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Abstract

Limited battery capacity is currently a major pain point for mobile users. The problem
is made worse when poorly designed applications consume a significant amount of power in
the background when they are not actively used by the user. To combat this problem, we
propose an automated monitoring system that can detect misbehaving applications running
on mobile devices. Our system does not require any prior knowledge about the monitored
applications. Instead, it collects the user’s usage records and builds models to encapsulate
the contexts when the user is likely to use each application. From those models, our
system can identify misbehaving applications that are consuming system resources while
providing no useful service to the end user. In this dissertation, we demonstrate the overall
design for our system. This design allows us to collect detailed usage records while keeping
our system’s power consumption at a minimum. We also introduce the steps we take to
construct our usage models and the rationale behind each key decisions. In the end, we
evaluate the effectiveness of our system by running it on a real Android device during a
two month period. From the experiment, we show the misbehaving applications identified
by our system have a significant impact on the battery life, and misbehaving applications
with high network usage is the main cause of fast battery drain.
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Chapter 1

Introduction

Nowadays, software systems can be found in every facet of our lives, and a large number
of them run on our mobile devices. We rely on them to provide us with weather reports,
the best routes to our destinations, messages from our friends, and many other important
pieces of information we need in our daily lives. As people delegate more responsibility
to software, the software’s complexities have also increased dramatically. For example,
a simple Google search on an Android device could result in the browser creating more
than 30 threads, and involve various onboard components such as WiFi, 3G/4G and GPS
[21]. With such a high level of complexity, it is unavoidable that some software has bugs
in it which leads to unexpected behaviours. Keeping those systems running smoothly
requires a large number of highly trained system administrators. In order to effectively
manage software, administrators not only need to have the technical know-how, but also the
domain knowledge associated with each application. The problem becomes more difficult
when the software itself is also constantly changing due to updates. This makes purely
relying on system administrators a very costly solution for large corporations and simply
not viable for small businesses or individual users. To combat this problem there has been
an increasing interest in developing automated solutions for system monitoring and fault
detection.

1.1 Existing Solutions

Existing automated monitoring systems can be categorized into two general types. Those
that require input from the developers of the monitored software, and the those that do
not. Most of the monitoring systems currently used in the industry are the first type [12].



Developers understand their own software’s internal structure. With this knowledge they
are able to surface the most meaningful information about the states of a software system,
and they can create watcher programs in charge of monitoring that information. The
watchers are simple monitoring programs that periodically query various system metrics,
and flag any problems according to the rules previously defined by the developers. Such
monitoring systems are generally very effective because those rules can encapsulate the
unique expertise provided by the software’s developers. The downside is that the watcher
programs need to be custom built for each monitored software; therefore, they are very
costly to deploy. This is especially challenging when the software’s current operators do
not have access to the original developers.

To address the problem above, researchers have proposed automated monitoring so-
lutions that do not require inputs from software’s original developers. In general, those
solutions achieve automated monitoring by first creating a model that represents a soft-
ware’s normal operating states. Once the model is created, a monitor program can period-
ically compare the current state of the software against the model. Problems are reported
if there are significant discrepancies between the model and the software’s current state.
One method for creating such a model is by looking for correlations between all the met-
rics collected from the running software. Previous work has shown that many long lasting
correlations can be found between system metrics under normal conditions [10, 13]. A
break of the correlations could indicate something is wrong within the system. If we know
the component where each metric is collected from, we can also localize the problem to
a few specific components within the system. Such solutions are easier to deploy than
the previous methods because these solutions no longer require any involvement from the
software’s original developers. The operators do not need to write any customized rules
to help a monitor in interpreting the system metrics. As long as the operator can provide
the monitor with the system metrics under normal operational conditions, the monitoring
system should be able to automatically build its model without any additional human
oversight.

So far the existing solutions have shown promising results in managing various cloud
services running in data centers, but there are still areas that could be improved upon.
The solution proposed by Jiang [13] does not need any inputs from the software’s original
developers, but it does require the operators to be able to identify the normal operational
states of the software. In some situations, this could be difficult for the operator. For ex-
ample, on a client-side Android device, there might be poorly designed software constantly
wasting precious system resources. Such software consumes battery life and cellular data
while providing no meaningful benefits to the user. Since Android applications are able to
run in the background, the user may not be able to detect their presence. In those kinds



of situations the previous solution would not work because the operator could not provide
the system metrics under normal operational states, and the existing solution needs that
training data in order to train its model. This means, if we want to create a similar auto-
mated monitoring solution for client-side mobile devices, we would have to construct the
model through other means which leads to our solution.

1.2 Thesis Contributions

In this dissertation, we present an automated solution for detecting misbehaving applica-
tions running on Android devices. Comparing to the previous works, we do not require the
operator of the software to provide us with any system metrics under normal conditions
or any custom built watcher programs. Instead, our solution automatically studies the
user’s usage patterns and builds its models based on the data it collects from the user’s
interactions with the device. Our specific contributions can be organized into the following
points:

e We introduce a solution framework for identifying misbehaving applications running
on mobile devices. The solution is based on modeling the user’s usage patterns and
comparing the model against the applications that are found running on the device.

e We propose an effective way to model user’ usage patterns using information such
as location and time. We examine real-world usage data, demonstrate various data
processing steps we take, and also discuss the rationale behind how we select machine
learning algorithms for our use case.

e We highlight various challenges a developer could face when collecting usage data and
system metrics from a mobile device. We then demonstrate the design of a robust
monitoring system that creates minimum overhead, and is able to provide meaningful
information even when working with an imperfect dataset.

e We demonstrate our solution’s benefits to the end users by showing the negative
effects misbehaving applications have on battery life.

e By studying the misbehaving applications detected during our experiment, we find
misbehaving applications with high network usage consume more battery than mis-
behaving applications with high CPU usage. The causes for high network usage are
ad pre-fetching, data harvesting, and push notification. We also find, contrary to
popular belief, social network apps such as Facebook rarely upload the user’s data



in the background. Instead, most of its network usage is likely spent on pre-fetching
advertisements.

1.3 Thesis Organization

This

dissertation is organized into the following chapters:

Chapter 2 provides a brief description about all the background information a reader
needs in order to follow this dissertation.

Chapter 3 describes prior research related to user modeling, automated system
monitoring and battery usage on mobile devices.

Chapter 4 shows the high-level architecture of our system, and some of the design
principles we aim to follow throughout the development.

Chapter 5 explores the raw usage dataset collected during our experiment, and
discusses various steps we take to construct our models.

Chapter 6 evaluates the effectiveness of our system. It demonstrates the accuracy
of our models, and measures the negative effects that the misbehaving applications
have on a device’s battery life.

Chapter 7 discusses some potential future improvements for this work and the
broader implication of similar monitoring systems.



Chapter 2

Background

In this chapter, we define the term “misbehaving application”, and explain the reason
we choose this particular definition for our work. Since reducing battery consumption on
mobile devices is one of the main goals for our monitoring system, a breakdown of battery
consumption by mobile devices’ on-board components is provided in this chapter. The
monitoring system presented in this thesis is developed for Android devices. To help the
readers understand the system environment, we present a brief description of various types
of background processes supported by the Android operating system. We also discuss the
app review process developers need to go through when publishing applications on the
Google Play Store. Finally we include a brief survey of the machine learning algorithms
we have experimented with for training our usage models.

2.1 Defining Misbehaving Application

In this thesis, the term “misbehaving application” is defined as follows:

e A misbehaving application is a background application that consumes a signifi-
cant amount of system resources, such as battery and cellular data, while providing
no useful service to the end user.

The reason we focus on system resources is because, unlike data centers with abundant
computing power, client-side devices, such as smart phones, are often limited by their
onboard batteries and Internet connection [9]. If we could reduce the battery and cellular
data consumption without affecting users’ regular usage, we would not only improve the
overall user experience, but also reduce the cost of owning a smart phone.



2.2 Battery Consumption of On-board Components

Modern mobile devices contain many different on-board components, such as, screen, 3G,
WiFi, GPS and many others. In order to get a general sense on how much energy each
component consumes, we have compared measurements from two different groups of re-
searchers [15, 22]. The measurements are taken from a range of devices including Google
Nexus S, Hongmi and Nokia N95. The general ranges of each component’s power con-
sumption are shown in Table 2.1. Note, the measurements taken by the two groups of
researchers are relatively close for most of the components with the exception of CPU.
This is because the measurements from Perrucci et al. [22] are taken on Nokia N95 which
is an older device with a slower CPU (332 MHz) comparing to Google Nexus S (1GHz)
and Hongmi (1.5GHz).

