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Abstract

This paper presents the development of an intelligent controller for vibration suppression of a horizontal flexible plate

structure using hybrid Fuzzy–proportional–integral–derivative controller tuned by Ziegler–Nichols tuning rules and

intelligent proportional–integral–derivative controller tuned by artificial bee colony algorithm. Active vibration control

technique was implemented during the development of the controllers. The vibration data obtained through experi-

mental rig was used to model the system using system identification technique based on auto-regressive with exogenous

input model. Next, the developed model was used in the development of an active vibration control for vibration

suppression of the horizontal flexible plate system using proportional–integral–derivative controller. Two types of

controllers were proposed in this paper which are the hybrid Fuzzy–proportional–integral–derivative controller and

intelligent proportional–integral–derivative controller tuned by artificial bee colony algorithm. The performances of the

developed controllers were assessed and validated. Proportional–integral–derivative–artificial bee colony controller

achieved the highest attenuation for first mode of vibration with 47.54 dB attenuation as compared to Fuzzy–propor-

tional–integral–derivative controller with 32.04 dB attenuation. The experimental work was then conducted for the best

controller to confirm the result achieved in the simulation work.
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Introduction

In the past decades, rigid structure has been used in many engineering applications to avoid unwanted vibration.
However, the heavy and strong metal characteristics possessed by rigid structures limit their operation speeds and
further needed more energy and power to operate.1 Flexible structure offers many advantages over rigid structure
that include lighter weight, low energy consumption, faster system response, and safer operation due to reduce
inertia.2–4 Plates with different shapes and boundary are frequently found in several engineering applications, for
example, in solar panel, naval structures, bridge decks, and electronic circuit board design.5 Therefore, the usage
of flexible structure has received substantial attention recently.
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Although the advantages are highly desirable, the system vibration arising from the structural flexibility
needs major consideration. The flexible plate is easily affected by external force which will lead to the
vibration on the system. A large number of discrete frequencies that exist in the system will generate
high amplitude of vibrations leading to noise, fatigue, wear, failure, and decrease the performance of the
flexible plate system. Thus, controlling the unwanted vibration on the plate structure is compulsory to main-
tain the effectiveness of the system.5 Many methods have been proposed to reduce the undesired vibration;
however, controlling a flexible plate structure is more complicated due to the highly non-linear dynamic of
the system.6

Previous researchers introduced passive vibration control techniques to remove the undesired vibration; how-
ever, due to its limitation such as increasing the weight of overall structure and lack of versatility, it therefore
cannot withstand low frequency vibration of the flexible plate system. Hence, active vibration control (AVC) is
anticipated in this research study to overcome the problem related to the low frequency vibration of the flexible
plate system.7 Lueg8 was the pioneer who introduced the fundamental of AVC technique for noise cancellation in
the early 1930s. His work was based on the superposition theory where sound signal might be cancelled out by
introducing a secondary sound signal with 180� out of the phase.9–13

Proportional–integral–derivative (PID) controller has been widely used in order to control a dynamic system in
many applications. In fact, more than 90% of industrial controllers used PID controllers due to its simplicity and
robustness.14–16 However, finding an optimal gains for the PID controller is very crucial and challenging for
achieving the best performance in control system. Thus, this paper serves to present an alternative way to cope
with the vibration control problem of such complex system. The controllers proposed in this research are hybrid
Fuzzy–PID and intelligent PID controllers optimized by artificial bee colony algorithm (PID–ABC).

Several works on the development of the proposed controllers have been done by other researchers in various
engineering applications previously. Mesyam17 proposed an effective hybrid harmony search and cuckoo opti-
mization algorithm-based fuzzy PID controller for load frequency control. Akash et al.18 designed a fuzzy PID
controller under varying load condition for speed response of brushless DC motor. Rajesh et al.19 proposed a
novel hybrid firefly and pattern search algorithms to tune the parameter and structure of fuzzy PID controller for
automatic generation control of power systems. Savran and Kahraman20 developed a fuzzy model-based adaptive
PID controller in order to control nonlinear processes.

