
Comparative Causality Analyses between Hydrological Natural1

Inflow and Climate Variables in Brazil2

Xu Huang, Paula Medina Macaira, Hossein Hassani∗, Fernando Luiz Cyrino Oliveira and Gurjeet Dhesi

∗corresponding author: hassani.stat@gmail.com

3

Abstract4

Numbers of studies have proved the significant influence of climate variables on hydrological5

series. Considering the pivotal role of the hydroelectric power plants play in the electricity6

production in Brazil this paper considers the natural hydrological inflow data from 15 major7

basins and 8 climate variables containing 7 El Niño Southern Oscillation proxies and the8

sunspot numbers. The causal relationships between hydrological natural inflows and climate9

variables are investigated by adopting and comparing 5 different causality detection meth-10

ods (Granger Causality test, Frequency Domain Causality test, Convergent Cross Mapping11

Causality test, Single Spectrum Analysis (SSA) Causality test and Periodic Autoregressive12

Model Causality test) that cover both well established and novel empirical approaches. Both13

time domain and frequency domain causality tests gain valid evidences of unidirectional14

causality for a group of series; CCM achieved unidirectional causality for 18% of pairs and15

overwhelmingly indicated the opposite direction of causality; a mixture of results are con-16

cluded by SSA causality test; PAR based causality test obtained six unidirectional causality,17

but only one is really significant.18
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Nomenclature23

CCM Convergent Cross Mapping.

EDM Empirical Dynamic Modeling.

ENSO El Niño-Southern Oscillation.

GC Granger Causality Test.

NGDC National Geophysical Data Center.

NOAA National Oceanic and Atmospheric Administration.

ONI Oceanic Niño Index.

PAR Periodic Autoregressive Model.

PARX Periodic Autoregressive Model with One Exogenous Variable.

RMSE Root Mean Square Error.

SOI Southern Oscillation Index.

SSA Singular Spectrum Analysis.

SST Sea Surface Temperature.
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1 Introduction25

In Brazil there are 1268 hydroelectric power plants in operation, corresponding to 65% of total26

installed capacity and responsible for 73% of electricity production in 2016 [1]. This kind of power27

plant produces electricity by harnessing a river hydraulic potential so the electricity generation28

depends directly on hydrological regimes.29

Since the 90s there are several studies showing that not only there is an influence of climate30

variables like El Niño-Southern Oscillation (ENSO) on hydrological series [2–6,8], but also that31

when correlation is taken into account there is improvement in the forecasting/modelling exercise32

of inflow time series [9–13], for instance, storm tides data at the Baltic Sea in [14] and streamflow33

data of the East River basin of China in [15] by adopting the significant Hurst exponent [16],34

which has also been applied in birth time series [17]. Another recent research considered Hurst35

exponent in analyzing hydrogeological series can be found in [18].36

This paper aims to establish comprehensive causality analyses between natural inflow and37

climate variables in Brazil by embracing and comparing both well established and advanced38

causality detection methods, including time domain Granger causality (GC) test [19], frequency39

domain causality test [20], Convergent Cross Mapping (CCM) [21], Singular Spectrum Analysis40

(SSA) based causality test [22] and the Periodic Autoregressive model (PAR) based causality41

test [23,24].42

Most of the works previously cited study the influence of ENSO events using the Sea Surface43

Temperature (SST) variable for the Northeast region of Brazil, ignoring others geographic regions44

and also other variables that possibly indicate a proxy for ENSO. In this paper, all the fifteen45

Brazil major basins are considered to test the causality with more than seven ENSO proxies46

and the Sunspot climate event.47

The remainder of this paper is organized such that the background of this study is presented48

in Section 2; the causality detection techniques adopted in this paper are briefly summarized in49
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Section 3; Section 4 introduces the data and summarizes the descriptive statistics along with50

correlation analyses; the detailed causality test results by different methods are listed in Section51

5; the paper concludes in Section 6 with proposals of future research.52

2 Background53

It is possible to find several studies that identify the influence of ENSO events in the Brazilian54

river basins, but none of them apply any type of causality test. Amarasekera et al. [2] concludes55

that the annual discharges of the Amazon river is weakly and negatively correlated with the56

equatorial Pacific Sea Surface Temperature (SST) anomaly, while the the Paraná river shows57

a strong and positive correlation. Dettinger & Diaz [3] uses El Niño variations to characterize58

geographic differences in the seasonality and year-to-year variability of stream flow from several59

sites around the world, and shows that the Amazon basin is drier-than-normal in El Niño60

years accordingly to Southern Oscillation Index (SOI) and North Atlantic Oscillation (NAO)61

[25] index. Foley et al. [4] shows that during the El Niño there is a decrease in the Amazon62

and Tocantins river discharge, and the opposite during the La Niña. Berri et al. [5] presents63

that exactly the opposite happens in Paraná river, i.e., during El Niño the average inflow are64

always larger than those observed during La Niña events. Garcia & Mechoso [6] concludes65

that the Amazon, Tocantins, San Francisco, Paraguay, Paraná river streamflows shows El Niño-66

like periodicities. Soares et al. [8] notice that the sub-basins of the southern Brazilian regions67

showed positive variations in water production during El Niño, while the Amazon basin showed68

no response.69

Souza Filho [9] shows that the correlation between climate and hydrological variables is70

beneficial for the prediction of reservoirs inflows in Ceará. Cardoso & Silva Dias [10] use the71

SST index to show that there is improvement in the reservoir inflow forecasting of Paraná River.72

Lima & Damien [11] apply dynamic linear models to predict the inflow of the Brazil fifteen main73

basins using precipitation and an El Niño index. Maçaira et al. [12] developed a causal PAR74

model to estimate the influence between several El Niño indices and the inflow time series of75

some Brazilian locations. Silveira et al. [13] propose the Periodic Autoregressive model with76

one exogenous variable (PARX) to simultaneously predict all natural inflows of the National77

