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Abstract

We explore the idea of composing PUFs with the intent that the resultant PUF is
stronger than the constituent PUFs. Prior work has proposed a construction, which sub-
sequent work has shown to be weak. We revisit this prior construction and observe that it
is actually weaker than previously thought when the constituent PUFs are arbiter PUFs.
This weakness is demonstrated via our adaptation of the previously proposed Logistic
Regression (LR) attack. We then propose new constructions called PUFs-composed-with-
PUFs (P◦P ). In particular, we retain a two-layer construction, but allow the same input
to the composite PUF to be input to more than one constituent PUF at the first layer. We
explore this family of constructions, with arbiter PUFs serving as the constituent PUFs. In
particular, we identify several axes which we can vary, and empirically study the resilience
of our constructions compared to the prior construction and one another from the stand-
point of LR attacks. As insight in to why our family of constructions is stronger, we prove,
under some idealized conditions, that the lower-bound on an attacker is indeed higher un-
der our constructions than the upper-bound on an attacker for the prior construction. As
such, our work suggests that composition can be a promising approach to strengthening
PUFs, contrary to what prior work suggests.
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Chapter 1

Introduction

With the advent of Internet-of-Things (IoT) revolution, the number of distributed and
unsupervised mobile computing devices continues to increase, and experts believe there
will be approximately 100 billion connected devices by 2020 [8]. For such wide ranging de-
vices, authentication for counterfeit prevention and secure communication is an important
consideration.

1.1 Physical Unclonable Functions

A Physical Unclonable Function (PUF) is a physical one-way function where the mapping
takes a constant time given the input. However, reverse-engineering the behavior of such
a function given the output is supposed to be computationally difficult. In [4], different
types of PUFs have been implemented using FPGAs. In [18], different types of PUFs are
implemented and evaluated using both FPGAs and 45nm SOI CMOS ASICs. The silicon-
based PUF leverages the process variation during the manufacturing process. Such process
variation uniquely characterizes each of the chips, which appear physically identical at
design time. PUFs have recently been proposed as replacements for non-volatile memories
and on-die fuses that are prone to physical attacks for storing chip identifying digital
signatures and seed generators to other cryptographic functions [13, 14].

Each of the PUF, f : C → R can be regarded as a black-box function. The black-
box function f maps input from C, called challenge, to output in R, called response. The
black-box might accept one or more challenges and produce corresponding responses, which
form a set of challenge-response pairs (CRPs). The set of CRPs is also called the CRP
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space. PUFs can be characterized as strong or weak. The fundamental differences lie in the
number of possible challenges the PUF supports. A strong PUF supports a large number
of challenges so that enumerating all of the CRPs is hard within a limited time. The weak
PUF, on the other hand, may only support a limited number of CRPs and can thus be
used as a secret key without explicit storage [7].

PUF should bear a number of properties. This thesis focus on some of these properties
which are listed as follows [11]:

Properties of PUFs

• Reproducibility: the PUF should ouput the same response for the same challenge.

• Unpredictability: the unobserved responses should be sufficiently random even after
one has observed limited number of CRPs.

• Unclonability: given unlimited access to the PUF, an adversary cannot predict the
response of an unobserved challenge with high probability.

Over the years, several strong PUF architectures have been proposed [7]. However,
most of these PUFs have also been shown to be susceptible to modeling attacks. Through
modeling attacks, an adversary can mimic the behavior of the strong PUF with a high pre-
diction accuracy (around 95% or higher) rendering them ineffective [18, 23]. An interesting
approach proposed in [20] was to compose PUFs such that the resultant PUF offered im-
proved security, which they called composite PUF (CPUF). The central thesis underlying
the approach was that compositions allowed increasing the CRP space while also preserving
the performance properties of the resultant PUF. In a later work, the authors themselves
identified that the CPUF was also susceptible to a two-phase modeling attack [19] called
the cryptanalysis attack (CA-ATK). They showed that CA-ATK, although successful in
modeling CPUF, required an enumeration of a large CRP to conduct the attack. This
thesis aims to answer the following question: is the composition of PUFs still a good way
of designing PUFs?

1.2 Contributions

The contributions of this thesis are as follows:
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• Demonstration of the susceptibility of CPUF composed using ARB-PUFs to an en-
hancement of CA-ATK, which is a previously investigated attack on CPUF. The
enhanced attack is called LR-CA-ATK.

• Demonstration of the effectiveness of LR-CA-ATK on CPUF composed of LWS-PUF
and XOR-PUF.

• A simulation framework for investigating modeling attacks on PUF.

• A theory that characterizes an attacker’s effort needed to fully charactrize a PUF.

• Emprical evaluation demonstrating the effectiveness of incoporating mapping func-
tions in CPUF against machine learning modeling attacks.
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Chapter 2

Background

For a reader to comprehend this work, this chapter provides necessary background informa-
tion including logistic regression, evolutionary strategies, PUF architectures and modeling
attacks.

2.1 Logistic Regression

With the rapid development of computing resources, we are in an age of data. Machine
learning is a set of method that provides an automated way of analyze data. Specifically,
With machine learning methods, a computing machine can learn the patterns in the data
and later predict future data or make decisions based on learned patterns [15]. One type
of machine learning method is the supervised learning. In supervised learning requires a
training set, S = {(xi,yi)}, of pairs of input xi and output yi. This approach aims to
learn the mapping between the input and output so that the prediction on the output of
unseen input data is possible. The evaluation of the of the learning outcome is determined
by the prediction accuracy on a test set T = {(xi,yi)}.

Logistic regression (LR) is a well studied supervised learning method for classification
problem. In its simplest form of a binary classification problem with 2 classes {−1, 1}, the
method aims to learn the probability distribution of the output conditioned on the input
as described in Equation 2.1, where X is a random variable denoting the input x ∈ Rn and
Y is a random variable denoting the output y ∈ {−1, 1}. The model has one parameter
to learn, namely w ∈ Rn. For conciseness, we assume that the last component of vector x
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satisfies x(n) ≡ 1.

ln
Pr(Y = 1|X = x)

Pr(Y = −1|X = x)
= wTx. (2.1)

Equation 2.1 is equivalent to another famous form as described in Equation 2.2:

Pr(Y = y|X = x) = σ(ywTx) =
1

1 + e−(ywTx)
. (2.2)

In Equation 2.2, σ : R → [0, 1] is the S-shaped sigmoid function, which evaluates to 0.5
when x = 0.

The model in Equation 2.1 can be fit by maximum likelihood estimation (MLE). Given
a training set S = {(xi, yi)}, the MLE problem is equivalent to the optimization problem
in Equation 2.3

w = argmin
w

L(S; w) (2.3)

= argmin
w

∑
(xi,yi)∈S

− lnPr(Y = yi|X = xi) (2.4)

= argmin
w

∑
(xi,yi)∈S

− lnσ(yiw
Txi) (2.5)

Equation 2.3 can be solved iteratively by adopting the gradient information of the
log-likelihood in Equation 2.6:

∇L(S; w) =
∑

(xi,yi)∈S

yi(σ(yiw
Txi)− 1)∇wTxi. (2.6)

The application of LR successfully breaks the security of serveral types of PUFs.

2.2 Evolutionary Strategies

Evolutionary strategy (ES) [3] is an optimization technique whose inspiration is from bi-
ology. The ES aims to optimize an objective function F , which takes as input a set of
parameters w. One instance of the objective function and parameter configurations can
be: w ∈ Rn and F : Rn → R, which will be used through out the thesis. The process of
ES introduces a set called population denoted as P , whose elements are called individuals.
An individual ak ∈ P is a tuple: ak = 〈wk, s, F (wk)〉, in which:
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• wk is the parameter of ak,

• sk is the parameter that determines the mutation of ak, and

• F (wk) is the value of the objective function of ak, called fitness in the context of an
individual.

The ES goes through evolutionary cycles, or generation step. Within each of the generation
step g, λ offspring individuals are generated from a set of µ individuals, called parents,
from the population of last generation step, Pg−1. In the process of producing offspring
individuals, µ of the individuals with the best fitness is selected, each is copied λ

µ
times

to form the new population Pg. Such selection strategy is denoted as (µ, λ). After that,
a mutation operator will mutate each individual ak ∈ Pg+1 based on sk and the process
proceeds to generation g+1. As the generation step grows, the individuals will have better
fitness and thus moving to the optimal point of the objective function.

Since ES only requires a parametric model, it has been adopted to break the security
of serveral types of PUFs, which are hard to break with LR.

2.3 Physical Unclonable Functions

Weak PUFs are often used for secret key generation where the CRP requirement is limited.
On the other hand, strong PUFs are used for authentication purposes. As a security mea-
sure, each CRP is used once only. Consequently, when a PUF supports a large number of
CRPs, i.e., is strong, adversaries cannot ascertain them under a constrained time frame [7].
Of course, the underlying function that the PUF realizes must be a random function, or
some close approximation of it, for the PUF to be strong. Otherwise, even if the CRP
space appears large, the PUF cannot be said to be strong, as it can be characterized fully
with fewer CRPs than the size of its domain suggests.

