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Abstract  

Due to environmental impacts of fossil fuels, a move towards using Electric-Vehicles (EV) to 

reduce carbon emissions and fossil fuels is regarded as a good solution to the climate change 

problem. In recent years, a dramatic increase of EV and charging stations has raised voltage 

quality and harmonic distortion issues that are affecting the electrical grid network. To 

address these issues there is a need to redesign the integrated renewable energy and smart 

grid network by applying new methodologies. The aim of this work is to propose an isolated 

smart micro grid, which connects renewable energy generation units to the electric vehicles 

charging station without degrading voltage quality or causing harmonic distortion losses. A 

topology has been identified for the smart grid that is simulated with the intention of 

implementing it with the integration of modern communication technologies that enables the 

components to produce and reflect data in an efficient way to assist better regulation in the 

power flow. The power flow is investigated by simulating unpredictable renewable energy 

and by using car batteries at the electric vehicle charging station. It is investigated how micro 

grid parameters are affected in the presence of super capacitors, car batteries and the use of 

larger power electronic converters. In the simulations, an electrical power control system is 

implemented at power conversion units which generates the correct duty cycle of the 

converter switches and controls the power flow operation at the smart grid. Then the 

proposed electrical power control system is compared with other systems such as maximum 

power point tracking (MPPT) algorithm and space vector pulse width modulation (SVPWM). 

A smart sensor system and smart protection are connected to protect the grid and to maintain 

system stability over a long time. The research focuses on developing a smart grid that 

performs the communication among the converters, performs power sharing, and does 

preventive management. It also monitors the energy efficiently and balances the energy in the 

grid irrespective of load or power generation variations. A mathematical model is developed 

to predict grid behaviour and is validated via MATLAB simulation of the grid. It is noticed 

that an improvement is made in the efficiency of renewable energy transmission to the 

electric-vehicle charging station. 
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Nomenclature 

 
 

Abbreviations 

 

𝑇𝑆 Switching frequency    kWh kilowatt hour 

𝑅𝑝 Resistance on the micro grid (Ω) VDC                      Direct voltage current  

𝐼𝑠𝑐𝑛 

𝑉3 

Solar current generation  
Storage terminal voltage 

EV charging 
station                          

Electric-vehicle charging station  

𝐼𝑝3 Storage current (A) D                         Duty cycle 

∆𝑇 Temperature difference [℃] IGBT                    Insulated gate bipolar transistor  

𝑉𝑝 Micro grid voltage (V)   MWh Megawatt hour 

𝐼𝑝 Micro grid current (A) VDC              Direct voltage current(DC power) 

𝑃𝑝 Power on micro grid (W) AK                          Azad Kashmir 

𝑃1  

𝑉𝑠 
 

𝐼1 
 

Wind/solar terminal power (W) 

AC/DC converter capacitor voltage 

(V)  
AC/DC converter inductor current 

(I) 

KP    

PWM    

SVPWM                     

Khyberpakhtoonkhaw 

Pulse width modulation  

Space vector pulse width modulation 

𝑆 Actual irradiance (W/m2)    MPPT Maximum power point tracking 

𝑅𝑝 Solar panel internal resistance (Ω)  P & O Perturb and observe methods 

𝐼𝑠𝑐𝑛 Solar current generation  IC  Incremental Conductance 

T Time [s]   

∆𝑇 Change in temperature difference 

[℃] 

  

𝑆𝑛 Nominal irradiance (𝑊/𝑚2)     

𝐼𝑝ℎ Photovoltaic current   

𝐾1 Temperature coefficient [˚C]   

𝐼𝑜 

 

Saturation current [A] dependent 

on temperature [˚C] 

  

T 

𝑉𝑂𝐶  

Temperature [˚C] 

Open circuit voltage 
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Chapter 1  

1.1 Introduction 

Integration of large scale wind and solar farms into the UK transmission system has raised 

power quality, system stability and network synchronisation problems [1]. Between 2015 to 

2016, wind and solar farms increased by 51.2% with total capacity of 8.1 TWh [2, 3, 4]. In 

2016, these renewable energy plants were connected to the UK national transmission system 

where they created several challenges of voltage quality and harmonic distortions due to 

variable wind flow/sunlight and variations in the electric load [5].   Investigations have been 

performed on the isolated micro grid to solve the problems of power flow due to the creation 

of transients, inrush currents and disturbances in the grid, which can damage grid 

mechanisms and power generation units. The power flow in this type of micro grid can be via 

AC (alternating current) or DC (direct current). For DC type loads such as electric and hybrid 

vehicle charging stations, it is advantageous to develop a DC grid to reduce the charging time 

by reducing the number of power electronic converters [6]. There is no reactive power flow 

and no synchronisation problems on the DC micro grid and hence no phase correction is 

required in the power flow [7, 8]. DC storage systems can be connected to the micro grid as a 

better approach to maintain the power flow during disturbances in the wind and solar energy 

generation resources. Also, energy generation resources can be connected efficiently to the 

micro grid through power electronic converters. DC-DC converters are required for the solar 

farm and AC-DC converters are required for the wind farm. Electrical power control 

techniques can be implemented to maintain constant voltage on the grid. DC loads such as car 

batteries can be connected to the micro grid at car charging stations.  On the micro grid 

transmission network, it is very important to keep voltages close to nominal values else it can 

lead the system to instability [9-11]. Instability due to the addition of power from battery 

banks, wind/solar energy and fuel generators can create massive damage to the network, 

equipment and eventually the economy [12]. Stability measurements can examine whether 

the system is performing in the correct state or heading towards instability [13] and should be 

considered at every point of the grid in order to take the appropriate action.  

This thesis proposes methods to improve the voltage quality on the micro grid by examining 

voltage spikes and transmission of transients to reduce the effect of external parameters that 

create instability due to wind flow/sunlight and internal elements such as capacitance, 

inductance, and frequency control of insulated gate bipolar transistor switches. A voltage and 
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power conversion closed-loop control system is implemented as part of the smart grid and 

investigated to assess whether the grid is capable of handling large scale power flow. The 

control system prevents voltage reduction by applying a controlled duty cycle to the power 

conversion system and applying low pass filter techniques to remove transients. Power flow 

is maintained and regulated on the grid by drawing power from the batteries during energy 

shortages and charging the batteries at off peak times. The system is investigated by 

performing simulations using MATLAB/Simulink to study environmental effects on electric 

power generation and to discover the effects of over loading and under loading in the micro 

grid and simulation results are compared with a mathematical analysis.  

1.2 Aims and Objectives 

The aim is to develop an isolated smart micro grid connecting renewable energy sources and 

storage devices/ electric cars by stabilizing and controlling power flow in the grid to obtain 

an efficient power transmission flow. The power is to be transmitted to electric car charging 

stations where hybrid and electric car batteries charge up.  

The objectives are to 

(1)  Perform a literature review to determine the state-of-the-art of smart micro grids and 

discover opportunities for contribution of new knowledge and innovative solutions.  

(2) Develop and validate mathematical models to investigate how a smart micro grid will 

be affected by power transmission to electric cars and by energy recovery from the 

cars when they are not in use.  

(3) Investigate the inclusion of battery storage and other forms of energy generation to 

deal with unexpected environmental conditions e.g. variations in wind/irradiance or 

technical issues. 

(4) Design a control system to develop a smart micro grid for renewable energy 

transmission with automatic stabilisation and management of power flow.  

1.3 Literature Review 

A power system comprises of generation units, a transmission network, transformers, and 

protection systems. A transmission network transmits the electrical energy from generation 

units to loads. Currently the transmitted energy is being generated from mixed sources like 

coal, oil, gas, nuclear and renewables. The main source is fossil fuel and the burning of fossil 

fuel is creating damage through greenhouse emission and adversely affecting the Earth’s 
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climate. Therefore, in the future, energy companies will have to generate electrical energy 

from other sources such as nuclear and renewables [14]. The main source of power in the 

future is likely to be renewable energy because it does not produce carbon emissions and the 

reduction will be observed in the import of fossil fuels and coal e.g. a 47% decline was seen 

in the first quarter of 2016 to the UK compared to the first quarter of 2015 as shown in Fig.1-

1.  Solar and wind are the most prominent renewables. In 2020, 15% of the UK energy is 

expected to be generated from renewable energy resources [15]. 

 

Fig.1-1: The reduction of coal import in the UK. Total demand of importation of coal was 

reduced by 47 percent in first quarter of 2016 compared to the first quarter of 2015 [16] 

The number of plug in electric vehicles is increasing because they generate no carbon 

emissions and give better fuel economy. Charging up electric vehicles from the distribution 

network is not suitable as it increases the electrical demand on the network and creates power 

flow issues such as transients, harmonics and voltage reductions. The expected increase of 

electric vehicles in the UK by 2030 is shown in the Fig.1-2.  
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Fig.1-2: Plug-in electric vehicles, hybrid electric vehicles and probability of the increase in 

numbers of electric vehicles in the UK from 2010 to 2030 [17]. 

The DC micro grid is a new way of power transmission over short distances. This grid 

reduces the charging time for the plug-in-electric vehicle and improves the battery efficiency. 

Fig.1-3. shows a charging time comparison for the electric-vehicles batteries between the AC 

grid and DC grid. 8kWh battery takes 45 minutes to charge up from the AC grid while it is 

reduced to 10 minutes from the DC grid. It takes 160 minutes to charge up from the main 

grid. The purpose of designing such a system is to reduce the power flow issues at the 

existing transmission system. The power network should be able to deal with instability 

problems (due to changing climate conditions and load changes within the network) by 

maintaining stability at every point in the network. 
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Fig.1-3: The vehicle charging from the AC grid and DC grid. It demonstrates the reduction of 

charging time from the DC grid compared to AC grid [18]. 

Instability can create massive damage to the network, equipment and eventually the 

economy. On the transmission network it is very important to keep the voltage closer to 

nominal values. If these parameters are not maintained, a power system will experience many 

blackouts, short circuit faults and equipment failure. Because of these problems, the system 

can become unstable. A transmission grid can also be subject to other various forms of 

disturbances such as lightning strikes, variations in generation, environmental conditions and 

so on. It is necessary to implement a smart protection system for the micro grid to increase its 

reliability and safety for power transmission.  Micro grids can face low impedance faults, 

short circuit faults and ground faults and most of the faults can happen at any time at the 

power converter station due to unpredictable power generation from the renewable energy 

resources. It is necessary to investigate and correct the faults for a safe transmission else it 

can damage the system. When the power flow is interrupted from a fault then the system 

becomes unstable.  



15 
 

A fault in the DC converter station can affect the rotor angle of the wind generator and can 

damage the components at the converter station [19]. This depends on the duration of the 

fault and components used to protect the system. The fault in the DC grid can be between the 

lines or between the lines and the ground so it is beneficial to implement the communication 

system between the converters such as shown in Fig.1-4. The advantage of using the 

communication system between the converters is to identify the voltage drops and faults at 

different points of the system.   

 

Fig.1-4:  The renewable energy flow to the smart micro grid and way of electronic 

communication between them. It also demonstrates the injection of power on the network 

from several power generation resources such as wind turbine, photovoltaic panels and 

energy storage system [20] 

The DC grid is fed from the renewable energy resources where power is always varying 

therefore a control system is required which transmits the signal at a very much faster rate. 

Specifically, if the load is inductive or capacitive then transients and spikes arise in the grid 

and a regulatory system is required to create balance in the grid. Achieving the desired 

voltage depends on the duration of current (A) flow where an inductor behaves superlatively 

at lower frequencies while a capacitor has better performance at higher frequencies. Voltage 
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and frequency are the two quantities that need to be controlled in AC power flow. Frequency 

can be controlled by controlling the rotation of a wind turbine and by increasing and 

decreasing the apparent power while voltage can be controlled by stabilising the reactive 

power. But in a DC grid, the frequency is equal to zero and reactive power does not exist 

because of zero phase shift between the voltage and current. It means that the voltage is the 

only quantity that needs to be stabilised on the DC grid [21]. The voltage on the DC grid can 

be maintained by supplying the required power to the loads. If the grid is over loaded than 

voltage will fall on the entire system and an energy boost will be required at this point. Thus 

to maintain the voltage on the DC grid, it is essential to keep energy balance on the grid at all 

times. A battery bank is another source for maintaining the power at the DC grid during the 

reduced power generation from the renewable energy units. However, batteries cannot 

regulate the voltage on the grid for a long period of time so there must be another energy 

resource that supplies power to the loads. 

Electric vehicles are powered by batteries but currently it takes a long time to charge them 

up. The hybrid vehicle engine needs to be running to store power in the batteries, support 

vehicles when climbing hills and to maintain a given speed [22, 23]. To meet these 

requirements, demands on the new technology are investigated. Energy can be stored in 

vehicle batteries at the car charging station and also by means of regenerative braking when 

the vehicle stops. DC power flow is found to be most reliable and efficient for this task 

because it charges up batteries in a very short time [24]. DC power charging up also improves 

the efficiency of the power flow in electric cars by supplying the required power using 

converters to AC electric machines used in electric or hybrid cars [25]. 

 

1.4 Research Methodology 

Construction of wind and solar farms is increasing every day. But in the meantime the 

transmission networks are getting overloaded and their efficiency is being reduced [26]. Due 

to variability of renewable energy, synchronization and instability issues are increasing in the 

grid [27]. It is also possible for the older transmission network not to be able to carry extra 

power. So there is a need for a grid, which should transmit the generated renewable energy 

perfectly up to 100%. For carrying out renewable energy transmission on a micro grid, it is 

essential to study environmental conditions and load variations. Because it is a fact that load 

and environmental conditions are changing all the time. Therefore, it is very complicated to 
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keep the constant stability for renewable energy transmission due to variations in load and the 

environment. The efficiency of the network is also reduced as a result of overloading and 

related types of variations. Hence there is the need for a separate type of network which 

should be able to transmit the power appropriately by accommodating constraints associated 

with these renewable resources. The power network should be able to deal with instability 

problems (due to changing climate conditions and load changes within the network) by 

maintaining stability at every point in the network. Instability can create massive damage to 

the network, equipment and eventually the economy.   

The author is contributing and proposing a new model for transmitting renewable energy to 

improve renewable energy efficiency and to reduce power flow issues at the National grid. 

The model connects electric vehicles directly to the grid. The proposed model is also useful 

for transmitting renewable energy in rural areas and on islands. Specifically, a smart micro 

grid is designed with capability of handling large scale of power flow. Power flow control 

and stability are achieved automatically by means of closed loop control principles. 

 
Investigations are performed by modelling and simulating energy sources such as wind 

turbines of energy generation capacity of 100kWh and solar panels of 100kWh. The electric 

vehicle charging station consists of 4 charging points with power consumption capacity of 

103.50kWh. A storage system of capacity 200kW is included and is used when there is not 

enough power generated from the wind/solar energy. This storage system is connected to a 

diesel fuel generator that can supply 200kWh. The diesel generator charges up batteries only 

in emergency when there is deficiency of nominal power transmission on the grid. To control 

the frequency of insulated gate bipolar transistor (IGBT) switches, a power conversion 

system is simulated with AC/DC and DC/DC components. The schematic model of the 

system is shown in Fig.1-5. The electrical power control system is modelled in a MATLAB 

function coding environment. The simulation results from the proposed electrical control 

system are compared with other control systems such as the maximum power point tracking 

algorithm (MPPT) and space vector pulse width modulation. In order to achieve reliability, a 

smart protection and electrical control system is implemented at the grid station and at the 

smart grid. Transients and voltage spike waveforms are analysed and mitigated by using 

power electronics filters. Research is carried out on instability factors in the transmission grid 

which is required to transmit the wind/solar energy. It is discovered how environmental 

conditions, over loading, under loading and other conditions affect the power transmission in 

the smart micro grid. Various instability factors such as voltage instability, transient 
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instability are analysed. Power flow in the grid is maintained by using appropriate measures 

such are analytical techniques and modern power electronics control systems.  Modern 

protection tools such as circuit breakers are placed to protect the grid. 

 

Fig.1-5: A schematic diagram of the integrated smart model consisting of Wind Generator 

(WG), Photovoltaic (PV) system, Energy Storage system, Electric Vehicle (EV) charging 

station, and other micro grid related components 

 

The nominal generated power by each PV units is 330Wh with a voltage level of 12VDC 

which is boosted to 585VDC for efficient transmission on the micro grid by using converters. 

The total power generation capacity of the solar power plant is 100kWh where 304 PV units 

are installed to generate the electrical power for the electric-vehicle charging station. Variable 

irradiance from 250w/m2-1000w/m2 is used to observe the power flow from the solar panels. 

Scopes and other measurements tools are implemented to record the power flow from the 

solar system. In the wind energy system, a doubly fed induction generator is selected to 

generate electrical energy because it provides constant frequency and amplitude of the output 

voltage. It does not depend on the wind speed because its stator winding is directly connected 

to the grid. On the other hand, rotor windings transfer approximately 30% of the total power 

by using converters and operate at lower wind speed. The wind speed/temperature values are 

chosen as average values equivalent to the London weather forecast to compute the power 

efficiency. The speed values range from cut-in speed to cut-out speed and are generated by a 

real time function so that these values change with time. Tab.1-1. shows the energy 
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generation units that contain the wind/solar system to supply energy to the Electric-Vehicle 

charging station.  

 

Tab.1-1: Energy resources and storage system/fuel generation system 

Wind energy 100kWh 

Solar energy 100kWh 

Storage system  200kWh 

Fuel generator  200kWh 

EV max load  103.50kWh 

 

The electric vehicle charging station consists of 4 charging points with total power 

consuming capacity of 103.50 kWh. The power consuming capacity of individual EV 

charging terminal is shown in Tab.1-2. 

 

Tab 1-2: The operating features for the electric-vehicle charging station. 

 

The power conversion system with AC/DC and DC/DC components used to stabilise the 

voltage and to control the frequency of insulated gate bipolar transistor (IGBT) switches is 

shown in Fig.1-6. It senses the voltage and current and applies the correct duty cycle to IGBT 

switches in order to regulate the voltage flow at the micro grid. Buck converters are 

implemented at the EV charging station to reduce the voltage. Boost converters are used to 

step up the voltage from the solar panels while buck-boost converters are used to regulate the 

voltage at the micro grid monitoring and control centre.  

 

Electric-vehicle 

charging point capacity 

Voltage at the 

grid side (DC)  

Voltage at the 

load side 

Maximum current flow in the 

grid 

3.5kW 585V 12V 5.98Ah 

7kW 585V 12V 12Ah 

43kW 585V 16V 73.5Ah 

50kW 585V 16V 85Ah 

Fully operational  585V Variable  320Ah 
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Fig.1-6:  Block diagram of power conversion system connected to micro grid 

In the AC/DC power conversion system, the structure of the control system used to regulate 

the voltage flow on the micro grid is shown in Fig.1-7. A MATLAB script is used to 

implement the feedback controller to calculate the correct duty cycle. The controller is 

equivalent to a microcontroller that would be used in practice to control the frequency of the 

converter IGBT switches by applying variable pulses to achieve the desired voltage. The 

controller receives two sensor signals from the converter output and compares them with 

reference signals to generate error signals and compute the correct output to reduce 

instability. The switching frequencies of high power IGBT switches are very low (20kHZ) 

and they produce voltage spikes in the voltage. To solve this problem, a 50 kHz PWM control 

strategy is applied to reduce the harmonics and smooth the output waveforms. The output 

voltage of the power converters is decided by the PWM switching by applying eight ON and 

OFF states of the three phase PWM pulses [28]. The duty cycle applied to the power 

converter switches is between 0 and 1. The duty cycle controls the speed of the IGBT 

switches at the converter station. It is observed that by increasing the PWM pulse frequency, 

voltage spikes are reduced. Transients and voltage spike waveforms are analysed and reduced 

by using power electronic filters.  
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Fig.1-7:  The block diagram of applied control system to achieve voltage regulation. Pin is 

the energy input from the wind and solar energy 

The structure of the protection system used to protect the micro grid is shown in Fig.1-8. The 

protection system consists of all the necessary tools such as controller, sensors, relays and 

breakers or switches. Voltage and current flow signals on the grid are transmitted to a 

controller to perform required actions. The output of the controller is connected to a DC 

circuit breaker. The Controller isolates the grid and power components when voltage or 

current exceeds a high threshold level. The reference voltage represents the maximum 

voltage which a circuit breaker compares to the grid voltage.  

