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Abstract—This work demonstrates and evaluates semi- explicit model to build relationships between differenttala
supervised learing (SSL) techniques for heating, ventiion patterns and find out faulty units of a building [3]. Geneyall
and air-conditioning (HVAC) data from a real building 10 hi5 approach is suitable for fault detection rather tharitfa

automatically discover and identify faults. Real HVAC sensr di is. Int ted hvbrid h idered
data is unfortunately usually unstructured and unlabelled thus, lagnosis. Integrated or hybrid approaches are consiaere

to ensure better performance of automated methods promot- Solve this limitation of FDD [4]. Signal processing based
ing machine-learning techniques requires raw data to be pre methods such as wavelet transformation, short time Fourier
processed, increasing the overall operational costs of theystem  analysis and a combination with principle component arnglys
employed and makes real time application difficult. Due to tle (PCA) is proposed to diagnose faults for air handling unit

data complexity and limited availability of labelled infor mation, . -
semi-supervised learning based robust automatic fault dettion (AHU) [5], [6]. While, expert knowledge based techniques

and diagnosis (AFDD) tool has been proposed here. Furtherhts are ||m|ted due to the Unavailabi”ty Of real data thus, mﬂ.eh
method has been tested and compared for more than 50 thousand learning algorithms like Hidden Markov Model (HMM) [7],
TUs. Established statistical performance metrics and pakdi-test  Kernel Machines (KM) [8] are applied to deal with this, where
have been applied to validate the proposed work. knowledge is automatically extracted from data. In additio
Keywords-Smart buildings, HVAC terminal unit, Automatic  physical characteristics classification-based techisique em-
fault detection and diagnosis, Semi-supervised learning. ployed to build non-linear correlations between non-faatd
faulty units in the absence of strong prototypes. Machine-
learning classification algorithms such as, Bayes clas$#le
Energy monitoring and performance degradation of buildirgrtificial neural networks (ANN) [8], [10], support vector
heating, ventilation and air-conditioning (HVAC) systear® machine (SVM) [11], and fuzzy logic [12] are too applied
often ignored until they result in significant impact on occufor efficient FDD models in large buildings.
pant comfort, trigger an equipment-level alarm, detetesa These models have been constructed to handle specific fault
equipment life or results in excessive energy consumptiagpes (e.g. fan failure, stuck valve) and these TU data aisly
Thus, a building energy management system (BEMS) is ihas been given little to no attention in recent research.
stalled or retrofitted into many new and existing buildings t In this paper, the proposed experiments have been conducted
overcome these issues and help building managers pave dhea specific sub-unit of the HVAC terminal unit (TU) which
way for greater energy efficiency and occupant comfort inis a "final delivery” section of a fan coil unit (FCU). Thereear
provements. BEMS units can comprise of many sensors whindreds of these devices installed in a building, and ifiglsi
thousands of sensors common in large buildings. Manual falilu malfunctions, it may result in performance deficiencies
finding has become a problem that only highly qualified staffausing excessive energy use over time. Manual fault finding
can address leading to prolonged BEMS fault and maintenameelevices such as these is very difficult, thus, data drivased
issues. Thus, automatic and remote identification of redl uautomatic fault detection and diagnosis (AFDD) has been
faults plays a crucial role in both improving BEMS - buildingemployed on historical building data previously procedsgd
manager relationships as well as creating a "fit for purpostiie authors with the aim of remote fault detection and/or
buildings that match their design criteria. prediction to generate real time notifications on faulty TUs
The study of HVAC systems began in 1980’s [1], [2]This notification would help for example, building managers
and since then significant development has been made tbytake appropriate action and save timing by fixing faultd an
means of data mining techniques for fault detection amdducing multiple investigational visits or worse, faulilio-
diagnosis (FDD). The FDD research has been categorized idasness. Because such TU data may be infrequent, BEMS
multiple approaches and data-driven based techniquesdjainan be badly maintained and raw data is mostly unlabelled
more attention among them as it is appropriate for modettmus the main challenges are to discover a faulty TU without
HVAC systems and being used in huge number of commerci@dpropriate knowledge or labelled information and make a
buildings [3]. Data-driven based methods do not need amyasoned assumption that a TU drawing high power demand
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to maintain control strategies is most likely a faulty TU for These TUs are distributed throughout the building across
example. the different floors and via a beta virtual meter sensor these