Interconnected System.78

Apart from the significance of studying the causal links between natural inflow and climate79

factors, this paper has adopted 5 different causality detection techniques covering both well80

established and advanced time series analysis methods (note that the detailed introduction of81

these methods are summarized in section 3). It worth to be noted as another contribution of82

this paper that it comprehensively investigates the causal relationship with the most up to date83

time series analysis techniques to our knowledge.84

The well established and widely applied GC approach enables researchers to evaluate de-85

pendence relationship, mostly linear, among factors in a complex system. It brings insights on86

whether the changes of one factor have relationship with the changes of another factor in the87
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current sequence or after specific lag of time. However, it assumes linearity and separability for88

the selected variables in the model and the nonlinear applicability is limited. The frequency do-89

main causality test extends the GC approach to identify the causality for each frequency instead90

of a single statistics for the whole time series, whilst the restricted assumptions and nonlinear91

applicability maintain. In addition, by adopting the advanced time series analysis techniques92

like SSA and CCM, this paper also explores the causality detection from the aspect of nonlin-93

earity and other complex dynamics. These advanced non-parametric techniques are relatively94

new and have no assumptions of linear or restricted nonlinear model. They are designed to be95

widely applicable and assumption free with straightforward way of thinking and implementing.96

By adopting these advanced methods, this paper seeks to further distinguish possible causal97

relationships that the empirical tests cannot achieve or fall short at. In general, to the best of98

our knowledge, this paper is the first attempt that applies and compares all these five causality99

detection methods to date. Moreover, for most of the advanced methods, it is also the initial100

implementation study on the natural inflow and climate variables in Brazil.101

3 Causality Detection Methods102

3.1 Time Domain Granger Causality Test103

GC test [19] is the most generally accepted and significant method for causality analyses in104

various disciplines. The regression formulation of granger causality states that vector Xi is the105

cause of vector Yi if the past values of Xi are helpful in predicting the future value of Yi, two106

regressions are considered as follows:107

Yi =
T∑
t=1

αtYi−t + ε1i, (1)

Yi =
T∑
t=1

αtYi−t +
T∑
t=1

βtXi−t + ε2i, (2)

where i = 1, 2, · · · , N (N is the number of observations), T is the maximal time lag, α and β are108

vectors of coefficients, ε is the error term. The first regression is the model that predicts Yi by109

using the history of Yi only, while the second regression involves both Xi and Yi. Therefore, the110

conclusion of existing causality is conducted if the second model is a significantly better model111

than the first one.112

3.2 Frequency Domain Causality Test113

The frequency domain causality test is the extension of time domain GC test that identifies the114

causality between different variables for each frequency. In order to briefly introduce the testing115

methodology, we mainly follow [20,26].116

It is assumed that two dimensional vector containing Xi and Yi (where i = 1, 2, · · · , N and N117

is the number of observations) with a finite-order Vector Auto-regression Model representative118
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of order p,119

Θ(R)

(
Yi

Xi

)
=

(
Θ11(R) Θ12(R)

Θ21(R) Θ22(R)

)(
Yi

Xi

)
+ Ei, (3)

where Θ(R) = I−Θ1R−...−ΘpRp is a 2×2 lag polynomial and Θ1, ...,Θp are 2×2 autoregressive120

parameter matrices, with RkXi = Xi−k and RkYi = Yi−k. The error vector E is white noise121

with zero mean, and E(EiE ′i) = Z, where Z is positive definite matrix. The moving average122

representative of the system is123 (
Yi

Xi

)
= Ψ(R)ηi =

(
Ψ11(R) Ψ12(R)

Ψ21(R) Ψ22(R)

)(
η1i

η2i

)
, (4)

with Ψ(R) = Θ(R)−1G−1 and G is the lower triangular matrix of the Cholesky decomposition124

G′G = Z−1, such that E(ηtη
′
t) = I and ηi = GEi. The causality test developed in [26] can be125

written as:126

CX⇒Y (γ) = log

[
1 +
|Ψ12(e

−iγ)|2

|Ψ11(e−iγ)|2

]
. (5)

However, according to this framework, no Granger causality from Xi to Yi at frequency γ127

corresponds to the condition |Ψ12(e
−iγ)| = 0, this condition leads to128

|Θ12(e
−iγ)| = |Σp

k=1Θk,12 cos(kγ)− iΣp
k=1Θk,12 sin(kγ)| = 0, (6)

where Θk,1,2 is the (1, 2)th element of Θk, such that a sufficient set of conditions for no causality129

is given by [20]130

Σp
k=1Θk,1,2 cos(kγ) = 0

Σp
k=1Θk,1,2 sin(kγ) = 0

, (7)

Hence, the null hypothesis of no Granger causality at frequency γ can be tested by using a131

standard F-test for the linear restrictions (7), which follows an F (2, B − 2p) distribution, for132

every γ between 0 and π, with B begin the number of observations in the series.133

3.3 Convergent Cross Mapping134

CCM is firstly introduced in [21] that aimed at detecting the causation among time series135

and provide a better understanding of the dynamical systems that have not been covered by136

other well established methods like GC. CCM has proven to be an advanced non-parametric137

technique for distinguishing causations in a dynamical system that contains complex interactions138

in ecosystems and climate studies [21,27], more details can be found in [28,29]. Some significant139

rationales of embracing this advanced technique include: CCM is non-parametric approach140

with no restrictions of assumptions for parametric methods; CCM can distinguish statistically141

significant causality by considering only two key variables instead of building a complex model142

by incorporating many possible influential variables based on regression modelling; CCM has143

remarkable sensitivity at detecting causal links within complex systems whilst not being limited144