Components Power (mW)
CPU (full load) 612 - 1851
WiFi (transmitting) 1450 - 1471
3G (transmitting) 1338 - 1400
GPS (active) 1006 - 1293
Bluetooth (transmitting) 425 - 785
Screen (50% brightness) 414 - 462

Table 2.1: Power Consumption from Different On-board Components

2.3 Running Background Tasks on Android

As of 2017, there are about 2.7 million applications listed on the Google Play store [6]. In
order to support the needs of all the application developers, through out the years Google
has introduced different ways to run background tasks on the Android operating system.
This makes it possible for developers to build more complex applications, but also opens
the door for some applications to abuse the system and waste valuable system resources.
In order to address this problem, Google has placed various restrictions to on background
tasks [1]. Unfortunately, as we see in the later chapters, it is still possible for applications
to abuse the system, but before we can talk about those misbehaving applications, we first
need to discuss some common ways an application could run its background tasks on the
Android platform:



e Background Service: Apps running on Android can start a type of application
components called a background service. The background service is mainly designed
to handle long-running operations that are not directly visible to the end users. On
older versions of Android, an application can keep its background service alive even
when the application itself is not running in the foreground. This behaviour has been
modified in the more recent API level 26. Now a background service can only run
for a few minutes after its parent application has left the foreground.

e Foreground Service: Similar to the background service, a foreground service can
also handle long-running operations. The difference is a foreground service can be
kept alive even after its parent app has been closed by the user. Unlike the back-
ground service, a foreground service is not completely unnoticeable to the user. The
application’s icon is displayed in the notification center as long as its foreground
service is running.

e WorkManager Library: The Android platform provides a library called Work-
Manager. By using WorkManager, apps can register tasks which are deferrable. Once
a task has been registered on the WorkManager, it would be carried out by the library
even after the user has restarted the device. WorkManager also offers developer the
ability to define a set of conditions when work can be triggered. Those conditions
include network availability, battery status and etc. The WorkManager only runs a
task when all its conditions are met.

o AlarmManager Library: The AlarmManager is used when an app needs to run
tasks with precise timing. Similar to WorkManager, once a task has been registered,
the app does not need to stay alive in order for the task to be triggered. Although
AlarmManager is designed to run tasks at specific times, the recent versions of An-
droid has put on more restrictions on the AlarmManager. For certain use cases,
the library no longer guarantees precise execution times. The rationale behind this
change is further discussed in section 3.4.

2.4 The App Review Process for Publishing on Google

Play Store

Quality control has traditionally been an important step for preventing faulty and harmful
products from entering the market. In this section, we introduce the app-review process



developers have to go through before their apps can be published on the Google Play Store.
The followings are some of the key areas Google looks at during the review process.

e Store Listing: When publishing on the Google Play Store, every developer needs
to create a store listing for their app. The information on the listing page is later
reviewed by reviewers from Google to ensure the app matches its description.

e Privacy Policy: If an application collects personal and sensitive data from users,
the developer needs to provide a privacy policy along with the app’s store listing.
The reviewers from Google are instructed to reject any app that collects sensitive
information but does not have a privacy policy.

e Content Rating: Developers are asked to fill a content rating questionnaire when
publishing their apps. The questionnaire contains questions such as “does the app
contain adult content?”, “does the app have reference to tobacco?”. Based on the
self-reported answers, the Google Play Store automatically assigns a content rating
to the uploaded app.

e App Permissions: After an app is uploaded, Google automatically generates a list
of system permissions required by the app. This list is constructed based on the
permissions declared by the app inside its manifest file. The permissions are later
shown to each user for approval before the app can be installed. Along side each
permission, there is also a short description explaining what kinds of actions the
permission would allow the application to perform.

As we can see the review process from Google requires developers to disclose information
on the sensitive data their apps may collect, the types of content they serve and the
permissions their apps require [5]. What is missing from the current review process is a
closer look at each app’s runtime behaviour. For example, we may have two applications
that both require Internet permission. One could use the permission responsibly and
only requests data when needed, and the other might constantly download data in the
background regardless whether the app is used by the user. As of right now, Google does
not take the wasteful behaviour of the second app into account during its review process.

2.5 Machine Learning Algorithms

In order to model users’ usage patterns we have experimented with machine learning algo-
rithms including k-nearest neighbors, decision tree, and neural network. In this section, a
brief introduction is provided for each of the algorithms used in this work.



Figure 2.1: K-Nearest Neighbors Example

2.5.1 K-Nearest Neighbors

K-nearest neighbors is one of the simplest classification algorithms available. Models cre-
ated by the K-nearest neighbors algorithm simply store all the instances of the training
data. When a new data point is given, the model classifies the point by first finding a set of
“k” neighbor points that are found nearest to the new point in the training data. A label is
then assigned to the new point based on the most common label found among its nearest
neighbors [3]. For example, in Figure 2.1 the new point would be classified as “circle”
since the majority of its nearest neighbors are circles. In order to compare the distance
between sample points, the nearest neighbor algorithm requires a distance function. In
most cases, the simple Euclidean distance is used as the distance function, but there can
also be other distance functions such as Manhattan distance, Chi-Square distance, Cosine
distance, and Minkowski distance. Despite its simplicity, k-nearest neighbors can often
achieve impressive results in many areas when it is supplied with an appropriate distance
function [26].

2.5.2 Decision Tree Learning

Decision tree learning is another machine learning algorithm commonly used for solving
classification problems. The algorithm aims to break complex problems into a set of simple
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Figure 2.2: Decision Tree Example

questions represented using decision trees, and hoping by answering those simple questions
we can arrive at a desirable answer [21]. When constructing decision trees, the goal is
to ask the question that could achieve the cleanest split in the dataset. The quality of a
split is evaluated based on the impurity of the resulting subdatasets. By finding the best
split at each node, the tree can gradually reduce the impurity left at its leaf nodes, and
eventually be able to assign a label to each leaf node with high confidence. An example
of this process is shown in Figure 2.2. The decision tree shown in the figure contains two
questions. The first question splits the dataset into two subsets. One subset with x value
less or equal to 0.5, and another subset with x value greater than 0.5. After the first split,
the subset on the left has no impurity left; therefore, no additional question is needed for
this subset. On the other hand, the subset on the right still has impurity left; therefore,
an additional question is asked by the decision tree. This time the remaining dataset is
split based the Y value of each point. After this split, the resulting subsets are both free
of impurity, and the construction of the decision tree is complete.

2.5.3 Neural Network

Neural network is a powerful machine learning algorithm that is capable of solving complex
classification problems. It takes inspiration from nature, and aims to mimic the way
the human brain works. The network is constructed using simple computing cells called

10
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Figure 2.3: Multilayer Feedforward Neural Network

“neurons”. By connecting those neurons in different ways, the network is capable of storing

knowledge which can later be used to solve problems [11]. There are several types of neural
networks, but the multilayer feedforward network is the most widely used model among
them all [16]. The multilayer feedforward network consists of several layers of neurons,

as illustrated in Figure 2.3. Those layers can be separated into three types: input layer,
hidden layers and output layer. As their names suggest, the input and output layers hold
the values for the network’s inputs and outputs. The hidden layers sit between the input
and output layers. The values inside each hidden layer are calculated based on the values
found in the proceeding layer. By doing so, neural network can extract higher level concepts
from the inputs it is given, and as the number of hidden layer increases, the network is
capable of modeling even more complex concepts based on the values from the previous
hidden layers. This behaviour has proven to be very useful in the area of image recognition
[14, 20]. When analyzing digital images, the value of each individual pixel holds very little
information, but as the number of hidden layers increases, the neural network starts being
able to capture dots, lines, shapes and eventually everyday objects.

11



Chapter 3

Related Works

When surveying related works, we find most of the previous monitoring solutions are
designed for monitoring server-side applications. Those solutions have varying degrees of
autonomy. Some can function with little involvement from human operators, and others
may require custom “watcher” programs written specifically for each monitored software.
The solutions with higher level of autonomy generally rely on studying relationships found
between system metrics under normal operating conditions. By analyzing past data, the
monitor can build models to capture long-lasting relationships exist between the various
system metrics generated by the monitored software. Those models are later used to
identify faulty software states through spotting anomalies in the system metrics.

On the client-side, many efforts have been made in user behavior modeling, but so far,
those models are mainly designed for purposes such as predicting which apps users are
likely to use next for reducing loading time, and predicting apps installation for marketing
purposes. The potential of utilizing usage models in developing automated monitoring
system has not yet been widely studied. In the area of mobile battery, researchers have
looked into the battery consumption of popular mobile applications, and discovered a few
major causes of fast battery drain. Based on the findings from those research, developers
at Google have gradually introduced several battery saving features into the Android oper-
ating system, but in order to avoid breaking existing Android applications, those changes
so far have been fairly conservative, and still leave room for improvement.

12



3.1 Existing Automated Monitoring Systems

Automated monitoring systems can be found in most of the modern data centers. For
example, Google uses a cluster management system named Borg to manage virtually all
its cluster workloads [25]. For each task running under Borg, there is a built-in HTTP
server that publishes performance metrics about the health of the associated task. By
reading those performance metrics, Borg is able to identify whether a task has stopped
running, and if it needs to be restarted. Since Borg does not know exactly what each task
is designed to do, it could not detect any service-level objective (SLO) violation. To detect
SLO violations, the owner of each task has to implement a monitoring system outside of
Borg’s framework.

Microsoft has a similar system named Autopilot that manages its own data centers
[12]. In the area of fault detection, Autopilot uses an existing concept called “watchdog”.
Watchdogs are programs capable of interpreting system metrics from the machines running
under Autopilot. There can be more than one watchdog program for each machine, and if
any of them reports an error status, the machine would be considered as running in error.
Similar to Borg, Autopilot supplies a set of default watchdog programs which can perform
basic non-service-specific detections, but what sets it apart is the ability to incorporate
additional service-specific watchdog programs. Instead of requiring developers to create
customized monitoring solutions outside of Autopilot’s framework, developers can create
their own watchdogs managed by the Autopilot, and take advantage of the additional
features provided by the framework, such as logging and auto-restart.