2.3.1 Strong PUF Architectures

Arbiter PUF (ARB-PUF)

Figure 2.1 shows the ARB-PUF [7], which is one of the most investigated strong PUFs.
ARB-PUF has two identical delay paths that race from left to right through n stages of
multiplexers that are driven by the challenge bit. If the Data (D) arrives faster than the
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0

1

1

0

c1

0

1

1

0

c2

...

cn−1

Figure 2.1: In the ARB-PUF architecture, each bit in the challenge controls one of two
group of paths the rising edge goes through [7].

closing edge of the clock, the output (Y) makes a positive transition. An n bit challenge
directs these paths through n multiplexers. The latch at the output acts as an arbiter
selecting the edge arriving early [7]. The n bit challenges result in 2n unique path pairs,
which is also known as the architecture’s CRP space. Throughout the thesis, ARB-PUF(n)
represents an ARB-PUF with n-bit challenge.

XOR arbiter PUF (XOR-PUF)

As a variant of ARB-PUF, XOR-PUF deploys l ARB-PUF(n) in parallel as shown in
Figure 2.2. The same challenge is applied to all ARB-PUFs, and their output is XORed
to produce a one bit response [22]. Throughout the thesis, XOR-PUF(n, l) represents an
XOR-PUF with n-bit challenge and l chains.

Lightweight Secure PUF (LWS-PUF)

Similarly, the light-weight secure PUF (LWS-PUF) [12] was introduced to make it difficult
for an attacker to model its behavior. A light-weight secure PUF also features l ARB-
PUF(n) as shown in Figure 2.3. However, when a challenge is applied, the challenge will
go through an input network. The input network produces different challenges for each of
the ARB-PUF to consume. Finally, the output of each ARB-PUF is XORed to produce
the output of a LWS-PUF. Throughout the thesis, LWS-PUF(n, l) represents a LWS-PUF
with n-bit challenge and l chains.
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ARB − PUF

ARB − PUF

ARB − PUF

c0

c0

c0

c1

c1

c1

c2

c2

c2

...

...

...

cn−1

cn−1

cn−1

Output

Figure 2.2: The XOR-PUF has 3 ARB-PUFs, accepting same challenge.

Feed-forward PUF (FF-PUF)

In feed-forward PUF (FF-PUF) [5], differential output of a multiplexer are fed into another
arbiter which controls a subsequent multiplexer as shown in Figure 2.4.

Throughout the thesis, FF-PUF(n, l) represents a LWS-PUF with n-bit challenge and
l loops.

Composite PUF (CPUF)

Composite PUF (CPUF) [20] presented an approach to design strong PUFs using com-
position of PUFs. An important observation in their work was that PUF compositions
increase the CRP space while preserving important performance properties [20]. Their
work focused on a two-layer composition where the outputs of the first layer are fed as
challenge inputs to the second layer PUF [19]. While their compositions were successful
in increasing the CRP space, the proposers of this approach themselves identified a crypt-
analysis attack (CA-ATK) that successfully modeled the composite PUF [19]. However,
CA-ATK required an enumeration of the entire CRP space to be successful. Through-
out the thesis, CPUF(n,m) represents a CPUF, where Layer 1 PUFs take as input m-bit
challenges and the Layer 2 PUF takes as input n-bit challenges.
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Input Network

ARB − PUF

c0 c1 c2 cn−1

Input Network

ARB − PUF

c1 c2 c3 cn−1

Input Network

ARB − PUF

c2 c3 c4 cn−1

Output

Figure 2.3: The LWS-PUF has 3 ARB-PUFs, accepting different challenges.

Multi-PUF (MPUF)

The multi-PUF (MPUF) [10] is one instantiation of CPUF of 2 layers. In its first layer,
the MPUF uses a weak PUF called PicoPUF [6] to generate a key and XORes it with
a challenge bit. The XORed bits are fed into the Layer 2 PUF, which is an ARB-PUF.
And the output of the ARB-PUF serves as the output of the MPUF. Figure 2.6 shows the
architecture of MPUF.

2.4 Modeling Attacks on PUF

A modeling attack on a PUF begins with an attacker collecting a subset of CRPs of that
PUF. The attacker uses these CRPs to derive a model that predicts the responses of the
PUF given any challenge. The model’s effectiveness depends on the likelihood of producing
a correct response for a challenge.
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Q
Output

D

c0

0

1

1

0

c1

0

1

1

0

Arbiter

. . . . . .

cn−1

Figure 2.4: The FF-PUF employs an FF-loop to generate the control signal for a subsequent
multiplexer group.

c0 c1

ARB-PUF

c2 c3

ARB-PUF

c4 c5

ARB-PUF

ARB-PUF
Output

Figure 2.5: A CPUF(3, 2) has 3 Layer 1 PUFs and 1 Layr 2 PUFs.

2.4.1 Machine Learning Modeling Attacks

ML algorithms are powerful tools which are naturally suitable for deriving such a model.
Reference [17] introduces a successful way of modeling ARB-PUF, XOR-PUF with 1 output
bit, LWS-PUF with 1 output bit and FF-PUF using ML methods.

Linear Additive Model (LAM)

The cornerstone of the ML modeling attacks is the LAM [9], which models the delay values
of the ARB-PUF. In this section, we introduce the LAM for ARB-PUF(n). In the LAM,
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ARB-PUF

PicoPUF PicoPUF PicoPUF PicoPUF

c0 c1 c2 . . .
cn−1

Output

Figure 2.6: The MPUF architecture XORes the challenge with a secret key provided by a
sequence of PicoPUFs and provides the XOR result as the input to the ARB-PUF [10].

the difference of delays of two racing paths, ∆, is modeled in Equation 2.7.

∆ = wTΦ, (2.7)

where w ∈ Rn+1 are the parameters that encode delays and Φ is the encoded challenge
defined in 2.8.

Φi = F (c)(i) =

{
(−1)ciΦi+1 =

∏n
j=i(−1)cj , if 0 ≤ i ≤ n− 1

1, if i = n
. (2.8)

The response of the ARB-PUF is thus t = sgn(∆), where sgn(x) is sign function and
returns 1 if x is non-negative and −1 otherwise.

The LAM can be trained with a training set composed of CRPs of the target ARB-PUF
using LR described in Section 2.1.

Multiplicative Model

For XOR-PUF and LWS-PUF, which have more than one ARB-PUFs, it is possible to com-
bine the LAMs of each of the ARB-PUFs, resulting in the multiplicative model described
in Equation 2.9[17].

tXOR =
l−1∏
i=0

sgn(∆i) =
l−1∏
i=0

sgn(wT
i Φi) = sgn

(
l−1∏
i=0

wT
i Φi

)
. (2.9)

In Equation 2.9, Φi represents the challenges defined in 2.8 for each of the ARB-PUF and
wi represents the encoded delays of the i-th ARB-PUF. Note that the last product term
no longer represents the delay. The multiplicative model can be trained using LR in 2.1.
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Evolutionary Strategies

ES successfully model FF-PUF, which is hard to model using LAM and multiplicative
model. When modeling FF-PUFs, the ES trains an extended version of LAM. Equa-
tion 2.10 demonstrates the extended version of LAM for FF-PUF(n, 1), which counts the
difference of delays for the output arbiter. The loop starts at the end of stage i1 and the
output is forwarded to stage i2.

∆ = wTΦ, (2.10)

where Φ is defined as

Φi = F (d)(i) =

{
(−1)diΦi+1 =

∏n+1
j=i (−1)dj , if 0 ≤ i ≤ n

1, if i = n+ 1

and

di =


ci, if 0 ≤ i < i2

f, if i = i2

ci−1, if i > i2

.

f is the output of the feedforward arbiter, defined as:

tff =
1− sgn(vTΨ)

2
(2.11)

, where

Ψi = K(c)(i) =

{
(−1)ciΨi+1 =

∏i+1
j=i(−1)cj , if 0 ≤ i < i1

1, if i = i1

and
vi = wi, 0 ≤ i < i1.

vi1 is another free parameter.

It is worth mentioning that ES is also able to model ARB-PUF, XOR-PUF and LWS-
PUF, with the numerical models in previous sections.

