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Comments from the editors and reviewers:

Reviewer 0

General comments 
Reviewer: This study examines changes in various factors when the 4X4 HIIT regime is 
performed in normoxic and hypoxic conditions.  This is novel, but the authors need to make a 
better case for the importance of this topic, and need to better evaluate text found in the 
Discussion to increase the impact of these findings.

Authors’ response: We thank the reviewer for their careful consideration of our work. 

Specific comments
Reviewer: Please consider these comments re. your paper—thank you.

Authors’ response: We have responded to the comments individually raised below. 

Reviewer: If word count allows in Abstract, please list the age and VO2max of these runners; 
thank you.

Authors’ response: We thank the reviewers for this comment and have subsequently added the 
age of the runners who participated in this study. An explanation regarding the absence of a 
VO2MAX assessment is provided below.

P2 L4 – Nineteen trained runners (33.4 ± 9.1 years) completed a…

Reviewer: Line 2: HIIR is not a common abbreviation and should be deleted or revised. And 
because this set of text is referring to benefits of high intensity interval training, why not just 
use this abbreviation (HIIT) which is so well-recognized?

Authors’ response: We acknowledge the reviewers comment that ‘HIIT’ is a more conventional 
acryonym that ‘HIIR’, and have replaced the latter with the former throughout the manuscript.

Reviewer: Line 9; be careful..this 4X4 model that you use is not time efficient vs. MICT (the 
bout takes 27 min not including warmup and cooldown), unless you are referring to the actual 
duration of interval exercise which is 16 min.  Please consider revising this text.
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Authors’ response: We thank the reviewer for highlighting this comment and have 
subsequently added in further information regarding the time efficiency of HIIT compared to 
MICT.

P4 L5-8 – Compared to moderate-intensity continuous running, HIIT leads to similar 
improvements in cardiorespiratory fitness that is achieved with a shorter effective exercise 
duration per session (2). Due to the reduced time-commitment and exercise training volume…

Reviewer: Line 25: and it could be argued that these perceptually regulated bouts better mirror 
how exercisers actually choose to modify intensity during acute exercise.

Authors’ response: We thank the author for suggesting this important point, and have 
subsequently added this information to the manuscript. 

P5 L25-26 – … offer a viable solution, and is perhaps more reflective of how exercisers 
modify intensity during acute exercise.

Reviewer: Lines 32-34: I am not familiar with this study, but exercise at 75 %HRmax does not 
meet the criteria of Weston et al. (2014) designating HIIT of > 85 %HRmax. 

Authors’ response: We thank the reviewer for highlighting the required percentage of maximal 
heart rate for exercise to be considered as a high-intensity. According to Weston et al. (2014), 
this does not classify the exercise employed by Chacaroun et al. (2018) as high-intensity the 
reviewer suggests. However, Chacaroun et al. (2018) compared continuous (30 mins) and 
interval (1 min on, 1 min off) cycling in hypoxic (clamped SpO2 = 75%) and normoxic 
conditions at a similar absolute heart rate (75% of max). The authors make reference to a 
position stand from the ACSM (1998), highlighting that 75% of maximal heart rate is 
recommended for continuous exercise. Therefore, although this intensity may not be aligned 
with the more recent work of Weston et al. (2014), the intensity employed and findings of 
Chacaroun et al. (2018) support our rationale. As such, we have not made any changes to the 
current manuscript.  

ACSM. The recommended quantity and quality of exercise for developing and maintaining 
cardiorespiratory and muscular fitness, and flexibility in healthy adults. MSSE. 
1998;30(6):975-991.

Chacaroun, S., Gonzalez, I. V. E., Flore, P., Doutreleau, S. and Verges, S. Physiological 
responses to hypoxic constant-load and high-intensity interval exercise sessions in healthy 
subjects. Euro J App Phys. 2018:1-12.
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Weston, K. S., Wisløff, U., & Coombes, J. S. High-intensity interval training in patients with 
lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports 
Med. 2014;48(16):1227-1234.

Reviewer: Line 40: remember that the Bartlett et al. study that you cite here was in men with 
VO2max well above 55 mL/kg/min, so these results poorly generalize to the typical adult.

Authors’ response: We thank the reviewer for highlighting the work we cite by Bartlett et al. 
(2011) includes a participant cohort with a relatively high VO2MAX, which may not be 
representative of adults within the general population. As such, we have since replaced this 
reference with a study comparing HIIT and continuous exercise (Thum et al., 2017). These 
authors conclude that HIIT is more enjoyable in active males and females with a more 
representative VO2MAX of the general population (41.4 ± 4.1 mL/kg/min) (Thum et al., 2017).

P26 L447-449 – Thum, J., Parsons, G., Whittle, T., & Astorino, T. (2017). High-intensity 
interval training elicits higher enjoyment than moderate intensity continuous exercise. 
PloS one. 2017;12(1):e0166299.

Bartlett, J. D., Close, G. L., MacLaren, D. P. M., Gregson, W., Drust, B., Morton, J. P. High 
intensity-interval running is perceived to be more enjoyable than moderate intensity continuous 
exercise: implications for exercise adherence. J Sports Sci. 2011; 29:547–553.

Reviewer: Please fix the typos in lines 44-45; thank you. Also, this text does not lay a solid or 
clear foundation for this text referring to cognitive function, breathlessness, reaction time, etc. 
as currently written.  This information just appears here with little transition text to relate this 
particular topic to the current study—please rewrite this text here to better denote the 
importance or relevance of cognitive function, breathlessness, motivation, etc.

Authors’ response: We thank the reviewer for pointing out the spelling errors in the manuscript 
and these have been corrected accordingly. Cognitive function is ususally decreased when 
assessed in hypoxic conditions, or shortly after exercise at a relative, fixed-inensity in hypoxia, 
compared to normoxia (McMorris et al., 2017). Similarly, exercise-related sensations are at a 
premium during maximal repeated sprints in hypoxia compared to normoxia (Brocherie et al., 
2017). Therefore, the importance of our work relates to attempting to incorporate a 
perceptually-regulated exercise intensity to compensate for the negative influence hypoxia has 
on fixed-intensity exercise versus normoxia, denoted via defects in cognitive function and 
exercise-related sensations. We have re-written the section highlighted by the reviewer to better 
explain the transition into exercise-related sensations and cognitive function.

P5 L47-P6 L51 – … to maintain exercise-related sensations contributing to RPE (16) in 
hypoxia and normoxia. Cyling continuously for 10 min at a fixed-intensity (corresponding 
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to 50% VO2Max) in hypoxia versus normoxia negatively impacts cognitive function (17).  
Slower self-selected running velocities may assist with mitigating hypoxic-induced negative 
cognitive function compared to normoxia (18).

Brocherie, F., Millet, G. P., & Girard, O. (2017). Psychophysiological responses to repeated-
sprint training in normobaric hypoxia and normoxia. International Journal of Sports Physiology 
and Performance, 12(1), 115-123. 

McMorris, T., Hale, B. J., Barwood, M., Costello, J., & Corbett, J. (2017). Effect of acute 
hypoxia on cognition: A systematic review and meta-regression analysis. Neuroscience & 
Biobehavioral Reviews, 74, 225-232.

Reviewer: Please list a rationale for this study aim—why does this really matter or to whom 
do these data apply? Is this for training purposes or something else?

Authors’ response: We thank the reviewer for suggesting to list a short rationale after the aim 
of the study. We have subsequently added this into the manuscript which can also be found 
below. 

P6 L59-61 – Decreasing external load with matched internal load during perceptually-
regulated HIIT in hypoxia compared to normoxia may benefit athletes during heavy 
training blocks prior to competition.

Reviewer: Is it wise to have only 3 women in the study? Please comment.

Authors’ response: In response to the reviewers comment, our aim was not to investigate the 
effect of gender in response to perceptually-regulated interval running in hypoxia and 
normoxia. Rather our intention was to investigate the effect of perceptually-regulated interval 
running in hypoxia and normoxia on adjustments in running velocity and aoociated exercise-
related sensations of trained runners. During our recruitment period, three eligible females 
volunteered for the study who matched the inclusion criteria (P6 L67-69). We have calculated 
groups means ± SD and re-analysed the primary outcomes of our study (velocity, heart rate, 
SpO2 and exercise-related sensations) only with the 16 male participants (excluding the three 
females). As shown at the bottom of this response document, this analysis indicates that 
including only three females does not lead to different groups means ± SD, probability values 
and effect sizes compared to a dataset of 16 males. Consequently, including the 3 female 
participants in our final sample of 19 participants does not change the overall message of the 
study. Therefore, we believe that keeping the three females within the current participant total 
(n = 19) is warranted since our power calculation indicated 21 participants are requied to yield 
sufficient power in the statistical tests carried out (P6 L73-P7 L76).This would not be achieved 
if the data from the three females were removed (n = 16).
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Reviewer: Is there a reason why a VO2max test was not undertaken?

Authors’ response: We thank the reviewer for raising this comment. Although identifying and 
presenting VO2MAX values of the participants in our study would have been informative, we 
didn’t feel it was necessary. This is because we used a modified, and validated, method (Martin 
et al., 1992) to determine the individual velocity required for each individual to run at an RPE 
of 16, which is presented (P17 L268-269) and the main purpose of our work. As such, of the 
ceiling value (VO2MAX) did not need to be identified in the current study. 

Martin, P. E., Rothstein, D. E., Larish, D. D. Effects of age and physical activity status on the 
speed-aerobic demand relationship of walking. J Appl Phys 1992;73:200–206.

Reviewer: Were participants informed about the study aim e.g. to test changes in your measures 
in hypoxia vs. normoxia?

Authors’ response: We appreciate the reviewer raising this important comment. Prior to 
enrolling onto the study, participants were informed that they will perform two HIIT protocols, 
randomly in hypoxic and normoxic conditions. We explained the measures that we would be 
performing, but did not directly outline that we would be looking at the comparison between 
hypoxic and normoxic conditions to the participants. Naturally, this may have impacted their 
perceptions or lead to social desirability bias in response to perceptual scales and assessment 
of attention and executive function. Further, as outlined in the manuscript (P9 L132-135), 
participants were blinded to the environmental condition during the HIIT protocol as we 
removed the hypoxic generator from their view, and simulated 100 m (machine switched on) 
during normoxia. We have subsequently added in some further information regarding this 
comment to the manuscript as outlined below.

P7 L86-88 – To minimise the impact of social desirability bias, participants were made 
aware of the purpose of the study but were naïve to experimental hypotheses. 

Adams, S. A., Matthews, C. E., Ebbeling, C. B., Moore, C. G., Cunningham, J. E., Fulton, J., 
& Hebert, J. R. The effect of social desirability and social approval on self-reports of physical 
activity. Am J Epidem, 2005;161(4):389-398.

Reviewer: I think the Results would be better structured by describing the fidelity of HIIT first, 
by denoting the HR and velocity data.  This confirms that these bouts actually represent HIIT 
based on 85 %HRmax.  Then, follow this with your other outcomes.
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Authors’ response: We acknowledge and agree with the reviewer that the results structure 
would be better when beginning the first section with velocity and heart rate data. The heading 
of this section has been renamed, and only includes velocity and heart rate data.

P12 L190 – Changes in velocity and HR 

Reviewer: I also think that the Results text needs better subheadings to clarify its organization 
e.g. change in HR and running velocity in response to..; change in muscle deoxygenation in 
response to, etc.

Authors’ response: We appreciate the reviewer suggesting better subheadings within the results 
section. These have subsequently been renamed as below.

P12 L196 – Changes in SpO2 and muscle oxygenation 

P12 L201 – Changes in exercise-related sensations 

P13 L222 – Changes in [La+] and attention and executive function 

Reviewer: Line 186 needs a clearer subheading e.g. change in recovery and .. in response to..

Authors’ response: Please see response above regarding this comment.

Reviewer: Line 244, Discussion; so what is the importance of these findings to the athlete, 
coach, clinician, etc.? Please cite this here.

Authors’ response: We acknowledge the reviewers comment that the importance of our 
findings should be stated here for those in an applied setting. We have subsequently added this 
information in to the manuscript, which can also be found below. 

P17 L261-266 – A matched internal workload for a decreased external workload during 
perceptually-regulated HIIT in hypoxia versus normoxia may assist athletes to reach 
intended session goals with minimal over-induced physiological stress. However, 
perceptually-regulated HIIT exacerbates exercise-related sensations and blood lactate 
concentrations in hypoxia compared to normoxia. This may then have negative carry-
over effects on training responsiveness in the following days.
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Reviewer: Line 269; so what is the importance or application of this particular finding?

