaff-Schwartz
computed delta ∇u(x0, 0) percent error percent error

90 (0.2062, 0.2062) (0.2025, 0.2019) 1.9% 5.2%
100 (0.3338, 0.3338) (0.3300, 0.3324) 0.84% 4.4%
110 (0.4304, 0.4304) (0.4252, 0.4277) 0.96% 3.3%

Table 6.11: 2-dimensional max call option: Computed deltas at t = 0, i.e., ∇u(x0, 0).

2-dimensional max call option

x0
i

spacetime price u(x, t) spacetime delta ∇u(x, t)
absolute error percent error absolute error percent error

90 0.0563 1.3% 0.0155 4.9%
100 0.0828 0.85% 0.0180 3.4%
110 0.0678 0.39% 0.0207 3.0%

Table 6.12: 2-dimensional max call option: Spacetime prices and deltas (in terms of
absolute and percent errors) computed by our proposed method.

2-dimensional max call option
s0
i proposed method Longstaff-Schwartz

90 0.93 0.74
100 0.95 0.76
110 0.94 0.79

Table 6.13: 2-dimensional max call option: The f1-score of the exercise boundary classifi-
cation.
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2-dimensional max call option

s0
i

finite difference proposed method
mean std mean std

90 0.0025 0.1683 0.0022 0.1932
100 0.0014 0.0894 0.0016 0.0990
110 0.0011 0.0544 0.0016 0.0614

Table 6.14: 2-dimensional max call option: Means and standard deviations of the relative
P&Ls by finite difference versus by the proposed method, subject to 100 hedging intervals.

2049×2049 space grid points. Hence, we can again benchmark the values computed by our
approach with the exact ones.

Using our proposed method, the percent errors of the computed prices at t = 0 are less
than 0.31% (Table 6.10); the percent errors of the computed deltas at t = 0 are less than
1.9% (Table 6.11). These errors are smaller than the corresponding ones computed by the
Longstaff-Schwartz method. In addition, the percent errors of the computed spacetime
prices and deltas are less than 1.3% and 4.9% (Table 6.12).

Here we also compare the exercise boundary computed by the proposed approaches with
the one computed by the Longstaff-Schwartz method. Table 6.13 shows that the f1-scores
computed by our proposed method are around 0.94, higher than the ones computed by
the Longstaff-Schwartz algorithm (around 0.76). Figure 6.10 plots the exercise boundaries
at the time slices t = 0.75 and 0.5. Similar to Figure 6.5, here the misclassified sample
points are highlighted by dark cross markers, and we observe again that the proposed neural
network approach has fewer misclassified points than the Longstaff-Schwartz method. Both
Table 6.13 and Figure 6.10 illustrate a more accurate exercise boundary determined by our
proposed method than by the Longstaff-Schwartz method.

In addition, we compute the relative P&Ls by the finite difference method7 and com-
pare them with the values computed by our approach. Table 6.14 and Figure 6.11 show
the means, standard deviations and the distributions of the relative P&Ls computed by
the proposed approach versus by finite difference methods. The results computed by the
proposed approach are similar to the ones computed by finite difference methods. This
again verifies the accuracy of the spacetime prices and deltas computed by our proposed
algorithm.

Example 6.7 (5-dimensional max call option). We study the 5-dimensional max call
option from Table 3.5 of [64], where ρi,j = 0, σ = 0.2, r = 0.05, δ = 0.1, T = 3. We note

7We note that even though finite difference methods yield nearly exact spacetime prices and deltas, due
to the finite number of hedging intervals, the resulting relative P&Ls are not a Dirac delta distribution.
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that unlike the previous experiments, here the exact solutions are not available. Table
6.15 reports the option prices and deltas at t = 0 computed by the proposed method.
The table also includes the Longstaff-Schwartz prices reported in [64]. The prices given by
the proposed algorithm and the Longstaff-Schwartz method differ by 10−2. We note that
the Longstaff-Schwartz method is a low-biased method due to its sub-optimal computed
exercise boundary, as explained in [117, 64]. The proposed algorithm gives slightly higher

2-dimensional max call option
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Figure 6.10: 2-dimensional max call option: Comparison of exercise boundaries between
the proposed neural network approach (top left and bottom left) and the Longstaff-
Schwartz approach (top right and bottom right). Only the time slices of t =0.75 and
0.5 are plotted. The meaning of blue and red markers are the same as in Figure 6.5.
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Figure 6.11: 2-dimensional max call option: Comparison of the distributions of the relative
P&Ls computed by the proposed neural network approach (blue) versus by finite difference
method (red), subject to 100 hedging intervals.

5-dimensional max call option

x0
i

computed price u(x0, 0) computed delta ∇u(x0, 0)
by proposed methodproposed method Longstaff-Schwartz

90 16.8896 16.76 (0.1728, 0.1732, 0.1747, 0.1754, 0.1738)
100 26.4876 26.28 (0.2017, 0.2004, 0.1998, 0.2071, 0.2041)
110 37.0996 36.89 (0.2157, 0.2198, 0.2190, 0.2149, 0.2202)

Table 6.15: 5-dimensional max call option: Computed prices and deltas at t = 0, i.e.,
u(x0, 0) and ∇u(x0, 0). The column “Longstaff-Schwartz” is the Longstaff-Schwartz prices
reported in [64].

prices.