Previously unsupervised and supervised machine learnitigfa are then collected. The sensors estimate the floorby-fl
algorithms were investigated by the authors to classifgdarheating, cooling and fan energy consumption, several TUs
data sets from TUs over a given period from real buildinggalve position, fan speed data, the boiler or chiller, anchpu
Due to the limited availability of appropriate “fault typéfi- supply chain so that heating or cooling energy use is only
formation, enormous levels of data needed to be pre-predesidicated if it appears that a TU is actually being suppliéithw
and labelled before learning could be executed. This ofsmuhot or cold water. A single TU generates multiple data stsgam
is time consuming but common with real world scenariodere we have considered control temperature, set point, dea
where data is not always in appropriate formats [13], [14pand, heating and cooling power, enable signals (for ts te
[15]. This valuable real-world labelled data created, esly around 20 million TU data points are considered), an example
is now used as a training set by the authors as well as nefwroduced signal from TU is shown in Fig. 2. Here the blue
unlabelled data from the same buildings under test for ttised graph denotes control temperature variation witjpees
experiments described in this paper. This previous work tig the heating and cooling set point and corresponding power
now augmented to investigate semi-supervised learning)(S$lemand (shown in red) over a month during winter from a
methods for future unlabelled datasets can be useful ibhistbuilding based in central London.
ical labelled sets are available. Therefore, a SSL baset-mul Here, TU data are analysed on daily basis and some of the
class support vector machine (MC-SVM) is employed fdgsues can result in faulty pattern as follows:
AFDD and established through training, testing, and véltaa 1) Incorrect TU sizing to real demand.
process. 2) TU is not receiving adequate temperature.

The paper is outlined as follows; Section Il describes the 3) A stuck open valve.
TUs, their working principle and associated faults. Settio 4) Unachievable set point.
[l explains the proposed FDD tools and semi-supervised5) Poorly positioned temperature sensor.
learning algorithm. Section IV provides the discussionesiult 6) Out of hours operation.

analySiS. Section V prOVideS the conclusion and the fUtUrePrevious|y, these fau|ty and non-fau|ty data have been thor

directions of this research. oughly analysed, and a novel feature extraction (FE) method
[13], [14], [15] was implemented for dimension reduction
Il. TERMINAL UNIT MODEL of multi-stream TU data. Here, semi-supervised multilas

) ] ) o support vector machine is employed for the AFDD purpose.
A terminal unit (TU) is a small sub-unit within a HVAC

system. It is commonly located on the ceiling and manages [ll. PROPOSEDAFDD METHODOLOGY

the flow of hot or cold air to a room. Primarily a TU consists The proposed AFDD methodology consist of four stages:
of heating coil, cooling coil, valve, and a fan. Based on thgata collection and pre-processing, feature extractearning,

thermostats temperature sensor, it sends signals to the ma&id prediction. The proposed architecture is shown in Fig. 3
plants (either a boiler or chiller). If the thermostat setise

room temperature is too warm, then it sends signals to the Féature Extraction Process
chiller to start the flow of cold water, which is passed thfoug A novel feature extraction (FE) method has been proposed
the cooling coil, and circulate the cool air via the fan to thby the authors previously [13], [14], [15]. and is described
room. Conversely, if the rooms becomes too cold then the sahere to provide the information for the reader and to demon-
process repeats but generates signals to the boiler to passstrate the exploration base for the SSL. This FE generate
air to the room through the fan. The schematic of a TU ®vents (E) that are divided into three different stages: (1)
shown in Fig.1. Event Discovery, (2) Event Area calculation, and (3) Event
Aggregation. The stages have been defined through assuming
o o .l Thermostat/ fou_r djfferent _step changes of a TU's temp_eratu.re and power
Cooling il 4 Heating giwspoerrature variations during a day by the BEMS enabling signals. These
Valve .X .X Valve variations have given the names (event start, responsg, dela
A A goal achieved, event end). These events can be heating and/
or cooling based on the demand and control strategy of the
unit.
> — |+ T'Dei;,md When the suitable heating and cooling events have been
- '@

om—A- =7

Outside Air discovered then the area under the temperature and power
. go,‘?””g (H:eﬁ“ing curve for each event was estimated. Thus, six areas (three
(0] (o]

z Fan from temperature and three from power curve) are calculated

Speed for each heating event and similarly, six areas were caietla
for each cooling event. Finally, twelve different areas ever

Fig. 1: FCU-TU schematic diagram. derived from a daily TU data stream.
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Fig. 2: An example of a TU control temperature and power digmas over 30 days.

Egs. (1) shows the are@dg) calculation under the curve Features are defined &y, — Fy, and Fo, — F¢, that

f(x) at each time interval\z. is calculated through (2) - (5). Here the area calculatian fo
temperaturg¢T’) and for power P) are denoted byl y, — Ap,
" and Ay, — Ag, for heating type. SimilarlyAc, — Ac, and
Ap = Z fzi)Az (1) 4, — Ac, denoted for cooling type.
=0 Egs. (2) and (3) shows the area calculations for a heating
event.