Borg and Autopilot are two examples of the automated monitoring solutions currently
used in the industry. Both Borg and Autopilot have been managing production level soft-
ware for many years and have become crucial parts of Google’s and Microsoft’s respective
infrastructures. Unfortunately, they both share the same limitation that is requiring de-
velopers to write customized monitoring program in order to perform service-level fault
detection. This is less of a problem for Google and Microsoft because most of their ap-
plications are developed in-house, and they have the resources and technical know-how to
create customized monitors for each of their applications, but this may not be the case for
other smaller companies or individual operators.

To address the limitation found in Borg and Autopilot’s monitoring systems, Jiang
et al. [13] have proposed an automated monitoring framework that requires minimum
knowledge about the monitored software. Their work is based on the observation that
long-lasting relationships can be found between various system metrics while software is
operating under normal conditions. Instead of relying on custom-built “watcher” programs,

13



their monitoring system collects the system metrics produced by the monitored software,
and acquires its application-specific knowledge by identifying the long-lasting relationships
between those metrics. In order to capture both linear and non-linear relationships, Jiang
et al. have utilized linear regression models along with information-theoretic models. The
monitoring system is first supplied with system metrics collected under normal operating
conditions. By using past system metrics as the training dataset, the system is able to
create a set of models, and flag potential errors in the system by comparing the models with
the most up to date system metrics. A potential problem is flagged when the current system
metrics diverge from the existing models. Since each metric can often be linked to a set of
underlying system components, Jiang’s solution can not only perform error detection, but
also provide useful information for locating the root problem. During their experiments,
the solution has shown promising results on monitoring complex server-side applications.
That said, there is still a major limitation preventing this solution from working on certain
environments. The limitation is the solution’s dependency on the previous system metrics
collected during normal operating conditions. In order to collect those system metrics, the
operators need to have to capability to manually identify whether the software is operating
under normal conditions. In some environments, the operators may not have the capability
to do so.

3.2 Usage Modeling on Mobile Devices

One of such environments is the mobile platform. There are many differences between
client-side environment and server-side environment as Rudafashani et al. have pointed out
in their research [23]. For example, difference in processing power and memory capacities,
difference in number of services running in the environment, lack of replication on client-
side, etc. Among them, the two following differences are the most relevant to our work:

e Unlike data centers where a machine is often tasked with serving one specific appli-
cation, for mobile devices, a smartphone on average has more than 80 apps installed
[1]. Many of those apps have complex behaviours which can utilize various onboard
components.

e The operators of the server-side machines are professionally trained system admin-
istrators, but for mobile devices, the operators are ordinary end users with varying
levels of expertise.

Due to the high complexity from severing more than one application, and the operators’
lack of experience, it can be very difficult for the average smartphone users to tell whether a
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device is operating normally at a particular time; therefore, any solution requiring previous
system metrics under normal operating conditions would not work in this case. This means,
we would have to construct our models through other ways. One potential solution is to
study the users’ usage patterns in real-time and derive the models based on the usage
records. Some previous works have already been done in the area of modeling people’s
usage patterns on mobile devices, and we believe similar models could also used on building
automated monitoring systems.

Yan et al. have designed and built a system called Falcon to perform app-specific
pre-launching on Windows phones [27]. They achieve this by modeling the contexts when
each app is likely to be used by a user. The contexts are described by features such as
location, time-of-day and the trigger app of the current usage session. From real world
usage records, they have observed users’ tendency toward structured behaviours. For
example, they notice people have high game usage at home, high browser and calendar
usage at work, and high social-network usage at shopping centers. They also notice users’
behaviours may change significantly over longer time frames. This is especially common for
game and entertainment apps. For those apps, users tend to use them intensely during a
month-long period, then stop using them afterward. By capturing those behaviour patterns
and prelaunching apps accordingly, Yan et al. manage to reduce the average launch time
of mobile apps by 50% while incurring only a 2% battery overhead.

Similar to Falcon, Parate et al. also build a prediction system for prelaunching mobile
applications [19]. Instead of relying on the contextual data such as location and time-of-
day, Parate proposes an approach utilizing both Prediction by Partial Match (PPM) model
and Time Till Usage (TTU) temporal model. Previously PPM has been widely used in
the field of text compression [7]. Parate adapts the PPM method to app prediction by
treating each app as a “character” and a user’s usage history as a sequence of characters.
Similar to predicting the next character when given an incomplete word, Parate uses the
usage history to predict the apps which are likely to be used next. Along with the PPM,
the TTU temporal model is used to answer when the next app is likely to be launched.
This is done by studying the historical usage data to find the distribution of time spent
between the launch of each application. Combining both models, Parate’s approach has
achieved an above 80% prediction accuracy while only requiring 7 to 10 days of training
data.

Unlike works that are done by Yan and Parate where the models rely on features col-
lected locally on each device, Pan et al. have developed a model for predicting mobile
application installation using social networks [18]. Their model is based on the assump-
tion that social networks correlate with individual behaviours. In their work, they use
a composite social network which is a mixture of four separate networks constructed us-
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ing various types of data. The networks include call log network, Bluetooth proximity
network, friendship network (based on Facebook friends), and affiliation network (based
on GPS location). In the network, each user is represented as a node, and relationships
between users are represented as weighted edges. By examining the applications installed
on each user’s neighbor nodes, the model aims to predict the applications the user is likely
to install in the future. This information can later be used by App market makers such as
the iPhone AppStore to perform targeted advertising. From their experiment, they find
the model can achieve a mean precision (# true adopters among total predicted adopters
/ total predicted adopter) of 0.31, and a F-score of 0.43.

3.3 Battery Consumption of Popular Mobile Apps

Beside usage modeling, we have also looked into work around energy accounting on smart-
phones. One of our goals is to identify applications which might be wasting energy doing
non-essential work; therefore, it is important for us to understand how popular mobile
applications consume battery.

In this area, Pathak et al. from the Purdue University have designed a fine-grained
energy profiler for mobile apps called Eprof [21]. The profiler tracks the energy consumption
of each hardware component and maps them to various software entities of each application.
Depending on the user’s needs, the software entities can range from processes to threads,
to subroutines, and all the way down to individual system calls. By using Eprof, the
researchers are able to study the energy consumption of popular apps such as Angry Birds,
Facebook and Google Chrome. The followings are some of their observations:

e A major portion of the battery is spent on I/O. This includes components such as
WiFi, 3G and GPS.

e [/O components exhibit tail-energy behaviour. It means once a component enters a
high power state, the component would remain in this state for a period of time even
after the task has already been completed. The behaviour is observed on components
such as WiFi and 3G. This is because every time after a packet is sent, the antenna
would remain active for a period of time in order to capture any response packets.

e For popular apps such as Angry Birds, CNN and Facebook, 65% - 75% of the energy
is spent on third-party advertisement and analytic modules.

These observations shed light on how battery is consumed on smartphones, and some
of those findings have already helped Google improving their Android operating system.
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3.4 Existing Battery Saving Features on Android

As one of the major developers of Android, Google has been gradually adding API policies
and monitoring features to improve battery life for Android devices. The approaches they
have taken so far can be summarized into the following three groups:

e Limit System Wake Time: Since Android 6.0, the Android operating system
has become more aggressive in restricting background processes. Android gives each
application the ability to create additional threads while running in the foreground,
but once the application leaves the foreground, it only has a few minutes before the
operating system stops all its threads completely. Beside shutting down unessential
background threads, the operating system also puts restrictions on long lasting back-
ground processes. On the newer versions of Android, applications with repeating
background tasks can no longer set an exact time interval for the repetition. By
making this change, the operating system now has the flexibility to group multiple
repeating tasks together to run one after another. This change allows tasks to share
the overhead of waking up the CPU, and further minimizes the time when the CPU
is awake.

e More Transparent Battery Accounting: Despite all the restrictions Android
has placed on background processes, if an application really needs to keep the device
awake, it can still do so by acquiring the device’s wake lock. Since there are legitimate
use cases built on this feature, Android could not just take it away without breaking
existing applications. In order to prevent applications from abusing the wake lock,
Android’s development team takes the duration that an application holds the wake
lock into account when assigning battery consumption to each application [2]. The
power consumption assigned to the usage of wake lock is estimated by multiplying the
wake time with device’s average power consumption when CPU is idle [3]. This way if
an application has been hogging the wake lock, it would show up with a high battery
usage in the device’s settings page, and this make users more likely to uninstall the
app if they think the app has not been doing useful work. Note, with the current
battery accounting logic, it is possible to double count the power consumption caused
by wake lock. This happens when more than one application are holding the wake
lock at the same time. The reason Android allows this to happen is likely because
the main purpose of the built-in battery accounting system is not to provide the most
accurate measurements, instead it is meant to create an incentive for developers to
take battery consumption into consideration when designing applications.
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e Adaptive Battery: In Android 9.0, Google has also started experimenting with the
idea of limiting background processes based on the users’ usage patterns. This adap-
tive battery feature promises that it would learn “how you use apps over time”, and
“limit battery for infrequently used apps”. At the time of writing this dissertation,
Google has not published any detailed documentation on how exactly their system
works. From our limited testing, we found the adaptive battery system so far only
limits apps which have not been used by the user for a long period of time, roughly
around a month. For any other apps, the adaptive battery feature currently has
no effect. During our experiments, we find that most misbehaving applications are
used at least once by the user in the past two weeks. In this case, the current adap-
tive battery system would only limit a very small percentage of all the misbehaving
applications.
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Chapter 4

