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Abstract

Our understanding of physical phenomena hinges on finding universal core mechanisms
that unite them. The concept of universality is deeply ingrained in the study of quan-
tum many-body systems. At zero temperature, microscopically different systems with
long-range order collapse into their universal state described by a handful of universal pa-
rameters. Establishing those parameters implies identification of the universal theory that
is effectively describing the system and ultimately providing the desired understanding.
We take up this task with the help of Rényi entanglement entropy. Defined with respect
to a system bipartition, this measure quantifies information shared between the subsys-
tems. Understanding what insights into universality are encoded within this information-
theoretic quantity as well as developing numerical tools to efficiently estimate the Rényi
entanglement entropy are the subjects of this thesis.

On the computational end of this far-reaching goal, we develop a novel theoretical frame-
work for constructing improved Rényi entanglement entropy estimators in the context of
d+ 1 quantum Monte Carlo methods. The discovery of a connection of this methodology
to the well-established Kandel-Domany formalism provides a clear path towards general-
ization. Additionally, we embrace a data-driven approach towards learning the ground
state wavefunction. We demonstrate how a restricted Boltzmann machine can be used to
reconstruct the Rényi entanglement entropy from projective measurements of a quantum
ground state. Furthermore, we extend this classical generative architecture to a quantum
analogue that we call the quantum Boltzmann machine.

On the theoretical side of this endeavour, we study the Rényi entanglement entropy
scaling terms for two quantum lattice models embedded in two dimensional space via
extensive quantum Monte Carlo simulations. For the ground state of the XY model,
we provide conclusive numerical evidence for a logarithmic contribution that uniquely
characterizes the continuous symmetry of the emerging order parameter. Moreover, we
confirm the form of the subleading universal geometric contribution arising due to the
bosonic nature of low-energy degrees of freedom in this model. For the critical ground
state of the transverse field Ising model, we develop a novel scaling procedure to extract a
universal number κ2 revealed via a cylindrical entangling bipartition in the thin-slice limit.
The combined product of our work sheds new light on the entanglement-based classification
of universality and brings a suite of new powerful numerical tools to continue illuminating
this theoretical program in the future.
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Chapter 1

Introduction

Quantum ground states conspire into an intricate superposition of product states. At zero
temperature, all correlations between parts of a system are mediated by the entanglement.
Therefore, it is only natural to study quantum ground states from the point of view of
entanglement. A vast majority of quantum states residing in a Hilbert space are highly
entangled. A random state generated via a selection of its amplitudes from a uniform
distribution in a given basis is almost surely maximally entangled with respect to any
bipartition [1]. This statement can be put on a quantitative ground via a measure of en-
tanglement known as entanglement entropy (EE). Defined with respect to a subsystem A,
EE quantifies the quantum information contained within the subsystem about its comple-
ment. With respect to the EE, the highly-entangled structure of a random quantum state
takes the specific form of a volume law, such that

S(A) ∼ Volume(A). (1.1)

In other words, the EE is expected to be proportional to the volume of any subsystem A.
This feature of a general quantum state is in striking contrast to the EE structure obeyed
by physical ground states. It transpires that a physical Hamiltonian imprints a stringent
structure on the corresponding ground state via the so-called area law,

S(A) ∼ Area(A). (1.2)

Comparison of the above equations reveals a fundamental truth about our universe - ground
states are very different from a typical quantum state. In the thermodynamic limit, ground
states effectively reside in a subspace of measure zero. Understanding the structure of this
subspace via its universal EE characteristics is the goal of this thesis.
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1.1 Universality in the entanglement

EE is a highly non-local quantity that summarizes the underlying structure of a physical
state embedded in a vast Hilbert space via a single number. In order to extract information
from such a compressed description, we study how the EE changes in response to the
modifications in the region A such as its size and shape. Entrancingly, the resulting scaling
of the EE is found to be universal among a vast array of condensed matter systems. In
fact, those systems can be classified by the structure of the entanglement as revealed by
the EE scaling.

In quantum many-body systems, the area law can be traced back to the locality of in-
teractions and, therefore, directly encodes the microscopic details of the underlying Hamil-
tonian. Non-local features of ground states transpire in the EE as well. On the extreme
side of this spectrum, one finds topologically-ordered states such as spin-liquids. Endowed
with patterns of long-range entanglement, those systems correspond to an EE that scales
independently on the extent of the subsystem [2, 3]. In fact, EE is often the only probe
that can detect topological order [4].

For systems characterized by long-range order, the EE encodes universal information
about the effective low-energy Hamiltonian. In this case, universal numbers extracted from
EE are directly related to the geometry of the region A. For instance, the geometry consid-
ered in this thesis together with the physics uncovered by studying the corresponding EE
scaling are summarized in Fig. 1.1. This flexibility in the range of information extracted
from EE motivates a EE-based “geometrical” paradigm of critical systems. Tradition-
ally within the Landau paradigm, universal fixed points are classified via a set of critical
exponents extracted from n-point functions. It is an open question whether universal fea-
tures contained in the EE represent a complementary or distinct view on the relationship
between critical theories.

A strong motivation for a research program aiming to develop an EE-based geometrical
classification originates from the well-known analytic result in one dimension. Namely, for
a conformally invariant system, the EE scaling provides direct access to the central charge,
c [5, 6]. This universal number is arguably the most important quantity for identifying
the relevant conformal field theoretical description of the system. Its further importance is
underlined in Zamolodchikov’s c-theorem establishing a strict relationship between different
fixed points in the renormalization group (RG) plane based on the central charge value
[7, 8]. The manifest relationship between the EE and the central charge can be taken as the
definition of latter - that is, a coefficient characterizing the logarithmic divergence of the
EE. While in one dimension, this redefinition of the central charge is mostly syntactic in

2



(a)

`

A

Figure 1.1: The bipartition employed in this thesis to probe universality of underlying
microscopic Hamiltonians. The system has periodic boundary conditions such that it
can be visualized on the surface of a torus. Region A is a cylindrical subregion that
wraps around the y-direction and has length ` along the x-direction. In ground states
with spontaneously broken continuous symmetry, such a region A geometry directly
reveals the symmetry of the order parameter (see Sec. 4.1). In scale-invariant systems,
the thin-slice limit, ` → 0, unravels a universal contribution to the entanglement
entropy characterized by a universal number κ (see Sec. 4.2).

nature, in higher dimensions, such interpretation generalizes to the F -theorem in 2+1 and
the a-theorem in 3+1, both relying on the geometry of a hyper-spherical region A to extract
an RG-monotone [9, 10, 11]. However, the study of such regions on a lattice is challenging
due to an unavoidable pixelation. Therefore, in order to employ the powerful RG theory as
a practical tool for the study of condensed matter systems, the search for universal numbers
acting as monotones under RG-flow must be extended to other entangling surfaces.

1.2 Entanglement entropy scaling theory

In order to gain intuition about the origin of various terms contributing to the total EE
corresponding to a region A, we consider the following phenomenological argument in
the context of a renormalization group (RG) flow for a d-dimensional system [12, 13].
Specifically, we consider the real-space RG where at each step n of the renormalization
procedure the lattice constant δ is renormalized as rn = bnδ. Our scaling argument then

3



relies on two postulates. First, we assume that the total EE is composed of independent
contributions from every length scale rn along the (RG) flow such that

S(A) =
∑
n

S(rn, A). (1.3)

In integral form, this expression takes the form1

S(A) =

∫ rmax

δ

S(r, A) d
(

ln
r

δ

)
. (1.4)

Here, rmax determines the infra-red (IR) cutoff in the RG procedure. This bound is set
by the scale at which region A is no longer entangled with its complement. In general,
rmax = min(ξ, `) where ξ is the correlation length and ` is the characteristic length of region
A. In a scale-invariant system, the correlation length diverges, i.e. ξ → ∞, so that the
only IR length scale is provided by the entangling region, rmax = `. Therefore, by simply
changing the size `, the EE is able to probe the system at different scales.

Second, we assume that at each scale r, the contribution to the EE is local to the en-
tangling boundary. As such, it can be represented as a surface integral of a local geometric
function g(A, r),

S(r, A) =

∫
∂A

dsd−1

rd−1
g(A, r). (1.5)

Here, dsd−1 represents a dimensionful differential surface element. As the EE is a dimen-
sionless quantity, we normalize the surface element by the inverse scale 1/rd−1. Combining
both assumptions into one equation, we get

S(A) =

∫ rmax

δ

dr

rd

∫
∂A

dsd−1g(A, r). (1.6)

In a flat one dimensional system, the inner integral can only be a constant. In this case,

S(A) ∝ ln rmax + cδ, (1.7)

where cδ is a constant that has absorbed the microscopic length scale δ. In a gapped
system with sufficiently large region A, rmax = ξ, indicating that the EE saturates once the
entangling region exceeds the correlation length. As the boundary size is also constant, this

1The logarithmic measure appears due to the change of variables rn = bnδ → n = eb ln (r/δ) → dn =
d ln (r/δ).

4



constant contribution to the EE represents the area law. However, in a one-dimensional
critical system, the area law is violated. Instead, we recover the well known-result [5]

S(A) ∝ ln `+ cδ. (1.8)

As the non-universal constant δ does not appear in the logarithm, the coefficient of this
term must be universal. We note that so far our argument has ignored the effect of the
boundary conditions, which is equivalent to considering region A being embedded in an
infinite chain. For a conformally invariant system, the full analytic calculation on a finite
system L reveals a signature of a universal geometric function that depends the aspect ratio
`/L [6]. It also reveals that the universal number characterizing the logarithmic divergence
above is the central charge.

In two spatial dimensions, various options for the geometric integral Eq. (1.5) due
various choice for the geometry of region A lead to various EE scaling forms [12]. As a
rule of thumb, region A geometries that produce a logarithmic contribution allow one to
extract universal numbers, since the microscopic effects parameterized by the ultraviolet
cut-toff, δ, separate out into an additive constant proportional to ln δ. However, as the
following argument shows, non-logarithmic contributions can lead to universal numbers as
well.

Consider a region A with flat boundaries embedded in a critical system of size L, such
as in Fig. 1.1. In this case the inner geometric integral in Eq. (1.6) simply gives 2Lcg,
where cg = g(A, r) is the constant local geometric feature. Ignoring the effects due to the
boundary conditions and assuming that the entangling region’s height is `, Eq. (1.6) takes
the form

S(A) =

∫ `

δ

2cgL

r2
dr

∝ L

δ
− L

`
. (1.9)

Unlike in one dimension, we recover the leading area law even for a critical system. More-
over, the “subleading” contribution is free of the UV cut-off parameter δ, thus hinting at its
universality. As in the one-dimensional case considered above, the effects of the boundary
conditions modify this result to

S(A) = a
L

δ
+ χ(u), (1.10)

where χ(u) is a universal function specified by the aspect ratio u = `
L

. More generally, this
geometric function depends on all macroscopic geometric characteristics of the system.
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For instance, in a torus of unequal dimensions, it acquires a dependence on the system
aspect ratio, Lx/Ly, as well. For this reason, unless this function is the targeted source of
universal information (as in Sec. 4.2), it is advisable to keep all the aspect ratios constant
during the EE data fitting analysis.

1.3 Entanglement-inspired numerical approaches

While brute force approaches that directly tackle the exponential enormity of the Hilbert
space are equally good, or rather equally bad, at describing any of the highly-entangled
states, a compact and scalable representation of a ground state must take into an account
the lesson learned from the entanglement structure - not only it must be good at capturing
the area law, but it also must be bad at capturing the volume law. This lesson has been
an ongoing area of research for the last two decades.

The evolution of numerical methods targeting the estimation of entanglement entropy
paralleled our understanding of many-body systems through its entanglement structure.
Arguably the most fruitful interaction between the development of theory and numerical
tools happened in one dimensional systems. In this low-dimensional realm, tensor networks
methods have flourished taking their routes from the matrix product state (MPS) [14]
and the density matrix renormalization group (DMRG) method [15]. The success of this
variational ansatz (MPS) and the optimization procedure behind it (DMRG) turned out
to be ultimately tied to each other and to the entanglement structure of physical states
they were designed to represent. Indeed, on one hand, in its iterative procedure, DMRG
heavily relies on the entanglement between two complementary subsystems in order to
sort and prune out the exponential large Hilbert space in terms of its significance to the
ground state wavefunction. On the other hand, in one-dimension, the area law bounds
the amount of entanglement entropy to a constant and, therefore, represents a physical
phenomenon that makes it possible for this procedure to succeed. More importantly, the
revelation that the entanglement structure of a quantum state needs to be incorporated as
an inductive bias into the structure of the variational ansatz has driven the advancement
of tensor networks ever since.

An important development in tensor networks came from the study of one-dimensional
critical systems. In those scale-invariant systems, it was noticed that the entanglement
entropy seemed to slowly grow without bounds with the system size [16]. As a result, the
computational costs associated with the MPS ansatz optimization also grow polynomially
in the system size, thus requiring a brute-force approach for the largest system sizes.
The multi-scale renormalization ansatz (MERA)[17] provides an elegant solution to this
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problem. Its design reflects the multi-scale structure of entanglement present in systems
it was designed to imitate [17]. In such systems, the entanglement is equally redistributed
among all the scales. In other words, the contribution of each renormalized scale of a
system remains constant. MERA is able to capture this entanglement structure through
a deep layered architecture mimicking the scale transformation between the progressive
levels of the network while preserving its invariance from one level to the next. Therefore,
MERA provides another example of a classical method that allowed to harness the quantum
complexity by exploiting its intrinsic structure.

Unlike in one dimension, in two dimensions, the boundary of a subsystem is directly
related to its size. For this reason, the area law provides a formidable challenge to ten-
sor networks, even to the specialized architectures such as projected entangled pair states
(PEPS) [18]. In order to overcome this limitation, in this thesis, we rely on the realization
that the exact knowledge of the ground state sought by tensor networks is not mandatory
for the extraction of accurate information about it. Stochastic methods such as quantum
Monte-Carlo (QMC) introduce a controlled bias-variance trade-off to the equation. Those
methods provide an unbiased tool to estimate quantities of interest at a price of uncer-
tainty in their values. The computational scaling of QMC sampling is not affected by the
entanglement structure of the system and, therefore, is not paralyzed by the area law in
dimensions larger then one in the same way as tensor networks. For this reason, QMC
methods have proved to be a vital tool for the study of EE in large classes of quantum
models beyond the reach of tensor networks.

1.4 Numerical approaches for entanglement entropy

The sources of complexity in QMC methods targeting the extraction of EE concentrated
on two fronts. The first challenge is to reduce the variance of the estimated EE. While the
EE does not impact the sampling performance of a QMC, its magnitude directly affects
the signal-to-noise ratio of the extracted estimate. A conceptually simple but an efficient
method called ratio trick allows to control the strength of the signal targeted by an EE
estimator. However often in practice, this method alone is not able to generate sufficiently
accurate estimates required for probing the informative subleading contributions to the
EE. As a tool to mitigate this problem, we develop a projected ensemble framework that
allows to dramatically reduce the noise by constructing improved estimators based on a
reformulated classical representation of a quantum system in terms of highly non-local
loops.

The second source of complexity inherent to QMC methods is intrinsically linked to the

7



quantum nature QMC methods are designed to emulate. In a path-integral representation,
d-dimensional quantum states are d+1 objects with complicated interference patterns in the
imaginary-time dimension. Contrarily, QMC algorithms are inherently classical algorithms
that rely on the probabilistic interpretation of a quantum state and ignore its complex
phase structure. Fundamentally, the success of this representation hinges on the absence
of destructive interference within a targeted quantum system. When this condition is not
satisfied, the classically biased representation leads to the so called sign problem within
QMC methods [19]. Namely, a QMC ends up exploring the classical state space that
would self-average to zero by means of destructive interference in a true quantum state.
Ultimately, this unguided exploration leads to the loss of ability to generate physically
relevant samples and, hence, a noise-dominated EE estimate. Unfortunately, most d + 1
QMC methods targeting spin systems are plagued by the sign problem.

An inspiration towards a possible solution once again can be gained by considering the
problem from the point-of-view of the bias-variance framework. Applied to a quantum
system with a large EE and a strong sign structure, tensor network and d + 1 QMC are
both expected to fail as they land on the opposite extreme ends on the bias-variance
axis. Fortunately, variational QMC (VMC) [20] allows to trade between those extremes.
Working directly in d-dimensional physical space of the underlying problem, VMC is devoid
of the sign problem. At the same time, being a QMC method, its sampling complexity is
not dependent on the entanglement. The bias and variance of this method are ultimately
tied to the expressiveness of the variational ansatz. Traditionally, the form of this trial
wavefunction has been physically motivated. A remarkable story of success is the BCS
wavefunction that elegantly captures the phenomenon of superconductivity in a Cooper
pair break-up of the wavefunction. Numerically, the Jastrow wavefunction with inbuilt
locality is often used to study lattice systems. The paradox of VMC is that a good trial
wavefunction requires a good understanding of the relevant physics of the problem in the
first place.2 In the language of machine learning, a good trial wavefunction requires good
features.

Compelled by recent successes of deep learning in fields like vision and reinforcement
learning relying on automatic processes of feature-engineering, the core ideas of self-learning
algorithms have propelled the VMC into the new era [21]. Framed as a generative learning
problem, the search for the ground state now relies on powerful neural-networks with multi-

2In fact, the same statement applies to tensor networks and QMC. For instance, MERA was inspired
from the insight of the scale-invariant structure of entanglement. Similarly, the success of QMC relies
on the efficiency of cluster updates whose design is intrinsically linked to the understanding of relevant
physics. The difference with the VMC is that unlike in the cases of the aforementioned frameworks, there
is no asymptotic guarantees for the exactness of this method.
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scale architectures and asymptotic guarantees of being universal function approximators.
Moreover, the variational optimization of those networks can be flexibly adjusted between
energy and data-based loss functions, making them directly applicable for an experimental
setup [22]. From the data-driven point of view, an experimentally-realized natural process
can be regarded as a physical implementation of the sampling component of a QMC.
Naturally produced datasets can be exploited to encourage ergodic exploration of the state-
space, thus, eliminating mode-seeking biases inherent to the energy-based optimization that
VMC relies on.3 In return, the learned variational wavefunction can be used to provide
access to physical quantities not easily accessible in a laboratory such as EE. This symbiotic
relationship is explored in this thesis via a classically and quantumly inspired architectures
for the trial wavefunction.

1.5 Outline

Below, we provide a brief overview of the chapters composing this manuscript.

Chapter 2 starts with an introduction to the concept of Monte Carlo-based calculations
and various strategies for implementation such as importance sampling and Markov Chain
Monte Carlo. It then proceeds with the development of two flavours of d + 1 QMC.
First, it discusses the framework of path-integral Monte-Carlo that can be used to map a
quantum model into its higher-dimensional classical analog. As a particular example, the
discussion revolves around the transverse field Ising model (TFIM) mapping to a classical
Ising model. As part of the corresponding section, the Fortuin-Kasteleyn decomposition
of an Ising model is shown to arise in a particular limit of a stochastic mapping based on
a restricted Boltzmann machine (RBM). This view allows a natural interpretation for the
Swensden-Wang cluster update as a blocked Gibbs update of the RBM. As part of the
RBM consideration, we also derive an effective model for the marginal distribution over
the hidden units, known as the random-cluster model. This model is later used in Ch. 3
in order to derive an improved EE estimator. Second, Ch. 2 discusses the stochastic series
expansion (SSE). The details of this QMC framework necessarily for implementation are
discussed in the context of XXZ model. Lastly, SSE estimators required to implement an
unbiased likelihood-based training of a quantum Boltzmann machine (introduced in Ch. 5)
are derived.

Chapter 3 builds up different strategies for estimating EE within d and d + 1 QMC
methods. In particular, it introduces a novel projected ensemble approach that provides a

3For further discussion of the trade-offs inherent to a particular choice of a cost-function, see Sec.5.1
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theoretical model for deriving new improved EE estimators in d + 1 QMC methods. Its
application within the path-integral and SSE frameworks are discussed in detail.

Chapter 4 showcases two EE scaling analyses. First, the quantum XY model is studied.
An intuitive state-counting argument for the origin of a universal logarithmic EE contri-
bution is provided. The numerical analysis is shown to accurately confirm the theoretical
prediction of Ref. [23]. Second, an EE study is applied to the critical TFIM. A universal
number κ2 characterizing the geometric contribution to EE is extracted in the limit where
the entangling region is a thin cylinder. For this task, a novel scaling analysis procedure
is developed and benchmarked on a data set from a non-interacting theory with known
results.

Chapter 5 introduces the concept of generative learning and, in particular, focuses on
the RBM. The full likelihood-based training algorithm is provided. As an application,
an RBM is trained on projective spins measurements of the TFIM ground state. In this
setting, the training is equivalent to a wavefunction reconstruction. As a proof-of-concept,
we demonstrate that entanglement entropy is correctly recovered from the reconstructed
state. Additionally, we introduce a novel quantum extension of the RBM dubbed the quan-
tum Boltzmann machine (QBM). A scalable likelihood bound-based training algorithm is
developed and successfully tested on an artificial classical dataset.

Chapter 6 summarizes the results of this thesis and provides thoughts on the future of
EE detection for the purpose of characterizing quantum many-body systems.

10



Chapter 2

Quantum Monte Carlo methods

Evaluation of expectation values is of interest to many subfields of science. In general this
problem can be cast in the form

〈O〉 =
1

Z

∑
c

O (c)W (c) , (2.1)

where W (c) ≥ 0 is the unnormalized probability of a configuration c and the sum is taken
over all configuration space. The normalizing constant Z can be written as

Z =
∑
c

W (c) , (2.2)

which turns the weight W (c) into a normalized probability P (c) = W (c)/Z. In the context
of statistical mechanics, those quantities adopt their domain specific terminology. The
normalizing constant Z is known as the partition function, the fundamental object of
interest in the field. The weight takes a particular form, W (c) = e−βE(c), known as the
Boltzmann weight. Here, E(c) is the energy and β = 1/T is the inverse temperature.
Hence, Eq. (2.1) takes the following domain specific form

〈O〉 =
1

Z

∑
s

O (c) e−βE(c) (2.3)

The notation is once again readjusted when talking about statistical quantum mechanics,
such that 〈

Ô
〉

=
1

Z
Tr
[
e−βĤ

]
=

1

Z

∑
s

〈s|Ôe−βĤ |s〉. (2.4)
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Now, the observable Ô and Hamiltonian Ĥ are quantum operators, mathematically de-
scribed by matrices. The probability of a state is weighted by a quantum generalization of
the Boltzmann weight, e−βĤ . Similarly to the classical case, the partition function is com-

puted by tracing out all physical degrees of freedom, Z = Tr
[
e−βĤ

]
. However, in contrast

to the previous interpretation of s as a configuration state with a well-defined probability,
in this context, s represents a quantum state living in the Hilbert space over which the
Hamiltonian Ĥ is defined. With some work and for some quantum models, it is possible to
find a configuration space c (not necessarily directly related to s) such that Eq. (2.4) can
be cast in the form of Eq. (2.1). This thesis’ focus is on quantum systems for which such
a transformation is possible. The underlying approaches towards this transformation are
commonly referred to as quantum Monte Carlo (QMC) algorithms. Later in this chapter,
we will explore the details of two flavours of QMC.

The unifying challenge that all Monte Carlo methods [24] are designed to tackle is
concealed in the summation operation in Eq. (2.1). The difficulty lies in the exponential
growth of the number of terms required to evaluate this expression exactly when the
system size grows linearly. Alternatives to the brute-force solution are made possible due
an underlying structure often present in problems of interest. In those problems, most
of terms in the sum have a negligible contribution to the expectation. The challenge of
locating the relevant terms, which are vastly outnumbered among other irrelevant terms,
is known as the curse of dimensionality. Monte Carlo methods aim to circumvent this
problem via a statistical approach. Namely, they approximate the true expectation value
with an unbiased estimate

〈O〉 ≈ 1

Ns

∑
s

O (c) , (2.5)

where the sum is over Ns samples generated according to W (c). As long as those samples
are i.i.d (identically and independently distributed), the variance of the estimator’s mean
can be controlled by enlarging the sample set as, according to the Central Limit theorem,
it will decay as 1/Ns. In practice, generation of i.i.d. samples from an arbitrary p (s) is a
very challenging problem. For this reason, the curse of dimensionality also plagues Monte
Carlo methods. However, its reformulation as a sampling problem provides a constructive
handle to tackle the exponential.

In this thesis, we mostly focus on problems with a particular realization of the curse of
dimensionality known as critical slowing down. This physical phenomenon is marked by
a relative slowing down of the thermal dynamics generated by local updates with respect
to the diverging correlation length near a continuous phase transition. This phenomenon
is the strongest at a critical point where the physical system becomes scale-invariant,
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implying that excitations on all scales are equally important. At such a point, local spin
updates that work on the scale of the lattice spacing fail to effectively update the system.
As a result, the relaxation time diverges with the system size, thus prohibitively requiring
ever-growing simulation times. The solution to this problem comes in the form of cluster
algorithms, which are a class of Monte Carlo updates capable of efficiently sampling the
system on all length scales. Such algorithms will be described in detail in this chapter.

The ergodicity loss in Monte Carlo simulations can also be caused by other effects such
as rough energy landscapes in glasses or first order phase transitions. In those problems, the
Markov chain is incapable of jumping over local energy barriers and tends to localize in a
particular configuration space. The techniques to tackle this challenge rely on the notion of
extended ensembles. The general idea of those methods is to extend the configuration space
of the problem in order to facilitate the mixing of the Markov chain, and, effectively, create
global updates in the original configuration space. Some examples of such methods are
parallel tempering, simulated annealing, umbrella sampling and Wang-Landau methods.

Quantum systems are described by exponentially large Hilbert spaces and, therefore,
numerical approaches to studying those systems must provide an efficient way to deal
with exponentially many degrees of freedom. Luckily, Monte Carlo methods such as the
Metropolis-Hastings technique provide a powerful tool for efficiently computating multi-
dimensional integrals. For this reason, Monte Carlo methods constitute the natural choice
for tackling the exponential complexity associated with quantum systems. In order to
apply this numerical approach in practice, a translation from the language of quantum
mechanics to the language of Monte Carlo, expressed with the help of classical probability
theory, is required.

In this chapter, we employ two constructions to achieve the mapping between quantum
degrees of freedom and equivalent classical ones. The first mapping is obtained via the
application of a Suzuki-Trotter decomposition provided by the imaginary path-integral
view of the quantum system. For certain d-dimensional quantum system, this approach
allows one to construct an equivalent d+ 1-dimensional classical systems for the price of a
controllable systematic bias. We will apply this mapping to study the universal properties
of the 2d transverse field Ising model (TFIM). In this context, the universality arguments
can be used in order to reestablish the accuracy of the mapping. The second approach
relies on a series expansion of the quantum density matrix. Known as the Stochastic Series
Expansion (SSE), this mapping also presents a classical system with an extra dimension
compared to its quantum analog. For SSE, the emergent extra dimension is no longer
directly related to the imaginary time. Instead, it adopts an algorithmic interpretation. In
this case, the physical observables must be expressed in terms of the algorithmic variables.
For instance, the expected energy of the quantum system is directly related to the length
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of the extra dimension. The advantage of SSE is that it is a bias free method. We will
utilize it to study the quantum XY model at effectively zero temperature as well as in the
form of a tool for training the quantum Boltzmann machine.

In addition to the choice of the numerical representation of a quantum system, one
must also be careful about the choice of an estimator. It is not always clear on how to
derive an estimator for the physical observable of interest within a given Monte Carlo
framework. In the sections that follow, we derive estimators for the entanglement entropy
in the path-integral as well as SSE formulations. We also derive all the estimators required
for training the quantum Boltzmann machine both in clamped and unclamped ensembles.
Additionally, different estimators for the same physical observables can have very different
statistical properties. In order to optimize the use of available computational resources,
one is interested in an estimator with the smallest variance. We introduce novel cluster
and loop versions of entanglement estimators that provide an exponential efficiency speed
up, proving to be fundamental in order to push our calculations to the cutting edge.

2.1 Preliminaries

2.1.1 Importance sampling

As an illustration of the Monte Carlo approach, we consider importance sampling. This
flavour of Monte Carlo is based on the derivation

〈O〉p = 〈O (c)〉c∼p(c)
=

∑
c

O (c) p (c)

=
∑
c

O (c) p (c)
q (c)

q (c)

=

〈
O (c) p (c)

q (c)

〉
c∼q(c)

.

The only working assumption in the derivation is implicit in the third line. Namely, the
distribution q(s) must be non-zero whenever the product O(s)p(s) is non-zero. Via these
simple steps, we have managed to reformulate the problem of sampling from the target
probability p(s) to that of sampling from a distribution q(s), which we are free to choose.
This reformulation can be useful when q(s) is much simpler to generate samples from than
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it is for p(s). However, the computational gain of this approach can be limited by the
quality of the distribution q(s). Intuitively, this estimator performs well if it is able to
place a large probability density mass on the modes of the product O(s)p(s). Oppositely,
its performance quickly deteriorates when q(s) spreads out its distribution to regions where
O(s)p(s) is negligible.

A classical example of an application for importance sampling is a sampling-based cal-
culation of the mathematical constant π. In order to set this problem up as an importance
sampling problem, consider two uniform distributions p# (x, y) , p2 (x, y) which uniformly
distribute their probability mass over a unit circle and a unit square centered at the origin,
correspondingly. More explicitly, the unnormalized probability density for the circle is

W# (x, y) =

{
1, if

√
x2 + y2 < 1

2

0, otherwise
, (2.6)

while for the square is

W2(x, y) =

{
1, if |x|, |y| < 1

2

0, otherwise
. (2.7)

To proceed, we make a few observations. First of all, a sample from p2 can be easily
produced by generating two random numbers from a uniform distribution [−1

2
, 1

2
] corre-

sponding to the x and y coordinates of the sample. Secondly, the normalization constants
for the two distributions are just the areas of the underlying geometric shapes, such that
Z# = π/4 and Z2 = 1. Therefore, if we can estimate the partition function of the circle
based on the samples generated from the square distribution, we can extract an estimate
for the value of π. For this purpose, we take advantage of the following identity〈

W#(c)

W2(c)

〉
c∼p2

=

∫
2

dxdyp2(x, y)
W#(x, y)

W2(x, y)

=
1

Z2

∫
2

dxdyW#(x, y)

=
Z#

Z2

= Z#. (2.8)

As a matter of fact, this identity lies at the heart of numerical measurement of entanglement
entropy we will demonstrate in Ch. 3. For now, we apply it for the evaluation of π. Basing
our calculation on Ns = 200 samples from p2 as shown in Fig. 2.1(a), we achieve an
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Figure 2.1: (a) A circle of radius 1
2

embedded in a square of side length 1. The dots
represent I.I.D. samples from the square probability distribution p2 defined in Eq. (2.7).
These samples are used to compute the estimate π = 3.00(12) based on Eq. (2.8).
(b) A similar procedure is used to extract an estimate for π from an n-dimensional
generalization. The dashed line represents the true value π = 3.14159

estimate for π of 3.00(12). Since the uncertainty scales favourably as N
− 1

2
s , the accuracy

can be greatly improved for a reasonable computational cost.

