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Abstract 

Molecular imprinting refers to polymerization of functional monomers in the presence of 

a template molecule. It is a general method to prepare stable and cost-effective artificial ligands as 

antibody mimics (also known as plastic antibodies), and the resulting materials are called 

molecularly imprinted polymers (MIP). Many molecules have been used as templates for 

imprinting ranging from metal ions, small molecules, peptides and proteins, nucleic acids, to whole 

cells with a wide range of applications including chromatography, solid-phase extraction, 

biosensors, therapeutics, organic synthesis and catalysis. MIP however suffer from low affinity 

and limited signaling mechanisms for binding. DNA oligonucleotides possess many functions such 

as specific molecular recognition (aptamers) and catalytic activities (DNAzymes). In addition, 

DNA is stable and easily modified. Combining MIP with DNA has several advantages. First, DNA 

aptamers can further improve the affinity of MIPs. At the same time, they may enable signaling of 

MIP binding. Second, some DNAzymes such as those with peroxidase-like activities (G-

quadruplex DNAzymes), have low substrate selectivity, and MIP could solve this problem by 

introducing specific substrate binding sites on the DNAzymes. The approach can also extend to 

other type enzyme mimics such as nanozymes. Finally, the imprinted polymer shell can also 

protect enzymes from degradation and facilitate intracellular uptake. In this thesis, molecular 

imprinting with functional DNA and enzyme mimics were systematically studied. The main aims 

of the thesis include improving the binding affinity of MIPs and achieving selective catalysis of 

enzyme mimics. The mechanism of MIP for improved catalysis was also explored. 
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In Chapter 1, the introduction, relevant background knowledge about molecular imprinting, 

DNA and enzyme mimics was introduced. A state-of-the-art research progress of the fields was 

also reviewed. The research goals and outline of the thesis were described in the end of the chapter.  

In Chapter 2, DNA aptamer fragments were used in the MIPs for affinity improvement and 

signalling. While previous research all used full-length aptamers, aptamer fragments with lower 

cost and higher stability have not been studied. In this work, DNA aptamer for adenosine was used 

as a model aptamer. It was first split into two halves, fluorescently labeled, and copolymerized 

into MIPs. With a fluorescence quenching assay, we found that the affinity of MIPs was improved 

with the aptamer fragments incorporated. Compared to the mixture of the free aptamer fragments, 

their MIPs doubled the binding affinity. Each free aptamer fragment alone cannot bind adenosine, 

whereas MIPs containing each fragment are effective binders. We further shortened the aptamer 

fragment, and the DNA length was pushed to as short as six nucleotides, yielding MIPs still having 

a high binding affinity (Kd ~27 μM). The study provides a new strategy for preparing functional 

MIP materials by combining high-affinity biopolymer fragments with low-cost synthetic 

monomers, allowing higher binding affinity and providing a method for signaling binding based 

on DNA chemistry. 

In Chapter 3, molecularly imprinted nanogels were synthesized around a peroxidase-

mimicking DNAzyme (G-quadruplex DNAzyme) to solve the problem of poor specificity of 

enzyme mimics. The polymer shell was demonstrated that improved the stability and activity of 

the DNAzymes by 2-fold. When the MIP was prepared with the DNAzyme and its substrate, the 

catalytic efficiency, kcat/Km, was enhanced by 6-fold for the imprinted substrate over the non-

imprinted, true for both TMB and ABTS as substrates, indicating that selectivity can be achieved 

via imprinting. Within MIPs, the DNAzyme was also stable against high temperature and allowed 
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for repeated use. This study demonstrated that molecular imprinting provided a general and 

practical method to form hybrid materials and introduce substrate recognition to enzyme mimics. 

In Chapter 4, following the work in the Chapter 3, a molecularly imprinted DNAzyme 

nanogel was prepared using Amplex red as the template. The MIP nanogels selectively oxidized 

Amplex red in the presence of H2O2 to form a fluorescent product resorufin, while the oxidations 

for other substrates (TMB, ABTS and dopamine) were inhibited. The MIP nanogel exhibited more 

than 1.6-fold higher activity than the free DNAzyme. At the same time, the gel matrix protected 

the DNAzyme from degradation by DNase Ⅰ. The nanogel was then internalized by HeLa cells and 

an intracellular oxidation was achieved. This work provided an integrated solution for biocatalysis 

inside cells and it might be an interesting solution for intracellular therapeutic applications. 

In Chapter 5, molecularly imprinted nanogels were grown on nanozymes to create substrate 

binding pockets. Fe3O4 NPs with peroxidase-mimicking activity were chosen as a model 

nanozyme. Electron microscopy confirmed a shell of nanogel encapsulating the nanozyme core. 

By imprinting with an adsorbed substrate, moderate specificity was achieved with neutral 

monomers (around 2.4-fold). Further introducing charged monomers led to nearly 100-fold 

specificity for the imprinted substrate over the non-imprinted compared to that of bare Fe3O4. 

Selective substrate binding was further confirmed by ITC tests. Besides Fe3O4, the same method 

was also successfully applied for imprinting on gold nanoparticles (a peroxidase mimic) and 

nanoceria (an oxidase mimic). In this work, molecular imprinting advanced the functional enzyme 

mimicking aspect of nanozymes, and such hybrid materials will find applications in biosensor 

development, separation, environmental remediation, and drug delivery. 
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In Chapter 6, following the work in Chapters 4 and 5, the catalytic mechanism of molecular 

imprinted enzyme mimics was systematically studied. A surface science approach was taken by 

dissecting the catalysis into three steps: adsorption of substrates, reaction, and product release. 

Each step was individually studied using reaction kinetics measurement, dynamic light scattering, 

UV-vis spectrometry. Through imprinting, the local substrate concentration around enzyme 

mimics was enriched by around 8-fold, which contributed to the increased activity. Diffusion of 

the substrate across the imprinted gel layer was studied by a pre-incubation experiment, 

demonstrating the improved molecular transportation in the imprinted gel layers. The activation 

energy (Ea) was measured and a substrate imprinted sample had the lowest activation energy of 

13.8 kJ mol−1. Product release was also improved after imprinting as indicated by ITC binding 

tests using samples respectively imprinted with the substrate and the product. This study has 

rationalized improved activity and specificity of molecularly imprinted enzyme mimics and guided 

further rational design of such functional materials. 

Overall, molecular imprinting with DNA aptamer fragments improved the affinity and 

enabled binding signalling. Imprinting on the enzyme mimics including both DNAzyme and 

nanozymes effectively solved the problem of low substrate specificity. The catalytic activity was 

also improved due to the enriched local concentration of substrate and lowered activation energy. 

The thesis provides a new strategy for preparing functional materials by combining MIP with 

functional DNA and nanomaterials to advance the molecular recognition and selective catalysis 

field. 
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Chapter 1 Introduction 

1.1  Molecular imprinting 

1.1.1 Definition of molecular imprinting 

Molecular imprinting is known as a technique to prepare synthetic materials that are 

capable of selective binding the target molecules. The concept was inspired by the ‘lock-and-key’ 

model of enzymes and antibodies.1 Conceptually, the target molecules were used as the ‘key’ 

templates. Various functional monomers that could form reversible specific interactions with the 

templates were used as the pieces of the ‘lock’. With the interactions, the ‘key’ template would 

drive the arrangement of the monomer pieces in favored positions and form a pre-polymerization 

complex. By introducing crosslinking agents and performing polymerizations, the complex was 

fixed into polymer matrix. The templates were then removed by disrupting the pre-formed 

interactions and the resulting cavities could specifically rebind the templates due to the 

complementary binding sites with memory of the shape, size and functional groups of the 

templates. The prepared materials are called molecularly imprinted polymers (MIPs).2-3 An 

integrated definition of molecular imprinting was elected by Alexander et al., as followed,4 and 

the Figure 1.1 shows a schematic presentation for the molecular imprinting process.  

“The construction of ligand selective recognition sites in synthetic polymers where a 

template (atom, ion, molecule, complex or a molecular, ionic or macromolecular assembly, 

including micro-organisms) is employed in order to facilitate recognition site formation 

during the covalent assembly of the bulk phase by a polymerization or polycondensation 

process, with subsequent removal of some or all of the template being necessary for 

recognition to occur in the spaces vacated by the templating species”.4 
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Figure 1.1 Schematic representation of the molecular imprinting process: The formation of 

reversible interactions between the template and functional monomers may involve one or more 

of the following interactions: (A) reversible covalent bond(s); (B) covalent bonds combined with 

non-covalent interactions; only non-covalent interactions of (C) electrostatic, (D) hydrophobic or 

van der Waals forces, and (E) co-ordination with a metal center. Each formed with complementary 

functional groups or structural elements of the template, (a-e) respectively]. Figure adapted with 

permission from ref (4). Copyright © 2006 John Wiley & Sons, Ltd.  

1.1.2 Imprinting approaches 

1.1.2.1  Covalent imprinting 

The choice of functional monomers is highly important for MIPs. To achieve specific 

binding, MIPs are prepared using covalent and non-covalent interactions for imprinting. Covalent 

imprinting, pioneered by Wulff and co-workers,5 uses functional monomers that could form 

reversible covalent bonds with template molecules (Figure 1.1A). For example, carboxylic ester 
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bonds for carboxylic acids,6-7 boronate ester bonds for diols,8 and Schiff’s bases for amine or 

aldehyde.9-10 After polymerization, the covalent bonds are cleaved with the templates removal and  

re-formed upon rebinding the templates. Due to the specificity of covalent bonds, covalent 

imprinting usually generates homogenous binding sites in MIPs.11 Therefore, the covalent 

approach has the advantages of high affinity and stability. However, covalent imprinting suffers 

from difficulties in template removal and slow binding kinetics. Furthermore, the available 

templates for covalent imprinting are limited and usually needs prior modifications11-12  

1.1.2.2  Non-covalent imprinting 

In contrast, the non-covalent approach, first proposed by Mosbach group,13-14 relies on weaker 

intermolecular interactions, such as hydrogen bonding, electrostatics, van der Waals forces, ion–

pairing, π-π stacking and hydrophobic forces (Figure 1.1C and D).11, 15 Many functional monomers 

are available to be used individually or combined for non-covalent imprinting (Figure 1.2). For 

example, methacrylic acid (MAA) is commonly used to form hydrogen bonds with template 

molecules. Acrylic acid (AA) and allylamine are usually used to form electrostatic interactions.4 

Furthermore, the functional monomers are mostly commercially available, and many others are 

being developed.16 Therefore, with non-covalent imprinting, the available template molecules are 

vastly expanded, ranging from small molecules,17 metal ions,18 peptides, 19 proteins,20 nucleic 

acids,21  and even whole cells.22-23 Due to the simplicity in operation, non-covalent imprinting has 

become the most widely used method for MIP preparation.4, 24 In this thesis, MIPs were prepared 

based on non-covalent approach. 
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Figure 1.2 Chemical structures of some commonly used functional monomers for non-covalent 

imprinting.  

1.1.2.3  Other approaches 

Besides the two main methods, MIPs are also prepared by combining both covalent and non-

covalent imprinting, called semi-covalent imprinting (Figure 1.1B). This approach was first 

proposed by Whitcombe and co-workers.25-26 In their process, templates were coupled with a 

covalent bond for polymerization and the specific rebinding still relied on non-covalent 

interactions. The method attempts to combine the advantages of both the approaches and offers an 

intermediate alternative. Metal coordination is another imprinting approach by copolymerizing 

metal ions as functional monomers in MIPs for specific ligand recognition or exchanges.9 This 

approach is widely used for ion sensors development and preconcentration studies.27 Though 

effective, these approaches are either difficult in operation or can be only used for specific 

templates.  

1.1.3 Preparation of MIPs 

1.1.3.1  Free radical polymerization 
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MIPs can be prepared using various polymerization methods, including free radical 

polymerization, sol-gel polymerization 28 and controlled radical polymerization.29 Among them, 

free radical polymerization (FRP) is the most commonly used method due to its simplicity, 

effectivity and compatibility with large numbers of monomers and various solvent systems.30 In 

addition, FRP can be performed in mild reaction conditions, e.g., low temperature and atmospheric 

pressures, which are critical for the formation of interactions between functional monomers and 

templates during imprinting. A typical FRP follows three elementary steps: initiation, propagation 

and termination (Figure 1.3A).31-32 In (1) initiation, the initiators, such as 2,2’-

azobisisobutyronitrile (AIBN) or ammonium persulfate, generate free radicals (R*) that attack the 

double bonds of monomers and produce intermediate radicals. In (2) propagation, the main step of 

FRP, the produced radicals successively react with other monomers and grow to macromolecular 

polymer chains with high molecular weight. In (3) termination, the chain growth is terminated by 

either (a) disproportionation or (b) combination of two radical chain ends.  

FRP usually generates linear polymer chains. To prepare MIPs, crosslinkers that have two 

or multiple polymerizable vinyl groups need to be introduced so that cross-linked polymers, such 

as bulk network gels, micro or nanogel particles, are produced. Crosslinkers play important roles 

in stabilizing the imprinted cavities and fixing the functional groups for templates rebinding. The 

type and amount of used crosslinkers could affect imprinting efficiency. The crosslinker ratio, i.e., 

the molar percentage of crosslinkers to total monomers, is also important. High crosslinker ratio 

results in more rigid polymer matrix but with lower swelling property and smaller pore size, which 

may prevent templates transportation.33-34 Low crosslinker ratio (e.g., < 5%) leads to invalid 

imprinting due to less stabilized binding sites and cavities. In addition, the reactivity of crosslinkers 

needs to be similar as the functional monomers for an equivalent copolymerization.30 Figure 1.3B 
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shows some commonly used crosslinkers for imprinting. Ethylene glycol dimethacrylate 

(EGDMA) and divinylbenzene (DVB) are widely used for imprinting in organic solvents and N, 

N’-methylenebisacrylamide (MBAA) is a common crosslinker for aqueous imprinting. 

 

A

B
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Figure 1.3 (A) Mechanism of free radical polymerization: (1) initiation, (2) propagation, (3) 

termination by either (a) disproportion or (b) combination. (B) Chemical structures of some 

commonly used crosslinkers for preparing MIPs.  

1.1.3.2  Synthetic methods of MIPs 

MIPs can be prepared using various synthetic methods. The most general and simplest 

method is bulk polymerization, where bulk MIP gels are polymerized in solutions followed by 

cutting or grinding the bulk gels into small particles with diameters usually more than hundreds of 

micrometers.35-36 Although rapid and simple, the prepared MIPs are irregular and have low surface 

areas for target rebinding. Grinding or cutting also lead to the damage of the imprinted cavities. 

To overcome the limits, many methods that aim to prepare spherical MIPs with micro or nanometer 

sizes are developed, such as suspension polymerization,37 emulsion polymerization,38-39 solid-

phase polymerization37, 40 and precipitation polymerization. Among them, precipitation 

polymerization has been recognized as the most effective and simplest method for preparing MIP 

nanoparticles. 

Precipitation polymerization is a type of heterogeneous polymerizations.31 It begins from 

a homogeneous solution, in which the monomers, crosslinkers, templates and initiators were 

evenly mixed. The solution is highly diluted with an excess of solvent used (usually more than 

95%, wt).41 As polymerization proceeds, polymer particles grow individually and without 

overlapped by capturing free monomers or oligomers to react with the vinyl groups on their surface. 

As size becoming bigger and the crosslinking process preventing the polymer from freely mixing 

in the solvent, the polymer particles become insoluble and precipitate out of the system. The 

particle obtained by the method usually has a diameter ranges of 0.1 µm to 10 µm and with a 
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narrow distribution.42 The first example of MIPs prepared using precipitation polymerization was 

reported by Ye and co-workers.43 Estradiol and theophylline were imprinted as the templates and 

methacrylic acid was used as the functional monomer. The polymerization was performed in 

acetonitrile solution. The obtained MIP particles have a uniform size around 300 nm and showed 

a higher binding specificity than those prepared by the conventional bulk polymerization. 

Since this seminal work, precipitation polymerization has been widely used to prepare a 

variety of targets imprinted MIP nanoparticles.44 In addition, the method has also been developed 

as a facile synthetic approach for preparing functional MIPs, such as fluorescent,45 thermo- or pH-

responsible,46-47 degradable and core shell MIPs by simply incorporating relevant monomers or 

crosslinkers or nanomaterials.48 In 2008, an aqueous precipitation polymerization method was 

reported by the Shea group.19, 49 A type of peptide imprinted MIP nanoparticles was prepared in 

diluted aqueous solutions by using acrylamide-based monomers in the presence of an ionic 

surfactant sodium dodecyl sulfate (SDS) at room temperature (Figure 1.4). The size of the prepared 

MIPs was measured close to proteins (diameter ≈40 nm), and the binding affinity was optimized 

by adjusting the monomer composition. In 2009, Haupt and co-workers developed this method 

and prepared a series of proteins or other small molecules imprinted MIP nanoparticles with no 

surfactant added through either photo- or enzyme-initialized polymerizations.50-51 The MIP 

nanoparticles had a size range of 50-300 nm and were used as specific enzyme inhibitors. The 

aqueous precipitation polymerization has extended the range of available monomers and templates 

for imprinting that are only compatible in aqueous solutions. Many biopolymer-based functional 

monomers, such as antibodies and DNA, have been successfully used to prepare MIPs.  
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Figure 1.4 Preparation and characterization of the peptide imprinted MIP nanoparticles through 

aqueous precipitation polymerization. (A) Amino acid sequence of the target peptide, melittin. (B) 

Monomers and crosslinker used for MIP synthesis. (C) Schematic of the preparation of MIP 

nanoparticles. (D) Solution-phase AFM images of the prepared MIP nanoparticles. A height 

profile of the cross section (sky-blueline) is shown in the inset. Figures adapted with permission 

from ref (19). Copyright © 2010 American Chemical Society.  

1.1.4 Biopolymers as monomers used in MIPs 

Despite these achievements, MIPs still suffer from low affinity and specificity. The choice 

of functional monomers is often a trial-and-error process and ineffective. During the past decade, 

attempts have been made on using biomolecules such as antibody, peptides and aptamers as 

A
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monomers to solve the problem. In 2006, Miyata and co-workers used a vinyl conjugated antibody 

and lectin to imprint glycoproteins in bulk hydrogels.52 Upon rebinding the target, the gels 

responded with a volume shrinkage, providing an interesting way to detect tumors. In 2011, Bowen 

et al., introduced a short peptide (polymyxin) as a monomer for MIP,53 although further 

optimization is likely needed to show its effect. The Scheller group incorporated a modified sugar 

ligand (mannose) and the imprint factor increased by 8-fold.54 Antibodies and peptides still suffer 

from high cost and low stability, while mannose works only for limited targets. In this thesis, I 

used functional DNA to solve the problem. 

1.2  Deoxyribonucleic acid (DNA) 

1.2.1 The Structure of DNA 

DNA is a linear biopolymer composed of two complementary strands forming a double 

helical structure. Besides being genetic carriers, DNA also has functional properties such as 

molecular recognition and catalysis due to its unique structure. The two DNA strands are 

antiparallel and coil each other around a common axis forming a right-hand twisted duplex (~ 20 

Å in diameter, B-DNA) (Figure 1.5A). Each DNA strand is composed of nucleotides as monomeric 

units that are covalently linked by phosphodiester bonds resulting in an alternative sugar-

phosphate backbone (Figure 1.5B). Each nucleotide contains a sugar (deoxyribose), a phosphate 

group and a nucleobase that has four different types named as adenine (A), guanine (G), cytosine 

(C) and thymine (T). The nucleobases can form hydrogen bonds according to the Watson–Crick 

base pairing rules (i.e., adenine with thymine and guanine with cytosine) contributing the 

formation of double-stranded DNA (Figure 1.5C).  
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Figure 1.5 Chemical structures of DNA. (A) The double helix structure of double-stranded DNA. 

(B) A single-stranded DNA. (C) Four types of nucleobases forming Watson–Crick base pairs.  

1.2.2 DNA aptamers 

DNA aptamers are single-stranded DNAs that can specifically bind to target molecules.55 

They are usually isolated by in vitro selection called systematic evolution of ligands by exponential 

enrichment (SELEX) technique.56 Through selections, DNA aptamers can bind to essentially any 

type of chemicals including ions, small molecules, proteins and surfaces.57 Figure 1.6 shows 

examples of three DNA aptamers and their binding targets. In 1995, the Szostak group isolated the 

adenosine DNA aptamer that has a similar affinity to a few adenosine derivatives including AMP, 

cAMP and ATP, but it cannot bind other nucleosides such as guanosine (Figure 1.6A).58 This 

aptamer has been extensively used as a model for biosensor development.59 Another example is 

cocaine aptamers that are widely used for detecting cocaine with an affinity (Kd) around 0.4-10 

µM.60 Hg2+ aptamer is a thymine rich DNA sequence than can bind Hg2+ to form the T- Hg2+-T 

base pairs, which has been widely used for developing Hg2+ biosensors.61 The binding affinities of 

A B C
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aptamers to small molecules are often in the low micromolar range. Compared to antibodies, 

aptamers for small molecules have its advantages in terms of excellent binding affinity and 

specificity.  

 

Figure 1.6 Examples of DNA aptamers for binding (A) adenosine or ATP, (B) cocaine and (C) 

Hg2+ ions. 

