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ABSTRACT: This paper presents the fundamentals and the mathematical formulation to 

study desiccation cracking in soils based on Unsaturated Soil Mechanics as well as a 

numerical analysis of a previous desiccation test program. The numerical approach 

implemented in MATLAB is used in 2D simulations on radial sections of the cylindrical 

specimens and in a theoretical study of the stress field in plane strain conditions. The 

numerical analysis, based on two stress stare variables (total net stress and suction) is 

consistent and in good agreement with the experimental results, including the location of 

cracks and time of crack initiation. 
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1. Introduction 

Crack desiccation in soils is an important issue because of its implications in a wide range of 

ground-related fields, from geotechnical engineering to agricultural land use, mining and 

radioactive waste storage, tailings reservoirs, gravity dams or public buildings [1-5]. 

The crack patterns that form as the soil dries seems to be random and unique. The 

cracking process in soils is difficult to reproduce numerically because many features involved 

are complex and yet not well understood. Formation and propagation of drying cracks in soils 

involve desiccation (moisture loss) and shrinkage (deformation). This is a coupled hydro-

mechanical problem, further complicated because the soil has a highly nonlinear material 

behaviour in both, the hydraulic and the mechanical components, and most of the soil 

properties that play a substantial role in the cracking process change with suction or moisture 

content. In addition to that, boundary conditions (soil-atmosphere interactions or soil-

container interactions) are difficult to handle and not yet well understood.  
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Two main variables that play a fundamental role in the formation and propagation of 

desiccation cracks are the temperature and relative humidity of the environment, but several 

other factors are involved in the process. In laboratory tests, specimen size, soil-container 

interface, drying rate and specimen’s characteristics (such as heterogeneity, anisotropy, 

imperfections, water content, particle size, tensile strength or fracture toughness) determine 

how cracking develops. Additionally, in the field, the soil fabric, the location of the water 

table, wind velocity, solar radiation, etc. need to be considered as well [6]. 

When the soil is dried under laboratory conditions or in an environmental chamber, the 

first cracks that can be seen on the top surface of the specimen are usually boundary cracks 

that start at the interface between the soil mass and the container wall. These cracks 

propagate until the entire soil mass is separated from the wall. Soils subjected to cyclic 

desiccation and wetting experience several phases that start with the soil wet and usually 

saturated. After the first phase of evaporation, the natural tendency for the specimen is to 

shrink followed by cracking, resulting in a less wet soil which is usually unsaturated. After 

the cycle is completed, the soil in the specimen is not saturated, and additional deformation 

and cracking may develop [7]. 

The boundary conditions for this problem are complex because they may change during 

the analysis as the specimen conditions change. The displacement boundary conditions are 

governed by the friction between container and specimen. Because of the soil’s water content 

changes during the process, the soil/container friction conditions also change and, therefore, 

the mechanical boundary conditions must be updated during the process. On the other hand, 

new cracks create new boundaries that are in contact with the environment generating 

changes in the hydraulic boundary conditions in terms of suction that must also be updated 

during the evolution of the desiccation process. 

Shrinkage occurs when suction increases because of capillary effects. The capillary 

forces, produced by the suction increment, make the soil mass shrink reducing the size of the 

pores and consequently the volume of the soil specimen. This may happen in saturated, at the 

beginning of the process, or unsaturated conditions after a certain time.  At the same time, the 

increasing suction increases the stiffness and the tensile strength [8-10]. If shrinkage is 

restricted, then cracking develops [6]. Restrictions to shrinkage may be due to three causes: 

1) stress or displacement boundary conditions (e.g. friction, adherence with the soil 
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container); 2) concentration of stresses in the soil matrix; or 3) heterogeneity, texture and soil 

structure [11]. 

Desiccation cracks appear both in saturated and unsaturated conditions [12], which is 

problematic when the state stress variables need to be defined. In fact, the behaviour of the 

soils at the beginning of the process is more similar to a liquid with no tensile strength. When 

the soil acquires consistency, tensile strength develops because of the increment in suction. 

This increment produced by the water loss induces one-dimensional vertical shrinkage at the 

beginning and a three-dimensional shrinkage when the soil becomes stiffer.  

From the experimental point of view, several authors have studied this process since the 

early twentieth century [13-23] and many significant experimental and numerical 

contributions have been made in the last half-century [2, 7, 24-38]. An exhaustive state of the 

art can be found in the doctoral theses of M.R. Lakshmikantha and H. Levatti [7, 12]. 

However, until the development of Unsaturated Soil Mechanics, the problem has not been 

analysed considering the parameters that govern the behaviour of soil in the unsaturated state, 

primarily suction. Tensile strength, which is suction dependent, and fracture toughness are 

shown to be also relevant parameters [25, 31].  

In the context of desiccation cracking, there are numerical approaches available in the 

literature based on the finite element method (FEM) [2, 28, 39], the finite difference method 

(FDM) [28], the discrete element method (DEM) [40], the distinct element method (DiEM) 

[41], the mesh fragmentation technique (MFT) [42], the lattice spring model (DLSM) [43]. 

However, there is not a consensus on how to properly simulate desiccation cracking in soils 

due to the number of variables, boundary conditions and complexities involved.  

The model presented in this paper is formulated within the classical theories of 

unsaturated soil mechanics and strength of materials. The flow in deformable porous media is 

formulated using a coupled hydro-mechanical approach and solved using the finite element 

method with a 𝒖 − 𝒑 formulation [44]. For the crack treatment, a release-node technique is 

used and simulations show the capabilities of the approach. The proposed model solves the 

three main physical processes involved (desiccation, shrinkage and cracking). From the 

initiation of the process, the initial and boundary conditions are fixed and the system evolves 

until the first crack appears when the tensile strength is reached. The release-node technique 
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allows dealing with the crack propagation changing the boundary conditions at the crack 

surfaces. 

In the present work and in order to simplify the analysis the thermal component is not 

considered, assuming that the process is isothermal. Also for the sake of simplicity, a 

nonlinear elastic constitutive model base on the stress state surface concept [45, 46] is 

chosen, where the stress variables are suction and net stress. The hydro-mechanical coupling 

is obtained through the constitutive law and a non-symmetric global system of equations is 

obtained when solving the problem by the finite element method.  

