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ABSTRACT10

Breast lesion detection employing state of the art microwave systems provide a safe, non-ionizing technique that can differentiate
healthy and non-healthy tissues by exploiting their dielectric properties. In this paper, a microwave apparatus for breast lesion
detection is used to accumulate clinical data from subjects undergoing breast examinations at the Department of Diagnostic
Imaging, Perugia Hospital, Perugia, Italy. This paper presents the first ever clinical demonstration and comparison of a
microwave ultra-wideband (UWB) device augmented by machine learning with subjects who are simultaneously undergoing
conventional breast examinations. Non-ionizing microwave signals are transmitted through the breast tissue and the scattering
parameters (S-parameter) are received via a dedicated moving transmitting and receiving antenna set-up. The output of a
parallel radiologist study for the same subjects, performed using conventional techniques, is taken to pre-process microwave
data and create suitable data for the machine intelligence system. These data are used to train and investigate several suitable
supervised machine learning algorithms nearest neighbour (NN), multi-layer perceptron (MLP) neural network, and support
vector machine (SVM) to create an intelligent classification system towards supporting clinicians to recognise breasts with
lesions. The results are rigorously analysed, validated through statistical measurements, and found the quadratic kernel of
SVM can classify the breast data with 98% accuracy.

11

Introduction12

Breast cancer is the most common cancer to affect women worldwide and the second most common cancer overall1, with13

nearly 1.7 million new cases diagnosed annually2. Mammography, the gold screening standard, is not suggested for screening14

women under 50 years old due to ionizing radiation exposure concerns. This means that 40% of all women in the EU (age15

25-49 years old), representing 20% of breast cancer cases in Europe, cannot avail of the the most conventional breast cancer16

screening modality3. Furthermore, X-ray mammography cannot be undergone frequently, i.e. no more than once every 2 years17

in the EU, and it is prohibited for obvious reasons during pregnancy4. Breast cancer risk increases with further exposure to18

ionizing radiation from repeated mammography examinations5. Women who have undergone such tests also state that the19

exam is painful, particularly during their premenstrual period, or when the test is performed on women with smaller breasts6.20

Lastly, conventional mammography has been shown to miss approximately 15% of cancer (false negative)7, 8. Bearing in21

mind these limitations, new imaging approaches must be considered. Hitherto, microwave imaging has gained increased22

attention for its potential in breast cancer detection scenarios, fortified by the measurable variations in the dielectric properties23

of malignant and normal tissues at the microwave frequency ranges used. Explicitly, the work presented by Li, Xu, et al.9 and24

Bond, Essex J., et al.10, demonstrated that a substantial contrast between malignant and healthy breast tissue is present; this25

contrast was demonstrated to be up to a factor of five in conductivity and permittivity. More recent works propose that this26

contrast is only between malignant and fatty breast tissues, with a lower contrast (lower than 10% in dielectric properties) is27

found between healthy fibro glandular and malignant tissues11–13. Moreover, Lazebnik, Mariya, et al., demonstrated that the28

dielectric properties of benign lesions are similar to the properties of fibro glandular tissues by13. Current microwave breast29

imaging research can be considered in two categories; microwave tomography and ultra-wideband (UWB) radar techniques14.30

A small number of prototypes are at clinical trial stages, including developments by Dartmouth College15 and the University of31

Bristol16. Specifically,15 employs microwave tomography and employs antennas with a matching liquid, while16 employs an32

UWB radar approach and uses an array of 60 antennas with a matching liquid.33
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A UWB microwave prototype (Mammowave UBT etc) has been constructed, tested and validated previously17. The system34

operates in air employing two antennas and displays maps of dielectric property changes in tissues. Artefact removal (a35

matching liquid is not used here) is performed through appropriate mathematical procedures18, 19. A Huygens Principle (HP)36

approach is used to capture differences in dielectric properties and discriminates tissues and tissue condition. Test on phantoms37

have shown a resolution of 1 mm18, while a sensitivity of 90% has been achieved in the ongoing clinical trial19.38

Recently, machine learning based approaches for breast lesion detection have enjoyed increased attention20–22. Machine39

learning (ML) can be explicitly used to make decisions based on learned patterns (available datasets) and can automatically40

create an analytical model for future predictions without direct human intervention. Various methods such as nearest neighbor,41

neural networks, naive bayes, decision trees, conventional ML algorithms, and some hybrid approaches have been used for42

classification purpose. Also, deep learning (DL) based methods for tumor classification has been investigated. However, limited43

to breast lesion microwave imaging, ML and DL for breast lesion detection have been applied hitherto only to microwave44

datasets obtained through numerical simulations or measurements in phantoms23–27 and nor ever before to clinical data.45

The authors present the first ever work on clinically trialed UWB data augmented by ML for automated safe breast lesion46

detection. The clinical trial UWB data have been collected at Perugia Hospital, Italy, using the microwave apparatus named47