5



to linearity or nonlinearity; the calculation itself is efficient and comparatively straight forward.145

CCM is briefly introduced below by mainly following [21].146

Assume there are two variables Xi and Yi, for which Xi has a causal effect on Yi. CCM147

test will test the causation by evaluating whether the historical record of Yi can be used to get148

reliable estimates of Xi. Given a library set of n points (not necessarily to be the total number of149

observations N of two variables) and here set i = 1, 2, · · · , n, the lagged coordinates are adopted150

to generate an E-dimensional embedding state space [30,31], in which the points are the library151

vector Xi and prediction vector Yi152

Xi : {xi, xi−1, xi−2, · · · , xi−(E−1)}, (8)

Yi : {yi, yi−1, yi−2, · · · , yi−(E−1)}, (9)

The E+1 neighbors of Yi from the library set Xi will be selected, which actually form the smallest153

simplex that contains Yi as an interior point. Accordingly, the forecast is then conducted by this154

process, which is the nearest-neighbour forecasting algorithm of simplex projection [31]. The155

optimal E will be evaluated and selected based on the forward performances of these nearby156

points in an embedding state space.157

Therefore, by adopting the essential concept of Empirical Dynamic Modeling (EDM) and158

generalized Takens’ Theorem [30], two manifolds are conducted based on the lagged coordinates159

of the two variables under evaluation, which are the attractor manifold MY constructed by Yi160

and respectively, the manifold MX by Xi. The causation will then be identified accordingly161

if the nearby points on MY can be employed for reconstructing observed Xi. Note that the162

correlation coefficient ρ is used for the estimates of cross map skill due to its widely acceptance163

and understanding, additionally, leave-one-out cross-validation is considered a more conservative164

method and adopted for all evaluations in CCM.165

3.4 Singular Spectrum Analysis based Causality Test166

As GC formalized the causality concept and claimed causality if the elimination of one variable167

from a system is harmful for explaining the other variable. Similarity, as can be seen in Figure 1,168

the SSA based causality analysis is obtained by comparing the forecast values obtained by the169

univariate procedure–SSA and multivariate process– multivariate SSA (MSSA). Consequently,170

if the forecasting errors using MSSA are significantly smaller than those of univariate SSA, it is171

concluded that there is a causal relationship detected between these series. As a nonparametric172

technique, the SSA causality test is able to capture possible nonlinearities using a data-driven173

approach without specifying any known functional nonlinear model to the relationship, which in174

turn, could be incorrectly specified in the first place. Detailed introduction is presented below175

which mainly follow [22, 32], where also summarize the details of SSA and MSSA formulation176

and forecasting algorithms.177
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Figure 1: Flowchart of Cause Detection based on SSA Forecasting Accuracy.

Let us consider the procedure for constructing vectors of forecasting error for out-of-sample178

tests in a two variable case XN and YN by both univariate and multivariate SSA techniques179

respectively. Firstly, the series XN = (x1, ..., xN ) is divided into two separate subseries XR180

and XF that satisfy XN = (XR, XF ), where XR = (x1, ..., xR) and XF = (xR+1, ..., xN ). Same181

procedure is also conducted for YN . The subseries XR and YR are used in the reconstruction step182

to provide the noise-free series X̃R and ỸR. The noise-free series are then used for forecasting the183

subseries XF and YF with the help of the forecasting algorithms (see Appendix A) of SSA and184

MSSA respectively. For variable XN , two different forecasting values of X̂F = (x̂R+1, ..., x̂N )185

by SSA and MSSA are then used for computing the forecasting errors accordingly, which will186

be the same process in terms of variable YN . Therefore, in a multivariate system like this, the187

vectors of forecasts obtained can be used in computing the forecasting accuracy and therefore188

conducting the causality analysis between the two variables.189

The length of out-of-sample does not have specific limitation, generally considering the sim-190

ulation scenario, the length of time series for reconstruction will take 2/3 of the whole series191

and the rest 1/3 is considered as out-of-sample for constructing forecasting error. The separate192

point to define the out-of-sample size for different series can be chosen respectively, whilst it193

is important that when it goes to comparing the performances of different techniques based on194

constructed forecasting error of one specific series, the sizes of reconstruction and out-of-sample195

for all techniques should be identical. In addition, the choices of window length L and the196

referring options of numbers of eigenvalues r should also be carefully evaluated in practice of197

SSA causality test respectively. Considering this as the first attempt of application, also in198

order to conduct the most accurate results, all the possibilities of L and its referring choices of r199

should be applied for both univariate SSA and MSSA processes, then the optimal ones with best200

performance of forecasting will be chosen to construct the finally cause detection procedure.201

Consequently, define the criterion FX|Y = ∆XF |Y /∆XF corresponding to the forecast of the202

series XN in the presence of the series YN . Specifically, if FX|Y is small, then having information203

obtained from the series Y can help to achieve better forecasts of the series X. If FX|Y < 1, it is204

concluded that the information provided by the series Y can be regarded as useful or supportive205

for forecasting the series X. Alternatively, if the values of FX|Y ≥ 1, then either there is no206

7



detectable causality between X and Y or the performance of the univariate SSA is better than of207

the MSSA (this may happen, for example, when the series Y has structural breaks misdirecting208

the forecasts of X).209

3.5 Periodic Autoregressive Model based Causality Test210

To perform monthly forecasts and simulation of hydrological series, the classical PAR model has211

been widely used [23]. This type of model adjusts the series using the estimated parameters of212

the historical data [33], and does not consider any exogenous information that could affect the213

hydrological regimes in equation (10). To consider any exogenous variable in the PAR model,214

there is the Periodic Autoregressive model with one exogenous variable (PARX) as presented in215

equation (11). PAR models fit for each season an autoregressive term being able to capture the216

monthly variability of hydrological regimes, this is the main reason for its success for this type217

of data. The mathematical details of PAR and PARX can be found in [12,13,24].218 (
Yi − µm
σm