The main objective of the numerical analysis is to reproduce the time evolution of the 

recorded variables (suction, water content, deformation) during laboratory tests performed in 

recent years [12, 53] and to estimate the stress evolution before and after the initiation of the 

cracks. The formulation presented in this work is general [48] but the implementation for the 

analysis is made in order to solve a radial section of a cylindrical specimen, of 80 cm in 

diameter and 20 cm in height. The numerical analysis is carried out to simulate the formation 

and propagation of the first crack, which usually appears at the interface soil-container and 

initiates from the upper external surface of the specimen and propagates toward the bottom 

along the interface.  

With this technique, only the tensile strength is necessary to be determined in the 

laboratory. Although linear elastic fracture mechanics (LEFM) has been proposed as an 

approach to model desiccation cracking in soil by several authors [2, 17, 49, 50], this 

technique is more complex to implement and the fracture parameters for soils are difficult to 

obtain because they are dependent on the water content. Apart from that, there is an 

increasing evidence that the Mohr-Coulomb failure criterion may apply also for this type of 

problems [25], but this approach will be considered in future developments. 

The model presented in this paper is consistent, relatively simple and based on classical 

theories in the context of geotechnical engineering instead of adding additional numerical 

items to solve the complexity of the problem. However, complexity can be added gradually. 

2. Materials and methods 

The soil studied in this work is the Barcelona silty clay that has been used extensively in the 

past and it has been thoroughly characterized [12, 47, 51]. The method is based on the 
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observation and measurement of variables during the tests followed for 2D simulations 

calibrated and validated with the experiment. The specimens used in the experimental 

program analysed here were moulded into cylindrical PVC containers of and 80 or 40 cm in 

diameter and 20 or 10 cm in height.  

2.1. The experimental program used for the study 

The tests were carried out in an existing environmental chamber [12, 52] which was 

extensively refitted and modified to allow cyclic environmental changes [7, 53]. The main 

features of this environmental chamber include: a) automatic photography of the external 

upper surface of the specimen at pre-defined regular intervals; b) halogen lamps to control the 

chamber temperature; c) data acquisition and control system to record and drive chamber 

temperature and relative humidity, and suction and temperature of the soil; d) 

dehumidification system to induce desiccation; e) humidification system to induce wetting; f) 

control system to combine dehumidification and humidification devices; g) complementary 

data acquisition system to monitor temperature and volumetric water content of the 

specimens. Besides recording the images of the cracking patterns that develop on the external 

surface during the tests, it is possible to detect internal cracks by means of an external ground 

penetrating radar scanning device [7, 53, 54]. 

To prepare the tests, the dry soil was first passed through the #16 sieve (1.18 mm 

opening) and left at laboratory conditions for moisture stabilization. Then the specimens were 

made at the specified moisture content by adding distilled water. Immediately after mixing 

the actual moisture content was determined and the mixture was left in a humid chamber for 

24 hours before testing.  

2.2. Mathematical formulation and numerical approach 

In this paper, a hydro-mechanical model is proposed including a released node technique to 

simulate the desiccation cracking process. 

2.2.1. Mechanical constitutive formulation 

For the mechanical component of the model, a nonlinear elastic constitutive equation based 

on the concept of state surfaces [45, 46] is chosen. For the hydraulic component, the 
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generalized Darcy’s law is used and the relation between suction and the degree of saturation 

is modelled using van Genuchten’s closed form expression [55]. 

In this work, a set of two separated stress variables is introduced, the net stress and the 

suction [56-60]. The net stress 𝛔𝑛𝑒𝑡 (stress in excess of air pressure) and the suction 𝑠 are: 

𝛔𝑛𝑒𝑡 = 𝛔 − 𝑢𝑎𝟏 (1) 

𝑠 = 𝑢𝑎 − 𝑢𝑤 (2) 

where 𝝈 is the total stress tensor, 𝑢𝑎 and 𝑢𝑤  are the air and water pressure respectively and 

𝟏 ≡ 𝛿𝑖𝑗, is the identity tensor. 

2.2.2. Stress-strain-suction relations 

For oedometric and triaxial deformation and considering only a desiccation process (no 

wetting or flooding), which is the case of the tests involved in the analysis, a nonlinear elastic 

constitutive approach is enough to characterize the changes in volume and the development 

of stresses in the soil mass. The state surfaces [45, 46] are experimental surfaces (see Figure 

1) in the net mean stress – suction – void ratio {𝜎𝑚
𝑛𝑒𝑡, 𝑠, 𝑒} space, obtained after triaxial tests. 

Every surface is unique for every soil and it is a soil property. In this case, the state surface is 

expressed by Eq. (3) is used: 

∆𝑒 = 𝑎1∆ ln(𝜎𝑚
𝑛𝑒𝑡 + 𝑎4) + 𝑎2∆ ln (

𝑠 + 𝑝𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
) + 𝑎3∆ [ln(𝜎𝑚

𝑛𝑒𝑡 + 𝑎4) ln (
𝑠 + 𝑝𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
)] (3) 

where Δ𝑒 is the void ratio increment, {𝑎1, 𝑎2, 𝑎3, 𝑎4} are state surface parameters calibrated 

from laboratory tests, 𝜎𝑚
𝑛𝑒𝑡 is the mean net stress and 𝑝𝑟𝑒𝑓 is a reference pressure to avoid 

logarithm indeterminacy. In the desiccation problem, deformations occur as a consequence of 

the decrease of void ratio triggered by increments of suction. 

2.2.3. Stress-strain relation 

Because of the non-linearity of the material behaviour, the general strain-stress relation must 

be written in the differential form, Eq. (4):  

𝑑𝛔 = 𝐃𝑑𝛆 (4) 
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where 𝐃 is the 4th order tangent stiffness tensor.  Considering the additive deformation 

hypothesis, the deformations can be calculated by adding a component due to the net stress 

and a component due to the suction: 

𝑑𝛆 = 𝑑𝛆𝑛𝑒𝑡 + 𝑑𝛆𝑠 = 𝐂(𝕂,𝔾)𝑑𝛔𝑛𝑒𝑡 + 𝐡(𝕂𝑠)𝑑𝑠 (5) 

where 𝐂 is the 4th order compliance tensor, and 𝐡 is a 2nd order tensor related to changes in 

suction. 𝕂 and 𝔾 are the volumetric and shear modulus of the soil matrix, and 𝕂𝑠 is the 

volumetric suction modulus 

The net stress increments can be obtained from (5): 

𝑑𝛔𝑛𝑒𝑡 = 𝐂−1(𝑑𝛆 − 𝐡(𝕂𝑠)𝑑𝑠) = 𝐃(𝑑𝛆 − 𝐡(𝕂𝑠)𝑑𝑠) (6) 

where 𝐃 = 𝐂−1, is the tangent stiffness tensor. 