1.2.3 DNAzymes 

DNA with catalytic activities are known as DNAzymes.62-63 Since 1994, many types of 

DNAzymes have been produced via in vitro selection. DNAzymes can catalyze many types of 

reactions such as RNA/DNA cleavage, ligation, phosphorylation.64 One particularly interesting 

DNAzyme is G-quadruplex that has peroxidase-mimicking activity (Figure 1.7A).65 It forms a G-

quadruplex structure and requires a hemin as a cofactor (Figure 1.7B).65-66 In the presence of H2O2, 

this DNAzyme can oxidize many substrates such as TMB, ABTS and Amplex Red.67-68 These 

substrates are commonly used since they can produce a color change or fluorescent signal upon 

oxidation and thus are analytically useful. DNAzyme serves as an enzyme mimic that can catalyze 

enzyme-like reactions under near physiological conditions. Unlike proteins, DNAzyme is highly 
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stable, cost-effective and easy to modify. They have been widely tested for biosensor development, 

environmental remediation, and medicine.69-70 

 

Figure 1.7 (A) The G-Quadruplex DNAzyme with peroxidase activity oxidizing Amplex red (AR) 

and ABTS in the presence of H2O2. The products of oxABTS has a green color (λmax = 420 nm) 

and resorufin has fluorescence (Ex/Em: ~571/585 nm). (B) The structure of hemin. 

1.2.4 DNA modification 

The relative ease of synthesis allows for DNA to be modified with a variety of functional 

groups. One of the most performed modification is labelling fluorescent groups on DNA (e.g., 

FAM) for biosensor development.71 To incorporate into polymer matrix, DNAs are commonly 

modified with arydite on the 5’-end. By adding an acrydite group, DNA can be easily incorporated 

into acrylic polymers (Figure 1.8A). This property allows DNA to be used as a macromonomer 

for MIP. 

Besides acrydite modification, a nucleotide-modification approach was also reported by 

Poma and co-workers72 They modified deoxyuridine with an alkene group on the C5 position to 

generate a polymerizable nucleotide (T*) (Figure 1.8B). The modified nucleotide was used to 
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substitute thymidines in the cocaine aptamer, and the aptamer hence contained multiple potential 

points to be polymerized in the polymer matrix (e.g., T*6 cocaine aptamer with six polymerizable 

points, Figure 1.8B). Although effective, this approach positioned polymerizable sites very close 

to the binding core of aptamers and may directly influence aptamer binding. In contrast, the 

acrydite approach allows a flexible conjugation of aptamers in gel matrix that does not have the 

concern, making it the most popular method of DNA conjugation.  

 

Figure 1.8 (A) Copolymerization of an acrydite-modified DNA into polyacrylamide. (B) The 

modified deoxyuridine (Carboxy-dT-CE Phosphoramidite, T*) and the cocaine aptamers with one 

(T*1) or six (T*6) thymidines substituted. Figure B adapted with permission from ref (72). 

Copyright © 2015, Wiley-VCH. 
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1.2.5 DNA used in molecular imprinting 

Combining DNA with molecular imprinting has several advantages. First, DNA has 

specific molecular recognition functions, such as DNA aptamers, that may improve binding 

affinity of MIPs. Second, the polymer matrix of MIPs can in turn be part of a DNA sequence or 

structure. DNA sequences with low or no binding affinity might be rescued through imprinting. 

Third, DNA can be modified in many ways, such as with fluorophores, thiolate, biotin and acrydite, 

facilitating bioconjugation and signal transduction.73-74  

The first example of using DNA in molecular imprinting was reported by the Spivak and 

co-workers who used two acrydite-modified aptamers that can bind to different positions on 

thrombin (Figure 1.9).75 After removing the targets, the aptamer-MIPs worked as volume-

responsive hydrogels for detecting thrombin and the detection limit was down to femtomolar. In 

addition to thrombin, the authors also tested another glycoprotein demonstrating the generality of 

this method. Besides, DNA aptamers functionalized MIPs were also used to detect virus,76 

antibiotics,77 and gene sequences,78 mainly based on electrochemical sensors with high 

sensitivities (detection limits down to femtomolar) and fast responses (10-60 min). However, the 

above studies all used full-length DNA aptamers for imprinting. Efforts need to be made to test 

aptamer fragments. Comparing to full-length aptamers, short fragments are more stable and have 

a lower cost. Moreover, MIPs might be able to rescue the binding affinity of aptamer fragments. 

A limitation of MIPs for biosensor applications is the lack of optical signals. Molecular 

binding to MIPs is usually monitored using microgravimetric analysis, electrochemical, 

chromatography or isothermal titration calorimetry (ITC). Optical approaches such as convenient 

fluorescence or color based signaling methods are rarely reported. DNA may provide a solution to 



16 

 

this problem since DNA is programmable and easy to be modified. For example, DNA can be 

modified with fluorophore and quencher to generate fluorescent signals.71 Many dyes can stain 

DNA and generate fluorescence, and they may also be used for signaling binding by MIPs. Li and 

coworkers removed a guanosine from a G-quadruplex sequence.79 By using a specific dye 

thioflavin T (ThT), the structure served as a MIP sensor that specifically bound guanosine but not 

its nucleotides (e.g., GMP, GDP, GTP). In addition, DNA was also combined with 

luminescence/fluorescence nanoparticles and quantum dots signaling of MIP binding.80 81  

In addition to DNA aptamers, imprinting using double-strand DNA was also reported.82 

By anchoring one of the strands as a monomer and removing the other strand as the target, the 

generated DNA-MIPs specifically recognized the target DNA strand through complementary 

binding. Furthermore, a single nucleotide (e.g., polymerizable 2'-deoxyuridine, dU) was also used 

as a monomer to imprint deoxyadenosine (dA).83-84 The “tailored” MIP had specificity for the 

Watson-Crick paired dA, but not other nucleotides (e.g., dG or dC). So far, molecular imprinting 

with DNAzymes have not been studied yet. With the ability of engineering specific binding sites, 

imprinting could be applied to solve the problem of poor substrate selectivity of DNAzymes.  
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Figure 1.9. MIPs with two aptamers to create thrombin-responsive hydrogels. The sequence and 

modification of (A) aptamer 1, and (B) aptamer 2 modified with a polymerizable methacrylamide 

terminus. (C) Scheme of the imprinting process and visualization of the volume change of the 

imprinted hydrogel shown on the upper right corner. Figures adapted with permission from ref (75). 

Copyright © 2013 American Chemical Society. 

1.3  Nanomaterials as enzyme mimics (nanozymes) 

Nanozymes refer to inorganic nanomaterials that catalyze enzyme-like reactions under 

near physiological conditions.85 Since the first nanomaterial (fullerene derivatives) was reported 

with activity of DNA cleavage in 1993,86 remarkable progress has been made in nanozymes 

developments. In the past few decades, a diverse range of nanomaterials including metal oxides, 

gold nanoparticles and carbon-based nanomaterials were discovered with oxidase,87-89 

peroxidase,90-92 catalase,93 superoxide dismutase,94 and laccase mimicking activities.95 The term 
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“nanozymes” was firstly coined by Scrimin and co-workers to report the ribonuclease-like activity 

of thiol layer coated gold clusters.96 In 2004, a surface “naked” gold nanoparticles were reported 

having glucose oxidase-mimicking activity by Rossi group.88 Since then, the term was extended 

to nanomaterials with intrinsic enzyme-like activities.85 Comparing to protein enzymes, 

nanozymes have advantages of much higher stability and lower cost, so that are very attractive for 

various applications ranging from biosensor development,97-99 environmental remediation,70, 100 to 

nanomedicine.101 Among them, iron oxide nanoparticles, nanoceria and gold nanoparticles are the 

most widely used materials as enzyme mimics in a diverse range of applications. 

1.3.1 Iron oxide as peroxidase mimics 

The magnetite iron oxide nanoparticle (Fe3O4 NP) is well known of its magnetic property 

with a broad applications in separation, tumor targeting, and resonance imaging.102-103 In 2007, 

Yan and co-workers unexpectedly discovered that the Fe3O4 NPs exhibited an intrinsic peroxidase-

mimicking activity.90 Peroxidases, such as the horseradish peroxidase (HRP), catalyze its substrate 

oxidation in the presence of hydrogen peroxide (H2O2). Yan and co-workers used three Fe3O4 NPs 

with different sizes (Figure 1.10A) to catalyze the substrate TMB oxidation to blue colored 

products (oxTMB) in the presence of H2O2 (Figure 1.10B). With only H2O2 or only Fe3O4 NPs, 

there were no reactions found demonstrating the peroxidase-like activity of the Fe3O4 NPs. The 

activity was then tested with other two substrates, DAB and OPD, which were also respectively 

oxidized to their colored products (Figure 1.10B, brown and red colored tubes). In addition, the 

activity of the Fe3O4 NPs was size-dependent where smaller size NPs had higher activities likely 

due to the larger surface area. The activity was also affected by pH and temperatures but were 

much more robust than the mimicked HRP when tested at a range of temperatures (4–90 °C) and 

pH (0–12). The Michaelis constants (Km, represents the substrate binding affinity) suggested that 
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Fe3O4 NPs had a higher affinity than HRP for binding the substrate TMB, while lower affinity for 

binding H2O2. However, the catalytic rates (kcat, represents the catalytic speed) by Fe3O4 NPs were 

demonstrated around 40 times higher than that by the HRP indicating the efficiency of the Fe3O4 

NPs as catalyst.  

Since this seminal work, Fe3O4 nanozymes have been widely used to detect H2O2 by using 

the chromogenic substrates (e.g., TMB and ABTS).104-105 Because glucose oxidase (GOx) 

catalyzes the oxidation of glucose producing H2O2, Fe3O4 nanozymes were also commonly 

combined with GOx used for glucose detection. For example, Wei and Wang developed novel 

sensing platforms with Fe3O4 and GOx to detect glucose with a detection limit down to 30 µM.105 

Besides that, Fe3O4 nanozymes were also widely used for virus detection,106 tumor treatment107 

and immunoassays.108  

 

Figure 1.10. Fe3O4 NPs with peroxidase-mimicking activity. (A) TEM image of Fe3O4 NPs with 

different sizes. (B) Fe3O4 NPs catalyse the oxidations of various substrates (TMB, DAB and OPD) 

in the presence of H2O2 producing colored products. Figures reprinted with permission from ref 

(90). Copyright © 2007 Nature Publishing Group. 
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1.3.2 Nanoceria as oxidase mimics 

Unlike peroxidase, oxidase catalyzes its substrate using oxygen as oxidant. Nanoceria is 

cerium oxide nanoparticles (CeO2 NPs) usually with diameter ranges of 5-20 nm109 Due to the 

presence of mixed valence of Ce3+, Ce4+ and oxygen vacancies, CeO2 has been widely used as 

catalysts in many applications.110 In 2009, Asati and co-workers reported nanoceria having 

oxidase-like activity by using several colorimetric substrates, e.g., TMB, ABTS and DOPA 

(levodopa), tested in pH 4 without H2O2 added (Figure 1.11A).87, 111 The activity of CeO2 was 

highly dependent on the particle size, surface coating and pH conditions. In the best optimization, 

the catalytic rate (kcat) of the CeO2 NPs was 10 times faster than that of the HRP with H2O2 

indicating its efficiency used as catalyst.  

Nanoceria has been widely used in enzyme-linked immunosorbent assays (ELISA). 

Comparing with traditional ELISA using protein enzymes (e.g., HRP), CeO2-based immunoassays 

have several advantages. First, CeO2 is more stable and costs lower than protein enzymes. Second, 

CeO2 catalyzes oxidation without H2O2 eliminating the toxic effect. Third, CeO2 is capable of 

surface modification allowing targeting design. For example, Asati and co-workers conjugated 

folic acids on CeO2 surface to specifically recognize tumor cells.87 By using the colorimetric 

substrates (e.g., TMB), targeted cancer cells were detected with generating blue-colored products 

of TMB under the catalysis of CeO2 (Figure 1.11B). However, CeO2 cannot catalyze the oxidations 

of these substrates (TMB, ABTS and DOPA) at neutral pH (e.g.,pH at 6-7). In 2011, the author 

developed the method by using a fluorogenic substrate Ampliflu (also called Amplex red) that can 

be catalyzed in neutral pH to generate a fluorescent product resorufin (Figure 1.11C),111 extending 

the CeO2-based immunoassays performing in near physiological conditions.  
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Figure 1.11. Nanoceria with oxidase-mimicking activity. (A) CeO2 catalyzes oxidation of various 

substrates in pH 4. (B) A schematic of using nanoceria in immunoassays. (C) Nanoceria catalyzed 

the oxidation of Ampliflu (also called Amplex red) to fluorescent product resorufin in pH 7. 

Figures A and B adapted with permission from ref (87). Copyright © 2009 Wiley-VCH Verlag 

GmbH & Co. KGaA, Weinheim. Figure C reprinted with permission from ref (111). Copyright © 

2011 American Chemical Society.  

1.3.3 Gold nanoparticles as oxidase mimics 

Unlike Fe3O4 and CeO2 are metal oxides based nanozymes, gold nanoparticles (AuNPs) 

are metal nanomaterials with enzyme-mimicking activity. In 2004, Rossi and co-workers reported 

the AuNPs catalyzed the oxidation of glucose in aerobic condition (Figure 1.12A).88 The reaction 

was similar to the glucose oxidations catalyzed by GOx indicating the oxidase-like activity. While 
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gold processing mimetic activity, other metal nanoparticles such as Ag, Pd and Pt were not found 

active (Figure 1.12B). The following mechanism studies suggested that AuNPs catalysis follows 

the Eley-Rideal model that glucose first adsorbed on the surface of AuNPs and then reacted with 

oxygen in the solution producing gluconic acids and H2O2.
88, 112  

Although possess activities, these nanozymes suffer from the problem of no substrate 

selectivity for reactions. Any type of substrates could be catalyzed upon diffusing on their surface. 

Previous studies mainly focused on the activity improvement of theses nanozyme, the substrate 

specificity, a feature of most natural enzymes, had rarely been addressed. Molecular imprinting 

might be an ideal method to solve the problem (studied in the Chapter 5). 

 

Figure 1.12 AuNPs with oxidase-like activity. (A) AuNPs catalyze glucose oxidation. (B) The 

GOx-like catalytic activity of different metal particles. Figures adapted with permission from ref 

(112). Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
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1.4 Research goals and thesis outline 

The main goals of this thesis include improving the binding affinity, enabling binding 

signaling of MIP by using DNA aptamer fragments with modifications. By preparing molecular 

imprinted nanogels on enzyme mimics, including both DNAzymes and nanozymes, to solve the 

problem of low substrate selectivity. The effect of imprinting on the activity and stability of the 

enzyme mimics and the catalytic mechanism were also the research goals of the thesis. To achieve 

these goals, the thesis was outlined as the following sections. 

The Chapter 2 describes the study of using DNA aptamer fragments in MIPs. The 

adenosine aptamer were split to two fragments and copolymerized into MIPs with acrydite 

modification. The two fragments were labeled with fluorophore and quencher for fluorescent 

assays to determine the binding affinity. Next, single aptamer fragments were used in the MIP and 

the binding affinity were tested using ITC. To challenge the sequence limits, the single aptamer 

fragment was further shorten to only 6 base pairs, and its affinity was compared with free aptamer 

fragments, MIP nanogels and NIP nanogels to determine the affinity improvement. 

The Chapter 3 describes the work of molecular imprinting on DNAzymes. G-quadruplex 

DNAzymes was co-imprinted with the substrate TMB or ABTS into nanogels. The gels were 

characterized by DLS and TME. The catalytic activity and substrate specificity of the MIP gels 

were determined by oxidizing the two different substrates and analyzed by Michaelis–Menten 

model (kcat and Km). In addition, the stability of the DNAzyme incorporated nanogels and recycle 

tests were also measured.  

The Chapter 4 followed the work in the Chapter 3 aimed at intracellular catalysis. The 

imprinted DNAzyme nanogels were prepared using Amplex red (AR) as a template. The substrate 
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selectivity of the MIP nanogels was measured by using four different substrates (TMB, ABTS, 

dopamine and AR). The imprinted nanogels were internalized by HeLa cells and the intracellular 

catalysis were measured by using confocal microscopy. 

The Chapter 5 describes the study of molecular imprinting on nanozymes. Three commonly 

used nanozymes, Fe3O4 NPs, CeO2 and gold nanoparticles, were polymerized into nanogels with 

imprinted certain substrates as templates, e.g., TMB, ABTS and dopamine. The nanogels were 

characterized by SEM, EDX ICP-MS to determine the incorporation of the nanozymes. The 

catalytic activity and specificity of the MIP nanogels were determined based on the Michaelis–

Menten kinetics using different substrates for oxidation. The specificity improvement was 

determined using Michaelis constant kcat/Km in comparison with the free nanozmes and non-

imprinted nanogels. ITC binding tests were also performed to confirm the specificity 

improvements. 

The Chapter 6 followed the work of the Chapter 4 and 5 aimed at understanding the 

catalytic mechanism of imprinted enzyme mimics. The study was divided into three steps: 

substrate adsorption, reaction and product release. Each step was studied individually. The 

adsorption capability of MIP, NIP nanogels and free Fe3O4 NPs were determined by UV-vis 

spectrometry. The local substrate concentration was calculated based on the gel volume and 

substrate content. The activation energy (Ea) was measured to probe reaction step. The catalytic 

kinetics of nanogels imprinted with the product resorufin and substrate AR were compared based 

on oxidation kinetics and ITC binding tests to probe the transportation efficiency in the gel matrix.  

 The Chapter 7 concludes the results in the Chapter 2-6 and provides the future plan and 

original contributions of the thesis.  
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Chapter 2  Molecularly Imprinted Polymers with DNA Aptamer Fragments 

as Macromonomers 

2.1  Introduction 

Molecular recognition is critically important in biology, biomaterials science, analytical 

chemistry, and medicine. Biologically derived molecules, for example antibodies and aptamers, 

are general platforms for molecular recognition.113 Though possessing high binding affinity and 

specificity, they are expensive, unstable and prone to denaturation. MIPs are attractive alternatives. 

Compared to antibodies and aptamers, MIPs can be prepared in much larger quantities at a lower 

cost with higher stability.114 As a result, MIPs have been widely applied in analytical chemistry, 

separation, and environmental remediation.48 MIPs are usually prepared with various types of 

monomers, mostly of which are acrylic and silane based. However, the binding affinity of most 

MIPs needs to further improve. In addition, it is difficult to produce a detectable signal for MIP 

binding.115 

We are interested in exploring the feasibility of combining biopolymers and MIPs by 

introducing a fragment of biological ligands as macromonomers in MIPs. DNA aptamers are 

oligonucleotides that selectively bind to target molecules. Incorporation of aptamers in MIPs have 

been reported for thrombin,75 antigen116 and cocaine bindings72 via either terminal acrydite 

modification or nucleotides modification approaches.  

In all the previous cases, however, full-length aptamers were used. Our idea is to use 

aptamer fragments as macromonomers to improve MIPs, and then gradually shorten the aptamer 

fragment length. Shorter fragments allow a lower cost and better stability. We hypothesize that 
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good binding might still be achieved with the help of the MIP matrix. For easy handling and good 

template accessibility, MIP hydrogel nanoparticles (or nanogels) were prepared in this study.  

2.2  Materials and methods 

2.2.1 Chemicals 

All the DNA samples were purchased from Eurofins (Huntsville, AL). For the DNA used 

for polymerizations, acrydite groups were modified on the 5’ end. For fluorescence signaling, 

DNA were modified with carboxyfluorescein (FAM) and black hole quencher 1 groups. 

Acrylamide (AAm), N-isopropylacrylamide (NIPAAm), methylene bis(acrylamide) (MBAAm), 

N-[3-(dimethylamino)propyl]methacrylamide (DMPA) and sodium dodecyl sulfate (SDS) were 

from Sigma-Aldrich. Ammonium persulfate (APS) and N,N,N’,N’-tetramethylethylenediamine 

(TEMED) were from VWR. Sodium chloride, magnesium chloride, 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), adenosine, cytidine and other nucleosides were from 

Mandel Scientific (Guelph, Ontario, Canada). Mill-Q water was used to prepare all the buffers and 

solutions. All other reagents and solvents were of analytical grade and were used as received. 

2.2.2 Preparation of nanogels 

All the nanogels were prepared using aqueous precipitation polymerization method.47, 49 

Same concentrations of monomers, cross-linker, and initiator were used to achieve maximal 

consistency. For the nanogels containing FAM (or quencher)-labeled DNA aptamers, AAm (2.9 

mg, 42 μmol), NIPAAm (4.6 mg, 42 μmol), aptamer fragments (20 μM each), and the template 

molecule adenosine or cytidine (1 mM) were dissolved in buffer A (50 mM HEPES, pH 7.6, 100 

mM NaCl, 5 mM MgCl2). The mixture was incubated for 30 min with slow stirring at 25 °C to 

form binding complexes. Then, the crosslinker MBAAm (2.4 mg, 16 μmol), DMPA (0.5 µL) and 
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surfactant SDS (0.8 mg) were added. After purging the mixture with N2 for 1 h, polymerization 

was initiated by adding APS (0.6 mg) and TEMED (0.3 μL). The final reaction volume was 

standardized to 1 mL in a 1.7 mL plastic microtube. The reaction was continued for 4 h at 25 °C 

under a N2 atmosphere and the solution was gently shaken several times after initiation. The 

resultant imprinted nanogels were collected by centrifugation at 15 000 rpm for 10 min and then 

washed extensively using Milli-Q water until completely removed the unreacted monomers and 

templates (confirmed by UV−vis spectrometry). 