)
=

pm∑
t=1

ϕmt

(
Yi−t − µm−t

σm−t

)
+ εt, (10)

219 (
Yi − µm
σm

)
=

pm∑
t=1

ϕmt

(
Yi−t − µm−t

σm−t

)
+

vm∑
t=0

ϑmt Xi−t + εt, (11)

Where µm and σm are the average and the standard deviation of season m, respectively; ϕmt220

is the t-th autoregressive coefficient of season m, pm is the order of the autoregressive operator221

of season m. In (11), Xi is the predictor variable, ϑmt is the autoregressive coefficient and vm is222

the order of the autoregressive operator of season m for the predictor variable.223

Similar to the SSA based Causality Test, it was developed the PAR based Causality Test224

that compares the forecasts values obtained by the univariate process PAR and the PARX. If225

the forecasting errors using PARX are significantly smaller than those of PAR, it is conclude226

that there is a causality detected among the variables.227

4 Data228

4.1 The Natural Inflow Series in Brazil229

According to the Brazilian Electricity Regulatory Agency (ANEEL) there are fifteen major230

river basins in Brazil, with an installed capacity of approximately 90 GigaWatts [GW] in 2016,231

representing 66% of the total installed capacity in the country (Figure 2). The Parana river232

basin has the highest hydroelectric potential, around 43 GW, which represents 48% of total233

hydroelectric capacity. It can be further subdivided into six minor basins based on its major234

rivers - Paranaiba, Grande, Tiete, Parana, Paranapanema and Iguacu.235
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Figure 2: Major rivers basins in Brazil.(Source: [11])

The historical data available is the natural inflow1 for each generator, on a monthly basis,236

starting in January 1931 and ending in December 2015, measured in cubic meters per second237

[m3/s]. For generators built after 1931, the National Electric System Operator performs a back-238

ward forecasting in order to standardize the records for the hydrothermal dispatch optimization239

process.240

In the major rivers there are around 164 hydroelectric power plants currently in operation241

[34], and these plants operate in a cascade scheme, see in Figure 3 this cascade scheme for242

Paranáıba and Grande basins with 19 generators with reservoirs, represented by triangles, and243

15 generators with no reservoir (circles). This way decisions taken at the upstream reservoirs244

will impact the inflow of the downstream reservoirs.245

1The natural inflow is the average incoming water per unit of time at each generator’s reservoir from affluent

rivers, lakes and its own drainage area.
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Figure 3: Example of a cascade scheme.(Source: Adapted from [1])

Since there is a cascade scheme, the natural inflow of each generator has to be calculated246

based on the concept of incremental inflows. For exemplifications reason, assume that Camargos247

is Generator number 1 and Itutinga is Generator number 2 in Figure 3. If Generator 1 comes248

first in the cascade, the incremental inflow will be equal to its natural inflow. But, if Generator249

2 has 1 upstream, so its incremental inflow will be given by the difference between its natural250

inflow and the natural inflow of Generator 1. The generators will be grouped by basin creating251

an equivalent generator with natural inflow equal to the sum of the incremental inflows of all252

reservoirs belonging to the basin (Figure 4). It is of note that all natural inflow data analyzed253

in the following sections have been adjusted accordingly considering the cascade scheme.254

4.2 Climate Variables255

The climate variables were selected trough a literature search. The selected variables are related256

to El Niño and the Sunspots numbers; the variables representing El Niño/La Niña phenomenon257

are: Southern Oscillation Index (SOI), Equatorial SOI, Niño variations and Oceanic Niño Index258

(ONI).259

The SOI is calculated based on the difference between the atmospheric pressure at sea level in260

the regions of Tahiti (in the Western Pacific) and Darwin (Australia, Western Pacific) [35]. The261

Equatorial SOI measures the average difference of atmospheric pressure at sea level between two262

regions centered on the equator: Indonesia and East Pacific. The range to indicate the presence263
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Figure 4: The natural inflow series in Brazil.
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Figure 5: The climate variables in Brazil.

or absence of El Niño/La Niña is the same for both the SOI index and Equatorial SOI. It is also264

of note that the influence of El Niño in North America indicate a nearly 30 year long cycle due265

to the different geographical zone [36]. Consecutive periods of negative figures indicate El Niño266

phenomenon occurrence; meanwhile consecutive positive figures denote the presence of La Niña267

and values close to zero indicate a normal situation, where none of the two phenomenons occur.268

The official historical monthly series of these indices are provided by the National Oceanic and269

Atmospheric Administration (NOAA).270

The Sea Surface Temperature (SST) is the water temperature close to the ocean’s surface.271

The SST anomaly, that is, the temperature variation by month, is a proxy for El Niño and La272

Niña. Thus, this index is used to classify and quantify such phenomena in four Niño regions:273

Niño 1+2, Niño 3, Niño 4 and Niño 3.4, defined as follows by NOAA in 2014. Through the274

location of the Niño regions it is possible to conclude that regions Niño 1+2 and Niño 3 better275

identify temperature anomalies for the Eastern Pacific Ocean sea surface and region Niño 4 for276

the Western Pacific. The Niño 3.4 region is centralized in the Pacific, which allows a better277

understanding of anomalies across it. Therefore, currently the Niño 3.4 region is the official278

measure used to represent SST. However, depending on the study, other regions may be a better279

alternative. The threshold for the normal state of this index is between −0.5◦C and +0.5◦C. The280

criteria commonly used to define an El Niño phenomenon consists of five consecutive averages281

of SST anomalies above +0.5◦C. Similarly, for La Niña, this criterion remains, but now the282
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SST anomaly should be below −0.5◦C. The monthly time series for all regions are provided by283