The compliance and stiffness tensors depend on the volumetric and shear modulus 𝕂 

and 𝔾, while the suction tensor 𝐡 depends on the volumetric suction modulus 𝕂𝑠. These 

material properties (𝕂,𝔾,𝕂𝑠) are not constant, since the volumetric strain depends on the 

state surface. Then from Eq. (3): 

𝜀𝑣 = −
∆𝑒

1 + 𝑒0
= −

1

1 + 𝑒0
{𝑎1∆ ln(𝜎𝑚

𝑛𝑒𝑡 + 𝑎4) + 𝑎2∆ ln (
𝑠 + 𝑝𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
)

+ 𝑎3∆ [ln(𝜎𝑚
𝑛𝑒𝑡 + 𝑎4) ln (

𝑠 + 𝑝𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
)]} 

(7) 

In the same way that the total strain increment can be decomposed into net strain and 

suction strain increments, as in equation (5), the volumetric strain can also be decomposed 

into a net volumetric strain, 𝜀𝑣
𝑛𝑒𝑡, and a suction volumetric strain, 𝜀𝑣

𝑠. Incrementally, 

𝑑𝜀𝑣 = 𝑑𝜀𝑣
𝑛𝑒𝑡 + 𝑑𝜀𝑣

𝑠;    𝑑𝜀𝑣
𝑛𝑒𝑡 = 𝕂𝑡(𝜎𝑚

𝑛𝑒𝑡, 𝑠)𝑑𝜎𝑚
𝑛𝑒𝑡;    𝑑𝜀𝑣

𝑠 =
𝑑𝑠

𝕂𝑡
𝑠
(𝜎𝑚
𝑛𝑒𝑡,𝑠)

 (8) 

where 𝕂𝑡(𝜎𝑚
𝑛𝑒𝑡, 𝑠) and 𝕂𝑡

𝑠(𝜎𝑚
𝑛𝑒𝑡, 𝑠) are the tangent volumetric and suction nonlinear elastic 

moduli, respectively, which depend on the mean net stress and on suction. Therefore: 

𝑑𝜀𝑣 = 𝕂𝑡(𝜎𝑚
𝑛𝑒𝑡, 𝑠)𝑑𝜎𝑚

𝑛𝑒𝑡 +
𝑑𝑠

𝕂𝑡
𝑠(𝜎𝑚

𝑛𝑒𝑡, 𝑠)
 (9) 

On the other hand, 𝑑𝜀𝑣 can also be calculated as 
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𝑑𝜀𝑣(𝜎𝑚
𝑛𝑒𝑡, 𝑠) =

𝜕𝜀𝑣

𝜕𝜎𝑚
𝑛𝑒𝑡 𝑑𝜎𝑚

𝑛𝑒𝑡 +
𝜕𝜀𝑣
𝜕𝑠

𝑑𝑠 (10) 

Comparison of Eq. (9) and Eq. (10) shows that the volumetric moduli are the partial 

derivatives of the state surface with respect to the mean net stress and suction respectively: 

𝜕𝜀𝑣
𝜕𝜎𝑚

𝑛𝑒𝑡 = 𝕂𝑡(𝜎𝑚
𝑛𝑒𝑡, 𝑠) 

𝜕𝜀𝑣
𝜕𝑠

=
1

𝕂𝑡
𝑠(𝜎𝑚

𝑛𝑒𝑡, 𝑠)
 

(11) 

The tangent elastic moduli can then be obtained from Eq. (11) in terms of the state surface 

parameters 𝑎1, 𝑎2, 𝑎3, 𝑎4, and the stress variables 𝜎𝑚
𝑛𝑒𝑡 and 𝑠: 

𝕂𝑡(𝜎𝑚
𝑛𝑒𝑡, 𝑠) =

−𝑎1 − 𝑎3 ln (
𝑠 + 𝑝𝑟𝑒𝑓
𝑝𝑟𝑒𝑓

)

(1 + 𝑒0)(𝜎𝑚
𝑛𝑒𝑡 + 𝑎4)

 

𝕂𝑡
𝑠(𝜎𝑚

𝑛𝑒𝑡, 𝑠) =
(1 + 𝑒0)(𝑠 + 𝑝𝑟𝑒𝑓)

−𝑎2 − 𝑎3 ln(𝜎𝑚
𝑛𝑒𝑡 + 𝑎4)

 

(12) 

Assuming that the air pressure is constant and equal to zero, 𝑢𝑎 = 0, the elastic moduli 

can be written in terms of the effective mean stress 𝑝′ and the negative porewater pressure 

−𝑢𝑤: 

𝕂𝑡(𝑝
′, 𝑢𝑤) =

−𝑎1 − 𝑎3 ln (
−𝑢𝑤 + 𝑝𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
)

(1 + 𝑒0)(𝑝′ + 𝑎4)
 

𝕂𝑡
𝑠(𝑝′, 𝑢𝑤) =

(1 + 𝑒0)(−𝑢𝑤 + 𝑝𝑟𝑒𝑓)

−𝑎2 − 𝑎3 ln(𝑝′ + 𝑎4)
 

(13) 

For simplicity and because the deformation produced by the increment of suction is 

mainly volumetric, a constant Poisson’s ratio and the linear elastic relation between the shear 

and Young’s moduli are adopted: 

𝔾𝑡 =
3𝐾𝑡(1 − 2𝜈)

2(1 + 𝜈)
=

3(1 − 2𝜈)(1 + 𝑒0)(𝑝
′ + 𝑎4)

2(1 + 𝜈) [−𝑎1 − 𝑎3ln (
−𝑢𝑤 + 𝑝𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
)]

 
(14) 

The volumetric deformation produced by changes of suction is then 
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𝑑𝜀𝑣
𝑠 = −

1

𝕂𝑡
𝑠(𝑝′, 𝑢𝑤)

𝑑𝑢𝑤 (15) 

and the stress-strain relation becomes 

𝑑𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 (𝑑𝜀𝑘𝑙 −
𝑑𝜀𝑣

𝑠

3
𝛿𝑘𝑙) = 𝐶𝑖𝑗𝑘𝑙 (𝑑𝜀𝑘𝑙 +

𝑑𝑢𝑤
3𝐾𝑡

𝑠 𝛿𝑘𝑙) (16) 

Finally, in matrix form, the stress-strain relation is 

𝑑𝛔 = 𝐃(𝑑𝛆 − 𝑑𝛆𝑠) = 𝐃(𝑑𝛆 +𝐦
𝑑𝑢𝑤
3𝐾𝑡

𝑠) (17) 

where 𝛆𝑠 is the spherical tensor of deformations due to suction (𝜀𝑖𝑗
𝑠 = 𝑢𝑤𝛿𝑖𝑗/𝐾𝑡

𝑠) and 𝐦 =

[1 1 1 0 0 0]𝑇 is the identity tensor in vector form. The stiffness matrix 𝐃 

corresponds to an isotropic non-linear elastic material (volumetric and shear deformations are 

uncoupled). 