The collected nanogels were freeze-dried for 24 h and weighed to measure the reaction 

yield. The nanogels prepared for the ITC tests were prepared using the same method except that 

70 μM of aptamer fragments were used. A higher DNA concentration was used for ITC because 

this technique is less-sensitive compared to fluorescence. Nonimprinted nanogels (NIPs) were also 

prepared and washed in the same way except that no template was added during polymerization. 

The concentration of the template adenosine was chosen to be 1 mM to avoid stacking of adenosine 

forming multimers at high concentrations (Adenosine has relatively low solubility). 

2.2.3 Dynamic light scattering (DLS) 

The hydrodynamic size and distribution of the nanogels were measured by DLS (Zetasizer 

Nano ZS90, Malvern). Each nanogel sample (50 μg/mL) was dispersed in the buffer A, and the 

temperature was maintained at 25 °C during measurements. 

2.2.4 Coupling efficiency 

 The coupling efficiencies of the FAM-labeled aptamer incorporated in nanogels were 

determined by using fluorescence spectroscopy (excitation at 485 nm, emission at 525 nm). For 

other nanogels, the coupling efficiencies were determined by UV−vis absorbance at 260 nm. After 
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preparation, the nanogel samples were purified by centrifugation (15000 rpm, 10 min). The 

supernatant and a standard solution (containing the same initial aptamer concentration during 

preparation) were diluted to the same volume in buffer A. Their fluorescence emission or 

absorbance was measured to calculate coupling efficiency. 

2.2.5 Fluorescence assays 

The fluorescence intensity of FAM-labelled free aptamers and aptamer-incorporated 

nanogels were measured using a Varian Eclipse fluorescence spectrometer (Agilent Technologies, 

Santa Clara, CA) with excitation at 485 nm and emission at 525 nm at 25 °C. The fluorescence 

kinetics were measured by using a microplate reader (Infinite F200Pro, Tecan). 

2.2.6 Isothermal titration calorimetry (ITC) 

ITC was performed using a VP-ITC Microcalorimeter instrument (MicroCal). Prior to each 

measurement, each solution and suspension were degassed to avoid air bubbles. The sample of 

aptamer fragments (20 μM) or nanogel sample in buffer A was loaded in a 1.45 mL ITC cell at 

25 °C. Adenosine (281 μL, 3 mM) in the same buffer was titrated into the cell through a syringe 

(10 μL each time, except for the first injection of 2 μL). The enthalpy (ΔH) and binding constant 

(Ka) were obtained through fitting the titration curves to a one-site binding model using the Origin 

software. The Kd values were calculated from 1/Ka and ΔG = −RT ln (Ka), where R is the gas 

constant. ΔS was calculated from ΔG = ΔH − TΔS. 
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2.3  Results and discussion 

2.3.1 Aptamer split and modification 

The adenosine DNA aptamer has been extensively studied as a model for biosensor 

development.58 The full-length aptamer contains only 27 nucleotides (Figure 2.1A). It can be split 

into two halves (Figure 2.1B, F1 and F2), and binding still occurs when both fragments are 

present.117 To be co-polymerized into MIPs,  each aptamer fragment was labeled on the 5 end 

with an acrydite group. To measure binding, one fragment was labeled with a dark quencher on its 

3 end (Q-F1), and the other with an internal FAM (F-F2, Figure 2.1B). Upon forming the aptamer 

complex, the fluorescence is expected to quench (Figure 2.1C). Two small molecule monomers, 

AAm and NIPAAm, were included to form the gel matrix, and MBAAm was used as a crosslinker.  

 

Figure 2.1 (A) The secondary structure of the full-length adenosine aptamer binding two 

adenosine molecules (the ‘A’ in red). (B)  The sequences of the adenosine aptamer fragments used 
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in this work named F1, F2, F2a, F2b, Q-F1 (Black Hole Quencher 1 (Q) labeled) and F-F2 

(carboxyfluorescein, FAM (F) labeled), respectively, all modified with a 5’-acrydite. (C) 

Schematic presentation of the two adenosine aptamer fragments (F-F2 and Q-F1) binding 

adenosine and fluorescence quenching. Schematic presentation of (D) adenosine imprinted (MIP) 

and (E) non-imprinted (NIP) MIPs with the aptamer fragments. TEMED and APS are used to 

initiate the polymerization reaction. MBAAm is the crosslinker. 

2.3.2 Molecular imprinting with both aptamer fragments 

We first tested the effect of molecular imprinting with the both half aptamer fragments 

were copolymerized. To compare the imprinting effect, three types of nanogels were prepared by 

precipitation polymerization: one in the absence of any target (named NIP), one with 1 mM 

cytidine (C-MIP), and the last one with 1 mM adenosine (A-MIP). We reason that the aptamer 

binding complex might form in the presence of adenosine, positioning the two aptamer halves 

forming a high affinity cavity (Figure 2.1D). Without adenosine, polymerization is random and 

the resulting gel particles may not bind adenosine (Figure 2.1E). A similar outcome is expected 

when cytidine is added into the pre-polymerization mixture as it does not form complex with the 

aptamer monomers. Among the various nucleotides, we only chose cytidine here as a negative 

control since this adenosine aptamer is a well-studied model system. It has a similarly high affinity 

for adenosine, AMP, and ATP, but has no binding when the base part is changed to C, T, or G.58  

 All the nanogels used for the tests have a similar size of 200 ±36 nm as determined by 

DLS and can be easily dispersed in water (Figure 2.2E). The DNA coupling efficiency was 

determined to be 30.2 ± 2.6 % by UV-vis spectroscopy and fluorescence. The low coupling 

efficiency maybe attributed to DNA damage by radicals.118-119 After washing away the template 
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molecules and free monomers, the three nanogels were re-dispersed in the buffer A with the same 

final aptamer concentration (128 nM, each fragment, confirmed from UV-vis spectroscopy and 

fluorescence).  

We next measured the fluorescence quenching. Upon adding 1 mM adenosine, the 

fluorescence intensity at 520 nm of the A-MIP gel decreased significantly (Figure 2.2C), 

suggesting the two aptamer halves reassembled. In comparison, the signal from the NIP (Figure 

2.2A) and C-MIP (Figure 2.2B) only dropped slightly indicating the lack of aptamer binding. As 

a control, none of these samples were quenched by 1 mM cytidine. This study indicates that 

imprinting during gel formation is critical for re-binding. 

To quantitatively understand binding, relative fluorescence quenching (F/F0) of these gels 

were measured as a function of adenosine concentration (Figure 2.2D). With increasing adenosine 

concentration, the signal from the NIP and C-MIP samples decreased slightly reaching a final ratio 

around 0.80, while a final ratio of 0.46 was achieved for the A-MIP. We also compared the same 

concentration of the free split aptamers without any gel (Figure 2.2D, blue trace). Interestingly, it 

only decayed to a final ratio of 0.66. The dissociation constant (Kd) of the free aptamer fragments 

(1.6 mM) is four times higher than that for the A-MIP gels (0.4 mM). Therefore, with imprinting, 

the split aptamer fragments are positioned at a more favorable binding configuration than the free 

aptamers in solution.120 This improved binding is also related to an increased effective 

concentration of the aptamers by linking them to the gel matrix. In this regard, the gel matrix 

helped aptamer binding. 

From this initial test, we confirmed that imprinting indeed took place during preparation of 

these gels. Without adenosine, the two aptamer fragments were randomly distributed during 



32 

 

polymerization. Confined by the crosslinked gel network, they may not reach each other in the 

presence of adenosine (Figure 2.1E). The presence of fluorescence signal in this method allows 

for convenient detection of adenosine, which is a significant advantage brought by DNA. Many 

fluorescent sensors were reported using this aptamer for adenosine detection and the limit of 

detection was usually down to micromolar concentrations.121-124 The aptamer-MIPs may serve as 

a better type of sensors to this aim because of the improved binding affinity by imprinting and 

reusability of the nanogels. 

 

Figure 2.2 Fluorescence spectra for the (A) NIP, (B) C-MIP and (C) A-MIP nanogels before and 

after adding 1 mM cytidine or adenosine. (D) Fluorescence quenching of the three nanogels and 

the free split aptamer (128 nM, each fragment) at 520 nm as a function of adenosine concentration. 

For all the experiments, the nanogels (~0.13 mg/mL) all contained a final of 128 nM aptamers in 

buffer A. (E) The particle size distributions of used nanogels by DLS: MIP (Black), A-MIP (Red), 
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F2-MIP (Green), F1F2-MIP (Blue), F2a-MIP (Pink) and F2b-MIP (Cyan) (50 μg/mL nanogels in 

the buffer A for the measurements). Other used nanogels have average hydrodynamic size between 

170 and 210 nm. Inset: A photograph of the F1F2-MIP nanogel dispersed in the buffer A. 

2.3.3 Probing the initial aptamer binding complex 

Because the two aptamer halves can partially base-pair with each other (Figure 2.1A and 

B), it is possible that a fraction of the aptamers is already hybridized in the nanogels in the absence 

of adenosine. For this population, further addition of adenosine may not induce further 

fluorescence quenching. Therefore, it is important to measure the fraction of the initial binding 

complex in the gels. For this purpose, we designed an experiment as shown in Figure 2.3E. The 

complementary DNAs (cDNAs) of the two aptamer fragments were added to the gels to disrupt 

the aptamer binding structures and to increase fluorescence. For the A-MIP sample without 

adenosine, the cDNAs led to a slight fluorescence increase of ~10% (Figure 2.3A); for the NIP gel, 

the increase was only ~5% (Figure 2.3B). The free DNA aptamer fragments (no gel) after binding 

with its cDNA also has a slight fluorescence of 3.3% (Figure 2.3C).  Based on this, we conclude 

that ~2% initial binding complexes formed for the NIP, while ~7% of the aptamers were in the 

complex form for the A-MIP in the absence of adenosine. This is reasonable since the aptamer 

fragments in the A-MIP were closer to each other due to imprinting. As a positive control, we add 

adenosine to the A-MIP gel first. We then observed a large fluorescence increase of ~80% after 

adding the cDNAs (Figure 2.3D). Therefore, most of aptamer fragments did not form the binding 

complex in the absence of adenosine. This is important for the analytical applications to achieve a 

large signal change.  
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Figure 2.3 Fluorescence spectra for (A) the A-MIP, (B) the NIP nanogels and (C) the free aptamer 

fragments after adding the two cDNAs (128 nM each) of the two aptamer fragments. (D) 

Fluorescence spectra of the A-MIP gels with 1 mM adenosine and then adding the cDNAs. (E) 

Schematic presentation of using the cDNAs to open the aptamer binding complex. 

2.3.4 The binding tests of free individual aptamer fragments 

With both aptamer halves, it is not surprising that the A-MIP gel binds adenosine. A more 

challenging question is to take a single fragment that cannot bind adenosine for imprinting. Before 

imprinting into gels, we first tested the binding abilities of the free aptamer fragments. Because 

this design makes fluorescence-based assay difficult, we employed non-labeled DNA and 
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characterized binding using ITC. The two fragments are named F1 and F2, respectively (See the 

sequences in the Figure 2.1B). 

When adenosine was titrated into either aptamer fragment (F1 or F2, no gels), barely any 

heat was detected (Figure 2.4A and B), suggesting no binding by the individual fragments. On the 

other hand, a strong binding was detected for the sample containing both fragments (F1 + F2, no 

gels, Figure 2.4C). The thermodynamic values of the above experiments were calculated (Table 

2.1). The enthalpy change (ΔH) for each aptamer fragment binding adenosine was at least 18-fold 

lower than that when both fragments were used. Since the heat was very small, we cannot obtain 

an accurate fitting for other thermodynamic values. Based on the NMR structure of the aptamer,125 

both halves contribute indispensable purine bases (G9 and G22) and base stacking to stabilize the 

G·A pair for binding the target adenosine (see the aptamer structure in the Figure 2.1A). It is not 

surprising that each fragment alone failed to bind. The both fragments (F1+F2) had a lower binding 

affinity than that of the original aptamer (full length adenosine aptamer without split, Figure 2.4D 

and Table 2.1). The both fragments (F1+F2) also bond more targets than by the original aptamer 

likely due to the split conformation (the binding site N, Table 2.1). 
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Figure 2.4 ITC titration curves obtained at 298 K (25°C) for binding between 20 µM of (A) F1, 

(B) F2 and (C) F1+F2 aptamer fragments with 3 mM adenosine in the buffer A. (D) The titration 

curve between 10 µM of the original aptamer (full length adenosine aptamer without split) binding 

with 0.5 mM adenosine in the buffer A. The original titration traces (top) and the integrated heat 

(bottom) of each reaction are shown.  

Table 2.1. Thermodynamic data for adenosine titrating to the aptamers by ITC.[a] 

Aptamers 

 

N Ka  

(×104 M-1) 

Kd 

(µM) 

ΔG 

(kcal mol-1) 

ΔH  

(kcal mol-1) 

ΔS  

(cal K-1mol-1) 

F1 -[b] - - - -0.11 ±0.04 - 

F2 - - - - -0.18 ±0.07 - 

F1+F2 4.6 ± 1.3 3.05 ± 0.22 32.7±2.4 -6.1 -3.19 ±0.6 9.9 

Original 2.3 ± 0.3 8.70 ± 1.18 11.5 ±1.6 -6.7 -9.84 ±1.7 10.4 

[a] All the titrations were performed in three times, the binding data were obtained using a one-site 

binding model. [b] Binding (Ka < 1000 M−1) was not detectable by ITC. 
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2.3.5 Imprinting with individual aptamer fragments 

After confirming the lack of binding for the individual free aptamer fragments, we next 

tested whether imprinting can rescue their binding. We hypothesize that some monomers in the 

gel may serve as the other half of the aptamer to form an effective binding complex. Here a few 

new nanogels were prepared: no DNA imprinted with adenosine (MIP), or non-imprinted (NIP); 

with either aptamer fragment imprinted (F1-MIP and F2-MIP), or non-imprinted (F1-NIP and F2-

NIP); and with both aptamer fragments imprinted (F1F2-MIP), or non-imprinted (F1F2-NIP). 

Each aptamer fragment had a 5-acrydite for co-polymerization into the gel matrix (Figure 2.1B). 

The used nanogels have a similar size of 200 ± 36 nm by DLS (Figure 2.2E) and were standardized 

containing same concentration of aptamers for binding tests through UV-vis spectroscopy. Since 

the tightest binding are from DNA aptamers, the aptamer concentrations were used as the binding 

sites of the nanogels to calculate the molar ratios in ITC. 

In contrast to the free individual aptamer fragments that cannot bind adenosine (Figure 

2.4A and B, Table 2.1), the imprinted gels with either fragment (F1-MIP and F2-MIP) released 

significant heat indicating rescued binding activity (Figure 2.5B and C, Table 2.2). Compared to 

the imprinted gel without aptamer (Figure 2.5A), the F1-MIP gel has increased binding affinity by 

6.5-fold, and the F2-MIP gel by 13.8-fold (Table 2.2, Ka). Therefore, using DNA oligomers that 

alone cannot bind adenosine, the imprinted polymer has drastically improved affinity. Note that 

the DNA oligomers added during polymerization was only 70 µM, which was 1400-fold lower in 

concentration than the synthetic monomers. The fact that the DNA can still effect binding indicates 

the tightest binding sites are associated with DNA. 
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Between the two aptamer fragments, the F2 containing gels (F2-MIP) had a Ka value ~2-

fold larger than that of the F1-MIP (Table 2.2). Therefore, DNA sequence still play an important 

role. This F1 fragment contains 5 consecutive guanines (see the sequence in the Figure 2.1B), 

which may promote intramolecular interactions and thus weakening adenosine binding during 

imprinting. DNA binding adenosine can take place via hydrogen bonding, base stacking, and 

hydrophobic interactions. At this moment, it is unclear whether the binding is the same as that in 

the original aptamer for each half aptamer, or via other interactions. On the basis of this experiment, 

for a given target without known aptamers, it is likely that a careful DNA sequence design is 

needed; not every sequence is equal. For comparison, we also made the same gels but without 

adenosine imprinting (Figure 2.5E-H, Table 2.2). In each case, the amount of heat was significantly 

less than that of their imprinted counterpart, indicating the importance of imprinting and specific 

binding in the imprinted gels. It needs to be noted that we plotted Figure 2.5A, E in the same way 

as the rest to make a consistent comparison, even though these two samples did not contain any 

DNA. Therefore, the molar ratio in their x axis is not an accurate representation of the number of 

binding cavities in the gels. 
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Figure 2.5 ITC titration curves obtained at 298 K for binding of adenosine by the (A) MIP, (B) 

F1-MIP, (C) F2-MIP, (D) F1F2-MIP, (E) NIP, (F) F1-NIP, (G) F2-NIP and (H) F1F2-NIP. The 

gel concentrations are around 6 mg/mL; individually adjusted to ensure that each sample contains 

20 µM DNA (if imprinted with DNA). The adenosine concentration for titration was 3 mM. The 

DNA aptamer concentration (20 µM) was used as the binding sites of the nanogels to calculate the 

molar ratios. The original titration traces (top) and the integrated heat (below) of each reaction are 

shown.  
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Table 2.2. Binding data for adenosine titrating to nanogels by ITC.[a] 

Nanogels 

 

Ka  

(×104 M-1) 

Kd 

(µM) 

ΔG 

(kcal mol-1) 

ΔH  

(kcal mol-1) 

ΔS  

(cal K-1mol-1) 

MIP 0.4 ± 0.05 250 ± 31 -4.8 -1.18 ± 0.4 12.2 

F1-MIP 2.6 ± 0.2 38 ± 3.0 -6.0 -1.65 ± 0.2 14.7 

F2-MIP 5.5 ± 0.4 18 ± 1.3 -6.4 -2.31 ± 0.2 13.9 

F1F2-MIP 6.3 ± 0.6 16 ± 1.5 -6.5 -3.67 ± 0.6 9.64 

NIP 0.06 ± 0.01 1670 ± 197 -3.7 -0.60 ± 0.1 10.4 

F1-NIP 0.3 ± 0.06 330 ± 69 -4.8 -0.53 ± 0.06 14.4 

F2-NIP 0.8 ± 0.1 125 ± 16 -5.3 -0.88 ± 0.05 14.8 

F1F2-NIP 1.1 ± 0.1 91 ± 8 -5.5 -1.46 ± 0.4 13.6 

[a] All the titrations were performed for three times. The binding data were obtained using a 

one-site binding model. 

 

It is also interesting to note that the Kd measured here (16 μM adenosine for F1F2-MIP) 

using ITC is much tighter than that from fluorescence (0.4 mM). This is attributable to the higher 

DNA concentration used for preparing gels for ITC (70 μM) than for fluorescence (20 μM). 

Because both fragments are involved in binding, the final binding complex is tripartite (containing 

both fragments and adenosine). As a result, the DNA concentration difference is reflected in the 

apparent Kd measured (e.g., the 3.5-fold difference in DNA concentration leads to 3.5 × 3.5 = 



41 

 

12.25-fold difference in Kd). Considering the difference in coupling efficiency, the DNA final 

concentration induced effect should be ∼16-fold, which is close to our observation of 25-fold. For 

comparison, the full aptamer (without splitting) has a Kd of ∼6 μM.58 

From this study, we could confirm that imprinting rescued the binding activity of the 

aptamer fragments. Although the binding of each individual fragment alone is not as strong as that 

of both fragments used together, it supports the feasibility of using DNA oligomers as 

macromonomers in MIPs. 

2.3.6 Imprinting using shorter aptamer fragments 

After knowing that each aptamer fragment alone can be effective in the MIPs, it is 

interesting to test even shorter DNA sequences. According to the structure of the aptamer, the 

middle 6 nucleotides in F2 (from G5 to A10) are primarily responsible for specific adenosine 

binding, whereas its two flanking segments contribute only to the overall aptamer folding (Figure 

2.1A and B). Hence, we further shorten the F2 fragment to make F2a and F2b (See the sequences 

in the Figure 2.1B). To test the binding of each DNA, a few new gels incorporating these sequences 

were prepared, and their binding to adenosine was characterized by ITC. For the F2a imprinted 

gels (F2a-MIP), a considerable amount of heat was detected with a high binding constant (Figure 

2.6A and Table 2.3). These values are comparable with those of the full fragment gel (F2-MIP, 

Figure 2.6C), indicating that the truncated nucleotides from A11 to T14 may not contribute much 

to adenosine binding even in the MIP gels. To push the limit, we further shortened the F2a to 

design F2b with only 6 nucleotides (see the sequence in the Figure 2.1B). 
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For the imprinted gels containing F2b (F2b-MIP), their binding affinities decreased 

compared with that of the full F2 fragment, but they still keep a high value of Ka (Figure 2.6B and 

C and Table 2.3). We reason that the 6 nucleotides from G5 to A10 are the main contributors for 

binding adenosine. Because neighboring bases can influence the stacking energy,126 the moderate 

loss in binding may be from the loss of base stacking on this end. As controls, their corresponding 

NIP gels barely showed any heat release (Figure 2.6D−F and Table 2.3). 

