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Abstract

Cancer is one of the world’s deadliest diseases despite immense investments into on-
cological research in recent years. Although great strides have been made in our under-
standing of cancer, much remains unknown regarding its genesis, progression, and optimal
treatment. The benefits of mathematical modelling have been realized in many fields of
science, and oncology is no exception. Mathematical modelling has become increasingly
popular in recent years and today, studies involving both biologists and mathematicians
are rather commonplace. This thesis focuses on mathematical oncology, detailing three
distinct research works involving the mathematical analysis of cancer. They specifically
focus on modelling the applications of various treatment methods including external-beam
radiation therapy, hypoxia-activated prodrugs, antiangiogenic agents, and drug-carrying
nanocells. The mathematics involves partial differential equation models solved analyti-
cally and by using various computational methods. Altogether, the analyses herein show
that mathematical modelling is an invaluable tool in oncology which will be a crucial part
of future research.
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Chapter 1

Introduction

1.1 Cancer Background

Cancer is best described as a disease of the cells characterized by unregulated proliferation
and invasion caused by underlying genetic mutations. As cancer is not one single disease,
but rather a category encompassing similar diseases, it is difficult to be more precise than
the above definition. Instead, cancer is commonly defined by the presentation of a subset of
traits known to be regularly associated with tumours. These traits, termed the ’Hallmarks
of Cancer’ by Hanahan and Weinberg, describe the behaviours typical of cancer cells which
result in, or accompany, their problematic growth [35]. Modern-day cancer treatments are
often designed with these hallmarks in mind, seeking to counteract or take advantage of
them directly. These treatments are generally effective, increasing patient survival time and
quality of life for nearly all cancers. Unfortunately, existing treatments are often difficult to
implement or involve adverse side effects for patients, and while many candidate treatments
are promising, they frequently fail to meet necessary efficacy standards. Furthermore,
cancer remains Canada’s deadliest disease, accounting for over 30% of all deaths despite
considerable investments into oncological research [15]. Approximately half of Canadians
develop cancer during their lifetime, and cancer is the cause of death for half of those
afflicted [15]. Questions in oncology are some of the most pressing in all of science as much
remains unknown about the genesis, progression, and optimal treatment of tumours. Even
so, researchers continue to be optimistic for the future of cancer, continually championing
improved understanding and new advancements.

A timeline of humanity’s knowledge of cancer can be loosely broken into three stages.
The first of these stages began around 400BC when Hippocrates provided the first hypoth-
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esis of cancer, postulating that an accumulation of ”black bile” (the result of an unbalanced
personality) was the cause of tumours [21]. Naturally, this was emphatically disproven,
though it survived as the dominant theory for nearly two millennia, during which time our
knowledge of cancer was decidedly primitive. The second stage began at the end of the 19th

century when increased cancer rates due to carcinogenic occupational hazards spurred a
renewed interest in cancer research [100]. In this stage, improvements in our understanding
of cancer came along with improvements in our understanding of molecular biology itself,
particularly in the discovery of genetics and DNA. A similar story has evolved in the mod-
ern stage, where oncology has been propelled forward in bursts by the advent of exciting
medical technologies including medical imaging, biomarking, and genetic screening. The
phenomenon of ‘flurries’ of scientific discoveries is not unique to oncology. Physics, for
example, underwent distinct periods of rapid advancement throughout history, most no-
tably during the early 20th century with the theories of quantum mechanics, relativity, etc.
Interestingly, the birth of modern physics has been largely attributed to the widespread
incorporation of mathematics into the physical sciences. Conversely, the integration of
mathematics into biology and medicine started significantly later, and the full potential of
the combination is yet to be realized. Accordingly, many believe that the realization of this
potential will spark a revolution in the 21st century for biology and medicine much as it did
in the 20th century for physics. This thesis focuses on one part of that potential revolution
and what could be considered the fourth stage in the history of cancer: mathematical
oncology, which broadly refers to the use of mathematical and computational techniques
to answer questions related to the progression and treatment of cancer.

1.2 Mathematical Modelling in Cancer

As quantifiable evidence is arguably the defining trait of modern science, it is unsurprising
that mathematical modelling has gained popularity. In oncology, the use of mathematical
modelling has increased steadily over the past few decades, largely due to the dramatic
rise in availability of biological data created by modern medical technologies [5]. With this
increase has been a wider acceptance of modelling by biologists and clinicians, a group
which has been historically slow to embrace fundamental changes to their field. Today,
studies involving both experimentalists and mathematicians are commonplace with many
experiments designed specifically to be validated by accompanying mathematical analyses.
The amount of these collaborations is expected to grow in future years with some even
speculating fundamental changes to medical testing procedures themselves - indeed, in
silico drug trials are a promising addition to the process [71].
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Mathematical modelling does not simply pose a theoretical future benefit to oncolog-
ical research: these techniques have already been applied to clinical and experimental
situations, extending our knowledge and improving existing techniques. Tumour angio-
genesis, oxygen transport, immune system evasion, various treatment methods, as well as
many other cancer-related topics have all been examined using mathematical models (see
[8, 42, 43, 75, 87] for example).

1.3 Outline of Thesis

This thesis contains three individual research works on mathematical oncology published
or in submission to scientific journals. I, Cameron Meaney, am the first author on each
of these pieces and was responsible for the majority of the work on each (see Statement
of Contributions). Each work is included as its own chapter herein, minimally altered
to maintain consistency in formatting and adhere to the specifications as required by the
University of Waterloo. The title of each chapter corresponds directly to the title of the
published or submitted work and the text of each paper is otherwise unchanged from their
accepted or most recent version as of June 5th, 2019.

Chapter 2 contains the paper Spatial Optimization for Radiation Therapy of Brain
Tumours which was published in PLOS ONE on June 28th, 2019. This work develops a
mathematical model which is used to optimize the spatial application of External-Beam
Radiation Therapy (XRT). It utilizes both analytical and computational mathematical
methods as well as data from MRI imaging.

The paper Role of Hypoxia-Activated Prodrugs in Combination with Radiation Ther-
apy: An In Silico Approach is the topic of chapter 3. It was published in Mathematical
Biosciences and Engineering on July 4th, 2019. This work develops a mathematical model
describing the action of Hypoxia-Activated Prodrugs (HAP) in a tumour. The model is
then used to compare the efficacy of HAPs in tumours of different hypoxic levels as well
as examine the optimal treatment scheduling of a combination of HAPs with radiation
therapy.

Chapter 4 consists of the paper In Silico Analysis of Hypoxia-Activated Prodrugs in
Combination with Anti-Angiogenic Therapy through Nanocell Delivery which was submit-
ted for publication to Computational and Mathematical Methods in Medicine on May 31st,
2019. This paper develops a mathematical model to address the problem of inefficient
delivery of HAPs to a tumour due to overvascularization. It mathematically establishes
and deciphers the dilemma of HAP delivery vs. activation when HAPs are used with

3



Anti-Angiogenic Agents (AA). The dilemma is solved with the use of drug nanocells which
achieve improved delivery while maintaining high activation.

Relevant biological background and previous literature is given within each chapter as
necessary. A summary of the thesis and its contained works is provided in chapter 5 along
with directions for future studies and extensions.

4



Chapter 2

Spatial Optimization for Radiation
Therapy of Brain Tumours

Abstract

Glioblastomas are the most common primary brain tumours. They are known for their
highly aggressive growth and invasion, leading to short survival times. Treatments for
glioblastomas commonly involve a combination of surgical intervention, chemotherapy,
and external-beam radiation therapy (XRT). Previous works have not only successfully
modelled the natural growth of glioblastomas in vivo, but also show potential for the
prediction of response to radiation prior to treatment. This suggests that the efficacy of
XRT can be optimized before treatment in order to yield longer survival times. However,
while current efforts focus on optimal scheduling of radiotherapy treatment, they do not
include a similarly sophisticated spatial optimization. In an effort to improve XRT, we
present a method for the spatial optimization of radiation profiles. We expand upon
previous results in the general problem and examine the more physically reasonable cases
of 1-step and 2-step radiation profiles during the first and second XRT fractions. The
results show that by including spatial optimization in XRT, while retaining a constant
prescribed total dose amount, we are able to increase the total cell kill from the clinically-
applied uniform case.

5



2.1 Introduction

Glioblastomas are the most aggressive, and unfortunately most common, form of primary
brain tumour [11, 12, 20, 59, 63]. They are characterized by rapid growth and invasive-
ness, yielding survival times that seldom exceed a year [23]. Because of this, treatments
for glioblastomas are swift and aggressive, usually involving a combination of surgical in-
tervention, chemotherapy, and external-beam radiation therapy (XRT). Furthermore, the
tendency for recurrence of glioblastomas after surgery makes postoperative chemotherapy
and XRT a crucial part of effective treatments. Although current treatment plans do
often extend survival time, they are far from perfect and leave much room for improve-
ment. However, while these efforts focus on optimal scheduling of radiotherapy, they do
not include a similarly sophisticated spatial optimization.

Non-uniform dose distributions are not a new concept in radiation oncology. Pheno-
typic variations across the volume of a tumour can result in differing levels of radiation
effectiveness. In particular, hypoxic regions cause a difference in cell radio-sensitivity, mak-
ing radiation less effective in those areas. This leads to a technique called ”dose-painting”
in which different regions are prescribed a different dose to combat the reduced effect (see
[2, 10] for an overview). Dose painting divides the tumour into a small, discrete number
of regions allowing a different dose to be prescribed to each area. Additionally, we may
need to apply non-uniform radiation to areas with different cell density, irrespective of
radio-sensitivity.

Several previous works have addressed the dependence of the optimal beam shape on
the density profile of the tumour, (see [13, 87, 95, 98] for example). A possible criterion
for optimality (used in our calculation) is minimizing the total number (N) of tumour
cells remaining after application of XRT; another is to maximize the Tumour Control
Probability (TCP), e−N (see below, Eq. (2.7)). Naturally either minimization must satisfy
a number of physical constraints. The constraint on the total radiation dose (used in the
paper) leads to a particular shape of the beam, which was also obtained in previous studies
[13, 95, 98]. By contrast, a constraint on the mean dose, weighted by the local cell density,
leads to a uniform beam profile [87].

In this paper, we study the following question: given a maximum allowable total dose to
administer, what dose profile results in the maximum global TCP. As an equivalent metric
to the TCP, we instead minimize the total number of surviving tumour cells after radio-
therapy. We then go further, making our conclusions clinically reasonable by discretizing
this optimal profile and considering multiple radiation fractions. While we do not deal
with tumour heterogeneity in particular, we do include an alternative death mechanism
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which can account for different radio-sensitivities resulting from tumour heterogeneity such
as hypoxia. Other works have examined optimization of radiation therapy incorporating
Normal Tissue Control Probability (NTCP) in addition to TCP [1, 2]. The NTCP is an
important measure to consider as it quantifies the chance of problems arising in nearby
organs at risk. While we do not include NTCP in this work, an interesting topic for future
study would be to incorporate TCP and NTCP in a single mathematical optimization.

Naturally, when discussing optimization in a given system, mathematical modelling is
an invaluable tool. In the context of brain tumours, mathematical models have been widely
used by many different investigators (for example, [14, 36, 82, 92, 93]). While originally
developed for investigations of brain tumours, we anticipate that these models and the
following approach and results can be easily generalized to study other types of tumours.
In the following, we build upon a host of previous works (see [68] for a review) which
show that the natural growth of glioblastomas can be well-described by two governing
parameters, ρ and Dn, which describe growth and invasion processes respectively. The two
mathematical models most commonly used to describe growth of tumours are the so-called
exponential and logistic growth laws. The more general logistic growth naturally provides a
better description of tumour proliferation and stabilization. However, during the relatively
short time frame before the growth of the tumour begins to plateau, exponential growth is
a reasonable approximation. Including a linear (Laplacian) diffusion term, commonly used
to model tumour invasion, we arrive at the well-established equation for tumour growth

∂n(~x, t)

∂t
= Dn∇2n(~x, t) + ρn(~x, t)

(
1− an(~x, t)

nmax

)
. (2.1)

Here, n(~x, t) is the tumour cell density at position ~x = (x1, · · · , xd), and∇2 =
∑d

α=1 ∂
2/∂x2

α

is the Laplacian operator. We have introduced d as the number of dimensions; d = 3 in
three dimensions, while for certain computations we focus on the two dimensional case of
d = 2. Exponential growth corresponds to a = 0, while a = 1 leads to logistic growth to a
maximal density nmax.

Prior to treatment, two Magnetic Resonance Images (MRI) are commonly performed:
one diagnostic and one to aid in treatment planning. Using the measures for velocity of
growth and tumour abnormality obtained from these two scans alone, the tumour-specific
values for ρ and Dn can be estimated [36].

We begin by presenting the general mathematical model, followed by studies of a num-
ber of special cases. First, the optimal continuous profile is derived for the cases of one
and two radiative fractions with both exponential and logistic cytotoxic action. The in-
sights from these cases are subsequently extended to show that the optimal tumour cell
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density is uniform for any radiation procedure. From there, we move to optimization of
non-continuous radiation profiles, and derive the optimal scenario for the cases of one-step
and two-step profiles for single or multiple fractions, constrained individually or together.
Finally, the non-continuous optimization is extended to include a logistic cytotoxic action
for one and two step radiation profiles.

2.2 Materials and Methods

2.2.1 Model Derivation

Consider a tumour that has evolved according to Eq. (2.1) for some time, such that its cell
density profile is given by n(~x, t0). Now we intend to apply XRT to this tumour. To do
so, we introduce a function f(~x, t) which we call the cytotoxic profile. The action of most
therapeutic interventions is to remove a fraction of existing cells, which is incorporated
in our model by adding a term −γf(~x, t)n(~x, t)(1 − bn(~x, t)/nmax) to the right hand side
of Eq. (2.1). For radiation, the parameter γ is a measure of the radiation rate, and can
be written as γ = αḊ (1/day) where α is the linear coefficient in the well-known Linear-
Quadratic model (S = e−αD−βD

2
) for radiation efficacy, and Ḋ is the dose rate applied to

the tumour. For simplicity, we do not include the quadratic term of the Linear-Quadratic
model into the model as it does not affect the qualitative shape of the radiation profile,
which is the focus of this study. This is clear mathematically since the inclusion of the
quadratic component simply perturbs the value of γ in Eq.(2.2) below, which acts as a
scaling constant. The parameter b, much like a in the growth term, simply differentiates
between exponential (b = 0) and logistic (b = 1) cell killing. It is also known that saturated
tumours with a high cell-density and low proliferation are less affected by radiation than
low cell-density tumours. A logistic death term is mathematically able to capture this
behaviour as a higher cell density reduces the magnitude of the final term. This addition
modifies the governing equation to

∂n

∂t
= Dn∇2n+ ρn

(
1− an

nmax

)
− γf(~x, t)n

(
1− bn

nmax

)
. (2.2)

Normal XRT occurs in a series of bursts called fractions. We therefore impose that f(~x, t) is
an on-again-off-again function in time such that f(~x, t) = 0 for all times except during the
scheduled fractions. This greatly simplifies the solution to the nonlinear partial differential
equation, as during the time interval ∆t over which each fraction is applied, the processes
of cell division and spreading have little effect on the cell density. The natural growth of
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tumours proceeds on scales of days, months, or years, while radiation fractions occur over
a scale of minutes. Thus, during each fraction, the first two terms on the right hand side
of Eq. (2.2) can be mathematically neglected, leading to

∂n

∂t

∣∣∣∣
fraction

≈ −γf(~x, t)n
(

1− bn

nmax

)
. (2.3)

Integrating this (now ordinary) differential equation in the interval t ∈ [t0, t0 + ∆t], leads
to

n(~x, t0 + ∆t) = n(~x, t0)e−γf(~x,t0)∆t, (2.4)

in the exponential case (b = 0), and

n(~x, t0 + ∆t) =
nmax

1−
(
n(~x,t0)−nmax

n(~x,t0)

)
e−γf(~x,t0)∆t

, (2.5)

in the logistic case (b = 1). We focus on the first and second fractions of XRT and further
impose a simple upper bound for f(~x, t) to adhere to patient safety standards. We write
this constraint as 0 ≤ f(~x, t) ≤ C for some C. The final constraint on f(~x, t) limits the
total dose received by the patient. This constraint is mathematically represented by

γ

∫
dd~x dt f(~x, t) ≤ F , (2.6)

where the time integral is over the entire treatment length. This constrains the total
radiation dose over all fractions (where we expect the inequalities to be saturated to achieve
maximal effectiveness).

Our goal is to determine the function f(~x, t) that minimizes the total number of tumour
cells after the final fraction, N(T ), obtained by integrating the tumour cell density as

N(T ) =

∫
dd~x n(~x, T ). (2.7)

To contrast, Brahme and Agren [13] instead optimized the TCP, which they defined
as (using our notation) TCP = e−N(T ) where N(T ) is the number of cells surviving the
treatment. Regarding n(~x, t0 + ∆t) as the mean of a probability density for cells following
XRT, TCP is the probability that all cells are exterminated. Clearly, one can see that
minimizing N(T ) is equivalent to maximizing e−N(T ). Furthermore, for the simplest case,
we indeed achieve the same result.
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2.3 Results

2.3.1 Continuous Profile Optimization

We begin by analysing continuous cytotoxic profiles for one fraction of radiation. In the
case of exponential death, the result matches that of previous studies, and from it we can
derive a precise shape of the profile. In the case of logistic death, the resulting profile is
more complex, but remains mathematically consistent with the previous case. A similar
analysis of the second fraction of radiation is significantly more challenging as the effect of
normal tumour progression must be taken into account. While it is possible, the results
are far less interesting since the optimal profile will leave a uniform (or flat-topped) cell
density (proof of this in appendix A.1) . The second fraction is mathematically examined
in the appendix A.2 for the case of exponential death.