2.4.2 Cryptanalysis Attacks

In Reference [19], a cryptanalysis attack, CA-ATK, successfully models the 2 layer CPUF.
The CA-ATK is composed of two phases and each phase targets a different layer.
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Algorithm 1: Set-Construction(K, P , Ci)

Input : Repeat number K, CPUF P and the challenge space Ci of Pi
Output: Set Si,0 and Si,1, the partition of Ci

1 Si,0 = {a}, a ∈ Ci is arbitrarily chosen;
2 Si,1 = ∅;
3 Choose a set of K random different challenge of P : X = {x1,x2, ...,xK};
4 for b ∈ Ci do
5 s = 0;
6 for x ∈ X do
7 replace the xi with a and b to obtain u and v;
8 s = 1 if P (u) 6= P (v);

9 Si,s = Si,s ∪ {b};

Phase 1

In the first phase, for each Layer 1 PUF pi, the attacker partitions the challenge space
Ci = {0, 1}m of pi into two sets Si,0 and Si,1. Let us assume that a and b are two challenges
in Ci. If a ∈ Si,0 and b ∈ Si,1 then pi(a) 6= pi(b). This means that the two challenges
produce different outputs for pi. Similarly, if a,b ∈ Si,j, j ∈ {0, 1}, then pi(a) = pi(b) with
high likelihood, which means the two challenges are likely to produce the same output for
pi. To construct the sets Si,0 and Si,1, one selects two m-bit challenges from Ci, and extends
them to mn-bit challenges x and y by simply keeping the extended bits the same in both
extended versions. If P (x) 6= P (y), then the attacker can be sure that the corresponding
m-bit challenges are not in the same set. If P (x) = P (y), then the attacker can not be
sure that they are in the same set. However, one can repeat this procedure multiple times
by changing the extended bits.

Algorithm 1 shows this procedure.

As an example, consider a PUF P as a CPUF(3, 2), which takes as input 6-bit chal-
lenges. Table 2.1 lists the ground truth responses for each of the constituent PUFs in the
CPUF(3, 2). Note that the Response column is marked as gray as the attacker cannot
directly observe this information.

In Phase 1, the attacker may choose K = 3 and obtain a set of random challenges of

X = {111001, 110110, 100011} (2.12)

To construct the set for p0: S0,0 and S0,1, the attacker replaces the first two bits of each
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challenge in X with all possible 2-bit strings in C0 = {00, 01, 10, 11}, that is:

X00 = {111000, 110100, 100000} (2.13)

X01 = {111001, 110101, 100001} (2.14)

X10 = {111010, 110110, 100010} (2.15)

X11 = {111011, 110111, 100011} (2.16)

Then, to determine whether p0 responses the same for two challenges a,b ∈ C0, the
attacker applies challenges in Xa and Xb, whose only difference is the first two bits, and
check the result of the PUF P . For example, if a = 00,b = 01, the attacker first check the
responses, P (111000) and P (111001). On one hand, If the responses are different, that
is, P (111000) 6= P (111001), the attacker is sure that p0(00) and p0(01) are different and
thus 00 and 01 belong to different sets. The reason is that p1 in this case takes as input
10 and p2 takes as input 11 for the two applied challenges. According to Table 2.1, the
Layer 2 PUF will receive 110 and 111 as challenges. Note that due to the reproducibility
of the PUF, p1, as well as p2, will produce the same response for the same challenge. If the
responses of P are different, the only possibility is that bit-0 output of Layer 1 PUFs are
different for bit 0, which is 0 and 1 in this case. On the other hand, if the responses are
the same, the attacker cannot be sure that p0(00) and p0(01) are the same because in the
Layer 2 PUF, different challenges can be paired with the same response. This corresponds
to the case where the Layer 2 PUF responses the same for the two challenges 110 and 111.
In this case, the attacker has to try more challenges to increase his or her belief of p0 giving
the same response for 00 and 01 or encounter a case where P responds differently. After
the check for each Layer 1 PUF, the attacker can obtain the Guess column in Table 2.1.

Phase 2

In this phase, the attacker uses the information from the first phase to enumerate the
challenge space of the Layer 2 PUF. Algorithm 2 shows the steps in the second phase.
Notice that the collected information in Si,0 and Si,1 is used to construct an input challenge
to the composed PUF. It does this by selecting an n-bit string u, and replacing one of the
sub-strings ui with an m-bit string from the first phase. The resulting string c is applied to
the composed PUF P , and the challenge response pair is saved. Notice that this approach
requires enumerating the n-bit challenge space.

For the same CPUF(3, 2) P discussed in Section 2.4.2, the attacker will iterate through
all strings in {0, 1}3. For each string, the attacker derives a challenge that corresponds to
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Algorithm 2: Class-Construction(S, P )

Input : S = {Si,0, Si,1|0 ≤ i < n} and CPUF P
Output: Set of special CRPs Y and the response vector y ∈ {0, 1}n

1 Y = ∅;
2 y = 0;
3 for u = (u0, u1, ..., un−1) ∈ {0, 1}n do
4 c = (c0, c1, ..., cn−1), ci ∈ Si,ui ;
5 yu = P (c);
6 Y = Y ∪ {(c, yu)};

the guess. For example, for the string 110, the attacker can choose from the challenges
from the blue cells in Table 2.1 to replace each bit of the string. One of such possible
challenges is c = 100100. The attacker then applies challenge c to P and saves (c, P (c))
in Y .

Layer 1 PUF Challenge Response Guess
p0 00 0 S0,0

01 1 S0,1

10 0 S0,0

11 1 S0,1

p1 00 0 S1,1

01 0 S1,1

10 1 S1,0

11 1 S1,0

p2 00 1 S2,0

01 0 S2,1

10 0 S2,1

11 1 S2,0

Table 2.1: In the Layer 1 PUFs truth table, grep column highlights the responses that is
unknown to the attacker during the process of CA-ATK.
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Forgery

To complete the attack, an attacker needs to forge the response of the CPUF given an
unseen challenge c using information from Phase 1 and Phase 2. For example, for a
challenge y = 010110, the attacker can match y with c = 100100 in Y and simple returns
P (c) from Y .
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Chapter 3

System Model

3.1 Graphical Representation

c1

c2

c3

c4 c5 c6 c7

c8

Figure 3.1: Examples of PUFs from composition of other PUFs. To the left, the constituent
PUFs are in three levels to yield a composition whose domain is {0, 1}4. To the right is a
composition with domain {0, 1}8, with the constituent PUFs in two layers. The PUFs at
the first layer, c4 and c5, are each 3-input PUFs, and share two inputs to the composition.

We now introduce a general model for how PUFs can be composed to yield other PUFs.
Then, we discuss the family of PUFs within that model on which we focus in this paper.
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That family includes, as special cases, certain constructions from prior work [20].

A PUF is a physical realization of a function, p : {0, 1}i → {0, 1}, i.e., it maps an i bit
input to a one bit output. Its intent is to serve as a random function, i.e., a function chosen
uniformly from the set of all functions that map i bits to one bit. We perceive a PUF that
results from composition as a directed graph, P = 〈VP , EP 〉; we show two examples in
Figure 3.1. Each vertex u ∈ VP is a PUF. Each edge, e ∈ EP , maps a PUF to an input
of another PUF. Thus, EP can be perceived as a relation, EP ⊆ VP × VP × Z+, where Z+

is the set of positive integers, where 〈u, v, j〉 ∈ EP means that the output of the PUF u is
provided as the jth input of the PUF v. Our constraints are that given an edge 〈u, v, j〉,
where v : {0, 1}iv → {0, 1}, (i) 1 ≤ j ≤ iv, and, (ii) for every 〈v, j〉, there is exactly one
edge incident on it, i.e., there is exactly one u ∈ VP such that 〈u, v, j〉 ∈ EP . In Figure
3.1, in the PUF to the left, the output of the constituent PUF c1 is the first input to each
of c2 and c3. So we have edges 〈c1, c2, 1〉 and 〈c1, c3, 1〉.

To represent inputs to and outputs from the composed PUF as a whole, we assume
that we have two distinguished sets of edges, inp, outp ⊆ EP , where each edge in inp has
no source vertex, and each edge in outp has no destination PUF input. That is, the former
is of the form 〈·, v, j〉, and the latter is of the form 〈u, ·, ·〉. In Figure 3.1, the two inputs
to the far left are input to the constituent PUF c1. The output of the constituent PUF c3
is the output of the composition.

Restrictions We now consider restrictions to the above rather general model for compo-
sition. As Section 3.2 establishes, notwithstanding such restrictions, we can realize PUFs
which, asymptotically, yield the maximum possible attack-resistance. Futhermore, such re-
strictions yield more feasible constructions in practice. We present increasing restrictions
that culminate in the family that captures prior work on compositions, and on which we
focus.

As a first restriction, we require that the graph P = 〈VP , EP 〉 is acyclic. Both PUFs in
Figure 3.1 are acyclic. By acyclic, we mean that the conventional directed graph 〈VP , FP 〉,
where FP = {〈u, v〉 ∈ V 2

P | 〈u, v, j〉 ∈ EP for some j}, is acyclic. Given such a PUF that
is acyclic, we can consider its topologically sorted version, i.e., one in which all edges go
from left to right only. This allows us to associate a level with each constituent PUF. The
PUF to the left in Figure 3.1 is a composition of three PUFs, each at a level. We could
further constrain the levels to be the stricter layers. A constituent PUF is at Layer 1 if
the only edges incident on it are those from inp, the set of inputs to the composition as
a whole. Then, for a PUF at layer l > 1, all edges incident on its inputs are those from
PUFs at layer l − 1. The PUF to the right in Figure 3.1 is such a layered construction.
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Family on which we focus The family of PUFs from composition on which we focus
are layered constructions. The inputs to the composition are inputs to the constituent
PUFs at Layer 1. The outputs from the PUFs at Layer 1 serve as inputs to a single PUF
at Layer 2 and so on. The output from the constituent PUF at the last layer is the output
to the composed PUF as a whole. An example composition with 2 layers is to the right in
Figure 3.1.