NOAA.284

The ONI measures the average sea surface temperature anomalies for the region Niño 3.4,285

removing the existing warming trend on it. According to the NOAA website, multiple centered286

30-year based periods are adopted for obtaining ONI values of five successive years. For instance,287

the 1956-1960 ONI values are based on the 1941-1970 period, while 1936-1965 base period288

produces the 1950-1955 ONI values. The El Niño and La Niña are indicated in the same289

manner as the SST index, the time series is monthly and is provided by NOAA.290

Sunspots comprehend solar surface regions of high magnetic field, which have considerably291

lower temperature than its surroundings and thus appear as a dark area. The magnetic flux292

amount on the sun surface varies over eleven year periods, known as sunspot and solar cycles.293

During this cycle there is a minimum and a maximum magnetic flux, which is not only difficult294

to identify the sunspots and but also they appear almost all the time. The cycle reaches its295

maximum approximately every eleven years, therefore the observed cycle duration corresponds296

to eleven years.297

The number of sunspots calculation is accomplished with the Relative Index American num-298

ber of sunspots. This index indicates the solar phenomenon occurrence taking into account their299

relationship with the Earth, including geomagnetic variations and ionosphere effects. The Solar300

Division from American Association of Variable Star Observers coordinates the data collection301

program and the analysis of this phenomenon. Thus, the National Geophysical Data Center302

(NGDC), provides the historical data from the number of sunspots per month since 1749.303

Considering the availability of all series and since the SST is only available after 1982, the304

data used for this paper are at monthly frequency from January 1982 to December 2015.305

A brief summary table is listed below in Table 1 and the descriptive statistics can be found in306

Table 2.307

13



Table 1: Summary of tested series.

Abbreviation Variable

Natural Inflow Series

AMZ Amazon

EAT East Atlantic

GRA Grande

IGU Iguacu

P1 Paranaiba

P2 Paranapanema

P3 Parana

P4 Paraguay

P5 Parnaiba

SAT South Atlantic

SEAT Southeast Atlantic

SF Sao Francisco

TIE Tiete

TOC Tocantins

URU Uruguay

Climate Variables

SOI St Southern Oscillation Index Standard

SOI Eq The Equatorial Southern Oscillation Index

NN12 Sea Surface Temperature of Niño 1+2 Region

NN3 Sea Surface Temperature of Niño 3 Region

NN4 Sea Surface Temperature of Niño 4 Region

NN34 Sea Surface Temperature of Niño 3.4 Region

ONI The Oceanic Niño Index

SS Sunspots Number

Table 2: Descriptive statistics of data.

Series Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis Obs

AMZ 33553.30 27753.5 95088 5600 21564.07 0.47 1.97 408

EAT 622.75 356 6690 45 746.51 3.67 22.33 408

GRA 2155.66 1721 7938 364 1323.23 1.36 4.79 408

IGU 1802.17 1414 11670 206 1368.56 2.12 10.77 408

P4 425.12 352 1124 212 178.78 1.07 3.42 408

P3 2587.07 2309 8911 130 1368.81 1.35 5.69 408

P1 3094.21 2496 11025 705 1796.74 1.29 4.53 408

P2 2857.46 2504 16004 699 1521.65 3.12 20.81 408

P5 438.33 366.5 1668 178 232.30 1.70 6.71 408

SF 3152.20 2229 15360 406 2481.43 1.55 5.49 408

SAT 868.39 689.5 4524 110 616.66 1.64 7.01 408

SEAT 1535.49 1226 6862 319 975.27 1.56 5.97 408

TIE 1787.83 1549.5 5519 548 849.09 1.64 6.03 408

TOC 13064.57 8229 45317 1772 10943.19 0.93 2.81 408

URU 1939.78 1472 11834 262 1472.04 2.00 9.32 408

SOI St 0.03 0 2.9 -3.6 1.01 -0.21 3.60 408

SOI Eq 0.02 0.1 3 -3.5 1.03 -0.37 3.51 408

NN12 0.08 -0.18 4.62 -2.1 1.21 1.32 5.00 408

NN3 0.05 -0.13 3.62 -2.07 0.99 0.95 4.46 408

NN34 0.03 0.005 2.95 -2.38 0.97 0.41 3.25 408

NN4 0.04 0.19 1.67 -1.87 0.72 -0.50 2.49 408

ONI 0.05 -0.01 2.37 -1.78 0.84 0.36 3.00 408

SS 60.12 56.6 158.5 1.7 44.31 0.57 2.24 408

4.3 Correlation Analysis308

Prior to the comparison of causality analyses by different methods, the correlation analysis309

results are here summarized in Table 3 and Table 4. Note that the results are Pearson correlation310

coefficients respectively considering the empirical status of Pearson approach and ** indicates311
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significance at the 0.01 level whilst * reflects the 0.05 level.312

As can be seen in Table 3, the correlation between natural inflow and climate variables are313

overwhelmingly weak, except a few weak correlations detected among NN12, NN3, P2, P3, SAT314

and URU. The correlations between the climate series are also evaluated and summarized in315

Table 4. Similar conclusions are obtained as expected following the results in [12]: SOI indices316

hold negative correlation with the others, whilst the El Niño and ONI series indicate strong317

positive values.318

Table 3: Correlation between natural inflow and climate variables.