However, let’s consider conducting the same procedure in higher dimensions by gen-
eralizing Eq. (2.6) and Eq. (2.7) to a hyper-sphere and a hyper-cube, correspondingly.
In dimension n, the volume of a ball of radius 1

2
is related to a power of π through

ZSn = π
n
2

Γ(n2 +1)
1
2

n
, where Γ is the gamma function. The value of the partition function

can be estimated via a trivial generalization of Eq. (2.8) with the help of samples gener-
ated from a hyper-cube. This time we increase the number of samples to Ns = 200× 104

and plot the estimate for π as function of the dimension n in Fig. 2.1(b). We observe that
while the true value remains in statistical proximity from the numerical estimates, the un-
certainty in the estimates increases exponentially. In fact, the uncertainty in π extracted
from the calculation in dimension n = 16 is the same as in our previous calculation in n = 2
which was based on 104 times fewer samples. This perhaps-counter-intuitive result reflects
the fact that, as n becomes large, the ball effectively shrinks to a point with respect to its
embedding space. The curse of dimensionality is directly related to this phenomenon since
the physical distribution of interest (for example, the ground state of a local Hamiltonian)
occupies an infinitesimal fraction of the space it lives in. In order to gain tractability de-
spite the curse of dimensionality, methods that exploit the structure of a problem must be
developed. The framework of Markov Chain Monte Carlo provides a clear path towards
this goal.
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2.1.2 Markov chain Monte Carlo

Unlike the previous section where a full configuration is generated in one shot, one step
of Markov Chain Monte Carlo (MCMC) [25] only partially updates a given state. The
independence between the samples is achieved after a series of those steps take place.
Effectively, MCMC represents a stochastic dynamical process under the evolution of which
a particle described by its coordinates, c, explores all the configuration space according to
the probability distribution of interest, p(c). Mathematically, this process is described via
a transition distribution at the MCMC time t

T (ct → ct+1) = Pr(ct+1|ct), (2.9)

that specifies the transition probability of accessing the state ct+1 from the current state ct.
In its definition, the transition probability distribution embeds the Markovian property of
MCMC. Namely, an independence of T on the chain of events c0, . . . , ct−1 leading to ct. For
stationary distributions, the transition dynamics T are assumed to be independent of the
time variable t. With those simplifications in place, the MCMC dynamics appropriate for
a particular distribution p(c) can be derived by requiring this distribution to be invariant
under T . This requirement implies that the flow of probability under the action of T from
a particular configuration c needs to be balanced out by the flow of probability into c from
the rest of state space, such that∑

c′

p(c)T (c→ c′) =
∑
c′

p(c′)T (c′ → c). (2.10)

This equation is known as the balance equation. One way to satisfy it is by requiring the
flow of probability to be matched at the level of each pair c and c′, so that

p(c)T (c→ c′) = p(c′)T (c′ → c). (2.11)

This particular solution to the balance equation is known as detailed balance. As a side
remark, we note that it might be possible to satisfy Eq. (2.10) without requiring detailed
balance. Such generalizations might provide better mixing of the Markov Chain in certain
cases [26]. Proceeding further with our derivation based on the detailed balance equation,
we deconstruct the transition dynamics into two stochastic sub-processes as

T (c→ c′) = g(c→ c′)A(c→ c′), (2.12)

where g(c → c′) is known as the proposal distribution and A(c → c′) is the acceptance
distribution. The task of the proposal distribution is to generate proposals for the next
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state c′. The task of the acceptance distribution is to guarantee that Eq. (2.11) is satisfied
for any proposal distribution. Such A(c → c′) can always be found. For example, by
plugging Eq. (2.12) into Eq. (2.11) and setting A(c→ c′) on the side of a larger pre-factor
to one, we obtain a solution

A(c→ c′) = min

[
1,
p(c′)

p(c)

g(c′ → c)

g(c→ c′)

]
. (2.13)

An MCMC algorithm based on this acceptance probability is known as a Metropolis-
Hastings algorithm. This algorithm satisfies the detailed balance condition by construction.
Moreover, via a careful design of the generation process defining g(c′ → c) tailored for a
particular p(c) of interest, it is sometimes possible to achieve the perfect acceptance rate
of 1. In Sec. 2.2.2, we provide an example of such a generative process that updates the
Ising model on all length scales.

In addition to preserving the distribution of interest via the detailed balance condition,
a valid T (c→ c′) is required to be ergodic. A process is said to be ergodic if there is a finite
probability of transitioning between any pair of states in a finite number of steps. This
additional requirement is needed to guarantee that the Markov chain does not get stuck
in a particular region of the configuration space but instead explores the entire support of
p(c). Finally, as long as the requirements of ergodicity and detailed balanced are satisfied,
it can be shown that the Markov chain produced by T (c → c′) converges to p(c) as the
simulation time t→∞.

The asymptotic convergence of MCMC methods provides a solid theoretical ground
for practical applications of MCMC. However, MCMC methods are far from a black-box
tool when constrained by finite computational resources. A part of the challenge is to
determine how many MCMC steps are required to produce two independent samples.
Relatively recently, there has been a development in this direction known as the coupling
from the past (also known by the name of its authors as Propp-Wilson) [27, 28]. This
framework provides a rigorous way of generating provably I.I.D. samples. However, a
tractable algorithm can be developed only when the underlying physical configuration
space assumes a partial order that is left unaltered by the MCMC dynamics. For example,
this condition is satisfied for the Ising model under the heat-bath dynamics of local pairs
of spins [29]. However, such analysis is not always possible and, we argue, is not necessary.
That is because in practice, producing I.I.D. configuration samples {c} is just a means to
an end. Indeed, the MCMC practitioner is only interested in independent samples of an
observable {O(c)} that can decorrelate on a scale much shorter than c does. As witnessed
by such an observable, it is common to see a transient period during which the value
O(ct) sets into a stationary state starting from its initial value at O(c0) for a randomly
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selected c0. This “burn-in” period is usually discarded and the auto-correlation analysis,
such as the binning analysis [30], is applied to the rest of the time-series. The result of
such analysis is an implicit or explicit extraction of the integrated auto-correlation time
τ [30, 31]. This constant provides an effective time-scale (as measured in Monte-Carlo
update iterations) required to decorrelate an observable. In other words, a simulation run
producing Ns samples, effectively contains only Ns/τ independent samples.

2.2 Imaginary time path-integral

2.2.1 Quantum-classical correspondence

Fundamentally, the difficulty of studying a quantum Hamiltonian Hq lies in the non-
commutativity of its elements. Different strategies exist to tackle this problem numerically.
In this section, in order to make progress, we decompose the Hamiltonian into conglomerate
sub-parts as

Hq = Ha +Hb,

such that all terms making up Ha(Hb) commute between themselves. Further, we can
always rewrite the corresponding density matrix as a product of M terms as

Zq = Tr
[
e−βHq

]
= Tr

[(
e−∆τHq

)M]
, (2.14)

with ∆τ = β/M defining a discretized step in the imaginary time direction of length β.
Keeping ∆τ small allows one to separate the non-commuting Hamiltonian terms via a
controlled approximation as

e−∆τH = e−∆τ(Ha+Hb) =

{
e−∆τHae−∆τHb +O(∆τ 2)

e−∆τHb/2e−∆τHae−∆τHb/2 +O(∆τ 3).
(2.15)

where the error conceals a proportionality factor that is equal to the commutator [Ha, Hb]
and, therefore, is extensive in the system size. Plugging in the second approximation into
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Eq. (2.14) yields

Zq = Tr
[(
e−∆τHb/2e−∆τHae−∆τHb/2 +O(∆τ 3)

)M]
= Tr

[(
e−∆τHb/2e−∆τHae−∆τHb/2

)M]
+O(∆τ 2)

= Tr
[(
e−∆τHae−∆τHb

)M]
+O(∆τ 2)

≡ Zc +O(∆τ 2). (2.16)

Here, in the third line, we have used the cyclic invariance of the trace in order to move the
first term to the very end of the expression and, then, merged together adjacent exponen-
tials of Hb. The second-to-last line defines Zc. This partition function represents the part
of Zq that can be captured by the classical model up to O(∆τ 2). We proceed by focusing
solely on this part and insert M − 1 resolutions of the identity

∑
s |s〉〈s|, such that

Zc =
∑
s0

〈s0|
(
e−∆τHae−∆τHb

)M |s0〉

=
∑

s0,s1,...,sM−1

〈s0| e−∆τHae−∆τHb |s1〉〈s1| . . . |sM−1〉〈sM−1| e−∆τHae−∆τHb |s0〉

=
∑

s0,s1,...,sM−1

M∏
k=1

〈sk−1| e−∆τHae−∆τHb︸ ︷︷ ︸
≡T

|sk〉 , (2.17)

with the last set of spins identified with the first one such that sM = s0. This expression is
known as the Suzuki-Trotter decomposition, and it provides a path-integral representation
of a quantum system in equilibrium. Within this picture, spin particles s evolve under
the action of Hamiltonians Ha and Hb from one slice sk to the next sk+1 and, as a result,
trace out world lines in imaginary time. As such, this picture constitutes the foundation
for a class of algorithms known as world line quantum Monte Carlo. However, we take
a different route and proceed with the mapping to a classical Hamiltonian. For this, we
consider each term in the product as a matrix element of a transfer-matrix T . To be more
specific, we specialize the next steps to the model of interest, namely, the transverse field
Ising model (TFIM) on a 2 dimensional bipartite rectangular grid with periodic boundary
conditions. The Hamiltonian for this model is given by

HTFIM = −
Ha︷ ︸︸ ︷

Jq
∑
〈i,j〉

σzi σ
z
j −

Hb︷ ︸︸ ︷
Γ
∑
i

σxi , (2.18)
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where σz, σx are Pauli matrices and the couplings are over the nearest neighbours. Taking
|s〉 to be the basis set of the σz operator, we obtain

Tsk,sk+1
≡ 〈sk| e∆τJq

∑
〈i,j〉 σ

z
i σ
z
j e∆τΓ

∑
i σ
x
i |sk+1〉

= e∆τJq
∑
〈i,j〉 sk,isk,j 〈sk| e∆τΓ

∑
i σ
x
i |sk+1〉

= e∆τJq
∑
〈i,j〉 sk,isk,j

∏
i

〈sk,i|1 cosh(∆τΓ) + σx sinh(∆τΓ)︸ ︷︷ ︸
≡T loc,x

|sk+1,i〉 (2.19)

where the last term represents an element of a 2× 2 matrix T loc,x,

T loc,x = cosh(∆τΓ)

(
1 tanh(∆τΓ)

tanh(∆τΓ) 1

)
= eJτ

(
1 e−2Jτ

e−2Jτ 1

)
.

On the right hand side, we have written an explicit expression for a local transfer-matrix
eJτ sk,isk+1,i . Both sides can be made equal up to a proportionality factor by setting
Jτ = −1

2
ln tanh(∆τΓ). The proportionality factor is not important as it is independent

of the spin configuration and serves only to match the ground state energies between the
quantum and classical Hamiltonians. Therefore, we can substitute the classical represen-
tation T loc,x = eJτ sk,isk+1,i into Eq. (2.19) and, then, plug the resulting expression back in
Eq. (2.17) to arrive at the expression

Zc =
∑

s0,s1,...,sM−1

M∏
k=1

e∆τJq
∑
〈i,j〉 sk,isk,j+Jτ

∑
i sk,isk+1,i (2.20)

This expression is nothing else but the partition function of a classical Ising model with
the reduced Hamiltonian

Hc/Tc = −Jc
∑
k,〈i,j〉

sk,isk,j − Jτ
∑
k,i

sk,isk+1,i (2.21)

where Tc is the classical temperature not related to β−1 and the reduced couplings Jc, Jτ
are highly anisotropic since

Jc = ∆τJq

Jτ = −1

2
ln tanh(∆τΓ). (2.22)

Since the original Hamiltonian was two-dimensional, its classical analog is three-dimensional,
where the third dimension is periodic and composed of M sites (see Fig. 2.2). As is clear
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Figure 2.2: A d + 1 classical representation of the transverse field Ising model in d
dimensions. The original model is a chain of four quantum spins. The circles represent
classical Ising spins. The lines represent ferromagnetic couplings the spins. The half-
lines couple the boundary spins in the +1 direction. Those boundary interactions are
due to the trace in the quantum expectation value, Eq. (2.14).

from Eq. (2.16), the equivalence between the models is obtained in the continuum limit
∆τ → 0 of the quantum model and in the weak inter-slice coupling limit of the Ising model
Jc → 0. Going beyond this limit implies that Eq. (2.15), which validates the equivalence
between the quantum and classical transfer matrices, breaks down. Specifically, a higher
order expansion of the quantum imaginary-time propagator e−∆τHq generates higher powers
of Hq. Upon a mapping similar to Eq. (2.2.1), those powers of the quantum Hamiltonian
effectively translate to non-local classical interactions, which can no longer be captured
with a physical Hamiltonian.

However, while the microscopic correspondence between the quantum and classical
models can only be established in the particular limit discussed above, the same mapping
can be used to argue for the equivalence of the critical quantum and classical systems
as far as their universal properties are concerned. This equivalence is in particular true
for critical systems where the dynamic scaling exponent is equal to one, i.e., z = 1, such
as TFIM. In those systems, the exponents that govern the divergences of the correlation
lengths along the spatial and temporal directions are the same, implying that the couplings
in both directions must appear on the same footing (up to a scalar prefactor) in the effective
low-momentum action of the Hamiltonian. The full equivalence between the couplings in
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Figure 2.3: Microscopic critical theories that share the same universality class of the
Wilson-Fisher fixed point and the relations between them. The critical 2d TFIM can
be mapped onto the 3d anisotropic Ising model via a path-integral. The universality
argument shows that isotropic and anisotropic Ising model are equivalent at criticality.
However, it is not clear how to map the transfer matrix of the 3d isotropic Ising model
to its 2d quantum microscopic analogue (hence the dashed line). Although the exact
form of the later is unknown, it must be universally equivalent to the 2d TFIM.

the imaginary time and space directions can be thus fully regained by a simple rescaling
one of the corresponding coordinate axis. In the language of the classical Ising model, this
equivalence corresponds to mapping to a model with isotropic interactions.

The exact correspondence between the critical quantum and classical models can also
be argued from the renormalization point of view. Indeed, any scaling function dependent
on ∆τ can only depend on it through a dimensionless ratio ∆τ/β. Naturally, the thermo-
dynamic limit corresponds to ∆τ/β → 0 since this quantity, which effectively corresponds
to a classical dimension, represents a relevant operator that determines the dimensional-
ity of the system. Therefore, under a renormalization step, the ratio must transform as
∆τ/β → b∆τ/β where b is the rescaling factor. For a fixed β, this implies that ∆τ → b−1τ
and, therefore, the discretization in the imaginary time represents an irrelevant variable,
in spirit similar to the lattice spacing constant δ [32].

The quantum-classical correspondence provides a powerful tool to characterize critical
theories. We use this mapping to study universal properties of the Wilson-Fisher fixed
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point as reflected in the entanglement structure of the underlying critical system. In order
to quantify the amount of entanglement, we use the notion of the entanglement entropy
which is defined with respect to a subregion A of a many-body system. As we will see in
the Sec. 3.4, the stochastic evaluation of the entanglement entropy requires working on a
topologically modified configuration space where the imaginary time is first sliced midway
and, then, is restitched according to the geometry of region A. This procedure translates
into modified boundary conditions along the imaginary time direction. All other details
of the quantum-classical mapping remain unchanged. Therefore, the universal features of
the entanglement can be accessed via a Monte Carlo simulation of the anisotropic critical
Ising model on a modified 3d lattice. Combined with the universal argument provided
in the previous paragraphs, we have license to forget about the underlying microscopic
quantum model and instead simply study the isotropic Ising model tuned to its critical
point. The relationship between these models is visualized in Fig. 2.3. The motivation
behind this choice of numerical strategy is a practical one. Constrained by the available
computational resources, we desire to scale our simulations to the largest system sizes
possible. For comparison, a natural alternative approach would be to use the framework
of the Stochastic Series Expansion in order to directly simulate the critical 2d TFIM. We
have seen how this microscopic model is equivalent to a highly anisotropic Ising model.
However, the ultimate goal is to access the universal critical theory captured by the φ4

theory, which treats the space and time directions on equal footing. Therefore, it is more
natural to study a microscopic theory with inherent isotropic interactions - the isotropic
Ising model. Although we haven’t conducted direct numerical comparisons, we note that
the systems sizes reached in our simulations (effectively up to L = 102) exceed the ones
obtained in Ref. [33] which employed the SSE approach and only reached L = 36.

2.2.2 Cluster updates with restricted Boltzmann machine

In this section, we take a non-traditional approach to derive a rejection-free cluster update
required for an efficient MCMC update of the critical Ising model. The widely success-
ful Wolf [34] and Swendsen-Wang [35] cluster updates are largely based on the Fortuin-
Kasteleyn cluster decomposition [36] of the Ising model. This transformation stochastically
maps an Ising configuration into the one of a random cluster model. We show how a re-
stricted Boltzmann machine (RBM, introduced in Sec. 5.2) with a special architecture can
be seen as a bridge between those two thermodynamic models. Such a representation makes
explicit the equivalence between the cluster update and the two-step blocked Gibbs update
of the RBM that takes advantage of the inherited Z2 symmetry. The Fortuin-Kasteleyn
transformation is recovered in a particular limit of the RBM parameters. The derivation
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that follows is largely based on Ref. [37].

Motivated by the quantum-to-classical mapping derived in the previous section, we are
interested in simulating the three dimensional isotropic Ising model which we write in the
form

E(s) = −J
∑

l=(l1,l2)

sl1sl2 , (2.23)

where the sum is over the bond/link variable l defined as a tuple l = (l1, l2) listing the spin
indices. This energy function induces a Boltzmann distribution over the spin variables,
given by

pIsing(s) =
1

ZIsing

e−βE(s) = e−β(E(s)−FIsing), (2.24)

where the partition function is ZIsing =
∑

s e
βE(s) and the free energy is FIsing = −1/β lnZIsing.

Using machine learning vocabulary, we next treat the physical Ising spins, s, as visible units
and couple them to auxiliary/hidden units, h. Each new hidden unit is coupled to a bond
of the original Ising model resulting in the energy function

E(s,h) = −
∑
l

(Wsl1sl2 + b)hl. (2.25)

Unlike the spin variable s taking values ±1, the hidden variable hl ∈ {0, 1} with the two
states referred to as open and closed correspondingly. Here, W and b are free parameters. In
principle these parameters can depend on the index l but in order to respect the symmetries
of the original Ising Hamiltonian they are assumed to be independent of the index. This
energy function also induces a probability distribution over its variables via the Boltzmann
distribution, for which we set the temperature to one for convenience such that

pBM(s,h) =
1

ZBM

e−E(s,h) = e−(E(s,h)−FBM). (2.26)

This model falls within the family of higher-order RBMs [38]. Unlike the standard RBM,
this model is based on three-body interactions. Such a generalization allows us to “train”
the RBM to perfectly capture the Ising model. For this, we require the RBM marginal
probability over spin variables to exactly reproduce the Ising distribution such that

pIsing(s) = pBM(s) ≡
∑
h

pBM(s,h). (2.27)

Instead of the gradient-based numerical methods adopted in Ch. 5, here we rely on theoret-
ical manipulations in order to find the RBM parameters for which this equality is satisfied.
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As the first step, we bring both distributions into a product form. The Ising model reads

pIsing(s) = eFIsing

Nl∏
l=1

eβJsl1sl2

=

Nl∏
l=1

efIsing+βJsl1sl2 , (2.28)

where f = F/Nl is the free energy per link. Similarly, for the RBM, we get

pBM(s) =
∑
h

pBM(s,h)

= eFBM

∑
h

Nl∏
l=1

e(Wsl1sl2+b)hl

=

Nl∏
l=1

efBM
(
eWsl1sl2+b + 1

)
. (2.29)

As the next step, we fulfill Eq. (2.27) by requiring the equality to be satisfied at the level
of each individual link such that

e∆f+βJsl1sl2 = eWsl1sl2+b + 1, (2.30)

with ∆f ≡ fIsing − fBM. We expand this equation into the system of equations{
eb+W + 1 = e∆f+βJ

eb−W + 1 = e∆f−βJ ⇒
{
b+W = ln

(
e∆f+βJ − 1

)
for sl1sl2 = +1

b−W = ln
(
e∆f−βJ − 1

)
for sl1sl2 = −1

(2.31)

Note that ∆f can be made to take any value by offsetting the ground state energy in
Eqs. (2.23) and (2.25). However, the system of equations is well-defined only for a positive
arguments of the logarithm, such that we require ∆f ≥ β|J |. As we are interested in the
ferromagnetic Ising model with J ≥ 0, we set ∆f = βJ + ε where ε is a small non-negative
parameter. In the limit ε → 0, to which we refer as the Fortuin-Kasteleyn (FK) limit for
reasons that will become apparent in the next section, we get{

b+W = ln
(
e2βJ − 1

)
b−W = −∞ (2.32)
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It is interesting to consider the dynamics of the blocked Gibbs update (see Sec.5.2.2) in
this limit. We start with the conditional probability over the hidden units. We note that,
conditioned on a spin state, the conditional is factorized as

p(h | s) =

Nl∏
l=1

p(hl | s), (2.33)

where the activation probability of an individual hidden unit is given by

p(hl = 1 | s) = σ (Wsl1sl2 + b)

=

{
σ (b+W ) for sl1sl2 = +1

σ (b−W ) for sl1sl2 = −1
, (2.34)

and σ(x) = 1/ (1 + e−x) is a sigmoid function. In the FK limit, this activation probability
converges to

p(hl = 1 | s)
∆f=βJ

= (1− e−2βJ)δsl1 ,sl2 ≡ pδsl1 ,sl2 , (2.35)

such that the hidden unit is deterministically set to zero when the associated spins variables
are misaligned. When they are aligned, the hidden unit is activated with probability
p ≡ 1− e−2βJ .

The inverse conditional p(s | h) does not factorize as easily and, therefore, it is not
seemingly amenable for a blocked Gibbs update. However, it has an important symmetry
that can be exploited. To make this symmetry apparent, we note that according to Bayes’
law,

p(s | h) =
p(s,h)

p(h)
∝ e−E(s|h), (2.36)

where the constant of proportionality is not dependent on the spin state s. For convenience,
we introduce the notation for the clamped RBM energy, E(s | h); it is the same as the
original RBM energy, E(s,h), but the hidden units are clamped to the conditioning vector
h. Upon a close examination of E(s | h), we note that a non-activated hidden unit hl
removes the original spin-spin interaction on the link l. It follows that bonds that have
been disactivated in this manner partition the spin state into a set of non-interacting
clusters. Moreover, independent Hamiltonians describing each of those clusters inherit the
Z2 invariance of their parental Ising model. Lastly, the clusters are necessarily composed
of aligned spins (due to the activation of h according to Eq. (2.35)). Combining those
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observations, we conclude that Eq. (2.36) factorizes as

p(s | h) =
Nc∏
c=1

p(sc | h) (2.37)

where the index c iterates over Nc clusters and each cluster includes its own set of aligned
spin variables sc. Additionally, due to the previously mentioned Z2 invariance, both col-
lective states of a cluster sc are equally likely implying that

p(sc = 1 | h) = p(sc = −1 | h) =
1

2
, (2.38)

which concludes the derivation. Indeed, the two-steps blocked Gibbs update defined by
Eqs. (2.33), (2.35) and (2.38) is equivalent to the Swendsen-Wang cluster update [35]. The
condition of detailed balance, Eq. (2.11), with respect to the spin state can be verified since

p(s)T (s→ s′) =
∑
h

p(s′ | h)p(h | s)p(s)

=
∑
h

p(s′,h)
1

p(h)
p(h, s)

=
∑
h

p(h | s′)p(s′)p(s | h)

= p(s′)T (s′ → s),

thus validating the RBM update within the MCMC framework. The inefficiency overhead
of this update is related to the fact that the new state, s′, is only indirectly dependent on the
previous state, s, through an intermediary hidden state, h. This indirect dependence leads
to the possibility that some clusters are not flipped despite the invested computational cost
of building them. Building just a single cluster that is always flipped provides an elegant
solution to this problem. Such a cluster update is known as the Wolff update [34].

2.2.3 Fortuin-Kasteleyn limit

In this section, the origin of the name given to the limit leading to Eq. (2.32) finally becomes
clear. Namely, we show how, in the FK limit, the marginal probability distribution over
the hidden units is effectively the random cluster model [39]. The latter model lies at the
heart of the Fortuin-Kasteleyn cluster decomposition of the Ising model [36]. This dual
model provides the basis of an improved entanglement entropy estimator that we derive
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in Sec. 3.4.2. With this goal in mind, we use Bayes’ rule to rewrite the RBM probability
distribution, Eq. (2.25), in a form that lets us reuse the previously derived results, so that

pRBM(s,h) = p(h | s)pRBM(s)

∼ p(h | s)pIsing(s),

where the constant of proportionality is e−Nl∆f = e−NlβJ . We proceed by substituting the
expressions for the conditional, Eqs. (2.33) and (2.35), as well as the marginal, Eq. (2.28),
into the above, yielding

pRBM(s,h) = e−NlβJ
Nl∏
l=1

p (hl | s)

Nl∏
l=1

eβJsl1sl2

=

Nl∏
l=1

[p (hl = 1 | s) δhl,1 + p(hl = 0 | s)δhl,0]

Nl∏
l=1

eβJsl1sl2−1

=

Nl∏
l=1

[
pδsl1 ,sl2δhl,1 + (1− pδsl1 ,sl2 )δhl,0

] Nl∏
l=1

[
(1− p)δsl1 ,−sl2 + δsl1 ,sl2

]
=

Nl∏
l=1

[
pδsl1 ,sl2δhl,1 + (1− p)δhl,0

]
, (2.39)

with p = 1 − e−2βJ previously defined in Eq. (2.35). Here, in going from the third to the
last line we have used the identities

δsl1 ,sl2δsl1 ,−sl2 = 0,

δsl1 ,sl2 + δsl1 ,−sl2 = 1,

δsl1 ,sl2δsl1 ,sl2 = δsl1 ,sl2 .

Eq. (2.39) corresponds to Eq. (2.25) in the FK limit. By construction, the marginal of this
joint distribution over spins, pRBM(s), is the Ising model. However, we are interested to
explore pRBM(h) which is given by

pRBM(h) =
∑
s

pBM(s,h)

=
∑
s

Nl∏
l=1

[
pδsl1 ,sl2δhl,1 + (1− p)δhl,0

]
.
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We proceed by reindexing the links based on the activation of the hidden units. The active
(open) links are reindexed to the range [1, n(h)] where n(h) is the number of active links.
All other Nl − n(h) links must be non-activated (closed). Using the fact that the cross
product terms cancel out, δhl,1δhl,0 = 0, we expand the product in the above expression as

pRBM(h) =
∑
s

n(h)∏
l=1
hl=1

pδsl1 ,sl2

Nl∏
l=n(h)+1
hl=0

(1− p)

=
∑
s

pn(h)(1− p)Nl−n(h)

n(h)∏
l=1
hl=1

δsl1 ,sl2 ,

where the second line follows from the fact that the product over closed links is independent
of the spin state, which is not the case for the product over active links. In fact, this product
can be extended to include all the links, thus generalizing to an indicator function defined
as

1(s,h) ≡
Nl∏
l=1

δsl1 ,sl2δhl,1, (2.40)

where spins-link configurations that are not compatible with this rule are automatically
set to zero by this function. Upon substitution into the previous equation, we get

pRBM(h) =
∑
s

pn(h)(1− p)Nl−n(h)1(s,h)

= pn(h)(1− p)Nl−n(h)2Nc(h). (2.41)

To derive the last line, we note that the active links define a set of connected but inde-
pendent clusters. The indicator function nullifies all the spin configurations that contain
misaligned spins within those link clusters. The non-zero contributions of equal weight,
pn(h)(1− p)Nl−n(h), originate from spin configurations that are aligned within the clusters.
Those configurations can be easily counted. Indeed, there are two sets of spin configurations
to satisfy the alignment condition within each cluster. Since the clusters are independent,
in total, there must be 2Nc valid spin configurations.

Concluding the Fortuin-Kasteleyn decomposition, we sum up the resulting marginal
probability over all hidden states, thus, obtaining a partition function for the random
cluster model,

ZRC ≡
∑
h

pn(h)(1− p)Nl−n(h)2Nc(h). (2.42)
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We also note the relationship between the value of partition functions between the joint
and marginal distributions, given by

ZRC = ZRBM = ZIsinge
βJNl . (2.43)

At criticality, the clusters come in all possible sizes and their distribution follows a power
law [40]. This critical behaviour, together with the clusters’ non-local geometrical nature
often make it useful to rewrite the MCMC estimators in terms of clusters statistics [31].
The cluster-based estimators usually have a dramatically smaller variance and, therefore,
are known as improved estimators. In Sec. (3.4.2) we derive an improved estimator for the
Rényi entanglement entropy with an exponentially improved performance.
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2.3 Stochastic series expansion

2.3.1 Operator list representation

Contrary to the quantum-classical correspondence derived in the previous section based on
the path-integral interpretation of the partition function, the starting point for the devel-
opment of a quantum Monte Carlo framework known as the Stochastic Series Expansion
(SSE) is the Taylor expansion of the partition function,

Z = Tr
[
e−βH

]
=
∑
s

∞∑
n=0

〈s| (−βH)n

n!
|s〉 . (2.44)

Here, |s〉 represents a state from a complete basis set. For concreteness, we consider the
standard spin-1

2
Sz basis,

|s〉 = |Sz1 , Sz2 , . . . , SzN〉 ,
where N is the number of spins. In order to build-in the physical locality in the method,
we write the Hamitlonian as a sum of local interactions such that

H = −
Nb∑
b=1

Hb,

where Nb is the number of interacting bonds between spins. For example, the reduced
Hamiltonian of a quantum spin 1

2
XXZ-model assumes the form

HXXZ/J =

Nb∑
b=1

[
Sxi(b)S

x
j(b) + Syi(b)S

y
j(b) + ∆Szi(b)S

z
j(b)

]
=

Nb∑
b=1

[
1

2

(
S+
i(b)S

−
j(b) + S−i(b)S

+
j(b)

)
+ ∆Szi(b)S

z
j(b)

]
. (2.45)

Specifically, in this expression, the variable b indexes interaction bonds between spins i(b)
and j(b). The parameter ∆ tunes the degree of the anisotropy between the couplings. At
two special symmetry points, ∆ = 0 and ∆ = 1, the resulting models are known as the
XY and Heisenberg models correspondingly.

Based on this basis choice, we further subdivide the bond into diagonal and off-diagonal
ones as

Hb = HD,b −HO,b,
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where

HD,b = C −∆Szi(b)S
z
j(b) (2.46)

HO,b =
1

2

(
S+
i(b)S

−
j(b) + S−i(b)S

+
j(b)

)
.

Here, the constant C has been added to each bond in order to make the diagonal bond
positive, which is achieved for

C = C0 + ε, C0 =
∆

4
,

where ε ≥ 0 is a hyper-parameter which can be used to optimize the dynamics of the
simulation. The shift in the ground state energy due to C has no effect on the physical
observables except for the expectation of energy. In order to recover the energy of the
original model, it is sufficient to subtract NbC from the estimated value.