Authors’ response: We understand the reviewers comment that this take home message can be 
further developed for importance and application. We have subsequently added this 
information in to the manuscript, which can also be found below.

P18 L291-294 – This finding may be of benefit to athletes who are unable or advised by 
their coach not to be training at a full intensity. Completing perceptually-regulated HIIT 
in hypoxia that requires slower running velocities compared to normoxia may in turn 
minimise mechanical constraints and eventually injury risk.

Reviewer: Line 302: what do you mean by ‘metabolic by product?’ this is blood lactate so just 
represent this as is to be most clear. And why does this excess accumulation of BLa matter to 
the scientist or athlete/practitioner?

Authors’ response: We thank the reviewer for suggesting more clarity regarding the take home 
message of this paragraph in the discussion, and have replaced ‘metabolic by-product’ with 
‘[La+]’. We have also added in a sentence regarding the implications of this finding in an 
applied setting. 

P19 L327 – … to increased [La+] at slower…

P19 L328-P20 L332 – Practitioners should be aware that perceptually-regulated HIIT in 
hypoxia is a viable method for matching indices of physiological stress to normoxia. 
However, the blood lactate concentration increases after exercise were larger in hypoxia 
compared to normoxia. This may have negative implications on the muscle fatigue 
recovery process.

Reviewer: Lines 307-15: are there any data showing that hypoxia reduces O2 delivery to the 
brain which then may alter perceptions of exercise which are regulated by various brain 
centers? Please comment on this.

Authors’ response: We thank the reviewer for raising this interesting point. Accordingly, we 
have added some information from the work of Subudhi et al. (2007 & 2009) relating to the 
negative implication hypoxia has on oxygen delivery to the brain, potentially altering 
perceptions of exercise. We also believe that this point should be of consideration for further 
research investigations, attempting to capture further measurements in response to HIIT in 
hypoxia at a perceptually-regulated intensity compared to normoxia.

P20 L342-348 –  Further, it could be postulated that cerebral deoxygenation was greater 
during HIIT in hypoxia versus normoxia, as demonstrated by Subudhi et al. during 
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incremental cycling (40, 41). Accordingly, cerebral deoxygenation during HIIT may 
contribute to an integrative decision regarding negative perceptions, in which hypoxia 
hastens this effect (41). Given that the perceptually-regulated exercise model is governed 
centrally, this may provide a potential explanation as to why exercise-related sensations 
were more elevated in the hypoxic trial. 

P28 L522-524 – Subudhi, A. W., Dimmen, A. C., & Roach, R. C. Effects of acute hypoxia 
on cerebral and muscle oxygenation during incremental exercise. J App Phys. 
2007;103(1):177-183.

P28 L525-527 – Subudhi, A. W., Miramon, B. R., Granger, M. E., & Roach, R. C. Frontal 
and motor cortex oxygenation during maximal exercise in normoxia and hypoxia. J App 
Phys. 2009;106(4):1153-1158.

Reviewer: This text seems to be way too much of a ‘stretch’ from your particular study and 
should be removed, as it is not relevant; thank you.  Athletes and clinical patients awaiting or 
shortly proceeding surgery may exercise in hypoxia to increase the internal workload similar 
to that achieved in normoxia for a lower external workload. This could decrease joint pain of 
the lower extremities during ambulation.

Authors’ response: We understand the reviewers concern regarding some of the statements 
presented in the limitations and perspectives section. We have since removed the points raised 
by the reviewer.
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Reviewer 2

Reviewer: This study was primarily aimed at investigating potential differences in running 
velocities between perceptually-regulated high-intensity intervals in hypoxia and normoxia. It 
has been demonstrated that running velocity progressively decreased from interval 1 to 4, more 
pronounced in hypoxic conditions. Negative exercise-related sensations increased over time, 
again more pronounced in hypoxia.

The authors deal with an interesting topic especially from a training-practical point of view 
however, findings are not really unexpected and novelty of this study should be more 
highlighted. Methods are well and reproducible described and results are nicely presented. 
Nevertheless, the authors may respond to the following comments:

Authors’ response: We thank the reviewer for their careful consideration of our work. We have 
responded to the comments individually raised below.

Reviewer: In the introduction session, you may refer to studies demonstrating differences 
between RPE and cardiorespiratory responses in hypoxia/altitude compared to normoxia.

Authors’ response: We thank the reviewer for raising our attention to this point and have added 
in this information to the introduction section as outlined below.

P5 L36-38 – Although HR was similar between conditions, RPE has been reported to be 
higher in hypoxia compared to normoxia during fixed-intensity interval runs (5) and 
repeated-sprint cycling (12).

P26 L443-445 – Brocherie, F., Millet, G. P., & Girard, O. Psychophysiological responses 

to repeated-sprint training in normobaric hypoxia and normoxia. International J of 

Sports Phys Perform. 2017;12(1):115-123.

Reviewer: Nineteen experienced runners have been recruited. As you might expect, I am not 
happy with the inclusion of only 3 females. Such a sex distribution may reduce the 
conclusiveness of the findings and does not allow to analyse potential sex differences.

Authors’ response: We understand the reviewers concern regarding the small population of 
females within our participant cohort. We would like to highlight that within the literature, it 
is inconclusive as to whether gender distributions impact on acute responses to hypoxia – with 
some confirming (Lombardi et al., 2013; Mortola & Saiki, 1996) and others rejecting (Loeppky 
et al., 2001; Sandoval & Matt, 2002) this hypothesis.
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In response to the reviewers comment, our aim was not to investigate the effect of gender in 
response to perceptually-regulated interval running in hypoxia and normoxia. Our aim was to 
investigate the effect of perceptually-regulated interval running in hypoxia and normoxia on 
trained runners. During our recruitment period, three eligible females volunteered for the 
study who matched the inclusion criteria (P6 L67-69). We have calculated groups means ± 
SD and re-analysed the main findings of our study (velocity, heart rate, SpO2 and exercise-
related sensations) without the presence of the three females (located at the bottom of this 
response document) which does not change the overall message of the study. Therefore, we 
believe that keeping the three females within the current participant total (n = 19) is 
warranted since our power calculation indicated 21 participants are requied to yield 
suffificent power in the statistical tests carried out (P6 L73-P7 L76), which would not be 
achieved if the data from the three females were removed (n = 16). 

We do believe that the reviewer raises an important comment, and have since highlighted this 
in the limitations and perspectives section of the paper for future investigations.

P22 L384-387 – In addition, whether there are gender differences in response to hypoxic 
exposure during perceptually-regulated HIIT should be investigated, given that our final 
sample size (n = 19) included only three females.

Loeppky, J. A., Scotto, P., Charlton, G. C., Gates, L., Icenogle, M., & Roach, R. C. (2001). 
Ventilation is greater in women than men, but the increase during acute altitude hypoxia is the 
same. Respiration physiology, 125(3), 225-237.

Lombardi, C., Meriggi, P., Agostoni, P., Faini, A., Bilo, G., Revera, M., ... & Gregorini, F. 
(2013). High‐altitude hypoxia and periodic breathing during sleep: gender‐related differences. 
Journal of sleep research, 22(3), 322-330.

Mortola, J. P., & Saiki, C. (1996). Ventilatory response to hypoxia in rats: gender differences. 
Respiration physiology, 106(1), 21-34.

Sandoval, D. A., & Matt, K. S. (2002). Gender differences in the endocrine and metabolic 
responses to hypoxic exercise. Journal of Applied Physiology, 92(2), 504-512.

Reviewer: Did you perform some type of power calculation? (at least a-posteriori).

Authors’ response: We thank the reviewer for raising this comment. We did indeed carry out a 
power analysis to determine the number of participants required for sufficient power in our 
results. Information regarding this has been added to the manuscript, as found below.

P6 L72-P7 L78 – A-priori sample size was calculated using G*Power (Version 3.1.9.3). 
This was determined using published power output data by Jeffries et al. (19), whereby 
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healthy individuals cycled at a perceptually-regulated intensity (RPE = 16) in hypoxic 
(FiO2 = 15.0%) and normoxic conditions. Twenty-one participants were deemed 
sufficient to yield a power of 0.8 at an α probability of 0.05. Two individuals dropped out 
due to injuries sustained during their time enrolled onto the study, not associated with 
the HIIT protocols we employed.

P26 L467-469 – Jeffries, O., Patterson, S. D., & Waldron, M. The effect of severe and 

moderate hypoxia on exercise at a fixed level of perceived exertion. Euro J App Phys. 

2019;1-12.

Reviewer: What means experienced runners? Can you report race times, VO2max, etc.?

Authors’ response: We appreciate the reviewers comment regarding our use of the term 
‘experienced runners’. As we did not collect information regarding race times and race history 
nor did we assess VO2MAX, we have replaced this term with ‘trained runners’ throughout the 
manuscript. Further, the runners we recruited included those with middle and long distance 
backgrounds. As such, it would be difficult to estimate or predict one particular race distance 
(i.e., 10 km) for all participants if they had not competed in this distance previously. We believe 
the term ‘trained’ better reflects the demographic of individuals recruited for the study, whom 
may have a knowledge of different race times and race history, but we have no quantifiable 
data to present.

Reviewer: Please, provide a table depicting more characteristics of study participants, beside 
anthropometric data, e.g. also performance parameters, regular physical sports/exercise 
activity, medical history, coffee and/or alcohol drinking, smoking, medications, etc.  

Authors’ response: We appreciate the reviewer suggesting to add further characteristics of the 
participants who completed the study protocol. Prior to enrolling onto the study, we screened 
volunteers (using a health questionnaire) for their medical history. As described in the methods 
section (P6 L66-69), we only included individuals who were free of clinical signs of disease, 
orthopedic, neurological, cardiovascular or respiratory problems. Further, runners were 
recruited who trained for ≥6 h/wk. Therefore, we are unable to provide any further information 
regarding the characteristics of participants as this was not collected, but re-assure the reviewer 
that they were of a healthy status.  
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Reviewer: The limitation section should be extended and the statements that “athletes and 
clinical patients awaiting or shortly proceeding surgery may exercise in hypoxia to increase 
the internal workload similar to that achieved in normoxia for a lower external workload” and 
“this could decrease joint pain of the lower extremities during ambulation” are in my opinion 
not justified based on the presented findings and should rather be deleted.

Authors’ response: We understand the reviewers concern regarding some of the statements 
presented in the limitations and perspectives section. We have since removed the points raised 
by the reviewer, and added in sentences regarding the need to investigate gender differences in 
response to perceptually-regulated HIIT in hypoxia. 

P22 L384-387 – In addition, whether there are gender differences in response to hypoxic 

exposure during perceptually-regulated HIIT should be investigated, given that our final 

sample size (n = 19) included only three females. 

Reviewer: The conclusion might a bit more focus on the training-practical importance of the 
findings.

Authors’ response: We thank the reviewer for raising this important point, and have 
subsequently added a sentence within the conclusion section of our manuscript highlighting 
the practical considerations of our findings. 

P22 L396-401 – Our results suggest that athletes under the influence of hypoxia require 
lower external workloads to reach a perceptually-regulated target during HIIT than 
normoxia. If employed in a practical setting, coaches should consider the potential of 
negatively implicated exercise-related sensations and blood lactate concentrations which 
may have further negative carry-over effects on training responsiveness in the following 
days.
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Primary outcome measures processed and analysed with males and females (n = 19) and 
males only (n = 16). 

Statistical analysis presented here used the methods presented in the manuscript. A two-way 
ANOVA investigated the main effect of condition, time and interaction. Group means ± SD, p 
values and effects sizes are presented for velocity, heart rate, SpO2 and exercise-related 
sensations.