AMZ EAT GRA IGU P1 P2 P3 P4 P5 SAT SEAT SF TIE TOC URU

SOI St 0.06 -0.06 0.00 -0.07 -0.03 -0.09 -0.09 0.09 0.09 -0.13** 0.01 -0.03 0.01 0.06 -0.11*

SOI Eq 0.03 -0.04 -0.05 -0.22** -0.05 -0.24** -0.23** 0.06 0.09 -0.27** 0.01 -0.04 -0.06 0.05 -0.26**

NN12 -0.03 -0.05 0.08 0.37** 0.04 0.36** 0.38** -0.03 -0.13** 0.33** -0.03 0.02 0.14** -0.07 0.37**

NN3 -0.06 -0.03 0.03 0.28** 0.04 0.26** 0.31** -0.08 -0.14** 0.32** -0.05 -0.01 0.09 -0.09 0.33**

NN4 -0.03 0.02 -0.06 0.11* 0.01 0.07 0.19** -0.05 -0.08 0.16** -0.07 -0.02 -0.02 -0.03 0.16**

NN34 -0.06 0.01 0.01 0.20** 0.03 0.18** 0.25** -0.08 -0.12* 0.26** -0.05 -0.01 0.05 -0.07 0.25**

ONI -0.07 0.01 0.01 0.19** 0.04 0.18** 0.23** -0.09 -0.11* 0.28** -0.04 0.01 0.04 -0.07 0.27**

SS 0.00 0.10* -0.02 0.04 0.02 0.06 0.02 0.05 0.00 0.01 -0.06 0.03 0.05 0.05 0.00

Table 4: Correlation between climate variables.

SOI St SOI Eq NN12 NN3 NN4 NN34 ONI SS

SOI St 1.00

SOI Eq 0.80** 1.00

NN12 -0.47** -0.65** 1.00

NN3 -0.67** -0.83** 0.82** 1.00

NN4 -0.69** -0.75** 0.41** 0.73** 1.00

NN34 -0.75** -0.85** 0.64** 0.94** 0.88** 1.00

ONI -0.74** -0.85** 0.63** 0.92** 0.88** 0.99** 1.00

SS -0.02 -0.04 -0.02 -0.02 -0.03 -0.03 -0.03 1.00

5 Causality Analyses Comparison319

The causality detections between natural inflow and climate variables in Brazil are here evaluated320

and compared by implying different causality detection methods summarized in section 2. It is321

of note that all the results were obtained using R.322

5.1 Time Domain Granger Causality Test323

Given the significant and empirical role of GC causality test, the GC test results are firstly con-324

ducted and summarized as follows in Table 5. It is of note that the preconditions of time domain325

GC test are satisfied for all tests across various combinations of variables and the corresponding326

optimal lag is determined respectively by a group of information criteria. Specifically, the re-327

sults that are highlighted in red represent that the valid evidence is obtained for unidirectional328

causality from corresponding climate variable to the natural inflow. Note that these valid cases329

have no conflicts of causality for the reverse direction and all shows significance level less than330

10%.331

It is observed that the GC test shows relatively promising performance for NN12 and ONI332

across climate variables, for AMZ, URU and SAT among all natural inflow series. However,333
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there are general misleading results of the reverse direction and many cases of mutual directional334

causality with high significant levels.335

5.2 Frequency Domain Causality Test336

The frequency domain test extends the GC test and further investigates into the causal links337

by each particular frequency. Note that the preconditions are stratified and the optimal lag-338

structures are maintained for all tests. As can be seen in Table 6, the valid cases are again339

highlighted in red, which indicates unidirectional causality from climate variable to natural340

inflow without the evidence of causality for the other direction.341

In general, NN34 and ONI obtain overall valid evidences of unidirectional causality without342

misleading results, whilst only AMZ out of all the natural inflow series shows identical valid343

results with NN12, NN4 and NN34. Even P2, P3, IGU, URU and SAT indicate a few valid344

unidirectional causality cases, however, it is not consistent and solid enough considering the345

amount of misleading results showing causality in reverse direction or mutual direction.346
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5.3 CCM347

The CCM causality test has the significant advantage of no prior linear model assumptions are348

made and this technique is designed for better understanding of causal relationships in complex349

dynamical system. The results of CCM tests are briefly summarized in Table 7,Table 8 and350

Table 9 and organized by each pair of tested variables. Moreover, the time lag has been involved351

to the evaluation, where lag 1 to 6 are considered coving 6 months of lag effect. It is of note352

that all test results are obtained by the optimal embedding dimension respectively, which is353

determined by the nearest neighbor forecasting performance using simplex projection and leave-354

one-out cross validation is applied for the best choice on library size with optimal performance.355

The results overwhelmingly indicate causality from natural inflow to climate variable2, whilst356

only 18% of the pairs get positive evidence on unidirectional causality from climate variable to357

natural inflow. However, even among those 18% pairs, there are misleading results of no clear358

causality detected for specific time lag options. In general, SAT and SF along with NN3 and359

NN4 obtain relatively more positive results.360

2This is possibly due to the oversensitivity of CCM on noise, however, it is of note that the cross mapping skills

of both directions are significantly high, indicating the strong link between natural inflow and climate variables.
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5.4 SSA based Causality Test361

Follow the brief introduction of SSA based causality test in section 3, the test results of natural362

inflow and climate variable in Brazil are summarized in Table 103. It is of note that both recur-363

rent and vector forecasting algorithms are evaluated respectively; the out-of-sample is defined as364

the last 1/3 of the total observation for both SSA and MSSA forecastings; the root mean square365

error (RMSE) of forecasting for SSA and MSSA are the optimal outcome obtained respectively366

with the optimal window length (L) and numbers of eigenvalues (r) that are also listed in the367

table; causality is detected if the corresponding F statistics is smaller than 1 and the significant368

level of causality increases while the value of F statistics decreases.369

In general, the results are again a mixture of different unidirectional causality, mutual direc-370

tional causality and no causality, and no significant pattern can be identified, except that NN34371

and NN4 work slightly better among all series. Moreover, the F statistics are very close to 1,372

which indicate that the forecasting of MSSA by involving the other variable is improved by a373

very limited amount comparing to the performance of univariate SSA.374

3It is of note that the listed pairs are part of all combinations that cover almost all tested series and types of

results. The complete details of these results are available upon request from the authors.
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Table 10: SSA based causality test results.