In this work, adenosine was chosen as a model target, and it happens to be a nucleoside, 

which may have more interactions with DNA (e.g., via base-stacking and base-pairing). Given the 

development of the aptamer field, we believe that this method can also be applied to other target 

molecules as well. For example, the cocaine aptamer has a similar binding affinity,60 although 

cocaine does not resemble a nucleotide. 

The full-length aptamer (27-nucleotide) was finally shortened to 6 nucleotides, and tight 

binding was still retained. This represents a substantial savings in the cost of DNA synthesis (scales 

linearly with DNA length) with higher yield and purity (scales with a power law with DNA length). 

Most importantly, it indicates that a low concentration of DNA can have a large influence on the 

binding property of MIPs. 
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Figure 2.6 ITC titration curves obtained at 298 K for binding between adenosine with the (A) F2a-

MIP, (B) F2b-MIP, (C) F2-MIP, (D) F2a-NIP, (E) F2b-NIP, and (F) F2-NIP. For all the 

experiments, the nanogels all contained 20 μM aptamers in the buffer A. The adenosine 

concentration for titration was 3 mM. The DNA aptamer concentration (20 µM) was used as the 

binding sites of the nanogels to calculate the molar ratios. The original titration traces (top) and 

the integrated heat (below) of each reaction are shown, respectively. 
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Table 2.3 Binding data for adenosine titrating to fragment aptamer incorporated nanogels by ITC.[a] 

Nanogels 

 

Ka  

(×104 M-1) 

Kd 

(µM) 

ΔG 

(kcal mol-1) 

ΔH  

(kcal mol-1) 

ΔS  

(cal K-1mol-1) 

F2a-MIP 5.1±0.4 19±1.5 -6.4 -2.18 ±0.6 14.1 

F2b- MIP 3.6±0.2 27±1.6 -6.2 -1.48 ±0.4 15.8 

F2-MIP 5.5±0.4 18±1.3 -6.4 -2.31 ±0.2 13.9 

F2a-NIP 0.4±0.06 250±38 -4.8 -0.55 ±0.06 14.3 

F2b-NIP 0.6±0.05 170±14 -5.1 -0.43 ±0.08 15.7 

F2-NIP 0.8±0.1 125±16 -5.3 -0.88 ±0.05 14.8 

[a]All the titrations were performed were performed for three times. The binding data were 

obtained using a one-site binding model. 

2.4  Summary 

In this work, we prepared new hybrid materials using aptamer fragments as 

macromonomers in MIPs. The DNA aptamer for adenosine was first split into two halves used for 

imprinting. Compared to the synthetic monomers (AAm and NIPAAm), DNA macromonomers 

increased the binding affinity by up to 18-fold. DNA also allowed convenient fluorescence 

signaling. Compared to the free aptamer binding, MIPs doubled the binding affinity by positioning 

the two fragments close to each other in an optimal configuration. While each free aptamer 

fragment alone cannot bind adenosine, MIPs rescued their affinities. We further shortened one of 

the aptamer fragments, and the DNA length was pushed to as short as six nucleotides, yielding 

MIPs with a dissociation constant of 27 μM adenosine. This study provides a new method for 
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preparing functional MIP materials by combining high-affinity biopolymer fragments with 

imprinting.  
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Chapter 3  Molecular Imprinting on DNAzymes for Substrate Selectivity and 

Enhanced Activity 

3.1  Introduction 

Substrate selectivity is an important feature of enzymes. For example, glucose oxidase only 

converts glucose, leaving other saccharides intact.127 Despite an excellent catalytic activity and 

specificity, enzymes are expensive and suffer from low yield and poor stability. In the past few 

decades, many enzyme mimics have been developed based on small molecules, DNA, metal 

complexes and nanomaterials.128 These artificial enzymes are interesting due to their low cost and 

high stability. However, most of these enzyme mimics do not have the desired substrate selectivity. 

Substrate selectivity in natural enzymes is often originated from a specific binding pocket. 

Therefore, an interesting question is whether one can engineer such pockets for substrate 

selectivity. At the same time, such methods might afford better enzyme stability and activity. 

Solving this problem will produce better enzyme mimics and deepen the fundamental 

understanding on molecular recognition. 

DNAzymes are DNA-based catalysts. One particularly interesting DNAzyme is G-

quadruplex that has peroxidase-mimicking activity with hemin as a cofactor.65 In the presence of 

H2O2, this DNAzyme catalyzes oxidations of  many substrates, such as TMB and ABTS. These 

substrates are commonly used since they can produce a color change upon oxidation and thus are 

analytically useful. While this DNAzyme is popular in many applications, its substrate selectivity 

was rarely explored. Recently, Willner and co-workers linked aptamers to the DNAzyme and 

achieved selective oxidation of the targets of the aptamers (e.g. dopamine).68 However, aptamers 
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are relatively expensive and the linkage between the aptamer sequence and the DNAzyme needs 

to be optimized. 

Molecular imprinting is an ideal method to produce enzyme-like substrate binding cavities, 

but related work is quite limited. Wulff and co-workers reported a esterase mimic by imprinting 

phosphate ester as template with amidines and a significantly enhanced activity was 

demonstrated.129-130 However, the challenging problem of engineering substrate selectivity was not 

studied.  

In this work, we aim to use this peroxidase DNAzyme as a model of enzyme mimics to 

introduce substrate selectivity via molecular imprinting. At the same time, the effect of MIP matrix 

on the stability and activity of the DNAzyme was also determined. The DNAzyme was acrydite-

modified on the 5’ end for copolymerization in the MIPs. 

3.2 Materials and methods 

3.2.1 Chemicals 

The DNA samples were purchased from Integrated DNA Technologies (Coralville, USA). 

The sequence of G4 DNA is 5’-TTTGGGTAGGGCGGGTTGGGTATA-3’. The control DNA 

sequence is 5’-TTTACGCATCTGTGAAGAGAACCTGGA-3’. These DNA samples were 

acrydite-modified at the 5’ end for polymerization. TMB and hemin were purchased from Sigma-

Aldrich (St Louis, USA) and dissolved DMSO to generate freshly prepared stock solutions. ABTS, 

hydrogen peroxide (30 wt%) and all the monomers were also purchased from Sigma-Aldrich and 

diluted in fresh aqueous solution. Milli-Q water was used for all of the experiments. 

3.2.2 Formation of the DNAzyme complex 
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4 µM DNA was dissolved in buffer B (50 mM HEPES, pH 7.6, 100 mM NaCl, and 10 mM 

MgCl2) and heated at 90 °C for 2 min. The solution was cooled to room temperature and 8 µM 

hemin was added to form the DNAzyme for 1 h. 

3.2.3 Preparation of imprinted nanogels 

All the imprinted nanogels were prepared using the aqueous precipitation polymerization 

method.47, 49 1 mM substrate was mixed with the formed DNAzyme (4 µM) for 30 min under N2. 

AAm (2.9 mg, 42 μmol), NIPAAm (4.6 mg, 42 µmol), MBAAm (crosslinker, 2.4 mg, 16 μmol), 

DMPA (0.5 μL) and 30 μL of SDS (60 mg/mL) were dissolved in the same buffer B to prepare a 

monomer solution. After purging the monomer solutions with N2 for 20 min, polymerization was 

initiated by adding APS (1.0 mg) and TEMED (0.3 μL). The monomer and the DNAzyme 

solutions were mixed after 20 min of initiation. The final reaction volume was standardized to 1 

mL. The reaction was continued for 8 h at room temperature under nitrogen and the solution was 

gently shaken several times after initiation. The resulting imprinted gels were collected by 

centrifugation at 15 000 rpm for 5 min. Then 1 mM H2O2 was added to react with the imprinted 

substrates so they were more easily removed by subsequent washing using Milli-Q water. UV-vis 

spectroscopy was used to confirm that the template substrates were fully washed away. The 

imprinted gels were freeze-dried for 24 h and weighed to determine the yield. Non-imprinted 

nanogels (NIPs) were also prepared and washed in the same way except that no substrate template 

was added during polymerization. 

3.2.4 Transmission electron microscopy (TEM) and DLS 

The TEM sample was prepared by dropping a gel dispersion (200 μg/mL) on a copper grid 

and allowed to dry overnight before imaging on a Philips CM10 microscope. The size and ζ-
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potential of the gels (50 μg/mL) were measured by DLS on a Nano ZS90 Zetasizer (Malvern) at 

25 °C in buffer B. 

3.2.5 ITC 

ITC was performed using a VP-ITC Microcalorimeter (MicroCal). Prior to each 

measurement, each solution and suspension was degassed to avoid air bubbles. The sample of 

nanogels (5 mg/mL) in HEPES buffer (50 mM, pH 7.6, 100 mM NaCl, and 10 mM MgCl2, 1% 

v/v DMSO) was loaded in a 1.45 mL ITC cell at 25 °C. ABTS or TMB (280 μL, 1 mM) in the 

same buffer was titrated into the cell through a syringe (20 μL each time, except for the first 

injection of 2 μL). The enthalpy (ΔH) and binding constant (Ka) were obtained through fitting the 

titration curves to a one-site binding model. The Kd values were calculated from 1/Ka and ΔG = 

−RT ln (Ka), where R is the gas constant. ΔS was calculated from ΔG = ΔH − TΔS. 

3.2.6 UV–vis spectrometry and kinetics 

For a typical oxidation reaction, a substrate (0.5 mM) and the free DNAzyme or nanogels 

(DNA 1 µM) were dissolved in buffer B. The absorption intensity of the oxidization products was 

measured after 5 min of reaction by adding 1 mM H2O2 at 25 °C. The absorption peaks of the 

oxidation products at 652 nm for TMB and 420 nm for ABTS were followed for kinetic 

measurements. 

3.2.7 Catalytic saturation curves 

Various concentrations of substrates (0.01, 0.05, 0.1, 0.3, 0.5, and 1 mM) were mixed with 

same concentration of DNAzyme or nanogels (DNA 1 µM in buffer, followed by adding H2O2 1 

mM). The UV absorptions kinetics were monitored and then converted to concentrations through 
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the Beer's law: A = εcl (ε = 39 000 and 36 800 M−1 cm−1 for the products of TMB and ABTS 

respectively). The background oxidation by hemin alone (2 µM) was subtracted for all the kinetics. 

The oxidation rates (V) with different substrate concentrations were determined by fitting a straight 

line to the initial linear region of the kinetic curves. Vmax and Km were obtained by fitting the data 

with the Michaelis–Menten equation: V = Vmax [S]/(Km + [S]) and the kcat was calculated by Vmax = 

kcat [E], where [S] and [E] are the concentration of substrates and DNAzyme (standardized as 1 

µM), respectively. 

 

3.3  Results and discussion 

3.3.1 Polymerization enhanced the activity of DNAzymes 

The sequence of the G-quadruplex forming DNA (G4 DNA) and a scheme showing the 

formation process of the DNAzyme with hemin were shown in the Figure 3.1A. We first tested 

the catalytic activity of the free DNAzyme using TMB as substrate in the presence of H2O2. The 

DNAzyme converted TMB to a blue colored product, while the DNA alone or hemin alone has 

almost no activity (Figure 3.1B), indicating the necessity of the full DNAzyme complex. We then 

copolymerized the DNAzyme (with acrydite-modified) to gel nanoparticles using precipitation 

polymerization method. AAm and NIPAAm were used as monomers and MBAAm was used as 

crosslinker.  

To have a complete understanding, a few gel formulations were prepared containing the 

full DNAzyme (i.e., with the G4 DNA and hemin, named DNAzyme-gel), the entrapped hemin 

alone (hemin-gel), and the G4 DNA alone (G4-gel). Finally, we also prepared a gel with a control 

DNA (i.e., DNA with random sequence mixed with hemin, named Ctrl-gel). The amount of DNA 
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in each gel was quantified by UV–vis spectroscopy and adjusted containing the same final DNA 

concentration of 1µM. The used gels have an average size of 216 ± 41 nm and nearly charge neutral 

under experimental conditions (pH 7.6) characterized by DLS. The gels have good substrate 

accessibility.131-132 The average pore size of the gels is around 10 nm,43, 133 and this size is much 

larger than the size of the substrate molecules (e.g., ABTS or TMB). 

We then tested the activities of the gels in comparison with the free DNAzyme using TMB 

and ABTS. When TMB was catalyzed by the DNAzyme-gel for 5 min, the absorption peak of the 

oxidation product at 652 nm reached 0.23 (Figure 3.1C), while the free DNAzyme yielded a value 

of only 0.12. Therefore, the activity with the gel was about twice of the free DNAzyme. As controls, 

the hemin-gel and the G4-gel showed very small absorbance (< 0.03). The control DNA with 

hemin (Ctrl-gel) also failed to show activity, indicating that the full DNAzyme complex is needed 

for activity. We next measured their reaction kinetics (Figure 3.1D), and similar conclusions were 

obtained. For example, the rate of oxidization by the DNAzyme-gel is 1.7 times of that by the free 

DNAzyme, while the other gels were barely active.  

To confirm our observation, we also tried another substrate ABTS. An enhanced activity 

by the DNAzyme-gel was still observed. For example, the adsorption intensity of the oxidation 

products by the DNAzyme-gel was 2.1 times higher than that by the free DNAzymes, and the other 

control gels basically had no activity (Figure 3.1E). Therefore, copolymerizing the DNAzyme into 

the gel matrix has enhanced its catalytic activity. We reason that the gel matrix might have 

stabilized the DNAzyme complex, thus enhancing its activity. This set of experiments also 

suggests that the gel matrix did not block substrate accessibility. 
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Figure 3.1 (A) A scheme of G4 DNA forming the peroxidase DNAzyme complex with hemin as 

a cofactor. (B) Photographs of the TMB oxidation products using the G4 DNA or hemin alone and 

their mixture in the presence of H2O2. (C) UV–vis spectra after 5 min reaction and (D) kinetics of 

oxidation of 0.5 mM TMB monitored at 652 nm by the free DNAzyme and the various DNA 

containing gels (all with 1 µM DNA and 1 mM H2O2) in buffer B at 25 °C. The hemin-gel only 

contained 2 µM hemin without DNA. (E) UV–vis spectra after 5 min reaction by using 0.5 mM 

ABTS as substrate monitored at 420 nm. 
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3.3.2 Improved activity by the gel matrix at higher temperature 

To test the hypothesis of improved DNAzyme stability by the gel matrix, we next measured 

the activity of the gels at a higher temperature using ABTS. For the DNAzyme-gel, the activity at 

40 °C (≈0.36 min−1) is around three times of that at 25 °C (≈0.11 min−1, Figure 3.2A). On the 

other hand, the free DNAzyme without the gel showed a similar rate at both temperatures (Figure 

3.2B). We attribute our observation to that the intrinsic activity of this DNAzyme is higher at 

higher temperature. Oxidization by hemin itself showed a slight increase at 40 °C and this is 

consistent with our hypothesis (Figure 3.2C). However, the free DNAzyme complex was 

destabilized at the higher temperature, which has cancelled the rate enhancement. In the gel, the 

DNAzyme stability is higher, thus yielding a net rate enhancement. With only 41 mol% NIPAAm, 

the lower critical solution temperature of the gel is much higher than 40 °C.134 In fact, we did not 

observe cloudiness of the gel at high temperatures, while a pure NIPAAm gel as collapsed at 

~32 °C (Figure 3.2D). Thus, our observed rate enhancement might not relate to an extensive 

collapse of the gel at high temperature. 

Polymers have been covalently linked to many protein enzymes to enhance their 

stability.135-137 For example, the stability of horseradish peroxidase with polymerization was 

increased by more than fourfold compared to the free peroxidase at high temperature without 

compromising catalytic activity.138 Our work uses the MIP gels on DNAzymes to increase enzyme 

stability. 
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Figure 3.2 Effect of temperature on the oxidation kinetics of 0.5 mM ABTS catalysed by (A) the 

DNAzyme-gel, (B) the free DNAzyme and (C) free hemin (2 µM) with 1 mM of H2O2. The 

absorbance of the ABTS oxidation products was measured at 420 nm in the buffer B. The 

DNAzyme-gel and the free DNAzyme both contained 1 µM of the G4 DNA and 2 µM of hemin. 

(D) Measurement of the absorbance of two gels as a function of temperature to observe the LCST 

behavior. The absorption intensity of the poly-NIPAAm gel (nearly 100% NIPAAm) and the 

DNAzyme-gel (with 41mol% of AAM) at different temperatures was followed at 500 nm.  

3.3.3 Molecular imprinting on DNAzymes 

After demonstrating the feasibility of DNAzyme attachment and the stabilization effect of 

the gel matrix, we further aimed to engineer substrate selectivity. The DNAzyme we used is a 

general peroxidase that can oxidize many substrates in the presence of H2O2. This is easy to 
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understand since this DNAzyme does not have a substrate binding cavity. Our idea is to use the 

molecular imprinting process to create specific binding cavities using the substrate as a template 

(Figure 3.3A). To test the feasibility, we mixed TMB with the full DNAzyme and then performed 

the polymerization reaction. During this step, no H2O2 was added to avoid TMB oxidation. After 

removing the TMB template by extensive washing, the MIP gels were dispersed to have a DNA 

concentration of 1 µM (confirmed with UV-vis spectrometry). We named the TMB imprinted gels 

as T-MIP. The size and charge of this gel are similar to those made above without TMB. A TEM 

image of this gel is presented in Figure 3.3B. While each gel appeared irregular likely due to drying, 

they showed a size of around 200 nm consistent with the DLS results. 

We next measured the catalytic activity. Interestingly, using TMB as a substrate, the TMB 

imprinted DNAzyme gel (T-MIP) showed the highest oxidation rate, more than twice of the 

DNAzyme-gel and four times of the free DNAzyme complex (Figure 3.3C). Therefore, molecular 

imprinting with the substrate can further improve the DNAzyme activity, likely due to improved 

absorption affinity by imprinting. To further understand the enzyme property, the rate of TMB 

oxidation was measured with different concentrations of TMB (Figure 3.3D). The initial oxidation 

rates were used where the concentration of substrate is much larger than the concentrations of 

enzyme and product.139 Their catalytic parameters are summarized in the Table 3.1. The kcat of T-

MIP (9.2 min−1) is more than three times of the DNAzyme-gel and five times of the free DNAzyme. 

The T-MIP also has the highest affinity to the TMB substrate as indicated from its smallest Km of 

68 µM, which is about half of that of the DNAzyme-gel. Overall, the T-MIP has an eightfold 

improved catalytic efficiency defined by kcat/Km than the free DNAzyme (Table 3.1, the last 

column). For TMB, both kcat and Km improved by imprinting. 
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To test the generality, we also prepared ABTS imprinted DNAzyme gels (A-MIP) with a 

similar observation of the catalytic efficiency enhancement (Figure 3.3E and F and Table 3.1). In 

this case, the increase in kcat was much larger than the change in Km, but overall the catalytic 

efficiency still improved to a similar extent as that for TMB. The results indicate that molecular 

imprinting significantly improved the catalytic rate and substrate specificity of the DNAzyme. 

With improved binding affinity by imprinting, the adsorbed substrate concentration around the 

DNAzyme might be increased by the MIP gel layers.  
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Figure 3.3 (A) A scheme of preparation of the TMB imprinted DNAzyme gels (T-MIP). (B) A 

TEM image of an imprinted gel (T-MIP). Kinetics of oxidation of 0.5 mM (C) TMB and (E) ABTS 

by the free DNAzyme and by the different gels. Catalytic rates at various concentrations of (D) 

TMB and (F) ABTS by the free DNAzyme and different gels. The free DNAzyme and all the gels 

(≈5 mg/mL) have same concentration of DNA (1 µM) with 2 µM of hemin. All the reactions were 

with 1 mM H2O2 in buffer B at 25 °C. 