Recently, evolutionary algorithms become a trend to be used by researchers to tune the parameter gains of PID
controller in various applications. Various attempts have been made to find the optimal gains for PID controller
by using ABC algorithm. Naidu et al.21 investigated the performance of PID controller tuning using multi
objective ABC algorithm for load frequency control. Elkhateed and Badr22 presented an improved ABC algo-
rithm to tune the PID controller. Dongshan et al.23 have developed a PID controller tuned by ABC algorithm for
DC motor.

Inspired by the success of research conducted previously, hybrid Fuzzy–PID controller and intelligent PID
controller optimized by ABC algorithm are proposed in this paper. The performance of both controllers is
compared in terms of attenuation level of the first mode of vibration which is the dominant mode in the
system. The input–output vibration data was collected experimentally. The development of the proposed con-
troller and its performances for vibration suppression are explained in detail in the next section.

Active vibration control

In this section, the development of intelligent control schemes of the horizontal flexible plate structure is
introduced. AVC technique was developed and applied with the objective of suppressing the vibration of the
plate system. The concept of AVC is to reduce the amplitude of the vibration by using superposition of waves
where a secondary signal of vibration is generated to destructively interfere with the unwanted vibration at
the desired location.6 In this research, the AVC is implemented where sensors were utilized to detect the
unwanted disturbances. This signal is used later to produce secondary vibration signal that will act as
controller to suppress the disturbance. An actuator was utilized to supply this secondary signal to superim-
pose the disturbance and interference exhibited by the primary signal and thus led to vibration cancellation.24

The dynamic model of the system was developed using system identification technique utilizing particle swarm
optimization (PSO) algorithm based on input–output vibration data obtained experimentally. The model
obtained using PSO algorithm in previous research is used in this work to develop the controller. Details regarding
PSO algorithm and modeling results can be found in this paper.25 The transfer function obtained using PSO is
described in equation (1)
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0:3483z�1 � 0:002182z�2

1� 1:414z�1 þ 0:9931z�2
(1)

Due to its robustness and reliability, PID controller is employed in this research paper. These types of con-

troller are widely used in industries because they are cheap, easy to understand, maintain, and implement in

controlling various engineering applications. However, it is hard to find the optimal gains to be applied for

optimum performance. Many strategies have been proposed by researchers to obtain the best tuning method

because improper tuning method may lead to poor robustness, cyclic, and slow recovery of the system.26

Therefore, this paper presents the development of PID controller tuned by an intelligent algorithm via ABC

for vibration suppression of the horizontal flexible plate system. The performance of proposed controller will be

compared to the hybrid controller known as Fuzzy–PID controller.
The purpose of this study is to achieve the best tuning methods and better control strategy for further improve-

ment of the control performance. Then, the proposed controller will be validated by employing the different

disturbances in the system. A MATLAB/Simulink was utilized to assess and verify the proposed controller

schemes in this paper. The corresponding controller parameters are fed to the closed-loop PID controller in

MATLAB/Simulink. The error for each sample was calculated, and the mean squared error (MSE) was evaluated.

MSE was set as the fitness value in this algorithm. This function is used to adjust the PID parameters in order to

achieve the lower fitness value.

Fuzzy–PID-based controller

This section presents the detailed structure of Fuzzy–PID-based controller. This hybrid controller is used in order

to achieve the best attenuation in the system. Conventionally, the parameters of PID controller are obtained by

trial and error method. The process is time consuming and the PID parameters need to be retuned every time there

are changes in the system’s parameters. Thus, in this paper, the PID parameters were optimized by incorporating

fuzzy selection to the system. Based on the initial PID parameter values obtained through Ziegler–Nichols tuning

rules, the fuzzy structure will further be tuned by the PID controller for the best value of Kp, Ki and Kd within a

specified certain range. Two types of disturbance were introduced in the controller system known as multiple

sinusoidal and multiple real disturbances to test the robustness of the developed controller. Figure 1 shows the

block diagram of Fuzzy–PID-based controller. Fuzzy-based controller action basically depends on the error, e,

and the derivative error, de/dt of the system. The error and derivative of error are fed to the fuzzy structure to

optimize the PID controller to achieve the best attenuation in the system.
In this study, two input membership functions known as error, e, and derivative error, de/dt, and three output

membership functions known as proportional, Kp integral, Ki and derivative, Kd are defined. Trapezoidal shapes

were chosen for both input (e and de/dt) membership functions while Gaussian shapes were chosen to be

employed in the three output membership functions (Kp, Ki and Kd). Trial and error method was used in this

study to select the best shapes for both input and output membership functions. Five regions for input and output