Example 6.8 (50-dimensional basket call option). As the final example, we consider the
50-dimensional basket call option from Section 3.2.2 of [75], where ρi,j = 0.3026, σ = 0.2,
r = 0.03, δ = 0.07, T = 0.5. We note that the exact solutions (including both prices and
deltas) are unavailable. The price at t = 0, or more precisely, u(110, 0), reported in [75],
is 9.7. Our proposed algorithm yields 9.9774, which is close to the value in [75]. We note
that, unlike [75], our proposed algorithm also yields the delta at t = 0, the spacetime price
and the spacetime delta. For the interested readers, the delta ∇u(110, 0) computed by our
method is a length-50 vector, where all the entries are approximately equal, and where the
mean and the standard deviation of the entries are 0.0200 and 1.95× 10−4, respectively.
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6.7.3 Computational cost

We compare the computational time of the proposed neural network algorithm with the
Longstaff-Schwartz method; see Table 6.16. We note that the computation of the proposed
algorithm is split across 4 GPUs. When d ≥ 50, we note that, as the dimension doubles, the
computational time is slightly more optimal than a four-fold increase. This agrees with the
theoretical O(Md2) computational time analyzed in Section 6.4.5. When d ≤ 50, we note
that the computational time is close to constant. This is due to the fixed computational
costs including the constructions of network graphs, and the communication among CPUs
/ GPUs, etc.

As a comparison, the computational time of the Longstaff-Schwartz method grows at a
higher rate as the dimension increases. This is due to the O(Md8) computational time when
the monomial basis is degree-4 (χ = 4). When d ≥ 20, the proposed algorithm outper-
forms the Longstaff-Schwartz method. In particular, when d ≥ 50, the Longstaff-Schwartz
method fails due to the out-of-memory error, while the proposed algorithm succeeds in the
evaluation.

d 1 7 13 20 50 100 200
Proposed method 9515 10119 10571 10918 13273 24960 74449

Longstaff-Schwartz 22 310 2299 30057 OOM OOM OOM

Table 6.16: Comparison of the computational time (seconds) between the proposed neural
network method and the Longstaff-Schwartz method. For the Longstaff-Schwartz method,
the computation fails for d =50, 100, 200 due to the OOM (out-of-memory) error.

6.8 Conclusion

We propose a neural network framework for high-dimensional American option problems.
Our algorithm minimizes the residual of the backward stochastic differential equation that
couples both prices and deltas. The neural network is designed to learn the differences
between the price functions of the adjacent timesteps. We improve the algorithm by various
techniques, including feature selection, weight reuse, redefining training input un+1, etc.
The proposed algorithm yields not only the prices and deltas at t = 0, but also the prices
and deltas on the entire spacetime. The cost of the proposed algorithm grows quadratically
with the dimension d, which mitigates the curse of dimensionality. In particular, our
algorithm outperforms the Longstaff-Schwartz algorithm when d ≥ 20.
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Chapter 7

Conclusion

This thesis proposes multiple numerical methods for solving HJB equations with appli-
cations in mean field games, image registration and American options. First, Chapters
2-5 study HJB equations where the spatial dimension is less than three. Our approach to
solving such HJB equations involves discretization of PDEs, applying nonlinear solvers for
discretized systems, and speeding up nonlinear solvers.

An appropriate discretization is critical for a discrete solution to converge towards
the continuous viscosity solution of an HJB equation. When an HJB equation contains
cross derivatives, we propose a mixed discretization. Furthermore, we prove that the
mixed discretization is consistent, stable, monotone, and fulfills the strong comparison
principle, and hence converges to the viscosity solution. We demonstrate the optimal
O(h2) convergence rate of the mixed scheme, which is a significant improvement over the
pure semi-Lagrangian scheme.

Discretization gives rise to nonlinear discretized systems. In general, we use policy
iteration to solve the systems. Depending on applications, the solver may require some
adaptations. For instance, in mean field games, where a backward HJB equation is cou-
pled with a forward KFP equation, we consider a spacetime nonlinear solver; in image
registration, where the HJB differential operator is no longer linear under a fixed control
and where Jacobians become singular due to our periodic boundary condition, we propose
using the Levenberg-Marquardt algorithm.

In order to speed up solving the nonlinear discretized systems, we proposed various
multigrid methods. The proposed multigrid methods belong to either global linearization
methods or FAS methods. Under the spacetime formulation, we propose hybrid full and
semi coarsening strategy. In the presence of convection, we propose subtracting artificial
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viscosity from the direct discretization coarse grid operators, which yields a more precise
coarse grid estimated error. In the presence of wide stencil discretization, we propose
keeping wide stencil points as coarse grid points and using injection as the restriction.
Multiple numerical simulations demonstrate that our multigrid methods achieve mesh-
independent convergence rates, and faster convergence rates than existing approaches in
the literature. In addition, numerical simulations suggest that, if an FAS scheme can be
successfully devised, it converges faster than the corresponding global linearization method,
since the FAS only involves one layer of iteration (as opposed to the global linearization’s
outer-inner iteration).

Furthermore, in Chapter 6, we study high-dimensional HJB equations, where conven-
tional discretization approaches suffer from the curse of dimensionality. Our approach is to
use a neural network formulation. We propose minimizing the residual norm of an equiva-
lent BSDE rather than the residual norm of an HJB equation itself, which avoids the cost
of Hessian tensors. We devise a novel architecture of neural network, which utilizes domain
knowledge of American option problems. As a result, our approach simultaneously and ac-
curately computes the solution and its gradient, i.e., the price and the delta of an American
option, on the entire spacetime; and, our approach addresses the curse of dimensionality.
Numerical simulations show that our proposed approach solves American option prices and
deltas in as high as 200 dimension, whereas the state-of-the-art Longstaff-Schwartz method
fails to solve the problems due to the out-of-memory error and the worse-than-quadratic
cost when d ≥ 20. These demonstrate the capability of neural network formulation for
solving high-dimensional HJB equations.

This thesis has several unexplored and unresolved issues concerning numerical solution
of HJB equations. We summarize them below as potential future works.

Regarding discretization of HJB equations, the mixed scheme proposed in Chapter 3
could be potentially extended to higher dimensional cases. Assuming that the dimen-
sion is d, the idea is to parameterize the control of the HJB equation (3.9) as Σ(x) =
Q(x)Λ(x)Q(x)T , where Q(x) ∈ SO(d) and Λ(x) is a trace-1 non-negative diagonal ma-
trix. Then the standard 7-point stencil discretization can be applied if Σ(x) is weakly
diagonal dominant, and the semi-Lagrangian wide stencil discretization is applied other-
wise. Such extension is still yet to be experimented with numerically.