Sequences of local bond Hamiltonians that result from the expansion in powers of H
in Eq. (2.44) can be indexed by the so-called operator-list,

Sn = [a1, b1][a2, b2] . . . [an, bn]. (2.47)

Here, the index i iterates over the elements in the operator list; the label ai ∈ {D,O}
indicates the type of an operator (diagonal or off-diagonal as per Eq. (2.46)); the index
bi ∈ {1, . . . , Nb} labels the bond index; the list length, n, is directly related to the expansion
power, Hn. We now rewrite the Taylor expansion Eq. (2.44) in the new notation as

Z =
∑
s

∞∑
n=0

∑
Sn

(−1)n2
βn

n!
〈s|

n∏
i=1

Hai,bi |s〉 , (2.48)

where we have redefined β ← β/J and introduced an integer variable n2 that counts the
number of off-diagonal operators in the operator-list. For some Hamiltonians referred to
as sign-free Hamiltonians, it is possible to get rid of the oscillating negative sign. With
this goal in mind, we define the propagated spin state,

|s(p)〉 =

p∏
i=1

Hai,bi |s〉 , (2.49)

which is the state obtained by application of the first p operators from the operator-list onto
the state |s〉. Due to the specific bond decomposition in Eq. (2.46), there is no branching-
out of states. Therefore, the propagated state can always be represented by a single basis
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state. The trace in Eq. (2.48) imposes periodic boundary conditions for the propagated
state in the expansion direction such that 〈s(0)|s(n)〉 = 1. Only operator sequences Sn,
that respect this condition have a positive contribution to the partition function. For a
bipartite lattice, this condition is only satisfied by operator sequences with an even number
of off-diagonal operators and, therefore, (−1)n2 = 1 in Eq. (2.48). Hence, each term in the
partition function of Eq. (2.48), given by

W (Sn, s) =
βn

n!
〈s|

n∏
i=1

Hai,bi |s〉 , (2.50)

is positive. Therefore, a Markov chain Monte Carlo procedure can be implemented based
on this weight. The targeted configuration space consists of all possible operator sequence
and basis state pairs, c = (Sn, s), that satisfy the periodic boundary conditions in the
expansion direction. An example of such configuration is depicted in Fig. 2.4 (a).

The operator sequence length n is a random quantity fluctuating around its natural
mean value, 〈n〉. In order to simplify a further algorithmic implementation, it is useful to
keep the operator length a constant size M > 〈n〉. Therefore, we truncate the sum iterating
over the index n in Eq. (2.48) to M terms. Operator sequences with more then M operators
are removed. As for the sequences that are smaller than M , they are extended to size M
by inserting M − n identity operators H1,0 = 1 in all the possible ways. To compensate
for this added redundancy, we divide the weight of each string by its degeneracy

(
M

M−n
)
.

The new expression for the partition function reads

Z =
∑
s

∑
SM

βn(M − n)!

M !
〈s|

n∏
i=1

Hai,bi |s〉 , (2.51)

where now n counts the number of non-identity operators in the sequence SM , [ai, bi] 6=
[0, 0]. As will be shown in Sec. 2.3.5, the average operator list length is directly related to
the expected energy 〈n〉 = −β 〈E〉. Therefore, fluctuations in n should be of order

√
〈n〉.

M should be set to a value that can accomodate any statistically significant fluctuations
in n. An adjustable procedure is adopted in order to choose M in practice. During the
burn-in stage of a simulation, M is repeatedly readjusted to a value rnmax where r is a
small coefficient (we take values between 1.2 and 1.5) and nmax is the largest encountered
operator length. Typically the value of M stabilizes very fast and, although truncated,
Eq. (2.51) provides an unbiased representation for the full partition function. In order to
efficiently sample the space of configurations contributing to this partition function, two
types of a MCMC update are required, as we discuss in the following two subsections.
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Figure 2.4: An example of a SSE configuration as expressed in terms of a) a binary state
s (spin up and down) and an operator list pair. The off-diagonal/diagonal operators
are denoted by solid/hollow rectangles. b) linked vertex list. In this representation, the
type of operator can be directly determined from its action on the spins; the rectangles
are kept only to provide a visual clue. We also choose to redundantly display the spin
state for the spins state which, otherwise, can be inferred from the vertices. In both
representations, aside from the d physical dimensions, there is an additional (d + 1)th

dimension corresponding to the Taylor series expansion.

2.3.2 Diagonal update

As the name suggests, the diagonal update only modifies the diagonal operators present
in the operator list. The update consequently iterates over the elements in SM . When it
encounters a diagonal element (including the identity operator H1,0), it proposes a bidi-
rectional replacement [0p, 0p]↔ [Dp, bp] that is accepted with the probabilities
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P ([0p, 0p]→ [Dp, bp]) =
Nbβ 〈s(p)|HD,b|s(p)〉

M − n (2.52)

P ([0p, 0p]← [Dp, bp]) =
M − n+ 1

Nbβ 〈s(p)|HD,b|s(p)〉
(2.53)

where the bond bp is chosen with a uniform probability out of all possible Nb bonds.
The factor Nb appears because the proposal dynamics connects a unique identity state,
[0p, 0p], with Nb diagonal bond states, [Dp, bp]. We also note that this update changes the
operator list length, n, by ±1 which explains the corresponding factors in the acceptance
probabilities above. The state |s(p)〉 is constantly updated in accordance with Eq. (2.49)
as the off-diagonal operators are encountered during the traversal of the operator list.

2.3.3 Off-diagonal update

The off-diagonal update is responsible for generating processes of type [Dp, bp]↔ [Op, bp].
The auxiliary identity operator, [1, 0], is left untouched. For this reason, during this update,
it is useful to work with the original operator-list Sn instead of SM and the associated
configuration weight defined in Eq. (2.50).

Contrary to the diagonal-update, the off-diagonal update cannot be performed on the
level of a single operator because such an operation requires a spin-flip, which can easily
lead to a forbidden configuration. In order to make sure that such inconsistencies do not
arise, it is useful to change the representation of the configuration space from the (SM , s)
tuple to the one that explicitly tracks the spin state. Such a representation is known as
the linked vertex list.

The vertex is the fundamental object in the vertex list representation. It is defined with
respect to a bond operator and the spins it acts on. More specifically, the spins affected
by the operator acting on the bond bp are∣∣sbp(p)〉 =

∣∣∣Szi(bp), S
z
j(bp)

〉
, (2.54)

while all other spins in the propagated state |s(p)〉, as defined in Eq. (2.49), remain un-
changed. The vertex is a representation for one of the matrix elements of a local bond
operator

〈
sbp(p)

∣∣Hbp

∣∣sbp(p− 1)
〉
. For the XXZ model, Eq. (2.46), there are 6 possible
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Figure 2.5: The six valid vertices that arise in the simulation of the XXZ model.
They represent matrix elements of a local bond operator denoted by a filled bar. The
operator acts on a pair of entrance spins (“legs”) below and produce two exit legs as
the output above. The 4 diagonal operators lead to the same state of the exit legs while
the 2 off-diagonal operators flip both legs. On top of the vertices, the arrows indicate
the possible loop construction actions that can be taken at a given vertex starting from
the bottom left entrance leg. Those processes go under self-explanatory names and are
known as “continue-straight”, “switch-and-continue” and “switch-and-reverse”.

vertices,

〈↑↑|Hb|↑↑〉 = 〈↓↓|Hb|↓↓〉 = ε (2.55)

〈↓↑|Hb|↓↑〉 = 〈↑↓|Hb|↑↓〉 =
1

2
〈↓↑|Hb|↑↓〉 = 〈↑↓|Hb|↓↑〉 = ∆/2 + ε.

Those vertices are visualized in Fig. 2.5. The spins that are part of a vertex are referred to
as vertex legs. Note that setting the hyper-parameter ε to 0 decreases the number of allowed
vertices from 6 to 4, thus reducing the total number of possible configurations. However,
in practice, having ε > 0 is helpful for the mixing of a Markov chain. The ε-weighted
vertices provide intermediate configurations that help the Markov chain to tunnel from
one configuration to another. At the same time, it is discouraged setting ε to a large value
as the operator list is expected to grow as εβNb due an additional energy contribution.
The weight of a configuration defined by a list of vertices directly follows from Eq. (2.50)
and is given by

W (Sn, s) =
βn

n!

n∏
p=1

〈
sbp(p)

∣∣Hbp

∣∣sbp(p− 1)
〉
. (2.56)

A SSE configuration in the vertex-list representation is depicted besides the equivalent
operator-list one in Fig. 2.4. The vertices are linked between themselves as two consecu-
tive vertices acting on the same spin are not independent. Indeed, the output leg of the
preceding vertex in the operator sequence must be set to the same state as the input leg of
the vertex that follows. Caution should be taken due to the periodicity in the expansion
dimension. This constraint implies that the link between the output leg of the last vertex
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with respect to a spin is connected to the input leg of the first vertex over the same spin.
In the case when there is only one vertex associated with a spin, the link is created between
the vertex’ own legs.

The linked list of vertices is the essential object required for the execution of the off-
diagonal update. It provides all of the necessary information for the implementation of
the so called loop algorithm. In this algorithm, the “loop” refers to a type of the update
proposal. Specifically, a loop is a chain of spin flips in the vertex-list representation that is
closed, i.e. the chain loops back to its own start. The topology of a loop guarantees that
no defects arise in the updated configuration.

Construction of a loop is done incrementally via a chain of small steps. As the first
step, the initial leg is randomly selected (chosen out of 4n possibilities). This leg is referred
to as the “entrance” leg. The loop is then extended by an addition of an “exit” that shares
a vertex with the entrance leg. As the spins along the path of the loop are eventually
flipped, not every leg is considered in the choice. For example, Fig. 2.5 shows the possible
moves for the XXZ vertices. Choosing the entrance leg as the exit leg is a valid choice.
Such a move is known as the bounce move and, if it happens as the first move, the loop
construction is terminated leading to no change in the configuration. However, if one of the
alternatives is selected, the exit leg is added to the loop and the loop construction proceeds
to the leg linked to the exit leg. The new leg becomes the entrance leg and the process
repeats itself. As the loop expands, there are two links with mismatched legs that exist
at the head and tail of the loop. The loop construction terminates when the mismatched
links cancel each other out, that is, when the head and tail meet. This event can arise in
two ways: either through a vertex move or through a move following a link. Only in the
second case does the initial spin change its state when the spins along the loop are flipped.
As a result of a loop update, the vertices along the loop change their type. Vertices that
have been subjected to the switch-type of moves (see Fig. 2.5) lead to the change of the
associated operator type. We also note that the network of the linked vertex list is left
unaltered during this update.

The previous paragraph describes the general idea of a loop construction. However,
in order to provide a valid MCMC update, it must respect the detailed balance equation
in Eq. (2.11). This criterion locally conditions the vertex-moves probabilities and relates
them by the so called directed loops equations [41]. As detailed balance is satisfied on
the level of each move, there is no rejection step at the end of the loop construction,
leading to an efficient cluster update. Ref. [41] provides an excellent resource deriving
these equations directly from the detailed balance condition. Additionally, this reference
gives examples of optimized solutions to those equations based on the minimization of the
bounce moves. Such optimization in the loop construction process can lead to a dramatic
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increase in the performance of the algorithm [41]. In special cases of certain Hamiltonians,
the back-tracking caused by the bounce move can be avoided without the need for the
directed loops equations. Such examples include the high-symmetry points of the XXZ
model, Eq.(2.45), such as the Heisenberg (∆ = 1) and XY (∆ = 0) models. For those
models, there is a choice of the parameter ε, Eq. (2.3.1), that leads to a set of vertices
that all share the same weight. As the loop update only changes the vertex type, the
SSE configuration weight is preserved after the loop flip. This simplification allows one to
partition the vertices into a set of independent loops, analogously to the Swendsen-Wang
clusters (see Sec.2.2.2), that can be independently flipped with probability 1

2
. In the case

of the Heisenberg model, the loop break-up is deterministic as each vertex allows only one
kind of move. In the case of the XY model, the break-up is stochastically sampled by
choosing one of two possible complementary moves with equal probability at each vertex.
For instance, if a vertex allows for switch-and-continue and switch-and-reverse moves (see
Fig. 2.5), then only one of them is randomly selected for each vertex irrespective of which
leg happens to be the entrance leg. This restriction assures that loops do not overlap and
are independent from each other.

2.3.4 Estimation of observables

In order to estimate an observable in the SSE framework, it first must be converted to its
SSE representation. This necessity is due to the fact that while an observable of interest
usually acts on a Hilbert space, its corresponding estimator needs to operate on the space
of SSE configurations. At the core of such a transformation is the idea of importance
sampling (see Sec. 2.1.1), that is, the idea of reweighting samples generated from the base
distribution in order to evaluate properties of the target distribution. The methodology
for this conversion is the following. First, a procedure similar to the one outlined in the
previous sections is required in order to map the mathematical expression

〈
Oe−βH

〉
to its

SSE equivalent. Alternatively, this technical derivation can be sped up if the observable can
be expressed as a derivative of the partition function. In this case, the derivative is directly
applied to the SSE representation for the partition function. In either case, as a result, one
obtains an estimator, O(c), that is now defined with respect to a SSE configuration c. In
parallel, the same conversion is applied to the partition function as before. Consequently,
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one obtains

〈O〉 =
Tr
[
Oe−βHθ

]
Tr [e−βHθ ]

(2.57)

=

∑
c′∈{c′}O(c′)∑
c∈{c}W (c)

. (2.58)

As long as the operator, O, is based on operators appearing in the Hamiltonian, Hθ, the
configuration space attached to the sum in the numerator is included in the configuration
space of the denominator sum, {c′} ⊆ {c}. Such an assumption is required for the next step.
Otherwise, extended ensemble techniques such as the worm algorithm might be required
[41]. We consider an example of this assumption breakdown in the case of an entanglement
entropy estimator in Sec. 3.5. In that case, we develop a loop-based mapping between the
configuration spaces that allows us to circumvent the problem. As for now, we consider
this assumption to hold. Following the standard importance sampling steps, we get

〈O〉 =

∑
c
O(c)
W (c)

W (c)∑
cW (c)

=
∑
c

O(c)

W (c)
P (c)

=

〈
O(c)

W (c)

〉
c∼P

, (2.59)

where the c are sampled according to the probability P (c), which is based on the un-
normalized probability W (c). Such a procedure is described in detail in the preceding
sections.

2.3.5 Log-likelihood gradient estimators

As an illustration of the procedure described in the previous section, we apply it to derive
SSE estimators required for the training of the quantum Boltzmann machine (QBM). As
discussed in Sec. 5.3.1, the QBM training is based on the gradient

∂ ln pθ(v)

∂θ
= −∂ lnZθ(v)

∂θ
+
∂ lnZθ
∂θ

(2.60)

= −∂θZθ(v)

Zθ(v)
+
∂θZθ
Zθ

, (2.61)
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where Zθ ≡ Tr
[
e−βHθ

]
and Zθ(v) ≡ Tr

[
e−βHθMv

]
are the partition functions of the

unclamped and clamped ensembles correspondingly. The mathematical expressions for
those gradients will be derived in Sec. 5.3.1 and are given in Eqs. (5.31) and (5.31). The
direct approach that converts those expressions into the SSE language requires extensive
mathematical manipulations. A more elegant way is to take advantage of the gradient
form of Eq. (2.60) and directly work with the operator list representation of the partition
function, Eq. (2.48). For convenience, we duplicate this equation here as well as provide
the SSE representation for Zθ(v), which are

Zθ =
∑
s

∞∑
n=0

∑
Sn

βn

n!
〈s|

n∏
i=1

Hai,bi |s〉

Zθ(v) =
∞∑
n=0

∑
Sn

βn

n!
〈v|

n∏
i=1

Hai,bi |v〉 .

Here, we note that the lack of a trace over the spins in the clamped partition function is
what distinguishes the two ensembles. As the QBM does not impose any symmetries on the
Hamiltonian, each bond operator, Ha,b, has its own adjustable parameter θa,d. Similarly,
the derivation that follows is ensemble independent. Therefore, we restrain our attention
to the unclamped ensemble Z.

In order to derive an importance estimator according to Eq.(2.59), O(c) and W (c) need
to be matched for every configuration c. For the unclamped ensemble, we adopt definition
for c and W (c) given by

c = 〈v|
n∏
i=1

Hai,bi |v〉 , (2.62)

W (c) =
βn

n!
. (2.63)

To derive an expression for O(c), we apply the gradient to the partition function and use
the product rule, thus arriving at

∂Zθ
∂θa,d

=
∑
s

∞∑
n=0

∑
Sn

βn

n!
〈s|

n∑
k=1

(
n∏

i=k+1

Hai,bi

∂Hai,bi

∂θa,d

k−1∏
i=1

Hai,bi

)
|s〉

=
∑
s

∞∑
n=0

∑
Sn

βn

n!
〈s|

n∑
k=1

(
n∏

i=k+1

Hai,bi

∂Hak,bk

∂θa,d

k−1∏
i=1

Hai,bi

)
|s〉 . (2.64)
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For a diagonal operator a = D, the derivative
∂HDk,bk
∂θD,d

≡ HD,d represents a bare diagonal

operator associated with the coupling θD,d. Denoting the eigenvalues of this operator with
respect to a state |s〉 as λ(s, D, d), we have

HD,d |s〉 = λD,d(s) |s〉 . (2.65)

Moreover, according to the definition in Eq. (2.49), the operator product
∏k−1

i=1 Hai,bi |s〉
represents the propagated state |s(k − 1)〉. This state remains unaltered under the action
of a diagonal operator. Therefore, Eq. (2.64) reduces to

∂Zθ
∂θD,d

=
∑
s

∞∑
n=0

∑
Sn

βn

n!

(
n−1∑
k=0

λD,d(k − 1)

)
〈s|

n−1∏
i=1

Hai,bi |s〉

=
∑
s

∞∑
n=0

∑
Sn

βn+1

(n+ 1)!

(
n∑
k=0

λD,d(k − 1)

)
︸ ︷︷ ︸

O(c)

〈s|
n∏
i=1

Hai,bi |s〉︸ ︷︷ ︸
c

,

where in the second line we have relabeled n → n − 1 to extract the weight O(c) of a
configuration c as per Eq. (2.62). Concluding the derivation by applying the importance
ratio Eq.(2.59), we obtain the estimator

∂ lnZθ
∂θD,d

= β
〈
λ̄D,d

〉
, (2.66)

where we have defined the estimator λ̄D,d ≡ 1
n+1

∑n
k=0 λD,d(k−1). An equivalent estimator

is valid for the clamped distribution. Therefore, the full log-likelihood derivative with
respect to a parameter coupled to a diagonal operator is

∂pθ(v)

∂θD,d
= −β

〈
λ̄D,d

〉
v

+ β
〈
λ̄D,d

〉
. (2.67)

Proceeding with the derivative with respect to a parameter coupled to an off-diagonal
operator θO,d, we consider again the expression Eq. (2.64) as the starting point. This time
we note that an off-diagonal operator changes the state |s〉 it acts upon, thus invalidating
the previous approach. Instead, for an off-diagonal operator, we have

∂HDi,bi

∂θO,d
=

1

θO,d
Hai,biδai,Oδbi,d, (2.68)
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where δ is the Kronecker delta function. Substituting this identity into Eq. (2.64) leads to

∂Zθ
∂θO,d

=
∑
s

∞∑
n=0

∑
Sn

βn

n!
〈s|

n∑
k=1

(
k−1∏
i=1

Hai,bi

(
1

θO,d
Hak,bkδak,Oδbk,d

) n∏
i=k+1

Hai,bi,θi

)
|s〉

=
∑
s

∞∑
n=0

∑
Sn

βn

n!

1

θO,d

n∑
k=1

(δak,Oδbk,d) 〈s|
n∏
i=1

Hai,bi |s〉

=
∑
s

∞∑
n=0

∑
Sn

βn

n!

1

θO,d
nO,d︸ ︷︷ ︸

O(c)

〈s|
n∏
i=1

Hai,bi |s〉︸ ︷︷ ︸
c

, (2.69)

where nO,d =
∑n

k=1 δak,Oδbk,d is the number of occurrences of an off-diagonal operator at
the bond d in the operator sequence Sn. As the configuration c directly matches Eq. (2.62),
the importance estimator is easily read off as

∂ lnZθ
∂θO,d

=
1

θO,d
〈nO,d〉 . (2.70)

Therefore, the full log-likelihood derivative with respect to a parameter coupled to an
off-diagonal operator is

∂pθ(v)

∂θO,d
= − 1

θO,d
〈nO,d〉v +

1

θO,d
〈nO,d〉 . (2.71)

It is interesting to compare the SSE expression for the gradient in Eqs. (2.67) and (2.71)
against their mathematical counterparts in the Eqs. (5.31) and (5.32). The SSE rep-
resentation is fully equivalent between the clamped and unclamped ensemble while the
mathematical expressions take very different forms in the two ensembles.
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Chapter 3

Entanglement entropy estimation in
quantum Monte Carlo

3.1 Introduction

Looking back at the history of the innovation of entanglement entropy (EE) methods in MC
methods, there seems to be three quasi-independent branches of development. Those are
zero temperature quantum Monte Carlo (QMC) [42], finite temperature QMC [43] and d+1
classical [44] MCMC aiming to study critical phenomena. These parallel developments have
led to the birth of similar ideas. However, the connection between them has been masked
by the contextualities of a particular application. This lack of common language has been
detrimental to the mixing of important developments and cross-fertilization between the
subfields. In order to restore the ergodicity, we frame the problem of EE measurement in
a common language and accentuate on the main ideas that have led to the improvements.

The point of contact between the MCMC frameworks mentioned in the previous para-
graph is the density matrix, ρ, describing the statistical ensemble under study (be it a
mixed state or a pure state). Irrespective of the framework, we can always represent the
matrix elements of ρ in a bipartite basis. Indeed, the Schmidt decomposition allows us to
build a complete orthogonal basis set out of states like

|sA, sĀ〉 = |sA〉 ⊗ |sĀ〉 . (3.1)

Here are A and Ā refer to two regions that partition the system into two complementary
subsystems; sA and sĀ are assumed to be orthogonal basis states spanning their corre-
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sponding Hilbert spaces. In this basis, the density matrix elements are

ρ(sA, sĀ, s
′
A, s

′
Ā) = 〈sA, sĀ|ρ|s′A, s′Ā〉 (3.2)

In particular, we are interested in an object from the density matrix known as the reduced
density matrix ρA, which satisfies

ρA ∝
∑
sĀ

〈sĀ|ρ|sĀ〉 . (3.3)

In this expression, the proportionality factor is the partition function,

Z = Tr [ρA] = Tr [ρ] , (3.4)

which normalizes the sum of diagonal elements to add up to one, thus allowing one to
interpret them as a probability distribution. The reduced density matrix fulfills the same
role as ρ but for a particular subsystem A and is the central object for the EE computation.
Its matrix elements are

ρA(sA, s
′
A) =

1

Z

∑
sĀ

ρ(sA, sĀ, s
′
A, sĀ). (3.5)

Depending on the QMC flavour, the representation for the density matrices changes. How-
ever, the basic mathematical formalism that follows is independent of those details.

3.1.1 Replica trick and Rényi entropy

Unlike a typical physical observable, the EE is not an average property of sampled config-
urations. In order to access this quantity in QMC simulations, a non-trivial modification
to the simulation cell is required. This modification constitutes the common ground that
all QMC methods rely on in order to access the EE and is known as the replica trick [6].
Originally, the replica trick was developed as an analytic tool to compute the von Neumann
EE in conformal field theories, given by

S1(A) = −Tr [ρA ln ρA] . (3.6)

The authors in Ref. [6] use an analytic continuation in order to compute S1 through

S1(A) = − lim
n→1

∂

∂n
Tr [ρnA] , (3.7)
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where n is a real number. When n is a positive integer larger then 1, we can write

Tr [ρnA] =

∑
s1,A,...,sn,A

∏n
k=1 ρA(sk,A, sk+1,A)∑

s1,A,...,sn,A

∏n
k=1 ρA(sk,A, sk,A)

=

∑
s1,A,...,sn,A

∏n
k=1 ρA(sk,A, sk+1,A)∏n

k=1

∑
sk,A

ρA(sk,A, sk,A)
(3.8)

=
Z [n,A]

Z [n,∅]
. (3.9)

In the first line, the sum and the product in the denominator commute, which leads to the
expression in the second line. The last line introduces the notation for a replicated partition
function, Z[n,A]. This notation specifies the number, n of replicas of the reduced density
matrix in the composition as well as the region A. With an empty region A = ∅, the
replicas are fully independent of each other, so that Z[n,∅] = Zn. With a non-empty
region A, the replicas become interconnected. For instance, in the d + 1 representation
of ρ, specific boundary conditions are imposed between replicas in the +1 direction (see
Fig.3.4). Such notation shows that the replica trick allows us to express the trace of the
density matrix as a the ratio of partition functions.

While the generalization of the definition above to real n is possible for analytic cal-
culations, in QMC methods only integer n can be probed. With this limitation, it is
constructive to consider a different entropy measure known as the Rényi EE, given by

Sn =
1

1− n ln Tr [ρnA] . (3.10)

In this context, n is known as the Rényi index. Contrasted with the von Neumann entropy,
Rényi entropies are lacking the property of sub-additivity. However, despite this missing
feature, all Rényi entropies collectively carry at least as much information as the von
Neumann entropy, which is evident since the latter can be expanded in powers of ρA.
Moreover, Rényi entropy can be seen as the generalization of the von Neumann entropy
due to the limit

lim
n→1

Sn = S1. (3.11)

More importantly from the practical viewpoint, it has been found that for a given n, Sn
often carries a similar informational content about a physical system as the Von Neumann
entropy. For this reason and due to practical considerations of the linear scaling of the
computational costs in n, we solely focus on the second Rényi entropy S2 as a numerical
probe for the EE. We note that the techniques required to estimate S2 can be trivially
extended to Sn.
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3.1.2 Swap operator

It is insightful to extract a physical interpretation of the replicated partition function.
For this, we consider the expression it takes in an augmented state space spanned by a
complete basis set |s, s′〉 = |s〉1 ⊗ |s′〉2. In this tensor product, each factor spans over
the Hilbert space associated with the non-trivial part of one of the replicated density
matrices embedded in this larger space as ρ1 ≡ ρ ⊗ I and ρ2 ≡ I ⊗ ρ correspondingly.
As we also want to identify the spins associated with region A, we adopt the notation∣∣sA, sĀ, s′A, s′Ā〉 = |sA, sĀ〉1⊗

∣∣s′A, s′Ā〉2
. In light of these definitions, we rewrite Eq. (3.9) for

n = 2 as

Z[2, A] =
∑

s1,A,s1,Ā
s2,A,s2,Ā

〈s1,A|ρA|s2,A〉 〈s2,A|ρA|s1,A〉

=
∑

s1,A,s1,Ā
s2,A,s2,Ā

〈
s1,A, s1,Ā

∣∣ ρ ∣∣s2,A, s1,Ā

〉 〈
s2,A, s2,Ā

∣∣ ρ ∣∣s1,A, s2,Ā

〉
=

∑
s1,A,s1,Ā
s2,A,s2,Ā

〈
s1,A, s1,Ā

∣∣
1

〈
s2,A, s2,Ā

∣∣
2
ρ1ρ2

∣∣s2,A, s1,Ā

〉
1

∣∣s1,A, s2,Ā

〉
2

= ρ1

 ∑
s1,A,s1,Ā
s2,A,s2,Ā

∣∣s2,A, s1,Ā, s1,A, s2,Ā

〉 〈
s1,A, s1,Ā, s2,A, s2,Ā

∣∣
 ρ2

= ρ1SwapAρ2. (3.12)

The last line defines the operator SwapA, whose matrix elements are iterated over in
the preceding line. This operator acts on the joint space of the replicated system. As
suggestive by its name, its action is to swap the spins that fall within the region A between
the replicas. It is easy to verify that this operator is Hermitian and, therefore, represents a
physical observable. To see this more explicitly, we note that in the special case when the
density matrix is the one of a pure state |ρ〉 = |ψ〉〈ψ|, the full system is decoupled, and,
therefore, is also in a pure state |Ψ〉〈Ψ| ≡ ρ1ρ2 = |ψ〉〈ψ|1 ⊗ |ψ〉〈ψ|2. In this case, the above
equation is equivalent to the expectation

Z[2, A] = 〈Ψ|SwapA|Ψ〉 . (3.13)

Additionally, for A = ∅, this expression simplifies to

Z[2,∅] = 〈Ψ|Swap∅|Ψ〉 = 〈Ψ|Ψ〉 . (3.14)
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Combining the last two equations, we conclude that the ratio

Z[2, A]

Z[2,∅]
=
〈Ψ|SwapA|Ψ〉
〈Ψ|Ψ〉 (3.15)

is the normalized expectation value of the Swap operator. As discussed in the previous
section, this quantity is directly related to S2. Therefore, the swap operator provides a
practical route for an experimental detection of the EE [45]. In fact, this interpretation of
the Swap operator extends to mixed states, where we have

Z[2, A]

Z[2,∅]
=

Tr [SwapAρ1ρ2]

Tr [ρ1ρ2]
, (3.16)

which can be checked upon a substitution into Eq. (3.12).

Historically, the Swap operator opened the door to EE measurement in QMC in Ref. [42].
In this seminal work, the authors employed a projector SSE to study the area law con-
tribution to the EE of a spin system at zero temperature. Later on, Ref. [43] introduced
an EE estimator within a finite-temperature SSE framework (see Sec. 3.2.3) without re-
lying on the Swap operator terminology. Unlike this historic development suggests, the
reason for the different approaches to the EE evaluation undertaken in the zero- and finite-
temperature methods is not due to a particular nature of the density matrix but, rather,
due to the choice of the underlying state space representation within a QMC framework.
Fundamentally, the Swap operator is just a reformulation of the replica trick. For this
reason, on a conceptual level we find it more fruitful to think of the EE estimation within
QMC methods not as an evaluation of the Swap operator but, directly, as an estimation
of the partition function ratio in Eq. (3.9).

3.1.3 Free energy based methods

The replica trick has allowed us to turn the problem of EE estimation into the problem of
evaluating

S2(A) = − ln
Z [2, A]

Z [2,∅]
. (3.17)

The first approach to solving this problem came from a realization that this expression can
be written as a free energy difference as

S2(A) = − lnZ [2, A] + lnZ [2,∅] . (3.18)
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As such, methods designed to evaluate the free energies can be used, such as Wang-Landau
[46] or, at finite temperature, thermodynamic integration [47, 48]. In the latter case, the
partition function adopts an additional temperature label, Z [2, A, β]. It can be found by
integrating the well-known thermodynamic relationship between the free energy and the
expected energy −∂ lnZ

∂β
= 〈E〉 resulting in the working expression

lnZ [2, A, β]− lnZ [2, A, β = 0] = −
∫ β

0

dβ′ 〈E〉Z[2,A,β′] , (3.19)

where the subscript in the expectation value identifies the underlying ensemble. The free
energy at infinite temperature i.e., the second term on the left-hand side, is easily related
to the number of degrees of freedom. Computation of the integral on the right is done
numerically and requires MC estimation of the expectation value 〈E〉2,A,β′ at regular dis-
crete intervals filling up the entire window β′ ∈ [0, β]. One of the fruitful results that
came out from this approach was a demonstration that the EE can be used as a tool for
detecting classical phase transitions [47] (for the example of the 2d quantum XY model,
see Fig. 4.3). However, the numerical integration introduces a systematic bias [49] and an
increasing uncertainty as β →∞, rendering this approach impractical for studying systems
at zero temperature. More generally, the methods that rely on the estimation of the free
energy are poorly matched for the measurement of EE because the free energy is expected
to scale extensively, thus introducing an uncertainty from the volume law to the extracted
EE signal.