 

Fig.1-8: Block diagram shows a programmable power protection system implemented at the 

micro grid 
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Electric-vehicle engine needs to be running to store power in the batteries, support vehicles 

when climbing hills and to maintain a given speed [29, 30]. To meet these requirements, 

demands on the new technology are investigated. Energy can be stored in vehicle batteries at 

the car charging station and also by means of regenerative braking when the vehicle stops. 

DC power flow is found to be most reliable and efficient for this task because it charges up 

batteries in very short time as shown in Fig.1-9 [31]. DC power charging up also improves 

the efficiency of the power flow in electric cars by supplying the required power using 

converters to AC electric machines used in electric or hybrid cars [32]. 

 
Fig.1-9: Charging time reduction between the AC grid (3kWh and 11kWh) and the DC grid.  

 Fig.1-10 shows the terminals of the EV charging station where 4 charging points with a total 

capacity of 103.50kw are operating during peak times. The total power consumption of 

Terminal 1 is 50kWh, Terminal 2 can consume maximum power of 43kWh, Terminal 3 has 

the capability to utilise maximum power of 7kWh, and Terminal 4 can utilise 3.5kWh to the 

electric vehicles. 
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Fig.1-10: Charging station terminal features 

1.5 Contribution to knowledge  

A smart micro grid is proposed and investigated which is capable of handling large scale of 

power flow where control and stability is achieved automatically by means of closed loop 

control. The smart micro grid has the following advantageous features:  

It consists of master control system connected to the sensors at the power converters stations 

and at the EV charging station. It receives the data from the converter stations/EV charging 

station to manage the power flow accordingly. The implementation of minute-ahead, hour-

ahead and day-ahead strategy at the smart micro grid reduces the uncertainty in energy 

management and increases the efficiency of power transmission.  

 This smart micro grid automatically fixes the power flow issues such as voltage 

reduction can be prevented by the controlled applied duty cycle at the power 

conversion system and the low pass filters remove transients. It manages the electric 

power on the grid by drawing power from the batteries during the peak times and 

charge up the batteries in the off peak times. The grid includes its own control and 

energy management capability. The proposed smart micro grid is beneficial to the UK 

national power industry because generated renewable energy is transmitted in this 

grid; instead of the distribution grid, which contributes to reduce the power flow 

issues such as transients, voltage reductions, harmonics and losses at the existing UK 

national transmission system. Initial findings indicate an improvement of the voltage 
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efficiency and reduction of electrical power losses in the micro grid by 99%.  The 

proposed smart grid is also useful for transmitting renewable energy in rural areas and 

on the Islands. It is discovered how environmental conditions, over loading, under 

loading and other conditions affect the power transmission in the micro grid. Various 

instability factors such as transients and voltage spikes is analysed and then several 

control methods that are discussed in the bottom sections are proposed to find 

appropriate solutions.  

 Programmable controlled circuit breaker is placed to protect the smart grid that is 

capable of switch in/out the power flow automatically. A smart sensing system is used 

at several points of the grid to measure the power in seconds. Power is delivered to 

charging stations to charge hybrid and electric car batteries and power is recovered 

from the batteries when needed. Investigations are performed on how the micro grid is 

affected when large numbers of super capacitors car batteries are charged at the same 

time. 

 A smart electric vehicle charging terminal is implemented at the vehicle charging 

station. Several steps of voltage such 12VDC, 24VDC, 36VDC and 48VDC can be 

attained at this terminal. A smart measurement and protection system is included 

inside the terminal to increase the reliability in power flow to the electric vehicles.  

 An electrical control system is applied at the smart grid to stabilise and control the 

power flow. Then the applied control system is compared with the other systems such 

as maximum power point tracking algorithm and space vector pulse width 

modulation. Several techniques from maximum power point tracking algorithm is 

implemented to analyse the power flow on the smart grid such as perturb and observe 

method, incremental conductance with integrator and fixed duty cycle method. A 

smart storage system is implemented to maintain the power flow on the smart grid 

during the energy shortages. Storage system is connected to the smart grid by means 

of converters and control system.  

 Electric power generators have been investigated to find suitable generators for wind 

turbines.  

 Investigations have been performed to study the factors (such as rotor angle 

instability, frequency instability) that affect a standalone wind energy system for the 

EV charging station  

 Temperature effects on the PV module have been studied. 
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1.6 Journal and Conference publications 

  

Journal papers 

1. Asif Khan, Saim Memon, Tariq Sattar “Analysing integrated renewable energy and 

smart-grid system for improving voltage quality and harmonic distortion losses at 

electric-vehicle charging station”, IEEE Access Journal, Vol. 6, Issue:1, pp. 26404-

26415 

Conference publications 

• Asif Khan, Saim Memon, Tariq Sattar (2017). Integration and management of solar 

energy for electric vehicle charging station. In: Solar World Congress 2017 - 

Innovation for the 100% renewable energy transformation, Abu Dhabi, UAE. 

doi:10.18086/swc.2017.16.03 Available at http://proceedings.ises.org (Published) 

1.7 Thesis outline 

Chapter 2 Voltage and frequency instabilities of renewable energy sources 

This chapter describes the implemented renewable energy resources (Wind and solar) used in 

simulations of the proposed smart grid. These resources are used to generate and supply 

electrical energy to charge the electric vehicle at the EV charging station. Power parameters 

in renewable energy transmission are always varying so there must be a control system which 

reduces the disturbances and maintains stability in the system. In this chapter, instability 

issues related to renewable energy transmission are described with analysis and solution. The 

major parameters which are focused on are voltage instability and frequency instability and 

what factors affect them. By using the appropriate power flow techniques such as PWM 

waves, the instability issues are reduced.  

Chapter 3 Implementation of the smart microgrid architecture 

This section explores the implementation of the smart micro grid architecture. It outlines the 

proposed smart micro grid model and analyses the simulation results. The results are 

explained in terms of power losses which assists us to develop solutions to achieve the 

optimal voltage for transmission and reduce the transient spikes on the transmission network.     

Chapter 4 Energy conversion and applied control techniques 

This chapter describes the applied control techniques used to regulate the voltage on the 

micro grid. It describes the types of DC-DC converters such as Buck converter, Buck-Boost 
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converter and Boost converter. It shows the performance of  of two control algorithms such 

as the maximum power point tracking algorithm and space the vector pulse width modulation 

algorithm that are used to control the frequency of the insulated gate bipolar transistors.   

Chapter 5 Connection of Electric Vehicle Charging Station and Battery Storage to 

Smart Grid 

This chapter explains the electric-vehicle charging station and energy management in the 

system. It describes the critical features of the smart micro grid required to charge up the 

electric-vehicles during the energy shortages from the wind and solar energy resources.  

Chapter 6 Conclusion and recommendations for future Work 

This chapter describe the conclusion and future work. It define the work that was completed 

during the research period and the areas where further research needs be carried out.  
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Chapter 2 Voltage and frequency instabilities of 

renewable energy sources 

Every wind turbine produces energy at a different wind speed. It depends on the size and 

design of the wind turbine. Most wind turbines start functioning at a wind speed of 3ms
-1

 to 

5ms
-1

 and generate a rated power at around wind speed of 12m/s to 15m/s [33]. It is a fact 

that wind speed is not constant and it changes all the time. Therefore, in the simulations, 

numerous wind speed values were used to drive the wind turbines.  At low wind speeds the 

torque is not sufficient to drive the blades. As the wind speed increases, blades start rotating 

and generate power. The speed when turbine begins to rotate is known as the cut in speed and 

is 3m/s to 5m/s. When the wind speed is above the cut-in speed then power is generated. At 

the rated wind speed, a generator produces nominal power. When the wind speed is higher 

than the rated speed, the generator output power is still limited to nominal power. The 

nominal power is therefore the generators full generating capacity.  .  A braking system is 

implemented to limit the over speeding of the turbine. Over speeding normally occurs at 

around 25m/s. The available power as a function of wind speed [34] is given by equation 2-1: 

P = 
1

2
ρdU3                                                                                                                         (2-1) 

Here U is the wind speed, ρ is density of the rotor and d is the rotor diameter in meters.  

While the amount of power extracted from the wind depends on the wind speed, itis not 

possible to consume all the wind; there is a limit that depends on the design of turbine blades 

[35]. The maximum wind that can be extracted by the turbine to generate power is 59%. This 

is Belts limit [36].   Since power increases by the cube of wind flow, for example, if the wind 

speed is doubled then power increases 8 times. This means that a small change in wind speed 

has a big impact on energy variation [37]. In the following research, several values were 

chosen for wind speed to observe the power output from the generator. The values range from 

cut-in speed to cut-out speed. A periodic repeating real time function is used to implement the 

changing wind speed as shown in Fig.2-1 and Fig.2-2. It repeats itself in every 0.1 second. 

The wind speed generator is an input to the wind turbine. The parameters for the simulation 

block are shown below:  
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Fig.2-1: Wind generator with time in second and wind speed m/s 

The variation of wind flow will have a severe impact on the amount of power and hence 

voltage variation.  

 

Fig.2-2: Simulation of applied wind speed to generate electrical energy. 

2.1 Testing and evaluation of energy generation at changing Pitch Angle 

Investigations were performed on the features of wind turbine blades. Wind turbine blades 

must be designed to efficiently drive the shaft of the generator. Pitch angle is the angle at 

which blades contact with the wind. It is normally kept between (0-15)º. Angle of attack is 

the angle where force hits the blades to start its rotation. Higher angle of blades stalls the 

wind turbine and decrease the air pressure on the blades [38, 39]. The main parameters 

considered for blade design are control of the pitch angle, tip speed ratio and rated wind 

speed. The relationship between pitch angle of the blades and output power was investigated. 
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It was observed that as wind speed increases the turbine efficiency increases.  Variations in 

pitch angle increase or decrease the range of power generation [40]. Pitch angle control is 

also necessary to reduce the speed of the rotor in the higher windy areas. In the lower windy 

areas, pitch control can increase the efficiency of the wind turbine by capturing more wind. 

By adjusting the pitch angle, a balance between the electrical power and turbine power can be 

maintained. Fig.2-3. shows the block parameters to produce pitch angle variations for 

simulation purposes.  

 

Fig.2-3: Examining of the wind turbine energy generation features by the variation in blade 

pitch angle. Output values are in degrees and time in second.  

Fig.2-4. shows the variations in pitch angle. A repeating function was used to vary the pitch 

angle. It was observed that variations in pitch angle have greater impact on the amount of 

power generation. By not adjusting pitch angle appropriately huge amount of power can be 

wasted. Wind speed and pitch angle have a direct relationship. Correcting the pitch angle in 

the lower wind areas can increase efficiency of the turbine. Pitch angle adjustment is also 

very important during the higher windy conditions.  

 

                                  Fig.2-4: Simulation of variable blade pitch angle  
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2.2 Simulation and analysis of doubly fed induction generator 

Doubly Fed Induction Generator (DFIG) is used to generate the wind energy as it provides 

higher efficiency because its stator winding is directly connected to the grid while rotor 

windings are connected to converters which transfer approximately 30% of the total power 

generated [41]. The maximum power generating capacity of the DFIG is 100kW during the 

nominal wind speed of 12 m/s. By implementing the DFIG, spikes and transients in the grid 

are minimised due to less power transfers from the converter.  For variable wind speed areas 

DFIG is the most suitable choice. DFIG provides constant frequency and amplitude of the 

output voltage and does not depend on the wind speed. To achieve the same results from the 

other generators, there is a need to use higher power electronics converters. But for DFIG 

only a fraction of power needs to be converted using power electronics converters because 

the stator is directly connected to the grid [42]. Power generated from the rotor varies so it 

needs to be stabilised using power electronics components. It is first converted into DC and 

finally connected to the grid.  

Fig (2-5-2-6) shows the Simulink model of a doubly fed induction generator. The rotor of the 

DFIG is connected to the converters while stator is directly connected with the grid. This type 

of generator requires reactive power for excitation. It can receive the reactive power from the 

grid or by installing capacitors. Alternatively, a synchronous excitation generator can be used 

to provide excitations. Using the stator, it sends power directly to the grid, and from the rotor 

side only a small amount of power can be processed. The main advantage of DFIG over other 

generators is that it operates efficiently in varying wind areas. Even if a wind speed is very 

low e.g. 4ms, it still generates constant frequency and amplitude as shown in Fig.2-7. 

 



31 
 

(a) Wind turbine Simulink model 

 

 

(b) Energy generation algorithm for the wind turbine  

Fig.2-5:  Wind turbine generator Simulink model and an algorithm to compare the set wind 

speed with reference rotor speed  

 

Fig.2-6: DFIG used to generate electrical energy and connected to grid via converters 
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Fig.2-7 : Constant and regulated voltage is received from DFIG.  The three sinusoidal plots 

are the three phase voltage. 

2.3 System testing by applying permanent magnet synchronous generator 

Permanent Magnet Synchronous generator (PMSG) based wind turbines are also investigated 

for generating electrical energy as they are popular in the power industry due to variable 

speed and constant output frequency, they are lower in weight, volume and have higher 

efficiency and reliability. PMSG is a variable speed power generator which functions at 

various ranges of wind speed. It consists of a rotor, high speed and low speed shaft gearbox 

and generator. Because PMSG is excited by permanent magnets, there is no reactive power 

exchange between the machine side of the converter and between the generators [43]. Two 

types of control are implemented for PMSG; one is to keep the machine at nominal power at 

strong wind speeds and other is to maintain the maximum tip speed ratio when there is very 

low wind.  This is achieved by adjusting the pitch angles of the blades. . In low wind areas, 

pitch angle is actuated to a optimum value of 2 degree while in higher wind it limits the 

extracted wind by selecting the most appropriate pitch angle. Due to requirements of high 

rotor revolution; a gearbox is also used in the generator which requires constant maintenance. 

To increase the reliability of the wind turbine, the gearbox needs to be removed.  The PMSG 

can also function without using a gearbox but its efficiency is reduced due to not achieving 

the desired speed rev/min [44].  By increasing the number of poles in the PMSG and using 

low pole pitch, the number of revolutions is reduced from 200r/min to 20r/min. However, 

increasing the number of poles will make generator construction more complex. 

Electromagnetic construction of a wind turbine is more complex than other wind turbine 
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generators such as DFIG, fixed speed or variable speed induction generators. Converters are 

an important part of the PMSG because it converts the energy to AC power with fixed 

frequency and voltage.  The sizing of nominal power conversion of power converters should 

be larger than the nominal power of the generator [45, 46].  Due to the use of converters, 

reactive power generation, transients and harmonics are also observed in the system. To 

reduce the number of harmonics, a low pass filter is required. The generated voltage from the 

wind turbine needs to be maintained constant before connecting it to the grid. Therefore, 

voltage source converters VSC based converters with Insulated gate bipolar transistors IGBT 

are used to regulate the output voltage.   

Fig.2-8 shows the modelling of the permanent magnet based wind turbine. A gear system is 

used to vary the speed of rotation. By adjusting the gear ratio, the turbine speed can be fixed. 

The generator has the capacity to generate power up to 1MW. The nominal generated voltage 

is 415VAC. Scopes are s used to graphically analyse the results of the turbine’s operation.  

 

Fig.2-8: PMSG based wind Turbine 

                                                    

Variable Wind speed 

Output of the PMSG is shown in the Fig 2.9. It can be seen that when the wind speed is low 

then voltage generation is reduced to a lower level. The nominal voltage is 415Vrms but it 

has reduced to 260Vrms due to a lower wind speed. There is need to rectify this voltage at the 

output and then stabilize it for transmission purposes. It is not possible to transmit the voltage 

without conversion. The phase angle is also changed by the varying wind speed as shown in 

Fig.2-10.  
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Fig. 2-9: Three phase output voltage at the varying wind speed. Severe variations in voltage 

are observed 

 

Fig.2-10: Voltage variations at varying wind speed 

Fixed wind speed  

Power flow on the micro grid was investigated using a fixed wind speed where a 12m/s is 

chosen as the nominal wind speed and a constant output is noticed from the PMSG 

Generator. A switch was placed between the variable wind speed and fixed wind speed to 

select one or the other. It was found that generator output is more smooth and constant when 
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the fixed values are used for wind speed. Fig.2-11 shows the three phase output voltage from 

the PMSG. 

 

Fig.2-11: Voltage output from three phase power PMSG 

2.4 Factors creating instability issues in wind energy generation units 

A system is called a stable system if it retains its original state after facing disturbances. The 

main reasons for instability issues in wind energy transmission are environmental conditions, 

synchronisation, over loading, and massive variations in power generation. Typically, the 

basic factor of instability is lack of synchronisation between wind turbines. Synchronisation 

between wind turbines is very complex due to wind speed variations [47]. Some wind 

turbines generate the power at full capacity while some do not. Renewable energy units face 

stress conditions during overloading and easily lose stability and the failure of a single 

turbine can create massive power issues such as inrush current [48]. A control and protection 

system is required due to constantly changing environmental conditions and loads. It is also 

necessary to manage the reactive power in the system. The system should be able to produce 

and absorb reactive power when required.  

Instability factors in a wind farm can be categorised into the following cases: 

Frequency instability  

Voltage instability   

Rotor angle instability 
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Due to changes in weather conditions, temperature and load changes, it is very hard for the 

renewable energy system to remain stable [49]. Maintaining stability in the face of voltage 

oscillations and electromechanical oscillations between loads and renewable energy units is 

very important. It is a challenge to maintain constant voltage in renewable energy 

transmission due to the changing of various factors. It is observed that oscillation in voltage 

and damping factors can be produced by machine inertia and external impedance. Voltage 

fluctuations also create current variations in the network as shown in Fig.2-12 [50]. Voltage 

surge is related to inductive elements and current surge is related to capacitive elements. 

When a generator is switched on the transmission line does not switch on simultaneously due 

to the presence of inductive and capacitive components in the line. The delay depends on the 

frequency and conductive material. Less capacitance and inductance minimises the energy 

transmission delay. Voltage stability is also called load stability because after disturbances 

happen in network voltage, the loads will not have energized appropriately [51]. The main 

reason for fluctuations in voltage is when a generation unit was not able to supply the 

required reactive power. The other factor which creates instability is lack of synchronisation 

between the turbines. When one wind turbine is faulty or there is loss of synchronism then 

it’s the other units will not be able to transmit the required power to the loads. This will 

overload the network and lead to system failure. A power surge is produced by sudden 

change in the loads. Some other elements which can cause disturbances are flashover, 

lightning strikes, switching elements and short circuit faults. . Fig.2-13 shows the instability 

in voltage between the wind turbines due to not synchronised between them. When PMSG 

and DFIG are connected then due to variable wind speed synchronisation cannot be achieved. 

Fig.2-14 shows power generation for a synchronous generator.  

 

 

 

 



37 
 

 

Fig.2-12: Frequency instability creates severe voltage variations in the system  

 

Fig.2-13: Synchronisation issues between wind turbines 
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Fig.2-14: Energy generation produced by the synchronous generator at  varying wind speed.  