Regarding multigrid methods for solving HJB equations, two aspects could be improved.
One is that the artificial viscosity coarse grid operator proposed in Chapter 2 is efficient
under the assumption that ( |c1|h

σ
, |c2|h

σ
) are not much larger than 1. This may not hold if

the convection is extremely large or if the diffusion is extremely small. In Example 2.2,
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we have seen that applying W-cycle on the coarsest grids is a good remedy in practice.
However, it is desirable to find a more elegant solution, where V-cycle can be applied
on the coarsest grids and still yields an effective multigrid scheme. The other potential
aspect of improvement is that Chapter 4 has only proposed a global linearization multigrid
method for wide stencil discretization. Developing an FAS scheme for wide stencils is more
challenging, but could potentially achieve faster convergence.

Regarding the application of image registration, there are two major limitations of the
mass transport model. One is that the morphing effect may misinterpret the physics of the
deformation in some applications, although the morphing effect is an intrinsic component
of the mass transport model [123]. The other limitation is that the mass transport model
does not recover rotation globally, although it recovers rotation locally. The reason is that
a transformation field of the form φ∗ = ∇u must be curl-free, while a global rotation is
not curl-free. Addressing these two limitations would require a fundamental modification
of the mass transport model. The objective of this thesis is to develop numerical schemes
for the mass transport model, rather than to do modelling. Hence, modifying the mass
transport model is beyond the scope of this thesis. Nevertheless, a future work is to propose
modification of the mass transport model, such as incorporating ideas from [86, 123, 41].
In addition, if a modified model is proposed, it would be interesting to develop efficient
numerical schemes.

Regarding the neural network framework for solving high-dimensional HJB equations,
we note that the computational cost of the proposed framework in Chapter 6 is quadratic
(rather than linear) in the number of the timesteps N , even though a mitigation is proposed
in Section 6.4.5. Consequentially, the framework can still be expensive when N is large.
A potential future work is to re-design the architecture of the neural network in order to
eliminate this drawback.

Last but not least, we would like to mention a booming application of HJB equa-
tions - reinforcement learning [148]. Reinforcement learning, together with supervised and
unsupervised learning, are the three most fundamental categories of machine learning.
Reinforcement learning is widely applied in robotic control, natural language processing,
games, economics, etc. In particular, reinforcement learning is deemed as the key to the
realization of Artificial Intelligence. It turns out that many reinforcement learning prob-
lems in continuous spacetime can be formulated as HJB equations [57, 149]. Solving HJB
equations for reinforcement learning problems is a promising research field.
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[24] Klaus Böhmer. On finite element methods for fully nonlinear elliptic equations of
second order. SIAM J. Numer. Anal., 46(3):1212–1249, 2008.

[25] Olivier Bokanowski, Stefania Maroso, and Hasnaa Zidani. Some convergence results
for Howard’s algorithm. SIAM J. Numer. Anal., 47(4):3001–3026, 2009.

[26] Bruno Bouchard and Xavier Warin. Monte-Carlo valuation of American options:
facts and new algorithms to improve existing methods. In Numerical methods in
finance, volume 12 of Springer Proc. Math., pages 215–255. Springer, Heidelberg,
2012.

[27] A. Brandt and I. Yavneh. On multigrid solution of high-Reynolds incompressible
entering flows. J. Comput. Phys., 101(1):151–164, 1992.

[28] Achi Brandt. Multi-level adaptive solutions to boundary-value problems. Math.
Comp., 31(138):333–390, 1977.

[29] Susanne C. Brenner, Thirupathi Gudi, Michael Neilan, and Li-yeng Sung. C0

penalty methods for the fully nonlinear Monge-Ampère equation. Math. Comp.,
80(276):1979–1995, 2011.

[30] Alberto Bressan. Noncooperative differential games. Milan J. Math., 79(2):357–427,
2011.

[31] Luis Briceño-Arias, Dante Kalise, Ziad Kobeissi, Mathieu Laurière, Álvaro Mateos
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[111] Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Jpn. J. Math.,
2(1):229–260, 2007.

[112] Peter Lax and Burton Wendroff. Systems of conservation laws. Comm. Pure Appl.
Math., 13:217–237, 1960.

[113] Coenraad Cornelis Willem Leentvaar. Pricing multi-asset options with sparse grids.
2008.

[114] Kenneth Levenberg. A method for the solution of certain non-linear problems in
least squares. Quart. Appl. Math., 2:164–168, 1944.

[115] Jessey Lin. Wide stencil for the Monge-Ampère equation. Techni-
cal report, University of Waterloo master essay, supervised by Justin WL
Wan, available on https://uwaterloo.ca/computational-mathematics/sites/

ca.computational-mathematics/files/uploads/files/cmmain1.pdf, 2014.

[116] Pierre-Louis Lions. Hamilton-Jacobi-Bellman equations and the optimal control of
stochastic systems. In Proceedings of the International Congress of Mathematicians,
Vol. 1, 2 (Warsaw, 1983), pages 1403–1417. PWN, Warsaw, 1984.

180

https://uwaterloo.ca/computational-mathematics/sites/ca.computational-mathematics/files/uploads/files/cmmain1.pdf
https://uwaterloo.ca/computational-mathematics/sites/ca.computational-mathematics/files/uploads/files/cmmain1.pdf


[117] Francis A. Longstaff and Eduardo S. Schwartz. Valuing American options by simula-
tion: a simple least-squares approach. The review of financial studies, 14(1):113–147,
2001.

[118] K Ma and Peter A. Forsyth. An unconditionally monotone numerical scheme for the
two factor uncertain volatility model. Preprint, 2014.