 

Table 3.1 Catalytic parameters of the free DNAzyme and all the nanogels with respect to the 

oxidation of TMB and ABTS.[a] 

Sub.  Enzyme 
Vmax 

(µM min-1) 

kcat  

(min-1) 

Km 

(µM) 

kcat/Km 

(10-2 min-1 µM-1) 

TMB 

 

DNAzyme 1.9 ±0.2 1.9 123 ±11 1.5 ±0.02 

DNAzyme-gel 2.8 ±0.3 2.8 141 ±13 2.0 ±0.03 

T-MIP 9.2 ±0.6 9.2 68 ±8 13.5 ±0.7 

A-MIP 3.4 ±0.6 3.4 185 ±15 1.8 ±0.2 

ABTS 

DNAzyme 3.7 ±0.5 3.7 105 ±10 3.5 ±0.2 

DNAzyme-gel 8.1 ±0.4 8.1 116 ±18 7.0 ±0.8 

T-MIP 8.5 ±0.5 8.5 126 ±20 6.7 ±0.7 

A-MIP 38.3 ±2.4 38.3 86 ±10 44.5 ±2.5 

 [a] Vmax is the maximal reaction velocity, kcat is the catalytic constant, kcat = Vmax/[E], and the 

[E] is the concentration of DNA (1 µM); Km is the Michaelis constant. 
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3.3.4 Binding affinity tests 

The above catalytic rates measurements support MIP binding to the corresponding 

substrates. To confirm the improved binding affinity, we next performed ITC. For TMB and ABTS, 

we respectively prepared their imprinted gels (T-MIP and A-MIP) as well as the nonimprinted 

(NIP) gels. When ABTS was titrated into the A-MIP, an obvious binding was detected with a Kd 

of 22.0 µM (Figure 3.4A and Table 3.2 for thermodynamic values). In comparison, ABTS showed 

a poor binding with a Kd of 78.2 µM to the T-MIP (Figure 3.4B), which is similar to titrating ABTS 

into the nonimprinted gel (NIP, Figure 3.4C). Figure 3.4D shows the titration of ABTS into the 

buffer with a minimal background. This set of experiments confirmed the specific binding of 

ABTS by its imprinted gel. Similarly, the specific binding TMB was also confirmed (Figure 3.4E–

H, Table 3.2). The symmetrical and sharp titration peaks for each injection also support that the 

binding kinetics are quite fast. 
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Figure 3.4 ITC titration curves obtained at 298 K (25 ℃) for binding between the substrates ABTS 

(A-D) or TMB (E–H) with A-MIP, T-MIP, NIP gels, and buffer. HEPES buffer (50 mM, pH 7.6, 

100 mM NaCl, and 10 mM MgCl2, 1% v/v DMSO) was used in all the experiments. Note that 

DNA was not added here. TMB and ABTS were 1 mM and all the nanogels were 5.0 mg/mL 

dispersed in the same buffer. The binding sites of all the nanogels were standardized to be the same 

to calculate the molar ratio. The original titration traces (top) and the integrated heat (below) of 

each reaction are shown. 
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Table 3.2. ITC Binding data for the substrates titrating to nanogels.[a] 

Sub. Nanogel 

 

Ka  

(×104 M-1) 

Kd 

(µM) 

ΔG 

 (kcal mol-1) 

ΔH  

(kcal mol-1) 

ΔS  

(cal K-1mol-1) 

ABTS 

A-MIP 4.6 ± 0.6 22.0 ± 2.9 -6.4 -3.2 ± 0.4 10.6 

T-MIP 1.3 ± 0.2 78.2 ± 12.2 -5.6 -1.2 ± 0.4 14.8 

NIP 1.4 ± 0.2 72.4 ± 10.5 -5.7 -1.4 ± 0.2 14.3 

TMB 

A-MIP 0.6 ± 0.1 169.8 ± 28.7 -5.2 -0.6 ± 0.08 15.3 

T-MIP 3.8 ± 0.2 26.4 ± 1.4 -6.2 -1.6 ± 0.1 15.6 

NIP -[b] - - -0.3 ± 0.06 - 

[a] All the titrations were generally performed in duplicates, the binding data were obtained using 

a 1:1 binding model. [b] Binding (Ka < 1000 M−1) was not detectable by ITC. 

 

3.3.5 Enhanced specificity through imprinting 

Now that we have two MIP gels containing the same DNAzyme, but respectively imprinted 

with TMB or ABTS, we then compared their substrate selectivity.140 To compare the enhancement 

only by imprinting, the kcat/Km values of the two MIP gels were normalized to the values of the 

free DNAzyme for each substrate (Figure 3.5). For the T-MIP gel (imprinted with TMB), oxidizing 

TMB has more than eightfold enhanced catalytic efficiency while it only increased approximately 

onefold for oxidizing ABTS (Figure 3.5A). At the same time, the A-MIP gel imprinted with ABTS, 

showed > 11-fold enhanced oxidizing ABTS but < 20% for TMB (Figure 3.5B). We reason that 
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imprinting granted selective binding cavities that improved DNAzyme catalytic performance 

through specific substrate binding (see the insets for schemes in Figure 3.5). 

 

Figure 3.5 Enhancement of catalytic efficiency kcat/Km by (A) T-MIP and (B) A-MIP gels 

oxidizing TMB and ABTS. The fold of enhancement was calculated by normalizing the kcat/Km 

values of the two MIP gels to that of the free DNAzyme for each substrate. The insets are schematic 

presentations of the two MIP gels showing substrates selectivity due to imprinting. 

3.3.6 Recycle tests 

By preparing MIP gels, we have effectively created immobilized catalysts, which may 

allow recycling. We can readily recover the gels after each catalytic reaction by simple 

centrifugation. To demonstrate this, oxidization of the substrates by the two imprinted gels (A-

MIP and T-MIP) were tested, respectively (Figure 3.6). After ten cycles, more than 70% of their 

catalytic activity were remained. The drop in activity is likely due to the loss of gels during 

centrifugation or damage of DNA during the reactions (e.g., each cycle losses ≈2%).65, 141 
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Figure 3.6 Recycle test of the imprinted DNAzyme gels. Reusability of A-MIP and T-MIP gels 

(~5 mg/mL, DNA 1 μM) oxidizing ABTS and TMB (0.5 mM) respectively with 1 mM H2O2 in 

the buffer B at 25 °C. The UV absorption of oxidization products by A-MIP and T-MIP gels were 

measured at 420 nm and 652 respectively. The normalized absorbance was calculated by divided 

each reading by the initial absorbance. The gels were recollected by centrifugation (15,000 rpm, 

10 min) and washed with Milli-Q water (~5 mL) and then re-dispersed in the same buffer for the 

next reaction. 

 

3.4 Summary 

In this work, molecularly imprinted nanogels were prepared on a peroxidase mimicking 

DNAzyme. The gel matrix was demonstrated that enhanced the activity of the DNAzyme by two-

fold. The nanogels was also resistant to high temperature. With imprinting, excellent selectivity 

was achieved by using two different substrate TMB and ABTS. In the best optimization, the 

selectivity of the DNAzyme was improved by around 11 times. This study provides a general and 
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powerful way to prepare functional enzyme mimics by combining molecular imprinting and 

artificially prepared enzymes.  
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Chapter 4  Intracellular Delivery of a Molecularly Imprinted Peroxidase 

Mimicking DNAzyme for Selective Oxidation 

4.1  Introduction 

For therapeutic applications, it is important to deliver drugs to cells to intervene disease 

related processes. Most drugs are small molecules that can diffuse across the cell membrane. 

Nucleic acid based drugs have been delivered by cationic lipids/polymers and viral vectors.142-143 

However, delivery of proteins, such as enzymes, has been quite challenging for many reasons. 

First, proteins are large in size and each protein may have a different charge and surface properties, 

making it difficult to achieve a generalized delivery method.144 Second, proteins are susceptible to 

denaturation and degradation and they are often costly to prepare.145 Finally, foreign proteins may 

be immunogenic.146 

Such challenges might be resolved by using enzyme mimics instead of proteins. Enzyme 

mimics catalyze enzyme-like reactions under near physiological conditions but with lower cost 

and higher stability. They have been widely tested for biosensor development, environmental 

remediation, and medicine.69-70 However, catalysis by enzyme mimics also has its own challenges. 

First, their activity is often lower than natural enzymes. At the same time, most enzyme mimics 

catalyze a broad range of substrates, whereas selective catalysis is critically important for 

intracellular applications. Many previous published reports demonstrating specificity have mainly 

focused on bioorthogonal reactions,147-148 which require non-natural substrates and are more useful 

for imaging/diagnosis instead of therapeutics. The complicated intracellular environment also 

interferes with catalysis, by fouling and degradation of enzyme mimics.149  
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Nanogels have been widely studied for cellular uptake and delivery due to its stability and 

biocompatibility.150 The gel shell can protect enzymes from degradation and facilitate the cellular 

uptake.151 Based on our above study in the Chapter 3, we here tried to prepare a molecularly 

imprinted nanogel by incorporating the DNAzyme as a model of enzyme mimic to achieve 

selective catalysis in cells and address the abovementioned challenges. 

4.2 Materials and methods 

4.2.1 Chemicals 

The DNA samples were purchased from Integrated DNA Technologies (IDT, Coralville, 

USA). The G4 DNA sequence is 5’-TTTGGGTAGGGCGGGTTGGGTATA-3’ and the control 

DNA is 5’-GCCAGCCGAAAGGCCCTTGGC-3’. These DNA were acrydite-modified at the 5’ 

end for polymerization. 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red, AR), TMB, hemin, 

fluorescein isothiocyanate isomer I (FITC) and thiazole orange were form Sigma-Aldrich (St Louis, 

USA) and dissolved in DMSO to generate freshly prepared stock solutions. ABTS, dopamine 

hydrochloride, hydrogen peroxide (30 wt%), and all the monomers were also from Sigma-Aldrich 

and were dissolved in fresh aqueous solution. HEPES, sodium chloride, potassium chloride, 

sodium carbonate, SDS and DNase I were from VWR (Mississauga, Ontario, Canada). 4',6-

diamidino-2-phenylindole (DAPI), Dulbecco's phosphate-buffered saline (DPBS), fetal bovine 

serum (FBS), Dulbecco's modified eagle medium with nutrient mixture F-12 (DMEM/F-12), 

penicillin and streptomycin were from Thermo Fisher Scientific. Milli-Q water was used for all of 

the experiments. 

4.2.2 Formation of DNAzyme complex  
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G4 DNA (10 µM) was dissolved in the buffer C (20 mM HEPES, pH 7.4, 100 mM NaCl, 

10 mM KCl) and heated at 85C for 2 min. The solution was then cooled to room temperature and 

10 µM hemin was added to form the DNAzyme complex for one hour. The solution was diluted 

to 100 nM using the same buffer for oxidation tests.  

4.2.3 Coupling of FITC 

 Freshly prepared FITC (50 mM, 25 µL) in DMSO was added to 475 µL of 2 mM 

allylamine in carbonate buffer (50 mM, pH 9.0) and gently stirred in dark for 4 h. The solution 

was then kept in a 4 C fridge overnight and used as the stock solution for nanogel labeling. 

4.2.4 Preparation of imprinted nanogels  

All the imprinted nanogels were prepared using the same method as in the Chapter 3 except 

20 µM AR was used as the template mixed with DNAzyme (1 µM) for imprinting. To facilitate 

cellular uptake, 15 mol% of DMPA were also added to the monomer solution for positively 

charged gels. For FITC-labeled nanogels, 1 μL of the FITC-labeled allylamine (2 mM) was also 

added for fluorescence. The nanogels were washed and characterized in the same as in the Chapter 

3. 

4.2.5 Oxidation assays 

For a typical reaction, 10 µM of AR was incubated with the free DNAzyme or nanogels 

(DNA 100 nM) at 25°C for 30 min then added with 2 mM of H2O2 to initialize the oxidation in the 

buffer C. The fluorescence intensity and kinetics were recorded using a Varian Eclipse 

fluorescence spectrometer (Agilent Technologies, Santa Clara, CA) with excitation at 550 nm and 

emission at 585 nm at 25 °C. For the chromogenic substrates TMB, ABTS and dopamine, the 
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oxidization activities were determined using photography and UV–vis Spectrometry with a 

maximum adsorption at 652 nm, 420 nm and 480 nm, respectively.  

4.2.6 DNase I Assays 

DNase I was dissolved at a concentration of 10 mg/mL in Tris-HCl buffer (10 mM, pH 7.6, 

50% glycerol and 2 mM CaCl2). The free DNAzyme and nanogels (DNA 100 nM) were 

respectively dispersed in the DNase reaction buffer (10 mM Tris-HCl, pH 7.6, 2.5 mM MaCl2 and 

0.5 mM CaCl2). To 500 μL of this solution, 0.5 μL of the 10 mg/mL DNase 1 was added and the 

solution was then incubated at 37C for different time. After incubation, the nanogel samples were 

washed twice with buffer C then tested for the oxidation assays.  

4.2.7 Cell culture  

HeLa cell line was obtained from the American Type Culture Collection (ATCC, MD, 

USA). The cells were cultured in DMEM/F12 medium, supplemented with 10% FBS and100 

U/mL penicillin, 100 μg/mL streptomycin at 37 °C using a humidified 5% CO2 incubator. 

4.2.8 Cellular uptake and confocal microscopy   

HeLa cells were seeded onto 14 mm coverslips in 24-well plates with 50,000 cells per well 

and allowed to grow to ~60% confluency. For cellular uptake tests, the cells were first incubated 

with 10 µM AR and free DNAzyme or MIP gels (final DNA concentration of 100 nM) for 1 h at 

37 C. The cells were then washed twice with PBS buffer to remove non-internalized AR, 

DNAzyme and nanogels, and refilled with 500 µL fresh medium. The intracellular oxidation was 

initialized by adding a final of 2 mM H2O2 and the cells were further incubated for another hour 

at 37 C. Then the cells were washed twice with 500 µL PBS buffer and fixed with fresh 4% 
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paraformaldehyde for 10 min at room temperature. The cell nucleus was counterstained using 

DAPI following the manufacturer’s instructions. The coverslips were mounted on glass 

microscope slides with a drop of antifade mounting media (Sigma-Aldrich Co., USA) to reduce 

fluorescence photobleaching. The prepared microscope slides were visualized under a laser 

scanning confocal fluorescence microscope (LSM510Meta, Carl Zeiss Inc., Thornwood, NY). The 

color intensity of confocal images was quantified by using Image J (NIH Image). 

 

4.3  Results and discussion 

4.3.1 Catalytic activity of the free DNAzymes 

In this work, we performed intracellular oxidations based on fluorescence signal. Therefore, 

Amplex red (AR) was chosen as the targeted substrate since its oxidation product, resorufin, is 

strongly fluorescent (excitation/emission maxima = 550/585 nm, see the structure in the Figure 

1.7).152 In addition, AR has been widely used in many intracellular applications with high-

throughput compatibility.153-154  

We first measured the activities of the free DNAzyme for AR oxidation in comparison with 

its two components: hemin alone and the G4 DNA alone. After 10 min reaction, the DNAzyme 

complex (G4/Hemin) had the highest oxidation activity. More than 4-fold higher activity than that 

of the free hemin was observed by their fluorescence spectra and photographs (Figure 4.1A and 

inset). A control sample (Ctrl) with a random sequence (non G4 forming DNA, see its sequence 

in the Method part) showed an activity similar to that of free hemin, while the free G4 DNA alone 

(no hemin) had almost no activity. The same trend was also observed in a kinetic assay (Figure 
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4.1B). Therefore, the high activity of the DNAzyme was confirmed, and a substantial fluorescence 

signal was produced in just 10 min. 

 

Figure 4.1 (A) Fluorescence spectra after 10 min reaction and (B) kinetics of oxidation of 10 µM 

AR by the DNAzyme complex, hemin alone, G4 DNA alone, and a mixture of hemin with a control 

DNA (Ctrl) in the presence of 2 mM H2O2. The inset in (A) is the fluorescence photographs of 

oxidized AR under UV light. 100 nM of the G4 DNA (or Ctrl DNA) and hemin were used in all 

the reactions in the buffer C at 25 °C. 

4.3.2 Enhanced activity through imprinting 

The goal of this work is to perform oxidation inside cells. Since a free DNA oligonucleotide 

cannot be internalized by cells, we need to deliver the DNAzyme with nanogels. In addition, we 

aim to achieve selective oxidation and the intended target should be preferentially oxidized. To 

achieve the both goals, we incorporated the DNAzyme into nanogels through imprinting and 

polymerization. The same method was used as in the Chapter 3 for the imprinted nanogel 

preparation besides AR was used the imprinting target. Furthermore, we also incorporated a 

fraction (15 mol%) of positively charged functional monomer, N-[3-
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(dimethylamino)propyl]methacrylamide (DMPA), to facilitate cellular uptake.155 The imprinted 

DNAzyme nanogels were collected after removing the AR template by extensive washing 

(confirmed by UV-vs spectroscopy).  

To have a complete understanding, various nanogel formulations were prepared, including 

AR-imprinted DNAzyme nanogels (named MIP), non-imprinted DNAzyme nanogels (prepared 

the same way but in the absence of AR, named NIP), nanogels with entrapped hemin alone (no 

DNA, named Hemin-gel), and nanogels with the G4 DNA alone (without hemin, named G4-gel). 

To ensure a fair comparison, all the samples were standardized to contain the same concentration 

of DNAzyme (100 nM) regardless of free DNAzyme or nanogels, which was confirmed through 

UV−vis spectroscopy and fluorescence using thiazole orange as a DNA staining dye. All the used 

gels had a similar average size of around 300 nm from DLS (Figure 4.2A). With an average size 

of 300 nm, the molar concentration of the nanogel particles was calculated to be ∼2.35 nM (e.g., 

dispersing 4 mg dried gels in 1 mL of buffer yielded a final gel volume of 20 µL after 

centrifugation). With 100 nM DNAzyme incorporated inside, each nanogel had around 42 

DNAzyme molecules. As expected, all the four prepared gels were positively charged with a ζ-

potential of around +14 mV (Figure 4.2B), which was attributed to the cationic monomer DMPA 

(15 mol%). The gel without DMPA was close to neutral (Figure 4.2B, the last bar).  
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Figure 4.2 (A) The hydrodynamic size and (B) ξ-potential of various nanogels (50 µg/mL) 

measured by DLS in the buffer C at 25 °C. The polydispersity index (PDI) of the nanogels was 

below 0.1.  

After characterizing the colloidal property of the nanogels, we next tested their oxidation 

activities with AR as a substrate. After 10 min reaction, the fluorescence spectra of the oxidized 

product by different gels were collected (Figure 4.3A). The MIP nanogel had the highest activity 

showing more than 1.6-fold higher fluorescence than that of the NIP gel and the free DNAzyme. 

This was also confirmed by a stronger fluorescent photograph of the MIP gel (the inset in Figure 

4.3A). Therefore, molecular imprinting improved the activity of the DNAzyme. As controls, the 

hemin-gel and G4-gel samples showed much lower activities. Without the G4 DNA, hemin cannot 

be stably associated with the gels and some might be washed away during gel preparation. The 

fact that the free DNAzyme and the NIP nanogel had almost the same activity suggested that the 

secondary structure (quadruplex) of the DNAzyme in the nanogels was retained, despite the 

presence of cationic monomers in the gel.  

To characterize their enzyme properties, we then measured their oxidation kinetics (Figure 

4.3B) and calculated the catalytic rates (Figure 4.3C). The MIP nanogel showed the fastest 

oxidation rate of ~250 ΔF/min, which was more than 2.7-fold higher than that of the NIP gel and 

3.5-fold higher than the free DNAzyme, confirming the improved activity through molecular 

imprinting. The activity of the NIP gel was similar to that of the free DNAzyme, suggesting that 

the DNAzyme had a similar conformation and activity in the gel. The higher activity of the MIP 

nanogel further indicated the importance of imprinting. In other words, the rate enhancement was 

not from simply having the polymer matrix but more likely from imprinting. The favored binding 
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of the substrate in the MIP might enhance enzyme-substrate interactions and thus the reaction rate. 

As expected, the Hemin-gel and G4-gel samples showed very slow rates. 

The oxidation rate as a function of AR concentration was further measured (Figure 4.3D). 

After fitting the data using the Michaelis-Menten equation, the MIP gel had the highest substrate 

affinity with a Km of 1.8 ± 0.6 µM, which was a few fold lower than that of the free DNAzyme 

(Km = 5.5 ± 1.5 µM) and the NIP gel (Km = 8.5 ± 1.5 µM). Therefore, imprinting indeed improved 

substrate binding. The high catalytic rate and lower Km might be useful for improving specificity 

of the MIP gels. 

 

Figure 4.3 (A) Fluorescence spectra after 10 min reaction and (B) kinetics of oxidation of 10 µM 

AR by different nanogels and the free DNAzyme in the presence of 2 mM H2O2. Inset of (A): 

fluorescence photographs of the oxidized AR under UV light. The initial rates of the oxidation 

kinetics (C) with 10 µM AR and (D) as a function of AR concentration by different nanogels and 
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the free DNAzymes. 100 nM of the G4 DNA and hemin were used in all the reactions in the buffer 

C at 25 °C. All the nanogels were around 4 mg/mL containing 100 nM of the DNAzyme. 

4.3.3 Enhanced selectivity through imprinting 

To test the selectivity of the imprinted DNAzyme nanogels, we used three other 

chromogenic substrates for comparison: TMB, ABTS and dopamine. At the testing condition (the 

buffer C, 20 mM HEPES, pH 7.4), TMB and ABTS are negatively charged (pKa~4.2 and 2.1, 

respectively), while dopamine is positive charged (pKa ~8.9).156 Therefore, these three substrates 

were representative in terms of charge interactions. Before oxidation, these substrates were all 

colorless, and selectivity could be determined from their color after oxidation. We mixed each 

substrate with the AR imprinted DNAzyme nanogels and performed the oxidation reaction (Figure 

4.4A). By visual inspection, only the AR catalysis was promoted compared to the free DNAzyme, 

while the other three substrates were even inhibited. This trend was more obvious after 

quantification at their respective absorption or emission wavelengths (Figure 4.4B). Therefore, the 

MIP nanogels were indeed capable of selective oxidation of the imprinted AR over other substrates. 

Although we cannot test all possible substrates in this work, it is reasonable to believe that this 

imprinted DNAzyme can also selectively oxide AR inside cells, leaving other molecules less 

affected.  
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Figure 4.4 Selectivity test of four different substrates by the free DNAzyme and by the AR-

imprinted nanogels (DNAzyme: 100 nM) in the presence of 2 mM H2O2. (B) Normalized UV-vis 

absorption or fluorescence intensities at the corresponding peaks from the samples in (A). The 

intensities of the free DNAzyme samples were normalized to be 1.  