Measure

1 2 3 4 1 2 3 4
14.8 ± 0.2 14.4 ± 0.5 14.1 ± 0.7 13.8 ± 0.8 15.1 ± 0.2 14.6 ± 0.4 14.2 ± 0.6 14.0 ± 0.8

1 2 3 4 1 2 3 4
165 ± 1 169 ± 0 171 ± 0 173 ±1 164 ± 1 168 ± 1 170 ± 0 173 ± 1

1 2 3 4 1 2 3 4
90 ± 6 91 ± 6 90 ± 6 90 ± 7 90 ± 5 91 ± 6 90 ± 6 90 ± 7

1 2 3 4 1 2 3 4
9 ± 0 7 ± 0 6 ± 1 5 ± 1 9 ± 0 7 ± 0 6 ± 1 5 ± 1

1 2 3 4 1 2 3 4
15 ± 0 14 ± 1 12 ± 2 12 ± 2 15 ± 0 14 ± 1 12 ± 2 12 ± 2

1 2 3 4 1 2 3 4
7 ± 1 8 ± 1 8 ± 1 8 ± 1 7 ± 1 8 ± 1 8 ± 1 8 ± 1

1 2 3 4 1 2 3 4
5 ± 1 6 ± 0 6 ± 1 7 ± 0 4 ± 0 6 ± 0 6 ± 1 7 ± 1

1 2 3 4 1 2 3 4
10 ± 1 9 ± 2 8 ± 3 7 ± 3 10 ± 2 9 ± 2 8 ± 3 7 ± 3

Males&females
p value(effectsize)

HYP NOR
170 ± 3 169 ± 4

Interval

Condition:

Time:

Interaction:

p < 0.01 (0.91)

p < 0.01 (0.65)

p < 0.01 (0.42)
Condition:

Interval

Condition
HYP NOR

13.9 ± 0.6 14.7 ± 0.3

Condition:
86 ± 0 95 ± 0 p < 0.01 (0.99)

Interval Time:

Velocity
(km/h-1)

Heart rate
(bpm)

SpO2
(%)

HYP NOR

p = 0.65 (0.01)
Time:

p < 0.01 (0.62)
Interaction:

p = 0.28 (0.07)

p = 0.37 (0.06)
Interaction:

p = 0.17 (0.09)

Recovery
(au)

HYP NOR Condition:
6 ± 2 7 ± 1 p < 0.01 (0.61)

Interval Time:
p < 0.01 (0.81)

Interaction:
p < 0.01 (0.24)

Motivation
(au)

HYP NOR Condition:
13 ± 2 14 ± 1 p < 0.01 (0.65)

Interval Time:
p < 0.01 (0.50)

Interaction:
p < 0.01 (0.25)

Breathlessness
(au)

HYP NOR Condition:
9 ± 1 7 ± 1 p < 0.01 (0.56)

Interval Time:
p < 0.01 ( 0.55)

Interaction:
p = 0.80 (0.02)

Time:
p < 0.01 (0.60)

Interaction:
p = 0.07 (0.12)

Limb
discomfort

(au)

HYP NOR Condition:
6 ± 1 5 ± 1 p = 0.02 (0.30)

Interval Time:
p < 0.01 (0.59)

Interaction:
p = 0.78 (0.02)

Ph
ys

iol
og

y
Ex

er
cis

e-
re

lat
ed

se
ns

at
ion

s

Malesonly
Condition p value(effectsize)

HYP NOR Condition:
14.1 ± 0.7 14.9 ± 0.3 p < 0.01 (0.92)

Interval Time:
p < 0.01 (0.66)

Interaction:
p < 0.01 (0.45)

Pleasure
(au)

HYP NOR Condition:
7 ± 2 10 ± 1 p < 0.01 (0.59)

Interval

Interval Time:
p < 0.01 (0.66)

Interaction:
p = 0.23 (0.09)

HYP NOR Condition:
169 ± 3 168 ±4 p = 0.53 (0.03)

Interval Time:
p = 0.51 (0.50)

Interaction:
p = 0.14 ( 0.12)

HYP NOR Condition:
86 ± 0 95 ± 0 p < 0.01 (0.99)

Interval Time:
p < 0.01 (0.80)

Interaction:
p < 0.01 (0.35)

HYP NOR Condition:
6 ± 2 7 ± 1 p < 0.01 (0.61)

Interval Time:
p < 0.01 (0.52)

Interaction:
p < 0.01 (0.28)

HYP NOR Condition:
12 ± 3 14 ± 1 p < 0.01 (0.71)

Interval Time:
p < 0.01 (0.61)

Interaction:
p = 0.58 (0.04)

HYP NOR Condition:
9 ± 1 7 ± 1 p < 0.01 (0.61)

Interval Time:
p < 0.01 (0.59)

Interaction:
p = 0.66 (0.59)

HYP NOR Condition:
6 ± 1 5 ± 1 p = 0.04 (0.26)

Interval Time:
p < 0.01 (0.68)

Interaction:
p = 0.02 (0.19)

HYP NOR Condition:
7 ± 2 10 ± 1 p < 0.01 (0.63)
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1 Abstract 

2 We investigated whether perceptually-regulated high-intensity intervals in hypoxia are 

3 associated with slower running velocities versus normoxia, when physiological responses and 

4 exercise-related sensations remain the same. Nineteen trained runners (33.4 ± 9.1 years) 

5 completed a high-intensity interval running protocol (4 × 4-min intervals at a clamped 

6 perceived rating exertion of 16 on the 6–20 Borg scale, 3-min passive recoveries) in either 

7 hypoxic (HYP; FiO2 15.0%) or normoxic (NOR; FiO2 20.9%) conditions. Participants adjusted 

8 to a progressively slower running velocity from interval 1–4 (-7.0%), and more so in HYP vs. 

9 NOR for intervals 2, 3 and 4 (-4.6%, -6.4% and -7.9%, respectively; p < 0.01). Heart rate 

10 increased from interval 1–4 (+4.8%; p < 0.01), independent of condition. Arterial oxygen 

11 saturation was lower in HYP vs. NOR (86.0% vs. 94.8%; p < 0.01). Oxyhemoglobin (-23.7%) 

12 and total hemoglobin (-77.0%) decreased, whilst deoxyhemoglobin increased (+44.9%) from 

13 interval 1–4 (p < 0.01), independent of condition. Perceived recovery (-41.6%) and motivation 

14 (-21.8%) were progressively lower from interval 1–4, and more so in HYP vs. NOR for 

15 intervals 2, 3 and 4 (recovery: -8.8%, -24.2% and -29.3%; motivation: -5.3%, -20.3% and -

16 22.4%, respectively; p < 0.01). Perceived breathlessness (+18.6%), limb discomfort (+44.0%) 

17 and pleasure (-32.2%) changed from interval 1–4, with significant differences (+21.8%, 

18 +11.3% and -31.3%, respectively) between HYP and NOR (p < 0.01). Slower interval running 

19 velocities in hypoxia achieve similar heart rate and muscle oxygenation responses to those 

20 observed in normoxia when perceptually-regulated, yet at the expense of less favourable 

21 exercise-related sensations. 
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23 Key words

24 High-intensity intermittent running; normobaric hypoxia; perceptually-regulated exercise; 

25 ratings of perceived exertion; near-infrared spectroscopy; effort perception.
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1 Introduction

2 High-intensity interval training (HIIT) is a popular exercise format in athletic and clinical 

3 populations (1,2). HIIT includes repeated short-to-long (2–5 min) intense exercise bouts (80–

4 90% of the velocity associated with maximal oxygen uptake or vVO2Max) interspersed with 

5 shorter (1–3 min) recoveries (3). Compared to moderate-intensity continuous running, HIIT 

6 leads to similar improvements in cardiorespiratory fitness that is achieved with a shorter 

7 effective exercise duration per session (2). Due to the reduced time-commitment and exercise 

8 training volume, investigations surrounding the potential physiological and performance 

9 benefits of HIIT have surged (4). 

10 HIIT in normobaric hypoxia (a lower inspired oxygen fraction or FiO2) is receiving attention 

11 for its potential in further advancing athletic performance compared to HIIT in normoxia. 

12 Buchheit et al. (5) employed a HIIT protocol (3 × 5-min, 90-s recovery) carried out in hypoxia 

13 (vVO2Max = 84%; FiO2 = 15.4%) and normoxia (vVO2MAX = 90%) at a fixed-intensity 

14 (determined in normoxia) in highly-trained runners. A reduced physiological stress (i.e., lower 

15 heart rate or HR) was observed during hypoxia compared to normoxia, likely due to a lower 

16 vVO2Max in hypoxia versus normoxia. However, fixed exercise intensities, regardless of 

17 environmental conditions, do not permit adjustments (i.e., increases or decreases of workload) 

18 during exercise to match the intensity target (i.e., vVO2MAX). In turn, over-induced 

19 physiological stress may be counter-productive (i.e., greater deoxygenated muscle 

20 heamoglobin, lower oxygenated haemoglobin) for intended session goals (6). Furthermore, 

21 matched absolute fixed exercise intensities (i.e., a similar percentage of vVO2MAX) lead to 

22 greater physiological stress (i.e., compensatory increase in HR) in hypoxia compared to 

23 normoxia due to reduced FiO2 (7). Perceptually-regulated exercise intensities, that allow 

24 velocity adjustments based upon exercise-related sensations in order to maintain a target effort 
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25 level, may offer a viable solution, and is perhaps more reflective of how exercisers modify 

26 intensity during acute exercise.

27 Perceptually-regulated exercise permits the individual exercising to self-regulate external 

28 workload (i.e., running velocity/cycling power production) based upon Borg’s rating of 

29 perceived exertion (RPE) scale (8). The validity and usefulness of using RPE for perceptually-

30 regulating exercise has been described (9). The reduced oxygen availability in hypoxia makes 

31 the expectation tenable that there would be a slower self-selected running velocity in hypoxia 

32 for a given RPE, while velocity in normoxia would be more preserved, as evidenced previously 

33 (10). Chacaroun et al. (11) demonstrated for a lower power output (-15%), vastus lateralis 

34 muscle deoxyhemoglobin was higher and oxyhemoglobin lower in hypoxia (FiO2 = 13.5%) 

35 compared to normoxia during a single interval session (15 × 1-min at 75% of maximal HR, 1-

36 min recoveries). Although HR was similar between conditions, RPE has been reported to 

37 be higher in hypoxia compared to normoxia during fixed-intensity interval runs (5) and 

38 repeated-sprint cycling (12). Employing self-paced exercise, in replace of fixed-intensity 

39 exercise, may assist in overcoming the over-excessive physiological stress observed when 

40 exercising in hypoxia versus normoxia, due to the likelihood of greater velocity preservations 

41 in the latter than the former.

42 In normoxia at pre-determined fixed intensities, HIIT is perceived as more enjoyable compared 

43 to moderate-intensity continuous running (13). However, during HIIT at fixed-intensities, 

44 exercise-related sensations decrease when the exercise intensity rises above threshold 

45 preference (14). Further, HIIT in hypoxia at fixed-intensities typically surpasses the preferred 

46 threshold in normoxia (15). Implementing a self-paced exercise model may permit 

47 modifications required (i.e., slower running velocities) to maintain exercise-related sensations 

48 contributing to RPE (16) in hypoxia and normoxia. Cyling continuously for 10 min at a 

49 fixed-intensity (corresponding to 50% VO2Max) in hypoxia versus normoxia negatively 
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50 impacts cognitive function (17).  Slower self-selected running velocities may assist with 

51 mitigating hypoxic-induced negative cognitive function compared to normoxia (18). These 

52 potential findings may benefit athletes exercising intensely in hypoxia, shortly followed by 

53 skills requiring attention and accuracy.

54 Therefore, the aim of this study was to investigate the effect of HIIT at a clamped RPE of 16 

55 (typically used by athletes during HIIT) (19) in hypoxia and normoxia on adjustments in 

56 running velocity and associated exercise-related sensations of trained runners. We 

57 hypothesized that running velocity would be progressively slower in hypoxia compared to 

58 normoxia across intervals, whilst physiological and cognitive responses, and exercise-related 

59 sensations would not differ between conditions. Decreasing external load with matched 

60 internal load during perceptually-regulated HIIT in hypoxia compared to normoxia may 

61 benefit athletes during heavy training blocks prior to competition.

62

63 Methods

64 Participants

65 Nineteen trained runners (3 females, 16 males; age: 33.4 ± 9.1 years; height: 176 ± 88 cm; 

66 weight: 76.3 ± 10.9 kg) provided written informed consent to participate. Participants had no 

67 musculoskeletal injuries and met the following eligibility criteria: a training volume ≥6 h/wk, 

68 free of clinical signs of disease, orthopedic, neurological, cardiovascular or respiratory 

69 problems, and no hypoxic exposure >2000 m for >48 h 6 months before the study. The study 

70 was carried out in accordance with the Declaration of Helsinki and was approved by the Ethics 

71 Committee of the Anti-Doping Lab Qatar institutional review board (Agreement SCH-ADL-

72 170). A-priori sample size was calculated using G*Power (Version 3.1.9.3). This was 
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73 determined using published power output data by Jeffries et al. (20), whereby healthy 

74 individuals cycled at a perceptually-regulated intensity (RPE = 16) in hypoxic (FiO2 = 

75 15.0%) and normoxic conditions. Twenty-one participants were deemed sufficient to 

76 yield a power of 0.8 at an α probability of 0.05. Two individuals dropped out due to 

77 injuries sustained during their time enrolled onto the study, not associated with the HIIT 

78 protocols we employed.