Figure 1. The block diagram of Fuzzy–PID-based controller.
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variables used in this study are defined as Negative Large (NL), Negative Small (NS), Zero (ZE), Positive Small

(PS), and Positive Large (PL) are used as linguistic variables.
The input interval for error and derivative error is [–2 2] and [–1 1], respectively. Meanwhile, the output interval

for Kp, Ki and Kd are [3.5 4], [0.01 0.03], and [0.005 0.006], respectively. The input interval was determined based

on trial and error method while the interval for PID parameter in fuzzy scheme was determined based on Ziegler–

Nichols tuning rules. The input membership functions for error and derivative error as shown in Figure 2. The

output membership functions for proportional, Kp integral, Ki and derivative, Kd as shown in Figure 3. The rule

base of Fuzzy–PID-based controller was used in this study as shown in Table 1.

PID controller optimized by ABC

ABC algorithm was introduced by Karaboga27 to solve the numerical optimization problem based on foraging

behavior of bee colony. Basically, a colony of bee is divided into three groups which are employed bees, onlookers,

and scouts. Employed bees search food source within a neighborhood of food source and keep the information in

the memory. Then, they will share the information with onlookers within the nest. Onlookers will select one of the

best food sources. Every employed bee will represent one food source. The employed bee will continue to look out

in exploiting the food source, and they will become a scout if the food source is abandoned. A scout will start to

explore for a new food source randomly to be exploited by the employed bees.28,29

The preference of a food sources chosen by the onlookers depends on the amount of nectar NðhÞ of that food
sources. The probability of preferred source by onlookers increases proportionally with nectar amount of food

source. Hence, the probability of food source located at hi which will be selected by onlookers can be written as

equation (2)28,29

Pi ¼ NðhiÞXs

k¼ 1
NðhkÞ

(2)

where Pi is the probability of food source located, NðhÞ is the amount of nectar in the food sources, hi is the

position of ith food sources, and S is the number of food source in around the nest. An onlooker bee will go to the

food source located at hi after they get the dance information from the employed bees using this probability and

determine the nectar amount of food sources. The position of food sources selected by onlookers will follow

equation (3)28,29

hiðcþ 1Þ ¼ hiðcÞ�/iðcÞ (3)

(a) (b)

Figure 2. Input membership function: (a) error and (b) derivative error.
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where /iðcÞ is randomly step in finding the more nectar location around the food source. Onlookers will share the

information with others in the hive if the nectar amount Fðhiðcþ 1ÞÞ at location hiðcþ 1Þ is higher than the food source

at location /iðcÞ. Then, the location for food source will be changed to be hiðcþ 1Þ. Otherwise, the previous location of

food source at hi is kept as it is. Figure 4 shows the block diagram of PID controller tuned by ABC algorithm.

Simulation results and analysis

In this section, the simulation results obtained by hybrid Fuzzy–PID and intelligent PID–ABC controllers are

presented. The performances of both controllers are compared and assessed in terms of highest attenuation level

Table 1. Rule base of Fuzzy-PID-based controller tuned by Ziegler–Nichols.

Fuzzy rules

Error

NL NS ZE PS PL

Derivative error NL NL NL NS NS ZE

NS NL NL NS ZE PS

ZE NS NS ZE PS PS

PS NS ZE PS PS PL

PL ZE PS PS PL PL
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Figure 3. Output membership function: (a) Kp, (b) Ki and (c) K.
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achieved in the first mode of vibration. Two different types of disturbances were introduced into the system for the

assessment of the developed controller. The disturbances used in this study are multiple sinusoidal and multiple

real disturbance.
For hybrid Fuzzy–PID controller, the parameters used to tune the controller are as discussed in “Fuzzy–PID-

based controller” section. The values of Kp, Ki and Kd were obtained through the calculation based on Ziegler–