System Design

The goal of our system is to identify misbehaving applications on mobile devices. From a
high level, this is achieved by comparing the apps found running on a device against the
apps that are actually used by the user. An application would be flagged as misbehaving
if it is consuming significant amount of system resources while providing no meaningful
service to the end user. In order to detect such applications, there are three majors steps
we needs to take. First, the system needs to collect information about a user’s usage
behaviour. This includes information such as the location and time when each application
has been used in the past. After obtaining this information, the next step is to build a
usage model based on the data collected previously. The usage model would be viewed as
the “correct” state of a device since it represents what the user actually uses. The last
step is to actively monitor all the processes running on the device. The system compares
the list of current running process with the user’s usage model and marks any application
operating outside of the model as misbehaving. Overall, the detection process is fairly
straight forward on paper, but there are still a few challenges we need to address when
implementing it on real devices. The following sections discuss some of the challenges
we have faced during the development, and introduce our designs for over coming those
challenges.

4.1 Challenges

In order to create a viable solution for the real world, there are three major challenges we
need to address.
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4.1.1 Minimizing System’s Impact on Battery Life

Ideally, our monitor could benefit from having real-time access to data such as system
metrics and user’s usage records, but in order to do so, the monitor would need to constantly
poll records from the under-laying operating system. When running on a mobile device
powered by battery, any type of aggressive polling could have significant impact on the
device’s battery life. One of the benefits users get from identifying misbehaving applications
is the potential of reducing battery consumption, but if the monitoring software ends up
costing more battery than it could save, the value of using our monitoring system would
be greatly diminished.

4.1.2 Uncontrolled Environment

Unlike past solutions[12, 13, 25], our system does not run on controlled environments
managed by IT professionals such as data centers. Instead, it runs on mobile devices
operated directly by the end users. At anytime, the software may be turned off by the
user, or the entire device may shut down due to low battery. On top of that, we also do
not control when a device is charged, and whether the device has access to WiFi, both of
which we would depend on during the model training process.

4.1.3 Inexact Time of Code Execution

In order to maximize battery life on mobile devices, developers of the Android operating
system have placed several restrictions on applications’ ability to run background tasks.
One of them is removing the ability for applications to schedule periodic tasks with exact
time intervals. Previous research has shown that there is a significant upfront energy cost
when starting onboard components like WiFi and 3G/4G. It is beneficial to group multiple
applications together to run at the same time in order to share this fixed overhead. As for
monitoring system like ours, this means we would not be able to spread our code execution
evenly throughout the time.

4.2 Design Principles

To address the challenges mentioned above, we have devised the followings design principles
which we aim to follow throughout our system:
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e Gracefully Handle Datasets with Missing Data: Our client-side program is
built as a long-lasting Android service, but this does not mean the monitor is safe from
unexpected shutdowns. Users always have the choice to turn off services manually,
and on some Android distributions, the operating system may also silently turn off
background services when resources are scarce. This means our system should be able
to work with datasets with gaps of missing data, and whenever a gap appears in the
dataset, the system needs to be able to downgrade its detection accuracy gracefully
while maintaining most of the monitor’s functionalities.

e Minimize Usage of Expensive I/O Components: As previous works have

shown, I/O components are major contributors to fast battery drain [21]. So it is
important that our system minimizes its usage of I/O components such as WiFi and
GPS.

e Able to Work with Various Polling Frequency: As Google gradually improves
the Android Platform API, various limits have been placed on how frequent apps are
allowed to run their background tasks. Several major changes have already been
made in the past few years, and there is no guaranty what kind of changes Google
would implement in the future. In order to maximize the deployability of our system,
we should not have any hard requirements on the frequency of our data points.

e Maintain Loose Coupling Between Client And Server: There is no guaranty
the device would be connected to the Internet throughout the day. Sometimes it is
possible the device might be running for multiple days without Internet connection.
The client should make no assumptions on when it would be able to connect to the
server, and it should remain functional to the best of its ability when there is no
Internet connection.

4.3 System Architecture

As shown in Figure 4.1, our monitoring system can be split into the client-side section and
the server-side section. The client-side runs on the users’ Android devices and is responsible
for gathering data, uploading raw usage records, identifying misbehaving applications, and
displaying outputs to the users. The server-side runs on a Ubuntu server and is responsible
for training models, and storing raw data for later analysis. In the rest of this chapter, a
brief description is provided for each of those tasks.
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Figure 4.1: System Design Overview

4.3.1 Data Gathering

The data gathering task is jointly handled by two components running on the client-side.
The two components are app usage monitor and system metrics monitor.

The app usage monitor is responsible for collecting data that describes the context
when a user is likely to use each app. Every time the user turns on the screen, the monitor
starts to periodically log the Android Application ID of the app currently in focus along
with the GPS location, and the current time. An example of the raw usage record is shown
below:

time, appID, latitude, longitude

2018/11/8-14:16:45, com.android.chrome, 43.471412, -80.563666
2018/11/8-14:18:13, com.oneplus.deskclock, 43.471412, -80.563666
2018/11/8-14:20:00, com.facebook.katana, 43.471412, -80.563666
2018/11/8-14:20:15, com.android.chrome, 43.471412, -80.563666
2018/11/8-14:20:30, com.facebook.katana, 43.471412, -80.563666

In order to minimize our system’s energy overhead, special care is taken when programming
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Figure 4.2: Raw CPUinfo Data Returned by Dumpsys

the usage monitor. First, the usage monitor listens for the “screen on/off” events broadcast
by the Android operating system. It would start periodically checking the onfocused app
only after it has received the “screen on” event, and stops once the “screen off” event is
triggered. This means the usage monitor would not be running when the phone is idle,
and this helps to maximize the CPU’s sleep time. Second, the monitor heavily utilizes
“passive location provider”. Instead of actively requesting fresh locations from the GPS
hardware, the monitor tries to use the last known location previously requested by other
apps running on the same device. The monitor only requests fresh location when the there
is no last known location (when the device was recently started) or when the last known
location is too old. In the current version, the monitor is programmed to request a new
location if the previous one was collected more than 30 minutes ago. From our experience,
just by relying on the locations requested by first party apps from Google alone, we are
able to maintain relatively fresh GPS locations, and the monitor rarely needs to request
locations by itself.

The system metrics monitor is responsible for finding out what applications are
actively running on a device. In this work, we use CPU usage and network usage as the
two main metrics for identifying active applications. Both of those metrics are collected
through the dumpsys tool provided by the Android platform. The CPU usage is found
under the cpuinfo section of the dumpsys’s outputs, and the network usage is found under
the netstats section. Examples of the raw data are shown in Figure 4.2 and Figure 4.3.

From Figure 4.2 we can see the CPU usage is fairly straight forward to interpret. Each
process has a percentage along with an application ID. We can simply group each line
by the application ID, and sum up the percentage values to get the total CPU usage for
each application. For the network usage, the raw records are a little more complicated.
The operating system identifies each application by its Unix UID (user identifier), and
aggregates each application’s network usage into two hour windows. For example, if an
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ident=[{type=MOBILE, subType=COMBINED, subscriberId=382228..., metered=true, defaultNetwork=true}] uid=18266 set=FOREGROUND tag=@x608@
NetworkStatsHistory: bucketDuration=7200
st=1557432080 rb=11727 rp=15 tb=1%986 tp=13 op=0
st=1557453680 rb=51331 rp=48 tb=4928 tp=36 op=0
st=1557456800 rb=3785 rp=9% tb=1587 tp=11 op=@
st=1557532880 rb=37224 rp=4@ tb=5265 tp=38 op=0
1557548880 rb=15736 rp=17 tb=2175 tp=15 op=0
1557612080 rb=19095 rp=2@ tb=1975 tp=17 op=0
1557784800 rb=14720 rp=24 tb=3930 tp=24 op=0
1557856880 rb=12835 rp=16 tb=2171 tp=19 op=0
1557864080 rb=1446@0 rp=24 tb=3793 tp=28 op=0
1557871280 rb=2869% rp=6 tb=932 tp=B op=0
st=1557878480 rb=168B6 rp=4 tb=759 tp=5 op=@
ident=[{type=MOBILE, subType=COMBIMED, subscriberId=382228..., metered=true, defaultMetwork=true}] uid=18272 set=DEFAULT tag=0x200883388
NetworkStatsHistory: bucketDuration=7200
st=1557669680 rb=7269 rp=24 tb=7215 tp=22 op=0@
st=1557B49680 rb=9834 rp=32 tb=10649 tp=30 op=0
st=1557B864@80 rb=12076 rp=38 tb=11283 tp=37 op=0

Figure 4.3: Raw Netstats Data Returned by Dumpsys

application has accessed the network between 4pm and 6pm on May 14 2019, the usage
record would show up under the row with the timestamp "st=1557864000". Here the value
71557864000 represents the epoch time for 4pm May 14 2019. The value for “rb”, “rp”,
“thb”, and “tp” represent “bytes received”, “packet received”, “bytes sent” and “packet
sent”. The operating system only shows the netstats data aggregated using two hour
windows, if we want to poll the network usage at another frequency we would need to take
two snapshots at different time and calculate the difference on our own.