SSA MSSA SSA Causality

Rec Vec Rec Vec Rec Vec

L,r RMSE L,r RMSE L,r RMSE L,r RMSE F stat F stat Direction Decision

ONI 3,2 0.21 16,14 0.20 9,6 0.20 3,2 0.21 0.92 1.09 URU caus ONI

URU 12,3 1349.63 3,1 1357.71 2,1 1426.68 2,1 1426.68 1.06 1.05 ONI caus URU
Wrong

NN34 3,2 0.28 3,2 0.28 3,2 0.28 3,2 0.29 1.02 1.02 SAT caus NN34

SAT 20,5 541.68 20,10 544.38 11,3 556.97 12,3 559.69 1.03 1.03 NN34 caus SAT
No

SS 16,14 1.00 16,11 1.22 8,6 1.19 8,6 1.47 1.20 1.21 P4 caus SS

P4 19,4 100.14 17,5 106.68 19,4 85.11 15,4 91.61 0.85 0.86 SS caus P4
Yes

SOI St 2,1 0.74 3,1 0.73 2,1 0.69 2,1 0.69 0.93 0.94 SAT caus SOI St

SAT 20,5 541.68 20,10 544.38 11,3 556.97 12,3 559.69 1.03 1.03 SOI St caus SAT
Wrong

NN3 3,2 0.34 3,2 0.35 3,2 0.33 3,2 0.34 0.96 0.96 IGU caus NN3

IGU 18,1 1292.42 20,1 1282.83 17,1 1338.35 19,1 1315.74 1.04 1.03 NN3 caus IGU
Wrong

NN4 6,3 0.20 17,8 0.21 3,2 0.22 3,2 0.22 1.06 1.07 GRA caus NN4

GRA 19,5 829.02 13,3 821.12 19,5 844.93 17,5 854.13 1.02 1.04 NN4 caus GRA
No

NN12 3,2 0.57 3,2 0.57 8,5 0.49 9,6 0.48 0.86 0.83 SF caus NN12

SF 12,5 1529.22 13,3 1509.66 20,3 1395.22 16,6 1425.42 0.91 0.94 NN12 caus SF
Mutual

NN34 3,2 0.28 3,2 0.28 3,2 0.28 3,2 0.29 1.01 1.02 P2 caus NN34

P2 20,7 1223.53 20,7 1224.24 16,7 1111.85 12,4 1088.23 0.91 0.89 NN34 caus P2
Yes

ONI 3,2 0.21 16,14 0.20 5,4 0.19 5,4 0.20 0.88 1.03 P3 caus ONI

P3 20,5 1330.56 5,1 1320.23 20,6 1307.70 15,4 1306.01 0.98 0.99 ONI caus P3
Mutual

NN34 3,2 0.28 3,2 0.28 3,2 0.28 3,2 0.29 1.01 1.02 AMZ caus NN34

AMZ 13,6 5052.20 20,12 4762.11 10,7 4904.91 13,9 4678.68 0.97 0.98 NN34 caus AMZ
Yes

NN4 6,3 0.20 17,8 0.21 3,2 0.22 3,2 0.22 1.06 1.06 SAT caus NN4

SAT 20,5 541.68 20,10 544.38 11,3 556.97 12,3 559.69 1.03 1.03 NN4 caus SAT
No

NN3 3,2 0.34 3,2 0.35 3,2 0.33 3,2 0.34 0.96 0.97 P1 caus NN3

P1 20,5 1049.30 13,3 1029.57 20,5 1047.73 20,5 1053.18 1.00 1.02 NN3 caus P1
Wrong

SOI Eq 2,1 0.52 2,1 0.52 7,3 0.54 7,3 0.55 1.05 1.05 URU caus SOI Eq

URU 12,3 1349.63 3,1 1357.71 2,1 1426.68 17,10 1385.08 1.06 1.02 SOI Eq caus URU
No

NN4 6,3 0.20 17,8 0.21 3,2 0.22 8,4 0.23 1.10 1.12 TOC caus NN4

TOC 11,5 5595.27 20,12 5229.04 15,10 4538.45 15,10 4358.17 0.81 0.83 NN4 caus TOC
Yes

NN12 3,2 0.57 3,2 0.57 10,6 0.49 10,6 0.50 0.86 0.87 TIE caus NN12

TIE 16,4 642.53 16,5 633.07 12,6 729.93 19,14 702.37 1.14 1.11 NN12 caus TIE
Wrong

SOI St 2,1 0.74 3,1 0.73 8,3 0.69 8,3 0.68 0.93 0.93 IGU caus SOI St

IGU 18,1 1292.42 20,1 1282.83 17,1 1338.35 18,1 1315.74 1.04 1.03 SOI St caus IGU
Wrong

ONI 3,2 0.21 16,14 0.20 8,6 0.17 8,6 0.18 0.82 0.92 SF caus ONI

SF 12,5 1529.22 13,3 1509.66 20,3 1395.22 16,6 1425.42 0.91 0.94 ONI caus SF
Mutual

NN12 3,2 0.57 3,2 0.57 14,9 0.48 14,9 0.48 0.83 0.84 P3 caus NN12

P3 20,5 1330.56 5,1 1320.23 20,6 1307.70 15,4 1306.01 0.98 0.99 NN12 caus P3
Mutual

SOI Eq 2,1 0.52 2,1 0.52 5,2 0.56 5,2 0.55 1.07 1.06 P2 caus SOI Eq

P2 20,7 1223.53 20,7 1224.24 16,7 1111.85 12,4 1088.23 0.91 0.89 SOI Eq caus P2
Yes

Yes: only causality from climate variable to natural inflow is detected.