More specifically, for the composition with 2 layers, we associate our compositions with
four parameters. (i) The number of inputs to the composition as a whole, i. In the PUF
to the right in Figure 3.1, i = 8. (ii) The number of inputs to each constituent PUF that
belongs to Layer 1 PUFs, denoted as m. We adopt the restriction that each PUF that is not
in Layer k takes the same number of inputs. In the PUF to the right in Figure 3.1, m = 3.
(iii) The number of partitions, r, on the inputs, where the inputs in a partition serve as
input to only a subset of the Layer 1 constituent PUFs. In the PUF to the right in Figure
3.1, we have r = 2 partitions. The first four inputs are in one partition, and the others
are in the other. This partition on the inputs induces the partition {c4, c5}, {c6, c7} on the
Layer 1 PUFs. (iv) the number of input bits that each PUF at Layer 1 has in common
with another PUF at Layer 1, denoted s. We also investigate PUFs whose compositions
have more than 2 layers. In this case, the composition is characterized by the number of
layers, denoted as k and how the output of each layer is mapped to another layer. In the
PUF to the right in Figure 3.1, we have k = 2 layers.

In the PUF to the right of Figure 3.1, s = 2, because each of c4, . . . , c7 shares 2 bits of
input with another PUF at Layer 1. We adopt the restriction that the s is the same for
all Layer 1 PUFs.

Notation The notation we adopt to denote a PUF in our family is [i, m, r, s]. For
example, the PUF to the right in Figure 3.1 is denoted [i = 8,m = 2, r = 2, s = 2].

Hardware Cost The strength of the PUFs comes at a price. We identify the hardware
cost for our generalized model of PUFs.

Definition 3.1.1. The hardware cost of a PUF P is the number of constituent PUFs.

3.2 Analysis of Resistance to Attack

We now establish, analytically, the level of resistance of an instance from our family of
PUFs to attack. We assume an attacker that seeks to fully characterize a PUF. By that we
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mean the following. Given a PUF p : {0, 1}i → {0, 1}, we say that p is fully characterized
by a function f : {0, 1}i → {0, 1} if f(x) = p(x) for all x ∈ {0, 1}i with probability 1. In
practice, we typically relax this probability, e.g., to 95% only. We say that an attacker
has fully characterized p when he is in possession of such an f . This is the same attacker
characterization as has been adopted in the literature.

An attacker is provided the following capabilities. (i) Black-box access to p. That is,
the attacker is allowed to exercise p with inputs, and observe the corresponding outputs.
And, (ii) the attacker knows the design of the composition. That is, in our case, he knows
the graph P = 〈VP , EP 〉 of the PUF under attack.Thus, the only thing the attacker does
not know are the actual functions that the constituent PUFs realize.

We quantify the strength of a PUF’s resistance to attack as the number of queries the
attacker needs to perform to the black-box. If for a PUF p, the attacker must perform np
queries to the black-box, and for another PUF q the attacker must perform nq queries, and
nq < np, then we deem the PUF p to be strictly more resistant to attack than the PUF q.

In our analysis below, we make the following idealization assumption. We assume that
each constituent PUF is a random function. The reason we do this is that, our analysis
pertains really to the manner in which we compose, rather than some artifact of the
constituent PUFs.

Notation Our focus is the layered PUFs in the composition, however, the analysis applies
to any PUF, whose graph is acyclic. Given a composition denoted by a graph P = 〈VP , EP 〉,
a partition on VP into two set of vertices, namely, SP and TP , results in a cut of the graph.
We denote the cut as Q = 〈SP , TP 〉. We collect the edges crossing the cut in an set E(Q).
For all edge e = 〈u, v, j〉 ∈ E(Q), the following condition holds: u ∈ SP and v ∈ TP ,
indicating a connection from the output of a constituent PUF to another constituent PUF.

We denote as N(Q) the unique bits crossing the cut Q. That is

N(Q) = {u|e = 〈u, v, j〉 ∈ E(Q), u ∈ SP , v ∈ TP , 1 ≤ j ≤ iv}

Furthermore, we denote the cut with maximal |N(Q)| as Q? = 〈SP , TP 〉?, named max-
cut. And the unique bits of a max-cut Q? is denoted as N?(Q?). Note that for a PUF
composition, there could be more than one max-cut Q?.

Assuming q = |N?(Q?)|, we denote as u1, u2, . . . , uq the bits in N?(Q?) . We denote
as CQ? : {0, 1}i → {0, 1}q the mapping that maps an input of the PUF as a whole to the
concatenation of unique bits in N?(Q?). For a set X ⊆ {0, 1}i, we denote as CQ? [X] the
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set {CQ?(y) ∈ {0, 1}q | y ∈ X}, i.e., all possible values of bits in |N?(Q?)| on inputs from

X. Thus, CQ?

[
{0, 1}i

]
is the range of CQ? .

Suppose the set of queries the attacker issues to the black-box is B ⊆ {0, 1}i. The
corresponding set of outputs of cut Q? is CQ? [B]. Then, we have the following claim.

Claim 1. If a PUF from composition P has been fully characterized after queries from

B ⊆ {0, 1}i, then for all cut Q on P , CQ? [B] = CQ?

[
{0, 1}i

]
.

Proof. We can prove the above claim by contradiction. If there exists a max-cut Q? =
〈SP , TP 〉? on P and there exists some input y ∈ {0, 1}i, such that CQ?(y) 6∈ CQ? [B],
then given that the PUFs in TP form a random function, the attacker has at best a 1/2
probability of guessing the output of the PUF P on input y.

Claim 2. There exists a PUF for which
∣∣∣CQ?

[
{0, 1}i

]∣∣∣ ≥ 2q, where q = |N?(Q?)| ≤ i.

Proof. The proof for the above claim is by observing a PUF with 2 layers. Note that in
this composition, the max-cut Q? = 〈SP , TP 〉? is obtained by setting SP as the set of Layer
1 PUFs and TP as the set of Layer 2 PUF. In Layer 2, we use a PUF with q-bit inputs.
And in Layer 1, we use the xor, ⊕, of the input bits of PUF as a whole, as the Layer 1
PUF. Then we have a sequence u1, u2, . . . , uq of SP bits, where q = |N?(Q?)|, such that uj
has an input that is not input to any uk where k < j. That is, every PUF as we go forward
in that sequence has a “new” input. Thus, the concatenation of outputs of that sequence
of Layer 1 PUFs is every bit string from {0, 1}q when those Layer 1 PUFs are xor of their
respective inputs.

Consequence Claim 2 establishes a lower bound on the number of possible outputs from
SP of the PUFs to TP . Claim 1 establishes that a lower bound on the attacker is that the
number of black-box queries she issues must be at least the number of possible outputs
from SP . Together then, Claims 1 and 2 establish that a lower bound on the number of
queries to the black-box that an attacker must issue to be confident that she has fully
characterized a PUF P with max-cut Q? is 2q, where q = |N?(Q?)|.

Consider a 2 layer composition in which s = Θ(m), r = Θ(1) and m = O(i), then q =
Θ(i). That is, under the assumption that the constituent PUFs are random functions, there
exist PUFs that result from the composition whose strength is asymptotically bounded
tightly by exactly the maximum possible CRP space, 2i. Example values for s, r and m
that meet the sufficient condition for this to be achieved are s = m−1, r = 1 and m = i/16.
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ARB-PUF ARB-PUF ARB-PUF ARB-PUF ARB-PUF ARB-PUF

c0 c1 c1 c2 c2 c0 c3 c4 c4 c5 c5 c3

ARB-PUF
Output

Figure 3.2: The 2-Layer P◦P instance has a mapping function [i = 6,m = 2, r = 2, s = 1]

We can compare the above lower-bound to the upper-bound to successfully attack
a CPUF [19]. There, notwithstanding what the constituent PUFs are, an upper-bound

number of queries to the black-box for a successful attack is i
m

2m + 2
i
m . Measured as

bits, this strength is O
(
max{m, i

m
}
)
. This suggests that our broader admittance of ways

to compose PUFs can be effective in yielding PUFs whose strength matches that of the
maximum possible for a particular input size. The CPUF merely happens to be a weak
member of the family.

3.3 Example Architectures

3.3.1 2 Layer Architectures

Figure 3.2 showcases a model that we used to represent [i = 6,m = 2, r = 2, s = 1]. Note
that in the configuration, c0, c1, c2 belongs to one partition and c3, c4, c5 belongs to another
partition.