. Maintenance of frequency close to nominal values of 50Hz is very important in power 

transmission. Instability in frequency occurs when the wind speed is very low or very high 

[52]. Frequency variations are created by synchronisation or issues at the generation units. A 

big power surge is observed by just small variations in frequency. It also produces 

mechanical vibrations at the generator and overheats transformers [53]. Changes in frequency 

also produce undesirable changes in the speed of machines in industry. Frequency changes 

are noticed by unpredictable rotation of armature in the generator. The rotation of the wind 

generator armature is driven by air flow around the wind turbine blades and changes in wind 

speed create frequency variations [54]. Instability also results from harmonics particularly 

multiples of third harmonics. Harmonics are created by converters, computers, and motors. 

Instability can damage transmission conductors and transformers. Loss of synchronism also 

causes rotor angle instability. Due to loss of synchronism, the rotor angle will increase and 

then can go into overshoot.  Fig.2-15 shows the instability in power generation. It can be seen 

that due to massive variation of power flow, the generator voltage overshoots and oscillates.  
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Fig.2-15: System Overshoot due to synchronisation and frequency instability 

Rotor angle instability is another factor in wind turbines. It happens during an imbalance 

between electromagnetic torque and mechanical torque at wind generators operating at 

variable wind speed. It is a phase angle related instability problem. The equilibrium between 

electromagnetic torque and mechanical torque needs to be maintained [55]. When a balance 

between available power and demand power is lost, then this problem can happen. It is 

further termed as transient stability and small signal stability. Small signal stability means the 

system remains in synchronism after a few disturbances in the system. Transient stability 

means that the system remains in synchronism after major disturbances. Rotor angle 

instability also occurs due to various other factors such as a fault in the network, short 

circuits, switching disturbances, massive variations in loads and generators and so on. Fig.2-

16 shows the instability in rotor angle. If the rotor angle increases after a disturbance, then the 

system will overshoot. But if the rotor angle starts decreasing then system stability can be 

achieved. 
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Fig.2-16: Rotor angle instability in the wind turbines 

2.5 Modern techniques to minimise instability issues  

Using sensing data from the applied sensors, decisions and actions can be taken to correct an 

unstable system. By measuring the transient response of the wind generator it is subjected to 

disturbances, a stability analysis can be performed. The first stabilisation method used is a 

time domain method where changes in generator angle are measured with respect to time. 

The resulting graph is known as a swing curve and the calculations are done using swing 

equations. Stability or instability is analysed by drawing the angle curve. It is found that if the 

angle is increasing continuously and does not decreases, then the system becomes unstable. 

But if the angle starts decreasing then the system will regain its initial state [56,57].  

The other implemented stabilising method used is the equal criterion method that provides a 

graphical analysis of the generator stability or instability [58]. Fig.2-17 shows the graphical 

analysis of a system due to initialization of the charging up of the inductive/capacitive 

components in the power converter stations. Voltage disruption is due to variability of the 

power angle when changes in power generation occur due to changes in the loads [59]. When 

the power drawn is bigger than the input power, the power angle is observed to increase. If 

the input power is larger than that drawn by the load then the system remains stable, but if the 

output power is continuously increasing then the system becomes unstable. 
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Fig. 2-17: Instability issues at the start up process of a wind energy generation system due to 

load variations 

The other stabilisation method is the direct method which analyses the stability of the power 

system [60]. In this system results are compared before and after disturbances in the 

generators and stability results are measured. This common method does not depend on time 

and it provides a measure of the degree of stability accurately and quickly.  

Voltage stability is analysed by sensing the supplied voltage to the load. Voltage stability is 

actually called load stability. It can be caused by some component failure or loss of 

synchronism. When a power variation happens in a load sector it signals voltage instability 

[61]. When the system is overloaded, then a frequency drop is observed in the system. The 

generator rotation speed tends to be lowered. To maintain a constant voltage frequency on the 

grid, there is a need to insert more input power from the turbines. Primary frequency is 

measured by turbine-governor control systems, while secondary frequency is measured by a 

load frequency control system. Rotor angle stability is observed by reading the output of the 

generators. The instability in rotor angle generates transients in the system. When a voltage 

collapse is observed in the transmission network, then the rotor angle is noticed to be 

unstable.  
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2.6 Solar Farm 

This section presents the Simulink model of a solar power generation system that supplies 

100kWh energy to the charging station. Solar power is achieved by using photovoltaic 

devices to convert sunlight energy into electrical energy. Large amount of energy is obtained 

by using photovoltaic arrays. Fig.2-18 shows the model of a solar farm. The voltage 

generated by each panel is 12VDC and the maximum generating capacity of one panel is 

330W. An irradiance block is used to provide solar  power to the panels. Input from the 

irradiance is variable. 12VDC is not feasible for transmission and it was boosted to 585VDC 

by a  boost converter. Output voltage is adjusted by changing the duty cycle ratio of the boost 

converter. An oscilloscope is used to measure the output voltage. Capacitors are used to 

remove the ripples and balanace the voltage flow. A diode is used to stop current flowing in 

the reverse direction. The amount of power generated depends on the efficiency and size of a 

panel. The power generated is directly fed to the grid by using converters. This clean power is 

used to charge the electric vehicles at the consumer end without producing carbon emissions. 

A PV converts the sun’s energy directly into electrical energy and does not require any 

rotational machines [62] and hence, it does not produce any noise or any harmful emissions 

to the environment. A PV also requires less maintenance and has a longer life.  PV arrays are 

made up of more than one solar cell which can be connected in a series or parallel 

configuration. Solar cells are connected together to boost the output voltage because the 

voltage generated by each cell is very low of around 0.5V. Series connected solar cells 

provide more voltage while parallel configurations balance current requirements [63] The 

energy generation pattern for simulation purposes is shown in Fig.2-19.  

 

 

 

 

 

 

 

 

Fig.2-18: Simulation of the solar system that is used to generate electrical energy  
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Fig.2-19: Shows the power generation by the solar system. From 9pm-5am no power is 

generated therefore a storage system and fuel generator will meet the energy demand at this 

time  

The simulation model of a solar energy system developed here is validated with a case study 

in section 2.7 by using data collected from solar energy systems in Pakistan. The focus is on 

the influence of temperature on photovoltaic systems. 

                              2.7 Case Study: Solar energy system in Pakistan 

The influence of temperatures on the energy efficiency performance of PV-

integrated buildings in Pakistan 

Domestic dwellings in Pakistan have predominantly implemented low-carbon strategies by 

harvesting solar energy using photo-voltaic (PV) modules as a long-term vision of a low-

carbon economy. Until recently, PV domestic users are facing the problem of prolonged 

disruption to solar energy due to overheating of the PV modules. PV-module efficiencies 

decline and are damaged due to exposure to surface temperatures in different parts of the 

country. Our investigations are performed on the surface temperature effects on the 

performance of PV integrated buildings during the summer and winter seasons. The results 

show that the Northern region of Pakistan is suitable for the installation of  PV-systems due 

to optimal operating temperatures. During summer months, cooling strategies have to be 

implemented to overcome the heating effects to reduce degradation effects on installed PV-

systems. The analysis performed shows that cooling techniques improve the quality of power 

generation and power converter losses but increase operating costs to households. Therefore, 

there is a need to optimally regulate voltages during peak fluctuating temperatures.  
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2.7.1 Overview of energy generation system in Pakistan 

Substantial efforts to tackle the energy crises and carbon emissions with the rollout of PV 

modules integrated into buildings in Pakistan have already reduced the energy consumption 

of fossil fuels. It is well-known that electrical energy demands in Pakistan are increasing and 

are further creating the energy crisis within country. There is a huge gap between the energy 

generation and consumption [64] with a deficiency of 4000MWh of electrical energy in 

Pakistan and there are still many areas where there are no supplies of electrical energy [65] 

causing many hours of load-shedding and damaging economic growth.  Due to this reason, 

most urban areas are suffering from 10-12 hours of power load-shedding. In rural areas, load-

shedding occurs for between 16 and 18 hours a day [66]. The energy generation from current 

resources is not enough to overcome the energy demand. The utilisation of large amounts of 

fossil fuel produces carbon emissions that are contributing to climate-change [67, 68]. To 

reduce the effect, renewable energy resources are one of the solutions [69, 70]. Among 

renewable energy PV integrated buildings are important because buildings are responsible for 

over 60% of total energy consumption. The installation of photo-voltaic (PV) modules in the 

domestic housing of Pakistan is a relatively new and is growing faster due to a large demand 

for energy and its greater benefits in reducing carbon emissions [71]. In recent years, Pakistan 

is shifting its energy generation policy to renewable energy resources as it is installing 

massive power plants based on solar systems [72]. The government of Pakistan introduced 

new laws to increase the import of PV modules. As a result, there has been an increase of 

domestic residents across Pakistan who has installed solar systems to minimize the effect of 

load shedding [73, 74].  This assists in the reduction of loading on the network, improving the 

economy and improving the environment. Several projects have been completed such as the 

Quaid-e-Azam solar park installed in East Pakistan with a capacity of 300MW [75]. Another 

150MW solar system has been installed at Faisalabad (Eastern Pakistan). o Many other 

projects are under construction in the west and other areas of Pakistan [76].   

A recent study [77] from  69 metrological stations over the recent 30 years period shows that 

more than 70% the area of Pakistan receives an average yearly solar radiation of 5.5 

kWh/m2/day as shown in Fig.2-20.  Data collected by the Pakistan metrological department 

for the five major cities of Pakistan shows that the west of Pakistan (Quetta) located in 

Baluchistan receives 21.6 MJ/m2/day. The annual average in the other cities of Pakistan such 

as Lahore receives 19.25 MJ/m2/day, Karachi has 18.7 MJ/m2/day, Multan has 18.36 

MJ/m2/day and Peshawar receives 17.0 MJ/m2/day. The investigations were carried out by 
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using temperature ranges from minimum to maximum in those areas and by considering the 

sunshine duration. This data was compared with the National Renewable Energy Laboratory 

(NREL) of USA which shows a better average capacity of 5.5kWh/m2/day to 

7.5kWh/m2/day [78-80]. Some cities in the province of Baluchistan and Sindh such as 

Larkana, Quetta receives 5.5 kWh/m2/day.  The other studies [81,82] show that areas of 

Pakistan that are  situated from North  latitude 24°C to 37°C and East  longitude 65°C to 

75°C latitude [83] receive the best solar radiation in the world. Therefore, there is the 

potential to extract high amount of solar energy.  

 

 

Fig.2-20. Pakistan annual direct solar radiations (Abdullah et al. 2017) 

 

Energy generation from PV systems depends on environmental conditions due to the 

variations in surface temperatures across different parts of Pakistan [84]. During the summer 

months, consistent higher temperatures reduce the power generation capacity of the solar 

system, ultimately damaging the performance of PV modules. In the winter, temperatures fall 

to a low level and the PV modules again underperform at [85].To address the overheating and 
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low temperature issue, a temperature regulation system is required with high reliability and 

fast real-time features. This will improve the reliability of the power flow from solar energy 

[86]. Therefore, heating and cooling strategies have to be implemented to overcome losses 

due to the temperature effects in several parts of Pakistan to maintain power generation from 

the solar system across the year, irrespective of the changes in weather conditions. The 

following sections investigate the effects of temperature and duration of solar radiation on a 

simulated model of a PV system and compare the results with data from real PV systems in 

different regions of Pakistan. 

 

2.7.2 Model of a monocrystalline Photovoltaic (PV) system  

The sunlight incident on photovoltaic cells can be absorbed or reflected or pass through the 

cells. The absorbed light by the cells generates electrical power, also known as solar power 

[87, 88]. Solar cells achieve better efficiency in a cold environment compared to a hot 

climate. So it is very important to examine the climate changes in several areas before 

considering the installation of a solar system. The investigations show that the best 

temperature for solar panels to produce energy is between 0˚C and 25˚C. For every degree 

rise in temperature above 25˚C, the efficiency of the solar panels reduces by 0.25% for 

amorphous cells and 0.4-0.5% for crystalline cells [89]. During summer the temperature in 

most areas of Pakistan reaches 45˚C which reduces the efficiency of the panels by 15% so 

that 295Wh rated solar system generates up to 195Wh.  

A PV monocrystalline system is designed and modelled with the nominal power generation 

capacity of 295W and nominal power point output voltage of 31.5 VDC for the residential 

sector in several areas of Pakistan. A schematic diagram of the model is shown in Fig.2.21. 

The system is validated by analysing the simulation results in MATLAB and Simulink and 

comparing with the output power  measured at different temperatures across several areas of 

Pakistan such as the North-East, North-West, South-East and West side of Pakistan. The 

efficiency of the power generation from the solar system is measured for winter and summer 

months.  
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Fig.2-21: illustrates the schematic model of the solar system. The measurements are used to 

examine the output at different temperatures. 

 

The temperature and irradiance directly affect the power generation from the solar system. 

The relation of the solar photovoltaic current to the temperature is described as [90].  

𝐈𝐏𝐡 = (𝐈𝐬𝐜𝐧 + 𝐊𝟏∆𝐓)
𝐒

𝐒𝐧
                                                                                            (2-2)                         

Where Iscn is the current generation at the suitable conditions i.e 25°C and 1000W/m2.  ∆T is 

the difference between the actual temperature and nominal temperature.  IPh is the photo 

voltaic current. S is the actual irradiation on the solar panels and Sn is the nominal irradiance.  

The temperature effects on the diode saturation current Io can be described as [91] 

𝐈𝐨 = 𝐈𝐨𝐧 (
𝐓

𝐓𝐧
)

𝟑

𝐞
[

𝐪𝐄𝐆𝐨
𝐍𝐬𝐚𝐤

(
𝟏

𝐓𝐧
−

𝟏

𝐓
)]

                                                                                           (2-3)  

Where Iothe saturation current, EGo is the bandgap semiconductor energy, Ns is the total 

number of solar cells which are linked with series as [92].   

𝐈𝐨𝐧 =  
𝐈𝐬𝐜𝐧+𝐊𝟏∆𝐓

𝐞((𝐕𝐨𝐜𝐧+𝐊𝐯∆𝐓)/𝐕𝐓)                                                                                                   (2-4) 

Ion is improved by including the K1and Kv temperature coefficients of the PV module. This 

modification is used to determine the voltage at the several ranges of temperatures. The Io 

saturation current is dependent on the temperature.  
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Tab.2-1: The nominal parameters of the implemented PV system 

 

 

 

 

 

 

 

2.7.3 Temperatures across Pakistan 

Temperature is one of the major elements which conclude the climate of any area. Any 

change in temperature results in climate change of the region. The change in climate affects 

the power generation from the solar system. Most of the areas in Pakistan experience high 

temperatures being above 45 °C in the summer season. During winter months the temperature 

goes down to −15°C  in some areas. Such extremes of consistent temperatures for many 

months reduce power generation from the solar system. Fig.2-22 (a) shows the temperature 

across several areas of Sindh (Southern Pakistan) where Thar and Larkana have the highest 

temperature during the summers. These areas are also in the high temperature range during 

the winter season. Fig.2-22 (b) illustrates the surface temperature in Gilgit Baltistan and Azad 

Kashmir (North East Pakistan) where the winter temperature goes to −15°C  and in the 

summer the temperature remains between (30-40) °C. Temperature values in the Punjab (East 

Pakistan) are shown in Fig.2.22 (c) where the summer temperature remains (40-50) °C. The 

temperature in the area of Khyberpakhtoonkhaw (North West Pakistan) is shown in Fig.2-22 

(d). In this region, temperature is different across several areas. Fig.2-22 (e) demonstrates the 

temperature in the province of Baluchistan (West Pakistan). During the winters some areas 

see a very low temperature of – 15°C. 

 

 

Parameters Values 

Nominal Peak Power Output 295 W 

Maximum power point voltage 31.5 V 

Maximum output current (A) 5.71 A 

Open circuit voltage 40.0 V 

Short circuit current 

Maximum power point current 

10.10 A 

9.45 A 

Module efficiency  17.59% 
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                                (a)                                                                                                  (b) 

  

                  (c)                                                                                                       (d) 
 

 
(e) 

 

Fig.2-22: (a) Shows the temperature in Southern region of Pakistan (b) Temperature analysis 

in North East of Pakistan (c) Temperature found in Eastern areas of Pakistan (d) Temperature 

analysis in North West Pakistan (e) Temperature forecast in Western region of Pakistan.  
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The average temperature in several areas of Pakistan is shown in Tab.2-2 in terms of summer 

and winters. As the performance of the solar panels is linked with temperature, hence the 

average temperature in different areas of Pakistan needs to be known for design and 

installation purposes.   

Tab.2-2: Average temperature in most of the areas of Pakistan [93] 

 

 

2.7.4 Simulation results from the model and discussion 

A solar system simulated in MATLAB Simulink is tested at temperatures between -40°C -

55°C at irradiance of 1000W/m2. These parameters are similar to the real time climate 

condition in Pakistan during several seasons. The measurements are obtained for voltage, 

current and the maximum power against temperature.  The results are analysed to improve 

the power output, voltage and short circuit current at different temperatures. Fig2-23 shows 

that the rise in temperature reduces the voltage power and current. The output voltage can be 

fixed (maintained at desired voltage) by using power electronic converters such as DC/DC or 

DC/AC, but the output power can only be balanced by addressing the heating effects on the 

solar system.  

 

 

 

 

 

Parameters North average 

ambient 

temperature 

South average 

ambient 

temperature 

East average 

ambient 

temperature 

West average 

ambient 

temperature 

Summer  45 55 50 49 

Winter -15 -3 -15 -13 
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Tab.2-3: The measured output power/voltage and current (A) results at several temperatures 

from the simulated system 

# Temperature 
°𝐂 

Open circuit 

Voltage (V) 

Maximum 

power point 

voltage 

Maximum 

power point 

current (A) 

Max power 

(W) 

1 -40 37.6 30.5 8.69 265 

2 -35 38.0 30.6 8.69 265 

3 -30 38.2 30.7 8.72 267 

4 -25 38.4 30.8 8.75 269 

5 -20 38.6 30.8 8.8 271 

6 -15 38.7 30.8 8.87 273 

7 -10 38.8 31 8.87 274 

8 -5 38.9 31.1 8.87 275 

9 0 39.4 31.2 8.86 276 

10 5 39.0 31.3 8.9 278 

11 10 39.0 31.3 8.92 279 

12 15 39.3 31.4 8.95 281 

13 20 39.4 31.4 9 282 

14 25 39.9 31.5 9.45 295 

15 30 38.9 30.8 9.05 278 

16 35 38.2 30.4 9 273 

17 40 37.5 30 9.2 276 

18 45 36.9 29.6 9.1 269 

19 50 36.2 29.2 8.95 261 

20 55 35.5 28.7 8.81 252 

21 60 34.8 28.25 8.67 244 

22 65 34.2 27.8 8.53 237 

23 70 33.5 27.2 8.37 227 

24 75 32.8 26.7 8.22 219 

25 80 32.1 26.2 8.07 211 

26 85 31.4 25.6 7.91 202 

27 90 30.7 25.2 7.75 195 

 

The recorded data have been plotted to determine the correlation between power (W), 

current (I) and voltage (V) with temperature ranging from −40°C to 90°C.  Fig 2-23 (a) 

illustrates the voltage reduction by the increase in surface temperature. It shows the output 

voltage from the PV system in the range of 1000W/m2. The desired voltage is 31.5 VDC 

and the achieved voltage is reduced to 25.2VDC when increasing the temperature but at the 

0-25°C voltage is very close to the nominal voltage. As the temperatures are dynamic, it is 

necessary to install the PV system in lower-temperature areas or by using cooling techniques 

which then increases the energy cost. However, it will increase the output efficiency of the 
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power generation when operating the PV system under nominal weather conditions. Fig. 2-

23(b) shows an influence of increasing the surface temperature on the output power of the 

modelled PV system. The output energy generated is reduced due to the increase of surface 

temperature effects on the PV modules. Fig2-23 (c) shows the temperature effect on the 

output current from the PV system, illustrating the output current for several temperature 

ranges. 