3.2 Fundamentals of partition functions ratio estima-

tion

Historically, in applicable domains, the free energy based approaches were the first numer-
ical procedures to tackle the measurement of EE. However, they were quickly replaced by
ratio based methods, which directly aim at constructing estimators for the ratio

rA∅ ≡
Z [2, A]

Z [2,∅]
, (3.20)

where the subscript (superscript) in rA∅ identifies the boundary conditions between repli-
cated partition functions in the denominator (numerator). This definition naturally leads
to a generalization that proves to be of the utmost importance and is given by

rAA′ ≡
Z [2, A]

Z [2, A′]
. (3.21)
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The next several sections examine in detail strategies towards an efficient evaluation of this
quantity in various contexts arising within QMC simulations.

3.2.1 Exponential speed-up through the ratio trick

It is educative to consider the expected behaviour of the ratio rAA′ from the physical point
of view and contrast it with rA∅. As a first step, we turn our attention to the latter and we
invert Eq. (3.17) to write

rA∅ = e−S2(A) ≈ e−∂A, (3.22)

where the approximation is based on the assumption that the EE of the underlying system
is captured by the area law and ∂A is the boundary of region A. Therefore, we expect an
exponential decay in rAA′ as the system’s boundary increases. For an accurate estimation,
the uncertainty, δrA∅, must be on the order of the value itself. In QMC simulations, the
uncertainty decreases as

√
Ns as the number of samples. Therefore, the scaling in Eq. (3.22)

implies an exponential increase in the computational cost, which severely restricts the
largest possible regions A that can be effectively studied with QMC.

On the other hand for Eq. (3.21), via small manipulations we arrive at

rAA′ =
rA∅
rA
′

∅
(3.23)

= e−(S2(A)−S2(A′))

≈ e−∂A−∂A
′
.

It becomes directly evident that for a judicious choice of the reference region A′ = A0

with a boundary size equal to that of region A, we have ∂A0 = ∂A such that rAA0
becomes

insusceptible to the area law, thus giving direct access to the subleading quantities of
interest. Therefore, using rAA0

instead of rA∅ provides an efficiency leap, in spirit similar to
using rA∅ instead of the free-energy estimator such as Eq. (3.18). This intriguing property
of the ratio rAA0

has somehow been ignored in the literature. Instead, the general adopted
technique for the elimination of the area law has been based on fitting. In fact, we make
the same inefficiency mistake in our first EE study described in Sec. 4.1. However in the
subsequent study detailed in Sec. 4.2, we correct ourselves mainly because such mistake
was no longer an option within the budgeted computational time.

In cases where the area law contribution cannot be straightforwardly removed or when
even subleading contributions to the EE lead to an exponential decrease in rAA′ as the gap
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between the two regions, |A − A′|, increases, 1 a simple but powerful technique known as
the ratio trick can be employed [42] (sometimes also referred to as the incremental trick).
The idea is to subdivide the region between A and A′ into N subregions Ai such that Ai+1

contains Ai, and |Ai+1 − Ai| ≤ ∆A, where ∆A is an integer hyper-parameter. With the
help of these intermediate regions, we derive

rAA′ =
N−1∏
i=0

r
Ai+1

Ai
, (3.24)

where A0 = A′ and AN = A. This expression can be verified by substituting it into
Eq. (3.21) and noticing that the denominator and numerator in consecutive terms cancel
each other. The ratio trick requires N separate processes, with each evaluating an in-
dividual ratio r

Ai+1

Ai
. Despite this increased number of processes, it provides a dramatic

improvement.

In order to understand the advantage of the ratio trick, we can imagine a partition
{Ai}Ni=0 such that each intermediate ratio is approximately the same, r

Ai+1

Ai
≈ r and, there-

fore, similar computation resources are required to achieve the accuracy δr in their estimate.
To see that such N always exists, we write

r = R1/N = e−(S2(A)−S2(A′))/N

where we have defined R ≡ rAA′ to simplify the notation and used Eq. (3.23) in the second
equality. We note that the EE difference, S2(A) − S2(A′), scales at most as the area law,
say, ∼ ∂A. At the same time, N has no such restriction and, in principle, can scale as the
volume law. However, it is sufficient to set N ∼ ∂A to make r constant independent of
A,A′ and the system size L.

Concurrently, since each ratio evaluation is implemented in an independent simulation,
the cumulative uncertainty in the product can be expressed in terms of the individual
fractional uncertainty via a simple propagation of error as

δR

R
=
√
N
δr

r
. (3.25)

To make the fractional uncertainty on the left constant, one therefore needs to get more
accurate estimates in r as N increases such that δr ∼ 1/

√
N . The need for a more

accurate evaluation in turn requires producing more samples from each simulation, scaling
as Ns ∼ N . Taking a total of all the combined resources required, we conclude that with
the ratio trick the cost to evaluate the EE difference transform from an exponential scaling
O
(
e|S(A)−S(A′)|) to a polynomial one O

(
[S(A)− S(A′)]2

)
.

1we assume A′ is contained in A; if not, the same reasoning applies after the relabelling A′ ⇔ A
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3.2.2 Two basic estimators

The ratio trick provides an opportunity for a scalable computation of the EE by breaking
up the task of evaluating rA∅ into a set of manageable chunks that each focus on evaluating
intermediate rAA′ . As discussed prior in this chapter, the replica trick lets us express rAA′ as
a ratio of partition functions as

rAA′ =
Z[2, A′]

Z[2, A]
. (3.26)

Our goal is to find a MC estimator for this quantity. According to our previous discussion,
the general expression for the partition function with entangling region A is

Z[2, A] =
∑

s1,A,s1,Ā,s2,A,s2,Ā

ρ(s1,A, s1,Ā, s2,A, s1,Ā)ρ(s2,A, s2,Ā, s1,A, s2,Ā). (3.27)

We will fall back on this definition whenever we need to derive an estimator specific to
a particular application. However, for now, in the spirit of generalization, we define the
weight W (s1,A, s1,Ā, s2,A, s2,Ā) to be the product of density matrix elements appearing in
the sum and rewrite the partition function as

Z[2, A] =
∑

s1,A,s1,Ā,s2,A,s2,Ā

W (s1,A, s1,Ā, s2,A, s2,Ā). (3.28)

In d + 1 QMC simulations, the weight W (s1,A, s1,Ā, s2,A, s2,Ā) is not directly accessible.
Instead, it is indirectly sampled via updates on a configuration space {c} via a framework-
dependent weight W (s1,A, s1,Ā, s2,A, s2,Ā, c). In this induced weight, the region A acts to
impose certain restrictions that must be obeyed by the configurations c. This observa-
tion motivates us to define a more succinct and more general expression for the partition
function as

Z[2, A] =
∑
c∈{c}A

WA(c). (3.29)

Here, the set {c}A represents the set of allowed configurations, c, as determined by region
A and WA(c) is the representation-dependent weight of a configuration. This general
form captures all the subtleties that lead to different estimators within different MCMC
frameworks. Plugging this expression in Eq. (3.26) gives

rAA′ =

∑
c∈{c}AWA(c)∑
c∈{c}A′ WA′(c).

(3.30)
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A A'

Figure 3.1: A Venn diagram of the relationship between the configuration spaces {c}A
and {c}A′ attached to the partition functions Z[2, A], Z[2, A′] correspondingly.

This equation is reminiscent of the approach we took to estimate the value of the
mathematical constant π in the Sec. 2.1.1. In that example, the path to the solution
relied on a reformulation of the problem as an estimation of the ratio of specifically-chosen
partition functions. An importance estimator was then derived to evaluate the ratio. Here,
we encounter a similar problem with an important distinction – possibly non-overlapping
configuration spaces (see Fig. 3.1 and contrast it with the Fig. 2.1(a)). To keep track of
this feature, we define auxiliary configurations spaces based on the original ones.

{c}A∩A′ ≡ {c}A ∩ {c}A′ intersection (3.31)

{c}A∪A′ ≡ {c}A ∪ {c}A′ union (3.32)

{c}A′\A ≡ {c}A′ \ {c}A compliment of A (3.33)

{c}A\A′ ≡ {c}A \ {c}A′ compliment of A′. (3.34)

Using those new objects, we split the sum in the numerator of Eq. (3.30) in two as

rAA′ =

∑
c∈{c}A∩A′ WA(c) +

∑
c∈{c}A\A′ WA(c)∑

c∈{c}A′ WA′(c)

=

∑
c∈{c}A∩A′ WA(c)∑
c∈{c}A′ WA′(c)

+

∑
c∈{c}A\A′ WA(c)∑
c∈{c}A′ WA′(c)

=
ZA∩A′ [2, A]

Z[2, A′]
+
ZA\A′ [2, A]

Z[2, A′]
, (3.35)

where the last line introduces a new notation for the partition functions restricted to the
configuration space indicated in the subscript. To derive an estimator for the first term, we
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first extend the definition of the weight WA to configurations beyond its original domain,
{c}A′\A, by explicitly setting it to zero outside of its original domain, such that

WA(c) =

{
WA(c) if c ∈ {c}A
0 if c 6∈ {c}A.

(3.36)

With this version of WA(c), we extend the range of the first sum in the numerator of
Eq. (3.35), which leads to

ZA∩A′ [2, A]

Z[2, A′]
=

∑
c∈{c}A′ WA(c)∑
c∈{c}A′ WA′(c)

=

∑
c∈{c}A′

WA(c)
WA′ (c)

WA′(c)∑
c∈{c}A′ WA′(c)

=
∑

c∈{c}A′

WA(c)

WA′(c)
PA′(c)

=

〈
WA(c)

WA′(c)

〉
A′
. (3.37)

When the configuration spaces fully overlap such that {c}A′ = {c}A′∩A = {c}A, the second
term in Eq. (3.35) is zero and the last expression yields the desired estimator

rAA′ =

〈
WA(c)

WA′(c)

〉
A′

when {c}A = {c}A′ . (3.38)

When the configurations spaces differ, the second term in Eq. (3.35) needs to be estimated.
Unfortunately, this is not achievable with samples generated from PA′ as they provide no
information outside of their domain {c}A\A′ . Instead, we decompose

rAA′ =
ZA∩A′ [2, A]

Z[2, A′]

ZA′∩A[2, A′]

ZA∩A′ [2, A]

Z[2, A]

ZA′∩A[2, A′]
. (3.39)

The estimator for the first term is given in Eq. (3.37). The inverse of the third term can be
calculated via the same estimator with the replacement A⇔ A′. As for the middle term,
the configuration spaces composing its partition functions fully overlap by construction.
In other words, those configurations are simultaneously compatible with regions A and A′,
implying that the extent of the entangling region plays no role in the weight, and

WA(c) = WA′(c) for c ∈ {c}A′∩A. (3.40)
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Therefore, the middle term reduces to one. It follows that

rAA′ =
ZA′∩A[2, A]

Z[2, A′]

/
ZA′∩A[2, A′]

Z[2, A]

=

〈
WA(c)

WA′(c)

〉
A′

/〈
WA′(c)

WA(c)

〉
A

. (3.41)

Additionally, we note that Eqs. (3.36) and (3.40) imply the equality

WA′(c)

WA(c)
= δA∩A′(c), (3.42)

where δA′∩A(c) is an indicator function verifying the compatibility of a configuration c with
the restrictions imposed by both regions A and A′, i.e.,

δA∩A′(c) =

{
1 if c ∈ {c}A′∩A
0 if c 6∈ {c}A′∩A

. (3.43)

Therefore, we can rewrite Eq. (3.41) in its final form as

rAA′ =
〈δA∩A′(c)〉A′
〈δA∩A′(c)〉A

. (3.44)

3.2.3 Extended ensemble approach

The last equation derived in the previous section, Eq. (3.44), requires an independent
simulation for each ensemble associated with regions A and A′. Those two simulations can
be combined in one where the Markov chain explores the joint space {c}A∪A′ . This extended-
ensemble can be simulated via an introduction of a new MCMC move that switches between
the underlying sampled distributions as indicated by A and A′ according to the transition
T that must satisfy the detailed balance,

W (A)T (A→ A′) = W (A′)T (A′ → A). (3.45)

The simplest way to satisfy this condition is to propose to switch whenever the Markov
chain finds itself in {c}A∩A′ . In this configuration-space, the weight of a configuration
is independent on the entangling region as per Eq. (3.40), so any symmetric choice of
T (A′ → A) satisfies detailed balance. A schematic depiction of a Markov chain with a
deterministic transition (always switch) in the extended-space is shown in Fig. 3.2. The
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0
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Figure 3.2: Three-dimensional visualization of a MCMC walk exploring the joint con-
figuration space, {c}A∪A′ (see Eq.(3.32)). This figure is based on the Venn diagram
visualization of the configuration space in Fig. 3.1. The trajectory of the consecu-
tive moves taken by the Markov chain is traced out with dashed lines. The blue and
dark dashed lines indicate inter-ensemble (displayed in the 3rd dimension) and intra-
ensemble (displayed in-plane) moves correspondingly. In this case, an inter-ensemble
move is made every time the Markov chain finds itself in the configuration space com-
patible with both regions. Configurations of the Markov chain sampled in the configu-
ration space {c}A are numbered. The effective trajectory with respect to this space is
traced out with a solid line. Note how the configurations labelled as 0 and 1 are con-
nected via a multiple-step chain in the A′ configuration space. Such effective tunneling
via inter-ensemble moves helps with the Markov chain mixing.

same Eq. (3.44) applies in order to estimate rAA′ . However, one must be careful how to
interpret the two expectations in the extended-ensemble. In fact, the authors who introduce
this method make a mistake in deriving their estimator [43]. Unlike those authors imply,
those expectations need to be computed separately during the simulation run and only
combined as sample averages once the simulation terminates. For instance, the estimate
based on the example depicted in Fig. 3.2 is

rAA′ =
2
4
2
5

=
5

4
. (3.46)

From Fig. 3.2, the source of the advantage in simulating the extended-ensemble as opposed
to performing two separated simulations also becomes transparent. Indeed, by introducing
the inter-ensemble move, the Markov chain enjoys favourable mixing dynamics that act as
a multi-step update with respect to each configuration space.
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3.2.4 Projected ensemble approach

The extended ensemble method described in the previous section presents a sampling
strategy that allows one to estimate the EE within a single simulation even for non-fully-
overlapping configurations spaces, {c}A and {c}A′ . However, fundamentally, this estimation
still relies on the estimator based on Eq. (3.41). In contrast to an estimator based on
Eq. (3.38), this type of partition functions ratio estimator is disadvantageous as its statistics
are confined to the two extreme values2, thus intuitively leading to a high variance estimate.
At first sight, the two estimators seem to be orthogonal to each other as far as their
domains of application are concerned. Indeed, their areas of application seem to be strictly
set by the relationship between {c}A and {c}A′ . However, the relationship between the
configuration spaces is representation specific and, sometimes, it is possible to project the
original representation into a new configuration space labelled via a new variable l that
erases the distinction between the two configuration spaces, see Fig. 3.3.

cA cA'
l

Figure 3.3: Three-dimensional visualization of the projected configuration space, {l}
with respect to the original spaces {c}A and {c}A′ . This figure is based on the Venn
diagram in Fig. 3.1. Notice the change of variable c → l between the original and
projected spaces. The idea is to find a new label l that is conditionally related to
the original label c such that the projections of both {c}A and {c}A′ overlap, i.e.,
{l}A = {l}A′ .

Theoretically, the relationship between the configuration spaces is fully captured via
a joint probability distribution, p(c, l), defined over the original, {c}, and projected, {l},
configuration spaces. Such a distribution is implicitly defined by the conditional p(l|c). In

2A single sample estimate for this estimator is restricted to be either 0 or 1. Therefore, the derived
single-sample estimates for S2 take the extreme values (0,∞).
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fact, this conditional implements the stochastic map executing the conversion c→ l. The
projection into the new space is achieved via the simple series of steps

Zc[2, A] =
∑
c∈{c}A

WA(c)

=
∑
c∈{c}A

WA(c)
∑
l

p(l|c)

=
∑
l

∑
c∈{c}A

p(l|c)WA(c)

=
∑
l

WA(l)

= Zl[2, A].

Here,

WA(l) ≡
∑
c

p(l|c)WA(c) (3.47)

is the unnormalized weight of a configuration l in the projected ensemble. In the second
line, we explicitly assume that the conditional is normalized and, therefore, sums up to
one. Such assumption directly leads to the resulting equality of the partition functions.
Combined with the assumption that both {c}A and {c}A′ are projected into the same
configuration space {l}, we are justified to apply Eq. (3.38), which gives

rAA′ =

〈
WA(l)

WA′(l)

〉
A′
. (3.48)

Here, a sample configuration l is to be generated with respect to the A′ ensemble. Such
sampling can be implemented as a two-step procedure: c ∼ pA′(c) followed by l ∼ p(l|c).
That is, first, c is generated via a QMC algorithm working in the original representation;
then, an instance of the new label is generated by sampling the conditional p(l|c) based on
the c obtained in the previous step.

In practice, the success of the above approach to partition function ratio estimation
hinges on a few ingredients. More specifically, given a stochastic map p(l|c), the following
conditions must be met:

• Equivalence of the original configuration spaces in the projected space must be
demonstrated such that {l}A = {l}A′ .
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• Generation of i.i.d. samples from the conditional p(l|c) must be possible, for instance,
via a blocked Gibbs sampling.

• p(l|c) must be normalized.

• Evaluation of the ratio WA(l)
WA′ (l)

from Eq. (3.47) must be efficient.

In Secs. 3.4.2 and 3.5, we provide two examples of p(l|c) satisfying all of those requirements.
In both cases, the applied label-conversion map is directly related to the cluster/loop
algorithm employed in the corresponding MCMC scheme. Such estimators are generally
referred to as improved estimators [31]. The new estimators show a dramatically reduced
variance as compared to alternative estimators working in the original representation. Such
increase in performance can be attributed to the summation in Eq. (3.47). Conditioned
on a particular configuration l, the sum iterates over all original configurations c that
are mapped to l while reweighting their original weight, W (c), by their likelihood to be
mapped to l. In practice, such a sum can include thousands of terms. Therefore, while
an estimator in the original representation is limited to base its estimate on a chain of
sampled configurations, c, the new estimator effectively searches for large contributions to
the EE in the configuration space all around the chain. This increased exploration of the
configuration space stabilizes the variance of the estimator.

3.3 Estimator in d dimensions: variational Monte Carlo

As the first application of the theory developed in the preceding sections, we consider the
problem of extracting the EE from a trial wavefunction ψ(s). This parameterized wave-
function is usually optimized to represent a ground state of a Hamiltonian. Variational
QMC [50] and projector QMC [51] are two flavours of QMC that build a direct representa-
tion of a pure state. However, those methods adopt very different internal representations
for the wavefunction. The configuration space of the projector QMC is very similar to the
standard d+ 1 SSE simulation cell (see Sec. 2.3.2). We consider EE estimators applicable
within the d+ 1 setting in the next sections. In this section, we work directly in the phys-
ical d dimensions of the physical system. Such setting is natural to the framework of the
variational QMC.

As a first step, we build a representation for the density matrix. For a pure state |ψ〉,
the density matrix takes the form

ρ = |ψ〉〈ψ| . (3.49)
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Therefore, the density matrix elements, Eq. (3.2), adopt the structure

ρ(sA, sĀ, s
′
A, s

′
Ā) = ψ(sA, sĀ)ψ∗(s′A, s

′
Ā). (3.50)

Consequently, the replicated partition function, Eq. (3.9), takes the form

Z[2, A] =
∑

s1,A,s1,Ā
s2,A,s2,Ā

ρ1(s1,A, s1,Ā, s2,A, s1,Ā)ρ2(s2,A, s2,Ā, s1,A, s2,Ā)

=
∑

s1,A,s1,Ā
s2,A,s2,Ā

ψ1(s1,A, s1,Ā)ψ∗1(s2,A, s1,Ā)ψ2(s2,A, s2,Ā)ψ∗2(s1,A, s2,Ā)

=
∑

s1,A,s1,Ā
s2,A,s2,Ā

Ψ∗(s2,A, s1,Ā, s1,A, s2,Ā)Ψ(s1,A, s1,Ā, s2,A, s2,Ā). (3.51)

In the second line, the wavefunction index indicates its corresponding replica index. In
the next line, this index disappears as it is implicitly encoded in the position within the
arguments of the combined wavefunction |Ψ〉 ≡ |ψ〉 ⊗ |ψ〉 . Its amplitudes are specified by
four indices,

Ψ(s1,A, s1,Ā, s2,A, s2,Ā) = ψ1(s1,A, s1,Ā)ψ2(s2,A, s2,Ā). (3.52)

A similar expression holds for Z[2, A′]. Therefore, the partition function ratio, Eq.(3.26),
is

rAA′ =

∑
s1,A,s1,Ā
s2,A,s2,Ā

Ψ∗(s2,A, s1,Ā, s1,A, s2,Ā)Ψ(s1,A, s1,Ā, s2,A, s2,Ā)∑
s1,A′ ,s1,Ā′
s2,A′ ,s2,Ā′

Ψ∗(s2,A′ , s1,Ā′ , s1,A′ , s2,Ā′)Ψ(s1,A′ , s1,Ā′ , s2,A′ , s2,Ā′)
. (3.53)

We note that both sums iterate over the same state space. Moreover, the states in each
space can be bijectively mapped into each other simply by setting s ≡ (s1,A, s1,Ā, s2,A, s2,Ā) =
(s1,A′ , s1,Ā′ , s2,A′ , s2,Ā′). As variational QMC can directly sample this configuration space,
the EE estimator can be derived from Eq. (3.38). Treating the product Ψ∗(s)Ψ(s) as the
weight of a configuration, we derive the estimator

rAA′ =

〈
Ψ∗(s2,A, s1,Ā, s1,A, s2,Ā)

Ψ∗(s2,A′ , s1,Ā′ , s1,A′ , s2,Ā′)

〉
A′

. (3.54)

Here, configurations s are assumed to be sampled based on the probability distribution

PA′(s) = Ψ∗(s2,A′ , s1,Ā′ , s1,A′ , s2,Ā′)Ψ(s1,A′ , s1,Ā′ , s2,A′ , s2,Ā′). (3.55)

Such a probabilistic interpretation of the product above is possible when the wave-function
is positive-definite. We study such a case in Sec. 5.2.4, where we employ a restricted
Boltzmann machine as an ansatz to parameterize Ψ(s) and sample PA′(s).
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3.4 Estimator in d + 1: classical path-integral repre-

sentation

Transitioning to the application of the EE QMC estimation theory to a d + 1 setting,
we note that the extra dimension provides a new degree of complexity. However, such
a representation encodes an extra structure about the underlying system that can be
harvested for the development of an improved estimator. While the ideas present in this
chapter were originally developed by the author, they were later discovered to have been
risen in an early publication (Ref. [44]) that studied the d + 1 classical representation of
critical theories. This work predates the seminal work of the EE measurement in quantum
many-body systems [42]. It is interesting to note that although Ref. [44] develops a very
efficient improved estimator, the ratio trick was not developed at the time, thus impeding
the final accuracy of the extracted EE. The first work combining the two ideas can be
credited to Ref. [52].

3.4.1 Energy-based estimator

The goal is to study the scaling of the EE of the critical transverse field Ising model in 2
dimensions [53]. We employ the imaginary-time path-integral framework to convert this
quantum model to a classical representation. As discussed at length in Sec. 2.2.1, the
output of this mapping leads to a configuration space of an isotropic classical model in
2 + 1 dimensions. The weight of each configuration c is given in terms of its Boltzmann
weight.

The first step to derive an EE estimator is to obtain a representation for the replicated
partition function, Eq. (3.27). Following a similar derivation as in Sec. 2.2.1, we obtain a
classical representation for ρ(s, s′), displayed in Fig. 3.4(a). The only difference from the
previous procedure is that we keep open the possibility that s 6= s′. Next, we apply the
replica trick. For this, the second simulation cell is introduced and an identification between
the spin pairs on the inter-replica boundaries is carried out. In accordance with Eq. (3.27),
inter-replica boundary spins that are part of region A are merged between the replicas;
the spins that fall in the complement of A are merged within the replicas. This process is
visualized in Fig. 3.4(b). The resulting simulation cell is displayed in Fig. 3.4(c). Based on
this figure, we conclude that region A determines the bonds between inter-replica boundary
spins and, therefore, influences the energy of an Ising configuration, EA(c). Importantly,
region A does not introduce any restrictions on the configurations space. Therefore, the
configuration spaces of Z[2, A] and Z[2, A′] overlap. This fact validates an application of
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Figure 3.4: Classical d + 1 representation of the transverse field Ising model (see
Sec. 2.2.1). a) Depiction of a density matrix element, ρ(s, s′) in this representation. All
circles represent classical spin degrees of freedom. The blue circles on the boundary are
directly related to the density matrix element indices (s, s′) . The Ising bonds between
the spins are indicated with short lines. Note how the bottom layer is missing horizon-
tal bonds. b) A replicated system of two independent densities ρ(s1, s

′
1) and ρ(s2, s

′
2).

The dotted lines anticipate the pairs of spins that get identified with each other when
the replicas are connected to form Z[2, A] according to Eq. (3.27). In this case, the
region A is comprised of 2 spins on the left. c) The resulting replicated system, Z[2, A],
after the matched pairs of blue spins are individually glued into a single entity. Note
that only half of the blue spins remain as a result of this step. Additionally, some of
the inter-replicas bonds are “stretched out”. We remark that in a simulation, there is
no distinction between the circles once the representation in c) is obtained.

the estimator from Eq. (3.38), which takes the form

rAA′ =

〈
e−βEA(c)

e−βEA′ (c)

〉
A′
. (3.56)

A further simplification is possible through the realization that the bulk contribution to
the energy is exactly the same between EA and EA′ . Therefore, the difference in energies
of a configuration c is entirely due to the local difference in energies of the inter-replica
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bonds in the region ∆A = A′ − A. Although computationally inexpensive to evaluate,
the boundary-energy-based estimator relies on a fraction of the simulated configuration
space. Indeed, in practice, the (d+ 1)th dimension is usually much larger than the rest of d
dimensions. Therefore, the bulk of spins are left invisible to the estimator. Moreover, as the
gap between the regions, ∆A, increases, the statistics of this estimator are progressively
dominated by rare events. Those considerations motivate us to search for an improved
estimator.

3.4.2 Improved estimator

As discussed in Sec. 2.2.3, the Ising model admits a Fortuin-Kasteleyn decomposition
that casts the original spin model in terms of an equivalent random-cluster model (see
Eq. (2.42)). In the context of the discussion in Sec. 3.2.4, we treat this decomposition as a
stochastic map into a new projected space. As a result of this mapping, the binary degrees
of freedom are mapped from spins to bonds, s → b, via the normalized conditional p(b|c)
specified in Eq. (2.35). Sampling of this conditional is based on a Gibbs sampling leading
to an easy generation of i.i.d. samples.

The bond variable b can be either in an open (active) or a closed (passive) state.
Each configuration of bonds assumes a clustering decomposition. Clusters are formed by
subgroups of open bonds split from each other by boundaries of closed bonds. The number
of those clusters, Nc, is directly related to the number of spin configurations that are
mapped to a bond configuration. Specifically, for each bond configuration, there are 2Nc

spin configurations mapping to it. The marginal of a bond configuration has an analytic
expression, Eq. (2.42). For convenience, we restate it here as

WRC(b) = pn(b)(1− p)Nb−n(b)2Nc(b). (3.57)

Here, n(b) is the number of active bonds, Nb is the total number of bonds, Nc(b) is the
number of independent clusters formed within a bond configuration b, and p ∈ [0, 1] is a
model parameter directly related to the parameters of the Ising model.

Based on this discussion, we conclude that the stochastic map, p(b|c), satisfies all three
efficiency requirements for an EE estimator in the projected space outlined in Sec. 3.2.4.
The only condition left to demonstrate is that the projected configuration space is shared
among all the entangling regions. To prove this point, we need to show that a given bond
configuration is compatible with all regions A. For this we note that the spin configuration
with all spins up, c↑, has a non-zero probability to be mapped to any bond configuration,
such that p(b|c↑) > 0 ∀ b. Therefore, this configuration alone is mapped to the whole bond
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space. As such a spin configuration is compatible with all regions A, the range of the
stochastic map is independent of the region A.

However, there still remains a subtlety of how to map a bond configuration compatible
with region A into a bond configuration of another region A′. Its evidence transpires
upon a closer examination of the replicated simulation cell from the point of view of bond
variables, Fig. 3.4(c). The topology of the inter-replica bonds are directly influenced by
the size of region A. However, their number is independent of this region. Therefore, there
exists a one-to-one correspondence between the bond configuration spaces corresponding
to two different regions A and A′. To specify this mapping unambiguously, consider region
A′ with three spins, that is one extra spin as compared to region A. To uniquely identify
the inter-replica bonds, we refer to the boundary bonds via their coordinate br

′,l′

r,l , where r
identifies the replica index and l ∈ {t, b} specifies the location of the spin within the replica
(top or bottom). With the topology of region A, bonds on the third spin are b2,t

1,b and b1,t
2,b.

The topology of region A′ requires the inter-replica bonds over the third spin to be b1,t
1,b

and b2,t
2,b. It turns out that both possible mappings between those two pairs of bonds are

valid. This is due to the fact that the direction of the arrow in the imaginary time axis is
arbitrary. However once the convention is made it must be consistent and preserved across
all the replicas for both ensembles A and A′. As the choice of the imaginary-time direction
for each ensemble is independent, this leads to the two-fold possibility when the bond
configurations are matched between the ensembles. This subtlety is important to keep
in mind when simulating more than two replicas. At the same time, this time-reversal
symmetry can be exploited to double the statistics by applying the EE estimator twice for
each generated bond configuration b.

Having established a one-to-one correspondence between the configuration spaces of
ZWC [2, A] and ZWC [2, A′], we have satisfied all the requirements for the application of
Eq. (3.48). Upon the substitution of the weight Eq. (3.57) into this equation, we derive an
improved estimator,

rAA′ =

〈
WA(b)

WA′(b)

〉
A′

=

〈
2N

A
c (b)

2NA′
c (b)

〉
A′

. (3.58)

In the resulting expression, a similar simplification occurs as that described for Eq. (3.56):
the bulk clusters cancel out in the difference NA

c (b)−NA′
c (b), such that only the clusters

that connect the replicas in region ∆A need to be built. Algorithmically, this estimator
can be implemented by starting the generation of every new cluster from spins located at
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the inter-replica bonds and inside of region ∆A until all of those spins are partitioned into
corresponding clusters.