3.3.2 Multi-Layer Architectures

Figure 3.3 shows a P◦P that has homogeneous mapping functions for Layer 1 PUFs and
Layer 2 PUFs. In both layers, the [i = 6,m = 2, r = 1, s = 2] partitions the input of the
layer into 2 partitions. We denote this composition as:

〈[i = 6,m = 2, r = 1, s = 2], [i = 6,m = 2, r = 1, s = 2]〉.
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ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

c0 c1 c1 c2 c2 c0 c3 c4 c4 c5 c5 c3

ARB-PUF
Output

Figure 3.3: The 3-Layer P◦P uses [i = 6,m = 2, r = 1, s = 2] as the mapping functions for
each of the layers.

Figure 3.4 shows a P◦P that has different mapping functions for Layer 1 PUFs and
Layer 2 PUFs. For Layer 1 PUFs, the [i = 6,m = 2, r = 1, s = 2] partitions the input of the
layer into 2 partitions. For Layer 2 PUFs, the [i = 6,m = 2, r = 1, s = 1] mapping maps
the output of the Layer 1 PUFs to Layer 2 PUFs. We denote this composition as:

〈[i = 6,m = 2, r = 1, s = 2], [i = 6,m = 2, r = 1, s = 1]〉.

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

ARB-PUF

c0 c1 c1 c2 c2 c0 c3 c4 c4 c5 c5 c3

ARB-PUF
Output

Figure 3.4: The 3 layer P◦P has heterogeneous mapping functions, where the mapping
function in Layer 1 is [i = 6,m = 2, r = 2, s = 1] and the mapping function in Layer 2 is
[i = 6,m = 2, r = 1, s = 1].
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Label Architecture |N?(Q?)|
A CPUF(3, 2) (Figure 3.3.3) 23

B [i = 6,m = 2, r = 2, s = 1] (Figure 3.2) 26

C 〈[i = 6,m = 2, r = 1, s = 2], [i = 6,m = 2, r = 1, s = 2]〉 (Figure 3.3) 26

D 〈[i = 6,m = 2, r = 1, s = 2], [i = 6,m = 2, r = 1, s = 1]〉 (Figure 3.4) 26

Table 3.1: Strengths of different PUF compositions.

3.3.3 Strength Analysis

In this section, we analyze the strengths of the PUFs discussed in Figure 3.2, Figure 3.3,
Figure 3.4 and CPUF in Figure and list the result in Table 3.1. All of the compositions take
as input 6-bit challenges. Table 3.1 shows that, adding multiple layers will not necessarily
enhance the strength of the PUF, represented as |N?(Q?)|. The reason is that, for arbitrary
number of layers, the max-cut divides the constituent PUFs into two sets, where each set
as a whole can be regarded as a PUF.
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Chapter 4

LR-CA-ATK: An Enhanced
Modeling Attack on CPUF

4.1 Basics

We propose an enhanced attack on ARB-PUF based CPUF which exploits the property
of outputs of Layer 1 PUFs and LAM for ARB-PUF. In phase 1 of CA-ATK, we make
a guess about the Layer 1 PUFs by assigning their challenges to Si,0 or Si,1. We show
that the guess can be characterized by a vector x ∈ {0, 1}n and this can be exploited to
construct the LR-CA-ATK. In this section, we focus on constructing the model for a PUF
[i = nm,m = m, r = n, s = 0].

We denote the attacker’s guess for the i-th Layer 1 PUF as p̃i, which is constructed in
phase 1. Thus, p̃i(a) = j, for a ∈ Si,j. The number of possible guesses an attacker makes
about the output of the Layer 1 PUFs is large, however, we show that this can be fully
characterized by an n-bit string. Specifically, we show that this applies to every Layer 1
PUF pi in Theorem 1.

Theorem 1. For all 0 ≤ i < n, c ∈ {0, 1}m, p̃i(c) = pi(c) ⊕ xi, where xi ∈ {0, 1} and ⊕
is binary exclusive-or.

Proof. We choose an arbitrary challenge of pi: d ∈ {0, 1}m. If pi(c) = pi(d), then c and
d belong to the same set, and thus, p̃i(c) = p̃i(d). If pi(c) 6= pi(d), then c and d belong
to different sets, and thus, p̃i(c) = 1 ⊕ p̃i(d). In both cases, p̃i(c) = pi(c) ⊕ p̃i(d) ⊕ pi(d)
holds.
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Algorithm 3: Enhanced-Class-Construction(S, P,D)

Input : S = {Si,0, Si,1|0 ≤ i < n}, CPUF P and D ⊆ C = {0, 1}nm is a set of N
challenges of the CPUF P .

Output: A LAM for Pn
1 E = ∅;
2 for c ∈ D do
3 u = (u0, u1, ..., un−1), where ci ∈ Si,ui ;
4 E = E ∪ {(u, P (c))};
5 Compute the model Pn with Logistic Regression, given the CRP set E;

According to Theorem 1, the attacker’s guess of pi is determined by a secret bit xi =
p̃i(d)⊕ pi(d).

Another fact we utilize is the LAM used for attacking ARB-PUF. In [17], the ARB-PUF
P with n-bit challenge can be modeled as

P (c) = sgn(wφ) = sgn(wF (c)),

where w ∈ Rn+1 and φ ∈ {−1, 1}n+1 is defined as:

φi = F (c)(i) =

{
(−1)ciφi+1 =

∏n
j=i(−1)cj , if 1 ≤ i ≤ n

1, if i = n+ 1
. (4.1)

We then show in Theorem 2 that if the challenge of an n-bit ARB-PUF P is XOR’ed
with a secret key x ∈ {0, 1}n, it can still be modeled with a LAM. The theorem shows that
an ARB-PUF with XOR operation between a secret vector and its challenge is equivalent
to another instance of ARB-PUF. Also, this theorem allows us to exploit the property of
the attacker’s guess in Theorem 1.

Theorem 2. P (c⊕ x) = sgn(wF (c⊕ x)) = sgn(vF (c)), where w,v ∈ Rn+1 and P is an
n-bit ARB-PUF.
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Proof. Let φ = F (c⊕ x), then

wF (c⊕ x) =
n+1∑
i=1

wiφi (4.2)

= wn+1 +
n∑
i=1

wi

n+1∏
j=i

(−1)cj⊕xj (4.3)

= wn+1 +
n∑
i=1

[
n+1∏
j=i

(−1)xjwi

]
n+1∏
j=i

(−1)cj (4.4)

= [w � F (x)]F (c) (4.5)

= vF (c), (4.6)

where � is element-wise product between vectors. Note that from Equation 4.3 to Equa-
tion 4.4, we apply the fact that (−1)cj⊕xj = (−1)cj(−1)xj given that cj, xj ∈ {0, 1}.

Now let us combine Theorem 1 and Theorem 2 to illustrate the weakness of CPUF.
According to Theorem 1, the guess made in phase 1 of the CA-ATK about the output Layer
1 PUFs is actually not far from the actual output of these PUFs. If one knows about the
secret string x, this person could derive the actual output of the Layer 1 PUFs. And
Theorem 2 shows that if the Layer 2 PUF is an ARB-PUF, this ARB-PUF is equivalent
to another ARB-PUF, whose CRP space is defined by the guessed output and the original
responses. These observations imply that an attacker does not need to explicitly obtain
the secret string x to build the model for the Layer 2 ARB-PUF. Previous work has shown
that building models for ARB-PUF with LR can be done efficiently [17], which we exploit
here. We formalize these observations in Theorem 3.

Theorem 3. Let P be a [i = nm,m = m, r = n, s = 0]. c ∈ {0, 1}nm is a challenge
of P , r = (p0(c0), p1(c1), ..., pn−1(cn−1)) is the response vector of Layer 1 PUFs, r̃ =
(p̃0(c0), p̃1(c1), ..., p̃n−1(cn−1)) is the response vector constructed in phase 1 of the CA-ATK
and x is a vector in {0, 1}n that determines the guess, then

P (c) = pn(r) = pn(r̃⊕ x) = sgn(vF (r̃)),

where pn is the Layer 2 PUF.

Algorithm 3 shows the procedure of using Theorem 3 to model the Layer 2 ARB-PUF.
The attacker first randomly chooses a set D of nm-bit challenges. For each challenge in
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w0 w1 w2 w3

0.1 0.3 0.2 −0.5

Table 4.1: Intrinsic paramters of the ARB-PUF in Layer 2 cannot be measured by the
attacker without changing these values.

D, the attacker applies the reverse transformation as is done in Algorithm 2 to get a set
of challenges of n-bit. This reversed transformation replaces every m-bit component with
a single bit, based on whether the m-bit component is in S·,0 or S·,1. These challenges,
combined with their corresponding responses, are fed into the LR attack to train a model
for the CPUF. Compared to the class construction algorithm in CA-ATK, Algorithm 3
does not require the enumeration of all strings in {0, 1}n. The size of CRP set required is
N = |D|, which can be much less than 2n.

In summary, for an n-bit P◦P , the attacker needs to enumerate 2n CRPs to build the
model. This is impractical for large values of n. Thus, an attacker cannot efficiently attack
P◦P with this technique. Furthermore, an attacker could attack ARB-PUF based CPUF
more efficiently yet P◦P is not subject to this.