                                                  

                                    (a)                                                                      (b) 

 

(c)  

Fig.2-23: (a) Illustrates temperature effects on the voltage (b) Temperature vs solar system 

electrical power (c) Output current variations at different temperature.  

The simulation is carried out to validate the temperature effects on the PV structure where the 

voltage (V), current (A) and Power (W) are measured to analyse the temperature effects on 

the system. A fixed irradiance of 1000𝐖/𝐦𝟐 is applied constantly as shown in Fig.2-24. A 

100W load is applied at the load side to measure the efficiency of the system. 
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Fig.2-24: Shows the model of the simulated solar system tested at 25°C, this system is also 

tested at different temperatures. 100Wh resistive/inductive loads are used to measure the 

efficiency of the system.  

 

2.7.4.1 PV integrated buildings in Eastern Pakistan 

Investigations were performed to discover the conversion of solar radiation into electrical 

energy and ways to achieve the desired output power at different temperature, PV orientation 

and irradiation level. In order to investigate the power flow from the PV system, current-

voltage linkage is analysed. Solar arrays can be designed in parallel and series to achieve the 

required output power. The current-voltage and efficiency are investigated in Eastern 

Pakistan to examine the temperature power flow in integrated buildings. In this study, one 

day (24 hours) the effect of temperature is carried out in different seasons such as summer 

and winter. The performance of a PV array changes according to the weather changes. Day 

light hours in summer have more impact on the PV structure due to severe changes in 

temperature, air speed and humidity. Therefore, different weather conditions were focused on 

to measure the energy generation efficiency from the solar system. This knowledge can be 

used to manage energy of integrated buildings across Pakistan, reduce the installation cost of 

the solar system. Investigations were carried out in Eastern Pakistan to examine power 

generation efficiency from a PV structure. The output power, short circuit current and voltage 
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were recorded against temperature. It is observed that during the cold season, the efficiency 

of power generation remains very close to the nominal values. Fig2-25 (a) shows the 

electrical parameters of the solar panels at several temperatures during 11
th

 January. The 

results are concluded in the eastern Pakistan where the capital of eastern Pakistan ‘Lahore’ is 

taken for investigations. The recorded voltage (V), power (W) and Current (A) are plotted to 

investigate the variations in these parameters. As expected, t the power output, voltage and 

current decrease with the increase in temperature. Output current  𝐈𝐒𝐜 undergoes marginal 

changes. The efficiency in power generation during June is lower than January.   

Tab. 2-4: Demonstrates the average reduction in power generation during the winter and 

summer season in Eastern Pakistan.  

 

 

(a) 

Days Average Power loss (W) 

11 January 28 

30 June 56 
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(b) 

Fig.2-25: (a) Shows temperature effects on the PV structure in peak winter day in Eastern 

Pakistan. (b) Peak summer day analysis in eastern Pakistan.  

2.7.4.2 PV integrated buildings in West Pakistan 

In order to test the performance of the PV structure, 1000 W/m
2
 and real time one day (24) 

temperatures are applied for the different seasons in Western Pakistan where the capital city 

‘Quetta ’ is chosen for investing the power flow from the PV module. The results are shown 

as current/voltage and efficiency against temperature. The PV array has open circuit voltage 

of 31.5VDC, short circuit current is 8.1A and the maximum load circuit voltage is 29.5VDC. 

Here the load circuit voltage and current is considered to examine the voltage/power drops at 

different temperatures. The solar panels performed better on the coldest day with an 

efficiency of 93.46% and the voltage flow remains closer to the nominal value during the 

winter day (11 Jan) as shown in Fig 2-26 (a) PV module operating hours between 9pm-5am 

do not generate power due to little irradiance. During the hot season, the efficiency is reduced 

to 86.45% and the voltage level drops considerably during the hottest day. Fig 2-26 (b) 

illustrates power generation in Quetta, West Pakistan on 30 June. The voltage flow is very 

close to the nominal value and the power efficiency is improved.  

Tab.2-5 S Average reduction in power during the hottest and coldest day in western Pakistan. 

 

Days Average power losses (W) 

11 January 24 

30 June 52 
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(a) 

 

(b) 

Fig.2-26: (a) Temperature effect on the solar power in Quetta on the hottest day, West 

Pakistan. The voltage/efficiency is reduced during both seasons. (b) Peak winter day power 

generation 
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2.7.4.3 PV integrated buildings in Southern Pakistan 

An off-grid PV system is examined with a nominal power generation capacity of 100Wh at 

different temperatures and irradiance level of 1000 W/m2 with a rated load short circuit 

voltage of 29.5VDC. During the investigations, the data has been collected for 24 hours, to 

investigate the weather effects on the PV system to compare the efficiency of the system 

during winter and summer seasons. The maximum temperature observed in the southern 

region (Thar) during the winter season is 29°C and the temperature remains between (30-40) 

°C during the summer days. The results showed that this area is the worst for installation of 

solar panels in both summer and winter seasons and the PV array performance is severely 

reduced because the temperature remains high during both seasons due to being closer to the 

Indian Ocean. The voltage is dropped to 26.3 VDC where the nominal voltage is 31.5VDC. 

The efficiency is 87.7% on the summer’s hottest day and 91.9% during the winter season at 

the operating hours from 5am-9pm. Fig.2-27 shows the power flow analysis on the Thar, 

Southern region of Pakistan.  

Tab.2-6  The output power reduction from the solar system 

 

 

(a) 

Days Average Power losses (W) 

11 January 32 

30 June 57 



58 
 

 

(b) 

Fig.2-27: (a) The efficiency of power/voltage generation at the peak winter day temperature - 

PV structure in the southern region of Pakistan. (b) Peak hottest day: power drops at the PV 

module are increased  

2.7.4.4 PV integrated buildings in North Pakistan 

PV module works efficiently at a certain temperature and the best temperature for the PV 

module is 25°C. There is a need to design new ways to improve the efficiency of the PV 

system during non-optimal temperatures e.g. by including cooling techniques. In this section, 

investigations are performed to examine the solar power generation at North Pakistan Gilgit 

area. This is the hilly area where the temperature remains between (−5 to -33)°C throughout 

the year. This area is more suitable to install the solar panels because of efficient temperature. 

Fig.2-28 illustrates the temperature effects on the power generation at Gilgit, North Pakistan. 

The PV power generating efficiency and voltage are improved as being closer to the nominal 

values. This is the best areas that show the improved results for the PV module throughout 

the year.   

Tab.2-7 Demonstrates the decline in power generation in northern Pakistan 

Days Average energy losses (W) 

11 January 17 

30 June 48 
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(a) 

 

 

(b) 

Fig.2-28: (a) Power generation from the solar system in Gilgit, North Pakistan in thet winter 

season. During this time, the PV module is generating power/voltage efficiently and better 

than the rest of Pakistan. (b) Power analysis on the hottest day of 30 June 
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2.7.5 Comparative analysis of PV integrated buildings in different regions of Pakistan 

It can be seen that the northern areas have the lowest power reduction in all weather 

conditions. In other parts, during the summer losses increase with a temperature rise and are 

areas that are not perfect for installation of solar systems. The effect can be minimised by the 

implementation of cooling techniques that reduce the temperature effects on hot days. Fig.2-

29 (a) shows the results taken during the coldest day of the year where temperature remains 

between −5° to 35° in several areas. During this day, all of the areas are showing better 

performance for power generation from the solar system. Fig.2-30 shows the efficiency 

analysis of the PV module across Pakistan.  

 

 

(a)   
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(b)  

Fig.2-29: (a) Module efficiency analysis for the peak winter day. (b) Efficiency analysis 

during the summer day 

 

Fig.2-30:  Average solar power generation on two days, irradiance of 1000 W/𝐦𝟐 between 

5am-9pm and e 0 W/𝐦𝟐   for from 9am-5pm.  Nominal power generation capacity of the 

solar panel is 100. It is s reduced to (53-56) % due to temperature and irradiance effects 

Summary 

In this chapter, a renewable energy (solar and wind) based electric-vehicle charging station is 

investigated. Investigations are carried out to determine whether the renewable energy 

generation system is capable of supplying the required energy during the peak/off-peak times. 
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Research is carried out on instability factors in the transmission grid which is required to 

transmit 100 % of generated renewable energy. Power parameters in renewable energy 

transmission are always varying so there must be a control system which reduces the 

disturbances and maintains stability in the system. Instability issues related to renewable 

energy transmission are described with analysis and solution. The major parameters which 

are focused on are voltage instability and frequency instability and what factors affect them. 

It is proposed that by using the appropriate power flow techniques such as PWM waves, the 

instability issues can be reduced. There must be a protection system as well which isolates the 

line during faults and connects it again as the fault cleared. If instability remains for a long 

time it  will damage the grid systems. Solutions to these problems are proposed and 

investigations conducted to determine how environmental conditions, over loading, under 

loading and other conditions affect the power transmission in a micro Grid. Various 

instability factors are analysed and then methods proposed to find appropriate solutions.  

Most of the urban areas in Pakistan stay hot and humid in the entire year. Since all the 

locations in Pakistan have different temperatures, a study needs to be performed before 

installing the PV system. In this chapter, a simulation study has been performed to examine 

thermal effects on the solar system. As part of the investigations; the day (24 hours) analysis 

was made for the four provinces of Pakistan where the worst cold and hot day’s temperatures 

are taken for investigations. The study has identified the efficiency decrement in power 

generation by the rise in temperature. It is found that during the summer season in the 

southern and eastern regions of Pakistan, voltage drops by 25.2 VDC and the power 

efficiency reduces by more than 15% during e PV operating hours. It is seen that the areas in 

the North region of Pakistan such as Gilgit achieved the best results where the voltage/power 

generation efficiency of the PV module is closer to the nominal values than the other regions 

throughout the year and is a better place for the installation of solar panels. This area is found 

to be efficient for solar power generation because of a suitable temperature range between 0-

30 degrees throughout the year. During the summer, in the rest of Pakistan, the temperature 

goes very high which reduces power generation from the solar panel. But during the winters, 

solar power is more efficient throughout Pakistan. The future work is to investigate other 

cities of Pakistan which are close to the Indian Ocean and mountainous areas. 
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Chapter 3 Architecture of a proposed smart microgrid  

A smart scalable and modular DC structure is proposed that allows unidirectional energy 

flow from the wind/solar and bidirectional networking of the storage system and which 

efficiently transmits the energy to the EV charging station.  This type of grid is becoming 

possible by the development of higher processing units such as FPGA’s and other micro 

processing units. This grid has advanced features and is different from the conventional grid 

because it transmits power directly from the wind and solar energy sources as well as from 

conventional sources such as hydro, nuclear or fossil fuels.  The inherent benefit of the 

proposed grid architecture is the sharing of power resources that increases the system 

efficiency. Furthermore, it reduces the losses on the micro grid by matching the consumption 

and the load in a close proximity. Hence, the micro grid has improved transmission efficiency 

and increased the power quality. The implemented smart grid has the features of sensing the 

network overloading and managing power to prevent the power outage. It works 

autonomously during the conditions that require responding rapidly to achieve the aims of 

power generation companies and the consumers. The grid has the features to sense the energy 

shares from different resources and is capable of functioning from the conventional energy 

generation system as well as renewable energy resources. The smart features are included in 

the micro grid system due to uncertainty in load variations and equipment failure. The 

sensors are applied at different points of the system that are connected to the micro grid 

centralised control unit. The centralised control unit is connected to sensors to record the data 

and take appropriate action. The purpose of designing the smart grid is to deliver the 

electrical energy in an efficient way from generation point to the electric-vehicle charging 

station. The energy flow is unidirectional from the wind and solar energy and the smart grid. 

The energy flow is bidirectional between the storage system and the micro grid system.   

Advanced control implementation and energy management techniques contribute to 

improved efficiency of the overall system. These technologies include smart sensors, 

centralised control units, protection and voltage regulation systems. The smart grid is capable 

of meeting the consumer demand with the integrated infrastructure. The smart micro grid 

reduces the load on the conventional transmission network and transforms control to the 

consumer from the centralised electric industry. It makes this happen by implementing 

modern technologies that enable the users to create a share in the electric grid and enable the 

users to achieve the full potential and control in power consumption. Many of these ideas are 
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already operational such as smart meter implementation that enables users to monitor the 

usage of electric power.   

3.1 DC Power implementation with Analysis  

The technology advancement in power conversion, transmission and generation has increased 

the demand for DC power flow. However, there are still many challenges in the DC type 

power applications such as protection, control, spikes and oscillations in the power flow. One 

of the other factors is that there is no standardization for the low voltage DC micro grid. The 

implementation of the DC micro grid for residential sectors requires the installation of a 

power conversion system in each house that connects the loads to the micro grid [94]. These 

converters should have a protection system to isolate the power connection during short 

circuits. The installation of these converters is generally expensive to deal with the higher 

power usage at the load sectors. Relatively little implementation of the DC system in industry 

and residential sector are hindering the spread of the DC type power transmission.   

However, DC technology is being implemented into high voltage transmission systems where 

it has achieved higher efficiency.  The domination of the AC type power flow is reducing by 

the advancement in power electronics components that allow attaining the required voltage 

level by using fast microcontrollers and microprocessors. The usage of high voltage direct 

current for power transmission is one example. High Voltage DC (HVDC) has lower losses 

and transmits power to longer distances than high voltage AC systems [95]. The higher 

switching frequency of the DC/DC power conversion system also results in advancement of 

DC type technology. Electrical power transmission is changing to DC systems to cope with 

the increasingly distributed energy sources. The DC type loads such as electric vehicles, 

telecommunication systems, ships and data centres requires the DC type power flow for 

efficient functioning.  The usage of DC power in these types of loads improves the reliability 

and reduces the cost of the components. This requires the investigation of the efficiency, 

protection, reliability and power quality of the system which will increase design choices 

about the power generation and consumption.   

3.2 Smart grid modelling and validation 

A micro grid is simulated that is connected to the energy resources and car charging 

terminals. The basic parameter of this grid is resistance where inductance and capacitance are 

not considered due to DC type of power flow. The conductor of this grid is considered to be 



65 
 

manufactured of different materials such as aluminium with lower weight and higher 

reliability that can tackle higher current flow.  Voltage on the micro grid is 585VDC which is 

equivalent to three phase AC voltage transmission in the UK. It is converted to user required 

voltage by implementing the Buck converter at the Electric Vehicle (EV) charging terminal. 

The voltage is converted to other levels by automatically applied duty cycle and the control 

system maintains the voltage flow on the micro grid and protects it from internal and external 

disturbances. It includes a sensor system to measure the power flow to protect the micro grid. 

Fig.3-1 represents the power flow on the micro grid used to charge up car batteries where the 

nominal power flow is 200KW. Power flow is investigated by using two different types of 

loads which are EV batteries and the ultra-capacitors by using the manual switch. This switch 

enables us to select the voltage during the simulation run. The amount of power flow depends 

on the numbers of cars and type of batteries.  

3.3.1 Smart grid system description  

The proposed smart micro grid structure consists of a control and monitoring centre, a smart 

protection system, stability and control system, a measurement system, and the storage 

communication system to regulate the power flow on the micro grid. The DC grid is fed from 

wind and solar energy generation units where power is always fluctuating due to variable 

wind flow/sunlight and if the load is inductive or capacitive then transients and spikes arise in 

the grid.   A regulatory system is required to create balance in the grid because achieving the 

desired voltage depends on the current (A) flow where an inductor behaves superlatively at 

lower frequencies while a capacitor has better performance at higher frequencies. In a DC 

grid there is no phase shift between the voltage and current. It means that the voltage is the 

only quantity that needs to be stabilised.  Fig.3-1. illustrates the structure of the low voltage 

DC micro grid with the necessary components. A DC centralised unit plays an important role 

for balancing the power flow at the micro grid. Buck-boost converters are designed at DC 

link to control the voltage level. Circuit breakers are used to protect the DC grid. 

Bidirectional converters transfer power between the batteries and the grid. A bidirectional 

converter is placed between the DC micro grid and the battery bank. This converter will 

charge up and discharge the batteries and monitor the power flow at the grid and battery 

bank. If a fault occurs at the micro grid or energy demand increases, this converter will 

transmit the power from the storage system to the grid. This will enable the micro grid to 



66 
 

continuously operate at the isolated mode and will improve the system stability. The power 

flow in the micro grid is a unidirectional. 

 

Fig.3-1:  Block diagram of the integrated smart grid consisting of wind/solar photovoltaic 

(PV) system, storage system and Electric Vehicle (EV) charging station. 

3.3.2 List of power conversion stations connected to the grid terminals 

1. AC/DC power conversion station for the wind turbines 

2. DC/DC power conversion station for the solar units 

3. Central micro grid control and monitoring centre for the power regulations 

4. DC/DC bidirectional conversion systems for the storage system 

5. AC/DC conversion systems for the fuel generator 

In order to examine the stability of power flow on the micro grid let us assume constant 

resistance, constant power and constant voltage at the terminal of the micro grid to create the 

mathematical formulation. Constant voltage is considered at every terminal because it is 

stabilised by the converter stations which are linked to the grid. The other converters are 

taken as constant power regulators that connect the renewable energy resources, storage 

system, and fuel based generation system with the grid. Constant resistance is taken due to 

fixed size conductors used for power transmission.  

The power in the DC micro grid is divided into three subsets of {V, R, P}. Multiple constant 

voltage terminals are represented by V = N × N with a linked resistance. The single constant 

voltage terminal is not analysed because of five converter stations that are connected to the 
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grid at several points. The main terminal to maintain constant voltage on the grid is the micro 

grid control and monitoring centre and is linked with the others terminals. The nodes are 

classified in terms of control being used to regulate the voltage and power flow from the 

terminals. The admittance matrix for the terminal voltage and current on the grid G ∈ RN×N is 

shown as [96].  

(
𝐈𝐕

𝐈𝐑

𝐈𝐏

) = (
𝐆𝐕𝐕 𝐆𝐕𝐑 𝐆𝐕𝐏

𝐆𝐑𝐕 𝐆𝐑𝐑 𝐆𝐑𝐏

𝐆𝐏𝐕 𝐆𝐏𝐑 𝐆𝐏𝐏

) . (
𝐕𝐕

𝐕𝐏

𝐕𝐑

)                                                                                (3-1) 

Here is 𝐈𝐑 = −𝐃𝐑𝐑. 𝐕𝐑        (3-2) 

For the single step node such as smart grid control and monitoring centre this matrix can be 

singular. Where DRR a diagonal matrix is for admittance is comprises of constant power links 

and B is the susceptance.  

𝐕𝐑 = −(𝐃𝐑𝐑 + 𝐆𝐑𝐑)−𝟏(𝐆𝐑𝐕 .  𝐕𝐕 + 𝐆𝐑𝐏 . 𝐕𝐏)     (3-3) 

𝐈𝐏 =  𝐉𝐏 + 𝐁𝐏𝐏. 𝐕𝐏          (3-4) 

The power flow is evaluated by using the constant medium voltage of 585VDC.  Power 

terminals are linked by the following equations where 𝐕𝐏 the voltage on the micro grid is and 

𝐈𝐏 is the current flow.  

𝐏𝐏 = 𝐝𝐢𝐚𝐠(𝐕𝐏) . 𝐈𝐏          (3-5) 

The main terminal to regulate the power flow on the grid is the storage system connection 

with the micro grid. This terminal detects the voltage drops and power requirement on the 

grid to activate the storage system for supplying electric energy. PP can be simplified to  

𝐏𝐏 = 𝐝𝐢𝐚𝐠(𝐕𝐏) . (𝐉𝐏 + 𝐁𝐏𝐏. 𝐕𝐏)       (3-6) 

With 

𝐉𝐩 = 𝐆𝐏𝐕 − 𝐆𝐏𝐑. (𝐃𝐑𝐑 + 𝐆𝐑𝐑)−𝟏. 𝐆𝐑𝐕) . 𝐕𝐕      (3-7) 

𝐁𝐏𝐏 =  𝐆𝐏𝐏 − 𝐆𝐏𝐑 . (𝐃𝐑𝐑 + 𝐆𝐑𝐑)−𝟏 . 𝐆𝐑𝐏      (3-8) 

Therefor the level of voltage on the DC micro grid can be set by solving the equation as.  