2.2.4. Hydraulic constitutive formulation 

The generalized Darcy’s law for unsaturated soils is expressed as: 

𝐪 = −𝐊(𝑆𝑟) ∙ (∇𝑢𝑤 − 𝐠𝜌
𝑤) (18) 

where 𝐪 is Darcy’s velocity vector; ∇𝑢𝑤 is the porewater pressure gradient; 𝐊(𝑆𝑟) is the 

permeability tensor which depends on the water saturation degree (𝑆𝑟); 𝐠 is the gravity vector 

and 𝜌𝑤 is the water density.  

The permeability tensor is written in terms of the intrinsic permeability as:  

𝐊(𝑆𝑟) = 𝐤(𝑛)
𝑘𝑟𝑙(𝑆𝑟)

𝜇𝑙
 (19) 

where 𝑘𝑟𝑙 is the non-dimensional relative permeability, with values in the range 0 to 1, that 

depends on the degree of saturation (here 𝑘𝑟𝑙 = (𝑆𝑟)
𝑟, with constant 𝑟, is adopted); 𝜇𝑙 is the 

temperature-dependent dynamic viscosity of water; 𝐤(𝑛) = (𝜇𝑙 𝛾𝑤⁄ )𝐾𝟏 is the intrinsic 

permeability tensor (a material property), which is a function of the porosity and of the 

viscosity and temperature of the fluid; 𝛾𝑤 is the specific weight of water; and 𝐾 is the 

hydraulic conductivity of the soil. For isotropic permeability, the permeability is a scalar. In 

the case of orthotropic or axial symmetry the permeability tensor could be diagonal. 
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In case of hydro-mechanical coupling, it is necessary to relate the saturated hydraulic 

conductivity to changes of porosity. For that purpose, the following exponential law can be 

used:  

𝑘𝑠𝑎𝑡 = 𝑘0exp[𝑏(𝑛 − 𝑛0)] (20) 

where 𝑘0 is the saturated hydraulic conductivity of reference at 𝑛 = 𝑛0, 𝑘𝑠𝑎𝑡 is the saturated 

hydraulic conductivity for porosity 𝑛, and 𝑏 is a material parameter. For saturated soils,  

𝐾 = 𝑘𝑠𝑎𝑡. 

The water retention curve of the soil is known from previous research [47] and was obtained 

using the psychrometric technique. The van Genuchten function [55] was used in the 

analysis:  

𝑆𝑟 = [1 + (
𝑠

𝑃0 ∙ 𝑓𝑛
)

1
1−𝜆

]

−𝜆

 (21) 

𝑓𝑛 = exp[−𝜂(𝑛 − 𝑛0)] (22) 

where 𝜆 is a material parameter; 𝑃0 is the air entry value for the initial porosity 𝑛0, adopted as 

a reference value; 𝑓𝑛 is a function that takes into account the influence of porosity in the 

retention curve by means of parameter 𝜂. The parameters corresponding to this function and 

to the soil used are given in Table 2. 

2.3. Finite element approximation 

The formulation corresponds to a one-phase flow in a deforming unsaturated porous 

media problem (Richard’s problem, [61]). The finite element method is used for the 

discretization in space and the finite difference method for the time discretization. The 

unknown variables in this problem are the porewater pressure, 𝑢𝑤(𝐱, 𝑡), and the 

displacements 𝐮(𝐱, 𝑡). 

Because of the hydro-mechanical coupling of this problem, a u-p formulation [44] is 

adopted, where 𝐮 are the nodal displacements and 𝐩 is the nodal negative porewater pressure. 

After the application of the finite element method, the coupled desiccation problem is 

expressed as a system of partial differential equations: 
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{
 
 

 
  𝐊T

𝜕𝐮̅

𝜕𝑡
+ 𝐐T

𝜕𝐩̅

𝜕𝑡
=
𝜕𝐟𝑢

𝜕𝑡

𝐏
𝜕𝐮̅

𝜕𝑡
+ 𝐒

𝜕𝐩̅

𝜕𝑡
+ 𝐇𝐩̅ = 𝐟𝑝

 (23) 

Where 𝐊T is the global stiffness matrix, 𝐐T and 𝐏 are coupling matrices, 𝐒 is a compressibility 

matrix and 𝐇 is the permeability matrix. 

In matrix notation, the system of partial differential equations (23) can be written as: 

[
𝟎 𝟎

𝟎 𝐇
] [
𝐮̅

𝐩̅
] + [

𝐊T 𝐐T

𝐏 𝐒
]

[
 
 
 
 
𝑑𝐮̅

𝑑𝑡

𝑑𝐩̅

𝑑𝑡 ]
 
 
 
 

= [

𝑑𝐟𝑢

𝑑𝑡

𝐟𝑝

] (24) 

which is the typical form of hydro-mechanical problems in unsaturated soils [70].  

The derivation using separated variables produces a non-symmetric system of equations 

because 𝐐T ≠ 𝐏. The coupling of the mechanical and hydraulic problem is materialized by the 

mechanical constitutive equation (17), which links the pore water pressure (hydraulic variable, 

𝑢𝑤) with the total stress (mechanical variable, 𝛔). The u-p formulation [44] is summarized in 

the Appendix. 

2.4. Release node technique 

Desiccation of soils is usually followed by cracking [2, 12, 18]. There are three main quantities 

that need to be discussed to simulate the crack formation and propagation: the stress level at 

crack initiation (𝜎𝑐), the direction of crack propagation (𝜃𝑐), and the crack propagation length 

(∆𝑎). These three issues need to be solved in the context of the finite element analysis by 

implementing an appropriate solution algorithm. In a continuum mechanics framework, crack 

propagation implies a change of the boundary value problem, because new boundaries (crack 

faces) are generated with modified conditions. In the proposed technique, crack propagation is 

modelled as a temporal sequence of boundary value problems with discrete growing crack 

lengths, 𝑎𝑖, and a material separation along the crack increment ∆𝑎𝑖 is assumed to be 

discontinuous. In reality, crack propagation occurs continuously and the failure of the material 

in the process zone is a continuous process too. Clearly, there is a difference between the 

material model and the numerical technique, but this is a necessary approximation for the 

numerical analysis [62]. 
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The stress level when cracking starts corresponds to the tensile strength of the soil in a 

traditional strength of material approach [63]. The process of desiccation in the laboratory starts 

with the soil as a slurry with no tensile strength. Once the soil acquires consistency, because of 

suction increments, the tensile strength increases until reaching a maximum and after that, it 

decreases with further increments of suction [12].  