4.3.4 Enhanced stability by nanogels 

After demonstrating the improved activity and specificity, we also wanted to know whether 

the gel matrix could protect the incorporated DNAzyme from nuclease degradation. To test this, 

we incubated the MIP gels with DNase I for 30 min. The gels retained good activity for AR 

oxidation showing only 17.6% fluorescence decrease (Figure 4.5A). In contrast, the free 

DNAzyme almost completely lost its activity after the DNase I treatment (Figure 4.5B). Therefore, 

the nanogel matrix effectively decreased enzymatic DNA degradation, which is likely due to the 

exclusion of the large nuclease molecules from entering into the pores of the nanogel.  

For the 17.6% drop, we attributed it to the degradation of surface DNA. To further confirm 

this, we incubated the nanogel with DNase I for different time periods, and the fluorescence from 

AR oxidation by the MIP gels only dropped by ~21% even after 3 h incubation (Figure 4.5C). 

Therefore, we estimated that most of the DNAzymes were in the inside the gel matrix (around 

80 %) that cannot be accessed by DNase I. The kinetics of the non-treated and 3 h DNase I treated 

samples were compared, and the rate was very similar (Figure 4.5D). Therefore, the activity of the 

interior and surface DNAzymes might be quite similar. Since AR is a small molecule and it can 

diffuse more quickly than DNase I can in the gel pores. Immobilizing DNA in hydrogels is known 

to facilitate long-term storage; the sample can be dried and then rehydrated before use.157-158 
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Figure 4.5 Fluorescence spectra and photographs (inset) of AR oxidation by the (A) MIP gels and 

(B) the free DNAzyme before and after 30 min of DNase I treatment. (C) Normalized fluorescence 

intensities of AR oxidation by the MIP, and the nanogels were incubated with DNase I for various 

time periods. (D) The kinetics of AR oxidation by the MIP nanogels without or with 3 h DNase I 

treatment. All the nanogels were 4 mg/mL containing 100 nM of the DNAzyme tested at 25 °C. 

4.3.5 Intracellular delivery of the imprinted nanogels 

With excellent activity, specificity and stability, we then measured the catalysis in living 

cells. To track cellular uptake of the nanogels, we covalently labelled a fluorophore to the gels. 

We introduced another functional monomer, allylamine, which has a primary amine group that can 

readily react with fluorescein isothiocyanate (FITC).159 After linking FITC with allylamine (Figure 

4.6A), the imprinted nanogels were prepared with the same procedures. After extensive washing 
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to remove free FITC, the resulting nanogels had a strong fluorescent signal with a maximum 

emission at 521 nm (Figure 4.6B) and a green fluorescence color under the UV light (inset). A 

fluorescent photograph of the FITC-labeled nanogels after centrifugation was also recorded to 

confirm that the label was on the gel matrix and no free FITC was left.  

 

Figure 4.6 (A) A scheme showing the preparation of FITC-labeled allylamine monomer and green 

fluorescent MIP nanogels. (B) A fluorescence spectrum of the prepared FITC-labeled MIP 

nanogels (2 mg/mL, 200 nM FITC) excited at 485 nm. Inset: Dispersed FITC-labeled MIP 

nanogels and after centrifugation (Spin) imaged under UV light excitation. 

After labeling the nanogels with FITC, we then followed their cellular uptake and the 

intracellular oxidation reaction. The free DNAzyme and MIP, NIP gels were all tested side-by-

side. HeLa cells were chosen as a model cancer cell line. The free DNAzyme or nanogels were 
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incubated with the cells for uptake in the presence of the substrate AR. The culture medium was 

then changed to remove non-internalized AR and the enzymes. Finally, H2O2 was added to activate 

the oxidation inside the cells and the results were analyzed by confocal fluorescence microscopy. 

The oxidized products were red, the nanogels were green, and the cell nucleus was stained blue 

(Figure 4.7). No red fluorescence was measured by the free DNAzyme sample, indicating no 

oxidation occurred in the cells (Figure 4.7A). This might be due to poor uptake of the free 

DNAzyme by the cells. For the MIP gel samples, a strong green fluorescence and a strong red 

fluorescence were observed indicating successful internalization and oxidation (Figure 4.7B). The 

NIP gels were also efficiently internalized as indicated by the strong green fluorescence, but its 

red fluorescence was weaker (Figure 4.7C), which can be explained by its lower activity than the 

MIP gels. This set of experiments indicated that the imprinted DNAzymes worked inside cells in 

a way similar to that outside cells. Finally, we also tested the MIP samples without addition of 

H2O2 (Figure 4.7D). In this case, no red oxidized product was observed. The cell itself could 

produce H2O2 but the concentration around the nanogels was likely to be insufficient for the 

oxidation reaction to reach a sufficient level to be observed by our microscope.160 
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Figure 4.7 Confocal fluorescence micrographs of oxidation of AR (10 µM for incubation) in 

HeLa cells by (A) the free DNAzyme, (B) MIP nanogels, (C) NIP nanogels in the presence of 2 

mM H2O2, and (D) MIP nanogels without H2O2 added. The initial DNA concentration was 100 

nM in the cell culture medium for incubation. 

To have a quantitative understanding, the fluorescence intensities of the cells were 

quantified (Figure 4.8A). The green intensities of the three gel samples were very close to each 

other indicating a similar uptake efficiency of these nanogels. This is reasonable since they all had 

a similar charge and imprinting did not affect internalization. For the red color indicative of the 

oxidation activity, the MIP gel was more than two-fold stronger than that of the NIP gel. After 
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normalization of the green fluorescence, the catalytic efficiency of the MIP gels was 2.6-fold 

higher than the NIP gels (Figure 4.8B). From the fact that the MIP sample was more effective also 

inside cells than the NIP sample, we concluded that molecular imprinting was still effective 

intracellularly.  

 

Figure 4.8 (A) Fluorescence intensity of the green and red channels of the confocal micrographs 

in Figure 4.7 of the MIP, NIP, and MIP with no H2O2 (MIP-H2O2) samples. (B) Normalized red 

fluorescence intensity from (A). 

 

4.4 Summary 

In summary, a molecularly imprinted nanogel was prepared with a peroxidase mimicking 

DNAzyme. After imprinting, the activity and specificity of the DNAzyme were significantly 

improved. At the same time, the gel matrix protected the DNAzyme from degradation by DNase 

I, and facilitated cellular uptake. Therefore, by using this imprinted nanogel, we provided an 

alternative approach for the traditional delivery of protein enzymes. Using DNAzymes can 

improve stability and decrease cost, while imprinting can improve the activity and specificity of 

the DNAzyme. By imprinting DNAzymes and other enzyme mimics (e.g., nanozymes) with other 
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types of catalytic activities and by using biologically relevant molecules as templates, it is possible 

to produce nanogels that can have a practical biomedical impact.  
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Chapter 5  Molecular Imprinting on Nanozymes for Substrate Specificity 

Improvement 

5.1  Introduction 

Nanozymes refer to nanomaterials that catalyze enzyme-like reactions under near 

physiological conditions. A diverse range of nanomaterials were discovered with oxidase, 

peroxidase, catalase, superoxide dismutase, and laccase mimicking activities. With much higher 

stability and lower cost than protein enzymes, nanozymes are attractive for various applications 

ranging from biosensor development, environmental remediation, to nanomedicine.85  

While most previous work focused on catalytic activity,161-162 substrate specificity of 

nanozymes has yet to be addressed. Nanozymes do not have a substrate binding pocket, a feature 

of most natural enzymes. Since nanozymes’ reactions take place on the surface, substrates diffused 

to the surface can all react regardless of their shape and charge. Therefore, most nanozymes can 

turnover a diverse range of substrates. Substrate specificity is an important feature of enzymes, 

enabling its molecular recognition function. A critical step towards real enzyme mimics is to 

engineer substrate binding pockets. Many methods can be potentially used, such as attaching 

aptamers, peptides, or antibodies.68 Using these biological ligands, however, defeats the cost and 

stability advantages of nanozymes.  

We reason that MIPs might be ideal for creating substrate binding cavities on nanozymes 

since both can be prepared at a large scale and low cost. Molecular imprinting had been performed 

on an esterase mimic to increase catalytic activity,129 and we had performed imprinting on 

DNAzymes in previous studies. In this work, we grew MIPs on three classic nanozymes with 
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peroxidase and oxidase like activities (e.g., iron oxides, gold nanoparticles and nanoceria). This 

simple method has achieved remarkable substrate specificity as well as activity enhancement. 

5.2  Materials and methods 

5.2.1 Chemicals 

TMB was purchased form Sigma-Aldrich (St Louis, USA) and dissolved DMSO to 

generate a freshly prepared stock solution (100 mM). ABTS, dopamine hydrochloride, hydrogen 

peroxide (30 wt%) and all the acrylic monomers were also purchased from Sigma-Aldrich and 

dissolved freshly in water. Sodium chloride, sodium acetate, SDS, acetic acid, and HEPES were 

from Mandel Scientific (Guelph, ON). Milli-Q water was used for all the experiments. 

5.2.2 Preparation of Fe3O4 NPs and other nanozymes 

Fe3O4 NPs were prepared following literature reported methods.163 FeCl2 (0.2 M, 1.0 mL) 

and FeCl3 solutions (0.1 M, 4.0 mL) were mixed under nitrogen gas, to which aqueous ammonia 

(0.2 M, 15 mL) was added drop-wise under stirring. The mixture was heated at 80 C for 1 h under 

nitrogen. After cooling to room temperature, the resulting Fe3O4 NPs were washed by Milli-Q 

water until the supernatant was clear (final yield: 70.3%). Gold nanoparticles (AuNPs, 13 nm) 

were synthesized using the citrate reduction procedures with a concentration of ∼10 nM.164 

Nanoceria (CeO2, size ~5 nm, 20 wt% dispersed in 2.5% acetic acid from Sigma-Aldrich) was 

diluted in acetate buffer (20 mM, pH 4.0 ) for use. 

5.2.3 Imprinting on nanozymes 

All the imprinted nanogels were prepared using the same method as described in the 

Chapter 3. 60 μg/mL Fe3O4 NPs and 1 mM substrate (e.g., ABTS) were used for imprinting. For 



83 

 

the positively or negatively charged gels, DMPA (15 mol %, 10 μL) or AMPS (10 mM) was also 

included. The resulting imprinted gels were collected by centrifugation at 5000 rpm for 5 min. 

UV-vis spectroscopy was used to confirm that the template substrates were fully washed away. 

Non-imprinted nanogels (NIPs) were also prepared and washed in the same way except that no 

substrate template was added during polymerization. 

5.2.4 Inductively coupled plasma mass spectrometry (ICP-MS) 

To measure the Fe3O4 concentration in the nanogels, different gel particles (5 mg/mL) were 

dissolved in 5 % (w/v) nitric acid overnight. The dissolved solutions were then centrifuged at 15 

000 rpm for 10 min to remove the gel shells and filtered using 0.45 µm filters. The iron content in 

the solutions was measured by ICP-MS (Thermo Fisher Xseries II). 

5.2.5 TEM, SEM, EDX and DLS. 

The particle size and morphology of the Fe3O4 were studied using TEM (Philips CM10). 

Samples (100 μg/mL) was drop-cast onto a copper grid and allowed to dry overnight at room 

temperature. For SEM, freeze-dried samples were dropped on a conductive carbon tape for 

imaging using a LEO FESEM 1530 field-emission scanning electron microscope (SEM), equipped 

with an EDAX Pegasus 1200 energy-dispersive X-ray analysis system (EDX). The size and -

potential of nanogels (50 μg/mL) were measured by DLS on a Zetasizer Nano ZS90 (Malvern) at 

25 °C.  

5.2.6 ITC. 

ITC was performed using a VP-ITC Microcalorimeter instrument (MicroCal). Prior to 

measurement, each solution was degassed to remove air bubbles. The nanogels (5 mg/mL) 
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dispersed in acetate buffer (20 mM, pH 4, 1 % v/v DMSO) was loaded in a 1.45 mL ITC cell at 

25 °C. ABTS or TMB (280 μL, 2 mM) in the same buffer was titrated into the cell (20 μL each 

time, except for the first injection of 2 μL). The binding parameters were analyzed with the same 

method as described in the Chapter 3. 

5.2.7 Activity assays. 

For a typical peroxidation reaction, a substrate (0.5 mM) was mixed with free Fe3O4 NPs 

(50 µg/mL) or imprinted nanogels (~5 mg/mL gel containing 50 µg/mL Fe3O4) in acetate buffer 

(20 mM, pH 4). The absorption intensity of the oxidization products (652 nm for TMB, 420 nm 

for ABTS, and 480 nm for dopamine) was followed after adding 10 mM H2O2 using an Agilent 

8453A spectrometer at 25 °C. To measure the enzyme parameters, various concentrations of 

substrates (0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1 mM) were mixed with free Fe3O4 NPs or imprinted 

gel particles, followed by adding H2O2 (10 mM). The UV absorbance was then converted to 

concentrations c, through Beer's law: A = εcl (ε = 39 000, 36 800, and 3058 M-1 cm-1 for the 

products of TMB, ABTS, and dopamine, respectively; l is the pathlength of 1 cm). The background 

oxidation was subtracted for all the kinetics. The catalytic parameters were obtained by using the 

Michaelis–Menten equation. The nanoparticle molar concentration of Fe3O4 was used as the 

nanozyme concentration. With 50 µg/mL of Fe3O4 nanoparticles in the gels and an average size of 

30 nm, we calculated the nanoparticle molar concentration is 1.1 nM. The oxidation reactions by 

other nanozymes and their imprinted gels (nanoceria, 100 µg/mL; AuNPs, 10 nM) were tested in 

the same way. 

5.3 Results and discussion 

5.3.1 Fe3O4 NPs as a peroxidase-mimicking nanozyme. 
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Iron oxide nanoparticles (Fe3O4 NPs) are among the first reported nanozymes with 

peroxidase-mimicking activity.90 We chose to study it because of its robust activity and excellent 

biocompatibility. We prepared Fe3O4 NPs using the hydrothermal method.163 A TEM micrograph 

of our Fe3O4 NPs is shown in Figure 5.1B. The average particle size is around 30 nm and they 

appear aggregated because of drying on the TEM grid and we avoided strong surface capping 

ligands during synthesis. To confirm its peroxidase-like activity, we respectively mixed TMB and 

ABTS substrates with the Fe3O4 NPs and H2O2. A blue color was observed with TMB, and green 

color with ABTS, indicating both were oxidized (Figure 5.1A). Without the Fe3O4 NPs, no color 

change occurred for either compound, indicating the catalytic role of Fe3O4. If H2O2 was omitted, 

no color change occurred with Fe3O4 NPs alone, confirming Fe3O4 was a peroxidase-like 

nanozyme.  

The Fe3O4 NPs can oxidize both TMB and ABTS in the presence of H2O2, and thus it has 

poor substrate specificity. We hope to create substrate binding pockets on the Fe3O4 NPs using 

MIPs to selectively oxidize only one of them. Before imprinting, we first tested the binding 

property of the substrate TMB and ABTS on the Fe3O4 NPs. We measured the -potential of free 

Fe3O4 NPs to be -18.5 mV (Figure 5.1C). Adding TMB increased the charge to -11.2 mV, 

suggesting TMB adsorption. Adding ABTS further decreased the charge of Fe3O4, also suggesting 

adsorption. Therefore, at least a fraction of the added substrates was adsorbed by the Fe3O4 to 

enable surface imprinting. 
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Figure 5.1 (A) Photographs showing the catalytic activity of the Fe3O4 NPs for oxidation of TMB 

and ABTS with or without H2O2. Fe3O4 NPs (50 μg/mL), 0.5 mM substrates and 10 mM H2O2 

were used in the oxidations for 30 min in acetate buffer (20 mM, pH 4.0) at room temperature. (B) 

TEM micrographs of Fe3O4 NPs. (C) ζ-potential of the Fe3O4 NPs in HEPES buffer (20 mM, pH 

7.6) and after adding 1 mM TMB or ABTS.  

5.3.2 Imprinting on Fe3O4 NPs. 

After confirming the adsorption, we then copolymerized the Fe3O4 NPs into nanogels 

through imprinting and polymerization using the same method as in the Chapter 3. The TMB and 

ABTS imprinted gels are named T-MIP and A-MIP, respectively. In addition, we also prepared 

the same gel but in the absence of TMB or ABTS. These control gels are named NIP only 

containing the Fe3O4 NPs. The nanogels have an average hydrodynamic size of 215 ± 28 nm 

characterized by DLS. To further characterize the nanogels, SEM was measured on lyophilized 

samples (Figure 5.2A) showing the iron oxide core entrapped in the nanogel. The EDX spectrum 

of the analyzed area (red square in Figure 5.2A) indicates the presence of iron along with carbon, 
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nitrogen and oxygen (Figure 5.2B). The nanogels had a similar iron incorporation efficiency of 

around 81 ± 7 % measured by ICP-MS after dissolving the Fe3O4 in the gels by nitric acid (Figure 

5.2C). 

 

Figure 5.2 (A) An SEM micrograph of a T-MIP nanogel and (B) its EDX elemental spectrum on 

the analyzed area defined by the red square. (C) ICP-MS analysis of iron incorporation efficiency 

in the nanogels. The Fe3O4 NPs were dissolved by nitric acid and then diluted for ICP-MS analysis. 

A control sample of Fe3O4 NPs (60 μg/mL) without nanogels were also used for comparison. The 

incorporation percentages of iron in the nanogels were normalized to the initial added Fe3O4 in gel 

preparation (60 μg/mL, the first bar, Cntrl).  

5.3.3 Imprinting enhanced catalytic activity of nanozymes 

After preparing these imprinted nanozymes, we next measured their activity. Based on their 

incorporation efficiencies, all the nanogels were standardized containing the same concentration 

of Fe3O4 NPs (50 µg/mL) as the free Fe3O4 NPs control for our experiment. When TMB was 

catalyzed by free Fe3O4 NPs for 30 min, the absorption peak of the oxidation product at 652 nm 

reached 0.13 (Figure 5.3A, black trace). Next, the non-imprinted NIP sample was tested, and it has 

a similar activity (red trace). The results suggest that the gel layer was quite porous allowing 

efficient substrate diffusion to the surface.43, 133 After we measured these control samples, the 
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TMB-imprinted sample (T-MIP) was measured for TMB oxidation, and it showed an increased 

absorbance reaching 0.23 (blue trace). Therefore, imprinted enhanced the activity by about one-

fold. We next compared their reaction kinetics (Figure 5.3B), and a similar conclusion was 

obtained.  

 To test generality, we also tested the activity of the ABTS imprinted nanogels (A-MIP) 

(Figure 5.3 C and D). With the ABTS as the substrate, the A-MIP nanogel has an oxidation rate of 

0.047 min-1, 2.4-fold faster than that of the free Fe3O4 NPs (0.020 min-1, Figure 5.3D). Overall, the 

imprinted nanogels slightly enhanced the catalytic activity of Fe3O4 NPs for its imprinted target. 

Modification of nanozyme surface were reported that enhanced its activity. For example, Fan and 

co-workers attached histidine to Fe3O4 NPs increasing its peroxidase-like activity by 20-fold.161 

Fluoride adsorption on nanoceria and increased its oxidase-like turnover by nearly 100-fold.99 

Shen and co-workers prepared MIP around TiO2 as a photocatalyst also showing enhanced 

activity.70 

 We next measured the rates of the nanozymes at various substrate concentrations (Figure 

5.3E and F). Based on the Michaelis-Menten model, their catalytic parameters are summarized in 

Table 5.1. The kcat of T-MIP nanogel (15.0 s-1) is more than twice of the free Fe3O4 NPs and the 

A-MIP gels when oxidizing TMB. The T-MIP also has the highest affinity for TMB as indicated 

from its smallest Km of 218 µM. For oxidizing ABTS, the A-MIP gel has the highest activity and 

affinity with a kcat of 70.1 s-1 and the smallest Km of 135 µM. Overall, the catalytic efficiency has 

enhanced towards their template targets by imprinting.  
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Figure 5.3 UV−vis spectra after 30 min of (A) TMB, (C) ABTS oxidations; and their kinetics of 

(B) TMB and (D) ABTS oxidation by free Fe3O4 NPs and different nanogels monitored at 652 nm 

and 420 nm respectively. Catalytic rates with various concentrations of (E) TMB and (F) ABTS 

by the free Fe3O4 NPs and different nanogels. The free Fe3O4 NPs and all the nanogels (∼5 mg/mL) 

have the same concentration of Fe3O4 (50 μg/mL). All the reactions were with 10 mM H2O2 in 

acetate buffer (20 mM, pH 4) at 25 °C. 
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Table 5.1 Catalytic parameters of the free Fe3O4 NPs and the imprinted nanogels for 

oxidation of TMB and ABTS.[a] 

Sub.  Enzyme 
Vmax 

(µM min-1) 

kcat  

(s-1) 

Km 

(µM) 

kcat/Km 

(10-2 s-1 µM-1) 

TMB 

 

Fe3O4 0.43 ± 0.04 7.1 ± 0.4 295 ± 30 2.4 ± 0.02 

NIP 0.36 ± 0.03 6.0 ± 0.3 266 ± 26 2.2 ± 0.05 

T-MIP 0.9 ± 0.04 15.0 ± 0.4 218 ± 24 6.8 ± 0.4 

T-MIPneg 3.4 ± 0.2 56.1 ± 1.7 150 ± 18 37.7 ±2.5 

A-MIP 0.3 ± 0.01 5.0 ± 0.08 316 ± 28 1.6 ± 0.1 

A-MIPpos 0.2 ± 0.04 3.3 ± 0.2 493 ± 26 0.7 ± 0.1 

ABTS 

Fe3O4 2.1 ± 0.1 35.0 ± 0.8 270 ± 34 12.9 ± 1.1 

NIP 1.9 ± 0.2 31.6 ± 1.8 267 ± 28 11.8 ± 0.03 

T-MIP 0.7 ± 0.05 11.6 ± 0.2 302 ± 26 3.8 ± 0.6 

T-MIPneg 0.4 ± 0.06 6.6 ± 0.2 360 ± 30 1.8 ± 0.02 

A-MIP 4.2 ± 0.2 70.1 ± 1.8 135 ± 22 51.8 ± 6.8 

A-MIPpos 6.5 ± 0.2 108.3 ± 1.7 93 ± 10 116.4 ± 9.5 

 [a] Vmax is the maximal reaction velocity, kcat is the catalytic constant, kcat = Vmax/[E], and the 

[E] is the molar concentration of Fe3O4 nanoparticles (1.1 nM); Km is the Michaelis constant. 