Wrong: only causality from natural inflow to climate variable is detected.

No: no causality detected.

Mutual: mutual directional causality between climate variable and natural inflow.

5.5 Periodic Autoregressive Model based Causality Test375

The PAR causality test results are summarized in Table 114 where both PAR and PARX RMSE376

are present when forecasting the last 1/3 of the total observation. Following the procedure377

describe in SSA causality test, if the corresponding F statistics is smaller than 1 then there is378

causality. When causality is detected in both directions the causality is not computed, and when379

the direction of causality is from the natural inflow in the climate variable then is computed as380

wrong. The causality is computed in the right decision only in six cases, but the F statistics381

is very close to one in most cases, showing that even when causality can be considered, the382

improvements of considering a climate variable it’s on the edge. The only case where can be383

clearly found a causality is between SOI Equatorial and Paranapanema basin.384

4It is of note that the listed pairs are part of all combinations that cover almost all tested series and types of

results. The complete details of these results are available upon request from the authors.
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Table 11: PAR based causality test results.

RMSE PAR Causality

PAR PARX F stat Direction Decision

GRA 1129.17 1076.456 0.953 NN4T caus GRA
Mutual

NN4 1.128 0.789 0.7 GRA caus NN4

P2 2056.97 1235.528 0.601 SOI Eq caus P2
Yes

SOI Eq 1.69 1.754 1.038 No

P3 1618.171 1369.67 0.846 ONI caus P3
Yes

ONI 1.306 1.955 1.497 No

P3 1618.171 1587.472 0.981 NN3 caus P3
Yes

NN3 1.56 2.199 1.409 No

P3 1618.171 1434.836 0.887 NN4 caus P3
Yes

NN4 1.128 1.34 1.188 No

P3 1618.171 1583.034 0.978 NN34 caus P3
Yes

NN34 1.574 2.143 1.362 No

AMZ 8519.513 8581.495 1.007 No
Wrong

NN4 1.128 0.91 0.807 AMZ caus NN4

TOC 6359.823 5489.439 0.863 ONI caus TOC
Mutual

ONI 1.306 1.006 0.77 TOC caus ONI

EAT 806.574 472.349 0.586 SS caus EAT
Mutual

SS 64.101 24.251 0.378 EAT caus SS

TIE 827.817 747.594 0.903 NN3 caus TIE
Yes

NN3 1.56 1.624 1.041 No

IGU 1629.477 1348.128 0.827 ONI caus IGU
Mutual

ONI 1.306 0.847 0.649 IGU caus ONI

URU 1827.213 1497.444 0.82 SOI St caus URU
Mutual

SOI St 1.537 1.152 0.75 URU caus SOI St

SAT 712.875 550.122 0.772 NN12 caus SAT
Mutual

NN12 1.606 1.406 0.876 SAT caus NN12T

P5 193.369 196.162 1.014 No
Wrong

SOI Eq 1.69 1.544 0.914 P5 caus SOI Eq

Yes: only causality from climate variable to natural inflow is detected.

Wrong: only causality from natural inflow to climate variable is detected.

No: no causality detected.

Mutual: mutual directional causality between climate variable and natural inflow.

6 Final Discussion and Conclusion385

In general, this paper successfully obtains comprehensive investigation of the causality relation-386

ship between natural inflow and climate variables in Brazil by analyzing the data of 15 major387

basins and 8 different climate series. For the first time to the best of our knowledge, it in-388

corporates and compares five different causality detection methods for the causality study on389

hydrological series. In specific, GC test shows relatively promising performance for AMZ, URU390

and SAT among all natural inflow series, NN12 and ONI across climate variables; frequency391

domain causality test indicates generally valid evidences of unidirectional causality for AMZ,392

NN34 and ONI; CCM overwhelmingly obtains significant unidirectional causality from the op-393

posite direction (natural inflow to climate variables), whilst SAT, SF, NN3 and NN4 relatively394

give more positive results of the valid direction; SSA based causality test shows that NN34 and395

NN4 work slightly better, and the forecasting improvements by involving the other variable are396

generally very limited; PAR based causality test computed six unidirectional causality, but only397

one is really significant (P2 and SOI Eq).398

The overall results indicate that there is no single method which stands out and outperforms399

the others. The conclusions are a mixture of different unidirectional, mutual directional, and400

no causality. There is no obvious pattern that can be clearly identified across 15 natural inflow401

series and 8 climate variables. However, it is noticed that the overwhelming evidences of opposite402
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direction of causality are obtained by CCM, which is the most concurrent outcome of all five403

different tests. It is frankly interesting discovery that is possibly caused by significant noises404

that generally exist in those series, which will be one of the main focuses for future research.405

The works presented in the Background section showed improvements when using informa-406

tion from the climate variables in the inflow prediction procedure, so even if the tests applied407

here did not present favourable results, a natural continuation of this study will be the appli-408

cation of different models that incorporate exogenous variables to verify the significance of the409

climate variables in the prediction of each of the inflow series studied.410

References411

[1] Operador Nacional do Sistema Elétrico (2017). www.ons.com.br.412

[2] Amarasekera, K., Lee, R., Willians, E. & Eltahir, E. (1997) ENSO and natural variability413

in the flow of tropical rivers. Journal of Hydrology, 200, 24–39.414

[3] Dettinger, M. & Diaz, H. (2000). Global characteristics of streamflow seasonality and vari-415

ability. Journal of Hydrometeorology, 1, 289–310.416

[4] Foley, J., Botta, A., Coe, M. & Costa, M. (2002). El Niño-Southern oscillation and the417

climate, ecosystems and rivers of Amazonia. Global Biogeochemical Cycles, 16, 1132.418
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