“MammoWave”, a non-ionizing and X-ray free mammogram invented by UBT Srl, Italy. In this research, we have investigated48

the prospect of employing ML algorithms for computer-aided breast lesion detection to support clinicians, by reducing overhead49

and increasing the speed in decision making between healthy and non-healthy lesion patterns from the clinically collected50

data through the current microwave apparatus. Various ML algorithms have been applied in the field of pattern identification51

and future prediction. Among them, three popular methods, k-nearest neighbor (kNN), multi-layer perceptron (MLP) neural52

network, and support vector machine (SVM) are explored here to analyze the acquired labeled MammoWave data thoroughly.53

These experiments have been performed to fit the labeled training data with the optimal model parameters for predicting the54

presence of a lesion. The kNN uses a distance-based decision function for classifying lesions and MLP employs a nonlinear55

activation function to distinguish lesions. The obtained accuracy from these two classifiers is less than 60%, thus more suitable56

algorithms must be investigated to compare and establish the proposed work. Support vector machine has been investigated57

using a linear and quadratic kernel, which is faster and has achieved optimal prediction outcomes for lesion classification.58

These kernels are making SVM a powerful tool that can perform both linear and non-linear classification by mapping the inputs59

to a high dimensional feature space and separates the categories by a gap that is as wide as possible. The ML outcomes are60

evaluated through the results obtained from the radiologist’s report of the Perugia Hospital. These ML outcomes also have61

been validated through established statistical measures. Preliminary results show the proposed method produces minimal62

false-positives and false-negatives compared to other state-of-art methods and develop a viable anonymize method for mass63

screening breast lesion detection in future.64

Proposed Methodology65

A “pipeline” schematic of the proposed work has been shown in Figure 1. At first a subject undergoing conventional screening66

is asked to also undertake a parallel UWB imaging examination. In this case the conventional methods offered were echography,67

mammography, magnetic resonance imaging. The radiologist in charge reviewed the conventional imaging data as usual to68

make a decision regarding the screening outcome. The radiologist decisions have been considered as a gold standard identity69

of each breast type investigated. Then, these gold standard labels of the breasts have been employed to train the supervised70

machine learning algorithms to identify breast lesions automatically via the UWB imaging system. The outcomes of breast71

lesion detection from radiologists and ML have been compared to ensure system performance. The details of intermediate72

stages have been described in the following sections.73

Apparatus description and set-up74

All of the UWB imaging data used in this paper were collected on subjects using the microwave prototype (MammoWave, UBT75

Srl, Italy) located at the Department of Diagnostic Imaging, Perugia Hospital, Perugia, Italy. All of the data was anonymized.76

The functioning principle of the MammoWave system is based on the dielectric property difference between normal tissue and77

tissue with lesions at microwave frequencies, i.e. the different behaviors that tissues display when irradiated by microwave78

signals.79

The hardware of the microwave prototype is composed of an aluminum cylindrical hub and shown in Figure 2. The80

cylindrical hub represents a shield from external interferences and as a bearing structure for the entire device. On top of81

the cylindrical hub lies the examination bed. The bed incorporates a plexiglass cup aimed at containing the breast of the82

patient (facing down), with no pressure added to the breast tissue. Several sizes of this cup are available to accommodate the83

examination of different breast sizes.84

The transmit and receive (TX and RX respectively) antennas are positioned inside the hub and external to the cup, as shown85

in Figure 3. They can rotate around the azimuth, to irradiate the breast (through TX ) and receive signals scattered by the breast86
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Figure 1. Flow diagram of the proposed work.

itself (through RX ). TX and RX have a distance from the center a1=20 cm and a0=7 cm, respectively. Both TX and RX are87

linearly polarized, operate in the 1-9 GHz frequency band and are connected to a vector network analyzer - VNA (Copper88

Mountain, Indianapolis, IN). Specifically, the received signals are the complex S21 data from the VNA. In particular, RX can be89

rotated to measure the received signal at the points rxnp ≡ (a0,φnp), displaced along a circular surface having radius a0, as90

shown in Figure 3.91

Enp,txm(a0,φnp; txm; f ) = S21np,txm(a0,φnp; txm; f ) (1)

with np = 1, ...,NPT . The device uses M positions of the transmitting antennas, i.e. TX can be rotated to transmit the signal92

from the points txm ≡ (a1,φm), with m = 1, 2,..., M. Also, the device uses number of frequency (NF) samples in the band93

B = [ fmin ÷ fmax]. The received signals are then processed through HP to calculate the field inside the cylinder; this field is then94

used to generate an image, which is a homogeneity map of dielectric properties19. Here, instead of using the received signals to95

generate images through the HP based algorithm, we employ ML methods on the raw signals to analyze and understand the96

difference between signals scattered from normal breast and breast with lesion to make decision about breast condition. The97

experiment was performed using Matlab R2017a tool in an IntelR CoreT M i7 processor@ 3.60GHz based Windows 7 Enterprise98

64-bit operating system and it has 7856 MB NVIDIA Graphics Processing Unit (GPU).99

In-vivo acquisition100

Continuous clinical recruitment of volunteers is underway at Perugia Hospital, Italy. The clinical validation for the first forty-five101

volunteers has been approved by the Ethical Committee of Regione Umbria, Italy, (N. 6845/15/AV/DM of 14/10/2015). More102

recently, another partner hospital, Foligno Hospital, also in Italy, has been approved by the Ethical Committee of Regione103

Umbria, Italy, to join the clinical validation trials. This will extend the number of subjects to one hundred and fifty (N.104

10352/17/NCAV of 16/03/2017). This trial is a feasibility study of the method shown in Figures 2 and 3 employing microwave105

imaging to detect breast lesions, with the intention of gauging the potential of the proposed system for medical screening and106

localization of breast lesions. The list of a first pilot set of 18 subjects, who have been recruited under the aforementioned107

protocol and used for this study, is presented in Table 1. A previous table with 16 subjects was presented in 28.108
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Figure 2. The UBT Microwave ‘MammoWave’ apparatus.