[119] JB Antoine Maintz and Max A Viergever. A survey of medical image registration.
Medical image analysis, 2(1):1–36, 1998.

[120] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear pa-
rameters. J. Soc. Indust. Appl. Math., 11:431–441, 1963.

[121] Jan Modersitzki. FAIR: flexible algorithms for image registration, volume 6 of Fun-
damentals of Algorithms. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2009.

[122] Kevin P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[123] Oleg Museyko, Michael Stiglmayr, Kathrin Klamroth, and Günter Leugering. On
the application of the Monge-Kantorovich problem to image registration. SIAM J.
Imaging Sci., 2(4):1068–1097, 2009.

[124] Artem Napov and Yvan Notay. An algebraic multigrid method with guaranteed
convergence rate. SIAM journal on scientific computing, 34(2):A1079–A1109, 2012.

[125] Yvan Notay. An aggregation-based algebraic multigrid method. Electron. Trans.
Numer. Anal., 37:123–146, 2010.

[126] Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-
Ampère equation and functions of the eigenvalues of the Hessian. Discrete Contin.
Dyn. Syst. Ser. B, 10(1):221–238, 2008.

[127] Vladimir I. Oliker and Laird D. Prussner. On the numerical solution of the equation
(∂2z/∂x2)(∂2z/∂y2) − ((∂2z/∂x∂y))2 = f and its discretizations. I. Numer. Math.,
54(3):271–293, 1988.

[128] Stanley Osher and Chi-Wang Shu. High-order essentially nonoscillatory schemes for
Hamilton-Jacobi equations. SIAM J. Numer. Anal., 28(4):907–922, 1991.

[129] Maziar Raissi. Forward-backward stochastic neural networks: Deep learning of high-
dimensional partial differential equations. arXiv preprint arXiv:1804.07010, 2018.

181



[130] Christoph Reisinger and Julen Rotaetxe Arto. Boundary treatment and multigrid
preconditioning for semi-Lagrangian schemes applied to Hamilton-Jacobi-Bellman
equations. arXiv preprint arXiv:1605.04821, 2016.

[131] Christoph Reisinger and Jan Hendrik Witte. On the use of policy iteration as an
easy way of pricing American options. SIAM J. Financial Math., 3(1):459–478, 2012.

[132] Christoph Reisinger and Gabriel Wittum. Efficient hierarchical approximation of
high-dimensional option pricing problems. SIAM J. Sci. Comput., 29(1):440–458,
2007.

[133] Sander Rhebergen, Bernardo Cockburn, and Jaap J. W. van der Vegt. A space-time
discontinuous Galerkin method for the incompressible Navier-Stokes equations. J.
Comput. Phys., 233:339–358, 2013.
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Appendices

A.1 Pseudo-code for Multigrid Cycles

Denote a linear system arising from discretization of an elliptic PDE as

Ahuh = bh. (A.1)

Then multigrid cycles for the linear system is described in Algorithm A.1.

Denote a nonlinear system arising from discretization of an elliptic PDE as

Nh(uh) = 0. (A.2)

Then multigrid cycles for the nonlinear system is described in Algorithm A.2.

A.2 Timestepping for HJB/KFP Systems Arising from

Mean Field Games

For the HJB/KFP system (2.11)-(2.12), timestepping needs to be implemented as a for-
ward/backward fixed point iteration, where each iteration consists of two steps: One step
is to start with an initial guess of mh on the entire spacetime Ω× [0, T ], fix mh and solve
the HJB equation (2.11) for uh and c∗h by backward timestepping; the other step is to fix
c∗h and solve the KFP equation (2.12) for mh by forward timestepping. This iteration is
described in Algorithm A.3.

Line 6 of Algorithm A.3 requires solving discretized HJB equations on each timestep.
One may consider using policy iteration; see Algorithm 1.1. We leave the implementation
details to interested readers.
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Algorithm A.1 Multigrid method for linear discretized system Ahuh = bh

1: Start with an initial guess u
(0)
h .

2: for k = 1, 2, ... until convergence do
3: u

(k+1)
h = MGCYC (Ah, u

(k)
h , bh, γ, ν1, ν2). See below for the subroutine “MGCYC”.

4: end for

subroutine u
(k+1)
h = MGCYC (Ah, u

(k)
h , bh, γ, ν1, ν2)

5: Perform ν1 pre-smoothings (e.g. Gauss-Seidel iterations) on Ahuh = bh, which up-

dates the solution u
(k)
h → ū

(k)
h .

6: Compute the residual: rh = bh − Ahū(k)
h .

7: Define a coarsening strategy h→ 2h.
8: Restrict the residual: r2h = Rhrh, where Rh is a restriction operator.
9: Construct A2h by either the direct discretization of a PDE with mesh size 2h, or

the Petrov-Galerkin coarse grid operator A2h = RhAhPh.
10: if on the coarsest grid then
11: Solve A2he2h = r2h for the coarse grid estimated error e2h using Gaussian elimination.
12: else
13: Solve A2he2h = r2h for e2h approximately using γ-time recursions of
14: e2h = MGCYC (A2h, 0, r2h, γ, ν1, ν2).
15: end if
16: Interpolate the estimated error: eh = Phe2h, where Ph is an interpolation operator.
17: Correct the fine grid solution: ũ

(k)
h = ū

(k)
h + eh.

18: Perform ν2 post-smoothings on Ahuh = bh, which updates the solution ũ
(k)
h → u

(k+1)
h .
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Algorithm A.2 FAS multigrid method for nonlinear discretized system Nh(uh) = 0

1: Start with an initial guess u
(0)
h .

2: for k = 1, 2, ... until convergence do
3: u

(k+1)
h = FASCYC (u

(k)
h , 0, γ, ν1, ν2). See below for the subroutine “FASCYC”.

4: end for

subroutine u
(k+1)
h = FASCYC (u

(k)
h , bh, γ, ν1, ν2)

5: Construct the nonlinear system Nh(uh) = bh, where Nh is the direct discretization of
a PDE with mesh size h.