𝐕𝐏 =  𝐁𝐏𝐏
−𝟏. (𝐝𝐢𝐚𝐠(𝐕𝐏

−𝟏) . 𝐏𝐏 − 𝐉𝐏)       (3-9) 

P1 = Node for Wind and solar power generation  

P2 = Node for Storage system 
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P3 = Node for fuel generator 

Pload = Electric vehicle load and losses on the line 

PT =  Pgen − Putilised                                                                                              (3-10) 

All these assumptions are completely verified by the analysis and the simulations results. 

P1−PT is unpredictable and are balanced by the P2 and the regulation is achieved by the micro 

grid monitoring centre. The assumptions of P1−PT , can be solved by using successive 

approximation shown as [97].  

𝛂 =
‖𝐁𝐏𝐏

−𝟏‖ .  ‖𝐏𝐩𝐩‖

𝐕𝐦𝐢𝐧
𝟐            (3-11) 

The voltage on the DC grid is maintained by supplying the required power to the loads and 

by applying the correct duty cycle at the converter switches as shown in Fig.3-2. Battery bank 

is another source for maintaining the power at the DC grid during the power shortages on the 

micro grid. However, batteries cannot regulate the voltage on the grid for a long period of 

time so a fuel generator is added to charge up the storage system.  

  

Fig.3-2: Voltage regulation on the micro grid. 

3.3 Risk handling features of the smart grid 

The power generation and energy consumption at the EV station are random hence there is 

always a chance that the load and the energy generation are not matching. The concept of risk 

handling to balance the power on the network must be taken into account. The aim of the 

proposed model is to reduce the risk that is calculated by implementing a centralised control 



69 
 

unit at the micro grid station. The major aim of the centralised unit is to balance the energy 

supply s(t) and load side d(t) at the fundamental point t, hence s(t) = d(t).  The energy 

consumption at the load side is stochastic with a probability distribution of power P{s(t)  =

d(t)} = 1. The energy generation has the features of reducing the supply by a certain amount 

ε. The failure to meet the energy demand is described by P{ s(t) < d(t)} or P{d(t) <  s(t) −

ε}. The probability of failure P{d(t) >  s(t)} and P{d(t) <  s(t) − ε}. There is a need to 

reduce the risk to a minimum level.  

𝐏{𝐝(𝐭) >  𝐬(𝐭)} < 𝛂 and 𝐏{𝐝(𝐭) <  𝐬(𝐭) − 𝛃}                                                                  (3-12) 

Where α and β are the small digits 0.1% and 0.01% that are specified by the user.  

The terminology of “generation following load” is a fact that the generation is always 

controllable and the load is not controllable because it is always changing. To further 

evaluate the load and energy generation system, the terms are separated to generation REG(t) 

and load EVL(t) into.  

𝐑𝐄𝐆(𝐭) =  𝐑𝐄𝐆𝐝(𝐭) + 𝐑𝐄𝐆𝐬(𝐭)                                                                                       (3-13) 

𝐄𝐕𝐋(𝐭) = 𝐄𝐕𝐋𝐝(𝐭) + 𝐄𝐕𝐋𝐬(𝐭)                                                                                         (3-14) 

Where REG(t) includes wind and solar energy while EVL(t) represents the load side that 

includes electric-vehicles.  The energy balance between the load and the generation side can 

be arranged to 

𝐑𝐄𝐆(𝐭) − 𝐄𝐕𝐋(𝐭) = 𝐄𝐕𝐋𝐬(𝐭) − 𝐑𝐄𝐆𝐬(𝐭)                                                                       (3-15) 

The left side of the equation can be described as a deterministic component generation/load, 

the total energy supply s(t) and the net demand d(t). The energy net supply is partly 

controllable and deterministic and the demand on the load side is stochastic.  

3.4 Modelling of Smart grid decision procedures 

The smart grid equipped with sensors and a centralised control unit are used to reduce the 

uncertainty in the system. The error between the load side and the generation side reduces 

following an exponential decay. For example, the error in the wind forecast can be inscribed 

as day ahead would be larger by 30% but the error a minute ahead would be zero. Simply, the 

probability of the net demand at the EV charging station can be used by the centralised 

control unit and the result would be steeper and sharper. Hence the multistage decision 

process can be adopted to reduce the uncertainty. The stages can be divided into the net 
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energy demand at the EV station e.g. a day ahead demand, an hour ahead demand and a 

minute ahead demand at the load side. 

The net energy demand  d(t) is stochastic and updated at each stage day ahead, an hour ahead 

and a minute ahead by the information provided at the micro grid P{d(Y)} at stages. The 

function J must be explained to reduce the overall expected uncertainty. The J is a function of 

dispatch decision of total energy supply 𝑠(𝐾1, … … … … . 𝐾𝑖) where i = 1,2…m analysed at all 

stages.  

The RLD shown as 𝜋 is derived to: 

Choosing regulated net energy generation.  

(𝐊𝟏, … … … … . 𝐊𝐢) 𝐢 =  𝟏, 𝟐 … … . 𝐦 𝐢. 𝐞 𝐬(𝐊𝟏, 𝐊𝟐), 𝐬(𝐊𝟏, 𝐊𝟐, 𝐊𝟑)                                   (3-16) 

To optimise the dispatch function J. 

Referring to risk reducing parameters e.g. 

𝐏𝐦{𝐝(𝐭) > 𝐬(𝐭)𝐘𝐦} < 𝛂, 𝐏𝐦{𝐝(𝐭) > 𝐬(𝐭)−𝛆/𝐘𝐦} < 𝛃                                                         (3-17) 

 

3.5 DC centralised unit implementation on the smart grid 

The modelling of the DC micro grid centralized unit is achieved to regulate the energy 

received from the wind/solar converter systems. If the input voltage recorded is lower than 

the nominal values, then it functions to boost the voltage and during the fluctuation it 

stabilises the voltage closer to nominal values. A DC link is established at the micro grid 

station where a low pass filter is applied to remove the transients and harmonics. It also 

supports to control the current and maintain the DC voltage level. According to changing 

loads at the charging stations, quality and stability should be achieved for a stable system.   

Sum of power generation at the DC link can be described as 

𝐏𝐃𝐂 𝐥𝐢𝐧𝐤 =  𝐏𝐖𝐓 + 𝐏𝐏𝐕                                                                                                        (3-18)                                                                                                        

PDC link is the DC link where the power is added up, PWT the wind turbine power and PPV is 

the power received from the solar panels.   

The overall supply to the grid can be described as 
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𝐏𝐃𝐂 𝐠𝐫𝐢𝐝 =  𝐏𝐖𝐓 + 𝐏𝐏𝐕 + 𝐏𝐛𝐚𝐭𝐭𝐞𝐫𝐲 𝐛𝐚𝐧𝐤                                                                             (3-19)                                                                                 

𝐏𝐬𝐲𝐬𝐭𝐞𝐦 =  𝐏𝐖𝐓 + 𝐏𝐏𝐕 + 𝐏𝐛𝐚𝐭𝐭𝐞𝐫𝐲 𝐛𝐚𝐧𝐤 − 𝐏𝐥𝐨𝐬𝐬𝐞𝐬 − 𝐏𝐥𝐨𝐚𝐝                                                  (3-20)                                                    

During the peak times at the EV charging station larger oscillations are observed at the DC 

link. These are impacting the DC micro grid and creating variable voltage in the grid. 

Capacitors are used to reduce the oscillations at the DC link but it is affecting the converter 

properties. By decreasing the capacitance massive fluctuations at voltage were observed. Low 

capacitance can cause the breakdown in the semiconductor switches. When the value of DC 

link capacitor is reduced, distortions in the current happen.  During the operational timings, 

voltage regulation at the DC-link is achieved by controlling the energy storage at the DC-link 

capacitor.  

The model of the DC-link can be described as [98] 

𝐂𝐕𝐃𝐂

𝐝𝐭
= 𝐢𝐝𝐜 − 𝐢𝐋                                                                                                                   (3-21) 

Where idc is the DC link current and iL is the load currentdrawn by the loads.  

Back-to-back converters are used to control the power flow at the micro grid. It is observed 

that the fluctuations in the DC power can be minimised if inverter side dc power and rectifier 

side dc power are equalised by using the PWM technique. By using PWM techniques current 

distortions are minimised. The voltage is also distorted due to existence of transients in the 

system. The best solution is to connect larger capacitors built with aluminium electrolyte to 

behave as an energy storage element. In some areas, electrolytic capacitors are not considered 

feasible due to reliability, weight and size. Also features of electrolytic capacitors weaken 

gradually with time. Choosing the right capacitor is very important because it reduces the 

ripples and extends lifetime of the converter. Reliability of VSC converters is also enhanced 

by using film capacitors instead of electrolytic. Buck-boost converters also play an important 

role in balancing the voltage flow at the DC link. If the voltage output of the rectifier is not 

balanced, then using the PWM buck-boost converter will stabilise it. 

3.6 Smart grid protection system simulation and analysis 

When the power flow is interrupted from a fault then the system can become unstable [99]. A 

fault in the DC converter station can affect the rotor angle of the wind generator and damage 

the components at the converter station. This depends on the duration of fault and 

components used to protect the system. The fault in the DC grid happens between the lines or 
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between the lines and the ground. When voltages at the micro grid are reduced then over 

current flow can happen which introduces transients in the system [100]. Due to reduction in 

voltage level, current flow can increase and cause more losses. The increase in current can 

also damage the conductor material and the equipment such as power conversion system. 

Controlling the current in DC grid is more complicated than AC grid. By switching on a DC 

current, electrical arcing can damage the switch. So there is special attention required to 

protect the components for DC power flow.  

The implemented protection system has the capability to function correctly during a short 

circuit and other types of faults. The protection system consists of all the necessary tools such 

as controller, sensors, measurements, relays and breaker or switches. A programmable smart 

protection system is designed to protect the micro grid. Voltage and power flow are sensed at 

the grid and then signals transmitted to the controller for performing a required action. The 

input of the controller is connected to the voltage and current measurement sensors and the 

output is connected to the DC circuit breaker. The controller isolates the grid and power 

components when voltage or current exceeds a high threshold level. The output of the breaker 

is logical 1 or 0 where 1 means closed circuit and 0 means open circuit. The circuit remains 

closed during normal conditions and only goes to the open position when inappropriate 

power flow happens in the system.  It is required for the circuit breaker to remain open during 

the first few seconds as higher power flow due to charging up of inductance and other 

components in the system. The protection system has to operate correctly or else the micro 

grid and other power components can be damaged. Fig.3-3 shows the structure of the 

protection system used to protect the micro grid. A MATLAB block operates as a major 

controller which compares the real time transmitted voltage with the reference voltage and 

then operates accordingly. The circuit breaker receives signals from the controller to protect 

the system. The breaker has the capacity to withstand a maximum variation of 5% of the 

nominal power. If the current exceeds the breaker nominal values, the logic zero signals will 

be sent to the circuit breaker to open it and stop transmitting power through it. But when the 

system returns to the nominal values, the breaker will go to close state to allow the power to 

flow through it.  
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Fig.3-3: The internal structure of the protection used to protect the micro grid 

3.7 Simulation results and transient responses on the smart grid 

The Micro grid receives power from the renewable energy resources and is associated with 

several uncertainties. To reduce the uncertainties in energy generation, power flow on the 

grid is analysed and stabilised. Transients in the micro grid are observed as it consists of 

resistance and inductance (in converters) Transients arise in the micro grid due to variations 

in energy supply and charging up of car super capacitor batteries. Transients also occur due to 

usage of power electronics components used for conversion of power. Larger transients tend 

to change the microgrid power flow and make it less effective for power transmission.  The 

transients are minimised by using low pass filters. It can be seen in Fig.3-4 that in the first 0.2 

seconds the voltage and current overshoot and then settle to the nominal values.. This is due 

to charging and discharging of passive elements in the line. The transient can be more severe 

if the centralised control is not used to stabilise the generated power from renewable energy 

resources. Initially the observed power flow is observed to be higher due to charging up of 

converter components such as inductance and capacitance. Fig.3.4 shows the transients in 

voltage flow on the DC grid. Initially a spike is observed for few seconds and then the 

required voltage is achieved. A spike was observed at the start of a simulation due to 

charging up of inductance and power flow from unpredictable renewable energy resources 

and  the existence of electronics components. Due to start up process of wind and solar 

system and charging up capacities and inductance elements a voltage spike was detected and 

then reached a constant level after 0.013s. VSC converters are used to convert the power 

from wind turbine and solar farm. Then at the DC link a buck-boost converter controls the 
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power flow at the grid. A bidirectional converter is placed between the DC micro grid and the 

battery bank. This converter charges up and discharges the batteries from the micro grid and 

monitor the power flow at the grid and battery bank. If a fault occurs at the micro grid or 

energy demand increases, this converter l transmits power from the storage system to the 

grid. This will enable the micro grid to continuously operate in a isolated mode and will 

improve the system stability. The power flow at the micro grid is unidirectional. 

 

 

Fig.3-4: Voltage transients due switching ON/OFF of the wind turbine and solar units by 

changes wind and sun light  

 

To remove the transients and harmonics from the micro grid transmission system low pass 

filters are implemented which regulate the voltage and maintain the current level by reducing 

voltage spikes. Fig.3-5 shows the minimised spikes and transients in current (A) on the micro 

grid created due to usage of a super capacitor as a load. A bidirectional converter with control 

is placed between the DC micro grid and the battery bank which charges up and discharges 

the batteries by monitoring the power flow at the grid. Different inductors provide different 

load response [101]. A large inductance creates lower peak currents and reduces losses and 

improves the efficiency. Also, the switching frequency of the IGBT switches affects the 

current flow on the micro grid. Higher switching frequency creates lower ripples in current 

and vice versa [102].  
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Fig.3-5: Observations of current flow in the micro grid  

The losses on this grid are very low due to its short length and no reactive power. It includes 

a smart measurement system, a smart protection and storage system. Voltage and current 

sensors measure the values and send signals to process the correct duty cycle. This grid 

increases the efficiency of power flow and reduces the number of converters. The Battery 

bank connected to the micro grid enables the continuation of power flow during inappropriate 

environmental conditions.  This type of concept is feasible for the charging stations where 

fewer terminal links exist. 
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Summary 

A DC micro grid is simulated that connects renewable energy sources directly to the plug-in 

electric-vehicle charging station to analyse power flow at lower voltage levels. Smart sensors 

and a programmable protection system are added to increase the reliability of the grid. 

Smaller fluctuations are observed due to switching periods of the converter. These 

fluctuations are minimised by increasing the switching frequency of the converters. It is 

found that the independent micro grid is beneficial for lower power flow applications which 

are typical for charging stations. The micro grid improves the efficiency of higher power flow 

due to lesser losses and voltage drops on the line. Output results are monitored by using a 

sensing system comprising of voltage sensors and current sensors. In this setup, it is possible 

for the user to select the required voltage level. This set up is feasible for both higher and 

lower power flow and improves the overall efficiency of the system.    Characteristics of the 

DC micro grid are described by analysing the power flow during peak demands, off peak and 

normal circumstances. It is observed that when the wind farm was generating the power at 

full capacity there was less power loss. The generated voltage is close to nominal values 

which enhances the stability of the system. But when the wind speed is lower, then the output 

generated power from the wind turbine is reduced. The frequency is also varying with 

changing wind speed. Due to variations in frequency, massive transients in the line occur and 

can cause failure of the system. But by using the converter at the DC link, the voltage and the 

frequency are corrected. 
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Chapter 4 Energy conversion and applied control 

techniques 
A control system is designed for the DC-DC converters to achieve a desired output by 

measuring the voltage and current and applying the correct duty cycle to regulate the voltage 

flow at the micro grid. The control system uses IGBT switches to control the voltage and 

current flow. The converter components are capacitors, inductors, diodes, and off-on 

switches. As capacitor is a passive device which resists the change in voltage and an inductor 

resists the change in current. It means that the voltage across the capacitor does not change 

instantly and the current in the inductor cannot change rapidly.  

An inductor behaves best at lower frequencies while a capacitor has better performance at 

higher frequencies. If the load is inductive or capacitive than a very complex control is 

required.  Achieving the desired voltage depends on the duration and level of flow of current 

which is achieved with an automatic controller. The controller is usually a microcontroller 

which controls the frequency of the switches by using PWM waveforms which have the 

capability to switch ON and OFF the IGBT device and current direction. Pulse duration is 

controlled by the ON time of the PWM. If the PWM is generated from a sinusoidal signal, 

then output will be sinusoidal as well. By applying the signals appropriately, the desired 

output voltage can be achieved. 

    

4.1 MOSFET/IGBT 

MOSFET is a device that control the voltage and not current.  It has features of a drain diode 

and handles freewheeling current. MOSFETs are useful in higher frequency circuits, longer 

duty cycles, lower voltages and load variations. A MOSFET have lower losses at higher 

frequency but it can only operate in lower power regions [104]. It is not feasible at higher 

power due to large temperature rises. A IGBT is also a voltage controlled device which has 

the capability to switch its output and has conduction parameters of bipolar transistors. It has 

the features of tackling higher currents. IGBT’s are mostly used with PWM switches, as a 

diode and in lower frequency applications. The reason for using the IGBT in converters is 

that it has break down voltage level above 1000V, which means it is suitable for higher 

voltage applications [105]. While the MOSFET breakdown voltage is a maximum 250V or 

lower. An IGBT has also capability to control and remain stable for higher power flow of up 

to several kilo watts. It has been found that a IGBT can operate more precisely than a 
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MOSFET in higher power applications. The switching frequencies of high power IGBT 

switches are very low and they produce lower order harmonics and distorted output 

waveforms. To solve this problem, a PWM control strategy is applied to reduce the 

harmonics content and smooth the output waveforms. Output voltage of the converters is 

decided by the PWM switching. Three phase PWM pulses have 8 ON and OFF states and are 

applied to switches to control the ON and OFF states.  

The duty cycle is applied to the input and is between 0 and 1. The switching frequency 

controls the speed of the device. It is observed that by increasing the PWM pulse frequency, 

harmonic components are reduced. 

Fig.4-1. shows the IGBT switch. It is a three terminal conducting device. Where g represents 

the gate, C is the collector and E is the emitter.  Current flows from the collector to emitter 

and is controlled by the gate signals.  

 

 

Fig.4-1: Insulated gate bipolar transistor (IGBT) used to convert  electrical energy 

4.2 Power conversion system  

There are three types of DC-DC converters are Buck, Buck-Boost and Boost. Buck 

converters are used at electic-vehicle charging stations to reduce the voltage to suitable levels 

for charging. Boost converters are used to increase the voltage of the solar panels. While 

buck-boost converters are used at the DC link to regulate the voltage flow. If the votlage is 

above the nominal level it operates as a buck converter and in the case of lower voltage, it 

funtions as a boost converter. 
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4.2.1 Modelling and simulation of Boost Energy Convertors 

Boost converters are used to convert the DC-DC voltage level.  Boost converters play an 

important role in modern power conversion. Voltage output of solar cells and wind units is 

not enough to function properly, so there is a requirement to increase the voltage. To design 

the boost converter, the basic parts used are IGBT switches, diodes, capacitors and inductors. 