4.2 An Example

In this section, an example demonstrates how an attacker can break the CPUF(3, 2) in-
stance P , which is composed of ARB-PUF. Recall from Section 2.4.2, Table 2.1 shows
the truth table of each of the Layer 1 PUFs obtained from Phase 1 of the LR-CA-ATK.
In LR-CA-ATK, the same technique in Phase 1 is used to obtain Table 2.1. Also note
that the secret key x in Theorem 2 is 110. Table 4.2 shows the intrinsic delay values of
the Layer 2 PUF. Note that an attacker cannot measure the values in Table 4.1 without
changing these parameters and thus these values are in gray background. Table 4.2 shows
the challenges and responses that can be controlled or observed by the attacker and the
output of Layer 1 PUFs which cannot be observed by the attacker. Table 4.3 shows the
parameters of another ARB-PUF the attacker will actually model, based the third and
forth columns in Table 4.2. Note that in this ARB-PUF, its response to challenge c⊕ x is
the same as the response of Layer 2 PUF to challenge c.
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Challenges
Applied to the

CPUF(3, 2)

Challenges to
the Layer 2
ARB-PUF

Challenges used
in Algorithm 3

Responses of P

00 00 00 1 0 0 0 1 0 1
00 00 01 1 0 1 0 1 1 1
00 10 00 1 1 0 0 0 0 1
01 00 00 0 0 0 1 1 0 0

Table 4.2: Attacker attempts to model the Layer 2 PUF using challenges from the first
and third columns and responses from the forth column, without knowledge of the second
gray column.

v0 v1 v2 v3
0.1 0.3 −0.2 −0.5

Table 4.3: Paramters of the ARB-PUF in Layer 2 are learned with challenges XORed with
secret vector x.

4.3 Case Study

Instead of using ARB-PUF as Layer 2 PUF, the designer may use other types of PUFs
as the Layer 2 PUF in a CPUF. In this section, we study the effect of using XOR-PUF
and LWS-PUF in a CPUF and show that the CPUF using XOR-PUF or LWS-PUF is also
subject to LR-CA-ATK.

4.3.1 XOR-PUF as last level PUF

XOR-PUF features a combination of multiple chains of ARB-PUF where a final xor gate
combines the result. In [17], the XOR-PUF is successfully attacked with an extension of
the LAM. The XOR-PUF(n, c) P with n-bit challenge and c chains can be modeled as:

P (c) =
c∏
i=1

sgn(wiφi) =
c∏
i=1

sgn(wiF (c))

where F is defined in equation 4.1. Note that all ARB-PUF in XOR-PUF takes the same
input.

Following a similar approach in Theorem 2, we conclude in Theorem 4 that an XOR-
PUF with XOR operation between a secret vector and its challenge is equivalent to another
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instance of XOR-PUF, where each of the component ARB-PUFs can be represented by
another instance of ARB-PUF.

Theorem 4.

P (c⊕ x) =
c∏
i=1

sgn(wiF (c⊕ x)) =
c∏
i=1

sgn(viF (c)),

where wi,vi ∈ Rn+1 and P is an XOR-PUF(n, c).

Proof. We can proof the equation by applying Theorem 2 for each inner-most term.

Thus, if an XOR-PUF is used as the last level PUF in the CPUF configuration, we can
leverage LR-CA-ATK and model the PUF.

4.3.2 LWS-PUF as last level PUF

LWS-PUF is very similar to XOR-PUF. An LWS-PUF that outputs 1-bit has an XOR-
PUF in its heart and its challenge will go through an input network so that each ARB-PUF
receive different challenges. In [17], an extension model of LAM similar to the XOR-PUF
model is used:

P (c) =
c∏
i=1

sgn(wiφi) =
c∏
i=1

sgn(wiF (Gi(Hi(c))))

where Hi circularly shifts the challenges by i − 1 bits to the right, and Gi is defined as
follows:

Gi(c)(
n+ j + 1

2
) = cj, for j = 1 (4.7)

Gi(c)(
j + 1

2
) = cj ⊕ cj+1, for j = 1, 3, 5, . . . , n− 1 (4.8)

Gi(c)(
n+ j + 2

2
) = cj ⊕ cj+1, for j = 2, 4, 6, . . . , n− 2 (4.9)

.

Theorem 5 shows that for a LWS-PUF that output 1 bit, LWS-PUF with XOR operation
between a secret vector and its challenge is equivalent to another instance of LWS-PUF.
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Theorem 5.

P (c⊕ x) =
c∏
i=1

sgn(wiF (Gi(Hi(c⊕ x))))) (4.10)

=
c∏
i=1

sgn(viF (Gi(Hi(c)))) (4.11)

Proof. We prove the theorem by showing that

wiF (Gi(Hi(c⊕ x))) = (wi � F (Gi(Hi(x))))F (Gi(Hi(c))). (4.12)

� represents element-wise vector product.

Since Hi is a shift operation, it is obvious that the Equation 4.13 holds:

Hi(c⊕ x) = Hi(x)⊕Hi(c). (4.13)

Next, according to Equation 4.7, Equation 4.8 and Equation 4.9,

Gi(c⊕ x)(
n+ j + 1

2
) = cj ⊕ xj, for j = 1

Gi(c⊕ x)(
j + 1

2
) = (cj ⊕ xj)⊕ (cj+1 ⊕ xj+1)

= (cj ⊕ cj+1)⊕ (xj ⊕ xj+1), for j = 1, 3, 5, . . . , n− 1

Gi(c⊕ x)(
n+ j + 2

2
) = (cj ⊕ xj)⊕ (cj+1 ⊕ xj+1)

= (cj ⊕ cj+1)⊕ (xj ⊕ xj+1), for j = 2, 4, 6, . . . , n− 2

, which implies Equation 4.14:

Gi(c⊕ x) = Gi(x)⊕Gi(c) (4.14)

Combining Equation 4.13, Equation 4.14 and Theorem 2, we can move x out of the
F (Gi(Hi(·))) composition:

wiF (Gi(Hi(c⊕ x))) = wiF (Gi(Hi(x)⊕Hi(c)))

= wiF (Gi(Hi(x))⊕Gi(Hi(c)))

= (wi � F (Gi(Hi(x))))F (Gi(Hi(c)))

Thus, if we choose vi = F (Gi(Hi(x)))�wi then Theorem 5 holds.

31



Chapter 5

Evaluation

We separate our evaluation into five parts. The first part shows how P◦P with 2 layers
compares with other state-of-the-art PUFs including CPUF composed using ARB-PUFs
using an evolutionary strategy (ES) attack [17]. The second part shows that the LR-CA-
ATK successfully models CPUF, but it is unable to model P◦P with various mapping
functions. Using these results, we provide insights into properties that make a mapping
function resilient to the LR-CA-ATK. We accomplish this by carefully selecting a few
different mapping functions, and comparing them. The third part evaluates the statistical
performance metrics of P◦P including the training times for the CA-ATK and LR-CA-
ATK on the CPUF. It also includes our observations on the incurred hardware cost with
P◦P and CPUF. Given that a P◦P with 2 layers is able to defense against ES modeling
attacks and LR-CA-ATK, we extend our scope in the forth part, in which we evaluate
the P◦P with more than 2 layers and different mapping function configurations. Our
result shows the ability of P◦P with more than 2 layers can defense against the ES attack.
Finally, we empirically show the ability of LR-CA-ATK to model CPUF, where the Layer
2 PUF is either XOR-PUF or LWS-PUF.

5.1 Framework

The experiments are performed on a simulation framework for exploring modeling attacks
on various PUF architectures. The framework can be divided into two parts: simula-
tion and modeling. The simulation framework features a detailed simulation at component
level. For example, when simulating ARB-PUF, the framework can simulate the behaviour
of individual multiplexer stages, including delays and the parameters of the distribution
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for generating the delays. The modeling framework features two backends: Tensorflow [2]
and PyBrain [21]. Not only does the Tensorflow backend allows exploration on complicated
models such as neural networks, but also it allows scalable modeling attacks if more com-
putational resources, such as GPUs, are available. Also, extension to the framework can
be easily made. The PyBrain, on the other hand, allows modeling PUFs using population-
based method, for example, ES, and provides the framework with the ability to model
PUFs that do not have a model with clear advantage such as LAM for ARB-PUFs. The
simulation framework is publicly available for download [24].

5.2 Experimental Setup

For LR, we implement RProp [1], and for ES, we use the open-source implementation
provided by PyBrain [21]. We use the meta-parameters for ES from [18] that have resulted
in successful attacks on a variety of PUF architectures. Without loss of generality, our
results use PUF instances with an 18-bit challenge. The 18-bit challenge allows us to
explore different mapping functions while the attacks can still be practically conducted.

5.3 Results

We begin by showing that CPUF is vulnerable to LR-CA-ATK, but P◦P remains resilient.
This establishes that P◦P with varying mapping functions results in a strengthened archi-
tecture with respect to the LR-CA-ATK. We use this result to discover properties of P◦P
that contribute to its resilience. In particular, we investigate varying the input size of the
Layer 1 PUFs, and the effect of mapping functions on the amount of sharing across Layer
1 PUFs.