The direction of crack propagation is perpendicular to the maximum principal tensile 

stress and, for simplicity, the amount of propagation is assumed to be equal to the length of the 

finite element.  

In Figure 2 (stages a, b, c and d), the procedure to initiate and propagate a crack in the 

boundary is shown. Stages e, f, g and h show the procedure to be applied for a generic crack 

that starts in the surface of the soil. Assuming that during the course of a finite element analysis 

the failure criterion is reached at a point, and the amount of crack propagation, ∆𝑎, is equal to 

the length of the element, the node release algorithm is as follows: 

1. Keep the external loads constant (suction profile, Figure 2a) 

2. Determine the reactions, Ri, or inter-elements forces, Fi (Figure 2a) 

3. Release the nodal bonding and split the nodes (Figure 2b or f) 

4. Replace the bond at the released node by an equivalent force 𝑅 (reaction) or 𝐹 (inter-

element force),  (Figure 2b or f) 

5. Release stepwise the force from 𝑅 to zero and add proportionally suction to the new 

node exposed to the environment (Figure 2c or g). 

6. Check whether the failure criterion is fulfilled at the new crack length: 

 if yes, unstable crack propagation, go to 2 

 if no, continue the finite element analysis with the next load step (Figure 2d or h) 

This technique is especially useful when the crack propagation path is known, as is the 

case in some of the cracks in laboratory tests. For more arbitrary cracks this technique is mesh- 

dependent. This method permits to know the stress state in the soil matrix during the 

desiccation process which is the key to define the initiation of the cracks and their propagation.  

In the soil under desiccation, the direction of the crack depends on several intrinsic 

factors: heterogeneity, anisotropy, imperfections, impurities, plasticity, the initial water 

content, the initial particle size, the tensile strength, the fracture toughness and the fabric in the 
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field. In the future, it will be necessary to include all these factors in the model in order to study 

their influence on the numerical results and compared to experimental data. 

 

3. Results and discussion 

The tests presented are from a previous desiccation experimental programs [12] and from a 

cyclic experiment of the authors of this paper [53], to investigate the behaviour of the 

specimens in an environmental chamber. The cyclic test includes five stages: first drying, 

first wetting, flooding, second drying and second wetting. A summary of all those results is 

included to have a broader understanding of the phenomenon under analysis.  

3.1. Results of the test program 

Table 1 contains a summary of the results from the tests described above [12] and [53].  

The results show that the first cracks in this kind of cylindrical specimens (80/40 cm in 

diameter and 20/10 cm thick) and conditions (21-45ºC and 30-85% RH) start at the 

soil/container interface sometime during the first week of the test. The initiation of a crack is 

certainly difficult to detect and predict because it can originate practically anywhere [7, 53, 

54]. Crack patterns show cracks triggered by displacement boundary conditions, stress 

concentrations or material heterogeneity [11]. Suction at the end of the test range from 75 to 

150 MPa. Equilibrium was reached at 30 to 120 days of initiation, depending on the specimen 

size and the environmental conditions (temperature and relative humidity). A significant 

suction increment was noticed between 10 and 40 days of initiation also depending on 

specimen size and environmental conditions. These values will be used as boundary 

conditions in the numerical simulations. 

Figure 3 shows the evolution of the suction in specimens of 80 and 40 cm in diameter 

and 20 and 10 cm of height obtained from previous tests [12]. The 10 cm thick specimens 

that were tested in the environmental chamber had a very similar suction evolution, with 

maximum values of suction about 105-110 MPa. These three tests show that temperatures of 

35ºC combined with RH of 40% produce, from the beginning, considerable suction 

increments. However, for temperatures of 21ºC or less the specimens needed several days 

before showing noticeable suction.  
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The evolution of the soil moisture the tests is presented in Figure 4. It is clear that the 

behaviour of the 8010 specimens in the cyclic test is very similar to the previous tests [12] 

in terms of moisture loss during the first stage of drying. This fact permits the direct 

comparison of the other variables (e.g. suction). In all the tests two stages are well observed, 

a first slow desiccation during the first days with small increments in suction and large values 

of moisture loss and a faster period with larger increments of suction and small values of 

moisture loss. 

Figure 5 shows the evolution of soil humidity obtained from previous laboratory tests 

[12]. These results are directly comparable with the results presented as a part of this research 

because they shared the same type of soil and container, as well as the environmental 

chamber and conditions. The analysis of the specimens shows several cracks forming at the 

bottom and propagating partially to the top surface, probably because the presence of sensors 

generated some restrictions producing a more complex crack pattern. With the use of a 

ground penetrating radar system [54], the analysis of this specimen showed that there were 

cracks that started in the middle or bottom of the specimen before becoming visible at the top 

surface [7, 53]. 

3.2. Basic assumptions for the numerical analysis 

The soil used for the specimens is a low plasticity clay with Atterberg limits 𝒘𝑺 = 𝟐. 𝟐%, 

𝒘𝑳 = 𝟑𝟐%, 𝒘𝑷 = 𝟏𝟔% and plasticity index 𝑷𝑰 = 𝟏𝟔%.  

The permeability depends on the dry density, void ratio and degree of saturation. The 

permeability of the soil used, for dry density between 𝟏𝟔. 𝟏 𝐤𝐍/𝐦𝟑 and 𝟏𝟕 𝐤𝐍/𝐦𝟑, and the 

void ratio between 0.5 and 0.76, has values between 410-13 m/s and 810-12 m/s for a degree 

of saturation between 70% and 40%. The average saturated permeability for a void ratio of 

0.48 was of 110-9 m/s. Figure 6 shows the permeability values obtained in previous works 

[47] in terms of the degree of saturation 𝑺𝒓.  

The tensile strength of soils is an important indicator of material strength, as it depends 

on other properties of the soil. Until recently, determination of the soil’s tensile strength had 

not received the attention it deserved, mainly because of the difficulty in the experimental 

setup. The tensile strength of unsaturated soils varies with the degree of saturation (moisture 

content) and suction as well as with density. In this paper, the prediction of crack initiation 

and propagation is based on Griffith’s approach [64], which is a strength of material 
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approach. In order to simplify, the prediction of the crack initiation and propagation can be 

made considering a tensile strength calculated according to [12]. 