(b)


Figure 3. (a) Pictorial view of the system, where the transmit (TX ) and receive (RX ) antennas are placed inside the hub but
external to the cup. (b) TX (black dot) and RX (red dot) can be moved around the azimuth, i.e. horizontal plane, on two
circumferences having radius a1 and a0, respectively29.

All volunteers provided informed consent with five subjects undergoing the proposed microwave imaging for both breasts.109

Thirteen subjects underwent the prototype imaging as shown in Figure 3 for a single breast. This research was conducted110

adhering to the ethical standards of the institutional and/or national research committee incorporating the 1964 Helsinki111

declaration and its later amendments or analogous ethical standards. The study was performed in harmony with the Code of112

Ethics of the World Medical Association for experiments involving humans.113

A conventional exam and full radiologist study was performed for each subject; echography and/or mammography or114

(limited to one case) magnetic resonance imaging were the conventional exams performed in these cases. The MyLab 70 xvg115

Ultrasound Scanner (Esaote, Italy) was the echographic method used; A Selenia LORAD Mammography System (Hologic,116

Marlborough, USA) was employed for mammography examinations; and a 3T scanner (Siemens Healthcare, Germany) was117

used for magnetic resonance imaging. The radiologists diagnosis is listed in Table 1 which presents the outcomes from the118

radiologists report along with the subject’s breast condition details. Where available, the breast type has been classified119

according to density, as defined by the American College of Radiology (ACR) scale ranging from ACR1 (extremely fatty breast)120

to ACR4 (extremely heterogeneous fibroglandular breast)30. If present, the inclusion type was classified according to defined121

standards31–33.122

Following a volunteer’s agreement to participate, the clinical study coordinator supports each volunteer to place their breast123

correctly into the system cup. This cup is integrated into the prototype bed for improved comfort and patient stability. Exam124

data is processed via a computer interface and is observed by a system operator located in the room. Overall, the exam and data125

collection phase require approximately five minutes per breast. The transmit and receive antennas (TX and RX are positioned126

on the azimuth plane at the same height which crosses the center of the breast of the subject being examined (after ensuring127

that the antennas half power beam angle include the breast). M=15 transmitting positions are employed, divided in 5 groups128

centered at 0o,72o,144o,216o, and 288o on the azimuth plane; each group has 3 transmitting positions displaced from each129

other by 4.5o. For each transmitting position, four receiving positions, at 90o from each other are employed. The S21 was130

acquired at NF=1601 frequencies from 1 to 9 GHz in ∆ f = 5 MHz increments for each TX and RX position. The received131

signals are processed as follows:132
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Table 1. Subject lists; details and related radiologist review. Overall shows 12 healthy and 11 non-healthy tissues. Included in
the non-healthy is one post-surgical breast with seroma.

Subject index and breast (left/ right) Year of birth Breast type Diagnostic test Output of the radiologist study
01R 1983 ACR4 ecography Healty
01L 1983 ACR4 ecography Healty
02R 1936 ACR2 mammography carcinoma papillary
03R 1960 N/A magnetic resonance carcinoma infiltrating grade 2
04R 1987 ACR4 ecography Healty
04L 1987 ACR4 ecography Healty
05L 1987 N/A ecography benign fibroadenoma
06L 1975 ACR2 ecography + mammography benign fibroadenoma
07R 1980 ACR3 ecography + mammography benign microcalcifications
08R 1929 ACR4 ecography + mammography carcinoma
09R 1963 ACR3 mammography Healthy
09L 1963 ACR3 mammography benign fibroadenoma
10L 1964 ACR4 mammography Healthy
10R 1964 ACR4 mammography Healthy
11R 1946 ACR2 mammography Healthy
12R 1966 ACR3 mammography carcinoma (4 cm), b5
13L 1971 ACR3 mammography carcinoma
14L 1996 N/A ecography benign fibroadenoma
15R 1969 ACR4 mammography microcalcifications
16R 1948 ACR2 mammography Healthy
17R 1971 ACR4 mammography Healthy
17L 1971 ACR4 mammography Healthy
18R 1983 ACR3 mammography Healthy