Nichols formulation. For the intelligent PID–ABC controller, the tuning method was initialized by setting the

number of iterations (NI) to 100 and number of bee colony size (NP) to 500, then varying the limit range of search

boundary (LB) from 1 to 11. Then, the highest attenuation was observed with L¼ 10 obtained the best highest

attenuation in the system. The procedure was repeated by fixing value of L¼ 10 and NI¼ 100 but the values of

NP were varied from 50 until 500. The highest attenuation was observed with NP¼ 100. Last, the values of NP

and L were fixed with 100 and 10, respectively, but the NI was varied from 50 until 500. The best attenuation was

observed with NI¼ 100. So, the best parameters of PID–ABC controller were achieved by using NP¼ 100, L¼ 10,

and NI¼ 100. Table 2 shows the PID parameters obtained using PID–ABC controller with multiple sinusoidal

disturbance. By referring to Table 2, PID–ABC controller achieved lower MSE of 0.0220 as compared to Fuzzy–

PID controller with MSE of 0.0961 for vibration suppression in the horizontal flexible plate system.
The attenuation level and percentage reduction in vibration suppression were achieved for both controllers as

described in Table 3. From Table 3, it shows that the PID controller tuned by ABC algorithm achieved the higher

attenuation level at the first mode of vibration which is the dominant mode in the horizontal plate system. This

can be further illustrated in Figures 5 and 6 for vibration suppression through the proposed controllers using

multiple sinusoidal disturbance in time and frequency domains, respectively. The PID–ABC controller provided

better vibration suppression in the horizontal plate system by achieving 47.54 dB attenuation at the first mode of

vibration in the system with 40.53% percentage of reduction, while the Fuzzy–PID controller achieved 32.04 dB

attenuation with 27.31% of reduction. From the results, it is shown that the PID controller optimised by evo-

lutionary algorithm using ABC as proposed in this paper has successfully suppressed higher unwanted vibration

in the horizontal flexible plate system by achieving higher percentage reduction of vibration as compared to

Fuzzy–PID controller.

Figure 4. The block diagram of PID-based controller tuned by ABC algorithm.

Table 2. PID–ABC controller parameters with multiple sinusoidal disturbance.

Controller

Parameters gains

MSEKp Ki Kd

Without controller – – – 2.6619

Fuzzy–PID [3.5 4] [0.01 0.03] [0.005 0.006] 0.0961

PID–ABC 8.8632 0.2857 0.0046 0.0220
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The robustness of the developed controller was later tested by employing difference disturbance in the system

known as multiple real disturbance. Table 4 shows the MSE achieved for both the controllers using multiple real

disturbance. Here, it can be seen that PID–ABC controller obtained lower MSE in the system with 0.0018 as

compared with Fuzzy–PID controller which MSE value of 0.0047. The attenuation level and percentage reduction

(a)

(b)

Figure 5. Fuzzy-PID and PID tuned by ABC controllers for vibration suppression in time domain using multiple sinusoidal distur-
bance: (a) Comparison of the controller’s performance before and after vibration control (b) enlarge view for the controller
performances in time domain.

Table 3. The attenuation level achieved for both controllers with multiple sinusoidal disturbance.

Controller

Decibel magnitude (dB) Attenuation level (dB) Percentage of reduction

First mode First mode First mode

Without controller 117.30 reference reference

Fuzzy–PID 85.26 32.04 27.31%

PID–ABC 69.76 47.54 40.53%

Hadi et al. 7



in vibration suppression are observed for both controllers as shown in Table 5. From Table 5, it is found that the
PID controller tuned by ABC algorithm achieves higher attenuation level at the first mode of vibration which is
the dominant mode in the horizontal plate system. This can be further illustrated in Figures 7 and 8 for vibration
suppression through the proposed controllers using multiple real disturbance in time and frequency domains,
respectively.

(a)

(b)

Figure 6. Fuzzy-PID and PID tuned by ABC controllers for vibration suppression in frequency domain using multiple sinusoidal
disturbance: (a)Comparison of the controller’s performance before and after vibration control (b) enlarge view for the controller
performances in frequency domain.

Table 4. The PID–ABC controller parameter with multiple real disturbance.