79 Experimental design

80 Participants reported to the laboratory on three occasions, each separated by ≥48 h. The first 

81 session included study familiarisation. The second and third visits included completing a HIIT 

82 protocol in either hypoxia or normoxia in a randomized, conterbalanced order. Physiological, 

83 perceptual and cognitive responses were assessed continuously, immediately before and after 

84 each interval, and before and after the HIIT protocol, respectively. Participants were instructed 

85 to refrain from any intense exercise 48 h prior to each visit and consume their last meal at least 

86 2 h prior to the HIIT sessions. To minimise the impact of social desirability bias, 

87 participants were made aware of the purpose of the study but were naïve to experimental 

88 hypotheses. Laboratory conditions were similar throughout all sessions (mean temperature 

89 22˚C, relative humidity 50%) and time of day was standardized for each participant.

90 Familiarization session

91 At the preliminary visit to the laboratory, participants were familiarised with the perceptual 

92 scales and cognitive test. Preferred running velocity (PRV) was determined for each participant 

93 in normoxia using a modified version of identifying preferred walking speed (21). After a 5-

94 min warm up at 10 km/h-1, participants completed four ramped treadmill runs (increasing and 

95 decreasing velocities) on an instrumented treadmill (ADAL3D-WR, Medical Development–

96 HEF Tecmachine, France). After every 20 s per ramp, participants rated their RPE of the 
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97 current velocity (controlled by the investigator and out of sight of the participant) in accordance 

98 with Borg’s (20) 6 (“no exertion at all”) – 20 (“maximal exertion”) numeric scale. Ramp one 

99 started at 10 km/h-1, increasing by 0.8 km/h-1 every 20 s until the velocity was considered as 

100 RPE ≥18; ramp two started at +1.5 km/h-1 the previous end velocity, decreasing by 0.8 km/h-1 

101 until the velocity was considerd as RPE 12; ramp three started at the velocity considered as 

102 an RPE of 14 in ramp two, increasing by 0.5 km/h-1 until the velocity was considerd as RPE 

103 ≥18; and ramp four started at +1.0 km/h-1 the previous end velocity, decreasing by 0.5 km/h-1 

104 until the velocity was considered as RPE 12. Ramps two, three and four began once the 

105 participants declared their perceived recovery level as a 7 out of 10 following the previous 

106 ramp (23). HR was recorded every 20-s through each ramp. PRV corresponded to the velocity 

107 participants considered as a RPE of 16 (between “hard” and “very hard”) or closest to a HR of 

108 160 bpm. After 10 min of rest, participants completed one 4-min interval composing the HIIT 

109 protocol (see below) for habituation.  

110 Experimental trials

111 Participants completed two experimental trials in normoxia (NOR; FiO2 = 20.9%) and hypoxia 

112 (HYP; FiO2 = 15.0%, equivalent to ~2700 m above sea level). After a standardised warm up 

113 (5-min at 10 km/h-1), a facemask connected to a portable hypoxic generator (See Hypoxic 

114 simulation section) was attached. Participants rested for 1-min (quiet standing) before a 1-min 

115 run at their PRV (RPE = 16). Participants then rested for 3 min before completing the HIIT 

116 protocol. The HIIT protocol was based upon aerobic interval-training (2). Participants 

117 completed four, 4-min intervals, interspersed with 3-min recoveries (quiet standing). The first 

118 30 s of each 4-min interval began at participants’ PRV; participants were then free to decide if 

119 or how treadmill velocity needed to be adjusted (manually by one experimenter) to ensure 

120 maintenance of a RPE of 16 every 30 s. Participants hand-signalled in response to the current 
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121 velocity (finger up to increase, finger down to decrease, and circle using index finger and thumb 

122 to maintain); and signalled again to inform how much of an increase/decrease in velocity is 

123 required [1, 2 or 3 fingers up (faster) or down (slower) for 0.5, 1.0 or 1.5 km/h-1 changes, 

124 respectively]. Signals were trialled during familiarisation. Mild verbal encouragement to keep 

125 running at an RPE of 16 was used throughout HIIT. Total hypoxic exposure corresponded to 

126 exactly 28 min.

127 Hypoxic simulation

128 Participants were fitted with a facemask fastened with a Velcro headset connected via plastic 

129 tubing to a hypoxic generator (Altitrainer, SMTec SA, Nyon, Switzerland) to simulate hypoxia. 

130 The gas mixing system enriches inspired air by adding a fixed quantity of nitrogen via a 30-L 

131 mixing chamber, with the dilution being constantly controlled by a PO2 probe (precision = 

132 T0.82 torr, safety FiO2 = 9.7%). The hypoxic generator was hidden from participant viewing 

133 to ensure condition blinding. When breathing ‘normal air’ during normoxia, the hypoxic 

134 generator was on (for background noise) and set at a simulated altitude of 100 m to increase 

135 the strength of blinding. 

136 Measures

137 Exercise intervals

138 HR was monitored telemetrically with a Polar transmitter-receiver (Polar S810, Kempele, 

139 Finland) and recorded 20 s before and every 30 s during each interval. Arterial oxygen 

140 saturation (SpO2) was assessed via finger pulse oximetery (Palmsat 2500, NONIN Medical 

141 Inc., Plymouth, MI, USA) at the same time intervals. HR and SpO2 were obtained before (i.e., 

142 after a 2-min seated period) and at the end of the warm-up procedure (i.e., prior to HIIT). Both 
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143 the HR watch (RS400, Polar) and oximeter receiver were attached on the handrails of the 

144 treadmill outside of the participants’ view. 

145 Muscle oxygenation trends of the right vastus lateralis muscle were recorded using near-

146 infrared spectroscopy (NIRS; Portalite, Artinis, Netherlands) in real-time. A wireless bi-polar 

147 optode sensor was attached (~10 cm above the proximal patella border) and secured to skin via 

148 adhesive tape. Sampling frequency was set at 10 Hz (11) following a ‘zero set’ of all signals. 

149 Bandages were fastened around the lower limb and optode to prevent external light distorting 

150 readings. Oxy- (Δ; [O2Hb]), deoxy- (Δ; [HHb]) and total haemoglobin (mol; [tHb]) were 

151 exported (1 Hz). For analysis, each interval was averaged and normalized to a 10 s sample prior 

152 to interval one (reference value) for each respective condition and presented as percentage 

153 change. 

154 During recovery

155 Perceived recovery and motivation to exercise were assessed 30 s before each interval. 

156 Perceived recovery was assessed by answering ‘how recovered do you feel currently?’ via a 

157 numeric scale, ranging from 0 (“very poorly recovered”) to 10 (“very well recovered’) (23). 

158 Recovery was assessed before interval one to determine perceptions following the warm up. 

159 Perceived motivation to exercise was assessed via a 20-cm visual analog scale (24). 

160 Participants were asked ‘how motivated do you feel to exercise right now?’ and answered by 

161 adjusting the level on the scale between 0 (“extremely low”; white colored) and 20 (“extremely 

162 high”; black colored). Immediately after each interval, ratings of perceived breathlessness, limb 

163 discomfort and pleasure were assessed. Perceived breathlessness was assessed by answering 

164 ‘how does your breathing feel currently?’ via a numeric scale, ranging from 0 (“nothing at 

165 all”) to 10 (“very, very severe”) (25). Using the same scale, perceived limb discomfort was 

166 assessed by answering ‘how do your legs feel currently?’. A 20-cm visual analog scale (same 
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167 as motivation above) was used to assess ‘how pleasant was that run?’ ranging from 0 

168 (“extremely unpleasant”) and 20 (“extremely pleasant”). 

169 Pre- and post-exercise

170 A capillary blood sample taken from the fingertip was analyzed for blood lactate concentration 

171 ([La+]) with the Lactate Pro (LT-1710, Arkray, Japan) portable analyzer before the warm-up 

172 and 2 min after HIIT. An offline Stroop colour-word test (26) assessed attention and executive 

173 function. Using one hand and as quickly as possible, participants selected the colored key on 

174 the keyboard representing the color of the text appearing on the screen (red, yellow, green or 

175 blue). The cognitive test lasted for 3 min, and took place in a silent environment before the 

176 warm up and 3 min after HIIT. Reaction time (ms; time taken to select a color) and accuracy 

177 (%; correct color selected) were averaged over each test for analysis. 

178 Statistical analysis

179 Data distribution was assessed via a Shapiro-Wilk test. A parametric within-subject two-way 

180 analysis of variance was used to investigate the main effect of condition (NOR vs. HYP), time 

181 (interval 1, 2, 3 vs. 4 or pre vs. post) and the condition × time interaction for normally 

182 distributed data. Partial eta-squared (η²) was calculated as a measure of effect size. Values of 

183 0.01, 0.06 and above 0.14 were considered as small, medium and large, respectively (27). A 

184 related samples Friedman’s non-parametric test was used for data not normally distributed. 

185 Bonferroni post-hoc pairwise comparisons were used to identify locations of significant effects. 

186 Statistical testing was carried out in SPSS (v21; CED, Cambridge, United Kingdom). Data was 

187 considered significant if p  0.05. All data are presented as group means ± SD.

188

189 Results
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190 Changes in velocity and HR 

191 Compared to interval 1, participants adjusted to a progressively slower running velocity during 

192 intervals 2, 3 and 4 (-2.8%, -5.2% and -7.0%, respectively; p < 0.01), and more so in HYP vs. 

193 NOR for intervals 2, 3 and 4 (-4.6%, -6.4% and -7.9%, respectively; p < 0.01; Figure 1A). 

194 Compared to interval 1, HR increased during intervals 2, 3 and 4 (+2.3%, +3.6% and 4.8%, 

195 respectively; p < 0.01; Figure 1B), independently of condition (p = 0.65). 

196 Changes in SpO2 and muscle oxygenation 

197 SpO2 was globally lower in HYP vs. NOR (-9.3% average across intervals; p < 0.01; Figure 

198 1C), independently of time (p = 0.37). From interval 1 to 4, [O2Hb] and [tHb] decreased (-

199 23.7% and -77.0%, respectively) whilst [HHb] increased (+44.9%; p < 0.01; Figures 2A–C), 

200 independently of condition (p > 0.08). 

201 Changes in exercise-related sensations 

202 Perceived recovery decreased progressively from interval 1 to 4 (-41.6%; p < 0.01), and more 

203 so in HYP vs. NOR before intervals 2, 3 and 4 (-8.8%, -24.2% and -29.3%, respectively; p = 

204 0.02; Figure 3A). Perceived motivation decreased progressively from interval 1 to 4 (-21.8%; 

205 p < 0.01), and more so in HYP vs. NOR before intervals 3 and 4 (-20.3% and -22.4%, 

206 respectively; p < 0.01; Figure 3B). Compared to interval 1, perceived breathlessness increased 

207 following intervals 2, 3 and 4 (+14.0%, +13.6% and +18.6%, respectively; p < 0.01; Figure 

208 3C), independently of condition. Breathlessness was rated globally higher in HYP vs. NOR 

209 (+21.8%; p < 0.05), irrespective of time. Compared to interval 1, perceived limb discomfort 

210 increased following intervals 2, 3 and 4 (+23.3%, +35.3% and +44.0%, respectively; p < 0.01; 

211 Figure 3D), independently of condition. Limb discomfort was rated globally higher in HYP vs. 

212 NOR (+11.3%; p = 0.01), irrespective of time. The time-dependent decreases in perceived 
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213 pleasure across intervals (-14.7%, -25.4% and -32.3%, intervals 2, 3 and 4 vs. 1, respectively; 

214 p < 0.01; Figure 3E) tended to be larger in HYP vs. NOR (-31.3%, p = 0.06). 

215
216 Figure 1 Changes in velocity (A), heart rate (B) and arterial oxygen saturation (C) during the 
217 high-intensity intermittent running protocol. Data are presented as mean ± SD. ANOVA main 
218 effects of time, condition and interaction are presented along with partial-eta squared for effect 
219 size into brackets. Black bars = hypoxic condition; white bars = normoxic condition. * denotes 
220 a statistically significant difference between conditions for a given interval (p < 0.05), a, b and 
221 c denotes a statistically significant difference vs. interval 1, 2 and 3, respectively (p < 0.05).