6: Perform ν1 pre-smoothings (e.g. nonlinear Gauss-Seidel iterations) on Nh(uh) = bh,

which updates the solution u
(k)
h → ū

(k)
h .

7: Compute the residual: rh = bh −Nh(ū(k)
h ).

8: Define a coarsening strategy h→ 2h.
9: Inject the solution: ū

(k)
h → ū

(k)
2h .

10: Restrict the residual: r2h = Rhrh, where Rh is a restriction operator.
11: Construct the coarse grid nonlinear operator N2h using the direct discretization of

a PDE with mesh size 2h.
12: Construct the coarse grid right hand side: b2h = N2h(ū

(k)
2h ) +Rhrh.

13: if on the coarsest grid then
14: Solve N2h(û

(k)
2h ) = b2h for û

(k)
2h using nonlinear iterative solvers (e.g. nonlinear Gauss-

Seidel iteration, policy iteration).
15: else
16: Solve N2h(û

(k)
2h ) = b2h for û

(k)
2h approximately using γ-time recursions of

17: û
(k)
2h = FASCYC (ū

(k)
2h , b2h, γ, ν1, ν2).

18: end if
19: Compute the coarse grid estimated error: e2h = û

(k)
2h − ū

(k)
2h .

20: Interpolate the estimated error: eh = Phe2h, where Ph is an interpolation operator.
21: Correct the fine grid solution: ũ

(k)
h = ū

(k)
h + eh.

22: Perform ν2 post-smoothings on Nh(uh) = bh, which updates the solution ũ
(k)
h →

u
(k+1)
h .
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Algorithm A.3 Forward/backward timestepping fixed point iteration for solving (2.11)-
(2.12)

1: Use the initial condition in (2.4) to construct m0
h.

2: Start with an initial guess (mn
h)(0) for n = 1, · · · , nt.

3: Use the terminal condition in (2.1) to construct unth .
4: for k = 1, 2, ... until convergence do
5: for n = nt − 1, · · · , 1, 0 do
6: Solve the discretized HJB equations

AnHJB((cnh)(k))(unh)(k) = 1
∆t
· (un+1

h )(k) + L((cnh)(k)) + Φ((mn
h)(k−1)),

subject to (cnh)(k) ≡ arg max
cnh∈R

2nxny

{
AnHJB(cnh)(unh)(k) − L(cnh)

}
,

for the unknowns (unh)(k) and (cnh)(k).
7: end for
8: for n = 1, 2, · · · , nt do
9: Solve the discretized KFP equations

AnKFP ((cnh)(k))(mn
h)(k) = 1

∆t
· (mn−1

h )(k) for the unknown (mn
h)(k).

10: end for
11: end for
12: Convergent solution: unh = (unh)(k), mn

h = (mn
h)(k), (c∗)nh = (cnh)(k), for n = 0, · · · , nt.

A.3 Two-grid Analysis for the KFP Equation (2.36)

Following [156], the Fourier symbols of the differential operator of (2.36), the interpolation
operators and the restriction operators are

L̃h(κ) =
(
1 + σ∆t

h2

(
4 + c1h

σ
+ c2h

σ

))
− σ∆t

h2

(
1 + c1h

σ

)
e−iκ1 − σ∆t

h2

(
1 + c2h

σ

)
e−iκ2

−σ∆t
h2
eiκ1 − σ∆t

h2
eiκ2 − e−iκ0 .

Ĩh2h(κ) =

{
1
8

(1 + cosκ1) (1 + cosκ2) (1 + cosκ0) , full coarsening;
1
4

(1 + cosκ1) (1 + cosκ2) , semi coarsening.
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Ĩ2h
h (κ) =



1
8

(1 + e−iκ0)
(

1 + eiκ1

1+exp(σ−1
1 c1h)

+ e−iκ1

1+exp(−σ−1
1 c1h)

+ eiκ2

1+exp(σ−1
2 c2h)

+ e−iκ2

1+exp(−σ−1
2 c2h)

+ ei(κ1+κ2)

1+exp(σ−1
1 c1h+σ−1

2 c2h)
+ e−i(κ1+κ2)

1+exp(−σ−1
1 c1h−σ−1

2 c2h)

)
,

full coarsening;
1
4

(
1 + eiκ1

1+exp(σ−1
1 c1h)

+ e−iκ1

1+exp(−σ−1
1 c1h)

+ eiκ2

1+exp(σ−1
2 c2h)

+ e−iκ2

1+exp(−σ−1
2 c2h)

+ ei(κ1+κ2)

1+exp(σ−1
1 c1h+σ−1

2 c2h)
+ e−i(κ1+κ2)

1+exp(−σ−1
1 c1h−σ−1

2 c2h)

)
,

semi coarsening.

Now we are ready to construct the Fourier symbol of the two-grid operator. Given a low

frequency mode κ000 ≡ κ ∈
[
−π

2
, π

2

)3
, we define an 8-dimensional space: span{ϕh,∆t(κα; ·) :

α = (α1, α2, α0), α1, α2, α0 ∈ {0, 1} }, where κα ≡ κ000−(α1sign(κ1), α2sign(κ2), α0sign(κ0))·
π. This 8-dimensional space is called 2h-harmonics. The significance of the 2h-harmonics
is that it is invariant under the two-grid operator M2h

h . In the 2h-harmonics, the two-grid
operator is given by an 8× 8 matrix

M2h
h (κ) ≡ (Sh(κ))ν2

[
Ih − Ih2h(κ)(L2h(2κ))−1I2h

h (κ)Lh(κ)
]

(Sh(κ))ν1 ,

where Ih ∈ R8×8 is an identity matrix, Lh(κ) ∈ C8×8 is a diagonal matrix consisting of
{L̃h(κα)}, Sh(κ) ∈ C8×8 is a diagonal matrix consisting of {S̃h(κα)}. For full-coarsening,
the 8-dimensional 2h-harmonics is mapped to a single Fourier mode ϕ2h,2∆t(2κ