Due to the non-local extent of the clusters on which it is built, this estimator has an
exponentially improved performance with respect to the estimator based on Eq. (3.56).

3.5 Estimator in d+1: stochastic series expansion rep-

resentation

In this section, we encounter for the first time the case when the configuration spaces
associated with the replicated ensembles of region A and A′ do not fully overlap in the
original representation, {c}A 6= {c}A′ . We develop a stochastic map based on a segment
partition of the original configuration that projects into a configuration space independent
of the entangling region A. Our work is based on some of the ideas initially discussed in
the thesis by Stephen Inglis [54]. This work developed a similar estimator applicable to the
standard SSE representation of the transverse field Ising model. However, our theoretical
formulation of the mapping as a stochastic projection allows us to generalize beyond the
deterministic loop partition developed in Ref. [54]. In fact, the deterministic approach
breaks down for the XY model considered here as an application. Our EE estimator
shows an exponential efficiency improvement compared to the estimator working in the
original representation. Our method is easily extensible to the Heisenberg model. We also
derive a generalization to the XXZ family class and discuss the possibility for an efficient
implementation.

3.5.1 Incompatible configuration spaces

For completeness, we briefly summarize the configuration space of a SSE framework. More
details can be found in Sec. 2.3. A configuration in the SSE representation can be rep-
resented by a spin state and an operator list, where the operators are local terms in the
Hamiltonian. Alternatively, we can represent the same configuration by a linked list of ver-
tices. Such a representation is composed of two labels: the list of links l and the set of vertex
types vA(l). The links connect consecutive vertices acting over the same spins. A given
link structure can be compatible with many configurations of vertices. The superscript for
the vertex configuration is needed since region A imposes hard boundary conditions at the
replica boundaries, see Fig. 3.5. Just like the link structure, those boundary conditions
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Figure 3.5: Stochastic series expansion representation of the XY model (see Sec. 2.3).
The original d-dimensional quantum system is composed of three spins arranged in a
chain. Here we adopt the linked-vertex representation. Links are dashed lines. The
label l identifies different configurations of those lines. Links that connect pairs of
vertices are internal links. Links that connect a vertex to a replica boundary spin
are considered external. The two types of small arrows placed next to the replicas’
boundary slices mark the boundary conditions along the dimension of the expansion:
within a column, spins decorated with the same kind of arrows are connected. a)
Depiction of a single replica. b) A configuration in the replicated ensemble, Z[2, A], is
shown. The region A extends over the whole system. Note the difference in the replica
boundary conditions between a) (intra-replica) and b) (inter-replica).

determine the set of vertex configurations compatible with a given region A. For exam-
ple, note how a valid configuration with respect to the Z[2, A = 3] ensemble displayed in
Fig. 3.5(b) is incompatible with region A′ spanning the first two spins.

In order to keep the distinction between the vertex constraints imposed by the link
structure and the inter-replica boundary conditions, we consider the link label l only to
include internal links between vertices, i.e., those links that do not cross the inter-replica
boundary. We leave the exterior links to be open. In the illustration of a SSE configuration
in Fig. 3.5, those exterior links are connected to the boundary spins. Such a representation
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deviates from the regular visualization of the SSE simulation cell [41] and gives us the
flexibility to reconnect the external links on demand.

These two labels are sufficient to enumerate the configuration space of a quantum spin
model. Thus, a replicated partition function can be expressed in terms of a double sum as

Z[2, A] =
∑
l

∑
vA(l)

W (vA(l)), (3.59)

where W (vA(l)) is the weight of a configuration labelled by l and vA(l).

This general expression can be simplified for the XY model. The model’s SSE vertices
are explicitly displayed in Fig. 2.5 and also shown in Fig. 3.5. With an appropriate choice of
adjustable SSE constants, the weight of each vertex becomes equal to 1/2J (see Sec. 2.3.3).
Hence, the weight of a vertex configuration does not depend on a particular combination of
vertices in the list and, therefore, is completely defined by the length of the corresponding
operator list alone. We get that WXY (vA(l)) = WXY (l) and Eq. (3.59) is simplified to

ZXY [2, A] =
∑
l

WXY (l)
∑
vA(l)

1. (3.60)

The second sum counts the degeneracy of vertex configurations compatible with the bound-
ary conditions between replicas.

3.5.2 Segment partition

Motivated by the search for a variable independent of the inter-replica boundary conditions,
we introduce a new label, s(vA(l)), that enumerates all possible partitions of a vertex
configuration labelled by (l, vA(l)) into a set of non-overlapping segments. The following
algorithm is used to trace a single instance of those segments.

1. Pick an unmarked leg located on a boundary slice. Mark it as visited.

2. By following the linked list, switch to a leg connected to it.

3. The new leg belongs to a vertex.

• If this vertex is unmarked, pick with an equal probability one of two possible
non-bounce moves for this vertex and switch to the corresponding leg. Mark
this vertex as visited and store the move type.
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Figure 3.6: A three step conversion process of a vertex configuration vA(l) into vA
′
(l)

that preserves its segment partition. The details of this process are illustrated in the
text. At each step, a simulation cell composed of two replicas (top and bottom) is
shown. In this way, the first simulation cell’s region A is empty while the other two
simulation cells’ region A′ contains all three spins. Open colored solid lines trace
out a segment partition of the first and the third simulation cells (7 segments total).
Note that within the same cells, there is also a single closed segment, an inner loop,
composed of four legs. In the second simulation cell, the open segments are merged by
boundary connections to form a single cross-replica loop identified by the same color.
Mismatching boundary spins along this loop are flipped according to the algorithm
presented in the text, resulting into a vertex configuration compatible with the new
boundary conditions as displayed in the third simulation cell.
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• If the vertex is marked, switch to the next leg by performing a move of the same
type that was done before.

4. Repeat steps 2-4 until a leg on a boundary slice is reached.

By repeating this algorithm for all legs located on the boundary slices, all open segments
are traced out. However, it is possible that some of the legs located on the inner slices
have been left unmarked after this procedure. In order to partition those remaining legs
too, the closed segments (loops) need to be traced. This is achieved by adjusting two steps
of the algorithm. Now in the first step, the choice of legs to be picked is extended to all
interior legs. Once the initial leg is picked, the algorithm proceeds in the same way until
it reaches the same leg again. Hence, the condition to terminate the execution of the 4th

step has to be modified appropriately. By construction, any two segments built in such a
manner can never pass through the same leg and, therefore, are non-intersecting.

The segment tracing continues until all legs are marked. By the end of this procedure
every leg belongs to one single segment (closed or open). This constitutes a single instance
of the partitioning of a vertex configuration into a set of non-overlapping segments. An
example of such partition is shown in the first cell of Fig. 3.6.

3.5.3 Equivalence of segment partitioning

It can be also shown that for any vertex configuration in A, vA(l), partitioned as s(vA(l)),

there exists a vertex configuration in A′, v′A
′
(l), with exactly the same partitioning, that

is s(v′A
′
(l)) = s(vA(l)). The proof is by construction. If vA(l) and v′A

′
(l) were the same,

the task is trivial. Otherwise, vA(l) has to be modified in order to satisfy the boundary
conditions of A′. An example of such process is displayed in Fig. 3.6. Here, the first and
third simulation cells represent vA(l) and v′A

′
(l) correspondingly. The second cell depicts

an intermediate step of the correctional procedure. Here, the open segments are connected
into a loop along which the boundary spins mismatches are fixed one-by-one. Further
details of the algorithm are given below.

Proceeding column by column, consider each pair of boundary legs, (s0
1, s

0
2), to be

matched with respect to the new boundary conditions A′. The superscript refers to the
pair index while the subscript refers to one of two spins included in the pair. If the legs
align, s0

1 = s0
2, proceed to the next pair. Otherwise, randomly choose one of the two legs

in the pair. Say it is s0
1. Since this leg is located on a boundary slice, it belongs to an open

segment. Flip all legs belonging to this segment. Now, the original pair of legs is properly
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aligned, however there might be another mismatch at the other end of the segment. Call
the new pair (s1

1, s
1
2) where s1

2 is the leg that has just been flipped as part of the open
segment. By the same logic as before, s1

1 must belong to an open segment whose other
end is identified as another boundary leg s2

2. If s1
1 6= s1

2, flip this segment in order to
align the (s1

1, s
1
2) pair and move on to the next pair (s2

2, s
2
1). Otherwise, proceed to the

same pair without flipping the segment. In this way, one-by-one pairs of boundary legs
are aligned with respect to A′ boundary condition along a loop of open segments. An
important subtlety occurs at the last step of this algorithm when the last pair (sn2 , s

1
2) is

considered. Unlike previously, s1
2 cannot be flipped if those legs do not align. An attempt

to do so would entail another iteration of corrections with the same result, thus, initiating
the algorithm in an infinite loop.

However, this does not occur in the XY-model due to the special properties of its
vertices directly linked to the preservation of particle number in this model. Notice that
the only vertex move that connects two anti-aligned legs is the “switch-and-reverse” move
(see Fig.2.5); this is the only move that reverses the vertical directionality of propagation of
the segment’s head. Consequently, once a segment tracing is initiated with the choice of a
leg and its state, the spin state of the leg at the segment’s head is determined by the vertical
direction that the segment passes through the leg. On the last boundary connection, the
direction of motion along the segment must be the same as the initial direction, and
therefore the initial spin state at the head of the segment under construction is always
the same its final state. We see then that for any segment partition of vA(l), it is always

possible to construct a v′A
′
(l) with the same segment partition. This fact directly implies

that all linked-vertex configurations are mapped into the same segment configuration space
independently on the entangling region A.

3.5.4 Improved estimator

Now that we have shown the equivalence between any two configuration spaces constraint
by boundary conditions A and A′ in terms of the segment partitions, we have achieved
our initial goal to find a label s independent of the entangling region A. This allows us
to apply the procedure developed in Sec. 3.2.4 in order to derive a segments-based EE
estimator. Adopting the language of that section, we view the segment partitioning as a
stochastic map from the original vertex space into the projected segment configurations
space, p(s|l, vA(l)). We proceed with a careful examination of this conditional.

Note that at each vertex, there are two choices how to proceed with the construction
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of a segment. Each of them leads to a different partition.3 Therefore, a simulation cell
that contains Nv vertices can be partitioned in 2Nv distinct ways. Since Nv just counts the
number of vertices without discerning their types, the number of partitions for a particular
vA(l) is determined by the l label only Nv(l). Therefore, the vertex dependence can be
removed from the conditional which takes the following form

p(s|l, vA(s(l))) = p(s|l) ≡ 1

2Nv(l)
δs,l, (3.61)

where δs,l is an indicator function enforcing the compatibility of a segment partitioning s
with the link structure l.

According to the procedure outlined in Sec. 3.2.4, we proceed with the marginalization
over the vertex variable vA(l) to obtain the marginal WA(l, s(l)). As the vertex weights
are all the same, this step reduces to counting the number of vertices that are mapped to a
segment partitioning s(l) for a given linked structure l and region A. This vertex degeneracy
is directly related to the number of closed loops formed by the segments. Indeed, under
closure of open segments with respect to the boundary conditions A, NA

b (s(l)) loops that
cross inter-replica boundaries are formed. In addition to those loops, there are also Ni(s(l))
inner loops formed by the closed segments. Since all those loops do not intersect with
each other by construction, the spins within them can be flipped independently. Each
combination of the loops’ flips leads to a valid vertex configuration. Equivalently, all
of those vertex configurations generate the same segment partition s(l). It follows, the
marginal is

WA(l, s(l)) =
WXY (l)

2Nv(l)
2N

A
b (s(l))+Ni(s(l)). (3.62)

Since the inner-loops are unaffected by the boundary conditions, upon the substitution of
this weight in Eq. (3.48) their number drops out and an elegant expression for the partition
functions ratio is derived,

rAA′ =

〈
WA(l, s(l))

WA′(l, s(l))

〉
A′

=
〈

2N
A
b (s(l))−NA′

b (s(l))
〉
A′
. (3.63)

In practice, this estimator can be implemented in fewer steps that were required to prove
its validity. It requires two routines. One routine traces out a random single segment

3Two partitions are considered equal when all their segments are the same. In its turn, for two segments
to be considered the same the order of legs in the construction of one segment must match exactly with
the order of legs in the construction of another segment
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partition s(l) for a vertex configuration vA(l) as was outlined before. In order to speed
up the execution, it is not necessary to identify the closed segments. The end product
of this routine is to associate the pairs of boundary spins that are connected via open
segments. Once this step is done, the second routine takes the set of those pairs together
with replicas’ boundary conditions as its inputs. Its task is to count NA

b . This routine
is executed for both A and A′ with the same open segments. In the end, NA′

b (s(l)) and
NA
b (s(l)) are known and the EE estimator can be evaluated according to Eq. (3.63).

3.5.5 Benchmarks
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Figure 3.7: The comparison of ratio-based estimators efficiency in a 8× 8 system with
periodic boundary conditions at β = 8. The ratio of partition functions measurement
is plotted against the size difference between their corresponding region, ∆A = A. Our
method is referred to as projected-ensemble (PE) estimator. The extended-ensemble
(EE) method (see Sec. 3.2.4) completely fails for A > 22, and thus the data is not
shown on the plot. The values obtained from the ratio trick serve as a reference. The
statistical error in those values is contained within the width of the curve.

To illustrate the efficiency of the new estimator, its raw measurements are compared
to the extended-ensemble method (see Sec. 3.2.3) working in the original vertex-list rep-
resentation (see Sec. 3.2.4) in Fig. 3.7, on the 2D XY model of interest in the main text.
Here, the deterioration of both estimators’ statistics is seen as the difference between the
region ∆A = A increases. As the reference values, we employ the results obtained from
the ratio trick (see Sec. 3.2.1), which constitute a compilation of the extended ensemble
(EE) ratio method results from many different Monte Carlo simulations, each executed
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with ∆A=1. Note that the EE results are based on five times more Monte Carlo sweeps
that were involved to produce the PE ratio method results. Even with this advantage, the
ratio method statistics becomes increasingly poor towards ∆A=22. After this threshold,
the estimator is no longer capable to capture any meaningful statistics within the run-
ning time of its simulations. The performance of the EE is strikingly better. Even when
∆A=64, the largest possible increment in the system, it produces an accurate result with
a precision comparable to the ratio method precision at ∆A=10.

3.5.6 Extension to a larger class of models

So far, the discussion has focused specifically on the XY-model. However, the projected-
ensemble estimator can be applied in a more general context. In order to understand
the more generalized procedure, let us trace through the main steps in the derivation of
Eq. (3.63) where the unique properties of the XY-model are used.

Most importantly, the discussion in the Sec. 3.5.3 showing the independence of the
partition label s(vA(l)) on boundary conditions A can be generalized. Let us stress that as
long as this property holds for a model in question, the framework of the projected-ensemble
estimator applies as discussed in Sec. 3.2.4. In general, the proof of this property is achieved
through the demonstration that for any segment partition of a vertex configuration vA(l),

there exists a configuration v′A
′
(l) with exactly the same partition. For the XY-model,

the key point in the proof revolves around the properties of the vertex set displayed in
Fig.2.5. Namely, it is the property that the only move that switches the leg color is the
one that changes the vertical directionality of propagation as well. Let us note that due
to this feature, the whole argument is oblivious to the type of lattice the Hamiltonian is
defined on; thus, making the estimator Eq. (3.63) applicable to models on lattices beyond
the bipartite one considered in the study. Furthermore, the above-mentioned set of vertices
is not limited to the XY-model. Indeed, it is common to all XXZ-models (including the
Heisenberg model) in a magnetic field or without it. Alternatively, for a different class of
models defined on a different set of vertices, it is possible to construct an argument not
relying on the aforementioned feature of the XXZ vertices. However, it is most likely to
depend on the underlying lattice. For instance, on a bipartite lattice the fact that an even
number of lateral moves is required to get back to the same spin can be used for vertex
sets in which the only moves that change the leg color are the ones that move onto the
neighbouring spins (“switch-” moves).

A a special property of the XY model is used in going from Eq. (3.59) to Eq. (3.60).
Namely, this step assumes that all type of SSE vertices have equal weights. For other
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models with different symmetries, we can identify two classes: those with equal weights, and
those without. We further discuss the anticipated required modifications to the estimator
in both cases.

For other models with equal-weight vertices, the extension of the algorithm is straight-
forward. Essentially, the relevant model weights simply replace the specific XY weights,
WXY . For models with imaginary-time loop updates, like the spin-1/2 Heisenberg model,
Eq. (3.63) remains fully valid with the same procedure of counting the number of boundary
loops, NA

b (l). One expects that all SU(N)-invariant models (with general N) will have
this same form of highly-efficient estimator, which should facilitate the accurate estima-
tion of Rényi entropies in these cases. More generally, in equal-weight models with other
imaginary-time structures, such as branching clusters in the case of the transverse-field
Ising model [55], these loop counters will simply be replaced by the numbers of analo-
gous branching clusters (similarly to the clusters d + 1 classical Ising model discussed in
Sec. 3.4.2). Thus, we expect our method to straightforwardly produce an efficiency gain in
a wide variety of important models.

The second class of models is the case of reduced symmetry, where the assumption of
equal vertex weights is not longer valid. To incorporate this generalization in the derivation,
we avoid the specialization to the XY-model by skipping Eq. (3.60). Assuming the existence
of a common label s(vA(l)) independent on the boundary conditions can be proven, the
application of the same stochastic map as in Eq. (3.61) leads to the marginal,

WA(l, s(l)) =
∑

vA(s(l))

p(s|l, vA(s(l)))W (vA(s(l)))

=
1

2Nv(l)

∑
vA(s(l))

W (vA(s(l))). (3.64)

As before, this sum iterates over 2N
A
b (s(l))+Ni(s(l)) different vertex configurations compatible

with boundary conditions defined by region A. However, it is not longer possible to factor
out the weight as it can take different values for different vertex configurations.

Lastly, we substitute this weight into Eq. (3.48) to obtain a generalized version of the
estimator Eq. (3.62):

rAA′ =

〈 ∑
vA′ (s(l))W

A(vA(s(l)))∑
vA′ (s(l))W

A′(vA′(s(l)))

〉
A′

. (3.65)

Note that Eq. (3.63) can be recovered from this expression for any model with the vertex
weights independent on a particular vertex configuration, that is W (vA(s(l))) = W (l). For
instance, this is the case for the Heisenberg model.
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In practice, the cost of a straightforward evaluation of this estimator is likely to over-
come the gains associated with dramatically improved statistics observed for the XY-model
(Fig. 3.7). This consideration is based on two complications that were not present in the
simplified version Eq. (3.63). First of all, instead of just counting the number of closed
loops compatible with the given boundary conditions, it is now necessary to iterate through
all vertex configurations generated by flipping all combinations of those loops in order to
calculate the sum in Eq. (3.65). Secondly, unlike in the case for models with equal vertex
weights for which only open segments are required to be traced out, in a more general case
the inner segments need to be identified as well. Furthermore, those segments can also
be used to generate vertex configurations as mentioned in the previous point. Since the
number of vertex configurations is exponential in the number of the inner segments, the
evaluation of this estimator is prohibitive.

In order to regain the tractability of the estimator, we note that the sums in Eq. (3.65)
are likely to be dominated by few vertex weights. Therefore, a sampling approach to their
evaluation is expected to be very fruitful. Such importance sampling can be implemented
by realizing that the current stochastic map, p(s|l), from Eq. (3.61) ignores the vertex
weights during the construction of the segments. If the stochastic construction procedure
can be modified so that the resulting conditional, p(s|l, vA(l)), cancels out the vertex weight
in the first line of Eq. (3.64), this marginal would take exactly the same expression as in
the XY case. As the result, the easy-to-evaluate estimator from Eq. (3.63) would replace
the intractable expression Eq. (3.65). Such non-trivial stochastic process is actually at
play during the stochastic map employed in Fortuin-Kasteleyn construction discussed in
Sec.2.2.3. In the general case treated here, the relevant stochastic map is likely to be based
on the generalized loop construction algorithm known as the Kandel-Domany framework
[31]. It would be exciting to see the development of the EE estimator in this direction.
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Chapter 4

Applications of entanglement entropy
scaling analysis

In this chapter, we put to a heavy use the QMC EE estimation framework developed in the
previous chapter in order to obtain the second Rényi entropy for two strongly-interacting
quantum models. In both cases, we rely on a cylindrical geometry of region A shown in
Fig. 4.1 an EE probe. As we show further, this entangling region geometry provides a deep
insight into the universal nature of the underlying microscopic models.

(b)

A

Lx

`

Ly

Figure 4.1: Entanglement bipartition used in our studies. The system has periodic
boundary conditions such that it can be visualized on the two-dimensional plane. Re-
gion A is a cylindrical subregion that wraps around the y-direction and has height `
along the x-direction.
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4.1 Characterizing continuously broken symmetry

In order to examine the effects of broken continuous symmetry on entanglement, we con-
sider the 2D spin-1/2 XY model,

H = J
∑
〈ij〉

(Sxi S
x
i + Syi S

y
i ). (4.1)

This model is known to realize a ground state where the U(1) symmetry is spontaneously
broken, resulting in one Nambu-Goldstone mode. We consider our system to be embedded
in a torus partitioned into two cylindrical regions of linear dimension L× l and L× (L− l),
see Fig. 4.1 (we take Lx = Ly = L). To study the EE of this ground state, we employ the
finite-temperature SSE algorithm with specialized loop updates described in Sec. 2.3.3.

Historically, the numerical evidence for a subleading to the area law EE contribution of
a smooth region A that scales logarithmically with the subsystem size was first observed
in spin wave [56] and finite-size lattice numerics [57]. The apparently anomalous logarithm
had no rigorous explanation until a comprehensive theory developed by Metlitski and
Grover [23].

They argued that, for a finite-size subsystem with length scale L, the term is a mani-
festation of the two long-wavelength energy scales corresponding to the spin wave gap, and
the tower of states arising from the restoration of symmetry in a finite volume [58, 59, 60].
Remarkably, their theory not only explains the subleading logarithm, but predicts that the
coefficient is directly proportional to the number of Goldstone modes in the groundstate.
Furthermore, describing a Goldstone mode with a free scalar field theory allows them to
predict the value for an additional additive geometric constant, which is fully universal and
should therefore be the same across a wide range of continuum theories and lattice models.
We put their predictions to a rigorous test with a highly-efficient EE estimator described
in Sec. 3.5.

4.1.1 Origin of the logarithmic contribution

To obtain a qualitative understanding of the origin of the logarithmic correction in Metlitski
and Grover’s theory, it is simplest to first envision decoupling the two spatial subsystems,
A and Ā , that define the entangled bipartition. The low-energy degrees of freedom in each
subsystem can be described by an O(N) rotor (N = 2 for the XY model), representing the
direction of the order parameter. Here we are only allowing global fluctuations of the order
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Figure 4.2: Schematic energy level structure of the low energy tower of states for finite-
size systems with spontaneous breaking of a continuous symmetry. The correction to
the entanglement entropy may be approximated by the log of the number of quantum
rotor states below the Goldstone gap, ΩA, which is represented by the states within
the dotted box.

parameter within each subsystem, such that we may approximate the state of A and Ā
each as a single independent quantum rotor. The effective Hamiltonian of each subsystem
is H = L2/2I, where L2 is the total angular momentum operator with eigenvalues `(`+ 1)
and I is the effective moment of inertia which is extensive, proportional to the magnetic
susceptibility χ: I ∼ χLd in d spatial dimensions [61]. Thus the energy scale of the tower
∆tow = 1/χLd vanishes with the system volume, faster than any other energy scale. The
eigenstates of L2 result in the famous “tower of states” observed routinely in computational
studies of systems with continuous symmetry breaking in a finite volume [59, 60].

The interaction between A and Ā which aligns the subsystem order parameters may
be introduced via a Goldstone mode Hamiltonian HG which couples the two rotors. The
energy scale of HG is the Goldstone mode gap ∆G which is the scale of the lowest energy
spin waves. Since ∆G ∼ c/L where c is the spin-wave velocity, ∆G � ∆tow in the thermo-
dynamic limit for d > 1. In the limit ∆G → ∞, there are no relative fluctuations in the
order parameter between subsystems, and A and Ā act as a single rigid rotor. For finite
∆G, there will be relative fluctuations between the subsystems order parameters due to
the zero point fluctuations of HG.

To estimate the entanglement entropy contribution from the tower of states, we can
count the number of “accessible” states of subsystem A, ΩA, when the total system is in
the ground state, and use Stow ∼ log ΩA. In the limit ∆G →∞ and the rotors are rigidly
coupled, the ground state is the ground state of the total system tower of states with zero
total angular momentum: `AĀ = 0. In this case all states in the A subsystem tower are
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accessible to the ground state, as each state in A can be paired with an appropriate state
in Ā to form a state with nonzero overlap with the `AĀ = 0 state. However, as discussed
above, by including a finite ∆G and thus allowing relative fluctuations of the subsystem
order parameter between A and Ā, the fluctuations in the subsystem angular momentum
are finite and determined by the ratio of the energy scales: 〈L2

A〉 ∼ ∆G/∆tow [23]. In fact,
the reduced matrix of the subsystem takes the form of a thermal density matrix with an
effective “entanglement Hamiltonian” given by Htow and the “entanglement temperature”
given by ∆G [23]; the resulting tower of states structure in the entanglement spectrum
has been seen in numerics [62, 63]. Thus the inclusion of Goldstone modes cuts off the
accessible states of the subsystem to those with an energy below the spin wave gap, as
illustrated in Fig. 4.2.

As an example of this mechanism, consider the case of N = 2 (valid for our XY model
simulations below). Here the rotors have a single component of angular momentum `z and
the orientation of the rotors is described by a single angle θ. For ∆G → ∞ the ground
state has `z

AĀ
= 0, which has nonzero overlap with states of equal and opposite `z in

each subsystem:
∣∣`zA = `, `z

Ā
= −`

〉
; consequently all |`zA〉 states are accessible in this limit.

We may include the effect of the lowest Goldstone mode by treating the dynamics of the
relative angle between subsystems θδ as a single harmonic oscillator with frequency ∆G

and moment inertia Iδ ∼ ∆−1
tow, with an effective Hamiltonian

HG =
1

2Iδ
L2
δ +

1

2
Iδ∆

2
Gθ

2
δ . (4.2)

Here, the fluctuations in the relative angular momentum Lδ are given by the ground state
fluctuations of a harmonic oscillator: 〈L2

δ〉 ∼ Iδ∆G/2 ∼ ∆G/∆tow. The key point here is
that because the order parameter is canonically conjugate to the rotor angular momen-
tum, increasing the relative fluctuations in the order parameter reduces the fluctuations
in L2. Thus, allowing relative fluctuations of the order parameter between subsystems
effectively cuts off subsystem rotor states that are accessed in the ground state at order
` ∼ (∆G/∆tow)1/2 – a relationship that holds for all N [23].

We may therefore estimate ΩA by counting the number of states (in A’s tower of states)
that lie below ∆G. For systems with O(N) symmetry, the tower of states is described
by a rotor living on an NG = N − 1 dimensional sphere, where NG is the number of
Goldstone modes. The degeneracy of each energy level is of order `NG−1. We then may
estimate the total number of states below ∆G by integrating the degeneracy up to the
cutoff `co = (∆G/∆tow)1/2:

ΩA ∼
∫ `co

0

d` `NG−1 ∼
(

∆G

∆tow

)NG/2
. (4.3)
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Using the relation χ = ρs/c
2 from hydrodynamic spin-wave theory where ρs is the stiff-

ness [64], the entanglement entropy correction due to the tower of states becomes

Stow ∼
NG

2
log
(ρs
c
Ld−1

)
. (4.4)

We see that the logarithmic correction to the area law arises due to the quasi-degeneracy
of accessible bulk subsystem states, that scales as a power law in L for systems with
spontaneously broken continuous symmetries. This contrasts with the leading-order area
law, arising from the exponential scaling of the number of local boundary states with the
boundary area. Clearly, the prefactor of the logarithmic correction is a universal number
that simply counts the number of Goldstone modes.

4.1.2 Mutual information

On a finite lattice, the spectrum of a model that spontaneously breaks a continuous sym-
metry is endowed with a set of low-energy states known as tower-of-states. Those energy
states scale as 1/L2. Therefore, a careful convergence to low temperature is required for
an accurate probe of the ground state. Even after a careful temperature convergence,
we witness very small thermal contributions to S2. Unfortunately, those volume-like ef-
fects significantly affect our finite-size scaling analysis below. Fortunately, this thermal
contribution can be essentially eliminated by employing the mutual information,

I2(A) = S2(A) + S2(Ā)− S2(A ∪ Ā).

The bulk (volume-law) contributions from the two subsystems A and Ā approximately
cancel the bulk term S2(A ∪ Ā) in I2. In the regard of this new quantity, the scaling form
described by Metlitski and Grover becomes,

I2 = aL+NG log(Lρs/c) + 2γord. (4.5)

Here, a is a non-universal constant, ρs and c are the spin-wave stiffness and velocity,
and γord is the geometric constant that depends on the aspect ratios of the cylinder A
[23]. Note, since non-universal (cutoff) dependences are all contained within ρs and c,
this geometric constant remains fully universal. For the spin-1/2 XY model on the square
lattice, ρs = 0.26974(5)J and c = 1.1347(2)J were obtained from Ref. [65].
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Figure 4.3: The mutual information of the S = 1/2 XY model as a function of β ≡
J/T . The full temperature range is displayed on the left) figure. A zoomed-in version
focusing around the classical phase transition is shown on the right) figure. Solid lines
are obtained through thermodynamic integration from β = 0, with statistical errors
estimated by the shading. Square points with error bars are data obtained at a fixed
β using the projected ensemble ratio method, described in Sec. 3.5.

4.1.3 Thermal convergence

For system sizes L = 8, 12, 16, separate finite-temperature tests are performed to explore
the convergence of S2. In agreement with the expected scaling of the tower-of-states gap,
those results confirm that the convergence temperature scales approximately as 1/L2. We
use this to estimate the convergence temperatures for L = 20, 24, 28, 32.

Figure 4.3 illustrates a representative convergence test for different system sizes. The
continuous lines of EE measurements are obtained via the thermodynamic integration tech-
nique described in Sec. 3.1.3. As witnessed by the right plot, the mutual information peaks
at temperatures above the Kosterlitz-Thouless transition of (T/J)KT = 0.343 (which can
be detected by the crossing of the finite-size curves; see Ref. [66]). For T/J < (T/J)KT, the
mutual information reaches a minimum (at J/T ≡ β ≈ 4 in Fig. 4.3) before undergoing a
slow rise. The left plot demonstrates that this rise continues until the approximate ground
state is reached, for temperature below the finite-size scaling gap, which for system sizes
larger than L = 8 occurs for β > 100. Thus, although the method of thermodynamic
integration is useful to produce the general shape of the I2 curve for a wide range of tem-
peratures, it is difficult to control the systematic error introduced by numerical integration
at low temperatures for L > 12. Therefore, data used in the below fits was converged at
very low temperatures using the projected ensemble ratio method, described in Sec. 3.5.