Optimal Profile with one Fraction of Exponential Death

To proceed in the case of exponential cytotoxic action, we impose the first constraint in
Eq. (2.6) with a Lagrange multiplier λ, which requires extremizing

Ñ1 =

∫
dd~x n(~x, t0)e−f(~x,t0) + λ

(∫
dd~x f(~x, t0)− F

)
, (2.8)

where we have set γ = ∆t = 1 for convenience. Solving the resulting Euler-Lagrange
equation for f(~x, t0), we find the optimal profile

f(~x, t0) = ln

[
n(~x, t0)

λ

]
, (2.9)

with λ chosen such that Eq. (2.6) is satisfied. Using this cytotoxic profile would give us the
optimal cell kill from the radiation fraction. Not surprisingly, following the simplifications
leading to Eq. (2.9), the above result is independent of the parameters ρ and Dn. The
appearance of the logarithm is merely a consequence of the killing effect of therapy being
proportional to the number of existing cells, with the cytotoxic profile appearing in the
exponent of Eq. (2.4).

This result has been previously derived by many others ([13, 87, 95] for example). An
interesting consequence of this optimal profile is that it leaves the resulting cell density as
a uniform distribution. Stavreva et al [87] applied an extremization of TCP subject to a
constraint on the mean dose defined as Dv ∝

∫
n(~x, t0)f(~x, t0)ddx, i.e. weighting the dose
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according to the local cell density. It is clear that if this constraint is used in Eq. (2.8) in
place of the unweighted net dose, the resulting beam profile will be uniform.

While a useful starting point, the cytotoxic profile in Eq. (2.9) is not guaranteed to
satisfy the constraints of 0 ≤ f(~x, t) ≤ C. In particular, it leads to unphysical negative
values when n(~x, t0) < λ. To better understand the limitations of this result, and how
to overcome them, let us consider the simplest case of a Gaussian profile arising from
radially symmetric growth of a single cell in exponential growth: assuming that the tumour
begins with a single oncogenic transformation or single-cell metastasis, modelled by a delta-
function cell density, exponential growth for a time t0 leads to the cell density profile

n(r, t0) = n0e
− r2

2σ2 , (2.10)

where r is the radial distance from the initial cell (tumour center). The width of the
Gaussian profile is σ =

√
2Dnt0, while n0 = eρt0/(2πσ2)d/2 is the cell density at its center.

Equation (2.9) now leads to a parabolic cytotoxic profile. Cutting off the negative portions
of the parabola leads to the (semi-circular) profile

f(~x, t0) ≡ f1(r) = ln
(n0

λ

)
− r2

2σ2
≡

{
fm

(
1− r2

r2
m

)
if r ≤ rm

0 if r ≥ rm
. (2.11)

We have introduced the parameters fm = ln(n0/λ) and rm = σ
√

2fm to indicate the
maximum value of the cytotoxic profile, and the radius over which it is applied, respectively.
The total radiation dose in this fraction is then given by

F =

∫
dd~x f1(r) =

2Sd
d(d+ 2)

fmr
d
m, (2.12)

where Sd is the d-dimensional solid angle, with S3 = 4π and S2 = 2π. Using fm = r2
m/(2σ

2)
from Eq. (2.11), we conclude that the optimal radius of the semi-circular beam is given by

rm =

(
d(d+ 2)

Sd

) 1
d+2

F
1
d+2σ

2
d+2 , (2.13)

while its maximal intensity equals

fm =
1

2

(
d(d+ 2)

Sd

) 2
d+2

F
2
d+2σ−

2(d+1)
d+2 . (2.14)
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If the above value of fm exceeds the maximum allowed intensity of C, we should instead
use

fC1 (r) =

{
C − r2

2σ2 if r ≤ rm

0 if r ≥ rm
, (2.15)

with rm(F ) now constrained by the maximal allowed density according to Eq. (2.12). In
either case, the cell density profile after application of XRT will attain a flat-top profile, as

n(r, t0 + ∆t) =

{
n0e

−fm if r ≤ rm

n(r, t0) if r ≥ rm
. (2.16)

A flat post-XRT profile is also predicted for any initial tumour cell density n(~x, t0), although
the volume over which the beam is applied will be different. In the best outcome, the
density profile will be below the (single-cell) threshold for future growth. If not, additional
fractions need to be applied.

Optimal Profile with One Fraction of Logistic Death

Mathematically, the switch from an exponential to a logistic cell death does not change
much. We now simply use Eq. (2.5) instead of Eq. (2.4) in our optimization. Again
imposing the constraint of Eq. (2.6) using a Lagrange multiplier and setting γ = ∆t = 1
for convenience, we arrive at the optimal profile

f(~x, t0) = ln
[(nmax − n(~x, t0)

n(~x, t0)

)( 2λ

2λ+ nmax +
√
nmax(nmax + 4λ)

)]
. (2.17)

Like the previous single-fraction case, this result is independent of ρ and Dn. It also is
not guaranteed to satisfy the bounds of 0 ≤ f(~x, t) ≤ C. As a quick check on the validity
of this result, one can let nmax → ∞ and see that Eq. (2.9) is recovered. Note that the
optimal profile again has a uniform or flat-topped form. This can be seen by substituting
Eq. (2.17) into Eq. (2.5).

2.3.2 Discrete Profile Optimization

Computational methods exist for determining how to administer a heterogeneous dose,
primarily sub-volume boosting and dose painting by numbers [2, 10]. Unfortunately, these
methods are limited by the mathematical optimization techniques as well as the physical
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reasonability of their results. Specifically, current technology is not capable of producing
beams with a high degree of precision for clinical use such as those derived above in
the continuous profile optimization. The standard procedure is to coalesce several beams
on the location of the tumour, creating an area of high radiative strength. As such, a
reasonably practical non-uniform beam profile is a step function. In the following, we
consider cases of both one-step and two-step radiation profiles. We emphasize that our
aim is to explore the feasibility of spatial optimization and to gain qualitative insights, and
thus make mathematical simplifications throughout to reflect this. The first simplification
is to consider radially symmetric profiles in two dimensions. In the following, we assume
exponential growth (a = 0) leading to a Gaussian profile, as in Eq. (2.10). A summary of
the parameter values used in calculations can be seen in Table 2.1.

D1: One-Step Radial Profile

The simplest step-function case of XRT involves a uniform beam of radius r1 and strength
f1, applied for a duration ∆t at time t0, i.e.

f(r, t) =

{
f1 0 ≤ r ≤ r1 and t0 ≤ t ≤ t0 + ∆t,

0 otherwise.
(2.18)

The goal is minimize N(t0 + ∆t) = 2π
∫
r n(r, t0 + ∆t) dr, subject to a constraint on

F which we rewrite as a constraint on F ′ ≡ F
π∆tγ

= r2
1f1. Approximating the Partial

Differential Equation (PDE) as an Ordinary Differential Equation (ODE) as before, the
tumour cell density distribution immediately after the fraction is obtained as

n(r, t0 + ∆t) =

{
n(r, t0)e−γf1∆t 0 ≤ r ≤ r1,

n(r, t0) r1 < r ≤ R.
(2.19)

Integrating this result gives the total number of cells as

N(t0 + ∆t) =

∫∫
n(r, t0 + ∆t)dA

= 2π
[
e−γf1∆tn0

∫ r1

0

re−
r2

2σ2 dr + n0

∫ R

r1

re−
r2

2σ2 dr
]

= 2πn0σ
2
[
e−γf1∆t

(
1− e−

r21
2σ2

)
+ e−

r21
2σ2 − e−

R2

2σ2

]
. (2.20)
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The constraint on the total beam flux can be imposed through a Lagrange multiplier λ to
create an augmented N ,

Ñ = 2πn0σ
2
[
e−γf1∆t

(
1− e−

r21
2σ2

)
+ e−

r21
2σ2 − e−

R2

2σ2

]
− λ(f1r

2
1 − F ′) . (2.21)

Extremizing with respect to r1, f1, and λ leads to the following system of equations:

0 = 2πn0r1

[
e−

r21
2σ2−γf1∆t − e−

r21
2σ2

]
− 2λf1r1, (2.22)

0 = 2πn0σ
2
[
− γ∆te−γf1∆t + γ∆te−

r21
2σ2−γf1∆t

]
− λr2

1, (2.23)

0 = f1r
2
1 − F ′. (2.24)

After eliminating f1 and λ from the above equations, we arrive at the following implicit
expression for r1:

0 = e
−F
′γ∆t

r21 +
( r4

1

2F ′γ∆tσ2
− 1
)
e
− r21

2σ2−
F ′γ∆t

r21 − r4
1

2F ′γ∆tσ2
e−

r21
2σ2 . (2.25)

Values of r1 that satisfy Eq. (2.25) can be used to find a corresponding f1, together
specifying the optimalN(r1, f1). We assume that the duration of radiation is approximately
10 minutes, or ∆t = 0.007 (days), and use the linear model for the radiation γ = αḊ, where
α is the radiobiological parameter and Ḋ is the dose rate. For α = 0.08 (1/Gy) (taken from
an average of the values obtained in [82]) and the standard dose rate of 5 (Gy per radiation
time), we obtain γ = 60 (1/day). Using the parameter values C = 2.5 (corresponding to
the maximum allowed dose rate of 5 (Gy per radiation time)), F ′ = 25 (mm2), and a range
of (n0, σ) pairs chosen such that N(t = t0) = 107 (cells) is constant, we can solve for r1

and calculate the corresponding f1. The location of the optimal radius r1 is plotted in
Fig. 2.1. As expected, larger values of σ require radiation over a wider radius. However,
the increase of r1 with σ is sub-linear, and quite well fitted by r1 ∝ σ1/2. This is precisely
the scaling behavior predicted in Eq. (2.13) for the semi-circular beam shape in d = 2.
The scaling of the optimal radius with tumour size thus appears to be robust, irrespective
of the beam shape. This procedure is done for 5 different (n0, σ) pairs in Table 2.2 and
the profiles can be seen in Fig. A.2 (appendix). Note that for the σ = 1 and σ = 2 cases,
the optimal r1 falls below

√
10 (mm). However, due to our constraints of F ′ = 25 = f1r

2
1

and 0 ≤ f(r, t) ≤ C = 2.5, we have a lower bound of r1 ≥
√

10 (mm). Also note that the
calculated values in Table 2.2, and in the following data tables, are truncated decimals, but
the values of N are calculated using more precise solutions. Therefore, inserting the values
for r1 and f1 found from Table 2.2 into Eq. (2.20) will not necessarily exactly reproduce
the listed values of N .
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Figure 2.1: Optimal beam radius r1 vs. tumour size σ from Eq. (2.25).

Parameter Symbol Value (Unit) Reference

Initial Total Cell Number N 107 (cells) Chosen
Tumour Cell Diffusivity Dn 0.32 (mm2/day) [51]
Tumour Cell Proliferation Rate ρ 0.35 (1/day) [51]
Linear-Quadratic Parameter α 0.08 (1/Gy) Average of values from [82]

Dose Rate during Radiation Ḋ 5 (Gy/fraction) Chosen within range from [81]

Radiation Effect Parameter γ 60 (1/day) Estimated from α and Ḋ
Dose Limiting Parameter C 2.50 (Gy) Chosen

Table 2.1: Model parameters used in the various calculations and simulations throughout
the paper. Those with the given reference of ‘Chosen’ were selected within a biologically
reasonable range from various sources as an example for calculations.
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σ (mm) n0 r1 (mm) f1 N(t+ dt)

1 1.59e6
√

10 2.50 3.54e6

2 3.98e5
√

10 2.50 5.36e6
3 1.78e5 3.71 1.82 7.16e6
4 1.04e5 4.28 1.36 8.01e6
5 7.36e4 4.79 1.09 8.43e6

Table 2.2: Optimal one-step profile for one fraction of radiation with exponential growth
and death. n0 and σ are the magnitude and standard deviation of the initial Gaussian
tumour cell density, which starts with 107 total cells. r1 and f1 are the radius and strength
of the step in the cytotoxic radiation profile. N(t+ dt) is the final tumour cell number at
the end of radiation.

D2: Two-Step Radial Profile

Now we consider the more elaborate example of a 2-step cytotoxic profile, but still applied
in only one fraction. Introducing two new variables, r2 and f2, the radiation profile is:

f(r, t0 ≤ t ≤ t0 + ∆t) =


f1 0 ≤ r ≤ r1,

f2 r1 < r ≤ r2,

0 r2 < r ≤ R.

(2.26)

where f2 applies a different dosage to the outer region of the tumour. Adding the second
radial arc modifies the constraint on dosage to

F ′ =
F1

dt
= f1r

2
1 + f2(r2

2 − r2
1). (2.27)

We need to minimize the total cell number, N , with respect to the four-parameter set
(r1, r2, f1, f2). Using the Lagrange multiplier method as above results in a system of 5
coupled transcendental equations. Unfortunately, this set of equations has many local ex-
trema, making the result heavily dependant on the initial guess used in the computational
solver. This makes identification of the global extreme difficult. To avoid this, we use a
Monte Carlo method to identify the optimal shape of the radiation beam. First, a random
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σ (mm) r1 (mm) r2 (mm) f1 f2 N(t+ dt)
1 3.06 3.27 2.50 1.18 3.54e6
2 2.81 3.47 2.50 1.27 5.30e6
3 2.81 3.98 2.10 1.06 7.10e6
4 3.26 4.61 1.57 0.78 7.98e6
5 3.64 5.15 1.26 0.64 8.41e6

Table 2.3: Optimal two-step profile for one fraction of radiation with exponential growth
and death. σ is the standard deviation of the initial Gaussian tumour cell density, which
starts with 107 total cells. r1, r2, f1 and f2 are the two radii and strengths of the steps in
the cytotoxic radiation profile. N(t + dt) is the final tumour cell number at the end of
radiation.

radiation beam is generated by selecting a point from the parameter space (r1, r2, f1, f2).
The selection of this point is made by randomly assigning values to 3 of the parameters
within their acceptable ranges, then calculating the fourth according to Eq. (2.27) such
that the dose constraint is satisfied. This generated parameter set defines the candidate
radiation beam. The total cell number resulting from each beam is calculated and com-
pared to the previous minimum. This is done many times (∼109 in our simulations) such
that N converges to a global minimum. The point in the parameter space which generates
this minimum is then inserted back into the equations for the optimal profile to check that
they are indeed satisfied. Such a point parameterizes the optimal profile (in subsequent
optimizations the parameter space will become more complex, however this method will
remain the same). The numerical values resulting from this method are summarized in
Table 2.3, and the resulting cell density profiles are shown in Fig. A.3 (Supporting Infor-
mation). As a check on the numerical optimization, we do find that the the addition of
the second radial arc leads to better treatment outcomes. Once the constraint on maximal
value of f1 = 2.5 is no longer operative (for σ > 2 mm), the resulting cell density profiles
are close approximations to the flat-top profiles expected from a semi-circular beam. The
optimal two step radial profile thus represents a crude approximation to the semi-circular
beam.

D3: Two Fractions Individually Constrained

We next consider application of a second fraction of radiation, with dosage separately
constrained on each fraction. Describing the second fraction requires introducing four new

17



variables to fully parametrize f(r, t). We modify the previous notation by adding a second
index to each of the radii and strengths of f(r, t), with the first index indicating the step-
number and the second corresponding to the fraction number. Thus, r1, r2, f1, and f2

from before become r11, r21, f11, and f21 respectively, with corresponding r12, r22, f12, and
f22 for the second fraction. The interval between the two fractions will be labelled τ , such
that the second fraction takes place over the interval [t0 + ∆t+ τ, t0 + 2∆t+ τ ]. Note that
we assume the lengths of the two fractions to be the same. Defining t∗0 ∈ [t0, t0 + ∆t] and
t∗1 ∈ [t0 + ∆t+ τ, t0 + 2∆t+ τ ], we can write f(r, t) during the separate fractions as

f(r, t∗0) =


f11 0 ≤ r ≤ r11

f21 r11 < r ≤ r21

0 r21 < r ≤ R

, and f(r, t∗1) =


f12 0 ≤ r ≤ r12

f22 r12 < r ≤ r22

0 r22 < r ≤ R

. (2.28)

In this section, we consider the fractions constrained individually, such that

F ′ = f11r
2
11 + f21(r2

21 − r2
11), and F ′ = f12r

2
12 + f22(r2

22 − r2
12). (2.29)

Since our constraint on f(r, t∗0) is the same as before, the optimal f(r, t∗0) does not change
from that in Table 2.2. We can use the same optimization procedure for the second fraction,
but with a modified starting cell density profile. In order to deal with profiles with simple
analytic expression, we further assume that the time interval τ between the fractions is
small enough to neglect spatial migrations described by the diffusion term (mathematically,
this can be expressed as the condition Dnτ � σ2, which can be derived from a simple scale
analysis). If so, the density profile simply grows exponentially, by a factor eρτ without
changing its spatial form, and immediately before the second fraction is given by

n(r, t0 + dt+ τ) =


n0e

ρτe−
r2

2σ2 e−γf11∆t 0 ≤ r ≤ r11

n0e
ρτe−

r2

2σ2 e−γf21∆t r11 < r ≤ r21

n0e
ρτe−

r2

2σ2 r21 < r ≤ R

.