Pulses are applied to control the frequency of the switches. An inductor also plays an 

important role as it resists variations in current. A Boost converter functions in two different 

ways depending upon frequency of switching period and energy storage capability of the 

components. The two operating ways are the continuous conduction mode and the 

discontinuous conduction mode.  The equation for achieving the desired voltage at the output 

is given as [106].  

𝐕𝟎 =
𝐕𝐢

𝟏−𝐃
                                                                                                                               (4.1) 

 

Where V0 the output voltage is Vi is the input voltage and D is the switching duty cycle  

In boost converter mode, when the switch stays ON the circuit is divided into two states; the 

inductor voltage is increasing meanwhile the capacitor maintains the output voltage utilising 

the stored energy.  In this state current through the inductor never reaches to zero, and it 

discharges partially. The main parameter of the boost converter is the inductor which resists 

the instantaneous variations in current. It stores energy in the form of magnetic field and 

releases energy at close of the switch. The inductor current increases whilst the switch in the 

ON position. The capacitor is large to maintain a high time constant (RC) of the circuit. 

During the switch ON position, the diode behaves as an open circuit due to a higher voltage 

on the N side compared to the P side. When the switch goes to OFF position, the load 

receives energy both from the stored energy and from the source. The diode is short circuited 

in this state and it steps up the output voltage level. In this stage, the inductor becomes fully 

discharged and current reaches to zero until the next switching cycle comes ON. By 

controlling the switching sequence, the desired output voltage can be achieved. During 

normal conditions, current flow in the inductor does not vary suddenly. Therefore, current 

level should remain equal at the end of switch ON time and at the end of switch OFF time. 

Current level should also be the same at the start of switch OFF time and at the end of the 

switch ON time.  
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The relation between input and output voltage with duty cycle is given as 

𝐕𝐎

𝐕𝐈𝐍
=  

𝟏

𝟏−𝐃
                                                                                                                             (4.2) 

                      

𝐃 =  𝟏 −
𝐕𝐈𝐍

𝐕𝐎
                                                                                                                        (4.3) 

From the equation above it can be seen that the desired output voltage can be achieved by 

adjusting the duty cycle. By increasing the duty cycle, output voltage is boosted up and 

power flow is enhanced in the same proportion. At unity duty cycle  
𝑉𝑂

𝑉𝐼𝑁
 goes to zero due to 

parasitic elements in the lumped component capacitor, inductor and resistor. The duty cycle 

can be controlled by using a micro controller, FPGA or other PWM technique.  

Fig.4-2 shows the circuit for a boost converter. 24V is received from the solar panels. 

Inductance is used to achieve the require voltage by varying the current ratio. Pulse width 

modulation (PWM) techniques are used to control the frequency of the IGBT switches. 

Applying the correct duty ratio is very important because it is directly related to the voltage 

level. Capacitors remove the ripples.  

 

Fig.4-2: Boost Converter used to convert the DC/DC power 
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4.2.2 Implementation of buck energy converter  

A Buck converter is applied at the EV charging terminal and at the wind turbine units to 

achieve the required voltage as shown in Fig.4-3. When switch is ON, power flows in the 

circuit and results in an output voltage across the resistor. Energy is stored in the inductor and 

capacitors charge up gradually to maintain the voltage flow to the load.  The diode is reverse 

biased and there is positive voltage across it. When switch is turned OFF then energy is 

released by the inductor and the capacitor is discharged via the resistor. During this time, 

voltage across the inductor is now in reverse mode but enough energy is available to maintain 

current flow in the circuit until the switch is open [107].  The Diode now forward biased and 

current flows through it. As stored power in the inductor tends to decrease due to the load, 

voltage tends to be at a lower level as well. The capacitor is the source of current during this 

time until the switch goes to ON position. By controlling the switching of the converter, 

desired lower output voltage is maintained.  

 

Fig.4-3: Simulation of Buck converter at the electric-vehicle charging station 
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4.2.3 Modelling and simulation results of buck-boost energy conversion system 

In the buck-boost energy conversion unit, charging and discharging of the inductor is 

represented by 1 and 0. By controlling the switching sequence, higher/lower output voltage 

can be achieved. Output voltage polarity is opposite to the source voltage as the inductor 

cannot change the current direction. In this type of converter two IGBT switches are used. 

Both are connected to the PWM control unit. The control unit has to decide whether to step 

up or step down the voltage. IGBT switch1 is connected to the source while IGBT switch2 is 

connected parallel to the inductor and diode as shown in Fig.4-4. In the buck converter mode 

switch2 remains off all the time, whilst switch1 is turned ON and OFF by the control unit. 

The control unit applies the pulses at the gate of the switch. When the switch1 is ON then 

current flows in the inductor and generates a magnetic field, charging the capacitor and 

supplying power to the load. The diode is inactive due to positive voltage at the cathode. 

When the switch1 goes off then the main current source is the inductor. It supplies current by 

collapsing its magnetic field; back e.m.f. is developed due to this collapsing and reverses the 

voltage polarity. Now the diode is active and current flows through the second diode to the 

load. When the amount of current reduces in the inductor then the capacitor also supplies 

current to the load [108]. This helps to achieve the buck operation in the buck-boost 

converter. In the boost mode, switch1 remains OFF all the time and PWM signals is applied 

to switch2. During the switching ON period current will flow through the inductor and 

switch2 and diode2 cannot conduct due to higher voltage potential at the cathode and the load 

is supplied power by the capacitor and the source.  

The size of the capacitor determines the ratio of output ripples and transients. When switch2 

is turned off, the capacitor is partially discharged and the inductor is charged. Back e.m.f is 

generated by the inductor and its range depends on the rate of variation of current and size of 

the inductive coil [109]. Therefore, e.m.f. can be a different voltage. At this point voltage 

polarity across the inductor is reversed, which adds to the input voltage and gives an output 

voltage which is bigger than the input voltage. Diode2 is now in conducting mode and current 

flows through it to the load and recharges up capacitor simultaneously. Controlling the 

switching of the buck-boost converter is very important. Switch 1 and switch 2 are both 

controlled by the same control unit. They must be synchronised and controlled in an 

appropriate way.  
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The inductance and the output capacitance in the DC-DC power converters form a second 

order low pass filter. This filter is used to reduce the ripples in the energy supply generated 

by PWM pulses as shown in Fig.4.4. Any changes to inductance or capacitance affect the 

voltage and output current from the converter system. The output capacitors of a low pass 

filter are an important part of the feedback converter system because it is the key component 

to reduce the transient response in the power supply. The load current has a direct impact on 

the input voltage deviations. If the transient increases in the output current then the transients 

in the input voltage to the converters are increased as well. Higher input capacitance is 

required to minimise the transients in the voltage because lower input voltage will allow 

higher current to flow and increase the transients. The output capacitors of the converter must 

be charged and discharged to allow the flow of energy and reduce the voltage. The voltage 

drop is proportional to the output current where a higher output current causes the voltage 

drop in the system. The transients are reduced by increasing the capacitor values and by 

increasing the switching frequency of the converters. When a transient occurs in the system, 

the controller receives the changes in the output voltage and compensates it by changing the 

duty cycle. The change in output current is limited by the inductance of the output filters even 

if the duty cycle rises to 100%.  

 

Fig.4-4: Simulation of Buck-Boost converter at the microgrid station 

 

4.2.4 AC-DC VSC based energy conversion system  

The output power waveform from the generator is AC type.  Then it is converted into DC 

waveform by using IGBT diodes. Six diodes are used to implement this conversion. These 
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diodes are divided into three rows. Each row has two series connected diodes. The upper 

diodes are connected to the positive source while the lower diodes are connected to the 

negative source. So it means that during the positive waveform upper diodes are operational 

while during the negative waveform lower diodes are operational and convert three phase AC 

power into DC power. The generated input voltage is 585VAC (peak) and then converted 

into 585 VDC. The simulation model for the rectification is shown in Fig.4-5. The power 

generated from the wind is converted into DC power. The controlled rectifiers are used for 

conversion of power. Six IGBT diodes are used to make this conversion.  

 

Fig.4-5: Three phase voltage to DC voltage rectification 

4.3 Modelling and validation of voltage regulation and control  

The voltage on the DC micro grid is maintained by implementing the correct duty cycle at the 

AC/DC IGBT converter switches and by supplying the required power to the loads. The 

closed loop feedback system, shown in Fig.4-6 is used to generate the precise duty cycle. The 

controller receives a signal from the output of the converter by closed feedback links and 

generates the variable duty cycle by comparing the output feedback voltage with the 

reference voltage. It updates the duty cycle by detecting the voltage difference between the 

output voltage and the reference voltage. The regulated voltage is than transmitted on the 

smart grid to the electric-vehicle charging station.  
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Fig.4-6:  Closed loop feedback control system for the converter sections for voltage 

regulation. 

By using transfer functions an expression is derived to generate the duty cycle and to perform 

converter analysis. For the state space representation inductor current and capacitor voltage 

are considered. The inputs are duty cycle, the input current iDC and the converter output 

voltage. D is the duty cycle applied to the converters, vC represents the capacitor voltage and 

il is the inductor current and controller is represented by Rcontoller.  
dil

dt
 is the change in 

current and 
dvci

dt
 is the change in voltage in the converters.  

𝐃(𝐒) =  
𝐃𝐏𝐖𝐌(𝐒)

𝐕𝐂(𝐒)
                                                                                                          (4.4) 

𝐏𝐒(𝐒) =  
𝐕𝐎(𝐒)

𝐃𝐏𝐖𝐌(𝐒)
                                                             (4.5) 

The expression below illustrates the transfer function for the duty cycle generation  

𝐃(𝐒) =  
�̃�𝐏𝐖𝐌(𝐒)

�̃�𝐂(𝐒)
                                                                    (4.6) 

The following equations describe the voltage that is driving the PWM controller.  

𝐯𝐜 =  𝐕𝐜 + �̃�𝐜                                                                     (4.7) 

If �̃�𝐜 =  𝐚 ∙ 𝐬𝐢𝐧( 𝛚𝐭 − 𝛗)                                                                            (4.8) 

The duty cycle generation from the controller is given by  

𝐃𝐩𝐰𝐦 =  
𝐕𝐂

𝐕𝐦𝐚𝐱
+

𝐚

𝐕𝐦𝐚𝐱
𝐬𝐢𝐧( 𝛚𝐭 − 𝛗)                              (4.9) 

where 
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𝐃𝐩𝐰𝐦 =  𝐝𝐏𝐖𝐌 + 𝐝𝐩𝐰�̃�                                   (4.10) 

By combining the two equations the transfer function for the PWM controller can be 

obtained.  

𝐃 =  
𝐃𝐩𝐰𝐦

𝐯�̃�

𝐕𝐂
𝐕𝐦𝐚𝐱

+
𝐚

𝐕𝐦𝐚𝐱
𝐬𝐢𝐧( 𝛚𝐭−𝛗)

𝐚∙𝐬𝐢𝐧( 𝛚𝐭−𝛗)
                                   (4.11) 

𝐃 =  

𝟏

𝐕𝐦𝐚𝐱

𝟏
                                                       (4.12) 

𝐃 =  
𝟏

𝐕𝐦𝐚𝐱
                                            (4.13) 

The two differential equations are: 

𝐝𝐢𝐥

𝐝𝐭
=  

𝐯𝐜𝐢

𝐋
−

𝐯𝐛(𝟏−𝐃)

𝐋
                 (4.14) 

𝐝𝐯𝐜𝐢

𝐝𝐭
=

𝐢𝐃𝐂

𝐂𝐢
−

𝐯𝐜𝐢

𝐂𝐢∗𝐑𝐜𝐧𝐭
−

𝐢𝐥

𝐜𝐢
                (4.15) 

In matrix form: 

[

𝒅𝒊𝟏

𝒅𝒕
𝒅𝒗𝒄𝒊

𝒅𝒕

] = [
𝟎

𝟏

𝐋

−
𝟏

𝐂𝐢
−

𝟏

𝐂𝐢∗𝐑𝐜𝐧𝐭

] [
𝐢𝐥

𝐯𝐜𝐢
] + [

𝐯𝐛 𝟎
−𝟏+𝐃

𝐋

𝟎
𝟏

𝐂𝐢
𝟎

] [
𝒊𝑫𝑪

𝒗𝒃
]                                              (4.16)

   

�̇� = 𝐀𝟏 ∙ 𝐱 + 𝐁𝟏 ∙ 𝐕𝐝                                                                                                 (4.17) 

Therefore 𝐱 = [
𝐢𝐥

𝐯𝐜𝐢
] , 𝐀𝟏 =  [

𝟎
𝟏

𝐋

−
𝟏

𝐂𝐢
−

𝟏

𝐂𝐢∗𝐑𝐜𝐧𝐭

] , 𝐁𝟏 =  [
𝐯𝐛 𝟎

−𝟏+𝐃

𝐋

𝟎
𝟏

𝐂𝐢
𝟎

] ,   𝐕𝐝 = [
𝐝

𝐢𝐝𝐜

𝐯𝐛

]     (4.18)

  

The equations, as detailed below, are used to measure the magnitude of ripples for the 

capacitor voltage and inductor current where Ts is the switching frequency applied to 

converter switches and D is the duty cycle.  

∆𝐢𝐋 =  
𝐯𝐜𝐢

𝟐𝐋
𝐃𝐓𝐬                            (4.19) 

∆𝐯𝐜𝐢 =  
𝐃𝐓𝐬

𝟐𝐂𝐢
(𝐈𝐃𝐂 −

𝐯𝐜𝐢

𝐑𝐜𝐧𝐭
− 𝐢𝐋)                           (4.20) 
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From the state space equations, the transfer function Gd(s) between input voltage to the 

converters and the duty cycle is given by  

𝐆𝐝(𝐬) =  −
𝐑𝐜𝐧𝐭𝐋𝐯𝐛

𝐋𝐂𝐢𝐑𝐜𝐧𝐭𝐬𝟐+𝐋𝐬+𝐑𝐜𝐧𝐭
                         (4.21) 

The observability matrix of the system shows that the system is observable.  

 

𝐎𝐛 = [
𝟎 𝟏

−
𝟏

𝐂𝐢

𝟏

𝐜𝐢𝐑𝐜𝐧𝐭

]                           (4.22) 

 

From the controllability matrix below, the system is always controllable if the determinant of 

this matrix is non-zero, similarly the observability.  

 

𝐂𝐨 = [
𝐕𝐛 𝟎

𝟎 −
𝐯𝐛

𝐜𝐢

]                                                                                                                   (4.23) 

4.4 Voltage flow stability and control comparison with the other methods  

Voltage and frequency are the two quantities that need to be controlled in AC power flow. 

Frequency can be controlled by the rotation of wind turbine and by the increasing and 

decreasing of apparent power. Voltage can be controlled by stabilising the reactive power. In 

a DC grid the frequency is equal to zero and there is no reactive power because voltage and 

current are in phase. It means that the voltage is the only quantity that needs to be stabilised 

on the DC grid. The voltage on the DC grid can be maintained by supplying the required 

power to the loads [110]. If the grid is over loaded, then voltage falls will happen on the 

entire system and energy boost will be required at this point. Thus to maintain the voltage on 

the DC grid, it is essential to keep an energy balance on the grid at all times i.e. power 

flowing out of the grid should be equal to power flowing into the grid. Maintaining voltage 

levels also depends on the number of converters used to control the DC voltage level. 

Different methods can be applied to maintain the voltage on the DC grid. One common 

method is the Master/slave drop control. Typically, the DC link system is the section where 

voltage level can be controlled because it is directly connected to the grid and appropriate 

voltage level should be achieved [111]. All other converters transmit the voltage at various 

levels. Some of these converters are operational for converting and controlling the ac power 

from the wind turbine. All converters should function correctly and dependency should not be 
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maintained only on the DC link. Communication between the converters is also beneficial to 

maintain the power flow at the DC grid. The advantage of using the communication system 

between the controllers is to identify the voltage drops and faults that can happen in the 

system. If the signals are not transferred to the next converters within a short period of time 

the DC grid can become unstable. The system should also be protected against unessential 

communication between the voltage controllers or else it can lead to instability. The 

Master/slave control method is preferable where one master controller at the DC link is 

controlling several other devices and converters.  Since the DC grid is being fed from the 

renewable energy resources (which depend on the weather conditions) power is always 

varying and a complex controller is required which transmits signals at a very fast rate. A 

battery bank is another source to maintain power at the DC grid during the lower power 

generation. By monitoring voltage drop in the grid, the battery bank can be used to support 

the grid to maintain the nominal voltage level. However, batteries cannot regulate the voltage 

on the grid for a long period of time due to not having enough capacity. There must be a 

fossil fuel generator which charges up the batteries and supplies power to the loads during the 

inappropriate circumstances. By regulating the voltage at the DC terminal link, nominal 

voltage flow can be achieved at the grid.  

The system was tested and compared by implementing the following methods reported in the 

literature. Results of their simulation are shown in Fig.4-7 and compared with the proposed 

model.  

 Perturbs and observed method  

 Incremental conductance 

 Space vector pulse width modulation 



89 
 

 

(a) Voltage flow on the micro grid by the implemented proposed control system 

 

(b) The voltage flow on the smart grid with the Perturb and Observe algorithm, which is a 

part of maximum power point tracking algorithm (MPPT) 
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(c) Achieving 585VDC on the smart micro grid with the incremental conductance 

method 

 

(d) Voltage obtained with the space vector pulse width modulation method 

Fig.4-7: Grid voltage with several applied control algorithms  



91 
 

 

4.5 MPPT based Control algorithm  

The Maximum power point tracking (MPPT) algorithm makes solar units capable of 

generating the power at full capacity. It does not move the module towards the sun to extract 

power. It varies the electrical properties of the PV module to achieve the maximum power 

and improve the efficiency of the solar panel by maintaining the voltage and current at an 

appropriate level. The MPPT algorithm is compared with our proposed model to analyse the 

power flow at the smart micro grid. MPPT calculates the energy values to apply the correct 

duty cycle to achieve the required results. It is typically suitable for charging up battery banks 

because it increases the efficiency of battery charging rate. Assume that there is a solar panel 

which is supplying power of 210W with 18.3V and 11.48A. There is a battery with maximum 

150W capacity and needs to be charged up at 12.2VDC. Assume that the battery storage 

capacity is less than the supplying power of the module. The MPPT controller increases the 

voltage of the system, closer to the module [112]. It charges up the battery at 18.3V and 

extracts most of the power from the module. This improves the entire efficiency of the 

system. Several MPPT algorithms were compared and tested. Fig.4-8 shows the PV system 

with the MPPT algorithm. Applying the MPPT is essential due to PV dependence on 

irradiance and temperature. A Boost converter is used to step up the generated voltage for 

transmitting it at the smart grid.  

 

Fig.4-8: Maximum power point to regulate voltage and extract maximum power from the 

solar system 
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4.5.1 Perturb and Observe Method control strategy  

The system is tested by applying the MPPT based P and O method where the voltage and 

power are sensed and measured by using sensors as shown in Fig.4-9.  This technique is 

operated by recording the output power by sensing the voltage and regulating it. This process 

periodically increases and decreases the output voltage of the system and compares the output 

power of the current cycle with the previous as shown in Fig.4-10. The rate of change is 

adjusted appropriately to overcome the fluctuations in the steady state. It is found that if this 

step is taken following the MPPT then better result can be obtained that results in improved 

efficiency.  This is the best method for MPPT but can go to an unbalanced state in very fast 

variations in atmospheric conditions. During the normal conditions, operation of this method 

is very feasible.  

 

Fig.4-9: Perturb and observe method to regulate the voltage on the microgrid. 
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Fig.4-10: Perturb and Observe algorithm  

The process can be improved by using the appropriate control system and by applying filters 

to remove oscillations in the voltage. This method needs less hardware complexity and is 

better economically. The negative aspect of this method is the oscillations of voltage at the 

desired point. The output voltage from the wind system is shown in Fig.4-11.  