5.3.1 Comparison against other state-of-the-art PUF architec-
tures

We use the notation described in Table 5.1 to refer to PUFs, and their con-
figurations. We compare four P◦P configurations: [i = 64,m = 2, r = 1, s = 1],
[i = 64,m = 4, r = 1, s = 3], [i = 64,m = 2, r = 2, s = 1] and [i = 64,m = 4, r = 2, s = 3]
against two CPUF architectures CPUF(64, 2) and CPUF(64, 4), FF-PUF(64, 1), FF-
PUF(64, 6), MPUF(64, 1), XOR-PUF(64, 2), ARB-PUF, LWS-PUF(64, 2) as shown in
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Figure 5.1. We use ES to attack the aforementioned PUFs as ES only requires a
parametric model. For all the PUFs in Figure 5.1, the training set and test set in-
clude 50,000 and 10,000 randomly generated CRPs, respectively. We observe that
[i = 64,m = 2, r = 1, s = 1], [i = 64,m = 4, r = 1, s = 3], [i = 64,m = 2, r = 2, s = 1] and
[i = 64,m = 4, r = 2, s = 3] sustain a prediction accuracy of 60.48%, 55.87%, 61.57% and
57.70% even after performing 2× 106 evaluations. Other PUFs have the following predic-
tion accuracy: FF-PUF with 6 loops has 97.95%, XOR-PUF has 97.6%, LWS-PUF has
97.47%, ARB-PUF has 99.14% and MPUF has 99.3%. Note that all alternative PUF ar-
chitectures suffer a rise in their prediction accuracy to more than 97%. This result shows
that a larger effort is required to attack P◦P and CPUF than the alternatives with ES.
For instances of P◦P , the architecture with the same number of partitions, the ones with
more Layer 1 PUF stages show lower prediction accuracy. The difference is within 5%. For
P◦P instances with the same Layer 1 PUF stages, the ones with fewer partition numbers
show lower prediction accuracy. The difference is within 2%. Hence, our experiments con-
firm that P◦P provides additional resistance to ML modeling attacks with ES than other
state-of-the-art PUF architectures.

5.3.2 Comparing Resilience of CPUF against P◦P using LR-CA-
ATK.

Figure 5.2 shows the prediction accuracy of the LR-CA-ATK when applied to CPUF and
P◦P with a varying number of CRPs. The prediction accuracy is a metric to describe
a PUF’s resistance to modeling attacks. A high prediction accuracy signifies less effort
is required to model the PUF compared to one with lower prediction accuracy. Recall
there are two phases in LR-CA-ATK. The experiment in Figure 5.2 varies the number of
CRPs used in Phase 2 of the LR-CA-ATK. When we evaluate the model, we exclude the
CRPs used in Phase 1 and Phase 2. The reason for this is that any CRP used for training
the model is stored by the attacker since the PUF is actually exercised. We consider a

Table 5.1: The notation of different PUF architectures.

Notation Architecture

FF-PUF(n, l) n-bit FF-PUF with l loops

XOR-PUF(n, l) n-bit XOR-PUF with l chains

LWS-PUF(n, l) n-bit LWS-PUF with l chains

MPUF(n) n-bit MPUF.

ARB-PUF(n) n-bit ARB-PUF.
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Figure 5.1: P◦P versus state-of-the-art PUFs under ES modeling attack.

PUF to be modeled when the prediction accuracy is around 95%. We show in Figure 5.2
that CPUF is modeled with more than 95% prediction accuracy when the number of the
training CRPs is 27. However, with the training CRPs being 213, the LR-CA-ATK cannot
model our proposed architectures with 95% prediction accuracy. Even if we use half of the
CRP space, our results show that we cannot model P◦P with more than 95% prediction
accuracy. Since increasing the number of training CRPs does not help us model P◦P ,
we choose an in-between value of 213 as the number of training CRPs in Phase 2 for the
remaining experiments in Section 5.3.3.
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Figure 5.2: CPUF versus P◦P when varying the number of training CRPs in Phase 2 of
the LR-CA-ATK.

5.3.3 Evaluating properties of mapping function

We evaluate two properties of mapping functions: 1) the resulting partition size and 2)
number of partitions from mapping functions. Throughout this subsection, we assess the
security with the normalized prediction accuracy. The normalized prediction accuracy is
defined as the prediction accuracy divided by the number of CRPs used in Phase 1 and
Phase 2. This metric measures for the prediction accuracy achieved per CRP used. Com-
pared to a lower normalized prediction accuracy, a higher normalized prediction accuracy
means that the CRP utilization is high and thus a PUF with a higher normalized prediction
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accuracy is less secure.

Partition size as a result of mapping functions. We investigate the effect of partition
size resulting from the mapping function. In Figure 5.3a, we evaluate a class of mapping
functions, which partition the Layer 1 PUFs into two partitions ([i = 18,m = m, r = 2, s = 2]).
Here, the partition sizes are not necessarily the same. The lowest normalized prediction
accuracy occurs when the size of the first partition is small or large compared to the other
one. The normalized prediction accuracy peaks at the point where the partition sizes are
equal and such a mapping function is less desirable as it offers reduced strength. This
is because, if one of the partitions induced by the mapping function has a large size, the
attacker must enumerate the larger partition in Phase 1 of the attack. However, if the
partition does not have a large size, the attacker does not need to enumerate the large
CRP space introduced by the partition. Thus, we propose using mapping functions where
the partition for Layer 1 PUFs has a large size.

Number of partitions as a result of mapping functions. We also investigate the
effect of number of partitions resulting from the mapping function. For this, we select
mapping functions that divide Layer 1 PUFs into equally sized groups. Figure 5.3b shows
that as the number of partitions increase, the normalized prediction accuracy increases and
the attacker can model the PUF more efficiently. This means that a good choice for an
mapping function is one that partitions the Layer 1 PUFs into a lower number of partition.

Table 5.2: LR-CA-ATK and CA-ATK on CPUF. Prediction rates and the training time
are averaged over 5 trials.

Pred. Acc. LR-
CA-ATK

Pred. Acc. CA-
ATK

Train. Time LR-
CA-ATK

Train. Time CA-
ATK

CPUF(20, 4)

99.37% 99.92% 31.38s 162.91s

CPUF(64, 4)

99.62% - 33.94s -

5.3.4 Training time versus accuracy

Table 5.2 compares the training time and accuracy of LR-CA-ATK against CA-ATK.
Note that it is impractical to apply CA-ATK to CPUF(64, 4) as its Phase 2 requires the
enumeration over a space of 264 binary strings. The result clearly shows that LR-CA-ATK
succeeds in modeling both CPUFs, but CA-ATK fails to complete for CPUF(64, 4). In
addition, LR-CA-ATK only takes 20% of the time CA-ATK takes for CPUF(20, 4).
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Figure 5.3: Normalized prediction accuracy given different properties of mapping functions.

Table 5.3 shows the training time and the best achieved prediction rate for 50,000 CRPs.
We observe that [i = 64,m = 2, r = 1, s = 1] has a higher prediction accuracy by ∼4.6%
over [i = 64,m = 4, r = 1, s = 3], but the training time for [i = 64,m = 2, r = 1, s = 1] is
larger due to the fact that the model with 4-stage Layer 1 PUFs has higher complexity.
This result suggests that [i = 64,m = 2, r = 1, s = 1] provides just as much resilience as
[i = 64,m = 4, r = 1, s = 3]. Also note that both P◦P configurations outperform FF-PUFs
in terms of their prediction accuracy.

5.4 Performance Metrics

We also present the uniformity and uniqueness performance metrics in Table 5.4. Our
results show that P◦P with the different mapping functions offer good uniqueness traits.
However, we find that P◦P s with a r = 2 the uniformity is biased.

5.5 Hardware Cost

In Table 5.5, we compare the hardware cost of P◦P and CPUF.
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Table 5.3: Prediction accuracy for the best of 40 trials for P◦P and other PUFs. The
training time is the averaged.

Architecture Pred. Acc. Best
Run

Training Time

[i = 64,m = 2, r = 1, s = 1] 60.48% 1:57 hrs

[i = 64,m = 4, r = 1, s = 3] 55.87% 2:29 hrs

[i = 64,m = 2, r = 2, s = 1] 61.57% 1:53 hrs

[i = 64,m = 4, r = 2, s = 3] 57.70% 2:31 hrs

CPUF(64, 2) 66.86% 1:35 hrs

CPUF(64, 4) 58.16% 1:55 hrs

FF-PUF(64, 6) 97.95% 5:59 hrs

XOR-PUF(64, 2) 97.60% 0:20 hrs

LWS-PUF(64, 2) 97.47% 0:21 hrs

MPUF(64) 99.30% 0:12 hrs

ARB-PUF(64) 99.14% 0:31 hrs

Table 5.4: Uniqueness and uniformity for P◦P .