The density profile immediately after application of the second fraction is then given by:

n(r, t0 + 2dt+ τ) =


n(r, t0 + dt+ τ)e−γf12∆t 0 ≤ r ≤ r12

n(r, t0 + dt+ τ)e−γf22∆t r12 < r ≤ r22

n(r, t0 + dt+ τ) r22 < r ≤ R

.

For each set of radii, r11, r21, r12, and r22, the cell density is a piecewise continuous
function. The total number N can then be obtained as before by integration, as an explicit
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σ(mm) r11(mm) r21(mm) f11 f21 r12(mm) r22(mm) f12 f22 N(T )

1 3.06 3.27 2.50 1.18 2.93 3.36 2.50 1.30 1.29e6
2 2.81 3.47 2.50 1.27 1.97 4.04 2.42 1.26 3.41e6
3 2.81 3.98 2.10 1.06 4.61 5.03 1.07 0.57 5.59e6
4 3.26 4.61 1.57 0.78 5.36 5.84 0.80 0.39 6.80e6
5 3.64 5.15 1.26 0.64 5.98 6.54 0.64 0.31 7.52e6

Table 2.4: Optimal two-step profile for two separately constrained fractions of radiation
with exponential growth and death. σ is the standard deviation of the initial Gaussian
tumour cell density, which starts with 107 total cells. r11, r21, r12, r22, f11, f21, f12 and f22

are the radii and strengths of the steps in the cytotoxic radiation profiles. N(t+ dt) is the
final tumour cell number at the end of radiation.

analytic expression. For the same initial combinations of (n0, σ) as above, we search for
the radii (r12, r22) that optimize the second fraction using our Monte Carlo method (the
optimal radii (r11, r21) are naturally the same as obtained previously in Table 2.3). The
results of this minimization are summarized in Table 2.4.

Note that if diffusion is ignored, the final cell density after a second fraction of radiation
is given by n(~x) = n0(~x) exp {ρτ − γ[f1(~x) + f2(~x)]∆t}. From this expression it follows that
in this limit, the order in which the two fractions are applied is not important. Indeed
the same conclusion applies to any number of fractions, each separately optimized. Thus
it is not necessary to use the XRT profile that is optimal at the time of its application,
as long as there are planned future fractions that boost the overall amount of radiation at
each point to the optimal value. This freedom provides an additional tool for therapeutic
planning.

D4: Two Fractions with Overall Constraint

As a final example within this class, with non-diffusive exponential growth between the
two fractions, we consider the case when the overall dose is constrained, i.e. as

2F ′ = f11r
2
11 + f21(r2

21 − r2
11) + f12r

2
12 + f22(r2

22 − r2
12).

The optimization procedure can be carried out as before through a Monte Carlo search.
However, each step of the search now involves an exploration in the space of 8 variables
(as opposed to separate searches in a space of 4 variables), subject to one constraint. Note
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σ (mm) r11 (mm) r21 (mm) f11 f21 r12 (mm) r22 (mm) f12 f22 N(T )

1 3.06 3.27 2.50 1.18 2.93 3.36 2.50 1.30 1.29e6
2 2.81 3.47 2.50 1.27 1.97 4.04 2.42 1.26 3.41e6
3 3.55 4.92 1.63 0.82 2.56 4.31 1.61 0.78 5.59e6
4 4.20 5.74 1.21 0.61 2.97 4.92 1.22 0.55 6.79e6
5 4.63 6.34 1.02 0.50 3.28 5.52 0.96 0.43 7.42e6

Table 2.5: Optimal two-step profile for two mutually constrained fractions of radiation
with exponential growth and death. σ is the standard deviation of the initial Gaussian
tumour cell density, which starts with 107 total cells. r11, r21, r12, r22, f11, f21, f12 and f22

are the radii and strengths of the steps in the cytotoxic radiation profiles. N(t+ dt) is the
final tumour cell number at the end of radiation.

also that (except for the replacement of 2F ′ for F ′) this is exactly the search that would be
performed for a single fraction with a 4-step profile. The optimal values of these parameters
are given in Table 2.5.

Observe that for each σ, the optimal N with the single overall constraint is either better,
or the same as, in the individually constrained case. From the perspective of optimization,
this is not unexpected as the latter also explores the subset of the space available to the
former. In view of this, the surprising result may appear to be that for σ = 1 and 2
(see Table 2.6) the minimum occurs in the separately constrained space. However, the
structure of the general optimization problem is such that for Dn = 0, the same result
should hold with one or more constraints (appendix). We are thus unable to conclude if
the unequal partition of flux between the two fractions (in cases of σ = 3, 4, 5) is correct or
a computational artifact (we indeed find many solutions close to the optimum, so finding
the true optimum requires considerable computation and precision).

D5: Tumour Densities from Logistic Growth

The Gaussian density profiles employed to model the initial cell densities above are ap-
propriate only for small undeveloped tumours. For contrast, in this section we consider
density profiles resulting from the logistic growth (a = 1 in Eq. (2.1)). Such profiles are
obtained by evolving the partial differential equation

∂n

∂t
= Dn∇2n+ ρn(1− n

nmax
), (2.30)
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σ (mm) 1st Fraction 2nd Fraction

1 25.00 25.00
2 25.00 25.00
3 30.08 19.92
4 30.77 19.23
5 31.27 18.73

Table 2.6: Distribution of radiation flux over two radiation fractions based on standard
deviation of initial tumour cell density. The ‘1st Fraction’ number represents the amount
of dose (out of 50) that is allocated to the 1st radiation fraction and the ‘2nd fraction’ the
amount allocated to the 2nd radiation fraction.

σ a1 b1 c1

1 2.0697e6 0.4237 0.04007
3 1.0978e6 -0.3069 -0.004395
5 1553387 -0.02081 -0.01505

Table 2.7: Fitting parameters for initial density generated by simulation with logistic
growth. Parameters correspond to those in Eq. (2.31).

starting with a localized initial condition. While there is no exact analytic form for the
resulting solution, as an analytical approximant, we use the form

n(r, t0) =
a1

1 + b1 ec1 r
2 , (2.31)

where a1, b1, and c1 are fit parameters. Logistic growth causes the tumour to form a flat-
top profile as the density in the centre approaches nmax. Equation (2.31), which is known
as a Fermi Function, also describes a flat-top form, which is why we use it for fitting.
A numerical implementation of Eq. (2.1) was used to generate the fit parameters. For
this procedure and more information, see supporting information. The values of the fitted
parameters are given in Table 2.7.

We consider the same radial step-functions as previous, and the optimization procedures
are carried out in the same manner as before. The results for application of a single 2-step
fraction are reported in Table 2.8 and the resulting profiles can be seen in Fig. A.6. If
this treatment is followed by a second, separately constrained 2-step fraction, the resulting
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σ r1 (mm) r2 (mm) f1 f2

1 3.89 5.23 1.16 0.61
3 6.73 10.00 0.34 0.17
5 5.80 10.00 0.26 0.24

Table 2.8: Optimal one-step profile for one fraction of radiation with logistic growth and
exponential death. σ is the standard deviation of the initial Gaussian tumour cell density,
which starts with 107 total cells. r1, r2, f1, and f2 are the radii and strengths of the steps
in the cytotoxic radiation profiles. N(t+ dt) is the final tumour cell number at the end of
radiation.

σ r11 r21 f11 f21 r12 r22 f12 f22

1 3.89 5.23 1.16 0.61 5.92 6.37 0.66 0.33
3 6.73 10.00 0.34 0.17 3.98 10.00 0.31 0.24
5 5.81 10.00 0.26 0.24 8.47 10.00 0.25 0.25

Table 2.9: Optimal two-step profile for two separately constrained fractions of radiation
with logistic growth and exponential death. σ is the standard deviation of the initial
Gaussian tumour cell density, which starts with 107 total cells. r11, r21, r12, r22, f11, f21, f12

and f22 are the radii and strengths of the steps in the cytotoxic radiation profiles. N(t+dt)
is the final tumour cell number at the end of radiation.

parameters for the second application are given in Table 2.9 and the resulting profiles can
be seen in Fig. A.7.

D6: Tumour Densities from Logistic Growth and Logistic Death

The previously examined cases of exponential cytotoxic action do not incorporate the
phenomenon of radiation having a larger effect on faster-proliferating cells than on slower-
proliferating cells due to the cell’s position in the cell cycle and factors such as oxygen
concentration [48]. If we instead consider logistic action (b = 1), then some aspects of such
tendency are reproduced. This qualitative behavior is important to incorporate because
the vast majority of tumours exhibit some form of treatment resistance. This resistance
is conferred to a tumour through heterogeneities of various traits across its volume, such
as cell-type, phenotypic expression, and stem-ness. Of particular interest to radiation
therapy, tumour hypoxia is a prominent feature that leads to increased radioresistance. As
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σ r1 r2 f1 f2

1 4.3933 5.7914 0.0000 1.7557
3 9.4731 9.9886 0.0005 2.4875
5 9.4774 9.9906 0.0009 2.4940

Table 2.10: Optimal two-step profile for one fraction of radiation with logistic growth and
death. σ is the standard deviation of the initial Gaussian tumour cell density, which starts
with 107 total cells. r1, r2, f1, and f2 are the radii and strengths of the steps in the cytotoxic
radiation profiles. N(t+ dt) is the final tumour cell number at the end of radiation.

we will see, inclusion of logistic cytotoxic action reproduces this behavior and dramatically
changes the results. We note that this is a purely phenomenological effect and not meant
to describe the underlying biology at play. We make the same simplifications as before
leading to the piecewise equivalent to Eq. (2.5),

n(r, t0 + ∆t) =


a1nmaxe−γf1∆t

a1(e−γf1∆t−1)+nmax(1+b1ec1r
2
)

0 ≤ r ≤ r1

a1nmaxe−γf2∆t

a1(e−γf2∆t−1)+nmax(1+b1ec1r
2
)

r1 < r ≤ r2

a1

1+b1ec1r
2 r2 < r ≤ R.

The results of the Monte Carlo optimization are summarized in Table 2.10 and the resulting
profiles can be seen in Fig. A.8.

Mathematically, the results here differ dramatically from the exponential case in which
the optimal profile focused the radiative strength in the center of the tumour where the
cell-density was larger. With the incorporation of logistic cell death, the effectiveness of ra-
diation in the center of the tumour diminishes. The optimal profile must now balance this
with still attacking areas with high cell densities. We see that in the case with the smallest
initial spread of cells, the optimal cytotoxic profile achieves this by focusing strength in a
ring through the middle of the tumour. For the other two cases, the density was far more
spread out initially, leading to an optimal profile which focused on cells at the outside
of the tumour. This was because the effect of the logistic death was stronger than the
decreased cell density.

In the case of exponential death, we were able to continue our discussion and optimize
the second fraction as we did the first. In the logistic death case, the computations in the
optimization method become significantly more challenging. For that reason, we do not
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Subsection Dose Profile # Fractions Constraint Growth Death Optimization

D1 One-Step 1 F1 Exp Exp Lagrange Multiplier
D2 Two-Step 1 F1 Exp Exp Monte Carlo
D3 Two-Step 2 F1 and F2 Exp Exp Monte Carlo
D4 Two-Step 2 F1 + F2 Exp Exp Monte Carlo
D5 Two-Step 1 F1 Log Exp Monte Carlo
D6 Two-Step 1 F1 Log Log Monte Carlo

Table 2.11: Overview of Cases for Spatial Optimization of Radiation Therapy.

pursue the second fraction of radiation here.

2.4 Conclusion and Discussion

In this paper we pose the question of how to spatially shape a sequence of XRT treatments
to best eliminate tumour cells. To answer this question, we need to know (i) how the
tumour grows in time; (ii) how it responds to treatment; and (iii) what constraints apply
to radiation dosage. Answers to all questions need to be expressed in mathematical terms,
which necessitates simplifications and approximations. We have relied on assumptions and
mathematical models commonly used in the literature, and hope our general results are
insensitive to choice of model.

The most important result follows from the assumption that the effect of XRT is to
destroy a fraction of existing tumour cells, proportional to its strength. This assumption
is embodied by the term −γf(~x, t)n(1 − bn/nmax) in Eq. (2.2). It immediately leads to
the conclusion that the optimal beam profile should depend non-uniformly on the tumour
density at the time of its application. Shaping the beam to such a precise form is likely
impossible, and may further violate constraints on the strength of the beam. As such,
optimal beam profiles can be sought within certain constraints on the shape of the beam.
In particular, we consider XRT profiles obtained by superposing several radially symmetric
beams. Clinically, the normal procedure is to irradiate the entire radius of the visible
tumour with a uniform beam. As can be seen from the various tables above, a uniform
f(r, t) will not lead to optimal cell kill. Using a spatially optimized f(r, t) can reduce the
total number of cells within a tumour significantly from what is currently done clinically.

The metric of TCP is not the only quantity that can be used to measure radiation
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efficacy. Others such as NTCP, conformity index, homogeneity index, and survival time
have been used by other researchers [3, 24, 29, 107]. We focused our analysis here on TCP
as it is intuitively simple and mathematically straightforward. We stress that this is an
exploratory study meant to discern qualitative behaviour, and note that a more complete
study should include analysis and comparison of other methods of radiation treatment
planning. More work in this direction would be interesting and similar mathematical tools
could theoretically be used.

For more than one fraction of XRT, it is necessary to account for the growth of the
tumour in between the two treatments. A simple commonly used model is logistic growth,
depending on three parameters ρ, Dn and nmax. In the various studies above, we have
mostly neglected the change in the shape of the tumour between two fractions. However,
this needs to be included in a more comprehensive study. Given all our results, we can
propose a procedure for spatial optimization of radiation as follows:

• Image tumour twice. The change in shape of the tumour can then be used to model
its growth mode; e.g. in order to deduce the parameters ρ, Dn, and nmax. The most
important ingredient for shaping the optimal beam is the cell density n(~x).

• Determine dose prescription and treatment schedule for the tumour. This provides
constraints on individual and total allowed dosage, {Fn} and the time intervals be-
tween fractions, {τn}.

• Determine the physical limitations of the radiation apparatus; e.g. how many radial
steps is the apparatus capable of accurately producing and superposing.

• Optimize the first radiation fraction using the above optimization procedure.

• Use the growth model deduced from the initial two images to model the growth of
the tumour cells between fractions. The deduced cell density profile prior to each
fraction can then be used as input to optimize the shape of the beam in that fraction.
The assumptions on evolution of the profile after a fraction and in between fractions
are likely to introduce errors. Ideally, more imaging can be done to obtain more
precise cell density profiles at intermediate times.

This exploratory work examines spatial variations in the shape of radiation beams,
and proposes improvements to radiation therapy by shaping beams according to the pre-
treatment cell-density. The advantage of this method is the opportunity to reduce the
total tumour cell number below that obtained in uniform radiation. In addition to the
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initial tumour density profile, the method relies only on few tumour-specific parameters
in order to carry out the optimization. In its current implementation, the method does
not take into account other factors in radiation planning such as nearby organs at risk,
scheduling, or other scoring indices used to compare dose distributions. Such factors could
potentially be included in a more elaborate model, a direction that we hope to pursue in
the future. A major limitation of the model is the exclusion of heterogeneity across the
tumour volume as tumours usually vary in cell type, stemness, phenotypic expression, and
perhaps most importantly, hypoxia. Although we added a logistic cytotoxic action term
to account for different radiation efficacy across the area, this is relatively simplistic and
could be improved with a more thorough specification of tumour heterogeneity. Another
direction that was not examined here is the interaction of this spatially-varying radiation
treatment with other therapies such as chemotherapy. We hope that this exploratory work
sheds light on the spatial variation of radiation beams and inspires further work in the
area.
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Chapter 3

Role of Hypoxia-Activated Prodrugs
in Combination with Radiation
Therapy: An In Silico Approach

Abstract

Tumour hypoxia has been associated with increased resistance to various cancer treatments,
particularly radiation therapy. Conversely, tumour hypoxia is a validated and ideal target
for guided cancer drug delivery. For this reason, hypoxia-activated prodrugs (HAPs) have
been developed, which remain inactive in the body until in the presence of tissue hypoxia,
allowing for an activation tendency in hypoxic regions. We present here an experimentally
motivated mathematical model predicting the effectiveness of HAPs in a variety of clinical
settings. We first examined HAP effectiveness as a function of the amount of tumour
hypoxia and showed that the drugs have a larger impact on tumours with high levels
of hypoxia. We then combined HAP treatment with radiation to examine the effects of
combination therapies. Our results showed radiation-HAP combination therapies to be
more effective against highly hypoxic tumours. The analysis of combination therapies was
extended to consider schedule sequencing of the combination treatments. These results
suggested that administering HAPs before radiation was most effective in reducing total
cell number. Finally, a sensitivity analysis of the drug-related parameters was done to
examine the effect of drug diffusivity and enzyme abundance on the overall effectiveness
of the drug. Altogether, the results highlight the importance of the knowledge of tumour
hypoxia levels before administration of HAPs in order to ensure positive results.