1. Let us consider the first transmitting antennas group and the antennas in the group are numbered as tx1, tx2, tx3; the first133

transmitting group is assumed to be centered at φ = 0o. For each transmitting antenna of the group, we consider the134

signals received at NPT = 4 points displaced at φ = 45o,135o,225o,315o with respect to the corresponding transmitting135

antenna.136

2. To remove skin artefacts, we generate the following signals:137

E1−2(a0,φnp; tx1−2; f ) = Enp,txm(a0,φnp; tx1; f )−Enp,txm(a0,φnp; tx2; f ) (2)

E2−3(a0,φnp; tx2−3; f ) = Enp,txm(a0,φnp; tx2; f )−Enp,txm(a0,φnp; tx3; f ) (3)

where, φnp = 45o, 135o, 225o, 315o
138

3. The procedure is repeated for the other four transmitting groups. It follows that, for each microwave exam, we have 40139

signals in the frequency domain.140

Supervised Machine Learning141

The data gathered from the microwave examination are considered for classification purpose and/or to predict future lesion142

detection instances. This is the first investigation to use microwave clinical data from this apparatus undergoing machine143

learning classification. Labeled information about the healthy and non-healthy breast pattern have been gathered from the output144

of the radiologist study. Specifically, a healthy breast is a breast with no lesion, while a non-healthy breast is a breast containing145

a lesion which may be benign or malignant. The accumulated clinical data have high variance in Euclidean space, so both146

linear and non-linear classifiers are employed to optimised performance for identifying healthy and non-healthy subjects. There147

are several ML algorithms present for classification tasks in the literature, some of them being very problem specific while148

others aim to be more general requiring an investigation approach to be fitted to available data. The selection of appropriate ML149

methods is quite intuitive and the data distribution in the plane needs to be initially observed. It has been found that the gathered150
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microwave data are non-linearly distributed in the plane. Thus, the leading supervised and non-linear classifiers, KNNs, MLPs,151

SVMs have been examined, where cross validation techniques, augmented by random sub-sampling methods are employed to152

asses the performance, through statistical metrics, and discover the most appropriate classification model. Initial results from153

non-linear classifiers such as, KNNs and MLPs were unsatisfactory. The radial basis function (RBF) could be an option, but it154

performs well where the data are in loop or spherical shape and circular decision boundary can differentiate the groups. Though,155

the data are non-linear they are not spherically distributed, hence the SVM has been implemented with a linear kernel function156

because, although the data distribution appears non-linearly separable in the 2D plane, there is still a possibility to classify157

most lesion instances accurately by linear decision boundary while the data are being projected into hyperplane i.e., impossible158

to visualise. The linear kernel of SVM also failed to achieve satisfied performance, and SVM has been experimented with159

quadratic kernel function which outperformed other classification techniques.160

Cross validation and performance evaluation161

A cross validation technique has been used to assess, enhance predictive outcomes, and select models for developed ML162

prototypes. This has been done by repeated random sub-sampling of the data, which is also known as Monte Carlo cross-163

validation34. The dataset has been randomly partitioned to select the training and validation dataset, where training and164

validation sets have been used to train and evaluate performance of a selected ML model. The ratio of training and testing data165

has been specified during each round e.g., training has been started with 10% randomly selected data when rest of the 90%166

data have been considered as validation/testing data. The amount of training data has been increased by 10% while amount of167

validation dataset decreased by 10% in each round and this process has been repeated till the model has not overfitted. Each168

model has been run 25 rounds to select the appropriate ratio of training and testing and found 40% of training and 60% of169

testing data is necessary to prevent the ML algorithms from overfitting. The results (statistical metrics) have been aggregated170

and averaged over all the rounds. A number of statistical metrics35, accuracy, true positive rate (TPR) or sensitivity, true171

negative rate (TNR) or specificity, positive predictive value (PPV), and negative predictive value (NPV) have been used to172

investigate the classification performance of the classifiers. A receiver operating characteristic (ROC) curve has been generated173

for each ML model with the validation dataset to illustrate the diagnostic ability and stability of the classification system with174

different discrimination threshold. Subsequently, Matthews Correlation Coefficient (MCC)36 and Youden’s index37 have been175

implemented to investigate the classification outcomes, where, MCC and Youden’s index estimate quality of classification and176

probability of the informed decision respectively. The outcomes and it’s analysis have been described in next section.177

Results Analysis178

According to the radiologist’s review, 12 healthy breasts and 11 non-healthy breasts, i.e. breasts with lesions, underwent the179

microwave exam of the 18 subjects. As described in the previous section, each microwave exam leads to 40 different patterns in180

the frequency domain. As an example, Figure 4 below shows E1−2(a0,φnp; tx1−2; f ) for φnp = 45o for one healthy and one181

non-healthy breast.182

1 2 3 4 5 6 7 8 9
Frequency 109

0

0.005

0.01

0.015

0.02

0.025

|S
21

|

Healthy
Non-healthy

Figure 4. Example signals of healthy and non-healthy patterns in 45o.
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k-nearest neighbor classifier183

Initially, the investigation began by employing the k-NN classifier38. The classifier is particularly simple, measuring the184

proximity of features in the hyperspace without any assumption of the underlying data distribution to predict a category, making185

it flexible for decision making. Two effective distance metrics, Euclidean and Mahalanobis perform well with k-NN, but186