The numerical study presented in this paper is focused only on cracks formed by 

restricted displacement boundary conditions or by stress concentrations. Specifically, in the 

first cracks formed in the soil/container interface. Accounting for the influence of 

heterogeneity needs a material characterization that is beyond the scope of this paper. 

The numerical analysis simulates the desiccation process and subsequent cracking from 

the laboratory tests with a hydro-mechanical formulation discussed in section 3, which has 

been implemented in a MATLAB code in particular to reproduce the time evolution of the 

recorded variables (mainly suction and water content) and to estimate the stress evolution 

before and after the initiation of the cracks. When cracks initiate, a release node technique is 

activated in order to simulate the crack propagation. The numerical analysis has been made 

on a radial section of a cylindrical specimen as shown in Figure 7.  

In the laboratory test program described in the preceding section, one-dimensional 

(vertical) shrinkage was observed in all tests during the first stage of the drying process. In 

the beginning, the soil had a slurry consistency and its mechanical behaviour was close to that 

of a compressible fluid with negligible tensile or shear strength. After a time, the consistency 

of the soil changed to solid, resulting in a three-dimensional behaviour where the adherence 

between the specimen and the container increased. These adherence changes the boundary 

condition to fixed supports in the soil/container interface, yielding tensile stresses that 

eventually result in the formation of a perimeter crack and the separation of the soil from the 

container’s wall (Figure 8). After the perimeter crack has fully developed, other cracks 

appear in the central portion of the specimen.  

The values of the parameters for the stress state surface, the retention curve, and the 

tensile strength, needed for the numerical analysis, were calibrated using the available 

experimental data for the Barcelona silty clay in the literature [12, 47] and the test program 

described in the preceding sections. They are summarized in Table 3.  

A number of different suction and displacement boundary conditions may be 

considered in the numerical analyses [7] (Figure 7).  

3.3. Crack initiation and propagation of perimeter cracks 
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The experimental results on cylindrical specimens (80/40 cm diameter and 20/10 cm height) 

have shown that the first crack forms at the contact between specimen and container, and 

propagates following the vertical interface. In many cases, the second crack forms near the 

centre of the specimen and propagate toward the perimeter.  

In the radial section used for the numerical analysis, the first crack propagates in a 

vertical direction from the top to the bottom. Because in this case, the cracks propagate along 

the vertical border of the radial section, the release-node technique is made simpler: it 

consists on a displacement and suction boundary condition changing technique (Figure 7). 

Whenever the tensile strength is reached in a node, the corresponding displacement 

restriction is released. 

Figure 7a shows the radial section used for the analysis (radial section 40 x 20 cm) that 

correspond to the experiment with a sample of 80 and 20 cm in diameter and height (Figure 

3). In this simulation, plane strain state is assumed and self-weight is ignored.  

In this analysis, the boundary condition in terms of displacement changes as is shown in 

Figure 7b, c, d, e and f, when the crack is propagated. 

The boundary condition in terms of the porewater pressure is variable in order to 

reproduce the experimental test (Figure 3), starting with a suction of 5 MPa. After 35 days, 

the suction is increased to 20 MPa and after 60 days it is finally fixed at 120 MPa. This 

porewater pressure is applied as well progressively on the contours that are exposed to the 

environment when a node is released (see red line in Figure 7b, c, d, e and f ).  

The evolution of the porewater pressure at the reference point (Figure 8d) of the radial 

section is shown in Figure 8a. The reference point is located at a half height and to a distance 

of 10 cm from the right border. Changes in the porewater pressure are qualitatively consistent 

with the laboratory results with cylindrical specimens (Figure 3).  

The evolution of the horizontal and vertical stresses, as well as the horizontal and 

vertical components of the stress-strain relation at three points of the radial section (Figure 

8e,f), are shown in Figure 8b,c. The suction field and the horizontal and vertical stress fields 

in the section after 100 days of desiccation are shown in Figure 8d,e,f. Tensile stresses that 

can trigger crack initiation develop during the desiccation process at the upper-right corner of 

the section Figure 8b. The values of the tensile stresses are larger than the assumed tensile 

strength of 3.5 kPa, leading to crack initiation during the third day of desiccation. The 
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important fact of this simulation is that the horizontal stress is the maximum stress and it is 

tension over the tensile strength. On the other hand, the maximum tensile horizontal stress is 

produced in the right-top corner in correspondence to what was checked in the experiments. 

The suction gradients, which are the only source of stresses and deformations, are 

horizontal and vertical because of the asymmetry of the assumed displacement boundary 

conditions (Figure 8d). This is a key point for the production of horizontal tensile stresses that 

initiate the crack in this case [7].  

The numerical simulation is consistent with this experimental result in terms of 

deformation and time evolution. The deformed radial section of the actual sample is shown in 

Figure 8d after 100 days of desiccation.  

Because of the imposed boundary condition, the first stage of one-dimensional 

shrinkage is captured very well. In this simulation, the analysis includes the use of the 

release-node technique in order to simulate the initiation and propagation of the first crack at 

the soil/container interface. 

The evolution of the porewater pressure at the reference point is similar to the evolution 

of the suction recorded during the test for this particular specimen (Figure 3). Figure 4 shows 

the evolution of the numerically calculated moisture compared with the test results. The 

results are qualitatively consistent with the experimental measurements, with the first crack 

propagating from top to bottom of the radial section. 

4. Conclusions 

This paper describes the theoretical and numerical formulation for the analysis of desiccation 

cracking in soils. The general model presented includes the influence on the problem of all 

main variables and features that control the physical process. It is based on fundamental 

principles of the Unsaturated Soils Mechanics and Strength of Materials and features a good 

balance between complexity and relatively simple tools for the analysis of desiccation cracking 

in soils. The main parameters that control the physical process were identified from 

experimental tests and included in the mathematical formulation to simulate cracking. The 

resulting relatively simple tool can be used for a better understanding of the process of 

desiccation cracking in soils. The model is presented for two-dimensional analysis although 

the formulation is general and the implementation can be easily extended to three dimensions. 
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Cracking simulation is carried out by means of a “release node” technique, taking into 

account that cracks generate a new boundary where atmosphere relative humidity and suction 

must be imposed. 

This model can be easily extended to develop other more complex models to explore 

boundary effects such as the soil-atmosphere and soil-container interaction, as well as 

simulation of cracking using Fracture Mechanics. The formulation presented in this paper is 

validated with experimental tests. 