PUF Architectures Uniqueness Uniformity

[i = 64,m = 4, r = 1, s = 3] 50.4% 47.6%

[i = 64,m = 4, r = 2, s = 3] 50.5% 61.7%

[i = 64,m = 2, r = 1, s = 1] 49.5% 49.5%

[i = 64,m = 2, r = 2, s = 1] 50.4% 63.6%

[i = 64,m = 2, r = 1, s = 1] and [i = 64,m = 4, r = 1, s = 3] are the P◦P instances
that take 64-bit challenge. [i = 64,m = 4, r = 1, s = 3] is slightly better than
[i = 64,m = 2, r = 1, s = 1] according to our evaluations with the ES attack. This enhanced
security comes at the price of 66.7% larger number of stages. [i = 64,m = 4, r = 1, s = 3]
and CPUF(64, 4) have the same hardware cost and CPUF(64, 2) can take 128-bit challenge.
However, we already showed that CPUF(64, 4) can be modeled using LR-CA-ATK with
far fewer CRPs than the 128-bit challenge space.
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Table 5.5: The hardware cost of different PUF compositions.

PUF Architectures ARB-PUF(2) ARB-PUF(4) ARB-PUF(64)
Total Number

of Stages
[i = 64,m = 2, r = 1, s = 1] 64 − 1 192
[i = 64,m = 4, r = 1, s = 3] − 64 1 320
CPUF(64, 2) 64 − 1 192
CPUF(64, 4) − 64 1 320
LWS-PUF(64, 2)/XOR-PUF(64, 2) − − 2 128

5.6 Evaluating Resilience of P◦P with Multiple Lay-

ers using ES

In this section, we evaluate the P◦P with more than two layers using ES. We use the
notation listed in Table 5.6 to refer to PUFs and the configurations. The five P◦P s
with multiple layers feature different aspect of composition of multiple layers. C1 and
C2 features the homogeneous setup of mapping functions between Layer 1 and Layer
2 PUFs. In C1, the challenge of the P◦P as a whole and the output of the Layer 1
PUFs are mapped using [i = 64,m = 4, r = 1, s = 3] to the next Layer. While in C2, we
use [i = 64,m = 4, r = 2, s = 3] as the mapping function and thus, the challenge and the
output are grouped into two partitions. C3 and C4 features the heterogeneous setup of
mapping functions between Layer 1 and Layer 2 PUFs, in which the mapping functions
are different for the challenge and the output of the Layer 1 PUF. In C5, the P◦P has 3
layers, and the challenge bits, the output of Layer 1 PUFs and the output of Layer 2 PUFs
are mapped using [i = 64,m = 4, r = 1, s = 3]. For all PUFs in Figure 5.4, the training set
and the test set include 50,000 and 10,000 randomly generated CRPs respectively. After
performing 2 × 106 evaluations, C1, C2, C3, C4 and C5 sustain a prediction accuracy of

Table 5.6: The notation of different multi-layer P◦P architectures.

Notation Mapping functions
C1 〈[i = 64,m = 4, r = 1, s = 3], [i = 64,m = 4, r = 1, s = 3]〉
C2 〈[i = 64,m = 4, r = 2, s = 3], [i = 64,m = 4, r = 2, s = 3]〉
C3 〈[i = 64,m = 4, r = 2, s = 3], [i = 64,m = 4, r = 1, s = 3]〉
C4 〈[i = 64,m = 4, r = 1, s = 3], [i = 64,m = 4, r = 2, s = 3]〉
C5 〈[i = 64,m = 4, r = 1, s = 3], [i = 64,m = 4, r = 1, s = 3],

[i = 64,m = 4, r = 1, s = 3]〉
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Figure 5.4: Prediction accuracy for P◦P as a function of evaluations.

57.12%, 51.15%, 67.58%, 53.07% and 60.49%, respectively. Compared to results of P◦P
with 2 layers, having more than 2 layers does not necessarily enhance the resilience of the
P◦P to ES attack, while in the meantime, more layers incur more hardware cost. Thus,
we conclude that P◦P with 2 layers is resilient enough to defense against ES attack with
less hardware compared to P◦P with more than 2 layers.

5.7 Case Study Results

In this section, we show the empirical results for studying whether the LR-CA-ATK can
model CPUF architectures composed of other types of PUFs. According to Theorem 4
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PUF Architecture Prediction Accuracy Training Time (s) Number of ARB-PUFs
in Layer 2 PUF

CPUF (20, 4)−L 97.59% 29 2
CPUF (20, 4)−L 97.69% 33 3
CPUF (20, 4)−L 97.71% 45 4
CPUF (64, 4)−L 97.75% 136 2
CPUF (64, 4)−L 97.7% 104 3
CPUF (64, 4)−L 97.68% 113 4
CPUF (20, 4)−X 97.68% 29 2
CPUF (20, 4)−X 97.67% 31 3
CPUF (20, 4)−X 97.68% 34 4
CPUF (64, 4)−X 97.66% 96 2
CPUF (64, 4)−X 97.68% 105 3
CPUF (64, 4)−X 97.69% 111 4

Table 5.7: LR-CA-ATK on P◦P composed of XOR-PUF and LWS-PUF

and Theorem 5, the LR-CA-ATK should be able to model CPUF with XOR-PUF or LWS-
PUF as the Layer 2 PUF due to the fact that XORing the challenge of an XOR-PUF or a
LWS-PUF is equivalent to another instance of the corresponding PUF. Table 5.7 validates
the theory. In Table 5.7, LR-CA-ATK is able to model both CPUF with 80-bit challenges
and 256-bit challenges with a prediction accuracy of more than 89% within 63 seconds.
For 256-bit challenges, the attacker can achieve a prediction accuracy of 94.79%. Using
CA-ATK, an attacker can model CPUF with 40-bit challenges with a prediction accuracy
of 99%. However, in Table 5.8, the successful modeling requires more than 10× the time
compared to that of the LR-CA-ATK. Also, LR-CA-ATK is unable to model 256-bit CPUF
as it requires an enumeration of a CRP space of size 264.

We then examine whether P◦P composed of XOR-PUF or LWS-PUF can be enhanced.
Figure 5.5a and Figure 5.5b show the prediction accuracy of the LR-CA-ATK when the
number of CRPs used in Phase 2 is varying. We append an X or an L to indicate that the
data is collected for Layer 2 PUF being XOR-PUF or LWS-PUF, respectively. The result
indicates that, for both types of CPUFs, it can be modeled with 95% prediction accuracy
given 27 training CRPs in Phase 2. For P◦P s, even if half of the CRP space is used in
Phase 2, the results indicate that LR-CA-ATK is not able to model different configurations
of P◦P s with more than 95% of prediction accuracy.

Finally, we attempt to model P◦P composed of XOR-PUF and LWS-PUF with ES.
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PUF Architecture Prediction Accuracy Training Time (s) Number of ARB-PUFs
in Layer 2 PUF

CPUF (20, 4)−X 99.31% 1068 2
CPUF (20, 4)−X 100.0% 1477 3
CPUF (20, 4)−X 100.0% 1730 4
CPUF (20, 4)−L 100.0% 1404 2
CPUF (20, 4)−L 100.0% 1348 3
CPUF (20, 4)−L 100.0% 1878 4

Table 5.8: CA-ATK on P◦P composed of XOR-PUF and LWS-PUF

Figure 5.6 shows that, equiped with mapping function, the LWS-PUF and XOR-PUF
gained resilience to the ES attack. Specifically, when equipped with mapping function,
XOR-PUF can achieve a prediction accuracy of 55.52% and LWS-PUF can achieve a pre-
diction accuracy of 50.96%. In the meantime, XOR-PUF achieves a prediction accuracy
of 97.6% and LWS-PUF achieves a prediction accuracy of 97.47%.
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Figure 5.5: CPUF versus P◦P composed of different Layer 2 PUFs when varying the
number of training CRPs in Phase 2 of LR-CA-ATK.
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Chapter 6

Conclusion

We have revisited the idea of strengthening PUFs by constructing PUFs that are com-
positions of other PUFs. Prior work has explored this idea, but the constructions there
have not been promising. We have proposed a general model for composition, and con-
sidered a particular family in that model that admits new kinds of compositions, and also
captures prior constructions. We have established analytically that even within this re-
stricted family of constructions, there can exist PUFs whose strength, asymptotically, is
the maximum possible for a particular input-size. We have then revisited state-of-the-art
attacks on PUFs, and proposed an enhancement to the prior attack on such compositions.
Via our extensive empirical assessments, we have confirmed that constructing PUFs by
composition is indeed a promising approach to realizing strong PUFs. Our rather general
model, and the manner in which PUFs are realized in practice, suggest a rich area of future
work. A fuller exploration of other families in our model, for example, PUFs not limited to
layers but also levels, is one possible futher work. Another perspective of the futher work
may focus on the practical side of the PUF composition, for example, incorporation of the
elements of practically realizable PUFs.
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