 

Fig.4-11: Oscillations in voltage observed by implementing P and O method 
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 The voltage transient is observed in the initial 0.03 seconds due to initialization of the system 

after which the voltage is oscillates around the desired point. The oscillations can be removed 

by using the fastest control components. This technique is found suitable for areas where 

little variations happen in the environment. MATLAB tools are used to operate the Perturb 

and Observe methods to apply the correct duty cycle.  

The MPPT temperature method is a useful method for the solar system.  In this method, a 

temperature sensor is used to update the control unit. But for larger PV units, this method is 

not feasible due to irregular distribution of temperature on PV arrays. This method is found 

appropriate for smaller PV units and avoids irregularities in the output voltage. This method 

is the simplest to apply and its equation 4.24 is shown below [113].  

𝐕𝐌𝐏𝐏 = 𝐕𝐌𝐏𝐏(𝐓𝐑𝐞𝐟) + 𝐓𝐊𝐕𝐎𝐂(𝐓 − 𝐓𝐑𝐄𝐅)                                                          (4.24) 

 
Where VMPP is the Maximum power point voltage, T is the PV surface temperature, 

TKVOCis the temperature coefficient of VMPP, and TREF is the nominal test environment 

temperature.  
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The voltage at the smart grid is shown in Fig.4-12. The desired voltage is 585VDC but the 

oscillations are found in the actual voltage. When the voltage is lower than the desired point 

then a battery system has to supply power to the system. The batteries are charged up again 

when the voltage increases to desired point. There is another method, MPP, which relates to 

principle of maximum power transfer, and where oscillations are used to measure the best 

point to process. At MPP, the ratio of amplitude of oscillations to the average voltage is 

constant. It can be implemented by using logic circuits because it only senses the PV voltage 

level. To apply this method, system oscillation, low frequency ripples or double frequency 

can be used. A filter needs to be implemented for switching frequencies to prevent incorrect 

switching orders. If wrong switching is applied, then electromagnetic interference issues can 

increase. The Ripples Correlations method also relates to principles of maximum power 

transfer and uses oscillations in power to achieve the required optimal point.  By using high 

frequency filters, high frequency ripples in power and voltage are used to measure
𝑑𝑃

𝑑𝑉
. This 

method has a fast speed but is limited by the gain of the converter control system. 

 

 

Fig.4-12: Voltage on the smart grid by the implementation of Perturb and Observe method 

Maximum Power Point Tracking (MPPT) algorithm based on the Perturb and Observe 

technique is investigated to analyse energy transmission from the renewable energy system. 

Voltage and power flow are sensed at different points of the system and this technique is 

suitable for those regions where environmental variations happen very slowly. Higher 

oscillations are noticed in the wind system compared to solar system because of fast changing 

wind speed. The oscillations are even observed in the smart grid. So in this method, power 

losses increase due to oscillation after the terminal voltage is perturbed.  
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4.5.2 Incremental Conductance based control system implementation  

The system was tested by applying the Incremental Conductance technique to achieve voltage 

regulation as shown in the SIMULINK model Fig.4-13. The best property of this method is 

that it does not suffer from fast transient variations due to atmospheric conditions. This 

method senses both current and voltage and it is not essential to calculate power. The 

performance of this method is enhanced by the addition of an integrator.  It reduces the error 

by minimising the gap between real values and desired values. It also helps to eliminate the 

ripples in the steady state [114]. This method is suitable to apply if a larger step size is 

required for the duty cycle. The digital controller updates the duty cycle to reduce the gap 

between the MPPT values and the PV values. The Incremental Conductance method has 

higher efficiency than other methods. It responds rapidly to fast changing environmental 

conditions. In this method the output voltage is adjusted at the MPP point to extract the 

maximum power and regulate the PWM signal until desired results are met. It always applies 

the new duty cycle correctly and replaces the older one. It senses the output voltage and 

current from the solar panels and generates duty cycle accordingly as shown in Fig.4-14. The 

DC-DC boost converter is designed to apply the MPPT algorithm. The graphical results are 

analysed to check the effect of the Incremental Conductance technique for a solar system at 

fast changing irradiance. Power generated from the solar system is unregulated and requires 

to be appropriately balanced in order to interface to the grid. Maximum power cannot be 

extracted if the solar system DC power is directly connected to the load. The converter is 

placed between the load and the solar system to regulate the output voltage to achieve the 

maximum output power. It balances the parameters if output power is going up or down. The 

boost converter operates by varying the switching frequency from applied duty cycle. MPPT 

controller consists of two inputs (voltage and current) and one output which is the duty cycle. 

The inputs to the MPPT controller come directly from the solar system and the output is 

connected to the IGBT switch of the boost converter. The voltage and current variations in 

the solar system depends on the range of irradiance. Solar panel output voltage is unregulated 

and is which is boosted to a regulated 585VDC. The power flow in the converters relies on 

the switching frequency of the IGBT switch. The system is tested with varying irradiance and 

fixed irradiance. The MPPT balances the output voltage and current to extract the maximum 

power. Efficiency of the solar system is reduced when the MPPT controller is not used.  
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Fig.4-13: Simulation of Incremental Conductance with integrator 
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Fig.4-14: Incremental Conductance algorithm.  

Fig.4-15 shows the voltage output from the wind system when the Incremental Conductance 

based MPPT algoritham is applied. For the first 0.3 seconds, unregulated voltage is observed 

and then constant voltage results due to applying the control for the power flow. This method 

was found to be more efficient than the other techniques. It increases the system 

efficiency by extracting maximum power from the energy sources. Less power losses and 

faster regulation in power flow were observed by implementation of this method.   
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Fig.4-15: Voltage output by using the Incremental Conductance technique 

 

4.5.3 Fix Duty Cycle (FDC) implementation and analysis 

System is tested by applying the Fix Duty Cycle (FDC) simulation model as shown in Fig.4-

16. This method is found inappropriate as it does not maintain the required voltage at the 

micro grid during changing environmental conditions. It is suitable in only those regions 

where temperature varies very little. The positive point of this method is that it is very simple 

and no complex loops are required. Fig.4-17 shows the voltage at the smart grid. The smart 

grid requires 585VDC to maintain the correct power flow but it is receiving a severely 

oscillating voltage. This voltage will damage the smart grid components and is not suitable 

for transmission or for charging the battery bank which is required to support the smart grid 

during higher power demands. The voltage is not constant and varies all the time due to 

varying input and a fixed duty cycle. This voltage is not appropriate for transmitting at the 

micro grid as it can damage the power equipment.  



100 
 

 

Fig.4-16: Simulation of Fixed Duty Cycle (FDC) applied to the buck converter system. 

Fixed duty cycle is applied at different points of the system and transients are observed in the 

power flow. It reduces the efficiency of the entire system and is not appropriate to maintain 

constant power flow. It can be applied only in places where variations are small such as at the 

car charging station terminal or when there is constant voltage at the smart grid. So for 

varying environmental condition, variations in duty cycle are required to be applied to the 

entire system.  

 

Fig.4-17: Voltage achieved by using the Fixed Duty Cycle. 

 

The aim of applying the MPPT algorithm is to stabilise the power flow when the irradiance is 

changing fast e.g. in partially shaded solar panels due to fast cloud motion r and fast changes 

in wind speeds. The efficiency of the MPPT algorithm is higher due to the complexity of the 
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algorithm required to generate the correct duty cycle. MPPT controller was implemented 

successfully and its correct operation was verified. Output results were verified by using the 

scopes and the displays available in   MATLAB/SIMULINK. The efficiency of the MPPT 

could not be measured due to time varying time supply of input power. However, by 

measuring the values of the other equipment’s efficiency, the efficiency of the MPPT was 

measured and to be 96%. Therefore, it can be said that the Incremental Conductance and 

integrator based algorithm worked efficiently and is suitable for practical applications. The 

ripples created by using MPPT can be removed by using filters.  

4.6 Energy control investigation by using Space Vector Pulse Width 

Modulation (SVPWM) 

The other technique investigated for stabilisation of the power flow is the Space Vector Pulse 

Width Modulation (SVPWM) technique. This technique is more preferably used now days 

for AC-DC conversion and DC-AC conversion. It stabilises the output DC voltage and 

reduces harmonics in the voltage to improve the power flow quality in the system. It 

stabilises the unregulated voltage from wind turbine or solar panels by applying the correct 

duty ratio.   

The switching frequency of the AC-DC converter is described as [115]. 

𝒇𝒂 =  
(𝟐𝑺𝒂−𝑺𝒃−𝑺𝒄)

𝟑
                                                                                                                                                                 (4.25) 

𝒇𝒃 =  
(𝟐𝑺𝒃−𝑺𝒂−𝑺𝒄)

𝟑
                                                                                                                                                                 (4.26) 

𝒇𝒄 =  
(𝟐𝑺𝒄−𝑺𝒂−𝑺𝒃)

𝟑
                                                                                                                                                                   (4.27) 

Where 𝑆𝑎, 𝑆𝑏, 𝑆𝑐 are the control signals which control the arbitrary phase of the converters 

and each signal is given a value of 1 or 0. If 𝑆𝑎 is 1 then upper switch of the converter turns 

ON while lower switch remains OFF. If 𝑆𝑎 is 0 then lower switch will be ON and upper 

switch turns OFF. These three control signals can be transformed into two axis vectors: 

 [
𝐗𝐝

𝐗𝐪
] =

𝟐

𝟑
[

𝐜𝐨𝐬𝛚𝐭 𝐜𝐨𝐬(𝛚𝐭 −
𝟐𝛑

𝟑
) 𝐜𝐨𝐬(𝛚𝐭 +

𝟐𝛑

𝟑
)

−𝐬𝐢𝐧𝛚𝐭 𝐬𝐢𝐧(𝛚𝐭 −
𝟐𝛑

𝟑
) 𝐬𝐢𝐧(𝛚𝐭 +

𝟐𝛑

𝟑
)

] . [

𝐗𝐚

𝐗𝐛

𝐗𝐜

]                            (4.28) 

In SPVWM the output voltage is described into 8 switching positions and these 8 vectors 

are represented by V1 –V8 and are called basic space vectors.  But only six vectors are 
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used to provide the active output voltage. These vectors are from V1-V6. The vector V0 

and V7 are located on the origin and supply no output voltage. The main reason for using 

the space vector pulse width modulation is to specify the reference voltage vector in a 

specific place as shown in Fig.4-18.  

 

 

Fig.4-18:  Switching Vectors [115] 

Tab.4-1: Switching pattern applied by using this table.  

NO of 
Vectors 

𝑆𝑎 𝑆𝑏 𝑆𝑐 𝑉𝑎𝑛 𝑉𝑏𝑛  𝑉𝑐𝑛 

𝑉0            
0 

 
0 

 
0 

            0             0       0 

𝑉5            
0 

 
0 

 
1 

−
𝑉𝐷𝐶

3
 −

𝑉𝐷𝐶

3
 2

𝑉𝐷𝐶

3
 

𝑉3            
0 

 
1 

 
0 

−
𝑉𝐷𝐶

3
 2

𝑉𝐷𝐶

3
 −

𝑉𝐷𝐶

3
 

𝑉4            
0 

 
1 

 
1 

−2
𝑉𝐷𝐶

3
 

𝑉𝐷𝐶

3
 

𝑉𝐷𝐶

3
 

𝑉1            
1 

 
0 

 
0 

2
𝑉𝐷𝐶

3
 −

𝑉𝐷𝐶

3
 −

𝑉𝐷𝐶

3
 

𝑉6            
1 

 
0 

 
1 

𝑉𝐷𝐶

3
 −2

𝑉𝐷𝐶

3
 −

𝑉𝐷𝐶

3
 

𝑉2            
1 

 
1 

 
0 

𝑉𝐷𝐶

3
 

𝑉𝐷𝐶

3
 −

𝑉𝐷𝐶

3
 

𝑉7            
1 

 
1 

 
1 

            0           0        0 
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The relationship between the voltage and time period 𝐓𝟎, 𝐓𝟐, 𝐓𝟏, is described as [116]: 

 

𝑻𝟎 =
𝑻𝒔−𝑻𝟏−𝑻𝟐

𝟐
                                                                                                                                                                     (4.29) 

𝑻𝟏 =  
𝟐√𝟑

𝝅
𝑴𝑻𝒔𝐬𝐢𝐧 (

𝝅

𝟑−𝜶
)                                                                                                                                         (4.30) 

𝑻𝟐 =  
𝟐√𝟑

𝝅
𝑴𝑻𝒔𝐬𝐢𝐧 𝜶                                                                                                                                                    (4.31) 

𝑻𝒔 =
𝟏

𝒇𝒔
                                                                                                                                                                                         (4.32) 

𝑴 =
𝑽∗

𝑽𝒔𝒊𝒙𝒔𝒕𝒆𝒑
=  

𝑽∗

𝟐

𝝅
𝑽𝑫𝑪

                                                                                                                                                        (4.33) 

 

The basic idea of space vector pulse width modulation is it sections the 2D plane into six 

switching states called sectors. Each sector is determined by the four active vectors. By 

applying these vectors the output voltage is larger than zero. The vectors 0 and 7 are inactive 

vectors. These two vectors are placed in the centre of circle. The reference voltage rotates in 

angular velocity which is the same as the frequency of desired AC voltage output. The 

rotating reference voltage is updated by scanning all sectors following the controller period at 

which calculation is updated. 

IGBT switches are used in the rectification process. The voltage is generated from a wind 

turbine with varying wind speed. This technique applies the duty cycle to the switches and 

stabilises the output voltage. The upper switches generate the output voltage while the lower 

switches remain in the OFF state. Hence eight switching states are used to carry out the 

switching process.  It can be implemented practically by using micro controllers, 

microprocessor or other digital control methods. The simulation of the space vector pulse 

width modulation is shown in Fig.4-19.  SVPWM has lower switching losses due to varying 

of one state result in phase to neutral voltage every time. If further reduction is needed to 

reduce the switching losses then other techniques can be used along with SVPSW. It also 

shows better performance for higher switching frequency. Extra switching is removed for 

varying modulation indexes.  
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Fig.4-19: Simulation diagram of space vector pulse width modulation 

The six step operation for voltage steps is shown in Fig.4-20. Space vector pulse width 

modulation is more complex than its equivalent sinusoidal pulse width modulation. It 

requires calculations of switching time period, determination of sector, vector segment 

calculations and region identification. The input of the rectifier is connected to the three 

phase permanent magnet source. Then this voltage is balanced by using space vector pulse 

width modulation. Space vector pulse width modulation is used to generate the pulses for the 

IGBT switches. By varying the width of the pulses the output voltage is varied. To boost the 

voltage, it is required to increase the ON time of the pulse. Its switching frequency can be 

adjusted suitably as it provides constant switching frequencies. Combination of eight ON and 

OFF states happens. The switching position of the lower section is inverted to the upper one.  

It can be implemented practically by using a digital signal processing board. But there are 

many areas that need to be considered to select the controller such as circuit complexity, 

frequency and speed parameters. The phase voltage is calculated for the combinations of 

these eight switching pattern and then converted into two phase vectors alpha (α) and beta 

(β). This transformation results in two zero vectors and six non- zero vectors.  The non-zero 

vectors are V1 to V6. 60degree angle exists between any two non-zero vectors. The other two 

zero vectors are located at the origin. The circuit only allows positive voltage flow in the 
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rectification process and eliminates the negative power flow. Only upper switches are used to 

determine the output voltage which is s1, s3 and s5.  Two switches cannot remain ON or OFF 

simultaneously. Negative voltage are represented as -1 and positive voltages as 1. The 0 

represents the states of OFF switches. The switching configuration pattern is shown in the 

Fig.4-20.  

The maximum voltages that can be received are as follows:  

𝐕𝐩𝐡 𝐦𝐚𝐱 =  
𝐕𝐝𝐜

√𝟑
                                                                                                                                  (4.34) 

𝐕𝟏𝟏𝐦𝐳𝐱 =  𝐕𝐝𝐜                                                                                                                                                                             (4.35) 

The r.m.s phase to phase follows as  

𝐕𝐩𝐡 𝐫𝐦𝐬 =
𝐕𝐝𝐜

√𝟔
                                                                                                                                                                                (4.36) 

 

𝐕𝟏𝟏 𝐫𝐦𝐬 =
𝐕𝐝𝐜

√𝟐
                                                                                                                                                                                (4.37) 

 

The eight switching pattern is shown in Fig.4-20.  

 

 

Fig.4-20: Vector rotation for space vector pulse width modulation [117] 
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The vector which rotates across the space is called the reference voltage vector. It rotates with 

angular velocity= 2𝜋𝑓. Switches turn ON and OFF when the reference vector passes through 

each sector. One cycle completes after the reference voltage vector completes one revolution. 

The other zero and non-zero vectors are stationary vectors and do not rotate in space.  

4.7 Simulation Results and analysis  

Power flow on the micro grid is investigated by performing simulations of the proposed smart 

control system in MATLAB/SIMULINK as shown in Fig.4-21. The aim of implementing the 

control algorithm is to stabilise the power flow in fast changing environmental conditions 

such as varying irradiance, temperature and wind speeds, and the changing number of electric 

vehicles/type of batteries.  

It is verified that the proposed control algorithm is operating correctly; that it increases the 

efficiency of the system by reducing the losses and by extracting maximum power from the 

solar/wind energy sources. The required energy is available on the micro grid constantly 

irrespective of variations in wind/solar energy. It has the capability to supply the required 

power to the EV charging station for the full 24 hour period. The controller senses the input 

voltage and current to generate the duty cycles to regulate voltage.  The voltage flow 

recorded on the grid is 585VDC, as shown in Fig.4-22 (a-d). Oscillations are observed 

because of energy fluctuations in the inductance and capacitance in the converters/line and on 

the load side. It is observed that different inductors provide different load response. Higher 

inductance creates lower peak currents and reduces losses and improves the efficiency as 

shown in Fig.4-23. Secondly, the switching frequency of the IGBT switches affects the 

current flow on the micro grid. Higher switching frequency creates lower ripples in current 

and vice versa. The amount of power flow depends on the numbers of cars and type of 

batteries. The losses on the micro grid are recorded negligible due to short operation times 

and limited power flow. A spike in power flow is observed when charging up of converter 

components. Power flow on this grid is available constantly irrespective of variations in 

wind/solar energy. To remove the transients and harmonics from the micro grid transmission 

system; low pass filters are implemented which regulate the voltage and maintain the current 

level by reducing the voltage spikes. A bidirectional converter with control is placed between 

the DC micro grid and the battery bank which charges up and discharges the batteries by 

monitoring the power flow at the grid. Measurement tools are connected at every section of 

the micro grid to measure the power flow. The grid includes circuit breakers which are used 
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to protect the grid during short circuits and any other types of faults. This grid enables plug in 

electric vehicles to be directly connected to the micro grid. The main parameters are 

calculated by using typical sizes and types of conductor. If the rate of change of current is 

double or inductance increases to double than the induced e.m.f. also doubles in the line.  

 

 

Fig.4-21. Simulation model to investigate control of the smart grid that connects wind/solar 

sources to the EV charging station.  

 

(a)  

 

(b)  
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(c)  
 

(d) 

Fig.4-22: (a) Illustrates  voltage regulation on the micro grid (b) Voltage output from the 

solar system (c) minor oscillations in the desired voltage on the micro grid (d) regulated DC 

voltage achieved at AC/DC power conversion station from the wind turbines 

 

 

(a)  

 

(b)  

Fig.4-23: (a) Applied duty cycle to stabilise the fluctuating voltage from the wind and solar 

farms (b) Regulation of current flow in the micro grid   

Summary  

The aim of implementing the electrical control algorithm is to stabilise the power flow in the 

faster changing environmental conditions such as rapidly varying irradiance and wind speed. 