 The numerical analysis presented in the paper reproduces with a good agreement the 

behaviour of the soil during the tests. In all the tests a first stage shows one-dimensional 

shrinkage without cracks, continuing with a second stage consisting of three-dimensional 

shrinkage resulting in a separation of the soil from the container wall. The model is able to 

reproduce the main features of the laboratory tests including the three stages: desiccation, 

shrinkage, and cracking. The separation crack is three-dimensional but from the perspective of 

the radial section of the specimen used in the numerical analysis, the crack propagates from the 

top to the bottom of the soil mass.  

In an intermediate stage of the process of desiccation, the model predicts a stress field 

with tensile stresses capable of triggering cracks because the tensile strength is reached in the 

horizontal direction. The distribution of the horizontal and vertical stress fields may explain 

why the first cracks to appear are those at the soil/container interface, starting at the top 

surface of the specimen.  

Simulations of initiation and propagation of the first crack show a similar behaviour to 

laboratory observations, which suggests that the main mechanisms of the physical problem 

have been considered, including not only the governing equations but also the appropriate 

boundary conditions. 
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TABLES 

Table 1 – Summary of test results with cylindrical specimens from [12] and [53] 

Sample 

Size(1)  

(cm) 

Duration 

of test 

(days) 

T(4)  

(oC) 

RH(5) 

(%) 
Contact (6) 

Equilib. 

Time (7)  

(days) 

First 

crack 

appears 

(days) 

Saturated 

period(8) 

(days) 

Humidity 

at 

saturation 

(%) 

Significant  

Suction 

increment 

(from day) 

Max. 

suction 

reached 

(MPa) 

8010 (2) 32 35 40 NF 30  8  5 105 

8010 (2) 38 35 40 F 35 8 5 20 5 110 

4010 (2) 46 35 40 F 40  15  5 150 

4010 (2) 106 21 40 F 40  20 12 20 75 

8020 (2) 120 21 40 F 120 8 34 10 40 100 

8010 (3) 55 22-28 30-85 NF  8 5 10-20 10 0.1 
(1) Diameter  Height (2) Experimental program included in [12]; (3) Experimental program included in [53]; 
(4) Temperature imposed in the environmental chamber to produce desiccation; (5) Relative Humidity imposed in 

Chamber to produce desiccation; (6) Contact surface between soil and tray: NF: no friction; F: friction; (7) Time 

when moisture change in the sample is negligible; (8) Period of time when the sample remain saturated. 

 

 

Table 2 – Parameters of the water retention curve for Barcelona silty clay [47] 

Void ratio (e) Porosity (n) γ
d 

(g/cm3)(1) 
fn = exp[-η(n-n0)](2) λ (3)  1/(1-λ) 

0.87 0.47 1.45 1.04 0.27 1.37 

0.75 0.43 1.55 1.07 0.25 1.33 

0.64 0.39 1.65 1.12 0.23 1.30 

0.55 0.35 1.75 1.16 0.20 1.25 
(1) γ

d 
(g/cm3) is the dried unit weight of the soil; (2) 𝑓𝑛 is a function that takes into account the influence of porosity in the 

retention curve by means of parameter 𝜂; (3) λ is a material parameter and n0 is the initial porosity of the soil sample. 

 

Table 3 – Parameters used in the numerical analysis 

Mechanical parameters 

𝑎1  

(−) 

𝑎2  

(−) 

𝑎3  

(−) 

𝑎4  

(MPa) 

𝑃𝑟𝑒𝑓   

(MPa) 

Poisson Ratio 

𝜈 

𝜎𝑐  
(MPa) 

-0.02 -0.0025 -0.000039 0.023 0.1 0.4 0.0035 

𝑎1, 𝑎2, 𝑎3 𝑎𝑛𝑑 𝑎4 are the state surface parameters Eq. (7); 𝑃𝑟𝑒𝑓 is a reference pressure to avoid logarithm 

inderterminancy; 𝜈  is the possion ratio and 𝜎𝑐 is the tensile strength of the soil. 

Hydraulic parameters 

Initial permeability 

𝑘0 (m/s) 

Material parameter 

𝑏 

Initial porosity 

𝑛0 

Material parameter 

𝑟 

9.27×10-10 25 0.6 3 

The permeability tensor is written in terms of the intrinsic permeability as 𝐊(𝑆𝑟) = 𝐤(𝑛)
𝑘𝑟𝑙(𝑆𝑟)

𝜇𝑙
, where 𝑘𝑟𝑙  is the non-

dimensional relative permeability, with values in the range 0 to 1, that depends on the degree of saturation (here 𝑘𝑟𝑙 =
(𝑆𝑟)

𝑟, with constant 𝑟, is adopted); 𝜇𝑙 is the temperature-dependent dynamic viscosity of water; 𝐤(𝑛) = (𝜇𝑙 𝛾𝑤⁄ )𝐾𝟏 is the 

intrinsic permeability tensor (a material property), which is a function of the porosity and of the viscosity and temperature 

of the fluid. 
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FIGURES 

 
Figure 1 – State surfaces from Matyas & Radhakrishna [45] and Lloret & Alonso [46] 

 

 

 
Figure 2 – Release node technique. Boundary crack case: a) starting scheme, b) equivalent starting scheme, c) 

reduction of reaction and progressive application of suction, d) final scheme with crack propagated. General 

crack case: e) starting scheme, f) equivalent starting scheme, g) reduction of forces and progressive application 

of suction, h) final scheme with crack propagated  
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Figure 3 – Evolution of suction in specimens of 80/40 cm in diameter and 20/10 cm height in 

laboratory and environmental chamber conditions measured in the middle of the sample [12] and 

comparison with the numerical simulation of radial cross-section 40 cm wide and 20 cm high 

 

 

Figure 4 – Evolution of moisture (global gravimetric water content) in specimens 80/40 cm in 

diameter and 20/10 cm height in laboratory and environmental chamber conditions [12, 53] and 

comparison with the numerical simulation of radial cross-section 40 cm wide and 20 cm high 
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Figure 5 – Evolution of soil humidity in specimens 80/40 cm in diameter and 20/10 cm height in 

laboratory and environmental chamber conditions measured in the middle of the sample [12].  