Figure 4.4 illustrates the resulting temperature-converged mutual information for a va-
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Figure 4.4: The mutual information as a function of torus aspect ratio, for the lowest
temperatures examined for each system size. The corresponding β are 184, 368, 736,
1150, 1650, 2300, 3200 ordered from the smallest to the largest system size. Vertical
dashed lines are the aspect ratio values employed in the fitting in Figs. 4.5 and 4.6.
The measurements are obtained using the projected ensemble ratio method, described
in Sec. 3.5.

riety of system sizes, as a function of the height of the cylindrical region, l. Since, for
a subsystem A and its complement Ā, SA = SĀ only at T = 0, the symmetry of the
entanglement entropy about l/L = 1/2 provides a sensitive test of temperature conver-
gence. Employment of the “bare” Rényi entropy results in a very slight asymmetry in the
curve; use of I2 restores this symmetry producing high-quality data that can be fitted using
Eq. (4.5).

4.1.4 Fitting analysis

In order to extract the coefficients of interest, we subject our mutual information measure-
ments to a thorough fitting analysis (see Table 4.1). The fits are performed independently
for fixed aspect ratios l/L in Fig. 4.4. This choice allows us to control the geometric de-
pendence of the mutual information that is absorbed into a constant term. We start by
establishing the consistency of the data with the scaling behaviour of Eq. (4.5). This is
achieved via fits 1 and 3 where the logarithmic coefficient as well as the geometric constant
are set to the predicted values. By comparing the χ2

k of those fits, we note the importance
of the finite-size correction a4/L. We then proceed with a four-parameter fit (fit 6) in
an attempt to simultaneously extract both coefficients of interest. However, a dramatic
increase in the error bars of the extracted values signals an overfitting, caused by a limited
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Table 4.1: Fitting coefficients, labelled as ai, extracted from the data points that fall on
the dashed line in Fig. 4.4 with the help of various functional forms. The last column
shows the χ2 per degree of freedom that can be used as a measure of the goodness
of fit. γord refers to the theoretical value of the geometric constant which is aspect
ratio dependent. The expected theoretical value[23] for a2 is 1, while for a3 they are
0.672, 0.851, 0.921, 0.941 as arranged in the order from the smallest to the largest aspect
ratio correspondingly. We set cs,sw = ρs/csw.

# Fitting function LAx /L a1 a2 a3 a4 χ2
k

1 a1L+ log(Lc) + 2γord

1/8 0.1561(4) - - - 3.7
2/8 0.155(1) - - - 23.0
3/8 0.155(2) - - - 26.0
4/8 0.155(1) - - - 11.0

2 a1L+ a2 log(Lc) + 2a3

1/8 0.157(2) 1.01(3) 0.663(4) - 0.85
2/8 0.155(2) 1.06(3) 0.806(4) - 0.67
3/8 0.156(2) 1.05(3) 0.876(3) - 0.27
4/8 0.158(3) 1.02(4) 0.899(6) - 0.73

3 a1L+ log(Lc) + 2γord + a4

L

1/8 0.1567(2) - - -0.10(2) 0.42
2/8 0.1569(2) - - -0.51(4) 0.64
3/8 0.1572(2) - - -0.51(3) 0.2
4/8 0.1570(4) - - -0.52(6) 0.89

4 a1L+ log(Lc) + 2a3 + a4

L

1/8 0.157(1) - 0.67(2) -0.1(2) 0.82
2/8 0.157(1) - 0.84(2) -0.4(2) 0.76
3/8 0.158(1) - 0.91(2) -0.4(3) 0.32
4/8 0.159(2) - 0.91(2) -0.1(3) 0.75

5 a1L+ a2 log(Lc) + 2γord + a4

L

1/8 0.157(2) 1.00(3) - -0.10(4) 0.81
2/8 0.158(2) 0.99(3) - -0.50(5) 0.78
3/8 0.158(2) 0.99(3) - -0.49(4) 0.33
4/8 0.161(3) 0.95(4) - -0.47(7) 0.82

6 a1L+ a2 log(Lc) + 2a3 + a4

L

2/8 0.145(8) 1.4(3) 0.6(2) 3.0(2) 0.57
4/8 0.140(9) 1.6(3) 0.5(2) 4.0(2) 0.44

range of available system sizes. Instead, three-parameter fits (4 and 5) with the a4/L term
included are performed by setting either a2 or a3 to their respective putative values; these
fits provide values in an excellent agreement with the theory [23]. We also note from the
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Figure 4.5: A three parameters fit to the functional form 2 in Table 4.1 for different
torus aspect ratios with the goal to extract the Goldstone numberNG from the expected
scaling based on Eq. (4.5). An additional three-parameters fit is used to extract the
geometrical constant γord (not plotted). This fit is based on the fit 4 from Table 4.1.

three-parameter fit 2 that disregarding the a4/L term has a much larger negative effect
on the extracted values of a3 then on the values of a2. Such effect is consistent with a
stronger relative contribution from the logarithmic term to the total value of the mutual
information, as compared to that from the constant term. Thus we conclude that with this
data set, we can extract the log coefficient without any assumptions about the theoretical
values of the coefficients, since fit 2 (with no theoretical assumptions or 1/L correction)
results in a2 values that are consistent with those extracted from fit 5 (which includes a
1/L correction at the cost of assuming the theoretical value of a3). However, to accurately
extract the geometric constant from this data, we must include a 1/L correction term and
thus fix a2 to its theoretical value.

The results of this analysis are illustrated in Fig 4.5. Here, I2 is calculated at various
aspect ratios (the vertical cuts in Fig. 4.4) and fit to the functional form Eq. (4.5). Specif-
ically, to extract the coefficient of the subleading logarithm, the mutual information was
fit via the functional form 2 from Table 4.1. As illustrated in Fig. 4.5, there is definitive
evidence for the existence of a logarithm; furthermore, independent fits for the four aspect
ratios studied each give NG = 1 to within error bars as seen in Fig. 4.6.

Even more striking, we are able to extract the universal shape-dependence of the ge-
ometric constant γord. To do so, fits were performed to the functional form 4 in Table
4.1 where NG is fixed at unity in order to remove one parameter from the analysis. Thus
calculated, γord for N = 2 in two dimensions can be compared via a zero-parameter fit to
the subleading constant term γfree calculated in a free scalar field theory [23] through the
relation γord = γfree + 1

2
log(2π), valid for the second Rényi entropy. The free field result
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Figure 4.6: The extracted log-coefficient NG together with the geometric function γord

are shown alongside the theoretically-predicted values. The corresponding fits are
based on the 2nd and 4th functional forms in Table 4.1.

γfree, which depends on the aspect ratio l/L, can be calculated numerically for free bosons
on the lattice using the correlation matrix technique (as in Ref. [67, 12]). As illustrated in
Fig. 4.6, the resulting theoretical curve is in excellent agreement with our QMC results for
γord.

4.1.5 Discussion

In addition to confirming the proportanality of the logarithmic scaling to the number of
Goldstone modes, NG = 1, we are able to converge the value of an additional additive
geometric constant γord, which is fully universal since all short-distance physics is confined
to the (known) spin wave stiffness and velocity, contained within the argument of the
logarithm. The resulting γord has a functional dependence on the geometric aspect ratio
of the entangled bipartition. This function matches, to within error bars, that calculated
using a free scalar field theory regularized on a toroidal square lattice, with no adjustable
parameters.

Armed with the a posteriori knowledge of Eq. (4.5), we revisit the dataset for the
Heisenberg model that led to the detection of the anomalous EE scaling in QMC simulations
[57]. Based on a similar analysis as that presented in the preceding section, we conclude that
the Heisenberg model contains much weaker “signal-to-noise” ratio than the XY model.
Indeed, for the Heisenberg model, the coefficient of the area law, as well as the coefficient
of the 1/L correction, are more than an order of magnitude larger than the corresponding
coefficients for the XY model. At the same time, the signal from the logarithmic and
constant terms are comparable (or smaller) to those in the XY model. Hence, although
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the Heisenberg data of Ref. [57] is consistent with the prediction of Ref. [23], it is difficult
to obtain agreement with unconstrained fits.

In summary, our work mounts a strong evidence for the validity of the theoretical
prediction of Metlitski and Grover [23]. In this case, with the full understanding of the
universal structure of the entanglement entropy in the presence of a spontaneously broken
continuous symmetry, the door is now open to the examination of Goldstone modes in a
large variety of systems, through the calculation of Rényi entropies.

4.2 Probing universal geometric function

As an alternative to traditional critical exponents, universal numbers extracted from the
EE can be used to characterize quantum critical points. In general, it is an open question
whether the universal information about a fixed point contained in entanglement quantities
differs from that contained in critical exponents. Recently, there has been considerable
progress in relating the content of universal numbers from entanglement entropies to those
obtained from two-point functions in 2 + 1 dimensions. A particular success story is the
contribution from a local corner in the entangling boundary. There, the universal coefficient
of the corner contribution has been shown to be related to the central charge CT defined
by the two-point function of the stress tensor. This result was initiated by numerical
studies of interacting quantum critical systems [33, 68], where the corner contribution was
observed to scale with the number of degrees of freedom of the underlying field theory
[69, 70]. Subsequent comparison to similar scaling in CT , numerically calculated from the
conformal bootstrap [71], motivated a conjecture relating the two quantities [72, 73, 74],
which was eventually proven in general [75]. Further studies have examined the behaviour
of universal corner coefficients for more general angles and Rényi indices in 2+1 dimensions
[76], while other work has examined universal features due to corners in higher dimensions
[77, 78, 79, 80, 81, 82, 83, 84].

A corner or vertex is only one geometry that induces a universal contribution to the
EE in 2 + 1 dimensions. In this work, we once again we turn to a cylindrical entangling
region on a torus (see Fig. 4.1). The EE of such bipartition for a critical system contains a
universal scaling coefficient that we call κ. Contrary to the recent efforts described above
to study a corner’s universal contribution to the EE in both free and interacting theories,
studies of κ have been relatively restricted, with results obtained only for free theories and
theories with a gravitational dual. The cases where κ has been studied include the free
scalar field theory with the dynamical exponent z = 1 [77, 73, 85, 86] and z = 2 (the
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quantum Lifshitz model) [87, 88], as well as their fermionic analogues: Dirac fermions with
z = 1 [77, 73, 89] and z = 2 (the quadratic band touching model) [89, 88].

In (2 + 1)-dimensional interacting theories, no exact results for κ have been obtained
to date. Here, we examine the cylindrical-slice Rényi EE in a (2 + 1)-dimensional Ising
model, an interacting theory for which the critical behaviour is governed by the scalar
Wilson-Fisher fixed point.

4.2.1 Scaling in the thin-slice limit

As discussed in Sec. 1.2, the EE scaling of a cylinder embedded in a torus like in Fig. 4.1
is expected to take the following form,

Sn(`, Lx, Ly) = an
Ly
δ

+ χn(u, b) + · · · , (4.6)

where u = `/Lx, b = Lx/Ly, and the ellipses denote further finite-size subleading correc-
tions such as those that scale as δ/L. Compared to our previous discussion of Sec. 1.2, we
have included a dependence on the Rényi index n. The behaviour of χn as a function of the
aspect ratio u is known to obey certain restrictions. In particular, being an entropy measure
of pure states, it must respect a symmetry around u = 1

2
such that χn(u) = χn(1− u).

Alternatively, as per Sec. 1.2, the form of the geometric function can be analytically
computed when the boundary conditions are ignored. Namely, in the limit where u � 1
(i.e., `� Lx), the EE contributions at different length scales are expected to be indifferent
to the infrared boundary conditions and we expect that we can estimate Sn by considering
the EE of a strip-like region embedded in infinite space [77]. In this case, we expect that

Sn(`� Lx, Ly) = an
Ly
δ
− κn
bu

+ · · · , (4.7)

where κn is a universal coefficient that can vary with the Rényi index n. By comparing
with Eq. (4.6), we see that the second term in this equation reveals the behaviour of the
universal scaling term for the cylinder entanglement in the thin slice limit such that

χn(u→ 0, b) = −κn
bu
. (4.8)

Therefore, the thin-slice limit of the geometric function reveals a universal number that we
make our mission to extract. The numerical value of κn has previously been calculated in a
number of free theories, holographic duals, and phenomenological models [87, 89, 88, 85, 86,
88]. Specifically, values of κ for the free scalar field theory in 2 + 1 are κ1,Gaussian = 0.0397
for the von Neumann entropy [77] and κ2,Gaussian = 0.0227998 for the second Rényi entropy
S2(A) [73]. This second value κ2,Gaussian is of particular relevance to the present study.
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4.2.2 Conical singularity

While the main focus of this study is to better understand the universal geometric func-
tion χn, it is important to control the behaviour of the other terms in order to properly
extrapolate to the thermodynamic limit. In particular, the conical singularity term gn(δ/`)
is unavoidable in Monte Carlo calculations of the Rényi entropies. This anomalous term
leads to a correction of the scaling ansatz in Eq. (4.6) to

Sn(`, Lx, Ly) = an
Ly
δ

+ χn(u, b) + gn

(
δ

`

)
+ · · · , (4.9)

Physically, this conical singularity is due to the restructuring of the lattice that occurs
when one calculates Rényi entropies using the replica trick. While this modification does
not change the coordination number of the lattice, it affects its topological structure,
giving arise to a relevant operator that is locally confined. This effect transpires through
the subleading anomaly correction term that we have called gn(δ/`) [90]. As a recent
study shows [91], when unaccounted for, the presence of this term can lead to erroneous
extrapolation results. Unfortunately for us, while its scaling form is known for 1+1 systems,
no such analytical result exists in 2 + 1. However, the EE contribution from this term is
expected to grow when ` becomes small, which is exactly the scaling regime in which we
are interested. Therefore this conical singularity term cannot be safely neglected. For this
reason, we develop an extraction procedure, designed to directly access the universal term
χ2 by isolating the effect of the conical singularity term.

4.2.3 Fitting approach

We now turn to a discussion of our numerical extraction of κ2 for the second Rényi entropy.
The raw data obtained from Monte Carlo simulations on the Ising model requires significant
analysis due to a number of factors. In particular, the area law and the unknown conical
singularity term pollute the universal contribution χ2(u, b). Additionally, we are tasked
with striking a fine balance when choosing the right cylinder height `. On one hand, we are
interested in the thin-slice limit `� Lx, while on the other hand the continuum EE scaling
is only expected to apply when `� δ. For this reason, we first perform the scaling analysis
on the model of free bosons on a lattice to benchmark against previously known results
[73]. The continuum low-energy theories of the free and interacting models are captured by
the Gaussian and Wilson-Fisher fixed points correspondingly that are intimately related to
each other in the RG space as shown in Fig. 4.7. From this point of view, it is interesting
to see whether the story told by the numerical estimates of κ2 between the two theories is
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Figure 4.7: Visualization of the relationship between the Wilson-Fisher and Gaussian
fixed points in the parameters space of the φ4 field theory described by the action S[φ] =∫
ddx [(∇φ)2 +mφ2 + uφ4]. The positive parameter ε encodes the dimensionality of the

system, d = 4− ε. Arrows indicate the renormalization group flows.

different from the expectation of the ε-expansion procedure that links the fixed points via
a perturbative expansion.

As we will show below this benchmark procedure illuminates the crucial importance of
the fitting parameter γ that we introduce in order to extend the range of applicability of
continuum results to the lattice. Surprisingly, this parameter enables us to take advantage
of our whole dataset including the extreme thin-slice regime, ` = 1.

We consider toroidal rectangular geometries and fix Ly = L and Lx = 4L, where the
factor of 4 allows us to better probe the ` � Lx limit. In this thin-cylinder limit the
universal geometric function is expected to take the form given in Eq. (4.8) such that

χ2(u→ 0) ∼ −κ2
L

`
, (4.10)

where we have removed the implicit dependence on the aspect ratio b since we take it to
be constant.

In order to remove the dominant area law contribution to the entropy scaling, we
consider the difference in EE between two cylinders with different lengths ` and `0, with
` < `0. In the case where the first cylinder is in the thin-slice regime such that `� Lx, we
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expect:

S2(`, L)− S2(`0, L) = −κ2
L

`
+ g2

(
δ

`

)
− χ2

(
`0

L

)
− g2

(
δ

`0

)
︸ ︷︷ ︸

≡B(`0,L)

. (4.11)

As discussed in Sec. 3.2.1, this difference is directly measured in QMC simulations, making
our dataset completely free of the area law term and the associated statistical variance.
We use the convention δ = 1 for our lattice calculations.

4.2.4 Free theory

4.2.4.1 Gaussian scalar field theory
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Figure 4.8: entanglement entropy with respect to a reference region for the free model
as function of the system size. Different colours correspond to different sizes of region
A between ` = 1 and ` = 15. The solid lines are linear fits to four largest system
sizes. The dashed continuations of the same color are the extrapolation of those fits
to lower system sizes. The linear fit seems to capture most of dependence on L. Only
upon closer examination can one observe that the extrapolation quality deteriorates
for larger `, in line with the expectations discussed for the thin-slice limit in the main
text.

We warm up with a free (Gaussian) scalar field theory on the toroidal system described
above. In order to avoid zero modes that could lead to a logarithmic EE contribution [88],
we impose anti-periodic boundary conditions along the y-axis while periodic boundary
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conditions are kept for the x-direction. The Hamiltonian is given by

Hfree =
1

2

∑
i

(
π2
i +m2φ2

i

)
+

1

2

∑
〈i,j〉

(φi − φj)2 , (4.12)

where φi is a bosonic field with mass m and conjugate momentum πi. Exact methods
for calculating the Rényi entropies for such free scalar theories are described in detail in
Refs. [67, 77, 92, 12].

4.2.4.2 Fitting analysis

We plot in Fig. 4.8 the left-hand side of Eq. (4.11) for this free theory versus L, grouping
points by their value of `. The behavior appears linear over a wide range of ` values,
strongly hinting at a dominant contribution from the thin-cylinder form for χ2(`/L) as
in Eq. (4.10). Motivated by this observation, we perform fits of S2(`, L) − S2(`0, L) to a
function f1 that is linear in `−1. This is given by

f1 (`) = −κL2
L

`
+ C1, (4.13)

for each system size L, where there are two fitting parameters κL2 and C1. The role of C1 is
to absorb the offset due to the `-independent term B (`0, L). When performing these and
the following fits, instead of fitting all points at once, we fit data over a sliding window.
For this reason, the estimate for κ2 has an explicit dependence on both ` and L. However,
to reduce the notational clutter, we avoid showing the dependence on `, since the x-axis
in all the figures makes this dependence explicit.

The results for the extracted κL2,Gaussian are shown in the left panel of Fig. 4.9. This
plot reveals non-linear dependencies on `−1 and demonstrates the challenge in extracting
an unbiased estimate for κ2. Most notably, as judged by the proximity to the known exact
result from the Gaussian theory, the best estimate for κL2 does not come from the thinnest
cylinders with ` = δ = 1. This observation is not surprising since the EE scaling prediction
is only expected to hold in the continuum, which, on a lattice, amounts to the requirement
δ � `. Both this condition and the thin-slice requirement ` � L constitute the challenge
of tuning to a regime where both criteria are satisfied. One possible approach is to consider
the largest extracted κL2 as the best estimate for each system size. However, these values
converge quickly to an underestimate for the true value, implying that this extrapolation
technique will yield a biased result.
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Figure 4.9: κ2 values for the free theory extracted from Fig. 4.8 for different system
sizes L left) via the linear fit in Eq. (4.13) right) via the non-linear fit in Eq. (4.14), with
an additional parameter γ introduced to capture the short-distance behavior important
in the regime of small `. Each fit again uses six points, and the value of ` for the x-axis
corresponds to the lowest value used in each fit. The density of the extracted values
on the x-axis is so high that plotting each point results in too much clutter and thus
a continuous line representation is used instead. The dashed line indicates the known
value for the Gaussian theory in the thermodynamic limit [73].

An alternative approach originates from the following insight: any length on a lattice
is only defined up to the lattice spacing. As a consequence, on a lattice it is impossible to
distinguish between the class of continuum cylindrical regions A with lengths in the range
(`−δ, `+δ). In light of this realization, let us introduce a parameter γ ∈ (−δ, δ) designed to
capture the degree of freedom associated with mapping the lattice and continuum theories
such that the left-hand side of Eq. (4.11) instead takes the form −κ2

L
`+γ

+g2

(
δ
`

)
+B (`0, L).

Here we have included γ only within the term for which it contributes most significantly.
Notice that with L and `0 kept constant, B (`0, L) is also a constant and, therefore, can
be ignored in the following discussion. The expected first-order offset due to γ is then

−L
`

(
κ2 − κ2

γ
`
− g2(δ/`)`

L

)
, and the expression in the parentheses is a good approximation for

the value of κL2 extracted under a linear fit to Eq. (4.13). This expression thus explains well
the biases observed on the left panel of Fig. 4.9. Namely, we observe that the estimate for κ2

is polluted by two terms. While the term containing the conical singularity scaling function
g2 (δ/`) can be eliminated by taking the thermodynamic limit L→∞, the systematic offset
due to γ can only be suppressed by scaling ` to infinity as well. In addition, this term
explains the observed increased negative offset in the regime ` ∼ δ.

In order to take these considerations into account, we parameterize the ambiguity in
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the definition of the cylinder’s length by including the parameter γ in out fits. We perform
new non-linear fits of S2(`, L)− S2(`0, L) to the function

f2 (`) = −κL2
L

`+ γ
+ C2, (4.14)

for each L, now with three fitting parameters κL2 , γ and C2. The outcome for the free
theory is illustrated on the right panel of Fig. 4.9. The dependence of the extracted κL2
estimate on ` for this theory has now drastically changed. In particular, the introduction
of the parameter γ has completely removed the downward drop observed at small ` in this
plot. Moreover, the systematic offset, i.e., the difference between the peak and the known
value, which seemed to survive to the thermodynamic limit in left panel of Fig. 4.9, is also
remedied.

With a firmly-supported understanding of the short-distance scaling of the Rényi en-
tropy, we are ready to account for the conical singularity in our estimate for κ2. For this
we note that although the non-linear fit based on Eq. (4.14) cannot distinguish the con-
tributions from the universal term and the conical singularity, the latter is independent
of system size and therefore its relative magnitude decays as L−1. To be more specific,
κL2 ≈ κ2 − g2(δ/`)`

L
. Consequently, we perform a second fit, extrapolating the previously

extracted κL2 towards L = ∞ via a two-parameter fit linear in L−1 such that, for each `,
we fit the results from the plot of Fig. 4.9 to the function

fextrap. (L) = −Cextrap./L+ κ∞2 , (4.15)

where κ∞2 and Cextrap. are fitting parameters. Here κ∞2 represents our final estimate for κ2

extrapolated to the thermodynamic limit, with the results for the free theory illustrated in
Fig. 4.10. Taking the value corresponding to the smallest region A on the largest system
considered as our best numerical estimate, we find κ∞2,Gaussian = 0.0227558, which is less
than 0.2% below the known value of 0.0227998 [73]. To put this result into context, we can
compare our estimate to that obtained in Ref. [85], which also aims to numerically extract
κ2,Gaussian but does not take into account the proposed offset that scales as γ

`
. Although

the authors were able to collect a dataset for system sizes as large as L/δ = 2000, their
extrapolation to the thermodynamic limit yielded a value for κ2,Gaussian that is still 9% off
from its theoretical value. Therefore, our fitting procedure produces an estimate which is
two orders of magnitude closer to the theoretical value, despite considering system sizes
an order of magnitude smaller.
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Figure 4.10: κ2 values for the free theory extrapolated to the thermodynamic limit.
These values are obtained via an additional six-point fit to the form in Eq. 4.15 to
the results in the right plot of Fig. 4.9. The x-axis indicates the value of ` used
in each fit. The dashed line represents the known continuum value for the Gaussian
theory [73], while the solid black circle indicates our best numerical estimate, namely
κ∞2,Gaussian = 0.0227558, for the free theory in the thermodynamic limit.

4.2.5 Interacting theory

4.2.5.1 Wilson-Fisher fixed point

To extract universal characterizations of the Wilson-Fisher fixed point from the EE, we
utilize a mapping from the quantum theory in 2+1 dimensions to a 3-dimensional isotropic
Ising model with classical spins s ∈ {−1, 1} and reduced Hamiltonian given by

E(s) = −J/Tc
∑
〈i,j〉

sisj, (4.16)

at its critical temperature J/Tc = 0.2216544 [93]. The validity of this approach is based on
the path-integral mapping discussed in Sec. 2.2 and the construction of an improved EE
estimator is described in Sec. 3.4.

Since the field theory of interest (the scalar φ4 theory) is Lorentz invariant with a dy-
namic exponent z = 1, finite size scaling studies often scale the imaginary time dimension
Lτ proportional to the linear spatial dimension L (with a proportionality constant being
close to unity for some observables [94]). However, this dimension effectively represents
the quantum inverse temperature, namely, JQβQ = Lτ∆τ where ∆τ is the unitless dis-
cretization constant of the lattice in the imaginary time direction and JQ is the interaction
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Figure 4.11: Test of the thermal convergence of S2 for a system of linear size L = 16.
The direction corresponding to the imaginary time is taken to be Lτ = 15L. The
reflection symmetry of the measured S2 around `/L = 0.5 is in correspondence with
the theoretical expectation that the entanglement entropy of region A is the same as the
one of its complement in the ground state. The inset zooms in on a single datapoint
corresponding to region A comprising the full system. Its value is zero within the
errorbar further indicating the absence of thermal fluctuations.

parameter for the quantum model (for instance, the ferromagnetic coupling). For studies
of the ground-state entanglement entropy, one must be careful to ensure that this new
dimension is large enough to eliminate all thermal contributions. For this reason, we adopt
the practical strategy of converging our simulations below the energy gap ∆ (L) due to the
finite system size L, such that βQ � 1

∆(L)
. The convergence can be tested by studying the

amount of thermal entropy contained in the entire system, which should be zero if we are
indeed probing the (pure) quantum ground state. As shown on the inset of Fig. 4.11, the
entropy of the whole state is zero within the statistical uncertainty for a proportionality
constant Lτ/L = 15.

4.2.5.2 Fitting analysis

We now use the insight gained in the consideration of the free theory in Sec. 4.2.4 to
proceed with the extraction of κ2,WF for the interacting Ising theory at the Wilson-Fisher
fixed point. As before, we begin by plotting the full data set as a function of L (see Fig.
4.12), and we again note a dominant linear behaviour attributed to the universal term’s
contribution in the thin-slice limit. This observation suggests that the two-step fitting
procedure developed above for the free theory can be carried over and applied for this
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interacting data set.
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Figure 4.12: Entanglement entropy with respect to a reference region A of size `0 = 13
for the 2d transverse field Ising model at criticality as a function of the system size.
Different colours correspond to different sizes of region A from ` = 1 to ` = 12. The
solid lines are linear fits to the two largest system sizes, and the dashed continuations
of the same colour are the extrapolations of those fits to lower system sizes. As in
Fig. 4.8, the linear fit seems to capture most of the dependence on L, and it is only
upon closer examination that one can appreciate the need for the two-step fitting
procedure developed in Sec. 4.2.4.2.

The effect of including the fit parameter γ for extracting an unbiased estimate for κ2,WF

can be seen by comparing fits with and without it as displayed on the left and right panels
of Fig. ?? correspondingly. The estimates obtained via fits containing γ are all above
the corresponding estimates without it. This situation is analogous to the systematic bias
towards lower values of the extracted κ2,Gaussian observed for the free theory when the γ
parameter is not included in the fits (see Fig. 4.9).

Concentrating further on the fits including the parameter γ in the right plot of Fig. ??,
we note a systematic increase in error bar with increasing `/L. This trend can be explained
by considering the relative strength of the leading contribution to the universal term (pro-
portional to L/`), against the subleading terms. These terms originate from contributions
due to the conical singularity and the next-order Taylor expansion in χ2 (u), and scale like
u = `/L relative to the leading term. Since our fitting form ignores these additional terms,
the error bars can be seen as a qualitative indicator for the validity of the assumption of
their relative insignificance. Indeed, the regime where the error bars are empirically small
is also that in which we are interested (`/δ → 1), allowing us to proceed with confidence
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Figure 4.13: κ2 values for the Ising theory extracted from Fig. 4.12 for different systems
sizes L right) via the linear fit in Eq. 4.13 right) via the non-linear fit in Eq. 4.14 with an
additional parameter γ introduced to capture the short-distance behavior important
in the regime of small `. On the left) the x-axis is split into two parts in order to
focus on the values of the extracted κL2,WF at low `/L, since the values are noisy for
`/L > 0.12. Markers with the same color and style share the same value of `. The
x-axis indicates the lowest value of ` used in each six-point fit divided by the system
size. The dashed line represents the theoretical value for the Gaussian theory in the
thermodynamic limit [73].

onto the second extrapolation that estimates κ2,WF. This step is completely analogous to
that done in the free theory extrapolation (see Sec. 4.2.4.2, and our results for the Ising
theory are shown in Fig. 4.13). As before, this step is based on the fact that the relative
strength of the previously neglected terms decay as δ/L. In correspondence with our pre-
vious discussion, the error bars are significantly reduced for small `. Furthermore, we note
that for a decreasing ` the value for κ∞2,WF seems to decrease at first, similar to the trend
observed for the free theory in Fig. 4.10. However, our κ∞2,WF estimates seem to stabilize
within error-bars for ` ≤ 3. This fact can be interpreted as an indication that we have
reached system sizes large enough to accurately probe the u → 0 limit. Concluding our
analysis, we take the extrapolated value κ∞2,WF = 0.0174(5), which is extracted at ` = 1, as
our best estimate for κ2 at the Wilson-Fischer fixed point.

4.2.6 Discussion

The coefficient κ2 that we have extracted from cylindrical geometries in the thin-slice limit
additionally serves to give insight about entangling geometries with corners that are difficult
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Figure 4.14: κ2 values for the Ising theory extrapolated to the thermodynamic limit.
These values are obtained by fitting the results from the right panel of Fig. ?? to form
in Eq. 4.15. The x-axis indicates the ` value used in each six-point fit. The black
marker for ` = 1 indicates our best numerical estimate κ∞2,WF = 0.0174(5), and the
dashed line represents the known value for the Gaussian theory in the thermodynamic
limit [73]. The plot is split into two halves, with the right half providing a wider range
of y values. These values are not as accurate as the ones on the left half but show the
trend of decreasing error-bars and a decreasing estimate for κ∞2,WF.

to access through direct means on a lattice. Specifically, κ2 is related to the logarithmic
coefficient a2(θ) that arises in the scaling of the Rényi EE when the entangling geometry
contains a corner such that, in the small-angle limit, a2(θ → 0) = κ2/θ [77, 95]. Further,
combining our results for κ2,WF with previous results for a2,WF(π/2) in the same interacting
theory, we expect that one can approximately reconstruct the behaviour of a2,WF(θ) for all
angles θ using techniques similar to those proposed in Ref. [73].