27



3.1 Introduction

Tumourigenesis is a complex, multi-step process which leads to the formation of solid
malignancies. A critical step in this process is angiogenesis in which tumours develop their
own vasculature and blood supply. In normal tissues, angiogenesis is carefully self-regulated
and tightly controlled, whereas in tumours, the vessels are structurally and functionally
abnormal. Accordingly, they are often characterized by defective endothelia, basement
membranes, and pericyte coverage leading to inefficient nutrient delivery to tumour cells
despite a high global blood flow in the environment [16]. In particular, the poor delivery of
oxygen results in regions of severe hypoxia - a trait observed in nearly all solid malignancies
[96]. Tumour hypoxia has been linked to the increase of many cancerous behaviors such
as genomic instability, malignant progression, and metastasis formation [40, 60].

The clinical implications of hypoxia for cancer therapy are also of great importance,
most evidently in the context of radiation and chemotherapy. It has been established
that resistance to radiation is conferred by hypoxia, and the mechanism by which this
is achieved is well understood [38, 40]. The radioresistance arises in the hypoxic regions
because of the relatively fewer oxygen-derived free radicals generated by ionizing radiation
that compromise the cytotoxic effects of radiotherapy. In the case of chemotherapy, hypoxia
has also been shown to elicit an overall decrease in efficacy in vivo. This is likely related to
inefficient drug delivery due to the abnormal tumour vasculature, though the underlying
mechanisms dictating this are less well understood [40, 66].

On the other hand, hypoxia is a theoretically ideal ideal target for guided drug de-
livery. To overcome hypoxia-induced treatment resistance, hypoxia-activated prodrugs
(HAPs) have been developed that are nontoxic under physiological oxygen concentrations
but are activated through a bioreduction specifically in hypoxic tumour regions. Once
HAPs become activated at hypoxic sites, some of them are able to diffuse back out of
hypoxic areas allowing them to attack nearby, non-hypoxic cells as well - a phenomenon
called the bystander effect. These bystander effects play a vital role in the overall cytotoxic
effectiveness of HAPs. Furthermore, the failure of several recent clinical studies involving
HAPs suggests that one of the several factors contributing to this failure is insufficient
classification of patients based on their hypoxia and nitroreductase expression statuses
[44, 67]. Hence, not only the presence of hypoxia, but also its spatial distribution, might
significantly influence the efficacy of treatments involving HAPs. Preclinical studies have
examined the effect of HAPs, administered singly or in combination with conventional
treatments such as chemotherapy and radiotherapy, resulting in very promising outcomes
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in the control of tumour growth [55, 72, 104] 1. Despite the theoretical and preclinical
results, several HAPs have recently failed to demonstrate efficacy in clinical trials. The
disconnect between theory and practice is hypothesized to be mainly due to sub-optimal
patient selection and heterogeneities in distributions of hypoxia, in addition to other issues
common to chemotherapies such as poor delivery due to the insufficient blood supply and
high interstitial fluid pressures [44, 74]. A better understanding of these therapies and
their interactions with tumour cells and the surrounding micro-environment for individual
patients is required before they can be successfully translated into clinical practice.

Mathematical modelling approaches have been used to study the interaction between
hypoxia and external beam radiation therapy [51, 73, 76, 105] as well as the action of HAPs
[25, 26, 39, 54, 85]. Here, we developed an experimentally motivated mathematical model
to predict the effect of HAPs by incorporating the amount of tumour hypoxia and the
action of the prodrug as well as the sensitivity of activated metabolites. Once the model is
calibrated and validated with appropriate experimental data, it can be used to determine
the efficient administration of HAPs for a given tumour and to predict the outcome of a
combination of HAPs and radiotherapy. Moreover, the developed mathematical model can
be further used to analyse and generate testable hypotheses that can be further studied
experimentally.

3.2 Mathematical Model

Our mathematical model is developed based on the experimental observations of TH-302
administration by Peeters et al [72]. In this study, Rhabdomyosarcoma R1 and H460
NSCLC xenografts were treated with TH-302 and external beam radiation therapy, and
the effects on tumour size and hypoxic fraction were examined. Furthermore, the TH-302
efficacy based on initial hypoxia level was assessed as well as efficacy of its combination with
radiation as well as order of treatment administration. In order to study the effect of HAPs
and their bystander effects on tumour cells - particularly hypoxic tumour cells - we consider
the spatio-temporal evolution of tumour cell concentration, oxygen distribution, inactive
HAP distribution, and active metabolite distribution. If we denote n(x, t), k(x, t), c(x, t)
and ca(x, t) as the concentrations of tumour cells, oxygen, HAPs (inactive) and active
metabolite at the location x and time t, we can write the model equations as given below.

1https://www.youtube.com/watch?v=LjbfbQ_OON8&t=s
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Cancer Cells

∂n(x, t)

∂t
= Dn∇2n(x, t)︸ ︷︷ ︸

Diffusion

+
r k(x, t)p

kpg + k(x, t)p
n(x, t)︸ ︷︷ ︸

Oxygen-dependent
growth

− δaca(x, t)n(x, t)︸ ︷︷ ︸
Cell death by

activated HAPs

−αk dt n(x, t)︸ ︷︷ ︸
Cell death by

radiation

(3.1)

αk = αh
(αn/αh) k(x, t) + ks

k(x, t) + ks
, dt =

d

τ
f(t) (3.2)

Oxygen

∂k(x, t)

∂t
= 0 = Dk∇2k(x, t)︸ ︷︷ ︸

Diffusion

+ rkv(x, t)︸ ︷︷ ︸
Production

− qkk(x, t)m

kmc + k(x, t)m
n(x, t)︸ ︷︷ ︸

Oxygen-dependent
consumption

(3.3)

Hypoxia Activated Prodrugs (HAPs)

∂c(x, t)

∂t
= 0 = Dc∇2c(x, t)︸ ︷︷ ︸

Diffusion

+ rcg(t)v(x, t)︸ ︷︷ ︸
Production

− qak
u
a

kua + k(x, t)u
c(x, t)︸ ︷︷ ︸

Activation

−λcc(x, t)︸ ︷︷ ︸
Decay

(3.4)

Activated HAP (AHAPs)

∂ca(x, t)

∂t
= 0 = Da∇2ca(x, t)︸ ︷︷ ︸

Diffusion

+
qak

u
a

kua + k(x, t)u
c(x, t)︸ ︷︷ ︸

Activation

−λaca(x, t)︸ ︷︷ ︸
Decay

= 0 (3.5)

The description of the relevant parameters and corresponding values are given in Table
3.1. Here, we assume that cancer cells (n(x, t)) follow an oxygen-dependent, exponential
growth law and are treated with HAPs alone or in combination with external beam radia-
tion therapy. The oxygen-dependent growth is incorporated to account for the well-known
phenomenon of cancer cells altering their growth pathway in the absence of oxygen [99].
Mathematically, this is incorporated by the use of a Hill function, which is commonly used
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to model the dependence of a rate on a specific quantity. Notice that as the oxygen con-
centration increases, the Hill function in the oxygen-dependent growth term approaches r
(its maximum growth rate) and that as oxygen decreases, the growth rate approaches zero.
The parameter δa, the rate of HAP-induced cell death, is assumed to be cell-specific and
reflects the death rate of the cancer cells to the activated HAPs (sensitivity to warhead).
The radiation induced cell kill is incorporated into the model using a linear term with a
radiosensitivity parameter αk and dose rate dt. While αk is a constant dependent on the
tissue of interest, we employ an oxygen enhancement ratio to show the decreased effect
of radiation in hypoxic areas of tumours. This is common in modelling the interaction of
radiation with hypoxia and is shown above in equation (2) where oxygen concentration is
incorporated into the equation for αk [26]. When modelling external beam radiation ther-
apy, the linear-quadratic model is often used to describe tumour survival. Here, we make
the simplification that the linear term is dominant and exclusion of the quadratic term
does not impact the qualitative results (as done in [51] for example). Radiation schedule is
incorporated with the model using the function, f(t), where f(t) = 1 when the radiation is
given. Oxygen and drug distributions follow reaction diffusion equations and are assumed
to be in quasi-steady state with respect to the computational time-step length used in
numerical simulations. Specifically, their distributions are time-dependent over the course
of the simulation, but achieve equilibrium within the span of a single computational time
step of 0.001 days. Moreover, oxygen and HAPs are assumed to be delivered from the
blood vessels. Here, v(x, t) stands for the density of the blood vessels and v(x, t) = 1 for
the presence of the blood vessel and zero otherwise. Notice that a Hill function is again
utilized for modelling the dependence of the oxygen consumption on the oxygen concen-
tration. The function g(t), controls the delivery of HAPs and when HAPs are delivered,
g(t) = 1. The inactive HAPs (c(x, t)) supplied by the vessels are activated at the presence
of hypoxia and nitroreductases to produce activated HAPs (ca(x, t)). Once again a Hill
function is used to mathematically show the dependence of the HAP activation rate on
oxygen concentration. The parameter qa accounts for the rate by which HAPs are acti-
vated by nitroreductases. The active metabolites diffuse farther to produce a bystander
effect affecting both hypoxic and oxygenated tumour cells. The formulation of the model
is then completed by prescribing no-flux boundary conditions and an initial condition on
the tumour cell density [76].

3.2.1 Computational Domain and Parameters

The simulations are performed using the images (Fig. 3.1) obtained with the help of im-
munofluorescence staining techniques on a H460 xenograft to obtain vascularity, perfusion,
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Figure 3.1: Binary images of the xenographt cross-section, illustrating total tumour area,
blood vessels, perfusion and hypoxia, respectively.

and hypoxia using CD31 (endothelial marker), Hoechst 33342, and pimonidazole respec-
tively, as described previously [72]. The stained tumour sections were then scanned and a
threshold was applied to generate the corresponding binary masks.

Following Powathil et al [76], we assume that the perfused vascular network is the
source of oxygen and drug supply, and thus gives the initial spatial distribution of concen-
trations. The perfused vasculature (at a fixed time) is obtained by combining the images
of perfused areas (Hoechst 33342) and vascular structures (CD31) using the logical “AND”
operation. The images of hypoxic regions (pimonidozole positive) are then used to compare
the simulated hypoxic area and thus to calibrate/validate the mathematical model (Fig.
3.2). The simulation is carried out over the image of the tumour cross-section (tumour
mask). Note that for the in vitro case, we may assume a uniform distribution of oxygen
and drug concentrations (when given). Further details can be found in [76].

The parameters for the model are listed in the Table 3.1. When available, we have
used suitable parameters from previous studies [51, 76]. The parameter values for oxygen
dynamics have been calibrated to match the experimental results as shown in Fig. 3.2.
The experimental findings [33, 84, 101], suggest that HAPs have the ability to diffuse
into hypoxic areas and exert their effect. Importantly, the diffusion parameters used in
our model are estimates based on experimental observations and therefore are reflective of
both the diffusive properties of the substances as well as their interactions with cells near
the blood vessel. Production or supply rate of the drug is assumed to be (around 1.6 times)
lower than that of oxygen and the decay rates of HAPs and Activated Hypoxia-Activated
Prodrugs (AHAP) are assumed to be 0.023 (1/s). Moreover, we assume that HAPs are
activated when the oxygen concentration is less than 5 mmHg [102]. We have further
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analyzed the effects of estimated parameter values using a sensitivity analysis, the results of
which are reported in the relevant sections below. The initial spatial distribution of oxygen
as determined from the vascular distribution is assumed to be constant with maximum
value. Furthermore, we assume a uniform cell distribution as our initial condition, since
we are considering a two dimensional cross section of in vivo xenografts.

To the best of our knowledge, most of the parameter values related to the evolution
of HAPs and AHAPs are generally unknown or not clear and hence, these parameters
are assumed phenomenologically based on the experimental observations and information.
The clinical and experimental investigation into the effects and efficacy of HAPs alone or
in combination with other treatment modalities is still in its infancy and consequently,
modelling studies can play a vital role in providing a better overall qualitative or quanti-
tative understanding. However, since these experimental and clinical studies are ongoing,
the limited information available may not always help to accurately estimate all the nec-
essary parameters needed for any modelling approaches. Nevertheless, they may help to
give some qualitative, phenomenological estimates of the parameters that eventually help
to provide qualitative inferences. Moreover, these modelling approaches can further inform
experimental studies on accurately estimating appropriate parameters to provide quanti-
tative insights. There are existing modelling works in this direction but each are focused
on different compounds and settings and similarly use assumed values when accurate es-
timates are unavailable. However, these assumed values can be modified or refined when
accurate values of these parameters are estimated. For the values that are assumed in
the current study, a sensitivity analysis is given to illustrate the sensitivity of the model
results on the parameter values. We believe that unavailability of such data should not
hinder modelling studies that might inform and motivate related experimental research; al-
though, one should consider these results with some reservations until accurate parameters
are available.

The computational simulation involves a finite difference scheme in a MATLAB script
applied to a system of equations which computes cell density, oxygen concentration, and
the concentration of inactive and active HAPs over the tumour cross-section. A uniform
distribution is used for the initial condition of tumour cells across the mask and the other
equations are solved in the steady state, so an initial condition is not necessary. The
tumour cross-section is considered to be a 200x200 grid and is treated over 5 days with
the simulation consisting of 5000 time steps each of size 0.001 days. The time step length
remains constant throughout the treatment and particularly during the treatment times.
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Parameter Symbol Value (Unit) Reference
Tumour Cell Diffusivity Dn 0.32 (mm2/day) [51]
Growth Rate r 0.35 (1/day) [51]
Hill Coefficient p 8 Assumed∗

pO2 at Half Maximum Growth kg 10 (mmHg) Assumed∗

Rate of HAP-Induced Cell Death δa 10 (1/day[Ca]) Assumed∗

Normoxic Radiosensitivity αn 0.30 (1/Gy) [76]
Hypoxic Radiosensitivity αh 0.10 (1/Gy) [76]
pO2 at Half Maximum Radiation ks 3 (mmHg) [76]
Radiation Dose d 2-8 (Gy) [72]
Irradiation Duration τ 3 (minutes) [76]
Radiation Schedule f(t) 1 or 0
Diffusion Coefficient (Oxygen) Dk 2.50× 10−5(cm2/s) [76]
Rate of Oxygen Supply rk 0.12 (O2/s) Estimate∗

Cellular Oxygen Consumption qk 0.04 (O2/cells/s ) Estimate∗

Hill Coefficient m 2 Assumed∗

pO2 at Half Maximum Consumption kc 10 (mmHg) Assumed∗

Diffusion Coefficient (HAP) Dc 4.00e−5 (cm2/s) Assumed∗

Production Rate of HAP rc 0.07 ([HAP]/s) Assumed∗

HAP Schedule g(t) 1 or 0
Activation Rate of HAP qa 8.40e−3 (1/s) Assumed∗

Hill Coefficient (Activation) u 2 Assumed∗

pO2 at Half Maximum Activation ka 5 (mmHg) Assumed∗

HAP Decay Rate λC 2.30e−2 (1/s) Assumed∗

Diffusion Coefficient (AHAP) Da 4.00e−5 (cm2/s) Assumed∗

AHAP Decay Rate λa 2.30e−2 (1/s ) Assumed∗

Table 3.1: List of Model Parameters (∗for assumed and estimated parameters, refer to
parameters section)
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Figure 3.2: Comparison of hypoxic images from (a) pimonidazole binding and (b) in silico
model (white voxels in the in silico image correspond to hypoxic areas where pO2 <
10 mmHg). The amount of hypoxic area predicted by the model differs by 3.06% from
hypoxic area calculated by pimonidazole binding. Furthermore, the images have an overall
90.63% agreement in their pixel colours.

The perfused vasculature network is read into the MATLAB script through the imread
function.

3.3 Results and Discussions

The identification of hypoxia in many types of tumours and its role in treatment resistance,
especially in radiation therapy, prompted the exploration of other treatment options - in
particular, HAPs [44]. However, as discussed earlier, recent clinical studies have failed to
demonstrate the success of various HAP-based treatments. One possible reason for this
failure could be lack of detailed information about the hypoxia levels of each patient and
how that affects the success of the therapy [44]. In this section, following Powathil et al
[76], we discuss a theoretical, non-invasive approach to predict the spatial and temporal
distribution of hypoxia (oxygen concentration) and analyze the effects of HAPs - alone and
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in combination with radiation.

In earlier work, Powathil et al [76] discussed a computational approach to simulate and
explore the spectrum of spatial hypoxia distributions at a snapshot in time that will result
from a given vascular distribution. We used two-dimensional binary images of tumour
cross-sections together with a vascular distribution as a computational domain on which
a model for the oxygen distribution and tumour cell density was solved. The resulting
hypoxic area was quantified and compared against the hypoxic proportions determined
from images [76]. Here, since we are only considering viable tumour mass (tumour mask),
necrotic regions are not included in the analysis. The methodology and results were dis-
cussed in detail in Powathil et al [76]. Here, we use a similar approach to estimate the
hypoxia on a xenograft sample and use it to study the effects of HAPs under varying
hypoxic conditions. Fig. 3.2 compares the binary images of hypoxia estimated using the
mathematical model simulations and experiments (immunohistochemical analysis) and re-
illustrates the usefulness of mathematical and theoretical approaches to predict hypoxic
distributions. While the experimental and in silico tumours are not identical in their im-
ages, the model predicts hypoxic area to within 3.06% accuracy. As mathematical models
are idealized by their nature, small discrepancies are expected. Furthermore, the model is
still able to predict phenomena shown in experiments like efficacy based on hypoxic level
and differences in sequencing.