An An An
FHl_T17 H2:T27 FHS:TS
Hy Hy Hoy (2)
where, Ty, = max(Amg, + An,)
, and, Ty, = max(Am,)
Pre- Processing
Ap Ap Ag,
Feature Frr = 4 Fpy = 5 Fo = 6
. Hy ) Hs ) Hg
Extraction PH1 PH1 PH2 (3)
where, P, = max(Ap, + Apn,)
v N and, Pp, = max(Amn,)
Labelled Pattern |« P> Unlabeled Pattern
Egs. (4) and (5) shows the area calculations for a cooling
\ 4
- - - - event.
Train & Validate | Semi-supervised |_ \4
the Model "|  Classifier
: Ao, A, Ac,
TU Behavior FC1:T ) FCz:T ) FCs:T
Prediction C1 S5 C2

where, Tc, = max(Ac, + Ac,) )

Fig. 3: Proposed AFDD architechture. and, To, = maz(Ac,)
? 2 3



observation. Low probability op-value implies the invalidity

Ac, Ac, Ac, of null hypothesis. The results of precision, recall, arest
Fo,=5—= Fos=5—" Fo =75 have been discussed in the next section.
C1 C1 Ca 5)
where, Po, = max(Ac, + Acs) IV. RESULT ANALYSIS & DISCUSSION
and, Po, = maz(Ac,) This experiment has been tested and observed on a com-

Thus, due to the occurrence of multiple event types fRercial building of London over a period from 2015 to 2017.
a single day all the events are aggregated to represent ffails of this case study is described below:
averaged values. Wherg, denotes the event number and ~ Case Study: o . .
denotes total number of occurrences for event of each tyfata has been collected from a building established in 1960

Therefore, the daily TU is represented by twelve feature®} London, which has been renovated later in 2009. It covers
calculated in (6) and (7). 149,000 sq. ft. for offices and 8,000 sq. ft. for retail spddee

building has 17 floors and 731 TUs in all spread across the
different floors. The data have been gathered through a data

n

1
Py = n Z(FHM) 6) acquisition device (DAD) at continuous 15 minute intervals
=t and stored in a Cassandra cloud. This TU data is then retrieve
1 — for pre-processing by the authors through a secure network t
Fo, = n Z(Fcki) (™ the cloud.
_ _ _ =1 Features have been extracted from all available (old and
B. Semi-supervised Learning new) TU data where the old TU data have labels and are

These feature extraction steps intend to derive inforreatiused to train the model for AFDD. The rest of the unlabelled

and non-redundant values about TU characteristics, whidata are only used for prediction using the trained model.
helps the proposed semi-supervised learning framework The data have been extracted from 17th July 2015 onwards,
the identification of significant TU patterns. In this tesk s where one whole day has been considered to train the model
different classes of faulty and non-faulty TU patterns ar@raining and testing) with the help of labelled informatio
available for specific period and used as labelled data. Thdhen, TU behaviours have been predicted by SSL where a
multi class support vector machine (MC-SVM) [16], [17] idabel is unavailable. Two seasons: summer and winter have
employed into SSL framework for classifying the faulty an&een considered for this study.

non-faulty TU patterns. This SSL model is simple yet more Now, the SSL model has been trained using different
efficient and adopts three steps: training, testing andattin. training data and investigated by different classificatigo-

The obtained data have been randomly divided for trainirg afithms. Three types of faulty and three types of non-faulty T
testing phase. Subsequently, the training and testingracgu patterns have been classified by this model. This classdicat

of the proposed model have been measured through precigigproach is performed fdrnearest neighboukNN) [19] and

and recall calculation. Thereafter, unlabelled data adeirito Multiclass support vector machine (MC-SVM). In case of the
the best scored SSL model to predict the faulty and nonsyfaultNN experiment, the®’ has been varied by one, three, and
TU patterns. This prediction then validated through paired five. The MC-SVM has been experimented using two kernel
test [18], [19] which has been determined for understandifignction linear (LMC-SVM) and quadratic (QMC-SVM). The
the correlation between historical data (labelled) andlipted Obtained testing accuracy results are tabulated and ceupar

data (unlabelled). in Table I.
o The experiment has been executed using randomly selected
C. Model Validation data for training and testing phase. The training data have