222 Changes in [La+] and attention and executive function 

223 The pre- to post-exercise increase in [La+] was larger (p = 0.001) in HYP (1.7 ± 0.8 vs. 13.1 ± 

224 3.8 mmol/l-1) vs. NOR (2.1 ± 0.9 vs. 10.1 ± 3.9 mmol/l-1). During the Stropp test, accuracy was 
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225 unaffected by condition and time (Figure 4A). Participants’ reaction time was faster (+11%) 

226 post vs. pre HIIT (p < 0.01; Figure 4B), independently of condition.

227

228
229 Figure 2 Changes in Oxygenated (A; O2Hb), deoxygenated (B; HHb) and total hemoglobin 
230 (C; tHb) during the high-intensity intermittent running protocol. Data are calculated as a 
231 percentage difference from baseline (%) and presented as mean ± SD. ANOVA main effects 
232 of time, condition and interaction are presented along with partial-eta squared for effect size 
233 into brackets. Black bars = hypoxic condition; white bars = normoxic condition. a, b and c 
234 denotes a statistically significant difference vs. interval 1, 2 and 3, respectively (p < 0.05).

235
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237 Figure 3 Changes in perceived recovery (A), motivation (B), breathlessness (C), limb 
238 discomfort (D) and pleasure (E) during the high-intensity intermittent running protocol. Data 
239 are presented as mean ± SD. ANOVA main effects of time, condition and interaction are 
240 presented along with partial-eta squared for effect size into brackets. Black bars = hypoxic 
241 condition; white bars = normoxic condition. * denotes a statistically significant difference 
242 between conditions for a given interval (p < 0.05), a, b and c denotes a statistically significant 
243 difference vs. interval 1, 2 and 3, respectively (p < 0.05).

244

245 Figure 4 Changes in accuracy (A) and reaction time (B) pre and post  high-intensity 
246 intermittent running protocol. Data are averaged over 3 mins and presented as mean ± SD.  
247 ANOVA main effects of time, condition and interaction are presented along with partial-eta 
248 squared for effect size into brackets. Black bars = hypoxic condition; white bars = normoxic 
249 condition. # denotes a statistically significant difference vs. pre-exercise (p < 0.01).

250

251 Discussion

252 Using a perceptually-regulated (RPE = 16) exercise model, we observed: 1) participants ran 

253 progressively slower during HIIT with larger decreases in HYP versus NOR, 2) HR and 

254 muscle oxygenation trends (during intervals) and cognitive responses (pre vs. post HIIT) were 

255 similar between conditions, 3) greater breathlessness and limb discomfort, and lower recovery, 
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256 motivation and pleasure scores were stated during recovery between HYP vs. NOR, and 4) 

257 blood lactate concentration was larger after HYP vs. NOR. Overall, using a manipulation of 

258 oxygen availability, reduced external workload (i.e., running velocity) during perceptually-

259 regulated interval running is associated with a similar internal load (i.e., physiological 

260 responses). Although no cognitive function differences were found between conditions, this is 

261 achieved with less favourable exercise-related sensations. A matched internal workload for 

262 a decreased external workload during perceptually-regulated HIIT in hypoxia versus 

263 normoxia may assist athletes to reach intended session goals with minimal over-induced 

264 physiological stress. However, perceptually-regulated HIIT exacerbates exercise-related 

265 sensations and blood lactate concentrations in hypoxia compared to normoxia. This may 

266 then have negative carry-over effects on training responsiveness in the following days.

267 Exercise intervals

268 The velocity deemed equal to RPE 16 (PRV) was as expected for trained runners (~15 km/h-

269 1) (28). Interestingly, running velocity did not differ between conditions during the first HIIT 

270 interval, despite lower SpO2 in hypoxia versus normoxia. Smith & Billaut (29) found 

271 maintained SpO2 during repeated-sprinting in normoxia (20 × 5-s all out, 25-s recovery) until 

272 after the fifth sprint in national-level soccer players, whereby peak power significantly 

273 decreased compared to sprint one. Overall, it seems that initial decreases in SpO2 (within 

274 interval one) do not necessarily impact on HIIT compared to sprint intervals.  

275 We found that participants selected a progressively slower running velocity during HIIT in 

276 both conditions. In highly-trained middle to long-distance runners, a 6% reduction in vVO2MAX 

277 when running in hypoxia versus normoxia is acceptable to match the acute physiological stress 

278 induced (5). It can be suggested that self-selected velocity adjustments found in the current 

279 study to maintain RPE 16 are matched with modifications in hypoxic versus normoxic traning 
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280 sessions employed by coaches and sport scientists for athletes (30). Decreased external 

281 workloads have been reported by Pramsohler et al. (31) during continuous cycling (seven 30-

282 min sessions over 3-wk), whereby participants cycled at -28% lower power output in hypoxia 

283 (FiO2 = 15.3%) versus normoxia for a similar HR. Differences in these findings and ours may 

284 be due to the inclusion of geriatric patients completing pre-set (in normoxia) fixed-intensity 

285 cycling compared to trained runners self-regulating HIIT in the current study. However, 

286 Fernández-Menéndez et al. (10) reported preferred walking velocity (RPE of 10) in hypoxia 

287 (FiO2 = 15.3%) was 7% slower than normoxia in obese adults over 3 weeks. Using a self-paced 

288 model, irrespective of RPE target, population demographics and training block duration, lower 

289 external workloads are selected in hypoxia compared to normoxia. Overall, decreases in self-

290 paced running velocity occured to a greater extent in hypoxia than normoxia to maintain RPE 

291 16, suggesting of a lower external workload. This finding may be of benefit to athletes who 

292 are unable or advised by their coach not to be training at a full intensity. Completing 

293 perceptually-regulated HIIT in hypoxia that requires slower running velocities compared 

294 to normoxia may in turn minimise mechanical constraints and eventually injury risk.

295 Our data show HR increased progressively during HIIT, irrespective of condition. This 

296 matches our hypothesis that HR will be comparable between hypoxia and normoxia, even 

297 though running velocity was lower in hypoxia. Other studies employing moderate continuous-

298 intensity exercise have also found matched HR responses between hypoxic and normoxic 

299 training interventions (~4 weeks) when cycling at a -21.0% power output in healthy males (32) 

300 and walking/running at a -17.5% velocity in obese adults (33) in hypoxia verus normoxia. 

301 Although exercise intensities in these studies were fixed, we believe similar increases in HR 

302 between conditions occur due to the environmental stressor (hypoxia) augmenting autonomic 

303 cardiac regulation (34). Overall, it seems self-paced exercise in hypoxia provides an added 
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304 environmental stressor that is able to mimick HR responses in normoxia for a lower external 

305 load. 

306 Lower [O2Hb] and [tHb], and greater [HHb] of the vastus lateralis were recorded across HIIT, 

307 irrespective of condition. Decreases in [O2Hb] and increases in [HHb] were expected during 

308 HIIT as oxygen delivery is outweighed by utilisation, whilst decreases in [tHb] reflect a lower 

309 localised blood flow (35). Active musculature oxygenation is negatively impacted during 

310 fixed-intensity exercise in hypoxia compared to normoxia due to a lower FiO2 (7). In support 

311 of this, Chacaroun et al. (11) reported lower [O2Hb] and greater [HHb] with maintained [tHb] 

312 of the vastus lateralis during fixed, relative high-intensity cycling in hypoxia (85% maximal 

313 power output in normoxia; FiO2 = 13.5%) versus normoxia. Where we employed a self-paced 

314 exercise model, similar [O2Hb] and [HHb] responses are achieved between conditions. This is 

315 likely explained through the decreased workload (i.e., slower running velocity) in hypoxia 

316 compared to normoxia, subsequently lowering oxygen utilisation. Discrepants findings in [tHb] 

317 may be due to different exercise modalities (cycling versus running) modifying blood flow 

318 regulation (36). Similar to HR responses (central) previously discussed, it can be suggested 

319 here that local (tissue oxygenation) physiological stress is matched between conditions during 

320 HIIT in hypoxia at a slower velocity compared with normoxia.

321 Elevations in [La+] following HIIT were higher in HYP than NOR. Values in the current study 

322 (10–13 mmol/l-1) are somewhat higher than those (5–6 mmol/l-1) reported elsewhere following 

323 a single HIIT session (6 × 4-min intervals at a RPE ~17, 4-min recoveries) (19). This maybe 

324 due to a 1:0.75 work:rest ratio implemented during our protocol compared to 1:1 employed by 

325 Seiler & Sjursen (19). [La+] normalization during shorter recovery periods may not occur to 

326 the extent following longer recovery periods due to excess pyruvate accumulation (37). This 

327 suggests that HIIT in hypoxia per se leads to increased [La+] at slower running velocities 

328 compared to normoxia for similar physiological stress amounts. Practitioners should be 
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329 aware that perceptually-regulated HIIT in hypoxia is a viable method for matching 

330 indices of physiological stress to normoxia. However, the blood lactate concentration 

331 increases after exercise were larger in hypoxia compared to normoxia. This may have 

332 negative implications on the muscle fatigue recovery process.

333 During recovery

334 Perceptual responses to HIIT were negatively impacted (i.e., lower recovery, and motivation) 

335 when assessed before intervals, with further exacerbations in hypoxia. Participants were 

336 instructed to maintain a RPE of 16 throughout HIIT by adjusting their velocity where 

337 necessary. It might be surprising at first that perceptual responses were worse in hypoxia 

338 compared to normoxia. However, perceived recovery and motivation are important affects 

339 associated with exercise intensity regulation (38). Our results indicate that hypoxia negatively 

340 impacts these affects during HIIT compared with normoxia. This may be explained through 

341 lower perceived capabilities of hypoxic HIIT completion over normoxia (39), lowering 

342 perceived recovery and motivation. Further, it could be postulated that cerebral 

343 deoxygenation was greater during HIIT in hypoxia versus normoxia, as demonstrated by 

344 Subudhi et al. during incremental cycling (40, 41). Accordingly, cerebral deoxygenation 

345 during HIIT may contribute to an integrative decision regarding negative perceptions, in 

346 which hypoxia hastens this effect (41). Given that the perceptually-regulated exercise 

347 model is governed centrally, this may provide a potential explanation as to why exercise-

348 related sensations were more elevated in the hypoxic trial. Overall, our data poses a 

349 disconnection between RPE and exercise-related sensations (i.e., recovery and motivation). 

350 Further research should look to optimise HIIT in hypoxia for positive perceptual responses.

351 Perceptual responses after intervals were negatively impacted (i.e., higher breathlessness and 

352 limb discomfort, lower pleasure), and to a further extent in hypoxia than normoxia. Buchheit 
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353 et al. (5) reported that 3-min absolute-intenxity running intervals (84% vVO2MAX) in hypoxia 

354 (FiO2 = 15.4%) led to larger perceived limb discomfort compared to a lower absolute intensity 

355 in normoxia (90% vVO2MAX). We expected exercise-related sensations to be similar between 

356 conditions as parcipants could adjust their velocity where necessary. However, this was not the 

357 case. Similar responses have been shown elsewhere (42), with greater perceived overall 

358 discomfort, breathlessness and limb discomfort following progressive, sub-maximal, self-

359 paced cycling intervals (RPE = 3; modified CR10 Borg scale) in hypoxia (FiO2 = 13.0%) 

360 compared to normoxia at a similar power output. Perceived breathlessness, limb discomfort 

361 and pleasure are exercise-related sensations contributing to overall RPE during exercise (16). 

362 However, there is a detachment between these when immediately assessed after HIIT intervals. 

363 We suggest that self-paced HIIT in hypoxia leads to unfavourable exercise-related sensations 

364 before and after running intervals, compared to normoxia. 

365 Pre- and post-exercise 

366 During the Stroop test, alertness increased (i.e., faster reaction time) whilst accuracy was 

367 maintained following HIIT, irrespective of condition. It is well known that HIIT in normoxia 

368 generally increases cognitive performance versus rest (i.e., faster reaction time, better 

369 accuracy) (43). However, during fixed-intensity exercise in hypoxia, cognitive performance 

370 (i.e., attention and executive function) is worsened compared to normoxia (17,18). We report 

371 that even though exercise-related sensations were worsened during HIIT, cognitive 

372 performance (assessed post-HIIT) was not negatively affected. Ochi et al. (18) reported 

373 decreased Stroop performance 15 mins after 10 mins of moderate-continuous intensity exercise 

374 (50% peak oxygen uptake) in hypoxia (FiO2 = 13.5%) versus normoxia. Our results likely 

375 differ to the aforementioned study due to cognitive testing performed in normoxia and 

376 following different exercise modalities. Our data show that alertness is increased following 

377 HIIT, and not negatively impacted by hypoxia. 
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378 Limitations and perspectives

379 During self-paced exercise at a perceptually-regulated intensity in hypoxia, HR and muscle 

380 oxygenation responses are similar to normoxia for a lower running velocity. However, we used 

381 a single “hypoxic dose” (i.e., hypoxic severity and duration), target RPE and exercise duration 

382 during HIIT. Further investigations should refine self-selected protocols in hypoxia, such as 

383 the “hypoxic dose”, target RPE and exercise duration to minimise the negative side effects of 

384 worsened exercise-related sensations found under the present circumstances. In addition, 

385 whether there are gender differences in response to hypoxic exposure during 

386 perceptually-regulated HIIT should be investigated, given that our final sample size (n = 

387 19) included only three females. 