3.3.1 HAPs and Hypoxic Levels

To study the role of spatial hypoxia distributions on HAP effectiveness, we used the above-
described mathematical model to simulate the HAP response under two different hypoxic
levels - low and high. In the low hypoxic case, we used all the perfused vessels obtained via
image analysis of xenograft images [76] and in the high hypoxic case, we used a hypothetical
scenario with only 50% of the perfused vessels. Fig. 3.3 shows the comparison of total
cell number and corresponding hypoxic area before and after 5 days of HAP treatment.
In both cases, HAPs are given as daily doses over 5 days (QD4). We assume that in each
dose, the drug is active in the system (delivered via vessels) for up to 3 hours. This can be
changed or adapted appropriately depending on the given drug or mode of delivery. Since
the primary aim of this study is to qualitatively study the effects of HAPs, we believe this
schedule to be sufficient.

The simulation results shown in Figure 3.3 are qualitatively in agreement with experi-
mental results [72]. The plots show that HAPs are more effective in reducing the number
of cells under high hypoxic conditions: HAP treatment reduces cell number by 60.4% in
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Figure 3.3: Plots showing the (a) total (normalized) tumour cell population and (b) (nor-
malized) hypoxic area on day 0 and day 5, when the tumour is treated with HAPs only
(4 daily doses with active metabolites for up to 3 hours). Cell number is normalized using
the initial cell number and hypoxic area is scaled as a percentage of total tumour area.

the high hypoxic case and only by 31.1% in the low hypoxic case. Note that one possible
reason for a relatively higher hypoxic area after treatment in simulation results might be
due to the fact that experimental results account only for hypoxic area with viable cells (as
binding is required), while simulation hypoxic area accounts for the hypoxic area within
the entire domain (including regions with low cell density due to the cytotoxic effect of the
released drug). This clearly indicates that information about hypoxic area can be a vital
factor in determining the successfulness of treatments involving HAPs.

3.3.2 Combining HAPs with Radiation

Radiation therapy is widely known to be very effective at targeting well-oxygenated tu-
mour cells while hypoxic cells often show a degree of radiation resistance. Therefore, the
biological rationale in combining radiation with HAPs is very promising as HAPs target
hypoxic cells, leaving radio-sensitive tumour cells to be killed by radiation. Furthermore,
recent preclinical experimental studies [67, 70, 72] suggest that the antitumour effectiveness
of HAPs is enhanced by combining HAPs with radiotherapy. Here, we use the formulated
mathematical model to study the effects of HAPs alone and in combination with radia-
tion in low- and high-hypoxic tumours. Fig. 3.4 shows the number of cells (Fig. 3.4(a))
and hypoxic area (Figure3.4(b)) before and after treatment under low- and high-hypoxic
conditions. These results show that depending on the tumour type (hypoxia level), a com-
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Figure 3.4: Plots showing the (a) total (normalised) cell number and (b) (normalized)
hypoxic area at the end of day 5 when the tumour is treated with radiation only or combi-
nation of radiation and HAPs (8 Gy of radiation given over a 3 minute fraction on the first
day of treatment with 4 daily doses of active metabolites for up to 3 hours). Cell number
is normalized using the initial cell number and hypoxic area is scaled as a percentage of
total tumour area.

bination treatment of radiation combined with HAPs can be very effective (compared to
radiation alone).

3.3.3 Effects of Treatment Scheduling

Although combination therapies with HAPs have shown promising results in controlling
a growing tumour, the positive response of this combination treatment often depends
on the treatment sequencing and scheduling parameters. For example, Liu et al showed
in xenograft models that TH-302 in combination with a conventional chemotherapeutic
achieved the greatest tumour inhibition when TH-302 was administered 2-8 hours prior to
its companion (either cisplatin, docetaxel, gemcitabine, or doxorubicin) [55]. This work
hypothesized that administration of the conventional therapeutic prior to TH-302 caused a
reoxygenation of the tumour microenvironment, therefore decreasing the activation rate of
the HAP and leading to decreased efficacy. Conversely, HAP-first treatment was thought
to lead to a reoxygenation allowing further penetration of the accompanying drug. Peeters
et al examined the combination of TH-302 with radiotherapy applying TH-302 in different
schedules with a single 8 Gy dose of radiation (as done in our simulations) [72]. They
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showed that TH-302 combined with radiation therapy increased tumour control from the
radiation monotherapy case. Furthermore, it was shown that pretreatment with TH-302
prior to radiation lead to optimal efficacy. They speculated that HAP treatment reduced
the hypoxic fraction which enhanced the radiation effectiveness. Nytko et al showed the
same qualitative results experimentally by combining radiation and HAP therapy, deter-
mining that a neoadjuvant (HAP-first) was the optimal treatment schedule [70].

Determining the optimal plan for administration of HAPs and radiation in a combina-
tion therapy is clearly an important goal. To help answer this question, the model was
used to see the resulting tumour cell population and hypoxic area at the end of treatment
for 5 different radiation schedules. In each schedule, HAPs are given on days 1 through
5 and the results are calculated at the end of the 5th day. An 8 Gy fraction of radiation
is also given over a 3 minute interval on one of the first 4 days. Additionally, the case of
splitting the dose into 4 fractions with 2 Gy/day was also included.

The analysis shows that the best option is to apply radiation on the 4th day of treat-
ment, both in considering tumour cell population and hypoxic area. Though we only
carried out this analysis for the 5-day treatment plan, we expect that this result would
generalize to the best option simply being to apply radiation as late as possible. This is
because the radiation has its highest effectiveness when hypoxic area is lowest: So natu-
rally, the way to have the lowest hypoxic area is to apply the highest amount of HAPs
before radiation. Similarly, the further fractionated 2 Gy/day schedule lies at a medium
effectiveness. However this may not be the case for rapidly growing tumours where the
turnover rate of hypoxic cells is very high. The results of this analysis are shown in Fig.
3.5.

3.4 Parameter Sensitivity Analysis

The effectiveness of HAPs is also influenced by other relevant measurable parameters. For
example, the diffusivity of the inactive HAPs, Dc, impacts the delivery the drug to the
hypoxic zones. To see this, we simulated the mathematical model with the drug diffusivity
scaled by factors of 0.5 and 2 to see the effect on resulting tumour cell population and
hypoxic area. This was done in combination with radiation therapy for radiation given
either on day 1 or day 4. The results show that the larger diffusivity results in a decrease in
tumour cells and hypoxic area while the smaller diffusivity results in an increase in tumour
cells and hypoxic area. However, the overall effect due to either change in diffusivity is
low.
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Figure 3.5: Plots showing the (a) total (normalized) cell number and (b) (normalized)
hypoxic area on day 5 when the tumour is treated with Radiation and HAPs. HAPs are
given on days 1 through 4 and remain active for up to 3 hours. 8 Gy of radiation is
given over a 3 minute fraction on one of the first 4 days except for the final case in which
2 Gy radiation is given on each of the first 4 days. The cell number and hypoxic area
are calculated at the end of the 5th day. Cell number is normalized using the initial cell
number and hypoxic area is scaled as a percentage of total tumour area.
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Another parameter which can be examined is the activation rate of the HAPs, qa. While
this activation rate can’t easily be pharmacologically altered, it is potentially alterable
through the expression of nitroreductases in the tumour cells. With measurements of the
levels of these enzymes, this activation rate could be theoretically estimated. Like for the
diffusivity, we simulated the model for the activation rate scaled by factors of 0.5 and 2 for
radiation given on either day 1 or day 4. The results show that the higher activation rate
leads to a decrease in cell number and hypoxic area and a decrease in activation rate leads
to the opposite. The overall effect of the change in activation rate is more significant than
the effect of changing the diffusivity.

The effectiveness of the HAPs also depends on the sensitivity of the activated HAPs in
inducing cytotoxic effects to hypoxic and surrounding cells. For example, if it is an alky-
lating agent, the DNA repair status will be an important factor to consider while studying
the effectiveness. DNA crosslinkers such as the drug evofosfamide TH-302, pose strong
replication blocks and cellular survival requires the concerted action of nucleotide excision,
Fanconi anemia (FA) and homologous recombination (HR) driven DNA repair pathways
[88, 97]. The sensitivity to the drug is included into the model using the parameter δa and
we have further explored its effects by varying this parameter. The results are reported in
the Fig. 3.6. The results show that increased sensitivity improves final outcome (higher
cell-kill and lower hypoxic area), as expected.

A similar analysis was performed to study the sensitivity of each of the parameters
related to the HAPs including: rc, λc, Da, and λa in addition to Dc and qa as mentioned
above. This analysis consisted of simulating the model with each of the parameters se-
quentially scaled by a factor of either 0.5 or 2 for radiation given on either the first or
the fourth day. The parameters are scaled one at a time to assess to which parameters
the model is most dependent. Looking at Fig. 3.6, we can see that qa, rc, λc, and λa are
the parameters which have the largest impact on tumour cell number and hypoxic area.
Though this method is not a rigorous sensitivity analysis, it nonetheless is a good indica-
tor of the stability and robustness of our model since scales of parameters do not lead to
drastic changes in the overall results. As precise measurements of the parameter values
are not reliably known, especially since they can vary patient-to-patient, we seek only to
make qualitative predictions rather than quantitative ones. Accordingly, the goal of testing
simple parameter scalings is to establish that the model is robust to changes of parameter
values within a reasonable range. When precise measurements are able to be obtained,
they can be used with the model to make more accurate predictions. The next step is
thus to carefully design experimental studies to obtain relevant data such as HAP (drug
specific) diffusivity and half-life to better understand and parameterize the mathematical
model.
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Figure 3.6: Plots showing the effect of scaling HAP diffusivity and activation rate on
tumour cell population and hypoxic area for different radiation schedules. The top plot
corresponds to HAPs given on each of days 1 through 4 which remain active up to 3 hours
with radiation given on the first day. The bottom plot corresponds to the same HAP
schedule with radiation given on day 4. The default parameters are given in Table 3.1.
Cell number is normalized using the initial cell number and hypoxic area is scaled as a
percentage of total tumour area.
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3.5 Conclusions

We have developed here a spatio-temporal mathematical model to describe the effects
of HAPs, alone and in combination with radiation, on a growing tumour. The model
incorporates cell number, oxygen concentration, inactive HAPs, and activated metabolites.
The system was solved on a domain obtained through imaging of perfused areas and
vascular structures.

The model was solved for a low-hypoxia and high-hypoxia tumour to see which was more
susceptible to treatment using HAPs. The model results showed a significant improvement
in overall cell kill for tumours with high levels of hypoxia which was in agreement with
experimental results [72]. This was extended to include a combination with radiation
therapy which again predicted that the combination therapy is more effective for high-
hypoxic tumours. Treatment sequencing was also altered to attempt to determine the
optimal schedule of treatment methods. For our model, the best case scenario was to
administer HAPs before radiation, which resulted in the highest cell kill and lowest hypoxic
area. Additionally, scaling key model parameters can have an effect on the treatment
efficacy. Simulating the results for different parameter scalings shows that increasing the
diffusivity and activation rate of HAPs also improves the treatment efficacy, although the
degree of change due to diffusivity scaling is relatively small.

Presently, the model is developed only using one cross-section of xenograft experimen-
tal image, showing its potential strength in studying the effects of HAPs in combination
with radiation within a realistic microenvironmental setting. Further calibration and val-
idation of the computational model using multiple images can help the model for further
generalization. Also note that currently the model assumes a static vasculature over the
treatment. Since the focus of this work is to study the effects of HAPs alone/in combi-
nation with radiation at a snapshot of the time with given spatial distribution of hypoxia
resulted from a particular distribution of vasculature, the use of static vessels may be jus-
tified accordingly in a two dimensional settings. However, it would be ideal to simulate
this in a three dimensional scenario, provided such spatial maps are available to implement
the model. Furthermore, as the simulations take place over a maximum length of 5 days,
the tumour vasculature is unlikely to change significantly over the course of treatment.
For an in vivo tumour growing over a longer period of time, we would expect the vascu-
lature to change throughout the treatment, thereby altering the transport of oxygen and
drugs and effecting the treatment efficacy. This is another direction we hope to examine
in the future. Another future direction is to incorporate a detailed pharmacodynamics
of considered drug to improve the predictive ability of the model, moving a step closer
to personalised therapeutic delivery. For example, for a drug such as PR-104, the inter-
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mediate molecules along its activation path may play a significant role as they too can
have cytotoxic effects [74]. However, for a drug such as TH-302, as we considered here,
Bromo-Isophosphoramide Mustard (Br-IPM) is the lone dominant cytotoxic form (though
the Cl-IPM metabolite also appears) [46]. Similarly, the simplified model that we used here
to study radiation effects can be modified further to include multiple effects of radiation
such as delayed cell death, indirect effects, cell-cycle sensitivity and so on, depending on
the availability of the data and required complexity of the model. Spatial effects are also
not examined to their full extent. Analysis of treatment efficacy as it relates to distance
from vessels is an interesting question which we hope to examine in future works. As we
use only one experimental image to generate the hypoxia distribution, the conclusions we
can draw here are limited.

Although current predictions from the model are qualitative in nature, we have shown
that the model can be used to understand the combined effects of radiation and HAPs in
general. Moreover, the results from the model are in good agreement with experimental
observations and the inferences from the model results, such as optimal combinations and
sequencing, can be further analyzed and validated using appropriate experimental studies.
Once the model is carefully calibrated with HAP-specific experimental data, it can be used
for quantitative predictions and treatment optimizations. Furthermore, this model can be
adapted for clinical applications by using relevant hypoxic data obtained from biopsies and
novel imaging techniques such as perfusion CT imaging to spatially reconstruct tumour
hypoxia map for the model.
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Chapter 4

In Silico Analysis of
Hypoxia-Activated Prodrugs in
Combination with Anti-Angiogenic
Therapy through Nanocell Delivery

Abstract

Tumour hypoxia is a well-studied phenomenon with implications in cancer progression,
treatment resistance, and patient survival. While a clear adverse prognosticator, hypoxia
is also a theoretically ideal target for guided drug delivery. This idea has lead to the devel-
opment of hypoxia-activated prodrugs (HAPs): a class of chemotherapeutics which remain
inactive in the body until metabolized within hypoxic regions. In theory, these drugs have
the potential for increased tumour selectivity and have therefore been the focus of nu-
merous preclinical studies. Unfortunately, HAPs have had mixed results in clinical trials,
necessitating further study in order to harness their therapeutic potential. One possible
avenue for the improvement of HAPs is through the selective application of antiangiogenic
agents (AAs) to improve drug delivery. Such techniques have been used in combination
with other conventional chemotherapeutics to great effect in many studies. A further ben-
efit is achieved through nanocell administration of the combination. In the following, a
mathematical model is outlined and used to compare the predicted efficacies of separate
vs. nanocell administration for AAs and HAPs in tumours. The model is experimentally
motivated, both in mathematical form and parameter values. Preliminary results of the
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model are highlighted throughout which qualitatively agree with existing experimental ev-
idence. The model predicts an increase in the efficacy of HAPs when combined with AAs
and that the optimal administration method is through nanocell delivery.

4.1 Introduction

Hypoxia is a common feature of solid tumours resulting from an inadequate oxygen supply
and has been associated with many negative cancer behaviours including increased metas-
tasis and aggressive phenotypes, promotion of genetic instability, and decreased treatment
effectiveness for immunotherapy, radiotherapy, and chemotherapy [19, 30, 31, 34, 37, 38,
40, 47, 60, 96, 102]. Accordingly, strategies to combat tumour hypoxia are in high demand.
On the other hand, tumour hypoxia has gained significant interest in recent years for its
potential as a target for selective drug delivery in cancer. In particular, hypoxia-activated
prodrugs (HAPs) have emerged as a method for selective targeting of tumours through the
exploitation of their hypoxic cores. HAPs are bioreductive compounds which remain inac-
tive under normoxic conditions, but are metabolized under hypoxic conditions within the
body into their cytotoxic forms. Their hypoxic selectivity is achieved through a 1e− or 2e−

reduction reaction which is rapidly reversed under an abundance of oxygen, but serves as
the first step in a reduction cascade under hypoxia. Importantly, this activation exclusively
in hypoxic zones does not prevent HAPs from attacking non-hypoxic tumour cells. Once
activated in hypoxic regions, HAPs are able to diffuse back into non-hypoxic regions and
attack normoxic tumour cells - a phenomenon termed the Bystander Effect (although there
is some debate regarding the overall importance of these bystander effects [33, 41, 91]).
In the present study, we focus on the nitroimidazole-based HAP, TH-302 (Evofosfamide),
which undergoes a 1e− reduction to form the DNA cross-linking bromo-isophosphoramide
mustard (Br-IPM) under hypoxia [32, 74].