000; ·). Hence,
Ih2h(κ) ∈ C8×1 is a column matrix consisting of {Ĩh2h(κα)}, I2h

h (κ) ∈ C1×8 is a row matrix
consisting of {Ĩ2h

h (κα)}, and L2h(2κ) ≡ L̃2h(2κ
000) is a 1× 1 matrix. For semi-coarsening,

the 8-dimensional 2h-harmonics is mapped to two Fourier modes {ϕ2h,∆t((2κ1, 2κ2, κ0); ·),
ϕ2h,∆t((2κ1, 2κ2, κ0 − sign(κ0)π); ·)}. Hence, Ih2h(κ), I2h

h (κ) and L2h(2κ) are changed ac-
cordingly into 8×2, 2×8 and 2×2 matrices. We refer readers to [156] for further technical
details.

A.4 Semi-Lagrangian Wide Stencil Discretization

Section 3.4.2 has discussed basic ideas of semi-Lagrangian wide stencil discretization. In
this appendix, we continue the discussion on discretization near the boundary of the com-
putational domain, and provide an explicit demonstration of (at most) 17 stencil points.

If we apply the semi-Lagrangian wide stencil discretization at a grid point xi,j that
is close to the boundary, some of its associated stencil points may fall outside the com-
putational domain Ω. In such case, our solution is to shrink the corresponding stencil
length(s) such that the stencil point(s) are relocated onto the boundary ∂Ω. Without loss

189



of generality, we analyze one scenario, as illustrated in Figure A.1. Let us assume that
xi,j +

√
h(ez)i,j, as represented by the hollow star, falls outside Ω. We truncate the corre-

sponding stencil length from
√
h to η1 along the ez axis, or equivalently, we relocate the

stencil point to xi,j + η1(ez)i,j ∈ ∂Ω, as represented by the black star. In this case, the
finite difference approximation for uzz(xi,j) is replaced by

D+
z D

−
z ui,j ≡

g(xi,j+η1(ez)i,j)−ui,j
η1

−
ui,j−Ihu|xi,j−

√
h(ez)i,j√

h

η1+
√
h

2

, (A.3)

where we have used the Dirichlet boundary condition (3.2), i.e. u(xi,j + η1(ez)i,j) =
g(xi,j + η1(ez)i,j). We note that such procedure can be used whenever xi,j is close to the
boundary and a truncation of stencil is needed.

Section 3.4.2 has mentioned that semi-Lagrangian wide stencil discretization ends up at
most 17 stencil points. To show it explicitly, we label all the 17 stencil points in Figure A.2.
For instance, Ihu|xi,j+√h(ez)i,j

can be written as the linear combination of the unknowns
at the four neighboring points ur1,s1 , ur1+1,s1 , ur1,s1+1 and ur1+1,s1+1, i.e.

Ihu|xi,j+√h(ez)i,j
=

1∑
k=0

1∑
k′=0

pr1+k,s1+k′ · ur1+k,s1+k′ , (A.4)

  

√h

η1

xi , j

xi , j−√h(ez)i , j

xi , j+η1(ez)i , j

xi , j+√h(e z)i , j

Figure A.1: Semi-Lagrangian wide stencil discretization at a grid point xi,j near the
boundary.
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xi , j

xr 1 , s1 xr 1+1 , s1

xr 1 , s1+1 xr 1+1 , s1+1

xr 2 , s2 xr 2+1 , s2

xr 2 , s2+1 xr 2+1 , s2+1

xr 3 , s3 xr 3+1 , s3

xr 3 , s3+1 xr 3+1 , s3+1

xr 4 , s 4 xr 4+1 , s4

xr 4 , s 4+1xr 4+1 , s4+1

xi , j+√h(ez)i , j

xi , j+√h(ew)i , j

Figure A.2: 17-point stencils resulting from semi-Lagrangian wide stencil discretization.

where p denotes the interpolation weights. Then (3.24) can be expanded as

Li,j(ci,j, θi,j;uh) =
2

h
ui,j −

ci,j
h
Ihu|xi,j+√h(ez)i,j

− ci,j
h
Ihu|xi,j−√h(ez)i,j

−1− ci,j
h

Ihu|xi,j+√h(ew)i,j
− 1− ci,j

h
Ihu|xi,j−√h(ew)i,j

+ 2
√
ci,j(1− ci,j)fi,j

=
2

h
ui,j −

1∑
k=0

1∑
k′=0

ci,jpr1+k,s1+k′

h
ur1+k,s1+k′ −

1∑
k=0

1∑
k′=0

ci,jpr3+k,s3+k′

h
ur3+k,s3+k′

−
1∑

k=0

1∑
k′=0

(1− ci,j)pr2+k,s2+k′

h
ur2+k,s2+k′ −

1∑
k=0

1∑
k′=0

(1− ci,j)pr4+k,s4+k′

h
ur4+k,s4+k′

+2
√
ci,j(1− ci,j)fi,j.

(A.5)
As a result, (3.24) has 17 unknowns. We note that if xi,j is near the boundary, then some
of the unknowns can be determined by the Dirichlet boundary condition. As a result, there
will be less than 17 unknowns.