Our numerical value of κ2 for the interacting fixed point is relatively close to the value
for the free theory, but does have a significant difference when statistical errors are taken
into account. This finding is interesting in the context of a recent large-N calculation for the
more general N -component O(N) model [96], in which the κ1 value, extracted from the von
Neumann EE, of the Wilson-Fisher fixed point is expected to be directly related to the non-
interacting Gaussian fixed point as κ1,WF(N) ' Nκ1,Gaussian to leading order in N−1. This
theoretical prediction is only applicable to κ1, thus leaving an intriguing possibility that κ2

captures non-trivial differences between the Gaussian and Wilson-Fisher fixed points that
extend to the large-N limit. In addition, the observed proximity of κ2,WF to κ2,Gaussian for
the Ising (N = 1) case is similar to the situation encountered for the universal coefficient
of the logarithmic scaling term that arises due to a corner in an entangling boundary in
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2+1 dimensions. There, the interacting value is numerically very close to the free Gaussian
theory. This behaviour changes for N > 1, where extensive calculations show the universal
coefficient increasing with N . An interesting avenue for future work would be to examine
if κ2 obeys a similar trend.

For the second Rényi entropy of the free field, we extract the value κ2,Gaussian =
0.0227558, which is accurate to within 0.2% of the continuum value. After the extrapola-
tion to the thermodynamic limit, our best estimate for the value of this universal coefficient
at the interacting (Wilson-Fisher) fixed point is κ2,WF = 0.0174(5). In total, extracting
this value used approximately 300 years of CPU time.
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Chapter 5

Generative machine learning

Generative learning is a subfield of Machine Learning (ML). The task of generative mod-
elling is to construct a probabilistic model for the “data”. The later is a generic concept
with the common premise of an underling probability distribution pdata(v). In practice, we
might interact with this distribution via various interfaces. For instance, the “data” might
be a set of generated experimentally samples V = {vi}Nsi=1. In this case, the unknown
pdata(v) is approximated as the empirical distribution of the observed samples1

pdata(v) ≈ 1

Ns

1V (v). (5.1)

In the setting of statistical mechanics, the “data” might refer to the Gibbs state of a known
but intractable Hamiltonian. In this case, the “data” refers to the unnormalized Gibbs
probability p∗data(v) = e−βE(v) while the samples of this model might be not available.

In order to model the data distribution, we employ a parametric class of models pθ(v)
known as the restricted Boltzmann machine (RBM). The RBM played a crucial role in the
early stages of Deep Machine Learning, leading to the first breakthroughs in the training
of deep neural networks [97]. It was used both in supervised learning of feed-forward net-
works where it was employed in an unsupervised pre-training step, and as a fundamental
constituent to the first successful methods in deep unsupervised learning as a building
block of deep belief networks and initializer of deep Boltzmann machines. Enjoying the

11V (v) is the indicator function having the value 1 for elements v which belong to the set V and being
zero otherwise. In adopting this notation we implicitly assume that there are no elements in V appearing
more then once for the sake of simplicity. If this condition is not satisfied, the value of an element needs
to be multiplied by its multiplicity.
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initial success in the field of Machine Learning, its mainstream usage has been phased out
due to its shallow architecture and the inability to scale up RBM-based deep architectures.
Instead, new methods that are naturally compatible with deep neural networks have be-
come prominent. However, being an instance of a Markov random field network, a more
general ML concept, the RBM still has its niche in modern developments, for instance as
a structural multimodal prior in variational autoencoders [98]. Furthermore, promising
hardware approaches such as digital [99] and quantum adiabatic [100] annealers have the
potential to do to the sampling efficiency, which is the stumbling stone of RBMs, what
graphical processing units have done to the linear algebra computation.

Recently, RBMs have seen a newly-found interest in applications to physics problems
[21, 22, 101]. This enthusiasm can be explained by several considerations. First of all, the
language describing the RBM as an algorithm is the language of statistical physics and so
it is easily internalized by a physicist. Secondly, the ability to control the expressiveness of
the RBM-based variational ansatz through the number of hidden units is reminiscent of the
bond dimension parameter in tensor networks which have proved to be a ground-breaking
physics-inspired variational ansatz. This connection has been greatly explored and led to
new insights [102, 103]. Lastly, its discrete nature is natural for the representation of the
quantum wavefunction. However, while the RBM has facilitated the import of ML tools
into condensed matter, the history repeats itself and the future of the RBM in physics is
uncertain.

In this chapter, we take a data-driven approach to learning a wavefunction [50]. To-
wards this goal, we develop the classical framework of generative learning and apply it
for the reconstruction of the ground state of a transverse field Ising chain. As a verifica-
tion procedure, we extract the entanglement entropy from the RBM representation rely-
ing on the methods developed in Sec. 3.3. Successfully benchmarking the results against
known values provides a validation of this process for experimental design. In addition, we
consider a novel quantum generalization of the RBM known as the quantum Boltzmann
machine (QBM) [104], for which we derive an exact training algorithm and its quantum
Monte Carlo implementation in Sec. 2.3.5. The exact methodology allows us to explore the
expressiveness of the quantum distribution with respect to its classical counterpart. How-
ever, this procedure is not tractable at larger scale. For this reason, we derive a scalable
semi-classical algorithm that can be used in practical applications. We conduct numeri-
cal experiments attesting to the QBM’s strengths and weaknesses in various applications.
Lastly, we explore the RBM as a conceptual tool that can reformulate established methods
in a new language with the potential to lead to untapped generalizations. As an example,
we provide an RBM-based derivation of the Swendsen-Wang cluster update in Sec. 2.2.2.
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5.1 The loss function

Once the class of probability models pθ(v) is chosen, the modeling consists in the optimiza-
tion procedure of the parameter vector θ with respect to some measure designed to capture
the resemblance between the model and the “data”, known as the loss function. The mea-
sure that is overwhelmingly used in Machine Learning applications is the Kullback-Leibler
(KL) divergence which measures the similarity between two distributions p(v) and q(v),

DKL (p||q) =
∑
v∈V

p(v) ln
p(v)

q(v)
(5.2)

While this quantity is symmetric in the regime of infinitesimal deviations of p from q where
it is equal to the Fisher information, in general, DKL(p ‖ q) 6= DKL(q ‖ p) and, therefore, is
not strictly a metric in the geometrical sense. Regardless, it possesses a range of desirable
qualities among which are non-negativity and invariance under the reparameterization.
Those imply that the optimization procedure with respect to θ is well defined.

Being an asymmetric quantity, the question arises in what mode should the KL-
divergence be used to set up the optimization problem. Depending on the context, either
formulation might be more suitable. However, when only the empirical distribution of the
data as in Eq. (5.1) is known, the only choice falls onto the forward KL-divergence:

−Lθ ≡ DKL(pdata ‖ pθ) + lnNs = − 1

Ns

∑
v∈V

ln pθ(v) (5.3)

= − 1

Ns

ln
∏
v∈V

pθ(v)

= − 1

Ns

ln pθ(v
1, . . . ,vNs)

In this setup, the forward KL-divergence is equivalent to the negative log-likelihood Lθ
up to an irrelevant for the optimization purposes constant which corresponds to the data
empirical entropy. The interpretation is that the best model is the one with the highest
chance to produce the observed set of samples.

The second possibility is to have the knowledge of the data model up to a partition
function Zdata but its sampling is unfeasible. This is a typical situation rising in statistical
physics where the classical target Hamiltonian Edata and the inverse temperature β = 1/T
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Figure 5.1: Training result of a uni-modal model on a bi-modal data set with the
forward (left) and reverse (right) KL-divergence.

are known. This leads us to the reverse KL-divergence,

DKL(pθ ‖ pdata) =
1

T

(
E

v∼pθ
[Edata(v)]− TSθ + T lnZdata

)
∝ Fθ(Edata)− Fdata,

where S is the entropy, F = −T lnZ is the free energy and Fθ(Edata) ≡ Ev∼pθ [Edata(v)]−
TSθ is the variational free energy. Remarking that the KL-divergence is a non-negative
quantity, we note that the variational free energy is lower bounded by the true free energy
Fθ(Edata) ≥ Fdata. So minimization of the reverse KL-divergence in this case is equivalent
to the well-known mean field approach in physics. We also note that while this method
provides a clear way how to setup the optimization problem with respect to θ, it cannot
quantify the quality of the achieved optimum since the lower bound Fdata is unknown. For
instance, in the case of the 2-d classical Ising model, the mean-field approximation fails to
detect its own failure at the critical point.

In order to develop some intuition for the qualitative behaviour for the KL-divergences,
let’s consider the following toy problem. Assume the data is described by a bi-model
Gaussian distribution, and pθ is a uni-model Gaussian with the mean µ and variance σ2

being free parameters. The optimization of those parameters with respect to the forward
and reverse KL-divergence leads to qualitatively different results as shown on Fig. (5.1).
In the forward mode, the variational distribution spreads out in order to cover as much
of the data as possible. This is consistent with the intuition of maximizing the likelihood
to regenerate the data from the model. However, in the reverse mode, it is putting all its
weight on the more pronounced mode while completely ignoring the other one. This mode
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seeking behavior is consequence of the reverse KL-divergence not penalizing the model for
ignoring part of the data as long as pθ = 0 there. Having limited representational capacity,
the model is encouraged to specialize to represent well just part of the data. In the context
of the mean-field, this implies that this approach will fail to faithfully represent the critical
Ising model containing many distinct modes of variation.

The mode-capturing behaviour inherent to the reverse KL-based learning can be ad-
dressed in different ways. One option is to increase the temperature of the variational free
energy to encourage the distribution to spread out under the dominance of the entropy
term. Additionally, if the samples of the data are available, the forward and inverse KL-
divergences can be combined into one loss function. Such a possibility could arise in the
context of hardware assisted calculations, for example, in an experimental setup of cold
atoms physically emulating a known target Hamiltonian. In this scenario, the samples pro-
vide a quick reference for the important state-space that the variational procedure needs to
take into account. However, instead of combining the reverse and forward KL-divergence
directly, it is better to use the α-Jensen-Shannon (α-JS) divergence, given by

Dα
JS(pθ ‖ pdata) = αDKL(pθ ‖ pαmix) + (1− α)DKL(pdata ‖ pαmix), (5.4)

where pαmix = αpθ+(1−α)pdata is a weighted mixture of two distributions controlled by the
parameter α ∈ [0, 1]. In the limits of α→ 0, 1, this expression reduces to the forward and
reverse KL-divergence correspondingly. For the equally-weighted mixture α = 0.5, α-JS
becomes symmetric and constitutes a true metric on the space of probability distributions.
In this case, it is known simply as the JS divergence.

In summary, we have seen some of the available choices for the loss function in terms of
generative learning. Under purely theoretical conditions of uncorrupted and infinite data
supply and an infinitely-flexible model distribution, all loss functions considered would be
equivalent. However, in practice the dataset is finite and often subject to various sources
of noise. Additionally, imposing tractability on the model usually leads to a trade-off in
its expressiveness. With those constraints, the optimization of otherwise equivalent loss
loss-functions can lead to drastically different results. One must therefore be careful in
setting up the optimization problem. In this thesis, we limit ourselves to the case where
only the empirical distribution of the data is available, leaving no choice but to use the
log-likelihood in Eq. (5.3) as the loss function. As for the family of parametric models pθ,
we focus on Boltzmann Machines, which we introduce in the following sections.
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Figure 5.2: The bipartite structure of the Restricted Boltzmann Machine (RBM). The
restriction imposes the connectivity to be limited only to the connections between
visible, v, and hidden, h, nodes.

5.2 Classical Boltzmann machine

In the large scheme of machine learning models, Boltzmann Machine (BM) belongs to
the class of energy-based models [105]. Those models assign, the familiar to a physicist,
concept of energy to every configuration v via the reparameterization of the probability as

Pθ(v) = e−Eθ(v)−lnZθ . (5.5)

where − lnZθ is added to make sure that the total probability sums up to one. As such,
energy-based models constitute an alternative language for probabilistic notions. In prac-
tice, they provide a unifying framework for different algorithms designed for generative
modelling, inference and discriminative learning [97]. Their usefulness stems from their
ability to circumvent the computation of the normalizing constant/partition function Zθ
which is intractable in most applications.

BM is a type of energy-based model with binary degrees of freedom interacting via
a two-body weight/interaction matrix W while subjected to an external bias/field repre-
sented by a vector b,

Eθ(s) = −
∑
i,j

siWijsj −
∑
i

bisi, (5.6)

where si ∈ {−1, 1} and θ is a collective label for model’s parameters (W, b) 2. Generaliza-
tions to higher discretization values [106], continuous variables [107, 38], complex numbers
[108] and higher-order interactions exist [109, 38]. While Eq. (5.6) provides the most

2Note that the standard ML convention for a binary unit is to take values {0, 1}. Here, we deviate from
the later in order to facilitate the transition to the quantum analog introduced in Sec. 5.3.
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general two-body Hamiltonian, it is computationally advantageous to impose a certain
structure on the couplings W . Restricted Boltzmann Machine architecture (RBM) results
from splitting the degrees of freedom into two non-interacting subsets s = (v,h),

Eθ(v,h) = −
∑
i,j

viWijhj −
∑
i

bvi vi −
∑
j

bhjhj. (5.7)

Those subsets of variables are referred to as visible v and hidden h units correspondingly.
Such grouping with the coupling matrix W restricted to a bipartite connectivity makes it
possible to parallelize the sampling via the blocked Gibbs update as explained in Sec. 5.2.2.
The visible units are usually associated with the physical degrees of freedom to be modeled
over, while the hidden units’ primary role is to increase the representation capacity of the
marginal over visible units,

pθ(v) =
∑
h

pθ(v,h) (5.8)

=
1

Zθ
e
∑Nv
i=1 b

v
i vi

Nh∏
j=1

(
1 + eb

h
j+

∑Nv
i=1 Wijvi

)
(5.9)

In the limit of infinite number of hidden units, RBM becomes a universal approximator with

the marginal over visibles Pθ(v) capable to represent any discrete distribution: Pθ(v)
Nh→∞→

Pdata(v) [110].

The value of hidden units goes beyond their capacity to extend RBM’s representational
power. Useful insights can be gained by considering the emergent properties of the hidden
state distribution. In fact, the marginal Pθ(h) defines an effective Hamiltonian over hidden
variables via Eq. (5.5). Consequently, an RBM can be implicitly viewed both as a map-
ping between the visible and hidden spaces and, at the same time, as the transformation
between the corresponding effective Hamiltonians. The richness of this transformation is
underpinned by the flexibility of the RBM’s architecture. For instance, limiting the num-
ber of hidden units to be strictly smaller then the number of visibles while imposing an
information bottleneck, via, for example, the weight regularization, can lead to a coarse-
graining interpretation of the RBM mapping analogous to the real-space renormalization
group transformation [111, 112, 113]. Relaxing hidden units from discrete to continuous
variables while imposing only a single connection per visible unit can be shown to ex-
actly implement the Hubbard-Stratonovich transformation [114] whose physics textbook
example is the mapping from the Ising model to an effective low-energy φ4 field theory.
Promoting the interaction term to a three-body coupling in conjunction with spatially lo-
calized hidden units can be shown to produce Fortuin-Kasteleyn dual of the Ising model in
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the hidden space known as a Random-Cluster model [37, 39]. As an illustrative example,
we exploit this mapping in order to provide a generalized derivation of the Swendsen-Wang
cluster update for the Ising model in Sec. 2.2.2.

5.2.1 Log-likelihood gradient

The training consists in optimization of model’s parameters with the goal to reproduce
the “data” as quantified by the chosen loss function described in Sec. (5.1). Here we
limit ourselves to an empirical data distribution Eq. (5.1) reducing the possible choices
for the loss function to a single one, namely to the negative log-likelihood Eq. (5.3). The
minimization is achieved with the help of the gradient descent or, alternatively, in order to
reduce the number of occurrences of the treacherous minus sign, with the help of gradient
ascent on the positive log-likelihood

θ → θ + η
∂Lθ
∂θ

(5.10)

where η is the learning rate determining the length of the gradient step. Computation of
the gradient for the specific case of RBM leads to

∂Lθ
∂θ

=
∂

∂θ

(
1

Ns

∑
v∈V

ln pθ(v)

)

=
1

Ns

∑
v∈V

1

pθ(v)
∂θpθ(v)). (5.11)

We now compute separately the derivative of the marginal,

∂pθ(v)

∂θ
=

∂

∂θ

(∑
h e
−Eθ(v,h)

Zθ

)
= −

∑
h e
−Eθ(v,h)∂θEθ(v,h)

Zθ
+

∑
h e
−Eθ(v,h)

Zθ

∑
h,v e

−Eθ(v,h)∂θEθ(v,h)

Zθ

= −pθ(v)

[∑
h e
−Eθ(v,h)∂θEθ(v,h)∑

h e
−Eθ(v,h)

−
∑

h,v e
−Eθ(v,h)∂θEθ(v,h)

Zθ

]
≡ −pθ(v) [〈∂θEθ(v,h)〉v − 〈∂θEθ(v,h)〉] , (5.12)

(5.13)
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Figure 5.3: Restricted Boltzmann Machine in the clamped ensemble, 〈·〉v, where the
visible nodes are set to a particular configuration v and only hidden nodes are allowed
to fluctuate stochastically.

where in the last equation we have defined 〈·〉v to be the expectation value in the so called
clamped ensemble with the visible units strictly set to the vector v and only hidden units
fluctuating according to the conditional P (h | v). This ensemble is visualized in Fig.5.3.
The unclamped ensemble 〈·〉 corresponds to the traditional expectation value over both
v,h which was previously depicted in Fig. 5.2.

Plugging the result of Eq. (5.12) in the expression for the derivative of the log-likelihood
from Eq. (5.11) yields

∂Lθ
∂θ

= − 1

Ns

∑
v∈V
〈∂θEθ(v,h)〉v + 〈∂θEθ(v,h)〉 (5.14)

≡ −〈∂θEθ(v,h)〉v∼V + 〈∂θEθ(v,h)〉
where we have rendered the notation even more compact by defining the average of the
clamped ensembles 〈·〉v∼V . Beyond compactness, this notation is consistent with the train-
ing procedure where, for the sake of efficiency, the full gradient over the whole batch V
is approximated with an unbiased estimator which produces the gradient estimate with
respect to a randomly sampled mini-batch of visible vectors. This expression can now be
specialized to the parameters of the RBM as

∂Lθ
∂Wmn

= 〈vmhn〉v∼V − 〈vmhn〉 (5.15)

∂Lθ
∂bvm

= 〈vm〉v∼V − 〈vm〉

∂Lθ
∂bhn

= 〈hn〉v∼V − 〈hn〉
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The the positive/negative expectations are also known as positive/negative phases.

5.2.2 Blocked Gibbs sampling

Blocked Gibbs sampling is a rejection-free Monte-Carlo method similar to the single-spin
flip heat-bath algorithm with the advantage that, thanks to the restricted connectivity
matrix, all units in a group can be updated at once. It works by iterative exact sampling
of the conditionals p(v | h) and p(h | v). For the RBM, both of the conditionals adopt a
factorized form,

p(v | h) =
Nv∏
i=1

p(vi|h) (5.16)

p(h | v) =

Nh∏
j=1

p(hj|v),

with the individual spin probability to be on is given by

p(vi = 1 | h) = σ

(
bvi +

Nh∑
j=1

Wijhj

)
(5.17)

p(hj = 1 | v) = σ

(
bhj +

Nv∑
i=1

Wijvi

)
,

where σ(x) = 1
1+e−x

is the sigmoid function.

5.2.3 Training

With the expression for the gradient Sec. (5.2.1) and the sampling procedure Sec. (5.2.2)
in place, the training procedure is now defined. However, while the clamped expectation
values can be evaluated exactly, the sampling of the unclamped ensemble presents a con-
siderable challenge. This problem accentuates when the RBM’s Hamiltonian has a rough
potential landscape, a typical scenario in ML. In this case, the Markov chain generated by
the blocked Gibbs sampling can get stuck in local minima. As a result, its mixing time can
exceed the budgeted computational resources leading to a biased gradient estimate over the
highly-correlated samples. Furthermore, the presence of this problem can go undetected
since there is no foolproof indicators to test for the thermalization of the Markov chain.
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One way to reduce the glassiness of the energy landscape is to impose a regulariza-
tion on the weights. This is achieved by adding an additional term to the loss function
penalizing the model for the parameters with large magnitude. The typical choices are l1

and l2 regularization which equate to the sum over all the parameters
∑

i |θi| and
∑

i θ
2
i

correspondingly. l1 regularization encourages sparse weights due to a constant gradient
while l2 regularization produces non-sparse weights due to the vanishing gradient around
0.

While a regularization can mitigate the poor mixing problem in the unclamped ensem-
ble to a certain degree, it does not provide a complete solution. In practice, a range of
methods designed to facilitate inter-modal Markov chain hopping have been introduced.
Those include parallel tempering [115] and fast-weights RBM [116]. However, as noted in
[117], even the unbiased sampling is a not a panacea. Indeed, an inherent variance of a
statistical estimator can produce an unwanted effect on the stochastic gradient. By looking
at Eq. (5.15), we note that the gradient flattens out when the clamped and unclamped
estimates cancel out exactly. Thus, the behaviour of a gradient estimator with a high-
variance close to a convergence would be dominated by a low signal-to-noise ratio. The
net effect is an entropic force that repels the gradient from high to low variance regions
in parameter space. As the RBM is designed to capture highly-modal distributions with a
high variability between modes, the variance of the gradient estimator poses a big problem.

A partial solution to both, the biased sampling and high variance gradient, is conve-
niently endowed with additional benefits. Indeed, the n-step contrastive divergence (CDn)
[117] and, its derivative, persistent contrastive divergence [118] provide a computational ad-
vantage and an ease of implementation as well. CDn operates on a modified loss-function
which builds upon the Markov process by which the gradient optimization is achieved. In
order to define it, we introduce a sequence of probability distributions pn(v) labelled by
an integer number n. For n = 0, p0

θ(v) ≡ pdata(v) while the hidden variables are activated
via one blocked Gibbs update. Probability distributions with a larger index n are induced
by applying a full blocked Gibbs update Eq. (5.17) (composed of two blocked Gibbs up-
dates: one updating hidden units and then one for the visibles), n times after that. Due
to the convergence property of a Markov chain, the evolving distribution asymptotically
approaches the thermal state of the model p∞θ (v) = pθ(v). The contrastive divergence is
defined as

CDn
(
p0
θ(v) | pnθ (v)

)
= DKL(p0

θ(v) ‖ p∞θ (v))−DKL(pnθ (v) ‖ p∞θ (v)). (5.18)

The idea behind this loss function is based on two observations. First, the data distribution
is the objective thermal distribution of the model. At the same time, the thermal state
is invariant under a Markov chain operator by definition. Therefore, the data distribution
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should be invariant under n blocked Gibbs updates upon the model’s convergence. In
this regard, the contrastive divergence loss-function is designed to counteract the opposite
process. Namely, CDn penalizes the tendency of the Markov chain to drift away from the
data distribution. Additionally, it can be seen that this objective is well-defined. Indeed,
pnθ (v) is necessarily closer to p∞θ (v) then p0

θ(v), and, therefore, CDn cannot be negative.
Only for the desired outcome, p0

θ(v) = pnθ (v) , it equals to zero.

The discussion above stipulates an obvious question. Why do not we minimize directly
DKL (p0

θ(v) | pnθ (v)) to obtain the desired outcome? The answer lies in the intractability
of pnθ (v) even for n = 1. CDn alleviates this problem by approximating the true distri-
bution with an empirical one obtained through the blocked Gibbs sampling. With this
approximation, the gradient of Eq. (5.18) reduces to the difference of the gradients of two
log-likelihood functions. Using the expression for the latter obtained in Eq. 5.15, we derive

∂CDn
θ

∂Wmn

= 〈vmhn〉0 − 〈vmhn〉n (5.19)

∂CDn
θ

∂bvm
= 〈vm〉0 − 〈vm〉n

∂CDn
θ

∂bhn
= 〈hn〉0 − 〈hn〉n

where we have introduced a reduced notation 〈·〉n = 〈·〉v,h∼pnθ describing a sampled distri-

bution with respect to n full blocked Gibbs updates as described previously. Note that
the intractable expectation 〈·〉∞ has been cancelled out between the two gradient terms.
By changing n, one can adjust between the minimization of the contrastive divergence or
log-likelihood. In practice n = 1 works well. However, the empirical approximation upon
which CDn is based upon can be shown to introduce a slight bias between the fixed points
of the contrastive-divergence-based and the log-likelihood-based optimization. To remove
the bias, one can increase n to a large number once CDn has converged, resulting in a
much faster, unbiased algorithm [119] outlined below. For practical tricks used to run it
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refer to [120].

Algorithm 1: Stochastic gradient descent for the CDn-based optimization of an
RBM.

load data {d}data
random init θ = (W,bv,vh)
set k = 1
repeat

empty {v0}, {h0}, {v}, {h}
{d}batch = {sample Nm items from {d}data}
for d in {d}batch do

set v0 = d
sample h0 ∼ pθ(h | v0)
set v = v0, h = h0

for step=1 to n do
sample v ∼ pθ(v | h)
sample h ∼ pθ(h | v)

add v0, h0, v, h, to {v0}, {h0}, {v}, {h}
compute

∂CDnθ
∂θ

according to Eq. 5.19

normalize
∂CDnθ
∂θ

=
∂CDnθ
∂θ

/
∥∥∥∂CDnθ

∂θ

∥∥∥
set ∆θ = 1

k

∂CDnθ
∂θ

set θ = θ −∆θ
set k = k + 1

until ∆θ ≤ ε
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5.2.4 Many-body wavefunction reconstruction

As an application of an RBM to many-body physics, we consider the problem of the ground
state wavefunction reconstruction. Any such wavefunction |ψ〉 can be written in terms of
its expansion in a complete basis set {|v〉}

|ψ〉 =
∑
v

ψ(v) |v〉 . (5.20)

The Born rule relates the amplitude ψ(v) to the probability of the wavefunction collapse
into a particular state |v〉 upon a projective measurement,

p(v) = |ψ(v)|2. (5.21)

A repeated application of those measurements can be used to generate a dataset {v}.
This dataset can be naturally used to evaluate physical observables which are diagonal in
|v〉. However, the evaluation of off-diagonal observables requires a repetition of the above
procedure from scratch in the appropriate basis. Not only this approach is time-consuming
and introduces complications to the experimental design, but some quantities of interest
such as the EE requires a dedicated experimental setup [45]. This limitation motivates
us to take an alternative route. Instead we attempt to reconstruct the underlying state
ψ(v) from {v} with a generative model. Once captured in a compact representation, its
knowledge can be exploited to measure any observable.

Formally, we make the following connection between the targeted amplitude ψ(v) and
the probabilistic model pθ(v)

ψ(v) =
√
pθ(v). (5.22)

In this representation, we implicitly assume that the wavefunction has no phase structure
and is completely described by a positive number in the selected basis. Such assumption
is well-founded for ground states of stoquastic Hamiltonians (the class of Hamiltonians
amenable for quantum Monte-Carlo simulations). When no such assumption can be made,
multiple basis measurements are required to capture the phase structure. Such generaliza-
tion is an ongoing area of research [121].

As a practical demonstration, we adopt an RBM with 20 hidden units as the gen-
erative model distribution specified in Eq. (5.8). The dataset, {v}, is composed of Sz
measurements of the transverse field Ising model ground state with 10 sites arranged in a
one-dimensional chain and tuned to criticality. This Hamiltonian is stoquastic. The train-
ing is no different from the standard machine learning procedure described in detail in
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Figure 5.4: The second Rényi entropy for the transverse field Ising chain with N = 10
spins. The number of sites in the entangled bipartition A is indicated by the horizontal
axis. The markers indicate values obtained through the “Swap” operator (see Sec. 3.3)
applied to the samples from a trained RBM. The dashed line denotes the result from
exact diagonalization.

Sec. 5.2.3. We employ the dedicated software package QUCUMBER (Quantum Calculator
Used for Many-body Eigenstate Reconstruction) for this purpose [50].

Once RBM is trained, off-diagonal observables can be computed via standard variational
Monte-Carlo techniques [50]. The samples required for this evolution can be either reused
from {v} or generated by Gibbs sampling based on Eq. (5.17). We choose to benchmark
the trained RBM on the second Rényi entropy, S2, against values obtained with the exact
diagonalization. Monte-Carlo estimation of the Rényi entropy require the usage of so called
replica trick and is covered in Sec. 3.3. The results are shown in Fig. 5.4. The trained
RBM correctly captures well the value of the second Rényi entropy for different subregion
A sizes. Being a basis-independent observable, this constitutes a good test on the ability of
the RBM to capture the full wave-function from the information contained in a single-basis
dataset for transverse field Ising chain.
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5.3 Quantum Boltzmann machine

Quantum Boltzmann Machine (QBM) [104] provides a generalization to the classical coun-
terpart described in Sec. (5.2). The restricted versions of those two architectures are
pictorially contrasted against each other in Fig. 5.5. In QBM, the configuration space is
promoted from the state space of a classical binary vector to the state space of wave func-
tions defined over spin one-half Hilbert space. Formally, this is done by replacing the spin
variables v, h in the classical Hamiltonian Eq.(5.7) with σz Pauli matrices. Additionally,
in order to create quantum fluctuations, a transverse field is introduced through σx term
leading to the Hamiltonian,

−Hθ =
∑
v,h

σzvWvhσ
z
h +

∑
s

Γsσ
x
s +

∑
s

bsσ
z
s , (5.23)

which can be recognized as a transverse field Ising model (TFIM). Note how the notation
differs from Eq.(5.7). From now on, s = (v, h) is a collective index variable referring to
both types of indices, the ones of visibles units, v, as well as of the hidden ones h.3 In
addition to the restricted architecture above, we will also be interested in a semi-restricted
QBM

−Hθ =
∑
v,v

σzvWvvσ
z
v +

∑
v,h

σzvWvhσ
z
h +

∑
s

Γsσ
x
s +

∑
s

bsσ
z
s , (5.24)

with supplementary all-to-all interactions between the visible qubits parameterized via
matrix Wvv. Without hidden units, the semi-restricted QBM becomes a fully-connected
fully-visible model. Those extensions to the restricted architecture of the classical BM come
with a new training procedure which relies on a different sampling paradigm. Instead of
the blocked Gibbs sampling introduced in the Sec. 5.2.2 for the RBM training, QBM relies
on the sampling from a quantum hardware.

At a finite temperature T = 1, the statistical properties of QBM correspond to a Gibbs
mixed state as described by the density matrix

ρθ = e−Hθ . (5.25)

In order to consider the density matrix as a generative model for an empirical classical
data, the quantum nature of the underlying representation is collapsed with a projective
measurement. The generative model is then determined by the Born rule which reads

pθ(v) =
Tr [ρθMv]

Tr [ρθ]
. (5.26)

3We maintain the notation for a data vector v. Its elements now are referred as vv.
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Figure 5.5: (a) A flattened out version of the classical restricted Boltzmann machine
(RBM), conventionally displayed as in Fig. 5.2. This way of exposition facilitates
a direct comparison with a restricted quantum Boltzmann Machine (QBM) on the
right. (b) A cartoon depiction of a QBM which also has a restricted connectivity to
hidden and visible units. However unlike RBM, QBM can be seen as having an extra
dimension, for instance, corresponding to the operator list expansion in the stochastic
series representation. This depiction makes manifest the potential advantage of a QBM
over an RBM steaming from its extra dimension of flexibility.