388

389 Conclusion

390 When carrying out HIIT at a perceptually-regulated intensity (RPE equal to 16), larger running 

391 velocity decreases are needed in hypoxia than normoxia. This is accompanied by similar 

392 physiological stress (i.e., HR and muscle oxygenation) during HIIT, and cognitive function 

393 adjustments after. In hypoxia, exercise-related sensations and blood lactate concentrations were 

394 higher-than-normal with larger peripheral oxygen desaturation. Overall, perceptually-regulated 

395 running velocity in hypoxia compared to normoxia may be an effective alternative, at the 

396 expense of less favourable exercise-related sensations. Our results suggest that athletes 

397 under the influence of hypoxia require lower external workloads to reach a perceptually-

398 regulated target during HIIT than normoxia. If employed in a practical setting, coaches 

399 should consider the potential of negatively implicated exercise-related sensations and 

400 blood lactate concentrations which may have further negative carry-over effects on 

401 training responsiveness in the following days.
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Psycho-physiological responses to perceptually-regulated interval runs in hypoxia and 

normoxia

 Our primary aim was to investigate whether perceptually-regulated high-intensity 

intervals in hypoxia are associated with slower running velocities versus normoxia, 

whilst physiological responses and exercise-related sensations do not differ. 

 Our findings show that participants adjusted to a progressively slower running velocity 

over the course of the protocol, and more so in hypoxic compared to normoxic 

conditions. 

 Whilst SpO2 was intuitively lower in hypoxia versus normoxia, heart rate and muscle 

oxygenation haemodynamics values changed over time but were matched between 

environmental conditions. 

 Further, exercise-related sensations (i.e., perceived recovery, motivation, 

breathlessness, limb discomfort and pleasure) were negatively impacted over time, and 

more so in hypoxic compared with normoxic conditions.

 Overall, slower interval running velocities in hypoxia achieve similar heart rate and 

muscle oxygenation responses to those observed in normoxia when perceptually-

regulated, yet at the expense of less favourable exercise-related sensations.
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1 Abstract 

2 We investigated whether perceptually-regulated high-intensity intervals in hypoxia are 

3 associated with slower running velocities versus normoxia, when physiological responses and 

4 exercise-related sensations remain the same. Nineteen trained runners (33.4 ± 9.1 years) 

5 completed a high-intensity interval running protocol (4 × 4-min intervals at a clamped 

6 perceived rating exertion of 16 on the 6–20 Borg scale, 3-min passive recoveries) in either 

7 hypoxic (HYP; FiO2 15.0%) or normoxic (NOR; FiO2 20.9%) conditions. Participants adjusted 

8 to a progressively slower running velocity from interval 1–4 (-7.0%), and more so in HYP vs. 

9 NOR for intervals 2, 3 and 4 (-4.6%, -6.4% and -7.9%, respectively; p < 0.01). Heart rate 

10 increased from interval 1–4 (+4.8%; p < 0.01), independent of condition. Arterial oxygen 

11 saturation was lower in HYP vs. NOR (86.0% vs. 94.8%; p < 0.01). Oxyhemoglobin (-23.7%) 

12 and total hemoglobin (-77.0%) decreased, whilst deoxyhemoglobin increased (+44.9%) from 

13 interval 1–4 (p < 0.01), independent of condition. Perceived recovery (-41.6%) and motivation 

14 (-21.8%) were progressively lower from interval 1–4, and more so in HYP vs. NOR for 

15 intervals 2, 3 and 4 (recovery: -8.8%, -24.2% and -29.3%; motivation: -5.3%, -20.3% and -

16 22.4%, respectively; p < 0.01). Perceived breathlessness (+18.6%), limb discomfort (+44.0%) 

17 and pleasure (-32.2%) changed from interval 1–4, with significant differences (+21.8%, 

18 +11.3% and -31.3%, respectively) between HYP and NOR (p < 0.01). Slower interval running 

19 velocities in hypoxia achieve similar heart rate and muscle oxygenation responses to those 

20 observed in normoxia when perceptually-regulated, yet at the expense of less favourable 

21 exercise-related sensations. 
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24 High-intensity intermittent running; normobaric hypoxia; perceptually-regulated exercise; 

25 ratings of perceived exertion; near-infrared spectroscopy; effort perception.
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1 Introduction

2 High-intensity interval training (HIIT) is a popular exercise format in athletic and clinical 

3 populations (1,2). HIIT includes repeated short-to-long (2–5 min) intense exercise bouts (80–

4 90% of the velocity associated with maximal oxygen uptake or vVO2Max) interspersed with 

5 shorter (1–3 min) recoveries (3). Compared to moderate-intensity continuous running, HIIT 

6 leads to similar improvements in cardiorespiratory fitness that is achieved with a shorter 

7 effective exercise duration per session (2). Due to the reduced time-commitment and exercise 

8 training volume, investigations surrounding the potential physiological and performance 

9 benefits of HIIT have surged (4). 

10 HIIT in normobaric hypoxia (a lower inspired oxygen fraction or FiO2) is receiving attention 

11 for its potential in further advancing athletic performance compared to HIIT in normoxia. 

12 Buchheit et al. (5) employed a HIIT protocol (3 × 5-min, 90-s recovery) carried out in hypoxia 

13 (vVO2Max = 84%; FiO2 = 15.4%) and normoxia (vVO2MAX = 90%) at a fixed-intensity 

14 (determined in normoxia) in highly-trained runners. A reduced physiological stress (i.e., lower 

15 heart rate or HR) was observed during hypoxia compared to normoxia, likely due to a lower 

16 vVO2Max in hypoxia versus normoxia. However, fixed exercise intensities, regardless of 

17 environmental conditions, do not permit adjustments (i.e., increases or decreases of workload) 

18 during exercise to match the intensity target (i.e., vVO2MAX). In turn, over-induced 

19 physiological stress may be counter-productive (i.e., greater deoxygenated muscle 

20 heamoglobin, lower oxygenated haemoglobin) for intended session goals (6). Furthermore, 

21 matched absolute fixed exercise intensities (i.e., a similar percentage of vVO2MAX) lead to 

22 greater physiological stress (i.e., compensatory increase in HR) in hypoxia compared to 

23 normoxia due to reduced FiO2 (7). Perceptually-regulated exercise intensities, that allow 

24 velocity adjustments based upon exercise-related sensations in order to maintain a target effort 
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25 level, may offer a viable solution, and is perhaps more reflective of how exercisers modify 

26 intensity during acute exercise.

27 Perceptually-regulated exercise permits the individual exercising to self-regulate external 

28 workload (i.e., running velocity/cycling power production) based upon Borg’s rating of 

29 perceived exertion (RPE) scale (8). The validity and usefulness of using RPE for perceptually-

30 regulating exercise has been described (9). The reduced oxygen availability in hypoxia makes 

31 the expectation tenable that there would be a slower self-selected running velocity in hypoxia 

32 for a given RPE, while velocity in normoxia would be more preserved, as evidenced previously 

33 (10). Chacaroun et al. (11) demonstrated for a lower power output (-15%), vastus lateralis 

34 muscle deoxyhemoglobin was higher and oxyhemoglobin lower in hypoxia (FiO2 = 13.5%) 

35 compared to normoxia during a single interval session (15 × 1-min at 75% of maximal HR, 1-

36 min recoveries). Although HR was similar between conditions, RPE has been reported to be 

37 higher in hypoxia compared to normoxia during fixed-intensity interval runs (5) and repeated-

38 sprint cycling (12). Employing self-paced exercise, in replace of fixed-intensity exercise, may 

39 assist in overcoming the over-excessive physiological stress observed when exercising in 

40 hypoxia versus normoxia, due to the likelihood of greater velocity preservations in the latter 

41 than the former.

42 In normoxia at pre-determined fixed intensities, HIIT is perceived as more enjoyable compared 

43 to moderate-intensity continuous running (13). However, during HIIT at fixed-intensities, 

44 exercise-related sensations decrease when the exercise intensity rises above threshold 

45 preference (14). Further, HIIT in hypoxia at fixed-intensities typically surpasses the preferred 

46 threshold in normoxia (15). Implementing a self-paced exercise model may permit 

47 modifications required (i.e., slower running velocities) to maintain exercise-related sensations 

48 contributing to RPE (16) in hypoxia and normoxia. Cyling continuously for 10 min at a fixed-

49 intensity (corresponding to 50% VO2Max) in hypoxia versus normoxia negatively impacts 
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50 cognitive function (17).  Slower self-selected running velocities may assist with mitigating 

51 hypoxic-induced negative cognitive function compared to normoxia (18). These potential 

52 findings may benefit athletes exercising intensely in hypoxia, shortly followed by skills 

53 requiring attention and accuracy.

54 Therefore, the aim of this study was to investigate the effect of HIIT at a clamped RPE of 16 

55 (typically used by athletes during HIIT) (19) in hypoxia and normoxia on adjustments in 

56 running velocity and associated exercise-related sensations of trained runners. We 

57 hypothesized that running velocity would be progressively slower in hypoxia compared to 

58 normoxia across intervals, whilst physiological and cognitive responses, and exercise-related 

59 sensations would not differ between conditions. Decreasing external load with matched internal 

60 load during perceptually-regulated HIIT in hypoxia compared to normoxia may benefit athletes 

61 during heavy training blocks prior to competition.

62

63 Methods

64 Participants

65 Nineteen trained runners (3 females, 16 males; age: 33.4 ± 9.1 years; height: 176 ± 88 cm; 

66 weight: 76.3 ± 10.9 kg) provided written informed consent to participate. Participants had no 

67 musculoskeletal injuries and met the following eligibility criteria: a training volume ≥6 h/wk, 

68 free of clinical signs of disease, orthopedic, neurological, cardiovascular or respiratory 

69 problems, and no hypoxic exposure >2000 m for >48 h 6 months before the study. The study 

70 was carried out in accordance with the Declaration of Helsinki and was approved by the Ethics 

71 Committee of the Anti-Doping Lab Qatar institutional review board (Agreement SCH-ADL-

72 170). A-priori sample size was calculated using G*Power (Version 3.1.9.3). This was 
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73 determined using published power output data by Jeffries et al. (20), whereby healthy 

74 individuals cycled at a perceptually-regulated intensity (RPE = 16) in hypoxic (FiO2 = 15.0%) 

75 and normoxic conditions. Twenty-one participants were deemed sufficient to yield a power of 

76 0.8 at an α probability of 0.05. Two individuals dropped out due to injuries sustained during 

77 their time enrolled onto the study, not associated with the HIIT protocols we employed.

78 Experimental design

79 Participants reported to the laboratory on three occasions, each separated by ≥48 h. The first 

80 session included study familiarisation. The second and third visits included completing a HIIT 

81 protocol in either hypoxia or normoxia in a randomized, conterbalanced order. Physiological, 

82 perceptual and cognitive responses were assessed continuously, immediately before and after 

83 each interval, and before and after the HIIT protocol, respectively. Participants were instructed 

84 to refrain from any intense exercise 48 h prior to each visit and consume their last meal at least 

85 2 h prior to the HIIT sessions. To minimise the impact of social desirability bias, participants 

86 were made aware of the purpose of the study but were naïve to experimental hypotheses. 

87 Laboratory conditions were similar throughout all sessions (mean temperature 22˚C, relative 

88 humidity 50%) and time of day was standardized for each participant.