 

5.3.4 Imprinting enhanced specificity of nanozymes 

The enhance activity may lead to better specificity, which is the main goal of the current 

work. Next we measured specificity by also reacting the T-MIP gel with ABTS, and A-MIP with 
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TMB. In general, the non-template substrate has lower activity than the template, (e.g., compare 

the orange and blue lines in Figure 5.3 E and F). Therefore, with this simple imprinting process, 

substrate specificity was achieved.  

To quantify specificity, we compared their catalytic efficiency with kcat/Km.140 T-MIP has 

2.8-fold higher of kcat/Km (6.8 ×10-2 s-1 µM-1) than that of bare Fe3O4 NPs (2.4 ×10-2 s-1 µM-1, 

Figure 5.4A). When oxidizing ABTS, the same gel showed ~3 times lower kcat/Km than the bare 

Fe3O4 NPs (Figure 5.4B). Similarly, the A-MIP has 4-fold higher specificity than the bare Fe3O4 

NPs for oxidizing ABTS (Figure 5.4B), but 1.5-fold lower for oxidizing TMB (Figure 5.4A). 

Overall, Fe3O4 NPs achieved a moderate substrate selectivity through imprinting. 

 

Figure 5.4 The catalytic efficiency (kcat/Km) of free Fe3O4 NPs and the two imprinted gels (T-

MIP and A-MIP) for oxidizing (A) TMB and (B) ABTS. 

5.3.5 Charged functional monomers further improve specificity and activity. 

Encouraged by the above results, we aimed to further improve imprinting. The above 

prepared nanogels were close to neutral charged (average ξ-potential ≈ + 4.2 mV (SD ± 1.2) by 

DLS). Since TMB (pKa ≈ 4.2) carries a positive charge and ABTS (pKa ≈ 2.1) carries a negative 

charge in the reaction condition (acetate buffer, pH 4),156 specificity might be further improved by 

introducing charged monomers. For this purpose, we prepared new gels by incorporating an 
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anionic monomer AMPS for TMB imprinting, named T-MIPneg gels, and incorporating a cationic 

monomer DMPA for ABTS imprinting, named as A-MIPpos gels (see the monomer structure in 

the Figure 5.5A). The ξ-potential of the gels were determined by DLS. The T-MIPneg gels were 

negatively charged with a potential of -21.4 mV (SD ±2.5) and the A-MIPpos gels were positively 

charged with a potential of +33.1 mV (SD ±1.4) indicating the successful incorporation of the 

charged monomers. 

We next measured the activities of these charged gels. Their catalytic rates were determined 

at various concentrations of TMB and ABTS (Figure 5.5B and C), and the kcat and Km values are 

presented in Table 5.1. For TMB oxidation, the kcat value increased 7.9-fold with the T-MIPneg 

gel compared to that with free Fe3O4 NPs, while the A-MIPpos gel even suppressed the activity 

by ~50% (Table 5.1). At the same time, the Km dropped by 50% for the T-MIPneg, suggesting 

even tighter substrate binding. We plotted kcat/Km of these imprinted nanozymes to compare 

enzyme specificity (Figure 5.5D and E). The T-MIPneg has the best catalytic efficiency, 15-fold 

higher than that of the bare Fe3O4 NPs, much better than the 3-fold improvement for the T-MIP 

gel without the negative AMPS monomer (Figure 5.5D). At the same time, the T-MIPneg has the 

least efficiency for ABTS oxidation (Figure 5.5E). The same trend was also observed for the A-

MIPpos gel. 



93 

 

 

Figure 5.5 (A) The structure of the charged functional monomers. Catalytic rates in the presence 

of various concentrations of (B) TMB and (C) ABTS substrates by the free Fe3O4 NPs and different 

nanogels. The catalytic specificity (kcat/Km) of free Fe3O4 NPs and the four imprinted nanogels for 

oxidizing (D) TMB and (E) ABTS. The free Fe3O4 NPs and all the nanogels (∼5 mg/mL) have the 

same concentration of Fe3O4 (50 μg/mL). All the reactions were with 10 mM H2O2 in acetate 

buffer (20 mM, pH 4) at 25 °C. 

To quantify the specificity, we plotted the enhanced folds of substrate selectivity based on 

normalized kcat/Km values of one substrate over another (Figure 5.6). In the best case, the selectivity 

for TMB over ABTS using the T-MIPneg nanozyme is 98-fold (Figure 5.6A), while the selectivity 

for ABTS over TMB using the A-MIPpos nanozyme is 33-fold (Figure 5.6B).  
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Figure 5.6 The fold of specificity enhancement of (A) bare Fe3O4 NPs, T-MIP, and T-MIPneg 

oxidizing TMB over ABTS, and (B) bare Fe3O4 NPs, A-MIP, and A-MIPpos oxidizing ABTS over 

TMB. The enhancement was calculated using normalized kcat/Km of oxidizing TMB divided that 

oxidizing ABTS. 

5.3.6 Binding thermodynamics. 

The above measurements were performed only using activity assays. The significantly 

enhanced specificity suggests successfully engineered substrate binding pockets. To further 

confirm this, and to understand the thermodynamics of binding, ITC was employed. In this 

experiment, TMB or ABTS was gradually titrated into the imprinted or non-imprinted nanogels, 

and the amount of heat released was recorded as a function of time (Figure 5.7, top panels). Most 

reactions released heat, which was favorable for binding. The binding site of the gel samples is 

~0.4 mM as determined by UV spectroscopy after imprinting. By integrating the heat released (the 

lower panels), we calculated the enthalpy of the reaction. The titration curves also allow us to 

directly calculate the Kd of each reaction, and then the G and S were calculated. These 

thermodynamic values are listed in Table 5.2. 

The T-MIP nanogels released more heat and have a higher affinity for binding TMB 

(Figure 5.7A, Kd = 27 µM) than binding ABTS (Figure 5.7B, Kd = 142 µM) indicating enhanced 
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bind specificity through imprinting. After incorporating charged monomers (T-MIPneg, Figure 

5.7C and D), the binding specificity was significantly enhanced with the highest heat released and 

strongest affinity for TMB (Figure 5.7C, Kd = 20 µM) over binding ABTS (Figure 5.7D, no 

measurable binding). For ABTS imprinted gels (A-MIP and A-MIPpos), the same binding trend 

to ABTS was also observed (Figure 5.7E-H, Table 5.2). In general, charged monomers led to more 

heat release (e.g., enthalpy change). Imprinting can enhance binding affinity and selectivity to the 

imprinted substrates, and functional monomers further improves specificity, which explains the 

enhanced nanozyme specificity after imprinting. 

 

Figure 5.7 ITC traces at 298 K for binding TMB or ABTS by (A, B) T-MIP, (C, D) T-MIPneg, 

(E, F) A-MIP and (G, H) A-MIPpos nanogels. TMB and ABTS (2 mM) and the nanogels (5.0 
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mg/mL) were dispersed in the same buffer (20 mM acetate, pH 4, 1% v/v DMSO). The binding 

sites of the gel samples were determined as 0.4 mM and used for the calculation of molar ratio. 

The original titration traces (top) and the integrated heat (below) of each reaction are shown. 

 

Table 5.2 The thermodynamic parameters of the imprinted gels calculated from ITC.[a] 

Subs. Gel 

samples 

 

Ka  

(×104 M-1) 

Kd 

(µM) 

ΔG 

 (kcal 

mol-1) 

ΔH  

(kcal mol-1) 

ΔS  

(cal K-

1mol-1) 

TMB 

T-MIP 3.6 ±0.2 27.8 ±1.5 -6.1 -1.8 ±0.1 14.8 

T-MIPneg 4.8 ±0.2 20.8 ±0.8 -6.3 -2.7 ±0.2 12.4 

A-MIP 0.8 ±0.1 125.0 ±15.9 -5.3 -1.2 ±0.1 13.8 

A-MIPpos  -[b]  - - -0.3 ±0.02 - 

ABTS 

T-MIP 0.7 ±0.06 142.8 ±12.4 -5.2 -1.3 ±0.05 13.2 

T-MIPneg  -  - - -0.2 ±0.01 - 

A-MIP 3.9 ±0.2 25.6 ±1.3 -6.2 -2.6 ±0.1 12.2 

A-MIPpos 5.7 ±0.5 17.5 ±1.6 -6.4 -3.2 ±0.3 11.0 

[a] The binding data were obtained using a one-site binding model. [b] Binding (Ka < 1000 M−1) 

was not detectable by ITC. 

  

5.3.7 Imprinting on other nanozymes. 

So far, all our work was focused on Fe3O4 NPs. To test the generality of this approach, we 

next tried two more nanozymes: nanoceria (CeO2) mimicking oxidase activity,87 and AuNPs 
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mimicking peroxidase.165 Different from Fe3O4 NPs, nanoceria can oxidize TMB and ABTS in the 

absence of H2O2 (e.g., oxidase). Therefore, these substrates are oxidized upon mixing with 

nanoceria, making it difficult for imprinting. Fortunately, the optimal pH for nanoceria is at pH 

4.87 Indeed, we confirmed that nanoceria is essentially non-active at pH 7.6 (20 mM HEPES, 

nitrogen atmosphere) but highly active at pH 4 (Figure 5.8A). This allowed us to imprint on 

nanoceria at pH 7.6. 

These imprinted gels have similar size of 210 ± 18 nm (by DLS) as that of Fe3O4 containing 

nanogels, indicating that the growth of the gel is quite independent of the core composition. Then 

the activity of oxidizing TMB by free nanoceria and by different nanogels was measured (Figure 

5.8B). After imprinting, the activity of nanoceria increased ~1.7-fold by T-MIP and more than 3-

fold by T-MIPneg with the negatively charged (Figure 5.8B). While the T-MIP and T-MIPneg 

gels showed enhanced activity for TMB oxidation, they have limited activity for ABTS oxidation 

(Figure 5.8C) indicating the substrate selectivity was also achieved for nanoceria after imprinting. 

 

Figure 5.8 (A) The effect of pH and oxygen on the activity of nanoceria (CeO2, 100 μg/mL) for 

oxidizing TMB (0.5 mM) at pH 7.6 (20 mM HEPES buffer) and pH 4.0 (20 mM acetate buffer), 

with or without nitrogen purge. The UV-vis spectra were measured after 30 min reaction monitored 

at 652 nm at 25 °C. CeO2 NPs had no oxidation activity in the gel preparation condition (20 mM 
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HEPES buffer, pH 7.6, N2 atmosphere). Oxidation of (B) TMB and (C) ABTS by free nanoceria 

(100 μg/mL) and different gels in the acetate buffer (20 mM, pH 4) at 25 °C. 

Fe3O4 and nanoceria are both metal oxides, and we next tested a different type of material, 

AuNPs, which are also peroxidase mimics requiring H2O2.
165 We respectively imprinted it together 

with two substrates: TMB and dopamine. ABTS was not used since AuNPs cannot oxidize ABTS 

in the presence of H2O2. The dopamine imprinted nanogels were named using the same method 

starting with ‘D-‘. The enhanced activity and specificity was also observed (Figure 5.9). For 

example, the T-MIPneg showed the highest enhancement of 2.9-fold compared to the free AuNPs.  

Since dopamine has a positive charge in the test condition (pH 4.0), its best activity was observed 

with the D-MIPneg (Figure 5.9B).  

 

Figure 5.9 Oxidation of (A) TMB and (B) dopamine by free AuNPs (10 nM) and different gels in 

the acetate buffer (20 mM, pH 4) at 25 °C. 

We have so far tested three nanozymes covering two types of materials (metal and metal 

oxide), two types of activities (oxidase and peroxidase), and three types of substrates (TMB, ABTS 

and dopamine). The results indicate that molecular imprinting is a general method for enhancing 

activity and specificity. Molecular imprinting was previously performed on TiO2 to remove toxic 

A
(a

.u
.)

0 .0

0 .2

0 .4

0 .6

0 .8

A u N
P s

T -M
IP

T -M
IP n eg

N
IP

D
-M

IP

D
-M

IP p os

T M B

O x id a tio n

A
(a

.u
.)

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

A u N
P s

T -M
IP

T -M
IP n eg

N
IP

D
-M

IP

D
-M

IP p os

D o p a m in e

O x id a tio n

D
-M

IP n eg

A B



99 

 

pollutants.166-168 Some protein enzymes such as the horseradish peroxidase (HRP) are quite 

nonspecific and it accepts a broad range of substrates.169 For example, HRP has a Km of 434 µM 

for TMB,90, 170 and 138 µM for ABTS, and the catalytic efficiencies for these two substrates are 

similar.171 Using a similarly nonspecific peroxidase mimicking Fe3O4, we demonstrated excellent 

specificity even better than some natural enzymes. For example, the Km of T-MIPneg for TMB is 

2.9-fold lower than that of HRP, and the Km of A-MIPpos for ABTS is also 1.5-fold lower (Table 

5.1). The improvement in specificity (defined by kcat/Km) is much more significant. 

 In other cases, however, our ~100-fold selectivity still falls behind natural enzymes. 

Enzymes use a suite of mechanisms to achieve exquisite specificity, such as specific binding 

pockets, proofreading, and dynamic conformational changes. We only imprinted the substrate 

shape with simple electrostatic modulation in this case, and there is a lot more to learn from nature 

in future work. 

5.4  Summary 

In this work, molecular imprinting was successfully engineered on three different 

nanozymes for substrate specificity improvement. By incorporating functional monomers with 

charges, the activity and specificity were further improved. Under optimal conditions, specificity 

can reach ~100 fold.  Selective substrate binding was confirmed also by ITC binding tests. With 

good specificity, additional advanced applications of nanozymes can be realized, including 

biosensors, selective destruction of disease-causing molecules and environmental contaminants, 

and delivery of therapeutic agents. 

  



100 

 

Chapter 6  Understanding the Catalytic Mechanism of Molecularly Imprinted 

Enzyme Mimics 

6.1   Introduction 

In the above study, we used molecular imprinting to create polymer-based substrate binding 

sites to address the specificity problem of the nanozymes. In addition to improved selectivity, the 

MIP layer also increased catalytic activity. This increased activity was quite general and was 

observed with DNAzymes (Chapter 3) and various nanozymes such as peroxidase-mimicking iron 

oxide and gold nanoparticles, oxidase-mimicking CeO2 (Chapter 5). This increased activity 

suggests some fundamental processes that warrant further investigations.  

To understand the catalytic mechanism of the imprinted enzyme mimics, we took a surface 

science approach and studied the catalysis process into three individual steps: substrate adsorption, 

reaction and product release. Each of these steps could be enhanced or inhibited by the MIP layer.  

6.2  Materials and methods 

6.2.1 Chemicals 

ABTS, hydrogen peroxide (30 wt%), resorufin, and all the acrylic monomers were 

purchased from Sigma-Aldrich (St Louis, USA) and dissolved freshly in water. TMB, Amplex 

Red (AR) and hemin were also form Sigma-Aldrich and dissolved in DMSO to generate a freshly 

prepared stock solution. The G4 DNA (5-acrydite-TTTGGGTAGGGCGGGTTGGGTATA) was 

purchased from Integrated DNA Technologies (IDT, Coralville, USA). Sodium chloride, sodium 

acetate, potassium chloride, SDS, acetic acid, HEPES were purchased from Mandel Scientific 

(Guelph, ON). Milli-Q water was used for all the experiments. 
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6.2.2 Preparation of imprinted nanogels 

The imprinted nangels were prepared and characterized using the same method as 

described in above Chapters. For the DNAzyme imprinted nanogels, 20 µM AR or resorufin was 

mixed with the above prepared DNAzyme (1 µM) in HEPES buffer (20 mM, pH 7.4, 100 mM 

NaCl) for 30 min to form the initial imprinting complex in a 25 °C water bath. All the prepared 

gel samples were standardized to contain the same concentration of DNAzyme (100 nM) through 

UV−vis spectroscopy after polymerization.  

6.2.3 Activity assays 

For a typical peroxidation reaction, a substrate (0.5 mM) was mixed with free Fe3O4 NPs 

(50 µg/mL) or imprinted nanozyme (~5 mg/mL containing 50 µg/mL Fe3O4) in the buffer (20 mM 

acetate, pH 4). The absorption intensity of the oxidization products (652 nm for TMB, 420 nm for 

ABTS) was measured after adding 10 mM H2O2 using an Agilent 8453A spectrometer at 25 °C. 

To measure the enzyme parameters, various concentrations of substrate (0.05, 0.1, 0.2, 0.3, 0.4, 

0.6, 0.8, 1 mM) were mixed with free Fe3O4 NPs (50 µg/mL) or imprinted gels in the buffer, 

followed by adding H2O2 (10 mM). The UV absorbance was then converted to concentrations c, 

through Beer's law: A = εcl (ε = 39 000 and 36 800 M-1 cm-1 for the products of TMB and ABTS 

respectively. l is the path length of 1 cm). The background oxidation in the absence of H2O2 was 

subtracted for all the kinetics. The oxidation rates (V) were obtained by fitting a straight line to the 

initial linear region of the kinetic curves. Vmax and Km were obtained by fitting the data with the 

Michaelis–Menten equation: V = Vmax [S]/ (Km + [S]) and kcat was calculated by Vmax = kcat [E], 

where [S] and [E] are the concentrations of substrates and nanozyme, respectively. The molar 

concentration of Fe3O4 NPs was used as the nanozyme concentration. With 50 µg/mL of Fe3O4 
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NPs in the gels and an average size of 30 nm, we calculated the nanoparticle molar concentration 

to be 1.1 nM.  

6.2.4 Measurement of activation energy 

The activation energy (Ea) values for the Fe3O4 NPs and different nanogels were calculated 

according to the Arrhenius equation: ln(v)=A-Ea / RT, in which v is the catalytic rate; A is a constant; 

R is the gas constant; and T is temperature.  

6.2.5 AR oxidation assays 

For a typical reaction, 10 mM AR was incubated with the free DNAzyme or DNAzyme-

imprinted nanogels (DNA 100 nM) at 25 °C for 30 min then added with 2 mM H2O2 to initialize 

the oxidation. The fluorescence intensity and kinetics were recorded using a Varian Eclipse 

fluorescence spectrometer (Agilent Technologies, Santa Clara, CA) with excitation at 550 nm and 

emission at 585 nm.  

6.2.6 ITC 

Isothermal titration calorimetry (ITC) was performed using a VP-ITC Microcalorimeter 

instrument (MicroCal). Prior to titration, each solution was degassed to remove air bubbles. The 

nanogels (1 mg/mL) dispersed in HEPES buffer (20 mM, pH 7.2, NaCl 100 mM, DMSO 2%) was 

loaded in a 1.45 mL ITC cell at 25 °C. AR or resorufin (280 μL, 0.5 mM) dissolved in the same 

buffer was titrated into the cell (20 μL each time, except for the first injection of 2 μL). The 

enthalpy (ΔH) and binding constant (Ka) were obtained through fitting the titration curves to a one-

site binding model. The Kd values were calculated from 1/Ka and ΔG = −RT ln(Ka), where R is the 

gas constant. ΔS is calculated from ΔG = ΔH − TΔS. 
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6.3  Results and discussion 

6.3.1  General catalysis mechanism 

In general, a heterogeneous catalyst works as shown in the Figure 6.1. First, the substrate 

needs to diffuse to the catalyst surface to be adsorbed. Second, the catalytic reaction takes place to 

yield the product. Finally, the product desorbs to regenerate the active site. If the final step does 

not happen, the surface is quickly blocked by the product and the activity of the catalyst is lost. In 

this work, we probed the imprinted enzyme mimics for each of these steps to understand the 

catalytic mechanism. 

 

Figure 6.1 A scheme showing the reaction steps on a catalyst surface. Each step is individually 

studied to understand the effect of molecular imprinting. 