Mahalanobis distance requires the inversion of covariance matrix which could increase the computational overhead. Therefore,187

the Euclidean distance is considered here to measure the distance of a feature vector from its nearest neighbor. The k is chosen188

as odd for this two-class problem that one pattern could not predict under the same class label by the classifier. Table 2 displays189

the classification outcomes, where k is varied from 1 to 5 and 10%, 20%, 30%, and 40% data are randomly selected for190

the training phase. The results show that the algorithm exhibited good performance with increasing training data volume as191

expected. Here, k = 1, produces the optimal result among other NNs with 40% of training data volume. It attained the testing192

accuracy 0.608 (≡60.8%). TPR or sensitivity measures the ability of the algorithm to identify the non-healthy subjects, which193

is 0.541(≡54.1%) in the case of k = 1. It could correctly identify the subjects with lesions with a rate of 0.667 (≡66.7%).194

PPV and NPV are influenced by the prevalence of having a lesion in the breast that is being tested. In case of k = 1, PPV195

and NPV the probability that the subjects with positive lesion identification truly have the lesion and negative identification196

of lesions truly do not have the lesion. The 1NN produces fewer false predictions close to the decision boundary bringing197

improved accuracy over 3NN and 5NN; also, truly positive prediction for having lesion and vice versa. Additionally, the MCC198

measurements over prediction results are also not cogent for 1NN, 3NN, and 5NN. The average MCC is approximately 0.206199

in case of 1NN and decreases towards 0 with the increment of k. This trend states that the addition of random predictions with200

greater number of NN. The average proportions obtained from Youden’s index are also very low, 0.206, 0.130, and 0.086 for201

1NN, 3NN, and 5NN respectively further indicating the probability to predict those lesions is random and unreliable. This202

index works along with the ROC curve, the outcomes have been correlated at the discussion of ROC analysis. Therefore, the203

overall performance of 1NN is better than the other NNs because of data compactness, where one nearest neighbor results in a204

good prediction if a greater number of neighbors have been chosen, the misclassification increases.205

Table 2. Results obtained from nearest neighbor algorithm.

NNs % of Training Data Accuracy Sensitivity Specificity PPV NPV MCC Youden’s Index

1NN

10 0.555 0.567 0.545 0.521 0.590 0.203 0.202
20 0.551 0.441 0.650 0.532 0.563 0.225 0.225
30 0.586 0.580 0.592 0.551 0.620 0.186 0.186
40 0.608 0.541 0.667 0.587 0.624 0.210 0.209

3NN

10 0.519 0.648 0.405 0.488 0.569 0.143 0.142
20 0.528 0.448 0.600 0.505 0.544 0.125 0.124
30 0.559 0.460 0.652 0.553 0.562 0.123 0.122
40 0.568 0.520 0.609 0.531 0.598 0.134 0.132

5NN

10 0.532 0.434 0.619 0.499 0.555 0.084 0.082
20 0.541 0.412 0.656 0.517 0.555 0.088 0.087
30 0.549 0.577 0.524 0.513 0.588 0.092 0.089
40 0.550 0.419 0.665 0.522 0.567 0.082 0.081

Multilayer perceptron classifier206

Two different multilayer perceptron39, 40 algorithms are studied where, each algorithm is created with one hidden layer and207

the number of nodes in the hidden layer are decided using a ’rule of thumb’ (
√

(number o f inputs+number o f out puts)+208

(a constant between 1 to 10 set by experimentally)). The optimal size of the hidden layer is decided typically between the209

size of the input and output layers. The bias and weights are initialized randomly, the learning rate η = 0.1 is varied up to 0.99.210

The output of the layers is determined by the hyperbolic tangent sigmoid transfer function. The Mean Square Error (MSE)211

= 1
N

N
∑

i=1
(ti −ai)

2 is calculated for each output to back-propagate and update the weights, where t and a signify the targets and212

outputs, respectively.213

First, the network is trained using the Levenberg-Marquardt (LM) algorithm which adaptively varies the parameter updates214

and performs better (because of the weight updation using a damping coefficient) than the simple gradient decent method215

that defines simple first order iterative optimization function and finds the local minimum, local maximum for parameter216

updating. The training stops when the maximum number (=1000) of epochs is reached, where one set of weight updating using217

backpropagation is considered as one epoch. Table 3 presents the results for both MLP using Levenberg-Marquardt MLPLM
41

218

and Bayesian-Regularization (BR) backpropagation MLPBR
42. In the case of MLPLM , the testing accuracy increases for up219

to 40% training data, but the increment rate is negligible, and reached 0.532 (≡53.2%), but results 0.076 (≡7.6%) sensitivity220

or TPR indicates the network can only identify 7.6% subjects correctly. However, it shows good performance in recognizing221
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subjects without lesions (TNR=0.936). Also, the probability of the prediction for identification of subjects having or not having222

lesions is slightly more than 50%. In the case of MLPBR, the overall performance is similar to MLPLM . The maximum testing223

accuracy reached 0.538 (≡53.8%) when 40% training data is used but results only 0.038 TPR demonstrates the inability to224

make predictions about lesions whereas 0.951 specificity or TNR shows a strong performance in predicting the absence of a225

lesion. Therefore, neither MLPs could predict the healthy breast pattern, but did make acceptable predictions for subjects with226

lesions. The probability of the prediction for identification of subject with or without lesions is between 0.511 to 0.542 for both227