89 Familiarization session

90 At the preliminary visit to the laboratory, participants were familiarised with the perceptual 

91 scales and cognitive test. Preferred running velocity (PRV) was determined for each participant 

92 in normoxia using a modified version of identifying preferred walking speed (21). After a 5-

93 min warm up at 10 km/h-1, participants completed four ramped treadmill runs (increasing and 

94 decreasing velocities) on an instrumented treadmill (ADAL3D-WR, Medical Development–

95 HEF Tecmachine, France). After every 20 s per ramp, participants rated their RPE of the 

96 current velocity (controlled by the investigator and out of sight of the participant) in accordance 
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97 with Borg’s (20) 6 (“no exertion at all”) – 20 (“maximal exertion”) numeric scale. Ramp one 

98 started at 10 km/h-1, increasing by 0.8 km/h-1 every 20 s until the velocity was considered as 

99 RPE ≥18; ramp two started at +1.5 km/h-1 the previous end velocity, decreasing by 0.8 km/h-1 

100 until the velocity was considerd as RPE 12; ramp three started at the velocity considered as 

101 an RPE of 14 in ramp two, increasing by 0.5 km/h-1 until the velocity was considerd as RPE 

102 ≥18; and ramp four started at +1.0 km/h-1 the previous end velocity, decreasing by 0.5 km/h-1 

103 until the velocity was considered as RPE 12. Ramps two, three and four began once the 

104 participants declared their perceived recovery level as a 7 out of 10 following the previous 

105 ramp (23). HR was recorded every 20-s through each ramp. PRV corresponded to the velocity 

106 participants considered as a RPE of 16 (between “hard” and “very hard”) or closest to a HR of 

107 160 bpm. After 10 min of rest, participants completed one 4-min interval composing the HIIT 

108 protocol (see below) for habituation.  

109 Experimental trials

110 Participants completed two experimental trials in normoxia (NOR; FiO2 = 20.9%) and hypoxia 

111 (HYP; FiO2 = 15.0%, equivalent to ~2700 m above sea level). After a standardised warm up 

112 (5-min at 10 km/h-1), a facemask connected to a portable hypoxic generator (See Hypoxic 

113 simulation section) was attached. Participants rested for 1-min (quiet standing) before a 1-min 

114 run at their PRV (RPE = 16). Participants then rested for 3 min before completing the HIIT 

115 protocol. The HIIT protocol was based upon aerobic interval-training (2). Participants 

116 completed four, 4-min intervals, interspersed with 3-min recoveries (quiet standing). The first 

117 30 s of each 4-min interval began at participants’ PRV; participants were then free to decide if 

118 or how treadmill velocity needed to be adjusted (manually by one experimenter) to ensure 

119 maintenance of a RPE of 16 every 30 s. Participants hand-signalled in response to the current 

120 velocity (finger up to increase, finger down to decrease, and circle using index finger and thumb 
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121 to maintain); and signalled again to inform how much of an increase/decrease in velocity is 

122 required [1, 2 or 3 fingers up (faster) or down (slower) for 0.5, 1.0 or 1.5 km/h-1 changes, 

123 respectively]. Signals were trialled during familiarisation. Mild verbal encouragement to keep 

124 running at an RPE of 16 was used throughout HIIT. Total hypoxic exposure corresponded to 

125 exactly 28 min.

126 Hypoxic simulation

127 Participants were fitted with a facemask fastened with a Velcro headset connected via plastic 

128 tubing to a hypoxic generator (Altitrainer, SMTec SA, Nyon, Switzerland) to simulate hypoxia. 

129 The gas mixing system enriches inspired air by adding a fixed quantity of nitrogen via a 30-L 

130 mixing chamber, with the dilution being constantly controlled by a PO2 probe (precision = 

131 T0.82 torr, safety FiO2 = 9.7%). The hypoxic generator was hidden from participant viewing 

132 to ensure condition blinding. When breathing ‘normal air’ during normoxia, the hypoxic 

133 generator was on (for background noise) and set at a simulated altitude of 100 m to increase 

134 the strength of blinding. 

135 Measures

136 Exercise intervals

137 HR was monitored telemetrically with a Polar transmitter-receiver (Polar S810, Kempele, 

138 Finland) and recorded 20 s before and every 30 s during each interval. Arterial oxygen 

139 saturation (SpO2) was assessed via finger pulse oximetery (Palmsat 2500, NONIN Medical 

140 Inc., Plymouth, MI, USA) at the same time intervals. HR and SpO2 were obtained before (i.e., 

141 after a 2-min seated period) and at the end of the warm-up procedure (i.e., prior to HIIT). Both 

142 the HR watch (RS400, Polar) and oximeter receiver were attached on the handrails of the 

143 treadmill outside of the participants’ view. 

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531



10

144 Muscle oxygenation trends of the right vastus lateralis muscle were recorded using near-

145 infrared spectroscopy (NIRS; Portalite, Artinis, Netherlands) in real-time. A wireless bi-polar 

146 optode sensor was attached (~10 cm above the proximal patella border) and secured to skin via 

147 adhesive tape. Sampling frequency was set at 10 Hz (11) following a ‘zero set’ of all signals. 

148 Bandages were fastened around the lower limb and optode to prevent external light distorting 

149 readings. Oxy- (Δ; [O2Hb]), deoxy- (Δ; [HHb]) and total haemoglobin (mol; [tHb]) were 

150 exported (1 Hz). For analysis, each interval was averaged and normalized to a 10 s sample prior 

151 to interval one (reference value) for each respective condition and presented as percentage 

152 change. 

153 During recovery

154 Perceived recovery and motivation to exercise were assessed 30 s before each interval. 

155 Perceived recovery was assessed by answering ‘how recovered do you feel currently?’ via a 

156 numeric scale, ranging from 0 (“very poorly recovered”) to 10 (“very well recovered’) (23). 

157 Recovery was assessed before interval one to determine perceptions following the warm up. 

158 Perceived motivation to exercise was assessed via a 20-cm visual analog scale (24). 

159 Participants were asked ‘how motivated do you feel to exercise right now?’ and answered by 

160 adjusting the level on the scale between 0 (“extremely low”; white colored) and 20 (“extremely 

161 high”; black colored). Immediately after each interval, ratings of perceived breathlessness, limb 

162 discomfort and pleasure were assessed. Perceived breathlessness was assessed by answering 

163 ‘how does your breathing feel currently?’ via a numeric scale, ranging from 0 (“nothing at 

164 all”) to 10 (“very, very severe”) (25). Using the same scale, perceived limb discomfort was 

165 assessed by answering ‘how do your legs feel currently?’. A 20-cm visual analog scale (same 

166 as motivation above) was used to assess ‘how pleasant was that run?’ ranging from 0 

167 (“extremely unpleasant”) and 20 (“extremely pleasant”). 
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168 Pre- and post-exercise

169 A capillary blood sample taken from the fingertip was analyzed for blood lactate concentration 

170 ([La+]) with the Lactate Pro (LT-1710, Arkray, Japan) portable analyzer before the warm-up 

171 and 2 min after HIIT. An offline Stroop colour-word test (26) assessed attention and executive 

172 function. Using one hand and as quickly as possible, participants selected the colored key on 

173 the keyboard representing the color of the text appearing on the screen (red, yellow, green or 

174 blue). The cognitive test lasted for 3 min, and took place in a silent environment before the 

175 warm up and 3 min after HIIT. Reaction time (ms; time taken to select a color) and accuracy 

176 (%; correct color selected) were averaged over each test for analysis. 

177 Statistical analysis

178 Data distribution was assessed via a Shapiro-Wilk test. A parametric within-subject two-way 

179 analysis of variance was used to investigate the main effect of condition (NOR vs. HYP), time 

180 (interval 1, 2, 3 vs. 4 or pre vs. post) and the condition × time interaction for normally 

181 distributed data. Partial eta-squared (η²) was calculated as a measure of effect size. Values of 

182 0.01, 0.06 and above 0.14 were considered as small, medium and large, respectively (27). A 

183 related samples Friedman’s non-parametric test was used for data not normally distributed. 

184 Bonferroni post-hoc pairwise comparisons were used to identify locations of significant effects. 

185 Statistical testing was carried out in SPSS (v21; CED, Cambridge, United Kingdom). Data was 

186 considered significant if p  0.05. All data are presented as group means ± SD.

187

188 Results

189 Changes in velocity and HR 
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190 Compared to interval 1, participants adjusted to a progressively slower running velocity during 

191 intervals 2, 3 and 4 (-2.8%, -5.2% and -7.0%, respectively; p < 0.01), and more so in HYP vs. 

192 NOR for intervals 2, 3 and 4 (-4.6%, -6.4% and -7.9%, respectively; p < 0.01; Figure 1A). 

193 Compared to interval 1, HR increased during intervals 2, 3 and 4 (+2.3%, +3.6% and 4.8%, 

194 respectively; p < 0.01; Figure 1B), independently of condition (p = 0.65). 

195 Changes in SpO2 and muscle oxygenation 

196 SpO2 was globally lower in HYP vs. NOR (-9.3% average across intervals; p < 0.01; Figure 

197 1C), independently of time (p = 0.37). From interval 1 to 4, [O2Hb] and [tHb] decreased (-

198 23.7% and -77.0%, respectively) whilst [HHb] increased (+44.9%; p < 0.01; Figures 2A–C), 

199 independently of condition (p > 0.08). 

200 Changes in exercise-related sensations 

201 Perceived recovery decreased progressively from interval 1 to 4 (-41.6%; p < 0.01), and more 

202 so in HYP vs. NOR before intervals 2, 3 and 4 (-8.8%, -24.2% and -29.3%, respectively; p = 

203 0.02; Figure 3A). Perceived motivation decreased progressively from interval 1 to 4 (-21.8%; 

204 p < 0.01), and more so in HYP vs. NOR before intervals 3 and 4 (-20.3% and -22.4%, 

205 respectively; p < 0.01; Figure 3B). Compared to interval 1, perceived breathlessness increased 

206 following intervals 2, 3 and 4 (+14.0%, +13.6% and +18.6%, respectively; p < 0.01; Figure 

207 3C), independently of condition. Breathlessness was rated globally higher in HYP vs. NOR 

208 (+21.8%; p < 0.05), irrespective of time. Compared to interval 1, perceived limb discomfort 

209 increased following intervals 2, 3 and 4 (+23.3%, +35.3% and +44.0%, respectively; p < 0.01; 

210 Figure 3D), independently of condition. Limb discomfort was rated globally higher in HYP vs. 

211 NOR (+11.3%; p = 0.01), irrespective of time. The time-dependent decreases in perceived 

212 pleasure across intervals (-14.7%, -25.4% and -32.3%, intervals 2, 3 and 4 vs. 1, respectively; 

213 p < 0.01; Figure 3E) tended to be larger in HYP vs. NOR (-31.3%, p = 0.06). 
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214
215 Figure 1 Changes in velocity (A), heart rate (B) and arterial oxygen saturation (C) during the 
216 high-intensity intermittent running protocol. Data are presented as mean ± SD. ANOVA main 
217 effects of time, condition and interaction are presented along with partial-eta squared for effect 
218 size into brackets. Black bars = hypoxic condition; white bars = normoxic condition. * denotes 
219 a statistically significant difference between conditions for a given interval (p < 0.05), a, b and 
220 c denotes a statistically significant difference vs. interval 1, 2 and 3, respectively (p < 0.05).

221 Changes in [La+] and attention and executive function 

222 The pre- to post-exercise increase in [La+] was larger (p = 0.001) in HYP (1.7 ± 0.8 vs. 13.1 ± 

223 3.8 mmol/l-1) vs. NOR (2.1 ± 0.9 vs. 10.1 ± 3.9 mmol/l-1). During the Stropp test, accuracy was 

224 unaffected by condition and time (Figure 4A). Participants’ reaction time was faster (+11%) 

225 post vs. pre HIIT (p < 0.01; Figure 4B), independently of condition.
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226

227
228 Figure 2 Changes in Oxygenated (A; O2Hb), deoxygenated (B; HHb) and total hemoglobin 
229 (C; tHb) during the high-intensity intermittent running protocol. Data are calculated as a 
230 percentage difference from baseline (%) and presented as mean ± SD. ANOVA main effects 
231 of time, condition and interaction are presented along with partial-eta squared for effect size 
232 into brackets. Black bars = hypoxic condition; white bars = normoxic condition. a, b and c 
233 denotes a statistically significant difference vs. interval 1, 2 and 3, respectively (p < 0.05).
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236 Figure 3 Changes in perceived recovery (A), motivation (B), breathlessness (C), limb 
237 discomfort (D) and pleasure (E) during the high-intensity intermittent running protocol. Data 
238 are presented as mean ± SD. ANOVA main effects of time, condition and interaction are 
239 presented along with partial-eta squared for effect size into brackets. Black bars = hypoxic 
240 condition; white bars = normoxic condition. * denotes a statistically significant difference 
241 between conditions for a given interval (p < 0.05), a, b and c denotes a statistically significant 
242 difference vs. interval 1, 2 and 3, respectively (p < 0.05).