Unlike the app usage monitor that runs only when the user is actively using the device,
the system metrics monitor has to collect data regardless of users’ activities in order to find
misbehaving applications. This creates additional challenges in minimizing the system’s
energy overhead. If the metrics monitor wakes up the device too often, the monitor itself
might start turning into a misbehaving application. To prevent this from happening, we
decide to give up the ability of setting exact execution time for our periodic tasks. By doing
so, we can provide the operating system with more flexibility when scheduling background
processes. The API we call is the “setIneractRepeating” method found under Android’s
AlarmManager. With this API we can still request a general time interval, but the exact
time of code execution would be decided by the operating system. With inexact repetition,
the operating system has the ability to combine as many periodic tasks as possible to run
one after another. This allows multiple background tasks to share the cost of waking up
the CPU, and reduces the overall battery consumption.

4.3.2 Data Uploading and Model Creation

Moving model creation to the server-side is one of the most important decisions we have
made early on in the development process. By delegating this responsibility to the server,
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Figure 4.4: Client-server Interaction: Best-case Scenario

our model creation is no longer limited by the client-side hardware. This also gives us the
flexibility to try different model parameters without having to update the client program
on users’ devices. Unfortunately, there are some drawbacks associated with this design.
Our system now requires an Internet connection in order to generate and update its models.
Along with this dependency are various potential issues which might occur during network
calls. All of those network issues would need to be handled gracefully. Also depending on
the size of the dataset, the the server may take more than a couple seconds to create all the
models. This means, due to the one minute timeout limit commonly used by proxy servers
along the network, we could no longer reliably finish the data uploading and model creation
all within the same network request. To solve this, the server has to take an asynchronous
approach which adds further complexity to the interaction between our clients and the
server.

The code for uploading usage data shares the same periodic task with the system metrics
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monitor. By doing so, we eliminate the need of creating another repeating background
process. Every time when the metrics monitor finishes collecting system metrics, it would
check to see if there are any raw usage records from the previous days. If there are existing
records, and the device is also currently connected to WiFi and battery, the client would
then precede to upload those records to the server. Figure 4.4 illustrates the best-case
scenario of this interaction between the client and the server. After receiving the raw
usage records, the server creates an entry for the new model inside its SQL database, and
marks the model status as “pending”. It then passes the usage records to the worker
manager, and delegates the model creation to a separate worker process. A more detailed
discussion on how we create our model can be found in Chapter 5. Once the job has
been successfully scheduled, the server terminates the request by returning the model ID
along with a “pending” status to the client. The client takes the model ID, and stores it
on the device. The next time when the periodic task is triggered, the client retrieves the
completed model by sending the model ID back to the server. After successfully receiving
the models, the client deletes any usage records which have already been uploaded. This
concludes the best-case scenario of all possible interactions between a client and the server.
When operating in the real world, different problems could arise during this interaction.
In general, the client does not delete any usage records unless a valid model has been
returned. During server downtime, the client would keep the usage records stored on its
local storage, and wait for the server to come back. The Figure 4.5 illustrates how our
system would handle some of the potential problems.

4.3.3 Detection and Outputs

Once a client receives its models from the server, it is ready to begin detecting misbehaving
applications. Note, the detection is only carried out when the device is running on battery.
We do not flag any misbehaving applications when the device is charging. An overview
of the detection process is shown in Figure 4.6. First, the client needs to find out all
the active applications which are current running or have been running recently on the
device. This is done by looking at the CPU and network usage data collected through the
system metrics monitor. Next, the client inputs the current contextual data into its models,
and gets a list of applications which are likely to be used by the user under the current
context. Any active application that is not likely to be used under the current context is
a potential misbehaving application. That said, there is still one more check before the
client can make the final decision. It is possible an application is recently installed, and the
application has never been recorded in the model. The client is programmed to skip any
applications current running on foreground. This helps to reduce the chance of a newly
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installed application being flagged as misbehaving.

After misbehaving applications have been identified, the last step is to show this in-
formation to our end users. The screenshots of our client-side app is shown in Figure 4.7.
Inside the UI, we list all the misbehaving applications that have been detected by our
system. For each application, we include information such as application ID, the first and
last time the app is flagged as misbehaving, and the total number of times an app has been
flagged. Note, It is worth emphasizing that not all misbehaving apps are equal. Some
apps misbehave more frequently than others. By sorting the list in descending order of
the “flag count”, we are able to surface the most problematic apps to our users. This also
allows us to filter out apps that have not misbehaved frequently enough to cause significant
problems.
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Chapter 5

Model Creation

In the previous chapter, we present the system architecture of our monitoring solution.
We show how our client collects various types of data, and how it detects misbehaving
application using the usage models generated by the server, but till this point, the usage
models have largely remained as a set of black boxes. In this chapter, we provide a high
level description on how our usage models are built. We first introduce the steps we take to
clean and reformat the raw usage data collected by our client. We then explore the data by
visualizing them on plots. From those plots we aim to gain a deeper understanding about
the underlying patterns. In the end, we experiment with different machine learning algo-
rithms, and select the best one for our use case. The decision is made based on the testing
results along with the intuition we have previously gained from the data visualization.

5.1 Data Preprocessing

Data collected from the real world is often messy and incomplete. Once the raw datasets
arrive at our server, we first need to clean and reformat them before any models could be
trained.

5.1.1 Quantizing Time and GPS Location

As mentioned in section 4.3.1, our usage monitor runs periodically to record the application
that are currently onfocus. In order to minimize our system’s power consumption, we try
to keep the frequency for our periodic polling relatively low (around twice per minute
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when the screen is on). This means if the time of an application running in the foreground
is less than the polling period, it is possible that our system could miss the application
and end up with an incomplete usage record as illustrated by Figure 5.1. To alleviate this
problem, we decide to quantize the timestamp into larger time windows. For example, let’s
say we have a usage record with an application running at 3 different times. Those times
are 10:00:30 am, 10:01:00 am and 10:01:30 am. If we decide to quantize the timestamp
using a 5 minutes window, we would end up combining all those three records into one
single record with the timestamp equals to 10:00:00 am. This new timestamp indicates
this particular application is found running between 10:00:00 am and 10:05:00 am. With
this larger time window, a record is created regardless how many times the app is spotted
during this 5 minutes period. Using this approach, our monitor can now afford to miss a
few short usage sessions. As long an application is spotted once in the larger time window,
the application would show up in the final record. The downside is that our timestamps
would be less precious, but this is not a problem for our use case since we are modeling
real humans and not machines that follow the clock perfectly.

Beside the timestamp of each usage record, another important component of our raw
dataset is the GPS location. One common issue when dealing with GPS is a problem
called GPS drift. This happens when the deceive is stationary, but the GPS location
shows the device has moved due to fluctuation in the measurements. As mentioned in
section 4.3.1, our location data is collected through Android’s passive GPS provider. This
means, for most of the time, there is no GPS drift issue since our client are reading fixed
value cached previously by other applications. The problem arrives when the device is
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stationary, but the cached GPS value is updated by another application. This results in
a sudden change in the measurement, and it could be misinterpreted by our model as
meaningful information when in reality it is just random noise. To address this problem,
we take a similar approach as the quantization we have done on the timestamps. Instead
of keeping all the digits returned by the GPS component, we would slightly reduce the
precision in our longitude and latitude measurements. This reduces the resolution of our
data, but it helps to filter out noise caused by GPS drift.

5.1.2 Restructuring Usage Data

The goal for our models is to answer the question “given a set of contextual data, is an
application likely to be used by the user under this context”. One way to achieve this is
by structuring the question as a classification problem. For each set of contextual data,
an application could be labeled either as “used” or “not used”. Our models then try to
encapsulate the context that have been associated with each label in the past, and make
predictions about the label based on the current contextual data.

Before any model could be built, we first need to restructure our datasets for training.
An overview of this process is shown in Figure 5.2. For each application, a new dataset is
generated. Inside those datasets, each row represents a time period of 5 minutes (in the
actual system, a period of 30 minutes is used). Beside the timestamp, we also have the GPS
location of the device and a label indicating whether the application is used during this
time period. Each dataset is later used for training models specifically for the application
it is associated with.

5.1.3 Normalizing Numerical Features and Balancing Dataset

Measurements such as longitude and latitude have very different ranges of values comparing
to time-of-day; therefore, it is important for us to normalize them into a similar range
before feeding them to the machine learning algorithms. For GPS data, we choose to use
normalization by Z-score. This is because normalization by Z-score is less sensitivity to
extreme values. For most of the cases, a user’s location is concentrated within one city, but
“extreme” values in longitude and latitude may occur when the user occasionally travels
to another city. In those situations, normalization by Z-score could gracefully handle those
extreme values without making the rest of the data points undifferentiable.