MLPBR and MLPLM . Additionally, the estimation of MCC and Youden’s statistic state insignificant power of MLPs to identify228

breast lesions. MCC of MLPLM and MLPBR are 0.019 and 0.082 respectively, implies the performance of MLPs are no better229

than random prediction with a large, unacceptable, misclassification rates. Subsequently, Youden’s statistics of MLPLM and230

MLPBR are 0.018 and 0.082 respectively. The zero tendency of the indices show the high proportion of false positives and false231

negatives. Misidentifications have been found here because the error surfaces are very complex for both of these networks and232

have stagnant into several local minima, producing unexpected outcomes for healthy and non-healthy patient identification.233

Table 3. Results obtained from multilayer perceptron algorithm.

MLPs % of Training Data Accuracy Sensitivity Specificity PPV NPV MCC Youden’s Index

MLPLM

10 0.498 0.111 0.847 0.394 0.514 0.020 0.019
20 0.530 0.052 0.962 0.551 0.529 0.010 0.009
30 0.531 0.190 0.825 0.482 0.542 0.016 0.015
40 0.532 0.076 0.936 0.511 0.534 0.031 0.030

MLPBR

10 0.532 0.035 0.953 0.428 0.532 0.081 0.081
20 0.533 0.032 0.934 0.462 0.513 0.088 0.088
30 0.538 0.037 0.957 0.414 0.527 0.082 0.082
40 0.538 0.038 0.951 0.425 0.538 0.078 0.078

Support vector machine classifier234

Subsequently, the SVM is investigated with two different kernel functions to acquire the hyperplane that can separate235

healthy and non-healthy subjects. Table 4 shows the results for classification of the 2 subject types where, SV ML and SV MQ236

represents the SVMs using the linear and quadratic kernel functions43, 44 for prediction. SV ML uses the optimization method,237

c = ∑
i

wik(si,x)+b where, subject pattern vector x is targeted to classify, si is the support vector, wi is weight, and b is the238

bias. Here, the linear kernel function is k. The vector x is considered a member of the lesion free group when, c ≥ 0 or lesion239

group otherwise. This creates a hyperplane that achieved better accuracy than the other classifiers used above. SV ML is trained240

using 10% to 40% data and associated testing results are shown in the table. It produces the highest testing accuracy with 40%241

training data which is 0.620 (≡62.0%). It achieved TNR of 0.998 (≡99.8%) in that case, which indicates a good performance242

to identify the subjects with no lesions, but TPR (maximum 0.193 ≡ 19.3% among all cases of SV ML) shows a very weak243

performance in identifying subjects with lesions. Though the probability in identifying subjects who truly have lesions is better244

than the subjects who truly do not have lesions. The number of false negatives are continuously high, but false positives are low,245

which resulting an average MCC 0.319 for SV ML. Though, MCC is better than the other algorithms, it is still not powerful246

enough to reduces false negatives. The average Youden’s index is 0.180 which is close to the Youden’s index obtained from247

1NN beacuse, SV ML produced more false negatives and fewer false positives, whereas 1NN resulted in fewer false negatives248

and more false positives, thus the total number false predictions are high in both the cases.249

Table 4. Results obtained from SVM using different kernel.

SVMs % of Training Data Accuracy Sensitivity Specificity PPV NPV MCC Youden’s Index

SV ML

10 0.620 0.191 0.997 0.981 0.584 0.319 0.182
20 0.619 0.184 0.998 0.985 0.584 0.318 0.178
30 0.616 0.194 0.996 0.977 0.579 .324 0.180
40 0.620 0.171 0.998 0.989 0.589 0.318 0.181

SV MQ

10 0.985 0.969 0.996 0.985 0.973 0.959 0.956
20 0.984 0.967 0.997 0.983 0.972 0.963 0.960
30 0.984 0.965 0.996 0.985 0.970 0.963 0.959
40 0.989 0.977 0.997 0.985 0.981 0.955 0.951

Subsequently, SV MQ have been employed to obtain an improved testing accuracy to differentiate subjects by minimising the250

gap between the two groups. The considered quadratic function is minx
1
2 xT Hx+ cT x, where Ax ≤ b, c is a real valued vector,251

H is real symmetric matrix, A is real matrix, b is a real vector, and the notation Ax ≤ b means that every entry of the vector Ax is252

less than or equal to the corresponding entry of the vector b. The quadratic programming aims to find the vector x which could253
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minimize that function. This function creates the best hyperplane to classify the subjects here. SV MQ achieved 0.989 (≡98.9%)254

testing accuracy to identify the lesion affected and unaffected subjects. Correspondingly, TPR (is 0.9770 ≡ 97.70%) and TNR255

(is 0.997 ≡ 99.7%) both are high in this case, which indicates a good implementation of the hyperplane for separation which256

could correctly identify those subjects with and without lesions. Also, the high probabilities (PPV and NPV) support the results.257

In addition, MCC and Youden’s index both are high (i.e., 0.960 and 0.956 respectively) in this case. Figure 5 illustrates the258

outcomes more clearly, where no false positives, and few false negatives have been found in each run. This greatly influences259

the score of MCC and Youden’s index and proves the strong ability of the SV MQ model to identify breast lesions.260
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Figure 5. Confusion Matrices of SV MQ: (a) 10% training data, (b) 20% training data, (c) 30% training data, and (d) 40%
training data are used.