Here, Mv = |v〉〈v| ⊗ Ih is the projective measurement operator onto a visible vector v and
Ih is the identity operator acting over the space of hidden units. The usefulness of studying
such an extension can be motivated on different levels. In the first scenario, we consider the
hidden variables removed and assume that the dataset originates from spin measurements
of a quantum Hamiltonian with unknown parameters. In this case, the likelihood based
training of the QBM is equivalent to the inverse Ising problem aiming to determine those
unknown parameters. More specifically, if the unknown Hamiltonian is the TFIM, then
the QBM can be seen as an algorithm to solve the inverse problem. More generally, the
methodology developed further can be a useful starting point for the inverse problem of
any Hamiltonian including the ones with the sign problem through a careful choice of the
data measurements basis. Second, with the hidden units reinstated, the QBM training can
be seen as a protocol for the quantum mixed state reconstruction with the benefit of a
direct control over the model’s expressiveness through the adjustment of the hidden unit
number [22].

Leaving the realm of data generated via a quantum process, it is interesting to entertain
a more speculative thought of quantum nature of classical data. That is, the idea that
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purely quantum effects such as entanglement are beneficial to capture correlations present
in classical data sets in a succinct way. The implication of such findings would mean that a
quantum generative model would require a smaller number of parameters then its classical
counterpart. While this idea can seem to be widely speculative, the dominance of the
classical model over quantum ones is even less likely to be true. After all, the classical BM
can be viewed as a particular instance of the quantum model and, therefore, there is no
prior reason for its advantage. We will examine this hypothesis empirically in more detail
in Sec. 5.3.4.

Lastly, the QBM might provide a computational edge over the classical BM as a gener-
ative model in the context of quantum adiabatic computation [122]. In order to explain this
point, let us quickly review the core facts about this framework. Quantum adiabatic com-
putation is a universal computing paradigm [123, 124, 125, 126] providing an alternative to
the more established quantum circuit model. Unlike the quantum gate computing which is
based on a wavefunction evolution under the action of discrete applications of local unitary
operations called gates, the quantum adiabatic computation relies on a quantum adiabatic
evolution [127] of a wavefunction under the action of slowly evolving Hamiltonian H(t)
as dictated by the Schrodinger’s equation. Within thin framework, the Hamiltonian is
traditionally decomposed into two non-commuting coevolving terms. The target piece, Hc

represents the classical interacting term. It is designed in such a way that its ground state
encodes the solution to a problem of interest. The second term is the driver Hamiltonian,
Hd, with a simple ground state that can be easily prepared as the starting state. The
prototypical example of H(t) is the TFIM-based annealing,

−H(t) = [1− c(t)]
Hc︷ ︸︸ ︷∑

ij

σzi Jijσ
z
j +c(t)

Hd︷ ︸︸ ︷∑
i

σxi , (5.27)

with the transverse field playing the role of the driver term. The parameter c(t) can be any
function interpolating between the boundary constraints, c(t = 0) = 0 and c(t = T ) = 1.
This function defines a path in the parameter-space of Hamiltonians undertaken during the
physical time evolution t ∈ [0, T ]. Initially, c(t = 0) = 0, only the driver term is present.
The system is set to its ground state. According to the quantum adiabatic theorem [127] , if
the evolution is slow enough (as defined below), the system will remain in its instantaneous
ground state during the entire evolution path. Consequently, as the final Hamiltonian at
c(t = T ) = 1 is purely classical, the final state solves for the ground state of the interacting
Hamiltonian. The limitation of this approach lies in the constraint on the evolution speed.
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Namely [127],

T � Emax
∆min

, (5.28)

where Emax ≡ max
0≤t≤T

∥∥∥∥dH(t)

dt

∥∥∥∥,
∆min ≡ max

0≤t≤T
∆(t).

with ∆(t) being the instantaneous energy gap between the ground state and the first excited
state of H(t). The nominator is not expected to grow faster then polynomially for a local
Hamiltonian [122]. Therefore, the scaling efficiency of the quantum adiabatic computation
is entirely determined by the minimal encountered gap, ∆min, during the evolution.

Generalizations of the quantum adiabatic theorem to open systems also exist [128, 129].
In this context, the system of interest is described by a mixed state whose dynamics are
coupled to the environment. Under similar restrictions on the evolution time T [128,
129], the quantum adiabatic evolution thus provides a tool for an efficient sampling of the
quantum Gibbs state. In practice, it is common for the system to undergo phase transitions
with the enclosing gap, ∆min → 0, thus nullifying the theoretical guarantees of the adiabatic
theorem. When this occurs, the relaxation time scale greatly exceeds the available time T ,
which leads for the system’s dynamics to freeze-out [130] before reaching the target state.
This fact brings us back to the consideration of QBM’s advantage over BM. As both those
models require sampling for the training, the quantum adiabatic annealing is naturally fit
to help for this purpose and is applicable to both models. However, the classical model
would require a longer adiabatic evolution since it lies further away in the parameter space
from the t = 0 state. For this reason, it is more likely that for a given evolution time T ,
the quantum adiabatic evolution will sample the QBM better than the BM [104].

5.3.1 Exact log-likelihood gradient

With the new ansatz for the generative model, Eq. (5.26), we proceed with the derivation
of the log-likelihood-based training procedure. The steps closely follow the classical RBM
procedure of Sec. 5.2.1. The gradient-based optimization procedure requires calculation of
the cost function gradient. The likelihood gradient for a single data vector v is

∂ ln pθ(v)

∂θ
=

∂

∂θ

(
ln

Tr [Mvρθ]

Tr [ρθ]

)
=

Tr [Mv∂θρθ]

Tr [Mvρθ]
− Tr [∂θρθ]

Tr [ρθ]
. (5.29)
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In the last expression, the partial derivative ∂θρθ requires a special treatment due to the
non-commutative nature of terms contained in ρθ. In order to evaluate both of those terms,
we employ the following identity [131]

∂θe
−Hθ = −e−Hθ

∫ 1

0

dτeτHθ∂θHθe
−τHθ . (5.30)

As a sanity check, we note that when [∂θHθ, Hθ] = 0, this equation reduces to the classical
expression −e−Hθ∂θHθ. Surprisingly, upon substitution of this identity in Eq. (5.29), a
similar expression is obtained for the second term

Tr [∂θρθ]

Tr [ρθ]
= −

Tr
[
e−Hθ

∫ 1

0
dτeτHθ∂θHθe

−τHθ
]

Tr [ρθ]

= −Tr
[
e−Hθ∂θHθ

]
Tr [ρθ]

= −〈∂θHθ〉 , (5.31)

where in the second line we have used the invariance of the trace under a cyclic permutation
in order to move the term e−τHθ next to its conjugate so that they cancel out. Unfortu-
nately, the non-commutativity of Mv with Hθ prevents us from obtaining an equivalently
simple expression for the first term in Eq. (5.29),

Tr [Mv∂θρθ]

Tr [Mvρθ]
= −

Tr
[
Mve

−Hθ
∫ 1

0
dτeτHθ∂θHθe

−τHθ
]

Tr [Mvρθ]

≡
〈∫ 1

0

dτeτHθ∂θHθe
−τHθ

〉
v

. (5.32)

Here, 〈. . .〉v = 〈v|e−Hθ . . .|v〉 defines an expectation with respect to a clamped quantum
ensemble. It is visualized in Fig. 5.6 next to its classical counterpart. By contrasting this
figure with the unclamped version Fig. 5.5, it becomes evident that the clamped quantum
ensemble is less restrictive then the classical one. In the classical case, clamping leads to a
full restriction on the state of the visible units, while in the quantum case, the restriction
is imposed only on a single slice in the imaginary time. Therefore, while in the classical
case, the clamped ensemble effectively represents an ensemble of disentangled hidden spins
amenable for an analytic evaluation of expectations, in the quantum case, no such simplifi-
cation occurs. The problem is aggravated by the ensuing prohibitive computational cost to
the scaling as the calculation needs to be performed for every datapoint in the dataset. Un-
fortunately, the quantum clamped expectation value does not represent a physical process
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(b) clamped QBM

Figure 5.6: Comparison of (a) a restricted Boltzmann machine and (b) a restricted
quantum Boltzmann machine in the corresponding clamped ensembles 〈·〉v. The
clamped RBM ensemble is very restrictive as it fully constrains the state of the visible
units. Contrarily, the clamping of a QBM only constrains the state of a single slice in
its extra dimension. The double occurrence of the clamped slice in (b) is due to the
periodic boundary conditions.

that can be implemented on a quantum annealer, thus leaving no prospects for a quantum
speedup. On mid-size systems, QMC-based techniques provide the only viable approach.
We derive QMC estimators for both Eq. (5.31) and Eq. (5.32) in Sec. 2.3.5. In order
to circumvent the computational dead-end on larger systems, we derive a semi-classical
approximation.

5.3.2 Semi-classical log-likelihood gradient

The basis of our approximation is the well-known Golden-Thompson inequality,

Tr
[
eAeB

]
≥
[
eA+B

]
, (5.33)

where A,B are Hermitian matrices. We apply this bound to the QBM probability pθ(v),
Eq. (5.26), which we write in a suitable form as

pθ(v) =
Tr
[
Mve

−Hθ
]

Tr [e−Hθ ]
= lim

ε→0

Tr
[
eln(Mv+ε1)e−Hθ

]
Tr [e−Hθ ]

,

where ε is a small positive parameter coupled to an identity operator introduced to avoid
the divergences in the values of lnMv. The limit trivially follows from the fact that
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Mv = elnMv . Now, applying the Golden-Thompson inequality to the right hand side with
the substitutions A = ln (Mv + ε) and B = −Hθ we obtain

Tr
[
eln(Mv+ε1)e−Hθ

]
Tr [e−Hθ ]

≥ Tr
[
e−[Hθ−ln(Mv+ε1)]

]
Tr [e−Hθ ]

. (5.34)

In the resulting lower bound, the term ln (Mv + ε1) enters the expression in the same way
as the Hamiltonian Hθ does. Therefore, they can be regarded as two separate contributions
to the combined Hamiltonian

Hθ,v (ε) ≡ Hθ − ln (Mv + ε1) (5.35)

For a descreasing ε, the second term introduces a diverging energy penalty to all states that
have an overlap with basis states other then |v〉. Those states therefore have a negligible
contribution to the trace in Eq. (5.34) and in the limit ε → 0, the thermodynamics of
Hθ,v (ε) become indistinguishable from its semi-classical approximation

lim
ε→0

Hθ,v (ε) = 〈v|Hθ |v〉 ⊗ |v〉〈v| ≡ Hθ,v. (5.36)

This expression defines the clamped Hamiltonian Hθ,v. The latter effectively corresponds
to the original Hamiltonian Hθ whose visible σz operators are replaced with classical spins
clamped to v and the visible σx operators are turned off,

Hθ,v = Hθ(σ
x
v = 0, σzv = v). (5.37)

With the ε → 0 limits well understood on both sides of Eq. (5.34), we derive the desired
lower bound p̃θ(v) ≤ pθ(v),

pθ(v) ≡ lim
ε→0

Tr
[
eln(Mv+ε1)e−Hθ

]
Tr [e−Hθ ]

≥ lim
ε→0

Tr
[
e−[Hθ−ln(Mv+ε1)]

]
Tr [e−Hθ ]

=
Tr
[
e−Hθ(v)

]
Tr [e−Hθ ]

≡ p̃θ(v). (5.38)

Taking the gradient of the bound-based log-likelihood, we obtain

∂ ln p̃θ(v)

∂θ
=

Tr
[
∂θe
−Hθ,v

]
Tr [e−Hθ,v ]

− Tr
[
∂θe
−Hθ
]

Tr [e−Hθ ]

= −〈∂θHθ,v〉v + 〈∂θHθ〉 , (5.39)
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Figure 5.7: The clamped quantum Boltzmann machine in the semi-classical approxi-
mation Eq. (5.38). In this approximation, the visible units are effectively classical and
are clamped to the vector v whose state is shown with the arrows. The hidden units
are still described by quantum spins.

where 〈. . .〉v now represents the semi-classical ensemble based on the Boltzmann distribu-
tion of the clamped Hamiltonian, e−Hθ,v . This distribution corresponds to a mix of classical
and quantum spins. It is schematically represented on Fig. 5.7. Unlike the previous cal-
culation for the exact log-likelihood gradient in Sec. 5.3.1, the expression for the gradient
of the clamped term is easily evaluated since [∂θHθ,v, Hθ,v] = 0. For the gradient of the
unclamped term, we reused the previously derived result from Eq. (5.31).

5.3.3 Bound-based training

Bound-based approximations to the true training objective are routinely used in machine
learning to trade off the accuracy of the model for its computational efficiency. A prominent
example is the class of powerful generative models known as variational autoencoders
(VAE) [132]. Having encountered a computational impasse in the evaluation of the clamped
ensemble contribution to the gradient of the QBM-based log-likelihood, Eq. (5.32), we
adopt a similar strategy. Namely, we employ the semi-classical approximation on the
likelihood derived in Eq. (5.38). The bound-based training objective L̃θ reads

− Lθ ≤ −L̃θ = − 1

Ns

∑
v∈V

ln p̃θ(v) (5.40)

122



The optimization of the parameters θ is still done with the help of the gradient ascent on
L̃θ,

θ → θ + η
∂L̃θ
∂θ

(5.41)

Unlike the gradient of the exact log-likelihood, the gradient of L̃θ is amenable for the
evaluation on a quantum hardware,

∂L̃θ
∂θ

=
1

Ns

∑
v∈V

∂ ln p̃θ(v)

∂θ

= − 1

Ns

∑
v∈V
−〈∂θHθ,v〉v + 〈∂θHθ〉

≡ − 〈∂θHθ,v〉v∼V + 〈∂θHθ〉 . (5.42)

The last expression is strikingly similar to the log-likelihood gradient of the classical RBM
in Eq. (5.3). Despite this apparent similarity, the evaluation of the expectations in the
unclamped ensemble are drastically different between the classical and quantum BMs. For
its samples, RBM relies on the computational efficiency of the blocked Gibbs update and
global exploration techniques such as the contrastive divergence. On the other hand, QBM
assumes an efficient quantum hardware implementation. For this reason, the architectural
restrictions imposed by the classical sampling considerations can be lifted as far as the
unclamped ensemble is concerned.

As for the evaluation of the clamped expectation values above, we require an analytic
tractability in order to tolerate the scaling cost to large datasets. Therefore, the clamped
ensemble must effectively represent a non-interacting system. Such requirement is satisfied
for a semi-restricted QBM defined in Eq. (5.24). Indeed, its semi-classical version, Hθ,v,
reduces to a collection of non-interacting qubits

−Hθ,v =
∑
v,v′

vvWvv′vv′ +
∑
v

bvvv +
∑
v,h

vvWvhσ
z
h +

∑
h

Γhσ
x
h +

∑
h

bhσ
z
h

= Cv +
∑
h

bvhσ
z
h +

∑
h

Γhσ
x
h

where the zero energy offset, Cv =
∑

v,v′ vvWvv′vv′+
∑

v bvvv, and the clamped longitudinal
bias, bvh = vvWvh + bh, are dependent on the datavector v. The corresponding distribution
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is factorized and is fully characterized by the following expectations

〈σzh〉v =
bvh
Dv
h

tanh (Dv
h) (5.43)

〈σxh〉v =
Γh
Dv
h

tanh (Dv
h) ,

where Dv
h ≡

√
Γ2
h + bvh

2. Writing out the gradient Eq. (5.42) explicitly for each type of

parameter θ we obtain

∂L̃θ
∂Wvv′

= 〈vvvv′〉v∼V − 〈σzvσzv′〉 (5.44)

∂L̃θ
∂Wvh

= 〈vvσzh〉v∼V − 〈σzvσzh〉

∂L̃θ
∂bv

= 〈vv〉v∼V − 〈σzv〉

∂L̃θ
∂bh

= 〈σzh〉v∼V − 〈σzh〉

∂L̃θ
∂Γv

= −〈σxv 〉

∂L̃θ
∂Γh

= 〈σxh〉v∼V − 〈σxh〉 .

The gradient with respect to Γv is self-cancelling. Indeed, a positive value Γv leads to a
positive expectation 〈σxv 〉 which in turn leads to a decrease in Γv and vice versa. The fixed
point of this process is Γv = 0. Such result seems to indicate that the QBM is naturally
driven to its classical point. However, as we will see in the next section, the training based
on the exact log-likelihood does not regress to the classical BM. Therefore such fixed point
is an artifact of the semi-classical approximation.

So far we have relied on the assumption of an efficient quantum oracle that can produce
samples from the unclamped ensemble. Here, we restrict ourselves to a communication
protocol where the oracle only outputs measurements in the diagonal basis. Such scenario
is natural to quantum annealers. This limitation makes it impossible to measure the off-
diagonal expectations required to train Γh. For this reason and the reason mentioned in
the previous paragraph, in the bound-based QBM training we treat Γs as hyperparameters.
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5.3.4 Application to classical dataset

In this section, we illustrate the ideas described in the previous sections on a toy exam-
ple. For the training data, we generate samples from a uniform mixture of M factorized
distributions

P data(v) =
1

M

M∑
k=1

P k(v) (5.45)

Each mixture component P k is defined by its mode mk = [mk
1,m

k
2, ...,m

k
Nv

] and the spin
flip probability pk. We choose to make the later equal across all the components, pk =
(1−p). The mode is picked at random among all possible configurations of the visible spins.
The mixture component distribution is then defined as independent spin fluctuations with
probability p around its mode mk

P k(v) =
Nv∏
i=1

(1− p)vi 6=mk
i pvi=mk

i , (5.46)

where we assume the convention 0(1) for the False(True) boolean evaluation of the expo-
nents. In all our examples, we choose p = 0.9. The modes are randomly and independently
generated for each training set from a uniform distribution. Each dataset {vi}Ns contains
a thousand training examples, Ns = 1000. Since we have a direct access to the data prob-
ability distribution, we show the performance as evaluated by the KL-divergence in our
plots.

We start with a fully-connected architecture without hidden units in order to compare
the expressiveness of a classical Boltzmann machine (BM) against quantum Boltzmann
machine (QBM) and evaluate the quality of the bound (5.40) by training the semi-classical
quantum Boltzmann machine to which we refer as bound-based QBM (bQBM). We con-
sider a model with Nv = 10 qubits. In this case, the log-likelihood L is a convex function of
its parameters and, therefore, has a unique global minimum. Classical BM hasNv(Nv+1)/2
trainable parameters. To make the comparison fair, we restrict the transverse field param-
eters of the QBM Hamiltonian to be the same (Γs = Γ). Due to the small size, we are able
to evaluate all the expectations required for the BM training. The QBM is trained based
on the exact log-likelihood using procedure developed in Sec. 5.3.1. This can be done with
the help of the exact diagonalization for small systems. The bQBM is trained based on
the bound L̃, Eq. (5.40), with a fixed Γ to some ad-hoc non-zero value Γ = 2. Comparing
the training results of QBM with bQBM will give us an idea of the tightness of the bound
L̃.
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Figure 5.8: Training of a fully visible fully connected model with Nv = 10 qubits on
artificial data from a mixture model (define in Eq. (5.45)) with the noise-parameter p =
0.9 and the number of modes M = 8. Training is done using second-order optimization
routine BFGS. (a) KL-divergence of BM, QBM, bQBM models during training process.
Both QBM and bQBM learn to KL values that are lower than that for BM. (b) Classical
and quantum average energies during training process. The inset details the same data
set on a finer scale close to the classical regime.

Since all expectations entering the gradients of the cost function are computed exactly,
we use the second-order optimization routine BFGS [133]. The results of training BM,
QBM and bQBM are given in Fig. 5.8(a). The x-axis in the figure corresponds to iter-
ations of BFGS that does line search along the gradient (the learning rate η is selected
automatically). QBM is able to learn the data noticeably better than BM, and bQBM
approaches the value close to the one for QBM.

In order to visualize the training process, we keep track of the average values of classical
Ecl and quantum Eq energy expectations of the Hamiltonian during the training. Fig 5.8(b)
shows the learning trajectories in the space (Ecl, Eq). BM learns a model with average
energy ≈ 3.5, and KL ≈ 0.62. One can see that QBM, which starts off with Γ = 0.1,
initially lowers Γ and learns longitudinal parameters that are close to the best classical
result (see the inset). Soon after, QBM increases its quantum as well as classical energies
until it converges to a point with Γ = 2.5 and KL ≈ 0.42, which is better than classical BM
value. Having a fixed transverse field, Γ = 2, bQBM starts with a large Eq and approaches
the parameter learned by QBM (although does not reach the best value at Γ = 2.5 learned
by QBM).

We note that QBM has an additional fit parameter as compared to BM and bQBM,
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Figure 5.9: The advantage in the learning ability per spin of a quantum BM rela-
tive to the classical BM, (KL−KLBM)/Nv with circles/squares corresponding to a
QBM/bQBM. This advantage is considered (a) as function of the system size with
transverse-field Γ = 2 and (b) as function of the transverse-field strength on a system
Nv = 10. For those plots, the number of modes in the mixture data model, Eq. (5.45),
was kept equal to the number of qubits Nv = M while the noise-parameter was always
set to p = 0.9. In order to collect the statistics, the training was done for hundred
dataset instances.

however its relative advantage should decrease as the total number of parameters increases.
For this reason, we also study the dependence of the KL advantage as a function of the sys-
tem size. Fig. 5.9(a) shows that both QBM and bQBM not only preserve their advantage
over the classical BM but are able to increase the gap in their learning ability.

Since we cannot train the transverse field Γ for the bQBM, we have to treat it as
a hyperparameter. We perform a scan of values of Γ and evaluate the KL advantage
bQBM over BM based on 100 randomly generated datasets. Fig. 5.9(b) demonstrates a
weak dependence of this advantage on the transverse field which justifies treating it as a
hyperparameter.

We now consider a semi-restricted BM as per Eq. (5.24). Our toy model has 8 visible
units and 2 hidden units. We allow full connectivity within the visible layer and all-to-
all connectivity between the layers. The data is again generated using Eq. (5.45) for the
visible variables, with p = 0.9 and M = 8. We present the results of training in Fig 5.10.
Similarly to the fully visible model, QBM outperforms BM, and bQBM represents a good
proxy for learning quantum distribution for a wide range of hyperparameter Γ.
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Figure 5.10: Training of a semi-restricted BM with 8 visible and 2 hidden units on
artificial data from the mixture model (5.45) using second-order optimization routine.
(a) KL-divergence of different models during training process. Again QBM and bQBM
outperform BM. The inset studies the advantage in the learning ability of the bQBM
relative to the classical BM, ∆KL = KLbQBM −KLBM, as function of the transverse-
field strength. To collect the statistics, the training was done for a hundred different
datasets generated with the noise parameter p = 0.9 and number of modes M = 8. (b)
Classical and quantum average energies during training process. The inset details the
same data set on a finer scale close to the classical regime.
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Chapter 6

Conclusion and outlook

In this thesis, we pursued the program of entanglement entropy based classification of
condensed matter ground states. At the core of this classification lies the geometry of the
entangling region A which acts as a probe of universality. Different universal aspects of the
underlying low-energy theory are revealed by varying different geometrical features of the
region. We specialized in a cylindrical subregion A with a smooth entangling boundary
confined to a toroidal system. Via a rigorous scaling analysis based on high-accuracy
QMC datasets, we provided undeniable evidence for the universal signatures in the EE
of the underlying ground states. More specifically, for the XY-model, we confirmed the
full theoretical EE scaling prediction of Metlitski and Grover [23] for both of the universal
EE contributions subleading to the area law [134]. Namely, the logarithmically divergent
term was shown to be proportional to the number of Nambu-Goldstone modes arising due
to a spontaneously broken continuous symmetry of the ground state. The universality
of the geometric term subleading to the logarithm was also confirmed. This term is fully
characterized by a universal function solely dependent on the aspect-ratio of the entangling
region.

We recovered the trace of the same geometric function in an entirely different micro-
scopic model. The same geometric EE contribution transpires for a massless free boson
model regularized on a lattice. This model and this geometric function constitute the fo-
cus of the second part of our dive into the EE-driven exploration of strongly-interacting
many-body systems [53]. The free boson model was used as a stepping stone to develop
a rigorous fitting procedure to extract a universal number, κ2, from a theoretically pre-
dicted behaviour of the geometric function in the limit when region A is shrunken to a
thin slice. We then applied the benchmarked analysis to the critical transverse-field Ising
model. The extracted value κ2 was shown to be statistically different but similar between
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the two microscopic models. This result is consistent with previously extracted values for
another universal number that is based on corner-induced EE contributions. Theoretically,
this similarity between the two sets of universal numbers characterizing those microscopic
models is in line with the close relationship between their corresponding critical fixed
points. Indeed, the Gaussian and Wilson-Fisher fixed points are smoothly connected via
a perturbative ε-expansion. The absence of a physical interpretation for κ calls for further
theoretical developments.

The experience gained from this work shows that a practical application of EE analysis
as a tool for the identifying the underlying field theory of strongly-interacting systems
hinges on many important technical ingredients. The importance of employing a proper
fitting analysis is not to be underestimated as naive approaches easily lead to erroneous
results. A successful extraction of the information contained in the universal part of the EE
is contingent on a strong understanding of other contributions. In addition to the expected
pollution from the area law and finite-size effects, the contribution from unexpected terms
such as the conical singularity [135] and ultra-violet lattice effects in the EE signal need to
be controlled in order to isolate the signal from the targeted universal terms. This isolation
is often possible via a careful procedural design that takes full advantage of the flexibility
provided by QMC techniques.

Each of the above projects required large amounts of computational resources estimated
at over 300 CPU years per project. Fundamental to their success was the construction of
the improved EE estimators. Without those estimators, the computational costs could
have been a magnitude higher. Developed in stages, the theoretical procedure for the
general construction of those estimators culminated in the projected ensemble framework
based on a stochastic map onto a loop version of the underlying classical representation.
The discovery of the connection of this method to the well-established Kandel-Domany
framework [31] promises to be fruitful for the extension of the derived EE estimators to
other models. The natural first extension would be the XXZ model.

The dramatic efficiency improvement witnessed in the performance of loop-based EE
estimators warrants some discussion. As discussed in Sec. 3.2.4, those estimators effectively
sample a large number of configurations conditioned on a sampled instance of a loop
break up. In statistics, such a variance reduction technique is known as conditioning
[24]. In turn, conditioning is related to Rao-Blackwellization, a more stringent technique
requiring the conditioning variable to be a sufficient statistic. The latter is defined as
the maximally informative statistic given a sample. This formulation hints at a deep
connection between the physics of the loops and the EE. Exploration of this link could
provide us with theoretical guiding principles for constructing numerical representations
that inherently capture the physical EE properties of the underlying system and, ultimately,
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lead to validation of EE as a tool for probing the universality of unknown systems.

As an alternative to the projected ensemble framework for estimating the Rényi entan-
glement entropy, a promising development is the out-of-equilibrium approach [136, 137].
This partition function ratio estimation method relies on measuring the work required to
change one partition function into the other one. This approach has some similarity to
thermodynamic integration but, in this case, the process does not need to be equilibrated
at each intermediate step and is unbiased. This idea has seen an early adaptation in the
machine learning community [138, 139] and more recently it has been applied to measuring
EE [140]. More generally, framing the challenge of EE measurement as an estimation of
the ratio of normalizing constants connects such endeavours to a vast body of literature in
statistics and machine learning [141]. Not only does this theoretical bridge provide a new
toolset of established methods such as the bridge-sampling [141] as well as an access to
the state of the art [142], but it also provides a rigorous mathematical language for further
exploration [143].

Concurrently, EE estimation can be phrased as an evaluation of the Swap operator
[42]. Over the past few years, this viewpoint led to the first direct measurement of a
Rényi entropy in an experiment [45, 144]. While being an exciting result, the setup has
so far been limited to a few cold atoms. Extending the methodology to larger systems
will unavoidably run into the same issues as those encountered in our work. Namely, as
the size of the entangling region increases, the signal-to-noise ratio of the Swap operator
statistics exponentially deteriorate due to the area law. Therefore, we anticipate that
some of the variance-reduction tools used in QMC measurements will prove to be useful
in the experimental setup. In particular, we underline the importance of the ratio trick
[42]. While conceptually simple, this tool provides an exponential speed-up, making the
detection of the EE in large systems a tractable problem. As the ratio trick relies on
the ability to compute a quantity that does not take the form of an observable, it is
not obvious how to apply the ratio trick to an experimental procedure. A competitive
alternative might be based on the out-of-equilibrium framework mentioned above, as it
relies on the measurement of the observed energy changes. As the core challenge posed by
EE measurement is ultimately dictated by physics and is not dependent on a measuring
setup, we envision a practical knowledge exchange between numerics and experiment for
years to come.

Directly reconstructing the wavefunction from its projective measurements provides an
alternative possibility for EE detection in an experiment. As a step towards this goal,
we considered the framework of generative modeling built around the maximum-likelihood
learning of classical probability distributions from data. As a concrete example, we adopted
the restricted Boltzmann machine as a generative model. When trained on Sz measure-

131



ments of the transverse-field Ising model ground state in one dimension, we were able to
reconstruct the EE of the state with good accuracy [50]. As the EE is a basis-independent
quantity, this example serves as a proof-of-concept for the generalization ability of the
RBM. Additionally, motivated by the development of physical annealers with a promise to
sample from a quantum Boltzmann distribution, we considered a quantum generalization
of the RBM termed the quantum Boltzmann machine [104]. Since it is not practical to
train this model exactly, we developed a scalable bound-based training. On an artificially
constructed classical data-set, our quantum Boltzmann machine demonstrated a better
likelihood performance than its classical counterpart. Although this result needs to be
verified on other datasets, the ability to efficiently learn a thermal quantum model from
projective measurements makes this quantum Boltzmann machine a promising avenue for
further exploration.

Unlike traditional tomography [145], the machine learning approach considered in this
thesis is built on a principle of scalability to large datasets. Fundamental to this mission is
the generalization ability of artificial neural networks. These composite highly non-linear
structures promise to challenge the fundamentally linear construction of tensor networks.
Combining learned patterns in novel non-linear ways is the central feature underlying the
success of neural network based generative learning in the field of vision. To achieve
ground-state reconstruction beyond the stoquastic Hamiltonians considered in this thesis,
one would first need to extend this success to multi-basis datasets. In the era of Noisy
Intermediate-Scale Quantum devices [146] designed to emulate physical models of interest,
the question of the philosophical value of quantum data in this endeavour raises itself.
Perhaps, as the area law indicated the way to the ground state for the tensor network
community, data encodes the key to the ground state in the optimization landscape of
artificial neural networks.
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89, 125016 (2014).

[176] M. Rigol, T. Bryant and R. R. P. Singh, “Numerical linked-cluster approach to
quantum lattice models”, Phys. Rev. Lett. 97, 187202 (2006).

[177] M. Rigol, T. Bryant and R. R. P. Singh, “Numerical linked-cluster algorithms. i.
spin systems on square, triangular, and kagomé lattices”, Phys. Rev. E 75, 061118
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