For time-of-day, we do not have the problem of extreme values since our data ranges
from all possible values between 00:00:00 and 23:59:59. In this case, we could simply use
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Original record after quantizing
timestamp and GPS location

10:00:00 AM, chrome, 43.4728,-80.5420

10:05:00 AM, facebook, 43.4728,-80.5420

10:10:00 AM, facebook, 43.4728,-80.5420

10:15:00 AM, gmail, 43.4685,-80.5442

10:15:00 AM, facebook, 43.4685,-80.5442

Training data for Chrome

10:00:00 AM, 43.4728,-80.5420, Used

10:05:00 AM, 43.4728,-80.5420, Not Used

10:10:00 AM, 43.4728,-80.5420, Not Used

10:15:00 AM, 43.4685,-80.5442, Not Used

Training data for Facebook

10:00:00 AM, 43.4728,-80.5420, Not Used

10:05:00 AM, 43.4728,-80.5420, Used

10:10:00 AM, 43.4728,-80.5420, Used

10:15:00 AM, 43.4685,-80.5442, Used

Training data for Gmail

10:00:00 AM, 43.4728,-80.5420, Not Used

10:05:00 AM, 43.4728,-80.5420, Not Used

10:10:00 AM, 43.4728,-80.5420, Not Used

10:15:00 AM, 43.4685,-80.5442, Used

Figure 5.2: Dataset Restructuring
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the min-max normalization to map each timestamp to a number between 0 and 1. 0 here
represents the time 00:00:00 and 1 represents the time 23:59:59.

Another problem we need to address is the unbalanced dataset. If an application is
only used within one particular hour each day, then most of this application’s data points
would have the label marked as “not used”. Models trained on this kind of datasets could
achieve a high accuracy by simply guessing the application is never used, and those models
are not going to provide us with any useful information on users’ behaviours. To prevent
this from happening, we need to balance our datasets before training. This is achieved by
duplicating the data points with label marked as “used” until there are equal numbers of
data points for both labels. By doing so, we are essentially telling the machine learning
algorithm to pay more attention to the times when the application is used by the user.

5.2 Data Exploration

For this work, we take the Exploratory Data Analysis (EDA) approach when studying our
datasets. This approach requires us not making any assumptions about the underlying
model in the beginning; instead, we should first study the data by visualizing them on
plots. From those plots we aim to gain a deeper understanding about the underlying
patterns, this would later help us to make more educated choices when constructing our
models [17]. After restructuring the original usage records, we now have one dataset for
each application. Inside each dataset, there are three features and one label. The three
features are time-of-day, latitude and longitude. The label is a boolean value that indicates
whether the application is used within each time window. We could graph all the data
points when an application is used by the user in a three-dimensional graph, and we would
end up with a graph similar to Figure 5.3.

Before plotting the graphs, we have originally expected the data points to form spheres
around certain points in the three-dimensional feature space, but we soon realize that is
not the case. People in general do not walk in circle around a particular point while using
their phones; instead, people tend to sit or lay down at a fixed location. This behaviour
results in thin cuboids on the three-dimensional plot. You can see the patterns more clearly
in the top-down view shown in Figure 5.4 and the side view shown in Figure 5.5.
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5.3 Model Selection

In this section, we want to answer two important questions. First, which machine learning
algorithm we should use for our use case. The algorithms we have tested include k-nearest
neighbors, decision tree, and neural network. Second, we also want to know how much
data we need for training our models, but before we can answer those two questions, we
first need to talk about the testing environment we use for carrying out our experiment.

5.3.1 Testing Environment

The device we use for our experiment is an Oneplus 6 running on Android version 9.0. The
applications installed on the device include the top 10 most downloaded apps from various
popular categories on the Google Play store. The categories include social, game, enter-
tainment, photography, shopping, communication, etc. Combining with the pre-installed
apps such as Google Chrome and YouTube, there are in total around 150 apps installed
on the device during our experiment.

The experiment is divided into two phases. The first phase lasts one month, during
this time our client collects usage data and system metrics as described in section 4.3.1,
but the server does not create any model during this phase, and no detection is made by
the client. The second phase last two months, during the second phase all the system’s
features are turned on, and client starts to detect misbehaving applications. The data
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collected during the first phase is used for exploring different models and their parameters,
the results from the first phase are discussed in the current chapter. Once we know how to
build our models, the system’s overall performance is evaluated during the second phase,
the results from the second phase are discussed in chapter 6.

5.3.2 Detection Confidence and Accuracy

Our datasets contain two types of records, the usage records and the system metric records.
The usage records describe which applications the user has interacted with during each
time window, and the system metric records describe which applications are found running
during each time window along with their CPU and network usage. In this work, both
usage records and system metrics records are used when evaluating our models. First
we train our models based on the usage records. Once we have all the models, we then
iterate through each application found in the system metric records, and ask our model
the question “is this application likely to be used by the user under the given context?”.
If the model indicates the application is not likely to be used under the given context,
the application would be marked as misbehaving. After iterating through all the system
metrics records, we then compare the misbehaving applications our models have identified
with the actually usage records. If the application is indeed not used by the user within
the next hour then the detection is considered correct. If it is used by the user, then the
detection is considered incorrect.

The two main metrics we use to measure our models are detection confidence and
accuracy. The two metrics are defined as the followings:

TP
D ' ' = —x1 1
etection Con fidence TPLFP x 100% (5.1)
TP+ FP
A = 1 2
COUracy = s TN < 00% (5.2)

Here TP, FP, TN, FN are defined as:

e TP: Number of misbehaving applications correctly identified.
e FP: Number of well behaving applications falsely identified as misbehaving.

e TN: Number of well behaving applications correctly identified.
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e FN: Number of misbehaving applications falsely identified as well behaving.

Among those two metrics we prioritize detection confidence over accuracy. This is
because a monitoring system that is capable of detecting a subset of all existing problems
is still valuable to the end users as long as the system has high confidence in its detections.
On the other hand, a system that tries to detect all the problems but can not be certain
in any of its results is less meaningful to the end users. This is because the users would
not be able to carry out any actionable plan with high confidence.

5.3.3 Training, Validation and Testing

In order to evaluate different models, we split the one month data collected during the first
phase of the experiment into three subsets. The first 14 days are only used for training, the
next 5 days are mostly used for validation, and the last 11 days are mostly used for testing.
The training set as the name suggests is for training our models, the validation set is for
experimenting with different model parameters, and the testing set is for evaluating the
final models. Usually after a model is created, it is evaluated against the entire testing set.
In this work, we decide to take a slightly different approach involving “moving windows”.
Instead of using the last 11 days as one single testing set, we would break them into 11
smaller testing sets each containing 1 day worth of data. For each small testing set, a
model is created based on the usage data collected from the previous 14 days. The overall
performance of our models and their parameters are evaluated by calculating the average
results from all the smaller testing sets. The Figure 5.6 is a graphical illustration of this
process, as you can see the same process is also applied when testing against the validation
set.

There are two benefits with this approach. One, the moving window approach is what
our monitor system uses when running on real devices. By evaluating our models this
way, we get a better picture on how the system would operate in the real world. Two,
occasionally a model might explain a testing set perfectly just by random chance. With
multiple pairs of training and testing sets, we can get a more reliable picture about the
true performance of our models.

5.3.4 Parameter Tuning

K-nearest neighbors, decision tree, and neural network are the three machine learning
algorithms we have experimented with before constructing our models. Each of those
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algorithms has a few important parameters need to be configured according to the charac-
teristics of the underlying dataset. By testing on the validation sets, we are able to a find
a set of parameters that works for our use case.

For the k-nearest neighbors algorithm, the most important parameter is the “number
of neighbors”. This parameter decides how many nearest data points the algorithm should
take into consideration when predicting the label for a new data point. The value for
“number of neighbors” should be set depending on the total number of data points and
how densely they are concentrated. When the value is set too low, a prediction’s outcome is
highly influenced by a few points near the new data point. This could result in inaccurate
predictions due to outliers in the dataset. On the other hand, when the value is set too
high, the algorithm might end up including points further away which are not related to the
point that we want to predict. For our dataset, the density of data points are relatively low.
This is due to the quantization we have done on our usage data described in section 5.1.1.
After comparing results on the validation set, we find setting the “number of neighbors”
to 5 works best for our dataset. That said, the models are currently trained on 14 days
of usage data. If the training set is increased in future, we should also consider increasing
the “number of neighbors” since there would be more data points in each group.

For the decision tree learning algorithm, the parameter with the most impact is the
maximum depth of the tree. With each additional level of depth, the max number of
partitions within a feature space doubles. A higher maximum depth allows the algorithm
to achieve more fine tuned splits between each class, but it also increases the risk of
overfitting. During our testing, we find the accuracy of our model gradually increases as
we increase the maximum depth from 1 to 3. The accuracy starts to become inconsistent
once the value goes beyond 3.