A.5 Regional Optimization in Section 3.5

To explain the details of the regional optimization, consider again a grid point xi,j and its
admissible control set Γ. In Regions Γ1, Γ2, ∂Γ0, ∂Γ13 and ∂Γ23 (see Figure 3.3), where the
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standard 7-point stencil discretization (3.19) is applied, the discretizations of D+
xD

−
x ui,j,

D+
y D

−
y ui,j and (D+

xD
±
y +D−xD

∓
y )ui,j do not depend on the control (ci,j, θi,j). This enables

us to derive a closed-form formula for the optimal controls in these regions using the first
derivative test, which can be evaluated by O(1) operation and introduces no additional
truncation error. More specifically:

Region Γ1. The region is defined where Condition (3.15) is satisfied. Equation (3.19)
gives the objective function in Γ1:

Li,j(ci,j, θi,j) = −σ11(ci,j, θi,j)D
+
xD

−
x ui,j − σ12(ci,j, θi,j)(D

+
xD

+
y +D−xD

−
y )ui,j

−σ22(ci,j, θi,j)D
+
y D

−
y ui,j + 2

√
ci,j(1− ci,j)fi,j,

(A.6)

where we only manifest the dependency of Li,j on the control (ci,j, θi,j). By the first
derivative test, the optimal control in Γ1 is given by

θ∗i,j =
1

2
arctan

(D+
xD

+
y +D−xD

−
y )ui,j

D+
y D

−
y ui,j −D+

xD
−
x ui,j

, (A.7)

c∗i,j =
1

2

1− λi,j√
4fi,j + λ2

i,j

 ,

where λi,j ≡ [D+
xD

−
x ui,j −D+

y D
−
y ui,j] cos 2θ∗i,j − (D+

xD
+
y +D−xD

−
y )ui,j sin 2θ∗i,j.

(A.8)

With a slight abuse of notations, here and for the rest of section, we use (c∗i,j, θ
∗
i,j) to denote

the regional (rather than global) optimal control at xi,j. We note that (c∗i,j, θ
∗
i,j) given by

(A.7)-(A.8) may not necessarily be inside Γ1. If (c∗i,j, θ
∗
i,j) ∈ Γ1, then the maximum in Γ1

must occur at (c∗i,j, θ
∗
i,j). Otherwise, the maximum must occur on the boundary of Γ1, or

more specifically, either ∂Γ0 or ∂Γ13, which will be investigated separately.

Region Γ2. The region is defined where Condition (3.17) is satisfied. The analysis is
similar to Region Γ1.

Region ∂Γ0. This is the line θi,j = 0 which separates Regions Γ1 and Γ2. The analysis
is similar to Region Γ1.

Region ∂Γ13. This is the boundary between Regions Γ1 and Γ3. We note that
∂Γ13 contains two sub-regions: (sign(ci,j − 1/2), sign(θi,j)) = (1,−1) and (sign(ci,j −
1/2), sign(θi,j)) = (−1, 1). The objective function on ∂Γ13 is (A.6). The first derivative
test shows that for each of the two sections of ∂Γ13, the maximum of the objective function
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occurs at

θ∗i,j =
sign(θi,j)

2
arctan

(
1 + γ2

i,j − γi,j
√

2 + γ2
i,j

)
,

where γi,j ≡
sign(ci,j − 1/2)

2
√
fi,j

(
D+
y D

−
y ui,j −D+

xD
−
x ui,j − sign(θi,j)(D

+
xD

+
y +D−xD

−
y )ui,j

)
.

The corresponding c∗i,j, derived from Condition (3.15), is

c∗i,j =
1

2

(
1 +

sign(ci,j − 1/2)√
2 sin(2|θ∗i,j|+ π

4
)

)
.

Region ∂Γ23. This is the boundary between Regions Γ2 and Γ3. The analysis is similar
to Region ∂Γ13.

Region Γ3. The region is defined where neither (3.15) nor (3.17) is satisfied. The
semi-Lagrangian wide stencil discretization (3.24) is applied. Equation (3.24) gives the
objective function in Γ1:

Li,j(ci,j, θi,j) = −ci,j D+
z D

−
z ui,j − (1− ci,j)D+

wD
−
wui,j + 2

√
ci,j(1− ci,j)fi,j. (A.9)

The dependency of the discretization of D+
z D

−
z ui,j and D+

wD
−
wui,j on the control θi,j pre-

vents us from deriving a closed-form formula for θ∗i,j ∈ Γ3. However, we note that the
discretization of D+

z D
−
z ui,j and D+

wD
−
wui,j is independent of the control ci,j, which implies

that a two dimensional bilinear search on the control (ci,j, θi,j) ∈ Γ can be reduced to a
one-dimensional linear search on the single control θi,j ∈ [−π

4
, π

4
).

One can prove that the regional optimal control (c∗i,j, θ
∗
i,j) ∈ Γ3 must sit on the following

parameterized curve

ci,j(θi,j) =


Cλ(θi,j), if Cλ(θi,j) ≤ C−(θi,j) or Cλ(θi,j) ≥ C+(θi,j),

C−(θi,j), if C−(θi,j) ≤ Cλ(θi,j) ≤ 1
2
,

C+(θi,j), if 1
2
≤ Cλ(θi,j) ≤ C+(θi,j).

(A.10)

where

C±(θi,j) ≡
1

2

(
1± 1√

2 sin(2|θi,j|+ π
4
)

)
,

Cλ(θi,j) ≡
1

2

(
1− D+

z D
−
z ui,j −D+

wD
−
wui,j√

4fi,j + (D+
z D

−
z ui,j −D+

wD
−
wui,j)

2

)
, θi,j ∈ [−π

4
,
π

4
).
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We remark that C± is given by Condition (3.15) and (3.17), while Cλ is given by the first
derivative test of (A.9) with respect to ci,j. If we plug in the parameterization (A.10), the
objective function (A.9) becomes a function of the single control variable, i.e.

Li,j(θi,j) ≡ Li,j(ci,j(θi,j), θi,j), θi,j ∈ [−π
4
,
π

4
).

This motivates us to discretize the set [−π
4
, π

4
) into an m-element set, and perform a linear

search for the maximum of the parameterized objective function Li,j(θi,j) over the single
control variable θi,j ∈ [−π

4
, π

4
). The computational cost is thus reduced to O(m).

Once we obtain the six regional optimal controls and their corresponding objective
function values, we search within them for the global optimal control on Γ. This step is
cheap and straightforward.