Precision and recall have been measured to validate theen varied from 10% to 60% and vice versa for testing. The
training and testing phase where label information arel-avairaining and testing both performances have been calcllate
able which assist to find out the true TU predictions (trulgeparately to check the robustness of the proposed model.
faulty and non-faulty TU) and false predictions (wrong TUrhe highest precision (0.998) for training performance has
class prediction). Precision and recall are then calcdlaten  achieved in 1NN using 30% of training dataNNs have per-
these true and false predictions. SSL has been applied to filnened well than SVMs in training phase becau$¢Ns find
unlabelled data therefore true and false predictions cootd the distance between data points in feature space and ssheare
be calculated. Thus, the paireetest has been estimated taeighbour is the data point itself in the training periodeng
investigate the correlation between a labelled class ard ®BVMs find the inner product or solve quadratic function to
same TU class predicted by the SSL algorithm. Therefolfind out the best margin among support vectors which doesn’t
the null hypothesis symbolise the fithess of a predicted Tdelivers as good result d@NN. One nearest neighbour has
class data with the TU belongs to that class in historica.datvorked well because of data compactness. In case of testing
Test result delivers one to denote the rejection of conatder phase, five nearest neighbour votes deliver better TU jpatter
of predicted data in the same class of labelled data aretognition than 1KNN. On the other hand, LMC-SVM has
zero for acceptance based on the probabilitwdlue) of test gained highest recall (above 95%) in both training andrigsti



TABLE I: Accuracy results for different methods.

Methods Traning data - 10%| Traning data - 20%| Traning data - 30%| Traning data - 40%| Traning data - 50%| Traning data - 60%
Precision| Recall | Precision| Recall | Precision| Recall | Precision| Recall | Precision| Recall | Precision| Recall
INN 0.692 0.744 0.774 0.902 0.802 0.918 0.734 0.812 0.774 0.887 0.788 0.902
3NN 0.772 0.987 0.798 0.955 0.789 0.939 0.786 0.891 0.809 0.932 0.823 0.934
5NN 0.799 0.976 0.813 0.961 0.829 0.967 0.804 0.955 0.811 0.919 0.815 0.931
LMC-SVM 0.771 0.995 0.785 0.987 0.831 0.973 0.837 0.978 0.821 0.946 0.824 0.981
QMC-SVM 0.691 0.898 0.745 0.91 0.753 0.919 0.813 0.948 0.741 0.914 0.772 0.892
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Fig. 4: Comparison of precision and recall score.

cases for different amount of data variations. In additiothe different faulty TU patterns.
LMC-SVM has achieved better testing precision (0.837 with

40% training data) than other classification methods esticha 06
in this work. The graphical representation of the perforogan
in testing phases using different classification algoritiawe
been shown in Fig. 4. In terms of overall precision and
recall, linear kernel has worked better than other algorith
The linear kernel function defines the optimum margin in
feature space. Therefore, LMC-SVM has obtained highes
performance score among other classifiers. 02

Thus, LMC-SVM model with 40% training data has been
considered most efficient predictor for SSL approach. Furth
this model is used here for the TU prediction without label
information. Consequently, pairéeest has been implemented 1 2 3 4 5 6
to discover the correlation between the predicted TU clags a _ Classes
the TUs truly belong to that class. Fig. 5 shows the comparisbig- 5: Obtainedp-values for different classes from SSL
of p-values obtained by the semi-supervised LMC-SVM fdgiPProach using LMC-SVM.
different TU classes where, the first three classes represen
the non-faulty TU patterns in terms of control temperaturé a The significance level 0.5 has been considered and the
corresponding power demands. Other three classes repregeralue has been determined for a TU class to justify the

0.1




null hypothesis. The null hypothesis has been accepted fon w.-Y. Lee, J. M. House, C. Park, and G. E. Kelly, “Faulagihosis of an

a predicted class whegevalue is more than the significance
level. Fig. 5 shows that the predicted class-1 and class+6 ha
failed to fit in the actual classes, i.e. the semi-supervisgd]
LMC-SVM could predict the class-2, 3, 4, and 5 correctly but
unsuccessful in predicting the TUs from class-1 and class[§2]

It is observed from the results that available training data

class 1 and 6 might not be sufficient to train the LMC-SVM

Automated faulty and non-faulty TU prediction has been

V. CONCLUSION & FUTURE WORK

investigated using two different classification algorihand

the variation of five different parameters. The promisingg,]
results of semi-supervised learning (SSL) algorithm shows
that it performs well (overall accuracy 90%) compared to t €
supervised learning algorithm for these TU data in previous
work by the authors. Thus, unlabelled data can be effegtivel

classified using SSL approaches if historically labelledadall?]
is available. It is also found that the performance of LMC-

SVM is the best-fitted model among five-tested methods fpus]

training these datasets. Based on the pairddst results,

LMC-SVM would need to be improved in the one fault)}lg]
and one non-faulty classes case. Thus, more training data

and other classification algorithms are being investigated
improve future SSL performance.
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