Numerous experimental preclinical studies have analyzed the use of HAPs alone or in
combination with other therapies, showing positive outcomes for the control of tumour
growth and invasion ([33, 41, 55, 58, 70, 72, 101, 104] for example). Furthermore, mathe-
matical models of HAP action have been developed which are able to accurately reproduce
experimental results ([25, 26, 39, 83, 65] for example). Despite the theoretical understand-
ing and promising traits of HAPs, clinical success has been hard to achieve as many HAPs
have failed recent clinical trials [32, 44, 74]. In the case of TH-302, clinical trials have been
ongoing for both its use in monotherapy and combination therapy for many years. TH-302
monotherapies have generally showed limited results in phase I/II clinical trials, whereas
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its combination with radiation and/or other chemotherapeutics has had more positive re-
sults with the outcomes of ongoing trials eagerly awaited (see [7, 90] for recent overviews).
Fortunately, there is genuine optimism in the field with the development and improve-
ment of technologies such as medical imaging, biomarking, and genetic screening [44, 74].
Moreover, the disconnect between theory and practice is thought to be mainly a symptom
of inappropriate patient selection, as treatment efficacy will be based on patient levels of
hypoxia and nitroreductase expression [44, 67]. Nonetheless, HAPs also suffer from many
of the same problems as conventional therapeutics. Most notable of these is the inefficient
delivery of drugs to the tumour core due to insufficient blood supply and high interstitial
fluid pressures caused by dysfunctional tumour vasculature.

Tumour vasculature is abnormal in a number of ways, including differences in the
general structure and the specific behaviours of cells. Tumours achieve these differences
largely through an up-regulation of pro-angiogenic factors such as Vascular Endothelial
Growth Factor (VEGF) and Tumour Growth Factor - β (TGF-β) and a down-regulation of
anti-angiogenic factors such as Thrombospondin-1 (TSP-1), causing the ‘angiogenic switch’
to be permanently switched to ‘on’ [16, 17, 35, 64]. Tumour vessels branch irregularly,
forming a chaotic web of interconnecting paths which impede blood flow. Furthermore,
the endothelial cells lining the vessel walls of tumours are often able to detach or stack on
one another, leading to openings in the vessel wall. These openings not only enhance the
ability of tumour cells to enter the blood stream, but contribute to the leakiness of vessels,
allowing blood to pool in tissues and increase fluid pressures in the interstitium. These
pressures prevent blood from exiting at the proper spots and delivering drugs or essential
nutrients such as oxygen.

Notably, the inefficient delivery from tumour vessels is often not due to a reduction in
the blood volume flowing through the tumour system (the number of vessels in the area).
Instead, the main culprit is the inability of molecules to be properly delivered from vessels
to tumour tissue due to the previously mentioned vascular irregularities. In the case of
oxygen, hypoxic zones may be caused by two separate mechanisms. Some hypoxic regions
may simply be a result of a lack of nearby blood vessels - which we refer to as diffusion-
limited hypoxia - however, other regions become hypoxic due to inefficient delivery from
a nearby vessel - which we refer to as perfusion-limited hypoxia. This has lead to the
idea of tumours being ‘over-vascularized’, as the up-regulation of pro-angiogenic factors
causes unregulated angiogenesis. From this has stemmed the notion of vessel normaliza-
tion: the strategy of using antiangiogenic agents (AAs) to prune (rather than destroy)
the tumour vasculature in attempt to improve the delivery of cytotoxic drugs to the tu-
mour area. This normalized state appears for only a small amount of time after which the
over-vascularization reappears, again causing decreased oxygen and drug delivery. This, in
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Figure 4.1: Cases of tumour vascularization. In A. the tumour is overvascularized with
chaotic, irregular vessels (m > 1) causing perfusion-limited hypoxia. In B. vascular nor-
malization (m ≈ 1) is achieved where optimal oxygen or drug extravasation is realized. In
C. a strong dose of AAs causes vascular destruction (m < 1), leading to diffusion-limited
hypoxia in the tumour. Figure is adapted from Figure 3 in [45].

turn, activates Hypoxia-Inducible Factor (HIF-1α), which causes an up-regulation of pro-
angiogenic factors. This has been termed the ‘normalization window’ and has been the
subject of experimental ([9, 27, 103]) and mathematical ([50, 105]) studies. Together, these
works have highlighted the importance of precise timing and dosing in administrations of
combination therapies.

There are few experimental studies examining AA/HAP combinations, and these are
compared with our model predictions in the discussion below. The strategy generally
employed by these studies is to give a high dose of AAs in order to increase the level
of hypoxia and therefore HAP activation. Although this may seem beneficial for the
application of HAPs, the elimination of the tumour vessels prevents proper delivery of the
HAPs from vessel to tumour. It was for this reason that using AAs for vessel normalization
was initially suggested. However, the incorporation of normalization creates a paradox of
optimal sequencing. In particular, if AAs are first applied to prune the vasculature and
increase HAP delivery, then the drug activation will be hindered through the simultaneous
increase in oxygen delivery (due to normalization of the vasculature). Conversely, if HAPs
are applied first, then the aforementioned inefficient delivery will remain a hindrance.
Similarly, the simultaneous administration does not avoid the trade-off between delivery
and activation as if the HAPs do arrive during the normalization window, then they will
arrive during optimal oxygen delivery as well.

To solve this dilemma, the use of redox-responsive nanocarriers is examined as a delivery
vehicle for combination therapies involving AAs and HAPs. These nanocarriers were first
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examined by Sengupta et al [86] who published a work detailing delivery via a ‘nanocell’
for the chemotherapeutic agent doxorubicin with the AA combretastatin. Nanocell admin-
istration allows for precise control over the temporal release of the drugs which was shown
to increase the treatment efficacy from the separate administration case. The initial release
of the AA causes a collapse of the tumour vasculature, leaving the subsequently released
cytotoxin trapped within the tumour tissue. In [86], it is also suggested that nanocell ad-
ministration technology could be extended to include additional chemotherapeutic agents,
which we examine in the following for the administration of HAPs. The nanocells allow
for an escape from the previously mentioned paradox by allowing HAPs to take advantage
of both improved delivery and high activation rates.

As the use of HAPs increases, experimental and clinical explorations into their combi-
nation with AAs will inevitably appear. We therefore think it timely for applications of
their combination to be examined to inform future studies and the feasibility of eventual
translation to the clinic. We present here a mathematical model of AA/HAP combination
treatments both in separate and nanocell delivery. We focus on the HAP, TH-302, and
the AA, combretastatin, for the purposes of model form and parameter values. The model
of separate administration is first explained, including a description of the reasoning for
specific terms. The model is tested and refined by matching previously published experi-
mental data and the results of previous mathematical studies including HAP efficacy based
on tumour hypoxia level and efficacy of HAP/radiotherapy combination treatments. The
ability of our model to produce the different cases of AA effect by examining hypoxic area
under different strengths of AAs is also shown. The model is then extended to include
nanocell delivery and show its improvement in cell kill over the separate administration
case.

4.2 Methods

The mathematical model presented here is developed through building off of existing math-
ematical models and incorporating results from previously published experimental data.
It consists of a system of reaction-diffusion equations for the essential components of the
tumour growth and treatment system. The parameter meanings, values, and sources for
separate administration can be found in Table 4.1 and for nanocell administration in Ta-
ble 4.2. Most of the parameters are taken directly from previous mathematical modelling
studies which estimated the parameters from experimental data. Parameters describing
tumour cell growth, vasculature development, and oxygen distribution were taken from
Kohandel et al 2007 [51] who estimated the parameters based on the experimental results
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of Winkler et al 2004 [103]. For parameters describing the distribution and effect of the
AA combretastatin, we rely on the reported values from Yonucu et al 2017 [105] who
estimated parameters from the experimental results of [28, 53] and estimated some them-
selves. Parameters describing the HAP TH-302 were taken from Meaney et al 2019 [65]
who estimated the parameters by matching to post-treatment images obtained through
immunofluorescence staining techniques on a H460 xenograft tumour. Radiation param-
eters were taken from Powathil et al 2012 [76] and nanocell parameters were taken from
Kohandel et al 2011 [50]. Since mathematical terms for cellular oxygen consumption and
nanocell decay were not included in previous modelling studies, the values of the relevant
rates were estimated by attempting to match with existing experimental results (as ex-
plained in Table 4.1). Each of the mathematical studies from which parameters were taken
conducted sensitivity analyses, so we do not include another one here.

The model is first shown for the case of separate administration of combretastatin and
TH-302 (Eqs. (4.1) - (4.7)), then for the nanocell administration (Eqs. (4.8) - (4.10)).
Eq. (4.1) describes the tumour cell density, n(~x, t), at position ~x and time t, including a
Laplacian diffusion term and logistic growth. These mathematical forms for cell growth and
diffusion have been widely used in mathematical modelling of tumours [25, 26, 36, 50, 51,
65, 69, 77, 105]. To incorporate the increased growth rate of those cells nearby to tumour
vessels, m(~x, t), the coupling term αmnmn is included which allows for the cell density to
exceed the carrying capacity imposed by logistic growth. This term is phenomenological
and has similarly been used by previous studies ([105] for example). The final two terms
of Eq. (4.1) allow for the killing effect of activated HAPs, a(~x, t), and radiation therapy
administered on the schedule R(t).

In order to model tumour vasculature, a course-grained model is used to develop the
functionally deficient vessels. In Eq.(4.2), m(~x, t) represents the average blood vessel den-
sity which we assume to evolve in the same way as outlined in previous modelling studies
[50, 51, 105]. The term m(γ + δm + εm2) allows for three fixed points under appropriate
conditions on the constants (γ < 0, δ > 0, ε < 0). For the specific case of β = −3α and
γ = 2α, there are two stable fixed points at m = 0 and m = 1 and an unstable fixed point
at m = 1/2. The case m = 1 is considered to be vascular and m = 0 to be nonvascular.
In the absence of tumour cells, the vasculature will simply develop into a web of m = 0, 1
with steep drop-offs in the transitions. To model the overvascularization induced by the
presence of tumour cells, the terms αnmnm and −βnm∇ · (m∇n) are included. The first
of these models the recruitment of pro-angiogenic factors by tumour cells and the second
models the chemotaxis of blood vessels toward the tumour core. Importantly, these terms
allow for the over-vascularization (m > 1) typical of tumours to occur. The final term of
Eq. (4.2) allows for the destruction of vessels through the application of AAs, A(~x, t).
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Eq. (4.3) describes the partial pressure due to oxygen in the tumour area. The distri-
bution of oxygen is assumed to be in quasi-steady state with respect to the computational
time-step length. Importantly, this does not mean that the distribution remains constant
throughout the simulation, but rather that it will reach its equilibrium state within the
length of a single computational step (which is described below). Eq. (4.3) uses a com-
bination of mathematical terms from Kohandel et al 2007 [51], Powathil et al 2012 [76],
and Meaney et al [65]. Oxygen is assumed to diffuse according to the common Laplacian
diffusion and decay exponentially at a rate η. It is also assumed that, as in [65], oxygen is
consumed by tumour cells at a rate dependent on the local oxygen availability. This rate
is dictated by a Hill function, a common form in biological modelling. Notice that this
consumption rate approaches qk (its maximum consumption rate) as oxygen concentration

increases and 0 as it decreases. For oxygen delivery from vessels, the form rkme
−
(

m
mlim

)2

is used which allows for a different delivery efficiency depending on the density of tumour
vasculature. This term has been utilized in previous modelling studies for delivery of oxy-
gen as well as drugs to tumour sites [50, 51]. Notice that if mlim =

√
2, this delivery curve

attains a maximum at m = 1 (also see Fig. 4.2 for this delivery curve). With this form,
the delivery of oxygen (and HAPs in Eq. (4.5)) is hindered by the over-vascularization in
the tumour. Mathematically, the goal of vessel normalization is to bring the value of m
toward 1 to improve the delivery of drugs and oxygen as controlled by this term.

For combretastatin (Eq. (4.4)), the equation outlined by Yonucu et al 2017 [105] is
adopted which describes the concentration of AAs throughout the tumour area. As with
oxygen, combretastatin concentration is assumed to be in quasi-steady state with respect
to the computational time step. Combretastatin diffuses and decays exponentially at a
rate kA. Aν(t) is the combretastatin concentration in plasma which is manually selected
according to the appropriate treatment schedule. Diffusion from the vessels occurs with a
transvascular diffusivity λA. Drainage of combretastatin to the lymph vessels is included
such that drainage is hindered in the tumour. This is done with the cell density-dependent
parameter Γl(n) which takes a different value depending on the cell density at that location.
Computationally, this is applied using a ‘smoothed’ step-function to maintain continuity
so as to avoid computational errors.

Eq. (4.5) models the concentration of inactive TH-302, which is assumed to diffuse and
undergo exponential decay. Additionally, TH-302 is transported into the system through
the imperfect delivery term as in the case of oxygen in Eq. (4.3). The factor H(t) is the
administration schedule for HAP treatment which is manually assigned. The activation of

TH-302 to Br-IPM is modelled by the term − qck2
a

k2
a+k2 c in Eq. (4.5) and its negative in Eq.

(4.6).
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To model the effect of radiation therapy on the tumour, an Oxygen Enhancement Ratio
(OER) is employed as done by others ([25, 65]). This models the phenomenon of radiation
therapy having a larger effect on well-oxygenated cells than on hypoxic cells because of
the creation of oxygen free-radicals which cause DNA damage. As can be seen in the
first part of Eq. (4.7), as oxygen concentration increases, the OER approaches the value
of α1, and as oxygen concentration decreases, the OER approaches α2 (with α1 > α2).
Accordingly, radiation effect is given by the well-known linear-quadratic (LQ) model for
radiation efficacy as in the second part of Eq. (4.7) with the radiobiological parameters α
and β.

Tumour Cell Density

∂n(~x, t)

∂t
= Dn∇2n+ rn

(
1− n

nlim

)
+ αmnmn− δaan− nR(t) (4.1)

Vessel Density

∂m(~x, t)

∂t
= Dm∇2m+m(γ + δm+ εm2) + αnmnm− βnm∇ · (m∇n)− σmA (4.2)

Oxygen Partial Pressure

0 = Dk∇2k + rkme
−
(

m
mlim

)2

− qkk
2

k2
c + k2

n− ηk (4.3)

Anti-Angiogenic Agent (Combretastatin)

0 = DA∇2A+ λAm(Aν(t)− A)− Γl(n)A− kAA, Γl(n) =

{
λtumourl , if in tumour

λnormall , otherwise
(4.4)

Hypoxia-Activated Prodrug (TH-302)

0 = Dc∇2c+ rcH(t)me
−
(

m
mlim

)2

− qck
2
a

k2
a + k2

c− λcc (4.5)
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Figure 4.2: The delivery rate from vessels as a function of the average vessel density,

m(~x, t). Curve is described by the function me
−
(

m
mlim

)2

. Notice that the optimal vessel
delivery occurs at m = 1. As m becomes greater than 1, the delivery rate decreases,
allowing for the impaired delivery due to overvascularization.