6.3.2  Probing substrate binding 

6.3.2.1  Increased local substrate concentration by imprinting 

One of the most common applications of MIP is to selectively adsorb its template 

molecule.172 Therefore, the substrate concentration near the enzyme mimics may be higher with 

the MIP, which may enhance the catalytic rate based on the mass action law (e.g., reaction rates 

scales with reactant concentration).173 To quantitatively measure the effect of adsorption, we used 

several nanogels imprinted on Fe3O4 NPs, including A-MIP, A-MIPpos and NIP. The gels were 
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respectively mixed with ABTS for adsorption tests. The nanogels were prepared and characterized 

using the same method as described in the Chapter 5. The bare Fe3O4 NPs were also tested for 

comparison. After adsorptions, the adsorbed ABTS was determined by measuring the absorbance 

of the supernatant solutions after centrifugation (Figure 6.2A). To determine selectivity of 

adsorption, TMB was also tested as a control (Figure 6.2B). The adsorption percentages were 

quantified in the Figure 6.2C. 

The bare Fe3O4 nanozyme adsorbed very little of ABTS or TMB, and this is understandable 

due to its limited surface area. The A-MIPpos gel adsorbed 41.4% of the added ABTS (Figure 

6.2C). Since the total gel volume was ~10 µL (determined after centrifugation) dispersed in 200 

µL of the substrate solution, the gel volume fraction was only 5%. Therefore, the ABTS 

concentration in the A-MIPpos gels increased by 8.4-fold (42%/5%). The non-charged A-MIP and 

NIP gels had a lower volume fraction of 2.5% (5 µL/200 µL). They adsorbed 18.1% and 6.2% of 

the total ABTS, (Figure 6.2C), and thus their local substrate concentrations increased by 7.2- and 

2.5-fold respectively. Therefore, the local substrate concentrations in the MIP gels were enriched 

(Figure 6.2E), which might directly contribute to the enhanced catalytic activity. 

In contrast, the two ABTS-imprinted MIP gels adsorbed very little TMB (Figure 6.2B and 

E). We compared the concentration of ABTS over TMB in these materials (Figure 6.2D). The A-

MIPpos gel adsorbed 8.5-fold of ABTS than TMB, and the A-MIP gel adsorbed 3.6-fold. The NIP 

gel and bare Fe3O4 had no selective adsorptions. Therefore, selective substrate adsorption by 

imprinting might be the first reason of specific catalysis (Figure 3E).  
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Figure 6.2 The UV-vis spectra of (A) ABTS and (B) TMB before and after adsorption by the bare 

Fe3O4 nanozyme and different imprinted or non-imprinted nanogels. (C) Adsorption percentages 

calculated from the spectra in (A, B). (D) Selectivity improvement of adsorption of ABTS over 

TMB by various gels. An initial concentration of 40 µM of ABTS and TMB in the acetate buffer 

(20mM, pH 4) was used for the tests. Fe3O4 (50 µg) or the nanogels (1 mg each) were incubated 

for 20 min and the supernatants were measured using UV-vis spectrometry. (E) A scheme showing 

substrate adsorption by the free Fe3O4 nanozyme and various MIP gels. 

6.3.2.2  Substrate pre-incubation for probing molecular transportation. 

With a thick gel layer, substrate diffusion to the nanozyme surface might take more time. 

The substrates were all pre-incubated for the above reactions (i.e., H2O2 added after adding 
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substrates). To understand substrate transportation kinetics, we then measured reactions without 

pre-incubation (i.e., added H2O2 and substrate at same time). The A-MIP, NIP gels and the bare 

Fe3O4 were all tested (Figure 6.3A-C, red curves). For the bare Fe3O4 and the A-MIP gel, within 

the first 5 min, the absorbance reached 0.12 (initial rate ~0.24 min-1). For the NIP gel, the 

absorbance was only 0.05 (rate ~0.01 min-1). At 20 min, the bare Fe3O4 absorbance was ~0.3, while 

the MIP was ~0.4. Therefore, for the MIP sample, the gel layer had a very fast substrate 

transportation kinetics. The same gel layer, if not imprinted, molecular transportation was much 

slower. Compared with the pre-incubated reactions (also plotted in the Figure 6.3A-C black 

curves), the samples without pre-incubation had slower initial rates (red curves). For example, the 

A-MIP gel without pre-incubation (0.24 min-1) was slower initially than the pre-incubated one 

(0.61 min-1), but they caught up to reach a similar rate after 8 min of reaction (Figure 6.3A). It is 

reasonable since substrate diffusing needs time in the beginning and the MIP gel layer with fast 

transportation was less affected once the steady-state kinetics were established.  

 

Figure 6.3 The kinetics of ABTS oxidation by (A) A-MIP, (B) NIP gels and (C) free Fe3O4 with 

or without 10 min of pre-incubation with ABTS. The free Fe3O4 and all the gels (∼5 mg/mL) had 

the same concentration of Fe3O4 (50 μg/mL). All the reactions used 0.5 mM ABTS and 10 mM 

H2O2 in acetate buffer (20mM, pH 4) at 25 °C. 
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6.3.3  Probing the catalytic reaction.  

The above studies probed the substrate adsorption step. MIP enriched the substrate near the 

nanozyme surface and thus can accelerate the reaction. We then probed the catalytic reaction by 

measuring the activation energy (Ea). The kinetics of ABTS oxidation by the MIP gels were 

measured at different temperatures (Figure 6.4A and D). For comparison, the free Fe3O4 nanozyme 

and NIP gels were also measured (Figure 6.4B and C). The Ea was calculated from the slope of the 

Arrhenius plot (Figure 6.4E). Our gels contained only 40 mol% of NIPAAm, and the lower critical 

solution temperature of the gels was higher than 40 C,134 and thus the gels remained dispersed in 

water during this experiment (10 – 40 C). The Ea of the A-MIPpos gel was 13.8 kJ/mol, 2.1-fold 

lower than the free Fe3O4 nanozyme. For the A-MIP gel, its Ea was 19.7 kJ/mol, 1.5-fold lower 

than the Fe3O4. Therefore, the MIP gel layer lowered the Ea of the nanozyme. The NIP gel as 

control had an even higher Ea than the free nanozyme suggesting the importance of imprinting. 

Other strategies have also been made on nanozyme to improve its catalysis, e.g., surface 

modification and immobilization.174-177 Our imprinted system clearly lowered Ea. Compared with 

protein enzyme (e.g., horseradish peroxidase, Ea ~ 40 kJ/mol),178 our system had a lower Ea. At 

this moment, it is difficult to determining what the rate limiting step is in the reaction. The MIP 

layer on the Fe3O4 nanoparticle can selectively absorb specific template substrate used for 

imprinting. It is likely that the rate-limiting step would be the delivery of substrates to the reactive 

interface of the Fe3O4.  
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Figure 6.4 The kinetics of ABTS oxidation by (A) the A-MIPpos gel, (B) bare Fe3O4 NPs, (C) 

NIP and (D) A-MIP nanogels measured at different temperatures. (E) The Arrhenius plot of the 

bare Fe3O4 nanozymes and different gels to measure their Ea. The free Fe3O4 and all the gels had 

the same concentration of Fe3O4 (50 μg/mL). All the reactions were with 10 mM H2O2 in acetate 

buffer (20 mM, pH 4). 

6.3.4  Probing product release.  

We have so far probed substrate adsorption and measured the Ea. Aside from these, product 

release is also an important step. For example, tight product adsorption may inhibit the reaction. 

Therefore, we further studied product release of the imprinted nanozyme.  

To do this, instead of imprinting the substrate, we imprinted the product and such gels 

might inhibit product release. For this experiment, we did not use ABTS or TMB since they cannot 

be completely oxidised and we could not get the pure oxidation products (Figure 6.5A). Therefore, 

we used Amplex red (AR) and its product, resorufin, can be obtained as a pure chemical. Since 
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Fe3O4 could not efficiently catalyse the peroxidation of AR, we used the acrydite-modified 

DNAzyme here. The activity of the DNAzyme catalysing AR oxidation has been studied in the 

Chapter 4.  

To have a complete understanding, three type of gels were prepared: the substrate AR 

imprinted (AR-MIP), the product resorufin imprinted (RES-MIP), and non-imprinted (NIP) 

(Figure 6.5B). Their catalytic activities were then respectively measured for oxidizing AR. The 

free DNAzyme (without gel) was also measured for comparison (Figure 6.5C). The NIP gel has a 

similar rate as the free DNAzyme. The AR-MIP has the fastest rate of 225 ΔF min-1, 2.3-fold 

enhanced than the free DNAzyme or the NIP gel (97 ΔF min-1), which was expected from the 

substrate imprinting gels. Interestingly, the RES-MIP showed a lower rate (by 1.8-fold) than the 

free DNAzyme.  

 

Figure 6.5 (A) The UV-vis spectra of 0.5 mM ABTS before and after oxidized by A-MIPpos gel 

(4 mg/mL) for 24 h in the buffer A at 25 °C. 10 mM H2O2 was added. The substrate ABTS and its 

oxidized product have the maximum adsorption at 340 nm and 420 nm respectively. After 24 h 

reaction, 40% of ABTS was still not oxidized. (B) A scheme of preparing the AR substrate 

imprinted (AR-MIP) and resorufin product imprinted gels (RES-MIP) on the DNAzyme. (C) The 

kinetics of AR oxidation by free DNAzyme and different gels. 100 nM of the DNAzyme and 
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hemin were used in the buffer (20 mM HEPES, pH 7.2, NaCl 100 mM) at 25 °C. 10 µM AR were 

used and all the gels were around 4 mg/mL containing 100 nM of the DNAzyme. 

From the NIP and RES-MIP comparison, the product release step might contribute to the 

slower kinetics of RES-MIP. The unreleased products might occupy the active sites around the 

DNAzyme therefore inhibited the reaction. On the other hand, our substrate imprinted gels should 

have no problem of product release, and it may even promote product release (e.g., less tight 

product binding). To confirm this, we performed ITC to directly measure binding. 

We respectively titrated AR and resorufin (RES) into the three type of gels: AR-MIP, RES-

MIP and NIP, and the amount of heat released was recorded as a function of time (top panels, 

Figure 6.6). The background heat for the titrations into the buffer was also measured (Figure 6.6D 

and H). By integrating the heat (the lower panels), we directly obtained the enthalpy and 

dissociation constant, Kd, which allowed further calculation of ΔG and ΔS (Table 6.1). The AR-

MIP gel had a stronger affinity for AR (Figure 6.6A, Kd =40.0 µM) than the RES-MIP and NIP 

gels (Figure 6.6B and C), indicating the importance of target imprinting. For the product resorufin, 

the RES-MIP gel had the strongest binding (Figure 6.6F, Kd =2.9 µM). The gel layer with strong 

product binding effectively prevented product release and inhibited the catalytic activity. On 

another hand, the AR-MIP gel and NIP gel essentially had no binding to resorufin (Figure 6.6E 

and G), suggesting that the non-imprinted gel layers did not specifically retain the product, and 

this could also be helpful for achieving catalytic turnover of the AR-imprinted gels. Overall, 

concentrating the substrate by the MIP enhanced the catalytic rate, while its prevention of product 

binding could be important for catalytic turnovers.  
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Figure 6.6 ITC traces at 298 K (25 °C) for binding (A-D) AR or (E-H) resorufin (RES) by different 

gels and the buffer. AR and resorufin (0.5 mM stock solution) and the gels (1 mg/mL) were 

dispersed in HEPES buffer (20 mM, pH 7.2, 100 mM NaCl, 2% DMSO). The binding site of the 

gels was estimated to be 4 µM as determined by UV spectroscopy after imprinting. The original 

titration traces (top) and the integrated heat (below) of each reaction are shown. 
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Table 6.1. The thermodynamic parameters of the imprinted nanogels calculated from ITC 

measured at 298.15 K.[a] 

Substrate Gel 

samples 

 

Ka  

(×105 M-1) 

Kd 

(µM) 

ΔG 

 (kcal mol-1) 

ΔH  

(kcal mol-1) 

ΔS  

(cal K-1mol-1) 

AR 

AR-MIP 0.25 ± 0.06 40.0 -5.9 -35.4 ±3.9 -98.6 

RES-MIP -[b] - - -5.6 ±0.5 - 

NIP 0.02 ± 0.01  500.0 -4.4 -7.0 ±0.8 8.7 

Resorufin 

AR-MIP - - - 0.6 ±0.05 - 

RES-MIP   3.4 ±0.8 2.9 -7.5 4.7 ±0.4 40.9 

NIP - - - 0.8 ±0.3 - 

[a] The binding data were obtained using a one-site binding model. [b] Binding (Ka < 1000 

M−1) was not detectable by ITC. 

 

It is also interesting to notice that AR-imprinted gel released heat upon AR binding, while 

the resorufin-imprinted gel absorbed heat upon resorufin binding. Therefore, resorufin binding is 

entropy driven and it is likely due to the more hydrophobic structure of resorufin. In this part, we 

studied AR mainly because of its oxidation products are commercially available.  

Based on the above results, the enhanced activity can be explained by the enriched substrate 

adsorption and lowered Ea of the reaction. In addition, the MIP gels did not retain the products, 
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facilitating turnover of the active sites. Noted that the rate enhancement in these steps may overlap. 

The enhanced activity also has a significant contribution to the selectivity. Thus the imprinted 

nanozyme acted as a better enzyme mimic. At the same time, the transportation of the substrate 

was not affected by the MIP layer. 

6.4 Summary 

In summary, the catalytic mechanism of the imprinted enzyme mimics was studied into 

three separated steps: substrate adsorption, reaction, and product release. Imprinting enriched the 

substrate concentration near the nanozyme surface and contributed to the activity enhancement. 

The MIP gel layer has a fast molecular transportation kinetic compared to the NIP sample 

confirmed by the pre-incubation tests. The substrate-imprinted gels also lowered the reaction 

energy barrier with the lowest activation energy (Ea). The MIP gels did not retain the products 

confirmed with ITC tests. This study has rationalized improved activity and specificity of 

imprinted enzyme mimics and may guide further rational design of such materials.   
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Chapter 7 Conclusions and Future Work 

7.1. Conclusions and original contributions 

In this thesis work, molecular imprinting was combined with functional DNAs and 

nanozymes to improve the binding affinity and achieving selective catalysis. In addition, the 

catalytic activity was also significantly increased in the same process. Incorporation of DNA 

aptamers improved the binding affinity and signaling of MIPs. At the same time, MIP rescued the 

aptamer fragments that had no affinity. Some DNAzymes have peroxidase mimicking activity but 

lack substrate selectivity. Imprinting on the DNAzymes improved the substrate selectivity by 

around 10-fold. The method was also successfully applied to nanozymes mimicking oxidase and 

peroxidase activities. At the best optimization, the substrate selectivity was enhanced around 100-

fold. Besides the improved specificity, imprinting also increased the activity of the enzyme mimics. 

Our subsequent mechanistic study demonstrated that specific adsorption of the imprinted substrate 

by the MIP gel to reach a high low substrate concentration is the major reason of the enhanced 

activity. 

In Chapter 2, for the first time, we prepared new hybrid materials using aptamer fragments 

as macromonomers in MIPs. All the previous work used full-length aptamers to prepare MIPs. 

Using aptamer fragments can reduce the cost of DNA synthesis while still improving the MIP 

binding and signaling properties. We showed that even DNA sequences that cannot bind the target 

molecule can still be quite effective upon imprinting. Different DNA sequences perform 

differently in MIPs, and rational DNA sequence design is likely to be important for target 

molecules without known aptamers. We summarize our findings in the following aspects: (1) DNA 

help MIPs. Compared to the two synthetic monomers (AAm and NIPAAm), DNA 
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macromonomers increased the binding affinity by up to 18-fold. For optimal performance, the 

DNA sequence needs to be carefully designed and screened. (2) Imprinting helps aptamers. When 

both fragments are used, a fully functional aptamer can form. Compared to the free aptamer 

binding, the imprinted material has double the binding affinity by positioning the two fragments 

close to each other in an optimal configuration. This is consistent with previous reports using full-

length aptamers. (3) It might be possible to de novo design DNA sequences to bind a given target 

molecule optimally without known aptamers. In this aspect, computer modeling might be a 

powerful tool to predict DNA oligomer sequences. (4) DNA may also allow convenient signaling. 

Over the past two decades, the analytical chemistry of aptamer has significantly advanced. By 

introducing such knowledge to MIPs, new and better biosensors might be produced. Overall, 

combining DNA oligomers and MIPs is a promising method for obtaining new functional materials. 

In Chapter 3, molecular imprinting was used to solve the problem of poor specificity of 

enzyme mimics. Although many enzyme mimics have been developed in the past few decades, the 

problem of low specificity had rarely been addressed. We demonstrate a simple, cost-effective, 

and general yet highly effective method to create substrate binding pockets for a peroxidase 

mimicking DNAzyme by molecular imprinting. With imprinting, more than ten-fold of substrate 

selectivity was achieved by comparing two substrates TMB and ABTS. In addition, the catalytic 

activity of the DNAzyme was also enhanced by the polymer matrix compared to the free 

DNAzyme. In this case, the imprinted gel also stabilized the DNAzymes and was resistant at high 

temperature. Therefore, we proposed a general and powerful way to achieve functional enzyme 

mimics by combining molecular imprinting and enzyme mimics. 
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In Chapter 4, the imprinted nanogels were demonstrated to be an efficient method for 

intracellular catalysis. The activity and specificity of the DNAzyme were significantly improved. 

The imprinted nanogels showed excellent selectivity by using three different substrates. At the 

same time, the gel matrix protected the DNAzyme from degradation by DNase I and facilitated 

cellular uptake. Therefore, by using this imprinted nanogel, we provided an alternative approach 

for the traditional delivery of protein enzymes. DNAzymes have excellent stability and a low cost, 

while imprinting can improve the activity and specificity of the DNAzyme. By imprinting 

DNAzymes and other enzyme mimics (e.g., nanozymes) with other types of catalytic activities 

and by using biologically relevant molecules as templates, it is possible to produce nanogels that 

may have a practical biomedical impact.  

In Chapter 5, molecular imprinting was further used on nanozymes. By using similarly 

cost-effective and robust MIPs, we solved an intrinsic problem of the nanozyme: lack of specificity. 

With molecular imprinting, we successfully engineered substrate binding pockets on three 

different nanozymes. By incorporating functional monomers with charges, the activity and 

specificity were further improved. Selective substrate binding was confirmed also by ITC and its 

thermodynamic parameters were obtained for fundamental insights. With good specificity, 

additional advanced applications of nanozymes can be realized, including biosensors, selective 

destruction of disease-causing molecules and environmental contaminants, and delivery of 

therapeutic agents. 

In Chapter 6, the catalytic mechanism of imprinted enzyme mimics was illuminated. By 

taking a surface science approach, the catalytic process was studied into three separated steps: 

adsorption of the substrate, reaction, and product release. Through imprinting, the local substrate 

concentration was enriched by around 8-fold. The increased substrate concentration might be the 
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most important reason of the activity enhancement. Diffusion of the substrate across the imprinted 

gel layer is studied by a pre-incubation experiment, highlighting the difference between imprinted 

and non-imprinted gel layers. MIP layer had a faster molecular transportation kinetics. The 

activation energy was also measured, and the substrate imprinted sample had the lowest activation 

energy of 13.8 kJ mol−1. Product release was also found to be improved by imprinting as studied 

by ITC. This study has rationalized the reason for improved activity and specificity of imprinted 

enzyme mimics and may guide further rational design of such hybrid materials. 

7.2. Future work 

The results presented in the thesis proved that molecular imprinting is an efficient approach 

to create specific binding sites on artificial enzymes. In addition, the catalytic activity is also 

enhanced due to enriched low substrate concentration. Functional DNAs and nanozymes are potent 

functional materials and their combination with MIP is an interesting way of forming hybrid 

materials with improved affinity and may lead to new signaling mechanisms. Several future 

research directions could be carried on.  

First, DNA aptamer fragments used in the MIP could be optimized for further 

improvements. The formation of an initial binding complex is critical for imprinting effectivity. 

DNA aptamers binding with the targets could be tighter at lower temperatures and with stronger 

ionic strength. Therefore, the stronger binding complex enables higher affinity of prepared MIPs. 

A challenge might be difficult polymerization at the low temperature. Researchers may need to 

find different initialization methods, e.g., photo-initialization,50 to perform polymerization and 

imprinting.  
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Second, more work could be carried out on the development of signaling mechanisms using 

DNA in MIPs. Signaling of binding events has been a major challenge for MIPs. Most binding 

measurements have relied on QCM or other mass/refractive index-based methods. DNA is known 

for its versatility in signal transduction and this is a promising direction. Various nanomaterials 

such as UCNPs and QDs coupled with DNA to achieve this goal have been reported,179 and more 

advanced signal transduction designs could be performed by using fluorescently labeled DNA.  

Third, formulation of the imprinted gel layers needs to be further optimized. For example, 

the gel layer thickness could be adjusted and the effect on molecular transportation needs to be 

evaluated. The gel pore sizes could be determined and adjusted by changing the crosslinker 

percentage. Beside acrylamide-based polymers, other type of matrix such as polydopamine could 

be utilized to perform imprinting on enzyme mimics.   
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