For the neural network algorithm, we need to decide on the high level structure for
the network. This includes the number of layers and the number of neurons inside each
layer. The configuration for the input and output layers are predetermined based on the
dimension of the dataset, and the type of problem the network is meant to solve. In our
case, the input layer contains 3 neurons since we have three features in our dataset, and
the output layer contains 1 neuron since we are dealing with binary classification. The
real question is how to configure the hidden layers. We start with 1 hidden layer. As we
increase the number of neurons inside the layer from 1 to 10, we find the accuracy peaks
when the hidden layer has 3 neurons, and the accuracy starts to drop once the number of
neurons goes above 3. After we have decided to use 3 neurons for the first layer, we then
proceed to add a second hidden layer. For the second layer, we start with 2 neurons. The
reason we don’t consider 1 neuron this time is because with only 1 neuron in the second
hidden layer, the network would end up having a single connection between the second
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hidden layer and the output layer. This setup has the same effect as connecting the first
hidden layer directly to the output layer rendering the second hidden layer useless. In the
end, we find having 2 neurons in the second hidden layer achieves the best result. After two
hidden layers, additional layers start to negatively affect the models’ accuracy; therefore,
the final network is structured with two hidden layers with 3 neurons in the first layer and
2 neurons in the second layer.

5.3.5 Comparison of Results

With all the important parameters determined, we then move on to testing our models
using the testing set. The result of each algorithm is shown in Table 5.1. From the table
we can see the decision tree algorithm has out performed k-nearest neighbors and neural
network in both detection confidence and overall accuracy. This result can be explained
by the intuition we have gained from data visualization discussed in section 5.2. If we plot
our dataset we would find the points with label equals “used” generally form thin cuboids
in the three-dimensional feature space. From this intuition, we can rule out any algorithm
that looks for concentrated “bubbles” in the feature space such as the k-nearest neighbors
algorithm. Instead we think decision tree would be a good fit for this particular use case.
This is because every time when the tree creates a new branch, it would slice the feature
space in half. After several levels of branching, our model would end up creating one or
more cuboids in the three-dimensional feature space, and those cuboids can comfortably
encapsulate the usage patterns we have observed so far from the plots shown in Figure 5.3,
5.4 and 5.5. Note, the highest detection confidence achieved by our model is around 90%.
It is possible for a normal behaving applications to be falsely flagged as misbehaving from
time to time. As described in section 4.3.3, our UI ranks and filters its outputs based on
the number of times an application has been flagged as misbehaving; therefore, unless an
application has been constantly flagged by our system, it would not show up on the list of
misbehaving applications.

Learning Algorithm Detection | Detection | Accuracy | Accuracy
Confidence | Confidence | (mean) (SE)
(mean) (SE)

K-NN 84.74% 1.67% 72.59% 1.70%

Decision Tree 90.79% 0.45% 74.22% 2.79%

Neural Network 85.62% 1.43% 71.74% 2.84%

Table 5.1: Prediction Results on the Testing Data
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5.4 Size of Training Data

Another question we want to answer is “how much data do we need for training our
models?”. To answer this question we have experimented with various sizes of training
data, and the results are shown in Figure 5.7. From the figure we could see the detection
confidence of our decision tree models start to plateau after the size of training data reaches
around 10 days; therefore, we decide to use 14 days as the size of our training data. The
reason we use 14 days instead of 10 days is because 14 days contain two full weeks of data.
This way, each day within a week would be represented equally. If we use another size that
is not divisible by 7, we could end up with biased models and unfairly emphasize patterns
from a few particular days in a week.
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Chapter 6

System Evaluation

In this chapter, we evaluate the performance of our overall system. There are three main
questions we would like to answer. One, can our models correctly identify misbehaving
applications? Two, are the misbehaving applications detected by our system actually
harmful to users’ experience? Three, how much power does our system consume?

6.1 Model Evaluation

After running the system for two months, our models’ detection confidence and overall
accuracy are measured and shown in Table 6.1. In this section the performance of our
system is compared against a “straw man” system. The “straw man” here represents a
hypothetical system that simply marks every running program as misbehaving. From the
table we can see our system out performs the “straw man” system on detection confidence,
but under performs on overall accuracy. This is expected because for our use case, we
prioritize detection confidence over the standard measurement for accuracy. It is more
important to have a monitoring system that can detect some problems with high confidence
than a system that tries to find all the problem, but not certain in any of its detections.
Another reason the “straw man” system is able to achieve an artificially high performance
in this case is because in order to study the negative impacts of misbehaving applications
on battery life, we have intentionally loaded our device with a large number of potential
misbehaving applications. This results in a high percentage of misbehaving applications
among all the applications found running on the device. For the average users, the accuracy
from the “straw man” system is likely to be much lower.
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Model Detection | Detection | Accuracy | Accuracy
Confidence | Confidence | (mean) (SE)
(mean) (SE)

Decision Tree 91.06% 1.07% 75.42% 1.4%

Straw Man 80.74% 0.70% 80.74% 0.70%

Table 6.1: Model Performance

6.2 Measuring the Negative Impact of Misbehaving
Applications on Battery

Battery life is one of the most important resources for mobile devices. In this section, we
study the negative impacts misbehaving applications could have on an device’s battery
life. In order to do so, we join the detection records, usage records and system metrics
previously collected by our client into a single dataset. The resulting dataset provides
us with an overview of the device’s states at various times. Each row inside the dataset
represents a 15 minutes time window. Inside each window, there are information including
usage records, device’s charging status, the amount of battery consumed in the current
window measured in milliamp hour (mAh) and the misbehaving applications identified by
our system along with their CPU and network usage.

Before we can start measuring the impacts from misbehaving applications, there are
two things we need to do. First, we need to filter out the time windows when the device
is connected to a power source. This leaves us with records collected when the device is
only powered by battery. Second, we need to filter out all the time windows when the
device is actively used by the user. This is because unlike background processes which
slowly drain a device’s battery over a long period of time, active foreground applications
tend to consume large amount of battery during short bursts, and the consumption often
varies greatly depending on many different factors which can not be easily observed. This
is demonstrated in Figure 6.1 and Figure 6.2. As we can see, the speed of battery drain
varies greatly when the number of usage records is greater than 0. If we leave the time
windows with active usage records in the dataset, we would end up with a large amount of
noise which can not be explained by the data we currently have; therefore, it is necessary to
drop those data points if our goal is to measure the battery drain purely from background
processes.

As described in the section 4.3.3, our monitor takes both CPU usage and network usage
into account when detecting misbehaving applications. An application is flagged as mis-
behaving if the application is found using either CPU or network while the model thinks
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it should not be running. In order to study the impact of those misbehaving applications
have on the battery life, we first group the time windows based on the number of misbe-
having applications they have. We then calculate the average speed of battery drain for
each group. The results are shown in Figure 6.3 where the X is the number of misbehaving
applications, and Y is the average speed of battery drain. From this graph we can see,
the speed of battery drain gradually increases as the number of misbehaving applications
goes up. Eventually when the number of misbehaving applications reaches 10, the speed of
battery drain plateaus around 50 mAh per hour. That said,there is one data point reaches
above 60 mAh per hour when the number of misbehaving application is at 15. This is
likely caused by a few extreme values in the dataset. It is very rare for the device to have
15 or 16 misbehaving applications running at the same time; therefore, the last few data
points on the graph could be easily influenced by outliers which is also why they have
longer error bars. The plateauing of battery consumption could be explained by resource
sharing. For example, when an application requests to transmit a packet over the Internet,
there is an battery overhead for starting the WiFi module associated with the request. If
another application wants to send a packet 10 minutes after the previous request, the WiFi
module would need to be turned on once against, and this would also create additional
battery overhead, but as the number of applications that use WiFi increases, eventually
the requests would come in frequently enough, and the WiFi module would be powered on
the entire time. At that point, the battery consumption would start to plateau which is
what we are seeing in Figure 6.3.

Another interesting observation we have found is that most of the battery drain on
mobile device is caused by network usage, and not CPU usage. Every time our monitor flags
a misbehaving application, it also records the CPU and network usage of the application
for future analysis. With this data, we can separate the applications flagged due to CPU
usage from the ones flagged due to network usage. If we plot their impacts on battery
separately we get Figure 6.4 and Figure 6.5. From those two figures we can see when
flagging application based on only CPU usage, the number of misbehaving applications
has very little effect on the speed of battery drain. On the other hand, the misbehaving
applications flagged due to network usage have a much more visible effect on the speed of
battery drain. This observation verifies the finding from previous research done by Pathak
et al. In their research, they have shown that a majority of a mobile device’s battery is
spent on [/O components such as WiFi and 3G which is also what we have observed in
our data [21].