Activated HAP (Br-IPM)

0 = Da∇2a+
qck

2
a

k2
a + k2

c− λaa (4.6)

Radiation Equations

O(k) =
α1k + α2ks
k + ks

, R(t) =

{
[α + βO(k)D]O(k)D, during radiation

0, otherwise
(4.7)

The separate administration model can be extended to include nanocell delivery. The
equations for cells, vasculature, and oxygen remain unchanged, but the equations for Com-
bretastatin and TH-302 require slight alterations. First, an equation for nanocell concen-
tration, N(~x, t), is added which involves only transport into the system and exponential
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Parameter Symbol Value (Unit) Reference
Cell Growth
Diffusivity of Tumour Cells Dn 3.50e-2 (mm2/day) [51]
Cell Proliferation Rate r 0.35 (1/day) [51]
Cell Carrying Capacity nlim 2.00e6 (1/mm2) [51]
Proliferation Rate from Vessels αmn 0.40 (1/day) [51]
Tumour Vasculature
Diffusivity of Blood Vessels Dm 1.75e-4 (mm2/day) [51]
Vessel Production Rate αnm 4.38e-8 (1/day) [105]
Vessel Chemotaxis Rate βnm 4.40e-10 (mm2/day) Estimate1

Vasculature Scale mlim
√

2 [51]
Vessel Efficiency Factor γ -0.35 (1/day) [51]
Vessel Efficiency Factor δ 1.05 (1/day) [51]
Vessel Efficiency Factor ε -0.70 (1/day) [51]
Oxygen
Diffusivity of Oxygen Dk 1.05e-3 (mm2/day) [51]
Oxygen Supply Rate rk 0.280 (1/day) [51]
Max Oxygen Consumption Rate qk 1.75e-8 (mmHg/cell/day) Estimate2

Half-Max PO2
Consumption kc 10.0 (mmHg) [65]

Oxygen Decay Rate η 7.14e-2 (1/day) [51]
Anti-Angiogenesis Drugs
Diffusivity of Anti-Angiogenic DA 3.46 (mm2/day) [105]
Transvascular Diffusivity λA 0.35 (1/day) [105]
Anti-Angiogenic Decay Rate kA 0.14 (1/day) [105]
Hydraulic Conductivity λtumourl 0 (1/mmHg/day) [105]
Hydraulic Conductivity λnormall 57.54 (1/mmHg/day) [105]
Hypoxia-Activated Prodrugs
Diffusivity of Inactive HAP Dc 2.16e-2 (mm2/day) [65]
Diffusivity of Active HAP Da 2.16e-2 (mm2/day) [65]
Inactive HAP Supply Rate rc 0.07 ([HAP]/day) [65]
Max HAP Activation Rate qc 726 (1/day) [65]
PO2 for Half-Max Activation ka 5.00 (mmHg) [65]
Inactive HAP Decay Rate λc 2.30e-2 (1/day) [65]
Active HAP Decay Rate λa 2.30e-2 (1/day) [65]
Death Rate Due to HAP δa 10.0 (1/[HAP]/day) [65]
Radiation
Max Oxygen Enhancement α1 1 [76]
Min Oxygen Enhancement α2 1/3 [76]
PO2

for Half-Max Radiation ks 3.00 (mmHg) [76]
LQ Model Linear Constant α 0.10 (1/Gy) [76]
LQ Model Quadratic Constant β 0.03 (1/Gy2) [76]
Radiation Dose Rate D 8 (Gy/day) [72]

Table 4.1: 1 The term involving βnm originally comes from [105] who used a finite dif-
ference scheme to solve their model. The difference in spatial discretization necessitates
an alteration of the value of βnm. Its new value is estimated to qualitatively match the
vasculature obtained in [105]. 2 qk was changed from the value in [51] to increase the effect
of combretastatin and make the differentiation between cases of AAs more pronounced.
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decay. The production term is given by the same imperfect delivery form as utilized previ-
ously for oxygen and drug transport. Nν(t) is manually assigned and controls the schedule
of administration. Since TH-302 and combretastatin are released from nanocells, the pro-
duction terms from Eqs. (4.4) and (4.5) are altered such that the molecules emerge from
nanocells instead of vessels. Additionally, SA(t) and SC(t) are introduced which are the
release profiles of the combretastatin and TH-302 from nanocells, respectively. The forms
of the release profiles are taken from Kohandel et al 2011 [50] who chose them based on
the experimental results by Sengupta et al 2005 [86]. Sengupta et al found that the release
of doxorubicin was delayed relative to the release of the combrestatin. The forms of the
release profiles are given below where NC and NA are the normalization constants and
t
(A)
0 and t

(C)
0 are the start time of the release profiles relative to the nanocells which are

selected based on the administration schedule. These normalization constants are included
to ensure a fair comparison between the administration types and more details on their
derivation can be found in the appendix. The equations remain unchanged otherwise.
They can be seen below in Eqs. (4.8)-(4.10).

Nanocell (NC) delivery

0 = RNNν(t)me
−
(

m
mlim

)2

− λNN (4.8)

Combretastatin through NCs

0 = DA∇2A− λAmA− Γl(n)A− kAA+RANSA(t), SA(t) = NA(t− t(A)
0 )PAe−(t−t(A)

0 )/tA(4.9)

TH-302 through NCs

0 = Dc∇2c+RcNSC(t)− qck
2
a

k2
a + k2

c− λcc, SC(t) = NC(t− t(C)
0 )PCe−(t−t(C)

0 )/tC (4.10)

The model was computationally implemented using a second-order accurate continuous
Galerkin finite element method with Euler time-stepping solved on a circular domain. The
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Parameter Symbol Value (Unit) Reference
Nanocell Supply Rate RN 0.28 (1/day) [50]
Nanocell Decay Rate λN 0.18 (1/day) Estimate1

Anti-Angiogenic Release Rate PA 0.10 [50]
HAP Release Rate Pc 0.30 [50]
Anti-Angiogenic Half-Life tA 0.83 (days) [50]
HAP Half-Life tC 0.12 (days) [65]

Table 4.2: 1 The nanocell decay rate is estimated by matching initial concentrations of
combretastatin from the separate and nanocell cases.

FEniCS Project Finite Element PDE Solver [4, 57] was used to solve the system using
a Neumann (no flux) boundary condition on the circular domain boundary. The system
was nondimensionalized prior to solving (details in appendix). For initial conditions, the
tumour cell density begins with a small Gaussian distribution at the centre with a standard
deviation of approximately 0.63mm (2 nondimensional units). Vessels begin randomly dis-
tributed over the domain between 0 and 1. From there, they evolve into the normal vascular
structure. The rest of the model equations are solved in quasi-steady state and therefore
do not require initial conditions. The administration schedules of the drugs and nanocells
are added computationally with temporal step functions. The drug concentrations in the
plasma are assumed to decay exponentially. The schedules used will be pointed out as
appropriate in the results section below. The normalization constant used in the release
profiles from nanocells is included such that the total drug administered to the patient is
equal so that a fair comparison between the two methods can be made. Importantly, this
does not mean that the total drug concentration is the same. In particular, in the cases
involving vascular normalization, the point of using AAs is to improve delivery and there-
fore have more drugs extravasated to the tumour area. Rather, the normalization of the
drug schedules ensures that the same amount of drug would enter the system if the vessel
distributions were identical. For all simulations, the same initial conditions were used (see
Fig. 4.3). A time step length of 1 hour was used for most simulations and 10 minutes for
those involving radiation therapy. The unstructured spatial grid was generated such that
there were 32 elements along the radius of the circular domain.
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4.3 Results

To test the model, previously obtained results from experimental and mathematical studies
were reproduced. The simplest of these was that TH-302, singly administered, is more
effective in a tumour with a higher level of hypoxia. To show this, two tumours were
simulated from identical initial conditions for 15 days with different oxygen supply rates,
rk. One tumour had the supply rate as reported in Table 4.1, the other had a supply
rate half of that. To these tumours, 5 doses of TH-302 were given in two-day increments
starting on the 15th day (days 15, 17, 19, 21, and 23) where the plasma concentration of
TH-302 is assumed to halve every 3 hours (as in [65]). The results show that treatment on
the high-hypoxia tumour kills 57% of the tumour cells while treatment on the low-hypoxia
tumour kills only 23% of the cells. These results can be seen in Fig. 4.4. This matches with
the qualitative results as obtained by Meaney et al [65] who performed the same numerical
experiment with a different mathematical model. Importantly, the mathematical model
used in that study did not include an equation for vessel distribution, but rather used
a constant vasculature obtained from imaging. Also, that study used a finite difference
scheme to solve the model whereas a finite element method was used here. Though this
result is unsurprising based on our understanding of the action of HAPs, we believe that it
is important to include as it not only acts as a check on the qualitative predictions of our
model, but also stresses the importance of pre-treatment knowledge of the hypoxia level of
the tumour when predicting the effectiveness of HAPs.

Another preliminary result examined was the combination of TH-302 with radiation
therapy. Specifically, Peeters et al [72] administered TH-302 with radiotherapy to rab-
domyosarcoma R1 and H460 NSCLC and showed that the combination was an improve-
ment over either therapy administered singly. Furthermore, they showed that a single 8 Gy
dose of radiation was most effective when given after administration of TH-302, rather than
prior to or simultaneously with TH-302. They hypothesized that HAP treatment reduced
the hypoxic fraction of cells, thus leading to more oxygen free-radicals which improved the
radiation efficacy. Nytko et al [70] determined the same qualitative result by showing that
neoadjuvant (HAP-first) therapy was optimal when combined with radiotherapy. Meaney
et al [65] were able to produce the same qualitative results using mathematical modelling.
They showed that for TH-302 given once per day for five straight days, the optimal tim-
ing for radiotherapy was on the 5th day after the final dose of HAPs. This would align
with the hypothesis suggested by [72] and echoed by [70]. Here, our model was used to
reproduce the findings of [65] so as to further verify the action of TH-302 in our system.
The treatment schedule used was exactly that as in [65] with TH-302 given on each of 5
straight days with 8 Gy of radiation given on one of the days.
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Figure 4.3: Visualization of model results for tumour cell density, blood vessel density, and
oxygen partial pressure over a 30 day span with no treatment. Model is solved using the
FEniCS Project Finite Element Solver [4, 57] and is visualized in Paraview [6]. Tumour cells
begin as a normalized Gaussian distribution with a standard deviation of approximately
0.63mm. Vessels start randomly distributed between 0 and 1 over the domain. Oxygen is
solved in quasi-steady state with respect to the time step length. Day 0 corresponds to the
solution of the system after the first time step. Notice that vessels grow toward islands or
tubes of density 0 and 1 in the absence of tumour cells, but will become overvascularized
(m > 1) in the presence of tumour cells. Also notice that the oxygen concentration
decreases in tumour area due to the overvascularization. Scales on the right correspond to
the nondimensional units.
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Figure 4.4: Comparison of TH-302 effectiveness for tumours of different hypoxic levels.
The tumour is allowed to grow for 15 days before TH-302 treatment. TH-302 is given
every other day starting on the 15th day and the plasma concentration is assumed to have
a half life of 3 hours. The high hypoxic case is from the parameters listed in Table 4.1
while the low hypoxia case assumes a halved oxygen supply rate (rk). Initial cell number
is taken from the time step immediately before treatment and final cell number is taken
from the time step immediately following treatment. TH-302 treatment kills only 23% of
tumour cells in the low hypoxic case while it kills 57% of cells in the high hypoxic case.
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Figure 4.5: Efficacy of TH-302/radiotherapy combinations based on administration se-
quence. The tumour is allowed to grow for 15 days with TH-302 treatment starting on the
15th day. TH-302 is then given every day for 5 straight days with radiation given 6 hours
after TH-302 on one of the days. Resulting cell number is calculated at the end of the 5th
day, after all treatment has ceased. Notice that the later radiotherapy is administered, the
more tumour cells are killed.
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Next, we used the model to simulate the effect of single administration of combretas-
tatin given in the same schedule as in Yonucu et al 2017 [105] who gave 5 daily doses
in decreasing amounts (of magnitudes 1, 0.75, 0.5, 0.25, and 0.1) with a half life of 20
hours as used in [65]. From this, the antiangiogenic strength parameter, σ was altered
to generate different cases of drug effect. The change in hypoxic area was examined in
order to observe the phenomenon of application of antiangiogenic agents resulting in an
improvement in oxygen distribution. The results are shown in Fig. 4.6 where three distinct
cases of effects can be seen. For a weak combretastatin effect, there is a small increase in
normoxic area ([O2] > 10mmHg) and a small decrease in the amount of moderate hypoxic
area (5 < [O2] < 10mmHg) in addition to a very small increase in severe hypoxic area
([O2] < 5mmHg). The hypoxic ranges were chosen from the accepted ranges in literature
([39, 40] for example). Generally, areas which are severely hypoxic are diffusion-limited
and those which are moderately hypoxic are perfusion-limited. As the strength of the
combretastatin increases, there is a point where the increase in normoxic area (and cor-
responding decrease in perfusion limited hypoxia) is optimized. Beyond this point, the
normoxic increase declines and the area becomes diffusion limited and severely hypoxic.
This shows the ability of the model to produce the different cases of AA effect. Very
strong AA strength causes vascular destruction which greatly reduces the oxygen. For
intermediate AA strength, optimal oxygen proliferation is achieved through vasculature
normalization by pruning m(~x, t) such that it is brought closer to 1.

With the preliminary results, the paradox of AA/HAP sequencing can be examined.
The application of a strong dose of AAs will result in a large increase in hypoxic area, but
the destruction of tumour vessels will prevent effective delivery of HAPs to the tumour.
Accordingly, the normalization case of AA effect is used in the combinations in attempt to
produce optimal cell kill. In theory, appropriate administration of combretastatin prior to
TH-302 should improve TH-302 delivery (through normalization process), while impairing
TH-302 activation to Br-IPM. Conversely, if TH-302 is given first, the delivery from vessels
will be sub-optimal. In the simulations, treatment schedules began on the 18th day with
doses being given every other day. In the sequencing cases, the drug types were either
given at the same time or six hours apart on each of the days. Many different sequencing
schedules were simulated, and the six hour interval produced the largest sequencing effect.
Specifically, leaving a longer time between administration of combretastatin and TH-302
allowed the normalization window to close before TH-302, and a shorter time did not
allow for the vasculature to be fully normalized. When simulated, the model shows that
the combination improves cell kill, but that this improvement is significantly smaller than
the sum of the individual effects of the combretastatin and TH-302. This can be seen
in Fig. 4.7. The combretastatin-first treatment gives the highest cell kill, albeit slightly,
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Figure 4.6: Cases of antiangiogenic therapy effect based on combretastatin strength. Weak
treatment corresponds to an antiangiogenic strength parameter of σ = 20, vessel normaliza-
tion to σ = 30, and vessel destruction to σ = 70. Normoxic area is where [O2] > 10mmHg,
moderate hypoxic where 5 < [O2] < 10mmHg, and severe hypoxic where [O2] < 5mmHg.
The hypoxic ranges were chosen from the understood ranges of tumour hypoxia ([39, 40] for
example). Combretastatin is given every other day starting on the 15th day in decreasing
amounts (of magnitudes 1, 0.75, 0.5, 0.25, and 0.1). Notice that there is an optimal middle
strength where the increase in normoxic area is maximized.
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Figure 4.7: Combretastatin/TH-302 sequencing paradox with vessel normalization. The
tumour is allowed to grow for 18 days before the start of treatment. Five doses of drugs are
given in 2 day increments, each at the same strength. If both types of drugs are given non-
simultaneously, then there is a 6 hour delay between their administrations. The optimal
schedule is to give combretastatin 6 hours prior to TH-302, although it is only slightly
better than other sequences. Furthermore, the combination therapy fails to show any drug
synergy effects.

compared to the other sequences. This improved the cell kill to 66%, which is notably less
than the sum of the effect of combretastatin (32%) and TH-302 (57%) individually.

To improve the combination, nanocell administration was simulated using the model
outlined in Eqs. (4.8) - (4.10). The schedule used was the same as in the combretastatin-
first sequence in Fig 4.7. Ideally, nanocell administration will result in improved TH-302
delivery while retaining the hypoxia needed for activation to Br-IPM. The resulting drug
concentrations from the different administration methods can be seen in Fig. 4.8. Notice
that the release profile from nanocells produces a different drug concentration profile than
separate administration. Importantly, the concentration of drugs in the plasma remains
constant between the methods while the concentration seen by the tumour depends on the
perfusion rate from vessels. The plasma concentration is kept constant through normal-
ization factors in Eqs. (4.9) and (4.10) (details in appendix). The difference in cell kill can
be seen in Fig. 4.9 where the nanocell delivery improves cell kill from the 66% reported
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above to 85%. Although the 85% still falls below the sum of the individual effects, a 19%
increase in cell kill is a notable improvement.

4.4 Discussion

Although HAPs have been investigated for several decades, their mainstream application
has become popular in recent years primarily due to advancements in various medical tech-
nologies. The most attractive quality of HAPs is their specificity towards neoplastic tissue,
leading to less patient side effects and maximal observed drug concentration for the tumour.
The motivation for their continued development despite limited clinical success is a func-
tion of nonspecificity of other conventional chemotherapeutics. The lack of clinical success
has been attributed largely to inefficient patient selection in trials, but other improvements
are still necessary [32, 44, 67, 74, 90, 108]. For instance, the hypoxia selectivity for many
HAPs is simply too low for effective treatment [32]. Furthermore, in vivo evaluations of
HAPs have taken place over differing delivery methods including intravenous injection, in-
traperitoneal injection, and oral administration [90]. A deeper understanding of preferred
administration methods is needed for clinical advancement of HAPs. Additionally, as we
move further into the era of personalized medicine, knowledge of the key reductases in-
volved in the activation, transportation, etc of HAPs will be crucial [44, 74, 90]. In all of
these endeavors, mathematical models have and can continue to provide valuable insight
[25, 26, 39, 41, 61, 65, 83]. Hopefully HAPs can progress through the various stages of
clinical development, where they currently reside.

Since HAPs remain largely in testing phases, there are few experimental studies ex-
amining their combination with AAs. In 2015, Yoon et al [106] combined TH-302 and
radiotherapy with the AA DC101 to examine combination effects in xenograft mouse mod-
els of sarcoma. Their results showed that the addition of TH-302 to the combination
treatment improved the blockage of tumour growth, with tumours remaining dormant for
up to 3 months after treatment. The TH-302/DC101 combination was shown to signifi-
cantly decrease the tumour proliferation from the individual cases. It is unclear whether
or not there was any evidence of drug synergy, or whether the effect of combination was
simply the sum of the effects of the individual drugs. Furthermore, the effects of treatment
sequencing were not examined, with DC101 always being given 2 hours prior to TH-302 or
radiation. Furthermore, vessel normalization for the purpose of enhancing drug delivery
was not discussed, rather DC101 was given mainly for the purpose of oxygenating the
tumour and improving radiotherapy. Following this, in 2016 Yoon et al [18] combined
TH-302 with pazopanib in genetically engineered and xenograft mice, showing that the
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Figure 4.8: Normalized drug concentrations in the tumour area over the treatment schedule
for combretastatin-first treatment administered either separately or through nanocells.
Notice the delayed release through the nanocell release profiles.
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Figure 4.9: Comparison of optimal separate administration sequence vs. nanocell admin-
istration. Treatment schedules are as shown in Fig. 4.8. Notice the improvement in cell
kill in the nanocell administration.
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multimodal therapy enhanced the treatment in all cases. Sequencing, nor vessel normal-
ization were discussed here as well. In 2017, Liu et al [56] combined TH-302 with the
AA sunitinib in either short-term or long-term treatment, with the two being given at the
same time. In the long-term treatment, the combination was more effective in reducing
tumour volume than either drug individually, but there was no evidence of drug synergy
as, over long treatment, each drug resulted in a large drop in tumour volume already. In
the short-term case, the effect of the sunitinib individually was negligible, however when
combined with TH-302 resulted in a dramatic decrease in tumour volume. Interestingly,
the investigators assumed the increased efffect of the TH-302 to be due to an increase in
hypoxia from the sunitinib. However, there was no discussion of drug delivery changes due
to vessel normalization. The presence of drug synergy in the short-term case and not the
long-term case is perhaps suggestive that vessel normalization occurred in such a way that
drug delivery was optimized with a minimal reduction in hypoxic area. Finally, Kumar et
al [52] again combined TH-302 with sunitinib, but no drug synergy was evident. They even
speculated that the lack of drug synergy was perhaps due to vessel normalization which
reduced the hypoxia such that the TH-302 was less effective. Clearly, the combination of
AA/HAP treatment has potential to be a powerful one, but more experimental studies are
necessary in order to fully understand the mechanisms at play. The little available evidence
suggests that drug synergy is possible, but that precise scheduling and dosing is crucial
to success. We propose in this mathematical study that nanocell administration may be
beneficial in realizing the right dosing and scheduling and be able to increase effectiveness
through utilizing the increased delivery and hypoxia.