Controller

Parameters gains

MSEKp Ki Kd

Without controller – – – 0.0308

Fuzzy–PID [3.5 4] [0.01 0.03] [0.005 0.006] 0.0047

PID–ABC 8.8632 0.2857 0.0046 0.0018
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The PID–ABC controller provides to better vibration suppression in the horizontal plate system by achieving

47.48 dB attenuation at the first mode of vibration in the system with 71.05% of reduction, while the Fuzzy–PID

controller achieved 31.97 dB attenuation with 47.84% of reduction. Based on result presented, it is clearly

observed that the proposed controllers achieving high robustness performances when it is successfully reduced

(a)

(b)

Figure 7. Fuzzy-PID and PID tuned by ABC controllers for vibration suppression in time domain using multiple real disturbance: (a)
Comparison of the controller’s performance before and after vibration control (b) enlarge view for the controller performances in
time domain.

Table 5. The attenuation level achieved for both controllers with multiple real disturbance.

Controller

Decibel magnitude (dB) Attenuation level (dB) Percentage of reduction

First mode First mode First mode

Without controller 66.83 Reference Reference

Fuzzy–PID 34.86 31.97 47.84%

PID–ABC 19.35 47.48 71.05%

Hadi et al. 9



the unwanted vibration while the system was exerted by different types of disturbances. In addition, it is found
that the gain values obtained in this study are possible to be implemented in a real system, since the gain values are
not too large. This statement is supported by Spearrit and Asokanthon,30 where the large values of gain obtained
by the controller cannot be implemented into the real system because it can shorten the lifetime of the actuator
itself. Furthermore, it will ruin the actuator linearity at a certain point of the operating condition and indirectly
bring instability to the system.31

It is shown that the proposed controller is robust and can work properly for vibration suppression in a
horizontal plate system. Both of the proposed methods are shown to successfully reduce the unwanted vibration;
however, PID–ABC has shown to be more effective in suppressing the unwanted vibration.

In addition, the best controller achieved in the simulation work known as PID–ABC controller was tested on
the experimental rig, whereby the experimental environment is applied as a platform of validation due to verify

(a)

(b)

Figure 8. Fuzzy-PID and PID tuned by ABC controllers for vibration suppression in frequency domain using multiple real distur-
bance: (a) Comparison of the controller’s performance before and after vibration control (b) enlarge view for the controller
performances in frequency domain.
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the robustness of developed controllers. The horizontal flexible plate experimental rig was developed with

attached sensors and actuators on the rig for such a purpose of controller validation. Consequently, the main

contribution of this research is to serve the intelligent controller and employed with the self-developed actuator

namely magnetic shaker for vibration suppression of the horizontal flexible plate through experimental work.

Figures 9 and 10 present the experimental performance of PID–ABC controller in time and frequency responses,

respectively. The experimental performance of PID–ABC controller is summarized in Table 6.
From Table 6, it can be seen that PID–ABC has shown attenuation level at the first mode of vibration with

23.83 dB. The attenuation value has been reduced from 110.2 to 86.37 dB, equivalent to 21.62% attenuation, after

Figure 9. Experimental performances of PID-based controller tuned by ABC algorithm in time response.

Figure 10. Experimental performances of PID-based controller tuned by ABC algorithm in frequency response.

Hadi et al. 11



the introduction of vibration control. The MSE achieved by PID–ABC is 0.0012, compared to 0.0168 before the

activation of controller. From those results, conclusion can be made that PID–ABC controller succeeded in

making remarkable vibration suppression for horizontal flexible plate system. Hence, this result confirmed the

simulation part that shows that PID–ABC is the superior controller in suppressing the unwanted vibration as

compared to other controllers.

Conclusion

The development of parametric modeling using PSO algorithm and AVC of horizontal flexible plate system using

Fuzzy–PID controller and PID controller optimized by ABC algorithm has been presented. The model was

developed using parametric identification technique based on auto-regressive with exogenous input structure.

The vibration modes of the flexible plate structure have been successfully detected which leads to a good controller

design. The performance of the developed controllers has been considered for the horizontal flexible plate system.

Based on the simulation results using multiple sinusoidal disturbance, the PID–ABC controller showed 40.53%

improvement of performance compared to Fuzzy–PID controller for the vibration suppression. Based on these

results, it can be concluded that the PID–ABC controller has performed better than Fuzzy–PID controller for

horizontal flexible plate system used in this research.
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