243

244 Figure 4 Changes in accuracy (A) and reaction time (B) pre and post  high-intensity 
245 intermittent running protocol. Data are averaged over 3 mins and presented as mean ± SD.  
246 ANOVA main effects of time, condition and interaction are presented along with partial-eta 
247 squared for effect size into brackets. Black bars = hypoxic condition; white bars = normoxic 
248 condition. # denotes a statistically significant difference vs. pre-exercise (p < 0.01).

249

250 Discussion

251 Using a perceptually-regulated (RPE = 16) exercise model, we observed: 1) participants ran 

252 progressively slower during HIIT with larger decreases in HYP versus NOR, 2) HR and muscle 

253 oxygenation trends (during intervals) and cognitive responses (pre vs. post HIIT) were similar 

254 between conditions, 3) greater breathlessness and limb discomfort, and lower recovery, 
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255 motivation and pleasure scores were stated during recovery between HYP vs. NOR, and 4) 

256 blood lactate concentration was larger after HYP vs. NOR. Overall, using a manipulation of 

257 oxygen availability, reduced external workload (i.e., running velocity) during perceptually-

258 regulated interval running is associated with a similar internal load (i.e., physiological 

259 responses). Although no cognitive function differences were found between conditions, this is 

260 achieved with less favourable exercise-related sensations. A matched internal workload for a 

261 decreased external workload during perceptually-regulated HIIT in hypoxia versus normoxia 

262 may assist athletes to reach intended session goals with minimal over-induced physiological 

263 stress. However, perceptually-regulated HIIT exacerbates exercise-related sensations and 

264 blood lactate concentrations in hypoxia compared to normoxia. This may then have negative 

265 carry-over effects on training responsiveness in the following days.

266 Exercise intervals

267 The velocity deemed equal to RPE 16 (PRV) was as expected for trained runners (~15 km/h-1) 

268 (28). Interestingly, running velocity did not differ between conditions during the first HIIT 

269 interval, despite lower SpO2 in hypoxia versus normoxia. Smith & Billaut (29) found 

270 maintained SpO2 during repeated-sprinting in normoxia (20 × 5-s all out, 25-s recovery) until 

271 after the fifth sprint in national-level soccer players, whereby peak power significantly 

272 decreased compared to sprint one. Overall, it seems that initial decreases in SpO2 (within 

273 interval one) do not necessarily impact on HIIT compared to sprint intervals.  

274 We found that participants selected a progressively slower running velocity during HIIT in 

275 both conditions. In highly-trained middle to long-distance runners, a 6% reduction in vVO2MAX 

276 when running in hypoxia versus normoxia is acceptable to match the acute physiological stress 

277 induced (5). It can be suggested that self-selected velocity adjustments found in the current 

278 study to maintain RPE 16 are matched with modifications in hypoxic versus normoxic traning 
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279 sessions employed by coaches and sport scientists for athletes (30). Decreased external 

280 workloads have been reported by Pramsohler et al. (31) during continuous cycling (seven 30-

281 min sessions over 3-wk), whereby participants cycled at -28% lower power output in hypoxia 

282 (FiO2 = 15.3%) versus normoxia for a similar HR. Differences in these findings and ours may 

283 be due to the inclusion of geriatric patients completing pre-set (in normoxia) fixed-intensity 

284 cycling compared to trained runners self-regulating HIIT in the current study. However, 

285 Fernández-Menéndez et al. (10) reported preferred walking velocity (RPE of 10) in hypoxia 

286 (FiO2 = 15.3%) was 7% slower than normoxia in obese adults over 3 weeks. Using a self-paced 

287 model, irrespective of RPE target, population demographics and training block duration, lower 

288 external workloads are selected in hypoxia compared to normoxia. Overall, decreases in self-

289 paced running velocity occured to a greater extent in hypoxia than normoxia to maintain RPE 

290 16, suggesting of a lower external workload. This finding may be of benefit to athletes who are 

291 unable or advised by their coach not to be training at a full intensity. Completing perceptually-

292 regulated HIIT in hypoxia that requires slower running velocities compared to normoxia may 

293 in turn minimise mechanical constraints and eventually injury risk.

294 Our data show HR increased progressively during HIIT, irrespective of condition. This matches 

295 our hypothesis that HR will be comparable between hypoxia and normoxia, even though 

296 running velocity was lower in hypoxia. Other studies employing moderate continuous-intensity 

297 exercise have also found matched HR responses between hypoxic and normoxic training 

298 interventions (~4 weeks) when cycling at a -21.0% power output in healthy males (32) and 

299 walking/running at a -17.5% velocity in obese adults (33) in hypoxia verus normoxia. Although 

300 exercise intensities in these studies were fixed, we believe similar increases in HR between 

301 conditions occur due to the environmental stressor (hypoxia) augmenting autonomic cardiac 

302 regulation (34). Overall, it seems self-paced exercise in hypoxia provides an added 
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303 environmental stressor that is able to mimick HR responses in normoxia for a lower external 

304 load. 

305 Lower [O2Hb] and [tHb], and greater [HHb] of the vastus lateralis were recorded across HIIT, 

306 irrespective of condition. Decreases in [O2Hb] and increases in [HHb] were expected during 

307 HIIT as oxygen delivery is outweighed by utilisation, whilst decreases in [tHb] reflect a lower 

308 localised blood flow (35). Active musculature oxygenation is negatively impacted during 

309 fixed-intensity exercise in hypoxia compared to normoxia due to a lower FiO2 (7). In support 

310 of this, Chacaroun et al. (11) reported lower [O2Hb] and greater [HHb] with maintained [tHb] 

311 of the vastus lateralis during fixed, relative high-intensity cycling in hypoxia (85% maximal 

312 power output in normoxia; FiO2 = 13.5%) versus normoxia. Where we employed a self-paced 

313 exercise model, similar [O2Hb] and [HHb] responses are achieved between conditions. This is 

314 likely explained through the decreased workload (i.e., slower running velocity) in hypoxia 

315 compared to normoxia, subsequently lowering oxygen utilisation. Discrepants findings in [tHb] 

316 may be due to different exercise modalities (cycling versus running) modifying blood flow 

317 regulation (36). Similar to HR responses (central) previously discussed, it can be suggested 

318 here that local (tissue oxygenation) physiological stress is matched between conditions during 

319 HIIT in hypoxia at a slower velocity compared with normoxia.

320 Elevations in [La+] following HIIT were higher in HYP than NOR. Values in the current study 

321 (10–13 mmol/l-1) are somewhat higher than those (5–6 mmol/l-1) reported elsewhere following 

322 a single HIIT session (6 × 4-min intervals at a RPE ~17, 4-min recoveries) (19). This maybe 

323 due to a 1:0.75 work:rest ratio implemented during our protocol compared to 1:1 employed by 

324 Seiler & Sjursen (19). [La+] normalization during shorter recovery periods may not occur to 

325 the extent following longer recovery periods due to excess pyruvate accumulation (37). This 

326 suggests that HIIT in hypoxia per se leads to increased [La+] at slower running velocities 

327 compared to normoxia for similar physiological stress amounts. Practitioners should be aware 
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328 that perceptually-regulated HIIT in hypoxia is a viable method for matching indices of 

329 physiological stress to normoxia. However, the blood lactate concentration increases after 

330 exercise were larger in hypoxia compared to normoxia. This may have negative implications 

331 on the muscle fatigue recovery process.

332 During recovery

333 Perceptual responses to HIIT were negatively impacted (i.e., lower recovery, and motivation) 

334 when assessed before intervals, with further exacerbations in hypoxia. Participants were 

335 instructed to maintain a RPE of 16 throughout HIIT by adjusting their velocity where 

336 necessary. It might be surprising at first that perceptual responses were worse in hypoxia 

337 compared to normoxia. However, perceived recovery and motivation are important affects 

338 associated with exercise intensity regulation (38). Our results indicate that hypoxia negatively 

339 impacts these affects during HIIT compared with normoxia. This may be explained through 

340 lower perceived capabilities of hypoxic HIIT completion over normoxia (39), lowering 

341 perceived recovery and motivation. Further, it could be postulated that cerebral deoxygenation 

342 was greater during HIIT in hypoxia versus normoxia, as demonstrated by Subudhi et al. during 

343 incremental cycling (40, 41). Accordingly, cerebral deoxygenation during HIIT may contribute 

344 to an integrative decision regarding negative perceptions, in which hypoxia hastens this effect 

345 (41). Given that the perceptually-regulated exercise model is governed centrally, this may 

346 provide a potential explanation as to why exercise-related sensations were more elevated in the 

347 hypoxic trial. Overall, our data poses a disconnection between RPE and exercise-related 

348 sensations (i.e., recovery and motivation). Further research should look to optimise HIIT in 

349 hypoxia for positive perceptual responses.

350 Perceptual responses after intervals were negatively impacted (i.e., higher breathlessness and 

351 limb discomfort, lower pleasure), and to a further extent in hypoxia than normoxia. Buchheit 
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352 et al. (5) reported that 3-min absolute-intenxity running intervals (84% vVO2MAX) in hypoxia 

353 (FiO2 = 15.4%) led to larger perceived limb discomfort compared to a lower absolute intensity 

354 in normoxia (90% vVO2MAX). We expected exercise-related sensations to be similar between 

355 conditions as parcipants could adjust their velocity where necessary. However, this was not the 

356 case. Similar responses have been shown elsewhere (42), with greater perceived overall 

357 discomfort, breathlessness and limb discomfort following progressive, sub-maximal, self-

358 paced cycling intervals (RPE = 3; modified CR10 Borg scale) in hypoxia (FiO2 = 13.0%) 

359 compared to normoxia at a similar power output. Perceived breathlessness, limb discomfort 

360 and pleasure are exercise-related sensations contributing to overall RPE during exercise (16). 

361 However, there is a detachment between these when immediately assessed after HIIT intervals. 

362 We suggest that self-paced HIIT in hypoxia leads to unfavourable exercise-related sensations 

363 before and after running intervals, compared to normoxia. 

364 Pre- and post-exercise 

365 During the Stroop test, alertness increased (i.e., faster reaction time) whilst accuracy was 

366 maintained following HIIT, irrespective of condition. It is well known that HIIT in normoxia 

367 generally increases cognitive performance versus rest (i.e., faster reaction time, better 

368 accuracy) (43). However, during fixed-intensity exercise in hypoxia, cognitive performance 

369 (i.e., attention and executive function) is worsened compared to normoxia (17,18). We report 

370 that even though exercise-related sensations were worsened during HIIT, cognitive 

371 performance (assessed post-HIIT) was not negatively affected. Ochi et al. (18) reported 

372 decreased Stroop performance 15 mins after 10 mins of moderate-continuous intensity exercise 

373 (50% peak oxygen uptake) in hypoxia (FiO2 = 13.5%) versus normoxia. Our results likely 

374 differ to the aforementioned study due to cognitive testing performed in normoxia and 

375 following different exercise modalities. Our data show that alertness is increased following 

376 HIIT, and not negatively impacted by hypoxia. 
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377 Limitations and perspectives

378 During self-paced exercise at a perceptually-regulated intensity in hypoxia, HR and muscle 

379 oxygenation responses are similar to normoxia for a lower running velocity. However, we used 

380 a single “hypoxic dose” (i.e., hypoxic severity and duration), target RPE and exercise duration 

381 during HIIT. Further investigations should refine self-selected protocols in hypoxia, such as 

382 the “hypoxic dose”, target RPE and exercise duration to minimise the negative side effects of 

383 worsened exercise-related sensations found under the present circumstances. In addition, 

384 whether there are gender differences in response to hypoxic exposure during perceptually-

385 regulated HIIT should be investigated, given that our final sample size (n = 19) included only 

386 three females. 

387

388 Conclusion

389 When carrying out HIIT at a perceptually-regulated intensity (RPE equal to 16), larger running 

390 velocity decreases are needed in hypoxia than normoxia. This is accompanied by similar 

391 physiological stress (i.e., HR and muscle oxygenation) during HIIT, and cognitive function 

392 adjustments after. In hypoxia, exercise-related sensations and blood lactate concentrations were 

393 higher-than-normal with larger peripheral oxygen desaturation. Overall, perceptually-regulated 

394 running velocity in hypoxia compared to normoxia may be an effective alternative, at the 

395 expense of less favourable exercise-related sensations. Our results suggest that athletes under 

396 the influence of hypoxia require lower external workloads to reach a perceptually-regulated 

397 target during HIIT than normoxia. If employed in a practical setting, coaches should consider 

398 the potential of negatively implicated exercise-related sensations and blood lactate 

399 concentrations which may have further negative carry-over effects on training responsiveness 

400 in the following days.
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