Similarly, vessel normalization techniques are a relatively new concept in oncology, al-
though the theory is well-understood and many experimental studies have examined its
effect ([22, 49, 103] for example or [17, 62] for recent reviews). Through these, it has become
abundantly clear that normalizing, rather than destroying tumour vasculature is the pre-
ferred mode of treatment [62]. To rationalize this phenomenon, it is helpful to understand
that tumour oxygenation is one of the best indicators of patient survival, largely through
its ability to promote aggression and metastasis, further immunosuppression, and enhance
treatment resistance [17, 19, 31, 37, 62, 96]. It is then reasonable that reoxygenating a
tumour could improve patient survival. This is often done through VEGF inhibitors - the
action of most AAs. The AA examined here, combretastatin, has a different effect which is
to suppress the capillary-like tube formation of endothelial cells by attacking vessel walls
(although it appears to have some VEGF blocking capabilities as well) [89]. As such,
combretastatin was modelled as attacking vessels from within (as was done in [105]).

As with any mathematical model, ours is not perfect, nor do we claim it to be. Specif-
ically, the model can only be used reliably for qualitative predictions. This is largely due
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to the imprecision of parameter measurements and the variability of parameters between
patients. The key parameters used in our system have all been subject to sensitivity analy-
ses within the works that they came from. Although the mathematical assumptions made
have generally been made by others as well, one could legitimately question their validity.
The infinite diffusion speed imposed by Laplacian diffusion is obviously non-physical. Sim-
ilarly, the immediate, rather than delayed effect of drugs and radiation is not biologically
reasonable. One could also question the validity of using a vessel density field to model
vasculature. It should be stressed again that these are mathematical approximations made
in order to derive qualitative predictions, not precise measurements used for quantitative
analysis. Ideally, a similar analysis can be done using imaged vasculature which can be
imported into the model, but this is obviously far more difficult and costly.

4.5 Conclusion

The use of HAPs has increased greatly in recent years due to the advancement of medical
technologies and biological understanding. With the slow pace of HAPs in clinical trials,
the need has arisen for novel methods of improving HAP efficacy. One potential avenue
for improvement is through the use of AAs which could improve drug delivery through
normalizing the abnormal and inefficient tumour vasculature. Unfortunately, in this lies
an apparent paradox of increased HAP delivery leading to decreased HAP activation. Al-
though there may exist an optimal middle ground between the two extremes, this work
investigates drug nanocells, an alternative approach which has the potential to achieve both
increased delivery and activation. This is done through a mathematical analysis, build-
ing off many previous modelling studies and using experimental results to inform model
approximations and parameters. The model is able to reproduce known results of HAPs,
AAs, and radiotherapy, which help to inform the model. The model predicts an increase
in AA/HAP combination efficacy through the use of drug nanocells from the separately
applied cases, regardless of sequencing. Qualitatively, the model predictions match with
published experimental results, but clearly more results are necessary. Hopefully, models
such as this can inspire further exploration into the combinations of HAPs with AAs in
order to accelerate HAPs through clinical trials. One such way to do this could be through
the use of drug nanocells, as outlined here.
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Chapter 5

Conclusion

5.1 Summary

This thesis includes three research papers each devoted to answering questions in oncology
by utilizing mathematical and computational techniques. The first of these developed a
mathematical approach to spatially optimize the application of XRT using data obtained
from pre-treatment MRIs. The analysis showed that by changing the spatial distribution
of radiation, the total cell kill can be increased from the clinically-applied uniform case.
The second paper outlined a system of reaction-diffusion PDEs which modelled the activity
and effect of the HAP TH-302. It also modelled the combination of TH-302 with XRT,
attempting to optimize the administration schedule of the combination. The results showed
that the model was able to predict results similar to those obtained through imaging and
existing experiments, most notably in that the optimal schedule was realized when TH-302
was administered prior to the radiation. The final paper described tumour vasculature as
a system of PDEs and used this model to examine the combination of TH-302 with the
AA combretastatin. The work outlined the trade-off between HAP delivery and activation,
eventually using the model to show that administration of the combination through drug-
carrying nanocells allowed for a bypassing of the trade-off altogether, achieving optimal
cell kill.

Given the impressive history of applied mathematics in science, the inclusion of mathe-
matical modelling into the life sciences should be viewed with significant optimism. Though
mathematical oncology remains in its infancy as a subfield of research, the contributions
from it are nonetheless remarkable. Ideally this thesis provides justification for that opti-
mism in the future of cancer research.
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5.2 Future Directions

In addition to the model extensions mentioned throughout this thesis, there are numerous
future studies that we hope to pursue. First, while the results presented match with or are
based on existing experimental evidence, the predictions made need to be experimentally
validated. In order to do this, the models would need to be calibrated to the specific
experimental setting, then the predictions could be rigorously tested. Second, the models
provided here are mainly formulated in two dimensions, when extensions to three dimen-
sions are certainly possible. While this is mathematically quite simple, it would require
considerable computational power. However, in order for these models to be eventually
utilized in a clinical setting, extending them to three dimensions would likely be a necessary
first step. Finally, recent work has shown that the distributions of important populations
in a system may be fully predictable exclusively from a discrete set of noisy measurements
of that system [78, 79, 80]. This method could potentially be used with imaging data to
obtain crucial information about a tumour which could be used to plan treatments.
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Appendix A

Spatial Optimization for Radiation of
Brain Tumours - Appendix Material

A.1 Proof of Uniform Resulting Cell Density for Ar-

bitrary Death Mechanism

We have seen in the previous sections that the resulting cell density profile after one frac-
tion of radiation is uniform for both exponential and logistic death. However, one might
wonder whether this result holds for any arbitrary death mechanism. In fact, this is the
case, and for any arbitrary radiation death mechanism, g(n(r, t)), the cytotoxic profile
which minimizes the total number of surviving cells results in a uniform cell density.

To show this, we first modify Eq. (5) to include the arbitrary death mechanism

∂n

∂t
= −γf(r)g(n(r, t)),

where g(n(r, t)) is the death mechanism (ie. exponential, logistic, or other). Note that we
are still limited here to the death rate being proportional to f(r, t); we suspect that this
result is not true for arbitrary functions of f(r, t). Integrating this equation with respect
to t over the fraction (total time of ∆t) yields:∫ n1(r)

n0(r)

dn

g(n(r, t))
= −γ∆tf(r).
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We now differentiate this equation with respect to f , using the Fundamental Theorem of
Calculus, and the fact that ∂n0

∂f
= 0 (since the initial cell density is of course independent

of our radiation profile). This leaves us simply with

∂n1

∂f

1

g(n1(r))
= −γ∆t. (A.1)

Then, from our optimization constraint (equivalent to Eq. (8))

Ñ1 =

∫
dd~x n1(r) + λ

(∫
dd~x f(~x, t0)− F

)
,

we can use the Euler-Lagrange Equation to arrive at the constraint on f of

∂n1

∂f
+ λ = 0.

Substituting this into Eq. (A.1) above and rearranging gives:

g(n1) =
λ

γ∆t
.

Since λ, γ, and ∆t are all constants, and g(n1(r)) only explicitly depends on n1(r), this
equation can be rearranged to solve for n1(r) as a constant for any arbitrary and invertible
function g(n(r, t)).

Thus, the continuous profile which minimizes the total number of surviving cells will
always yield a uniform surviving cell density.

A.2 Optimal Profile with Two Fractions of Exponen-

tial Death

The optimal XRT profile in the first fraction naturally does not depend on the tumour
growth mechanism. However, it is reasonable to expect that the additional growth of the
tumour prior to application of the second fraction will lead to joint optimal profiles that
do. Since it it difficult to treat the full non-linear (logistic) growth, we make the further
assumption that the growth process in the interval between the two fractions is exponential
(this will be the case if the initial fraction reduces the density to well below nmax, and the
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interval between the two fractions is short enough for n(~x, t) to remain smaller than this
saturation value). Formal integration of the linear partial differential equation now leads
to the following cell density profile after a time t1 = t0 + τ since application of the first
fraction

n(~x, t1) = exp
[
τ
(
ρ+Dn∇2

)]
∗
[
e−f(~x,t0)n(~x, t0)

]
, (A.2)

where ∗ indicates a convolution of the 2 functions and τ is the time between fractions.

If the resulting cell density from the first fraction was uniform, then Eq. (A.2) will
simply leave us with another uniform distribution, in which case, the optimal radiation
fraction is, of course, uniform. However, if the optimal first fraction was cut-off as in the
semi-circular example above, then we will have to take more care in the application of
our second fraction. Leaving the cell density general, following the application of a second
fraction, the cell density is

n(~x, t1 + ∆t) = e−f2(~x) exp
[
τ
(
ρ+Dn∇2

)]
∗
[
e−f1(~x)n(~x, t0)

]
, (A.3)

where we have used f1(~x) ≡ f(~x, t0) and f2(~x) ≡ f(~x, t1). Using properties of the diffusion
operator, the total number of tumour cells after the second fraction can be written as

N2 = eρτ
∫

dd~xdd~x′

(2πDτ)d/2
(
e−f2(~x)

)
e−

(~x′−~x)2

2Dτ

(
e−f1(~x′)n(~x′, t0)

)
. (A.4)

Minimizing the above expression, we arrive at the conditions[
e−f2(~x)

]
eτDn∇

2 [
e−f1(~x)n(~x, t0)

]
= λ2e

−ρτ , (A.5)[
e−f1(~x)n(~x, t0)

]
eτDn∇

2 [
e−f2(~x)

]
= λ1e

−ρτ . (A.6)

Here, λ1 and λ2 are distinct Lagrange multipliers to impose separate constraints on the
total flux in each fraction. If the constraint acts only on the sum of the two fractions,
then λ1 = λ2 = λ. Actually, the equations are symmetric with respect to exchange of the
functions Φ1(~x) ≡ e−f1(~x)n(~x, t0) and Φ2(~x) ≡ e−f2(~x)n(~x, t0), suggesting solutions of the
form Φ1(~x) = Φ2(~x) implying λ1 = λ2, i.e. constraining radiation in each fraction, or in the
sum, would correspond to the same optimal solution. In the absence of other constraints,
the above equations are solved by ∇2Φ1 = ∇2Φ2 = 0, i.e. position-independent Φ1 and Φ2.
This again leads to f1 = ln(n0/λ) (as in Eq. (9)), albeit for a different reason) followed by
a uniform f2. This general solution is not particularly useful and may not be viable given
various constraints.
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Figure A.1: Total cells after first fraction vs. radius of step in cytotoxic profile. The solid
lines correspond to different values of σ with red for σ = 1, blue for σ = 2, green for
σ =, teal for σ = 4, and purple for σ = 5. The dots correspond to individual runs of the
pseudo-spectral method.

A.3 Additional Figures and Simulations

In addition to the optimization procedure outlined in the main text of the paper, Eq. (2)
was also implemented numerically using a pseudo-spectral method [94]. Using this imple-
mentation, the results from the optimization procedure can be checked. As an illustrative
example of this, take the case of the 1-step cytotoxic profile with logistic growth and
death. Using the psuedo-spectral implementation, Eq. (2) (with a = b = 0) was simulated
for many different forms of f(r, t) and the total cell number N calculated immediately after
the fraction. The f(r, t) that produced the minimum cell number from this method was
obtained and compared to the optimal f(r, t) from the procedure in the main text. Fig.
S2 shows some justification of the agreement of the 2 methods on the optimal profile.

From this numerical method, the cell-density profiles were also obtained so that the
results can be better visualized. These figures are shown in Fig. S3 through S9.
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Figure A.2: Cell densities resulting from the optimal radiation profiles from one 1-step
fraction of exponential growth and death for the initial density deviations of (from top left
to bottom right) σ = 1, σ = 2, σ = 3, σ = 4, and σ = 5. The red dots are those below the
detectable threshold in imaging, of 5 cells/mm2, and the blue dots those above. Note the
different y-axis scales to highlight the resulting shape.

For simulations we employ values of ρ = 0.35 (1/day) and Dn = 0.32 (mm2/day)
in Eq. (1), in accord with common works and previous measurements [51], although the
results are not sensitive to this choice.

For cases with logistic growth, we cannot use a Gaussian as our initial profile. Logistic
growth causes the tumour to form a flat-top profile as the density in the centre approaches
nmax. Since Eq. (1) has no analytical solution for logistic growth, we instead use a numerical
technique to find the initial profile. Starting with initial profiles in the form of normal
distributions, with widths σ = 1, 3, and 5, the density profile is simulated with logistic
growth for a time of 12.5 days. The resulting profile is then fitted to Eq. (35).
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Figure A.3: Cell densities resulting from the optimal radiation profiles from one 2-step
fraction of exponential growth and death for the initial density deviations of (from top left
to bottom right) σ = 1, σ = 2, σ = 3, σ = 4, and σ = 5. The red dots are those below the
detectable threshold in imaging, of 5 cells/mm2, and the blue dots those above. Note the
different y-axis scales to highlight the resulting shape.
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Figure A.4: Cell densities resulting from the optimal radiation profiles from two separately
constrained 2-step fraction of exponential growth and death for the initial density devia-
tions of (from top left to bottom right) σ = 1, σ = 2, σ = 3, σ = 4, and σ = 5. The
red dots are those below the detectable threshold in imaging, of 5 cells/mm2, and the blue
dots those above. Note the different y-axis scales to highlight the resulting shape.
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Figure A.5: Cell densities resulting from the optimal radiation profiles from two mutually
constrained 2-step fraction of exponential growth and death for the initial density devia-
tions of (from top left to bottom right) σ = 1, σ = 2, σ = 3, σ = 4, and σ = 5. The
red dots are those below the detectable threshold in imaging, of 5 cells/mm2, and the blue
dots those above. Note the different y-axis scales to highlight the resulting shape.
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Figure A.6: Cell densities resulting from the optimal radiation profiles from one 2-step
fraction of logistic growth and exponential death for the initial density deviations of (from
left to right) σ = 1, σ = 3, and σ = 5. The red dots are those below the detectable
threshold in imaging, of 5 cells/mm2, and the blue dots those above. Note the different
y-axis scales to highlight the resulting shape.
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Figure A.7: Cell densities resulting from the optimal radiation profiles from two 2-step
fractions of logistic growth and exponential death of (from left to right) σ = 1, σ = 3, and
σ = 5. The red dots are those below the detectable threshold in imaging, of 5 cells/mm2,
and the blue dots those above. Note the different y-axis scales to highlight the resulting
shape.
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Figure A.8: Cell densities resulting from the optimal radiation profiles from one 2-step
fraction of logistic growth and death of (from left to right) σ = 1, σ = 3, and σ = 5. The
red dots are those below the detectable threshold in imaging, of 5 cells/mm2, and the blue
dots those above. Note the different y-axis scales to highlight the resulting shape.
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Appendix B

In Silico Analysis of
Hypoxia-Activated Prodrugs in
Combination with Anti-Angiogenic
Therapy through Nanocell Delivery -
Appendix Material

B.1 Nondimensionalization of System

The tumour growth/treatment system is nondimensionalized using the transformations

x = x̃

√
Dn

r
, t =

t̃

r
, n = ñnlim. (B.1)

The system is implemented computationally using the nondimensionalized version.

B.2 Derivation of Release Profile Normalization Con-

stant

To ensure a fair comparison between the administration types, the plasma concentration
of the drugs should be the same. To do this, the release profiles are integrated. For the
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separate administration:

∫ ∞
t0

e
− (t−t0)

ti dt = ti, (B.2)

where ti is the half life of the drug. Then for the nanocell administration:

∫ ∞
t0

(t− t0)Pie
− (t−t0)

ti dt = t1+Pi
i Γ(1 + Pi). (B.3)

So, equating these with a normalization constant implies that the normalization constant
for each drug must be:

Ni =
1

tPii Γ(1 + Pi)
. (B.4)

This is the form of the normalization constant used to implement the drug schedules.
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