The efficiency of the control algorithm needs to be higher due to complexity of the algorithm 

for generating the correct duty cycle. It was verified that the proposed control algorithm was 

operating correctly. It increases the system efficiency by extracting maximum power from the 

energy resources. Less power losses and faster regulation in power flow was observed by 
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implementation of this method.   For the first 0.03 seconds no power flow is observed and 

then constant power is flowing due to applying the control for the power flow.  The controller 

senses the input voltage and current to generate the correct duty cycles to regulate voltage. 

The implementation of the Perturb and Observe method created oscillations in the desired 

voltage. The results were then analysed to check the effectiveness of the Incremental 

Conductance technique for the system. This method was found appropriate and more efficient 

than the MPPT algorithm but took longer to settle down to a constant level. 

The Space Vector Pulse Width Modulation (SVPWM) technique was investigated to stabilise 

the power flow. It stabilises the output DC voltage and reduces harmonics to improve the 

power flow quality in the system. It successfully stabilises the unregulated voltage from wind 

turbine or solar panels by applying the correct duty ratio.  The algorithm is more complex to 

implement than the method proposed in this chapter. 
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Chapter 5 Connection of Electric Vehicle Charging 

Station and Battery Storage to Smart Grid 

Power flow in a grid is intermittent due to energy generation from the renewable energy 

solar/wind sources and varying loads at electric vehicle charging stations. A smart micro grid 

system and controller to regulate grid voltage and power flow has been proposed and 

investigated in earlier chapters. The algorithm to manage and control power is shown in 

Fig.5-1. The electric-vehicle charging station is considered to be fully operational. Four 

charging points with the total capacity of 103.50 kWh are connected to the micro grid 

terminal which is extracting energy from the wind/solar system. These representative 

charging points are commonly found in most EV charging stations in London. The proposed 

system has the capability to run the electric-vehicle charging station from wind/solar and 

storage system/fuel generators. 
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Fig.5-1: The system energy management algorithm.   

Investigations are performed by comparing the energy generated by the wind turbines and 

solar units with the EV station and the losses in the converters/grid. The controller located at 

the micro grid and control centre measures the generated energy from the wind and solar 

system to compare with the load side. If the combined energy from the wind and solar system 

is more than the total energy consumption at the load side and the losses in the system, then it 

checks the charging of the storage system.  If the storage system is less than 90% of the full 

capacity than it charges the storage units. The storage system is not charged if the wind/solar 

generated energy is less than or equal with the load on the micro grid. If the load on the micro 

grid is more than the total generated energy by the wind/solar system, then the storage system 

will be used to supply power to the micro grid. The nominal power generation capacity of the 

wind/solar energy sources are shown in Fig.5-2.   
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Fig.5-2: The energy sources connected to the micro grid  

A 24-hour analysis is carried out to maintain the power flow on the micro grid. The energy 

generation pattern for a 24-hour period is shown in Fig.5-3 where the effects of temperature, 

irradiation and wind flow are illustrated. From 12am to 9pm, the energy generated is close to 

the nominal values. The fewer losses are due to temperature effects on the solar system and 

wind flow. From 9pm-5am, there is no solar energy generation due to irradiation effects on 

the solar system, but the wind units are still operational and generating the electrical energy. 

At this point (9pm-5am), the combined solar and wind energy is not enough to run the EV 

station during the peak times. 

 

Fig.5-3: Energy generated by the solar/wind farms for a 24 hours’ period 

The battery storage system will be required to be operational from 9pm to 5am to balance the 

power on the micro grid because no energy is being generated by the solar system during this 

period. The storage system is connected to the DC micro grid by DC/DC bi-directional 
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converters and an electrical control system as shown in Fig.5-4. The storage system should 

have the capability to meet the energy demand at the electric-vehicle charging station during 

this scenario. The power is supplied by the storage system; initially the storage system is 

200kW (fully charged) and then the storage energy reduces at 10pm when it is supplying 

power to electric-vehicle charging station. The fuel generator is switched ON from 2pm to 

6pm to charge up the storage system after its storage capacity falls to 60%.  

 

Figure 5-4: Microgrid connection with the storage system 

The equation used to calculate the terminal voltage Vi at the storage system is given by [118].  

𝐕𝐢 = 𝐕𝐎 + 𝐑𝐢 ∙ 𝐈𝟑 − 𝐊
𝐐

𝐐∫ 𝐢𝟑𝐝𝐭
+ 𝐀. 𝐞𝐱𝐩 (∫ 𝐢𝐢𝐝𝐭

𝐭

𝟎
)                                                      (5-1)  

Where,  VO is the terminal voltage during open circuits, Ri is the storage system internal 

resistance, I3 is the storage current, Q is the rated capacity of the storage system, and K is the 

polarisation resistance, and A is the exponential voltage. The controller is used to detect the 

voltage/power flow on the micro grid and then supply power from the storage system during 

power shortages as shown in Fig.5.5.  
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Fig.5-5: Energy management when EV is charging during the 24 hour period. 

 

During the operational hours from 5am-9pm; the transmitted energy is received from the 

renewable energy resources (wind/solar) and the storage system is in standby mode at this 

point. The solar unit is fully operational and generating the maximum energy during this 

period and meeting the energy demands at the EV charging station.  The comparison of the 

combined energy from the wind/solar with the EV charging station is shown in Fig.5-6 and at 

this stage several charging points are considered operational.   
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Fig.5-6: Graph showing that the wind/solar energy generation is capable of running the EV 

station independently from 5am-9pm. 

5.1 Features of implemented electric-vehicle charging terminal 

The machines in the electric vehicles are powered up by batteries but currently batteries take 

longer to charge up so an engine needs to be running to store power at the batteries and 

support the vehicles in the hills and to maintain speed [119]. To meet these requirements 

demands of the new technology investigated earlier and DC power flow is found most 

reliable and efficient for this task because it charges up batteries in very short time [120]. The 

energy can be stored quickly in the vehicle batteries at the car charging station and by means 

of regenerative breaking when the vehicles stop. DC power charging up also improves the 

efficiency of the power flow in electric cars by supplying the required power to the AC 

electric machines being used in electric or hybrid cars by means of converters  

 

To investigate the power flow two scenarios are considered.  

The simulation of electric-vehicle charging terminal that supplies controlled power to the 

electric vehicle is shown in Fig.5-7. Various voltage levels and nominal power can be 

attained at this terminal. It also makes the electric vehicle capable of charging up in a very 

short time. There are 15 charging points in the station as shown in Fig.5-8, with the total 
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power consuming capacity of 13.5kWh during the peak times. The total power consuming 

capacity of the individuals charging points is 3.5kWh, 7kWh, 43kWh, 50kWh.  

 

Fig.5-7: The smart vehicle-charging terminal where an electric vehicle is charging up and 

showing the smart measurement display  

 
Fig.5-8: Operating features of the Electric-vehicle charging station 
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5.2 Optimal design and energy management at the electric-vehicle charging 

station 

1. Renewable energy units are operating at full capacity (Best case scenario) 

2. Renewable energy units are not operational and batteries are supplying power to the 

load (Worst case scenario).  

5.2.1 Condition 1 best case scenario  

Wind and solar farm are generating the electrical energy at the full capacity of 200kW 

and supplying it to electric-vehicle charging station. At this stage, micro grid is drawing 

no power from the storage system. This is the best scenario as transmitted energy is 

received from the renewable energy resources and the storage system is fully charged up 

at this point. Power flow varies due to variations of charging vehicles at the load side and 

the power flow is available constantly. The power losses on the grid in this case are very 

small due to the short length of conductors and full range of power availability on the 

grid. The power management on the micro grid is shown in Fig.5-9. It shows the power 

drawn by the electric-vehicle during the peak times and included the losses in the system 

are supplied by the renewable energy resources. In this case electric-vehicle charging 

station is considered fully operational and all the charging points are connected to the 

electric-vehicles. This scenario is more efficient than the other techniques because it 

increases the system efficiency by extracting maximum power from the wind and solar 

energy. Less power losses and faster regulation in power flow is detected by 

implementation of this scenario.  
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Fig.5-9: The wind/solar energy generation is capable of running the EV station independently 

from 5am-9pm.  

Tab.5-1: The operating features for the electric-vehicle charging station.  

Electric-vehicle 

charging point capacity 

Voltage at the 

grid side(DC)  

Voltage at the 

load side 

Maximum current flow on the 

grid 

3kW 585V 12V 5.1Ah 

7kW 585V 12V 12Ah 

43kW 585V 16V 73.5Ah 

50kW 585V 16V 85Ah 

Fully operational  585V Variable  320Ah 

 

5.2.2 Condition 2 worst case Scenario  

In this case storage system is supplying power to the loads where wind and solar system are 

not considered to be generating any power. The battery storage system has the capability to 

meet the energy demands at the electric-vehicle charging station during the worst case 

scenario. A fuel generator is connected to the storage system, which turns ON by detecting 

the voltage and power storage capacity from the batteries. The generator is switched ON after 

storage system capacity falls below 60%. The electric-vehicle load is considered variable 

which means that only a few charging terminals are operational at a time. The parameters of 

the storage system are stated as [121].  

𝐕𝟑 = 𝐕𝐎 + 𝐑𝐏𝟑 ∙ 𝐈𝐏𝟑 − 𝐊
𝐐

𝐐∫ 𝐢𝐏𝟑𝐝𝐭
+ 𝐀. 𝐞𝐱𝐩 (∫ 𝐢𝐏𝟑𝐝𝐭

𝒕

𝟎
) … … … … … … … … … … ………..(5-2) 
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Where V3 is the terminal voltage of the storage system during functioning, VO is the terminal 

voltage during open circuits, RP3 is the storage system internal resistance, IP3 is the storage 

current, Q is the rated capacity of the storage system, and K is the polarisation resistance and 

A is the exponential voltage. The storage system is connected to the DC micro grid by 

DC/DC bi directional converters and an electrical control system. The controller is used to 

detect the voltage and the power flow on the grid and then supply power to the grid from the 

storage system during power shortages and charge up from the grid according to the 

requirements.  The storage system regulates the power flow when the charging station is 

operated from the storage system and no power is received from the wind/solar energy units. 

The power availability on the EV charging station is shown in Fig.5-10. 

             

   (a) Energy used by 3.5kWh charging point         (b) Energy used by 7kWh charging point 

          

(c) Energy used by 50kWh charging point  (d) Energy consumed by 43kWh charging point 

              Fig.5-10: Power consumption at the electric-vehicle charging station 
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5.3 Electric-vehicles charging station characteristics 

There are four EV charging points connected for this system. These charging points are 

associated with faster charging because of their connection with the higher DC voltage of 

585VDC. The charging points consume 50kWh, 43kWh, 7kWh, 3.5kWh. The proportion is 

selected based on the charging points being installed in several places in the UK such as 

2×50kWh and 1×43 in Toddington Dunstable on the M1 motorway and similar systems are 

installed in China town in London, Charter street Leicester and many other places in the UK 

[122]. Electric vehicle batteries take a long time l to charge up. To obtain faster charging of 

EV batteries, a new high voltage DC power supply is investigated and found to be more 

appropriate to solve this issue. The investigated system has the features to supply the energy 

during peak/off-peak times at the EV charging station by means of solar and storage system 

connected as shown in Fig.5-11.  

With the rapid increase in power consumption at the EV charging terminal, there are three 

issues linked with the storage/solar system: 

 Quick energy supply from the storage system into the EV charging terminal 

 Quick energy injection from the solar system to the charging station.  

 Dynamic behaviour instead of long term serving capacity of the storage system 
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Fig.5-11: Energy sources connected to the micro grid by using power conversion system 

 

5.4 Future implementaiton of ultra/super capacitors in  Electric/hybrid 

vehicles  

Super capacitors are more beneficial than standard storage batteries due to less weight, no 

harmful chemicals and can charge and discharge in seconds. Energy storage in capacitors 

depends on the size of metal plates and quality of material used for dielectric materials. By 

using better materials for the dielectric and larger metal plates, the energy storage capacity in 

capacitors can be increased. Super capacitors have two plates that are separated by a thin 

insulator made up of paper, carbon or plastic. Super capacitors are also called ultra-capacitors 

and are different from ordinary capacitors because their plates are much larger and very small 

dielectric distance exists between them. There plates are made of metal coated with a 

powdery charcoal substance which increases the charge storage capacity. They store larger 

energy in a short period of time as well. These are used as equivalent to energy reservoirs or 

flywheels. Super capacitors can also be used to regulate the power supply from the batteries. 

They can also smooth the power supply generated by solar or wind power braking in cars 
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when they stop. But super capacitors are limited to only a few volts, while ordinary 

capacitors are operational to higher voltages. The super capacitor was charged up from the 

car charging station terminal. Various voltage levels and nominal power were selected to 

view the effect of charging up on the micro grid. Capacitors improve the efficiency of the 

power flow in electric cars by supplying the required reactive power to the AC electric 

machines being used in electric or hybrid cars. In future super capacitors can replace lithium-

ion batteries mostly used in electric or hybrid cars because lithium ion batteries store limited 

power and consume longer time for recharging.  

Summary 

It is noted when the solar/wind system is independently supplying power to the EV charging 

terminal then the storage system stays is in off-mode. This is the best feature as energy 

demand is completely achieved by the renewable energy/solar system. This scenario has the 

capacity to meet the energy demands at the EV station during the Peak and off-peak times. In 

other case, the generated energy from the solar/wind system is charging up the storage system 

in peak times. In this case, the EV charging terminal is consuming the energy at full capacity. 

Then the storage system and fuel generator are meeting the energy demands at the EV 

charging station. At this point, the solar system is in off-mode and not generating any power. 

Fuel generator charges up the storages when energy level falls below 60%. Storage system 

degradation is normally measured by three main features, such as depth of discharge, 

temperature, and the conditions of charge. These three factors affect the performance of 

batteries used in the storage system.  
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Chapter 6 Conclusion and Future Work 

 
The aim of this work was to develop an isolated smart micro grid connecting renewable 

energy sources and storage devices/ electric cars by stabilizing and controlling power flow in 

the grid to obtain an efficient power transmission flow. The power is to be transmitted to 

electric car charging stations where hybrid and electric car batteries charge up. The aim was 

achieved by simulating the proposed model on MATLAB and SIMULINK. The simulation 

results were compared with the mathematical formulation to examine the power efficiency.  

A literature review has been performed in the renewable energy sector to discover a gap in 

the power transmission to the EV charging station. It was found that AC power transmission 

is not effective for charging up electric-vehicles because it takes long due to usage of high 

power electronic components. The grid based connections introduce harmonics, voltage 

transients and inrush rush in the National grid transmission system. A standalone DC 

microgrid was proposed to reduce the charging time for the electric-vehicles. In the DC 

microgrid system; several ranges of voltage were examined to find the suitable voltage for 

power transmission to the EV charging station. But the transmission of renewable energy for 

the standalone microgrid was challenging due to intermittent and randomness of energy 

generation and usage of power electronics components such as DC/DC converters.  

Renewable energy interactions in smart grid ensure energy security, reduce carbon emissions 

and promote energy savings. For the renewable energy sector, wind and solar sources were 

chosen to generate electrical energy. A wind energy system was simulated with SIMULINK. 

In the wind energy system, electric power generation was not constant due to variable wind 

speed. This effect was minimised by using the doubly fed induction generator that gives 

constant voltage amplitude and frequency at varying wind speeds. In this generator only 30% 

of electric power was transmitted through the stator and was regulated by using power 

electronic components. Instability issues were investigated such as frequency issues, voltage 

transients and variations in rotor angle. Three methods were proposed to overcome the 

fluctuations and maintain stability in the wind energy generation unit. These are (a) the time 

domain method, (b) the equal criterion method and (c) the direct method.. A solar system was 

simulated to examine the efficiency of the PV module during the summer and winter season. 

Several parameters were investigated such as dust, temperature, and irradiation that impacted 

the energy generation from the solar system. It was noticed that the lower irradiation reduced 

the PV modules efficiency . The PV module showed better performance in the winters 
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compared to summer seasons showing the effect of heat in lowering efficiency. Dust on the 

PV module impacted the efficiency due to not receiving the required irradiation.  

Architecture of a proposed smart DC microgrid was simulated to transmit the power in an 

efficient way. A master controller was included in the microgrid that created a 

communication network between power electronic converters, renewable energy system, 

storage system and the EV charging station. The controller has the features to predict minute-

ahead, hour-ahead and day-ahead energy flow on the smart grid. A simulated sensing system 

enabled measurements from the simulation environment. The proposed smart grid manages 

the electric power during energy shortages by drawing power from a battery storage system 

and fuel generators.  

Then an electrical power control system was included to regulate voltage from the DC/DC 

converters. The efficiency of the applied control algorithm was closer to nominal valuations. 

It regulated the output voltage and extracted maximum power from the solar system. It 

minimised power losses by removing the transients, harmonics and inrush current at the 

DC/DC converter station. Different types of electrical control algorithms were applied to 

investigate the voltage regulation such as maximum power point tracking algorithm and 

space vector pulse width modulation.  In the maximum power point tracking algorithm; 

several sub-algorithms were tested such as incremental conductance, perturb and observe 

method, fix duty cycle and temperature methods. Incremental conductance was the best 

method for the stand alone wind/solar system because it operated at faster changing 

environmental conditions such as fluctuating wind speed/irradiation. Space vector pulse 

width modulation is also feasible but it takes longer to remove the transients from the system.  

Conclusion  

A smart DC micro grid has been proposed that connects fluctuating renewable energy sources 

such as wind and solar to electric vehicle charging stations on a grid that is separate from the 

national distribution grid. It avoids power flow issues such as transients, voltage reductions, 

harmonics and losses at the existing UK national transmission system.  The smart grid 

includes energy storage systems to supply power to the grid during higher energy demands 

and when the renewable sources are not producing enough energy. The advantages of an 

independent DC micro grid are that it reduces charging time for electric and hybrid vehicles, 

has lower line losses due to shorter lengths and requires fewer power converters. Voltage 

regulation on the grid is achieved by measuring power flow at different points, implementing 
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a smart communication system to provide feedback signals to a control system. The control 

system applies the correct duty cycle to converter switches at a higher switching frequency at 

the buck converter station. Power fluctuations are minimised by applying filters following the 

mathematical modelling and simulation results. The proposed micro grid was analysed 

mathematically and simulated over a twenty-four-hour period to assess its voltage regulation 

capability with simulation performed with standard Simulink toolboxes. The desired voltage 

level of 585 VDC was attained at the car charging station and findings indicate an 

improvement of the voltage regulation efficiency to 99% and reduction of electrical power 

losses in the micro grid to 1%.   

FUTURE WORK 

 Several power system models have been investigated and tested to examine the 

results. The obtained research finding enhances the discussions by providing the 

initial findings to some aspects that requires further investigations. The direction of 

future work is to incorporate the communication system that should include a fast 

signal processing unit at the electric-vehicle charging station/smart grid to examine 

the energy flow from the renewable energy and storage system. This communication 

should be linked with the smart sensors that are implemented at several points such as 

DC/DC solar converter, DC/DC storage converters and at the grid. This will improve 

the protection for the EV charging terminal during the disturbances from solar/storage 

or at the converters.  

 The smart grid uses digital components and communication so a cyber-security 

system is also an important aspect and needs to be investigated.  

 The future work should be performed on the large scale of 100% renewable 

transmission. 

 The standardization of the 100% renewable energy to the electric-vehicle charging 

station and vehicle-grid policies should also be incorporated.  

 The electricity pricing for the electric vehicles in a time-varying pricing policy has to 

be implemented that allows the users to manage the use of electric power according to 

electricity prices.  

 The vehicle-grid pricing also has to be set by taking the response from the consumers 

to achieve the better energy flow in the system. 
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