A.6 Computational Cost of Image Registration

We study the computational complexity of Algorithm 5.1. Algorithm 5.1 can be split
into two parts: (i) corrections of translation kernels (Lines 4–7), and (ii) the primary
nonlinear solver (Lines 8–12). The experiments are implemented by MATLAB, where (ii)
is implemented using MATLAB’s fsolve. We record the CPU time of (i) and (ii) separately.

We first test the computational complexity for Example 5.3 with image sizes of 100×100,
200×200, 400×400 and 800×800. Table A.1 shows that the number of steps for convergence
is roughly a constant 3 as the image size increases. In addition, (ii) takes more time than
(i). The total CPU time for 800× 800 image is around 20 minutes.

We also test the computational time for images of the same size 600×600 across different
examples. Since the amounts of translation across different examples are different, which
is difficult to compare fairly, we skip the comparison of the CPU time for (i). Table A.2
shows that for the examples where the non-rigid deformation components are larger (such
as Example 5.7), the number of steps for convergence and the CPU time for the primary
nonlinear solver are also larger.

A.7 Ensemble of Neural Networks

It is well-known that ensemble learning, which is a combination of the multiple machine
learning models, usually outperforms individual models [80]. Inspired by this, we consider
“ensemble of neural networks” for our neural network formulation in Chapter 6.
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Example Example 5.3

Image size 100× 100 200× 200 400× 400 800× 800

Number of iterations
for convergence

5 3 3 3

CPU time for (i) corrections of
translation kernels in seconds

1.0 4.6 30 259

CPU time for (ii) the primary
nonlinear solver in seconds

3.1 7.3 58 1083

Total CPU time in seconds 4.1 11.9 88 1342

Table A.1: Number of steps for convergence (residual tolerance 10−4), and CPU time for
Example 5.3 with different image sizes.

Example Example 5.3 Example 5.4 Example 5.5 Example 5.6 Example 5.7

Image size 600× 600

Number of iterations
for convergence

3 3 10 10 19

CPU time for (ii) the primary
nonlinear solver in seconds

147 152 668 627 1613

Table A.2: Number of steps for convergence (residual tolerance 10−4), and CPU time for
nonlinear solver for Examples 5.3–5.7 with the same image size of 600× 600.

To describe the details, at each timestep (e.g. the n-th timestep), we construct C
networks {yn(x; Ωn

c ) | c = 1, · · · , C} instead of one network. All the C networks have the
same architecture as defined in Sections 6.4.1-6.4.5. The difference is that their trainable
parameters {Ωn

c | c = 1, · · · , C} are initialized by different set of numbers. Then the C
networks are trained by different input data. To do this, we generate CM input samples
(6.39) with m = 1, · · · , CM , split them into C copies, and then use each copy of the input
samples to train each of the C networks. Consequentially, the trained results of the C
networks are independent of each other, i.e. {(Ωn

c )∗ | c = 1, · · · , C} are distinct from each
other. Then after training, we compute the averages across the ensemble:

yn(x) =
1

C

C∑
c=1

yn(x; (Ωn
c )∗), ∇yn(x) =

1

C

C∑
c=1

∇yn(x; (Ωn
c )∗), (A.11)

for the prices and deltas, respectively. Eventually, we use the ensemble-average prices to
determine the exercise boundary at the n-th timestep by (6.42) before proceeding to the
(n− 1)-th timestep.
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Such ensemble technique yields more precise prices, deltas and thus more precise ex-
ercise boundaries. We note that the computation across different ensembles can be paral-
lelized. In practice, we find that C = 3 is a good choice, in the sense that the accuracy is
improved compared with C = 1 without dramatically increasing computational cost.

A.8 Improving Price and Delta at t = 0

Our neural network formulation proposed in Chapter 6 yields prices and deltas on the entire
spacetime domain. In practical applications, the price and the delta at t = 0, u(x0, 0) and
∇u(x0, 0), are of particular interest. We can extract their values from the trained neural
network at t = 0. Here we discuss how to further improve the accuracy of their values.

Our approach is to use the expectation values of the Monte Carlo paths, subject to the
exercise boundary computed by our neural network formulation. More specifically, given
the m-th path, the trained neural networks determine its stopping time, denoted as τm.
Then the price at t = 0 can be computed by the mean of the discounted payoffs:

u(x0, 0) =
1

CM

CM∑
m=1

e−rτmf(Xm(τm)). (A.12)

Regarding the delta at t = 0, we can use the method in [151], which is an adaptation of
“pathwise derivative method” [33] to American options:

∂u

∂xi
(x0, 0) =

1

CM

CM∑
m=1

(
e−rτm

d∑
j=1

∂f

∂xj
(Xm(τm))

∂(Xj)m
∂(xi)0

)
. (A.13)

When the underlying asset prices evolve under (6.2), we have
∂(Xj)m
∂(xi)0

=
(Xj)m
(xi)0

δij. We note

that the pathwise derivative approach may not be applicable if
∂(Xj)m
∂(xi)0

is not evaluable

(e.g. the underlying asset prices do not evolve under (6.2)) or if the payoff function is
not differentiable. For such non-applicable cases, we can still obtain the deltas from our
trained neural network at t = 0.

Using (A.12)-(A.13) to compute the price and the delta at t = 0 is also observed in
other Monte Carlo style pricing approaches, including the Longstaff-Schwartz algorithm.
However, we emphasize that our approach differs from the others. More specifically, (A.12)-
(A.13) are not computable unless combined with an algorithm that can determine the
exercise boundary on the entire spacetime. In this chapter, our neural network framework

196



is used to determine the exercise boundary before applying (A.12)-(A.13). In Section
6.7, we demonstrate that our neural network formulation yields a more accurate exercise
boundary, and thus more accurate prices and deltas at t = 0, compared to the Longstaff-
Schwartz algorithm.
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