 

 

Figure 6 – Permeability [47] 
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Figure 7 – a) Radial section simulated with the numerical model; b) initial stage, one-

dimensional shrinkage analysis with no crack; c) intermediate stage, three-dimensional 

shrinkage analysis with boundary crack detected, initiated and propagated; d) final stage, 

three-dimensional analysis, boundary crack fully developed 
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Figure 8 – Analysis using the release-node technique, starting with the Initial Stage Scheme with variable 

pore water pressure boundary condition: a) evolution of negative pore water pressure with time at the 

reference point shown in (d); b) evolution of horizontal (blue) and vertical (black) stresses with time at 

three reference points shown in (e) and (f); c) horizontal (blue) and vertical (black) stress-strain relation 

evolution at three reference points: upper-right, centre, lower-left; d) pore water pressure field, at 100 

days of desiccation, on deformed radial section; e) horizontal stress field, at 100 days of desiccation, on 

deformed section; f) vertical stress field, at 100 days of desiccation, on deformed section  
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Appendix  

The u-p formulation 

In the u-p formulation [44], where 𝐮 are the nodal displacements and 𝐩 is the nodal negative 

porewater pressure, the problem of desiccation, which is a hydro-mechanical problem, is 

expressed in matrix form by the set of partial differential equations: 

[
𝟎 𝟎

𝟎 𝐇
] [
𝐮̅

𝐩̅
] + [

𝐊T 𝐐T

𝐏 𝐒
]

[
 
 
 
 
𝑑𝐮̅

𝑑𝑡

𝑑𝐩̅

𝑑𝑡 ]
 
 
 
 

= [

𝑑𝐟𝑢

𝑑𝑡

𝐟𝑝
]  

where the tangent matrices of the stress-strain problem are: 

Stiffness Matrix: 𝐊T = ∫𝐁T𝐃𝐁

 

Ω

𝑑Ω  

Coupling Matrix: 𝐐T = ∫
1

3𝕂𝑡
𝑠 𝐁

T𝐃𝐦𝐍p

 

Ω

𝑑Ω  

Vector of Nodal Forces: 
𝜕𝐟𝑢

𝜕𝑡
= ∫𝐍𝑢𝜌

 

Ω

𝜕𝐠

𝜕𝑡
𝑑Ω + ∫𝐍𝑢

 

Ω

𝜕𝐭̅

𝜕𝑡
𝑑Ω  

And the matrices of the flow problem are: 

Coupling Matrix: 𝐏 = ∫(𝐍p)
T
𝑆𝑟

 

Ω

𝐦T𝐁𝑑Ω  

Compressibility Matrix: 𝐒 = ∫(𝐍p)
T
𝑛
𝜕𝑆𝑟
𝜕𝑢𝑤

𝐍p

 

Ω

𝑑Ω + ∫(𝐍p)
T 𝑛𝑆𝑟
𝐾𝑤

𝐍p

 

Ω

𝑑Ω  

Permeability Matrix: 𝐇 = ∫(∇𝐍p)
T
𝐊(𝑆𝑟)∇𝐍p

 

Ω

𝑑Ω  

Vector of Nodal Flow: 𝐟𝑝 = ∫𝜌𝑤(∇𝐍p)
T
𝐊(𝑆𝑟)𝐠

 

Ω

𝑑Ω −∫(𝐍p)
T
𝑞𝑤

 

Γ

𝑑Γ  

Where 𝐍𝑝, and 𝐍𝑢 are shape functions for the suction and displacements on the finite element 

mesh nodes. 𝐁 is a transformation matrix derived from the finite element method [44]. 
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Variables and parameters of the numerical model 

𝝈 : total stress tensor 

𝛔𝑛𝑒𝑡 : net stress (stress in excess of air pressure)  

𝑠 : suction  

𝑡 : time 

𝑢𝑎: air pore pressure 

𝑢𝑤 : water pore pressure 

𝜺 : total strain 

𝜀𝑣
𝑛𝑒𝑡: net volumetric strain 

𝜀𝑣
𝑠 : suction volumetric strain 

𝛆𝑠: spherical tensor of deformations due to suction (𝜀𝑖𝑗
𝑠 = 𝑢𝑤𝛿𝑖𝑗/𝐾𝑡

𝑠)  

𝐮: displacements 

𝐃 : 4th order tangent stiffness tensor 

𝐂 : 4th order compliance tensor 

𝐡 : 2nd order tensor related to changes in suction 

𝕂 : volumetric modulus of the soil matrix 

𝔾 : shear modulus of the soil matrix 

𝕂𝑠: volumetric suction modulus 

𝟏 ≡ 𝛿𝑖𝑗: identity tensor. 

Δ𝑒 : void ratio increment 

𝑛 : soil porosity 

{𝑎1, 𝑎2, 𝑎3, 𝑎4} : state surface parameters calibrated from laboratory tests 

𝜎𝑚
𝑛𝑒𝑡: mean net stress 

𝑝𝑟𝑒𝑓 : reference pressure to avoid logarithm indeterminacy 

𝐪 : Darcy’s velocity vector 

∇𝑢𝑤: porewater pressure gradient 

𝐊: permeability tensor  

𝑆𝑟: water saturation degree 

𝐠 : gravity vector  

𝜌𝑤: water density 

𝑘𝑟𝑙 : non-dimensional relative permeability 
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𝑟 , 𝑏 and 𝜆 : material parameters 

𝜇𝑙: temperature-dependent dynamic viscosity of water 

𝐤:  intrinsic permeability tensor  

𝛾𝑤: specific weight of water 

𝐾: hydraulic conductivity of the soil 

𝐾𝑤: water compressibility 

𝑘0: saturated hydraulic conductivity of reference at 𝑛 = 𝑛0 

𝑘𝑠𝑎𝑡: saturated hydraulic conductivity for porosity 𝑛 

𝑃0: air entry value for the initial porosity 𝑛0 

𝑓𝑛: function that takes into account the influence of porosity in the retention curve by means 

of parameter 𝜂 

𝜌 : soil unit weight 

𝜌𝑤 : water unit weight 

𝒘𝑺: shrinkage limit 

𝒘𝑳: liquid limit 

𝒘𝑷: plastic limit 

𝑷𝑰: plasticity index 

 

Finite Element Method Matrices and Vectors 

𝐮 : nodal displacements 

𝐩 : nodal negative porewater pressure 

𝐊T: global stiffness matrix 

𝐐T and 𝐏 : coupling matrices 

𝐒 : compressibility matrix  

𝐇 : permeability matrix 

𝐍𝑝 and 𝐍𝑢: pressure and displacement shape functions  

𝐁 : transformation matrix derived from the finite element method 

𝐦 = [1 1 1 0 0 0]𝑇 : identity tensor in vector form 

Ω : domain 

Γ : contour 

 