Since we have shown that most of the battery drain is caused by network usage, from
this point on we will mainly focus on the misbehaving applications flagged based on their
network usage. In Figure 6.5, we can see the speed of battery drain is 32.66 mAh/h
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when there is no misbehaving application. As the number of misbehaving applications
increases from 0 to 11, the speed of battery drain increases by 2.01 mAh/h on average for
each additional misbehaving application found running on the device. The speed of battery
drain plateaus around 50 mAh/h when the number of misbehaving application goes beyond
11. This happens when the device is heavily infested with misbehaving applications, but
for average users their devices will likely to have less misbehaving application running than
these extreme cases. The device we use in our experiment has a 3000 mAh battery. From
the information we have so far we can estimate the percentage of battery each consistently
misbehaving application consumes during a period of 24 hours, and we can also find out
the impact of those misbehaving applications have on the device’s total stand-by time. The
results are shown in Table 6.2. From the table we can see, each consistently misbehaving
application consumes 1.61% of battery each day and on average reduces the device’s stand-
by time by 2 hours.
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Number of Consistently || Additional Percentage | Stand-by
Misbehaving Applications of Battery Consumed | Time
Each Day

0 0% 91.86h
1 1.61% 89.13h
2 3.22% 86.55h
3 4.82% 84.13h
4 6.43% 89.13h
5 8.04% 81.83h
6 9.65% 79.66h
7 11.26% 77.59h
8 12.86% 75.64h
9 14.47% 73.78h
10 16.08% 72.01h
11 17.69% 68.71h

Table 6.2: Battery Consumption of Consistently Misbehaving Applications (According to
Network Usage)

6.3 A Closer Look into Some of The Misbehaving Ap-
plications

Within our dataset, we have collected network usage from each application through out the
entire experiment. This data allows us to take a closer look into some of the misbehaving
applications found on the device. In Table 6.3, we have the top 15 misbehaving applications
ranked according to their network usage during one month period. The network usage
shown in the table are measured while the phone is idle and running on battery. By
comparing each application’s network usage against the features it provides, we have come
up with the following likely causes of network usage:

e Ads Pre-fetching: Pre-fetching contents for advertisements is a technique com-
monly used by app developers. By periodically downloading the newest ads, de-
velopers can minimize the load time of each in-app advertisement while keeping
the content relatively fresh. Apps likely to have this feature are Facebook, Bilibili,
WeChat, Weibo, Selfie Camera and SoundCloud. All of those apps have received

more data than others. They all have in-app advertisements, and many of those
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APP ID Data Re- | Data Receive | Send Description

ceived Sent Count | Count
com.facebook.katana 244 MB | 0 MB 136 0 Facebook
tv.danmaku.bili 11.0 MB | 0 MB 464 2 Bilibili (video site)
com.tencent.mm 10.5 MB | 0.6 MB 446 30 WeChat
com.mcdonalds.superapp || 7.5 MB 0.1 MB 44 2 Mcdonalds’ rewards app
com.weico.international 4.6 MB 0.1 MB 94 2 Weibo
photoeditor filter.camera || 3.8 MB 0.1 MB 242 4 Selfie camera
com.duapps.recorder 2.6 MB 0.9 MB 166 118 Screen recorder
com.soundcloud.android || 2.4 MB 0.1 MB 170 4 SoundCloud
com.facebook.orca 2.3 MB 0.1 MB 98 1 Facebook Messenger
net.oneplus.weather 1.8 MB 0 MB 126 0 Weather app
com.epicgames.portal 04MB |0.1MB |36 24 Fortnite (game)
com.whatsapp 0.3 MB 0.1 MB 66 22 Whatsapp
com.xiaoji.emulator 0.2 MB 0.3 MB 180 76 Game console emulator
com.netflix.mediaclient 0.2 MB 0 MB 26 0 Netflix
com.tencent.ig 0.1 MB | 0.1 MB 16 12 PUBG (game)

Table 6.3: Top Misbehaving Apps Ranked by Data Received

advertisements are able to be displayed on the application’s splash screen without
any obvious loading time.

Data Harvesting: Data harvesting is also a common practice found in many mobile
applications. One interesting observation is that contrary to popular belief, social
network apps such as Facebook and Weibo have rarely been spotted uploading data
while running in the background. Note, the network usage shown in Table 6.3 only
contains the network usage collected while the phone is running on battery, but
we find this behaviour also holds true when the device is connected to power. This
observation seems odd at first glance since both companies’ business models are built
on targeted advertising which requires large amounts of user data, but then we realize
there is probably no need for social networks like Facebook to actively harvest data
from users’ devices. Just by having all the network requests logged on the server-side,
Facebook already has plenty data about a user’s interests and behaviours; therefore,
it might actually be beneficial for Facebook to lower its battery footprint so the user
can stay in their app longer. On the other hand, the apps which have been found
uploading data in the background are mainly games and utility tools such as Fortnite,
PUBG and the DU Screen Recorder. This is probably because unlike social network
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apps, games and utility tools have fewer channels for them to gather information
about a user; therefore, it is in their best interests to collect as much information as
possible from the user’s physical device.

e Notifications: Push notifications can also cause high network usage. Those notifi-
cations include messages from messaging apps such as WeChat, Facebook Messenger
and Whatsapp. They also include promotional offers from apps such as the Mcdon-
alds’s reward app and the weather notifications from the weather app.

Another observation from Table 6.3 is that the total amount of network data consumed
by background processes is relatively low. Originally we have suspected that misbehaving
applications might have significant impact on uses’ monthly data quota, but we have found
this is not the case. There might be frequent network requests initiated by the misbehaving
applications, but the size of each request is often very small, and around 80% of those data
is transmitted on WiFi and does not consume data quota. Instead, the negative impacts
from those network requests are mostly observed on the battery life.

6.4 Our System’s Battery Overhead

One of our design goals is to keep the monitoring system’s battery overhead at minimum.
To achieve this, a lot of attention has been spent on finding the most optimal ways of col-
lecting usage data and system metrics. In order to measure our system’s battery overhead,
we have collected the battery statistics returned by the Android’s dumpsys command, and
the outputs from the dumpsys command are analyzed using Google’s Battery Historian.
The results are shown in Table 6.4. As we can see, our app only consumes around 0.38%
of the total battery each day.

CPU user time per day 1m 16s 935ms
CPU system time per day Om 20s 490ms
Total CPU time per day 1m 37s 425ms
Power use per day 0.38%

Table 6.4: Client-side’s Daily Battery Overhead
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Chapter 7

Conclusion and Future Works

In this work, we propose an automated monitoring system that can detect misbehaving
applications running on mobile devices. Unlike previous automated monitoring systems,
our solution requires minimum inputs from the end user. Instead, it collects the user’s us-
age records in the background and build models to encapsulate the contexts when the user
is likely to use each application. Using the models it creates, our system can identify mis-
behaving applications that are consuming system resources while providing no meaningful
benefit to the end user.

During our development, we find there are several challenges when it comes to creating
monitoring systems for mobile devices. If not handled with care, the monitor could either
provide us with incomplete information making it difficult to later build models, or the
monitor might require a large battery overhead making it hard to justify for the its benefits.
In this work, we introduce a practical design for addressing those problems. Our monitor
can collect detailed information for generating models while following all the best practices
of energy saving recommended by the Android operating system.

For usage modeling, we first study our dataset through data visualization. From data
visualization, we manage to gain intuitions about the underlying usage patterns. We then
experiment with several machine learning algorithms, and measure their performance for
encapsulating the underlying patterns in our data. By combining intuitions and testing
results, we arrive at the conclusion that the decision tree learning algorithm is a good fit
for our usage case.

In order to evaluate our solution, the monitoring system is tested for a period of two
months. From the data collected during the two months period, we find there is a strong
positive relationship between the number of misbehaving applications identified by our
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system and the speed of battery drain. We also find the misbehaving applications with
high network usage are the main causes of fast battery drain, and the high network usage
is most likely due to aggressive ads pre-fetching, data harvesting and push notifications.

7.1 Future Works

One potential improvement is incorporating additional features beside time and location
in the usage models. For example, we can collect data from a device’s accelerometer
and gyroscope. By combining those data, we could extract more meaningful higher level
features such as “whether the user is at home” or “whether the user is currently traveling on
a vehicle”. Using those higher level features we would be able to model more complicated
contexts and identify usage patterns which are not observable otherwise.

Currently our system only flags misbehaving applications in its UI, and it is up to
the user to uninstall them. Another direction for future works is to experiment with
actively limiting misbehaving applications’ resource consumption. This can be done by
terminating misbehaving applications gracefully or putting them into a low priority state
with less access to system resources such as CPU and network modules.

Addressing the privacy concerns could also be a future improvement. Right now our
client-side application relies on the external server to train its usage models. The current
setup gives us the flexibility to experiment with different model parameters without having
to change any client-side code, but once we have found the optimal parameter values for
our models, we could start delegating the training process to the client-side. The training
could be done in the background when the device is charging, and this would solve most
of the privacy concerns since all sensitive data would be kept locally on the device.

7.2 Broader Implication

In recent years, more and more software developers have shifted their monetization methods
from direct user payments to advertising. This shift has allowed developers to create
products which were not financially viable in the past. From the users’ perspective, people
are willing to sit through the advertisements as long as they feel the software is providing
enough value to justify for its cost. If a software is not providing enough value or being too
aggressive in showing advertisements, the user can always make the decision to uninstall
the software. This arrangement between developers and users has been working relatively
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well so far, but there is one problem with this business model. That is there are other
costs beside the time spent on viewing advertisements, and those costs are often hidden
from the user. For example, as we have shown in this work, there is a significant cost in
battery life associated with software using ad pre-fetching. Since those costs are hidden
from the user, it can be very difficult for users to properly evaluate the costs and benefits
of each software. By building automated monitoring solutions, we can shine a light on
those hidden costs, and we believe solutions like our can help to create a more transparent
and healthier marketplace for mobile applications.
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