Figure 5 shows the outcomes of SV MQ more closely from the confusion matrices. The numeric values listed in the confusion261

matrix with a blue background demonstrates the correct classification of lesion affected and unaffected patterns. Very few262

misclassification occurred here (between 1.1% to 1.5%). Without lesion and with lesions are denoted by class-1 and class-2,263

respectively. It is shown that all the normal tissue subjects are classified correctly, few misclassifications are found with the264

training data variation (10% to 40%) in each case of SV MQ. The most important part of this lesion classification is to reduce265

the negative predictions (including false positive and false negative). It is found from the confusion matrices that the false266

prediction rate of lesion detection is zero in each case (all the patterns of class-2 are being predicted as class-2). False positive267

rate (FPR) is zero (from Figure 5a to 5d) for all the cases of SV MQ, which implies all the non-lesion breast patterns are correctly268

classified but, few false negative rates (FNR) occurred, 0.027 (2.7% for 10% training data), 0.028 (2.8% for 20% training data),269

0.029 (2.9% for 30% training data), and 0.019 (1.9% for 40% training data). Results here are far exceed other state-of-art270

methods reported to miss 15% of lesions. The effect of this classification and misclassification has been discussed earlier.271

Figure 6. (a) Actual data distribution in two-dimensional plane, (b) decision boundary produced by 1NN classifier, (c)
decision boundary produced by SVM with quadratic kernel.

As reported, SV MQ has achieved the best performance among the classifiers investigated here in terms of accuracy,272

sensitivity, and specificity. It’s important here to visualize the data with corresponding hyperplanes formed by the ML273

algorithms. Figure 6 presents the data distribution along with the two optimal decision boundaries produced by 1NN and274

SV MQ. Figure 6a represents the breast with lesion and healthy breast data distribution in a two-dimensional feature space for275

visualization of the studied data pattern for the classification purpose. All the healthy breast patterns scatter the microwaves in276
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a particular way whereas a breast lesion may occur in any position of the breast, which produces different scattering effect277

for the breasts with lesion. Hence, it has been found healthy data formed the cluster in the center and lesion data scattered278

around that group. Thus, these two groups of data could only be handled by the parabolic or quadratic curve, which has been279

made by SV MQ here (decision boundary of Figure 6c). In addition, Figure 6b shows the decision boundary to correlate the280

misidentifications obtained by 1NN algorithm, which also have been illustrated in Table 4.281

Finally, the obtained classification results are compared to conclude the investigation. Figure 7 shows the visual comparison282

of average classification accuracy, sensitivity, specificity, MCC, and Youden’s index to make the contrast over performance,283

where x and y-axis represent different classifiers and accuracy, sensitivity, specificity, MCC, and Youden’s index respectively. It284

can be seen, the performance of SV MQ is better than other classifiers attempted here in terms of average accuracy (98.55%),285

sensitivity (96.95%), specificity (99.65%), MCC (96%), and Youden’s statistic (95.6%) which illustrates robust ability to detect286

breast lesions from new microwave data.287
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Figure 7. Comparison of performance metrics for all classifiers, (a) average accuracy, (b) average sensitivity, (c) average
specificity, (d) average MCC, (e) Youden’s index.

The ROC curve has also been plotted and shown in Figure 8 to compare and analyse the diagnostic ability of all three288

classifiers, where the number of nearest neighbour, learning rate, and threshold for detection have been varied for NNs, MLPs,289

and SVMs respectively. The area under curve (AUC) has also been determined for each classifier. The x and y-axes of290

Figures 8a, 8b, 8c represent false positive rate (FPR) or (1-specificity) and true positive rate (TPR) or sensitivity respectively.291

Though, the accuracy of 1NN is better than other classifiers, except SV ML and SV MQ, the AUC of overall KNN (Figure 8a) is292

only 0.599 indicating the large presence of false predictions. In the case of MLPBR and MLPLM , AUCs are only 0.389 and 0.446293

respectively. Both the MLPs produce vast amount of false predictions, as discussed earlier, and generate low AUC, and the294

tendency of performance is highly random in terms of all performance metrics. Though, the accuracy of SV ML is approximately295

0.619, it made a large number of false predictions and produced an AUC of 0.228 when the threshold had been varied. The296

highest AUC (≡ 0.937) is created by SV MQ as this delivers the lowest number of false predictions among all tested and scored297

the highest performance metric for all the cases.298

The parametric (i.e., MLP, and SVM) and non-parametric (i.e., KNN) both types of learning techniques have been used here299

to obtain optimal performance on the currently available dataset. The work has two main limitations, high dimensional feature300

space and availability of data (i.e., still ongoing). The dimension of the feature space has not been reduced in this study and301

considered as future scope. The KNN and SVM make the decision based on the similarity measure, whereas MLP depends upon302

features. The non-parametric KNN does not require any assumption of feature distribution to check similarity, but it requires a303

large amount of uncorrelated and independent training data in order to make good predictions, whereas the data used in this304
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Figure 8. ROC curve analysis of the classifiers, (a) KNN, (b) MLP using Levenberg-Marquardt and Bayesian-Regularization
backpropagation functions, (c) SVM using linear and quadratic kernels.

study are highly correlated and high dimensional in nature. Thus, the KNN has overfitted with 40% of training data, the overall305

performance is unsatisfactory and also deteriorated with the increment of k. Both the MLPs MLPBR and MLPLM are parametric306

in nature and make assumptions of feature space to minimise cost function and get optimised weights. Though, the function307

LM which directs MLPLM is well known for optimising cost function but, choice of damping parameter played vital role for the308

study and the model stuck in local minima within 50 epochs which prevents the model to optimise weights and create good309

decision boundary. Thus, the damping parameter needs further tune to obtain good results. The Bayesian-Regularization (BR)310

is a well known optimisation technique that works well with MLP even if the data are high dimensional. But, the possible311

reason for incorrect predictions of MLPBR is miss-specification of the model which indicates the function model does not suit312

BR for this problem. The SVM has been used by two different kernel functions, linear (SV ML) and quadratic (SV MQ). The313

methods rely on similarity, unlike the KNN model, SVMs is sensitive to the curse of dimensionality problem while the the314

features are not engineered to uncorrelated values. SV ML is well known for its ability to separate non-linear data linearly in the315

higher feature space. Here, the dot product weight and features with the conventional bias have been employed to create a316

linear hyperplane and maximise the gap between support vectors and samples. Also, the estimation of bias is trivial in this case,317

thus, the maximisation of the linear kernel function created hard margins and increased errors as a result. On the other hand,318

SV MQ is an extended version (2nd order polynomial) of SV ML which creates a soft margin in the feature space. The SV MQ is319

focused on the minimisation problem. The kernel has two other variables, c and x which denote penalty constraint and the slack320

variable respectively. This is the advantage found using SV MQ, where x minimise error and c minimise the gap at the same time321

so that the non-linear boundary has been formed for one group (healthy or non-healthy) and rest of the samples fall in the other322

side of the boundary.323

Discussion324

The frequency domain scattering parameters of subject breasts are obtained using the UWB microwave mammogram apparatus325

described above in an ongoing clinical trial. The same subject breasts included in this study have also undergone radiologist326

scrutiny obtained using conventional imaging methods (echography and/or mammography or (limited to one case) magnetic327

resonance imaging), which has been used as labeled information. The microwave mammogram apparatus clinical data are328

pre-processed and transformed for machine learning approaches. Various algorithms are trained and tested to differentiate329

lesion-containing and lesion-free breast tissues. Here, breasts with lesions may be benign or malignant. The experimental330

results show that the quadratic kernel of SVM has successfully created the hyperplane and maximizes the margins between the331

support vectors, resulting in a sensitivity for breast lesion classification equal to 97%. Such value outperforms the sensitivity332

given in16 and17, which are 74% and 90% respectively, where machine learning is not employed. The successful employment of333

machine learning on clinical data obtained using a microwave mammogram could help the radiologist in the diagnosis process.334

The integrated system with microwave non-ionizing imaging augmented by machine learning algorithms can be a step change335

in mass breast screening deployment. The system could be deployed across all female age groups, and during pregnancies, in336

more local settings, increasing the detection and hence survival rates of breast cancer sufferers.337

This study aimed to differentiate between breast with or without lesions, but the type of lesion cannot yet be identified at338

this stage. The authors are currently gathering more clinical data to understand the category and property of lesions through339

the MammoWave device. Once more data have been gathered to make generalized decisions about lesions, this work will340
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be extended further to identify the type of lesions automatically using ML. Although, the SV MQ has worked very well in341

terms of all statistical performance metrics, the study is limited by some factors and those are considered for future work. The342

data used here have a high dimension and values are correlates, which placed the experimented ML methods in the curse343

of dimensionality problem. Thus, suitable dimensionality reduction techniques will be investigated in the next stage. The344

analysis of ROC curve shows that performance improvement for all experimented ML algorithms are possible. This study is345

an empirical study on ML application of automatic lesion detection to investigate suitable classifiers to categorise the data in346

hyperspace. The performance analysis directs focus on hyperplanes created by a quadratic function, thus the fine tuning of347

the parameters such as, slack variable and penalty parameter would be observed subsequently. Also, the parameter bias of348

other algorithms would be taken into account since the performance of current prototype may vary when the type of lesion will349

be identified with new datasets. Expert clinical input will be ensured in further research to meet clinical expectations in the350

assistance of breast lesion identification and classification. In addition, deep learning approaches will be investigated to provide351

higher sensitivity and specificity towards automation.352
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